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Abstract

Due to their potential for near-infinite scalability, cloud computing platforms are

rapidly becoming the defacto standard for large-scale, big data analytics. Still, serious

concerns regarding the outsourcing and querying of private company and personal data re-

main a key roadblock in the adoption of such cloud platforms for numerous big-data appli-

cations. In this work, we extend cryptographic Searchable Symmetric Encryption (SSE)

schemes to create the first adaptive Range Searchable Symmetric Encryption (RSSE)

schemes that allow the execution of range queries in a practical, efficient, and secure

manner. We propose a number of new RSSE schemes, that we analytically prove to be

adaptively secure according to a novel, cryptographic security definition (RQ-CKA2), and

also exhibit interesting security and performance trade-offs. We also tackle the challenge

of updates in our RSSE schemes by proposing a general solution that does not introduce

any additional leakage over the static case, other than the number of inserts/deletes. The

practicality and scalability of our proposed schemes is demonstrated both theoretically

and experimentally. More specifically, our techniques outperform state-of-the-art Privacy

Preserving Range Querying approaches in terms of both security and efficiency and, at

the same time, offer worst-case guarantees on possible leakages and also protect sensitive

information regarding the order of encrypted values.
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Chapter 1

Introduction

Cloud computing is regarded as a swiftly emerging computing trend, since its usage has

rapidly increased throughout the last few years. This augmented interest has appeared

due to benefits that cloud computing offers, such as scalability and elasticity, the cost

reduction for small and medium businesses, the easy access on data that has been stored.

In general, early adopters are low risk applications that involve less sensitive data and

therefore it is not common to move private data to the cloud side yet. It is essential that

we first resolve all security issues and that privacy is guaranteed at all times. In order to

succeed, no information should be provided to the server about the actual values of the

data that has been stored and that is why encryption is implemented on the client side

before uploading the data; querying takes place on the encrypted data without requiring

decryption (on the cloud side). The main challenge is how to query the encrypted data

efficiently and securely, especially in the case of two essential types of queries, that is the

point and range queries. We focus on the problem of privacy preserving range querying,

as it has so far been an open problem; none of the prior works provides a practical,

efficient and provable secure solution.

Various approaches address the problem of querying encrypted data. More specifi-

cally, numerous works offer efficient solutions for this purpose, but lack provable secure

guarantees [1, 2, 3, 4]. Several other works have adopted the use of Property Preserv-

ing Encryption (PPE) schemes. A special case of PPE schemes, called Deterministic

Encryption Schemes (DET), have been utilized in order to support equality checks and

equi-joins on encrypted data [5, 6, 7, 8]. Another type of PPE schemes is the Order

Preserving Encryption (OPE)schemes, which have attempted to tackle the problem of
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1. INTRODUCTION

order comparisons and range queries [9, 10, 11, 12]. In general, both DET and OPE

schemes provide the required practicality and efficiency but suffer from weak security

guarantees, as well as from frequency analysis attacks; that is the most common attack

in cryptography. They also suffer from other severe leakages, such as order relations

and statistical information, which renders them impractical for real-world applications.

Another suggested approach is the use of Predicate Encryption which either offers strong

security guarantees by introducing high space overhead and linear search time [13, 14], or

provides more efficient solutions [15] by leaking however essential statistical information

i.e. the distribution of the input data. The use of Oblivious RAMs [16, 17] provides

optimal security guarantees without leaking any information to the server, not even the

access pattern, i.e. the number of times a document contains a specific keyword. The

main obstacle in adopting Oblivious RAMs for encrypted query processing is that in

practice they have been proved to be less efficient due to a high bandwidth cost over-

head. Even the most recent and efficient Oblivious RAM approaches [18, 19, 20] cannot

be utilized for answering privacy preserving point and range queries, as they rely on large

block sizes, e.g. 4KB.

The approach of Searchable Symmetric Encryption schemes has appeared in the area

of privacy preserving keyword search. In particular, such schemes allow the user to store

data on an untrusted server or cloud provider with the purpose of securely searching

this set of data later on, for records or documents that match a specific keyword, while

maintaining privacy. It can be derived that SSE schemes can be used for point query-

ing with a simple transformation. The main advantage of SSE schemes is that these

schemes are not only secure encryption schemes, but also they have been proved to be

secure searchable encryption schemes. In 2006 Curtmola et al. proved that all preceding

security definitions targeted for SSE schemes were not sufficient for the general case of

searchable schemes, and therefore they presented the state-of-the-art security definitions.

More specifically, they provided the non-adaptive and adaptive security definitions. The

former ensures privacy for all queries that are generated at once, whereas the latter also

ensures privacy for queries performed at different times. Even though the research area

of SSE schemes is very crowded, there is only one work that provided a Range Searchable

Symmetric Encryption scheme, that of Li et al. in [21].

Our proposed schemes outperform the work of Li in terms of efficiency, and in addition

our main advantage is that our approaches provide stronger security guarantees than
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1.1 Thesis Contribution

those in the work of Li.

1.1 Thesis Contribution

This work proposes the first adaptive Range Searchable Symmetric Encryption schemes

that allows the execution of range queries on encrypted data in a practical, efficient and

secure manner. In particular:

1. Our approaches are based on using SSE schemes as black-boxes, thus allowing us

to take advantage of the existing state-of-the-art SSE schemes both in terms of

security and efficiency.

2. We extend the state-of-the-art security definitions proposed by Curtmola et al. [22]

to the range searchable problem which renders us the first to present a formal and

unified security definition for RSSE schemes.

3. We present various RSSE schemes, which are adaptively secure and offer trades-offs

between security and performance.

4. All of our proposed RSSE schemes require sub-linear search time and reasonable

storage demands, except from the Quadratic protocol which is only presented for

understanding purposes. In particular, interactive STRC reaches optimal search

time, while Linearthmic-URC & MDC and Linear-URC achieve logarithmic search

time.

5. We tackle the problem of updates in our RSSE schemes by providing a general

solution that does not introduce additional leakages.

6. Our schemes are the first adaptively secure RSSE schemes that outperform the

Related Work both in terms of efficiency and privacy. The only work similar to

ours is presented by Li et al. in [21], who proposed their own RSSE scheme which

is secure for non-adaptive SSE security definitions. Our schemes are more efficient

and secure than those of Li et al. [21], and therefore we outperform their work.
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1. INTRODUCTION

7. We present the first privacy preserving range query schemes that hide sensitive

information about the order of the encrypted results and that cannot be attacked

by [23, 24]. These schemes are the Quadratic, Linearthmic-URC, as well as the

non-interactive and interactive STRC RSSE schemes.

8. We conduct a performance evaluation of our schemes that shows their practical

performance, thus verifying the theoretical complexities.

We stress out that our work is the first work that can be utilized by practical appli-

cations while maintaining strong security guarantees that quantify in advance the worst

case leakages.

1.2 Thesis Outline

Chapter 2 presents the concept of Dyadic Intervals 2.1 since it is a basic structure used by

the Linearthmic and Linear RSSE schemes in order to organize the data in the cloud. This

section also presents the notions of deterministic and randomized encryption schemes 2.3,

as well as the notions of PRFs and DPRFs 2.4. At the end of this chapter we present

Searchable Symmetric Encryption (SSE) schemes along with their syntax and security

analysis, since they are used as building-blocks for our proposed RSSE schemes. Chap-

ter 3 addresses the problem of performing privacy preserving range queries. In particular,

the related work that has studied the above problem is outlined and in addition we in-

dicate their limitations. Chapter 4 discusses in detail our approach which focuses on

answering encrypted range queries in a guaranteed secure manner by using state-of-the-

art SSE schemes as black-boxes. More specifically, we propose an appropriate security

game for RSSE schemes in 4.1, the Quadratic RSSE scheme as a warm-up in 4.2 and four

novel and adaptive RSSE schemes which are the following Linearthmic URC 4.3 , non-

interactive STRC 4.4, Linear-URC 4.5 and interactive-STRC 4.6. In the same chapter,

we describe a general solution that allows our novel RSSE schemes to handle updates

without leaking any additional information. Chapter 5 presents the experimental eval-

uation of our proposed algorithms. Finally, in Chapter 6 we conclude the master thesis

and outline potential directions for future work.
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Chapter 2

Preliminaries

We first present some definitions and methods that are essential both for understand-

ing the algorithms proposed in this thesis, as well as for being able to distinguish how

these algorithms compare to alternatives developed in prior work. In particular, we first

describe the notion of dyadic intervals in Section 2.1. Section 2.3 briefly overviews the

deterministic and randomized encryption schemes that have been widely used in different

applications. Section 2.4 presents the notion of PRFs and DPRFs, which are used in our

algorithms. Finally, Section 2.5.1 describes the notion of an SSE scheme, which is used as

a black-box building block in our algorithms, and compares it to deterministic encryption

approaches.

2.1 Dyadic Intervals

Dyadic intervals of a specific domain are intervals arranged in a specific hierarchical

structure. According to the definition of dyadic intervals, a dyadic interval always has

length equal to an integer power of two, it is included in one and only parent node and

it comprises two children nodes which are also dyadic intervals. The above properties

apply to all nodes, except from the leafs, since they correspond to unary intervals. The

structure of a dyadic tree is shown in Figure 2.1. A formal definition of the dyadic

interval follows:

Dyadic Interval Definition: A dyadic interval over a domain I = 1, 1, ..., N, |I| =

N = 2n is an interval of the form [q2j+1, (q+1)2j], where 0 ≤ j ≤ n and 0 ≤ q ≤ 2n−j−1.

Minimal dyadic cover Definition (D([α, β])): The minimal dyadic cover of an interval
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2. PRELIMINARIES

[α, β], is the set of dyadic intervals δ1, δ2, ..., δm for the minimum value of m, so that

δ1 ∪ δ2 ∪ ... ∪ δm = [α, β].

Dyadic cut point: d([α, β]) = q2j is the dyadic cut-point of an interval [α, β] if j is

the largest integer smaller than n (|I| = 2n) for which there exists q such that q2j ∈ [α, β].

1-8 

1-4 

1-2 

1 2 3 4 5 6 8 

5-8 

3-4 5-6 7-8 

7 

Figure 2.1: Dyadic Interval tree

We introduce some useful properties of the Dyadic Intervals.

Property 1:There are exactly 2j dyadic intervals at level j, each containing 2n−j points

from I.

Property 2:The dyadic intervals in a minimal dyadic cover of an interval, form a parti-

tion of that interval.

Property 3: The dyadic cut-point of an interval is unique.

Property 4: The minimal dyadic cover of an interval [α, β] has cardinality at most

2(n-1), where |I| = 2n. That is |D([α, β])| ≤ 2(n− 1)

Lemma 1: Let [α, β] be an interval, d([α, β]) = q2j be its dyadic cut point, and D([α, β]).

Then:

1. None of the dyadic intervals in D([α, β]) contain the dyadic cut-point, except as a

right end-point.

2. The minimal dyadic cover D([α, β]) is the union of the minimal dyadic covers of

[α, q2j) and [q2j, β], i.e. D([α, β]) = D([α, q2j)] ∪D([q2j + 1, β])

3. The minimal dyadic cover D([q2j + 1, β]) consists of a sequence of at most j dyadic

intervals with strictly decreasing sizes.

4. The minimal dyadic cover D([α, q2j] consists of a sequence of at most j dyadic inter-

vals with strictly increasing sizes.

5. The minimal dyadic cover D([α, β]) contains at most 2j dyadic intervals, from which
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2.2 Adversary Models

at most two belong to the same level.

More properties, as well as definitions and proofs are presented in [25].

2.2 Adversary Models

We present the description of adversary models, due to the fact that their very existence

led to the necessity of exploring privacy preserving approaches. Potential adversaries

are the cloud service provider itself, its insiders and any third party attackers who are

capable of viewing the target data, monitoring query processing on the data, obtaining

or inferring data and queries, as well as gaining access to the database server. Assuming

that the adversary is the service provider (untrusted server), which is the worst case

scenario, she falls under one of the following categories.

Passive or curious Adversary but not malicious: The attacker in this model

is able to obtain and derive data and queries; she has complete access to the database

server. She is capable of perceiving the distribution of the ciphertexts if the respective

leakage of information occurs, thereby inferring access patterns or query results. Her goal

is to gather as much information she can.

Active or malicious Adversary: The difference of this type of adversary, compared

to the previous one is that she may misbehave and affect the query processing. More

specifically, she has the ability to modify the encrypted data or to alter the answer of the

queries that have been submitted by the user.

2.3 Encryption Schemes

At this point we briefly present important notions regarding the operation of a deter-

ministic symmetric encryption scheme (DET), that is an equality property preserving

encryption scheme (which leaks equality property), as well as important concepts con-

cerning randomized encryption schemes (RND).

DET: DET consists of 3 parts, a key generator, an encryption algorithm and a decryption

algorithm. In order to represent the above parts of DET, we use the notation: DET =

(DET.KeyGen,DET.Enc,DET.Dec).

DET.KeyGen: KeyGen receives as input λ, which is a security parameter and outputs
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2. PRELIMINARIES

a secret key sk. (sk ← KeyGen(1λ))

DET.Enc: Enc is the encryption function that receives as input a secret key sk and a

message m and outputs a ciphertext (c← Enc(sk,m))

DET.Dec: Dec is the decryption function that receives as input a ciphertext c and

a secret key sk and outputs the message (m ← Dec(sk, c)). The following property

describes DET:

∀ m0,m1 ∈M : Enc(sk,m0) = Enc(sk,m1) iff m0 = m1

DET cannot be secure against chosen-plaintext attacks (CPA), since due to determin-

istic encryption the equality of the plaintexts is leaked. We refer to any deterministic

encryption scheme that is proved to be secure against distinct chosen-plaintext attacks

(DCPA) (DCPA that arises by weakening the CPA security definition), as DET. For

further details we refer the reader to [26]. More specifically, only information concerning

the equality property is leaked from the ciphertexts (i.e., the encrypted messages), as two

identical ciphertexts must have been produced by the same input message (plaintext).

RND: Similarly to DET, RND also comprises a key generator, an encryption algorithm

and a decryption algorithm. We represent the three parts of RND, with the notation:

RND = (RND.KeyGen,RND.Enc,RND.Dec).

The definitions of RND.KeyGen, RND.Enc and RND.Dec are similar to those of the

DET encryption scheme, but in this case two equal plaintext messages are mapped to

different cipertexts with overwhelming probability, i.e.:

∀ m0,m1 ∈M : m0 = m1, Enc(sk,m0) 6= Enc(sk,m1)

The RND encryption is a randomized encryption scheme shown to be secure against

chosen plaintext attacks (CPA), which means that the ciphertexts do not leak any infor-

mation about the plaintext that was encrypted. Thus, RND encryption schemes achieve

stronger security guarantees than DET encryption schemes, since they do not reveal

plaintext equalities.

For more details about DET,RND and CPA, as well as DCPA we refer the reader

to [27] and [26].
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2.4 PRFs and DPRFs

2.4 PRFs and DPRFs

We now provide useful definitions regarding pseudorandom functions (PRFs) and dele-

gatable pseudorandom functions (DPRFs). PRFs constitute an essential component of

the SSE schemes that are presented in Section 2.5.1. DPRFs are an extension of PRFs,

proposed by [28].

Intuitively, a PRF is a function in which the input-output functionality cannot be

distinguished from a random function using any polynomial time computation. A PRF

is a function F : {0, 1}k × {0, 1}n → {0, 1}m that is computable in polynomial time and

cannot be distinguished from other random functions by polynomial time adversaries.

In [28], Kiayias et al. introduce the notion of delegatable pseudorandom functions

(DPRFs). DPRFs are cryptographic primitives that enable the delegation of the evalua-

tion of a PRF to an untrusted server according to a given predicate that defines the inputs

on which the server will evaluate the PRF. Intuitively, a new trusted entity, termed as the

delegator, is used in order to determine the set of encrpyted inputs (termed as trapdoors)

that the server receives in each query. In particular, for any secret key k and a predicate

P ∈ P, the delegator computes a trapdoor τ via algorithm T , and τ is transmitted to

the server. Let n denote the size in bits of any input string x, i.e., x = xn−1...x0. A

dyadic interval of range 2r can be specified by providing the n − r most significant bits

of x. In this case, the trapdoors provided to the server are computed by the delegator

based on these n − r most significant bits and the secret key k. Given each trapdoor,

[17] demonstrates how the server can compute the PRF value of any value within that

dyadic interval.

More specifically, the construction of [28] is based on the GGM pseudo random func-

tion family [29] defined by

F = fk : {0, 1}n → {0, 1}λk∈{0,1}λ ,

such that

fk(xn−1...x0) = Gx0(...(Gxn−1(k)))

where n is polynomial in λ and xn−1...x0 is the input bit string of size n.
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2.5 Searchable Symmetric Encryption (SSE) schemes

2.5.1 Privacy Preserving Point Queries (DET Vs SSE)

The problem of privacy preserving point queries could also be solved with two different

approaches. We begin by discussing the problem of secure point querying because we

intend to use the secure privacy preserving point querying protocol as a basis for our

secure range querying approaches.

Many previous works from the DB community apply the DET encryption scheme,

in order to support equality checks and equi-joins [5, 6, 7, 8]. DET is a special case of

Property-Preserving encryption (PPE) that leaks information associated with the equal-

ity property (two equal ciphertexts imply two equal plaintexts). The data owner encrypts

the database using the DET encryption scheme. Once the encryption of the database

is completed, the data owner outsources the EDB (Encrypted DataBase) to the cloud

and the query processing follows. The query processing comprises several steps. First,

the client or data owner implements the DET encryption scheme to encrypt the point

query value, under the same secret key (skd) as the one used during the encryption phase.

Then, she sends the ciphertext to the cloud provider, who is responsible for scanning the

entire database and for returning all ciphertext values of the EDB that match the query-

ciphertext. The above approach introduces certain limitations, such as the searching

time on the cloud that grows linearly as the number of tuples increases. A straightfor-

ward solution to address this issue is to organize the EDB using a data structure over

the already encrypted value-column, thereby allowing to achieve sub-linear search cost.

The main drawback of the DET approach is the vulnerability of the EDB to frequency

analysis attacks, which is the most common attack in cryptography. The frequency

analysis attack problem has not been addressed by any approach proposed by the DB

community. Two of these approaches, CryptDB and Monomi claim that they use DET

to increase functionality. However, this renders them vulnerable to statistical attacks, as

it implies leaking equality messages and achieving weaker security guarantees. They also

attempt to support range queries, but with the use of a weaker PPE scheme. Neverthe-

less, in this case both the equality messages and the order of the plaintexts are revealed,

simply by observing the ciphertexts (OPE encryption schemes).
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Scheme Security Search Storage Upd.

Song et.al ’00 [30] CPA O(n) N/A no

Goh ’03 [31] non-adaptive O(n) O(n) yes

Chang et.al ’05 [32] non-adaptive O(n) O(n) no

Curtmola et.al ’06 (SSE-1) [22] non-adaptive O(r) O(nm) no

Curtmola et.al ’06 (SSE-2) [22] adaptive O(r) O(n+m) no

Liesdonk et.al ’10 [33] adaptive O(logm) O(nm) yes

Chase et.al ’10 [34] adaptive O(r) O(nm) no

Kamara et.al ’12 [35] adaptive O(r) O(n+m) yes

Cash et.al ’13 [36] adaptive O(r) O(n+m) no

Cash et.al ’14 [37] adaptive O(r) O(n) yes

Stefanov et.al ’14 [38] adaptive O(r) O(n+m) yes

Table 2.1: Comparison of SSE schemes, where n is the data size (the number of tuples), r

the number of documents containing the query word w, m the size of the keyword space

DET encryption schemes allow search-ability, but they cannot provide strong provable

secure solutions. We present the Symmetric Searchable Encryption scheme (SSE)

which tries to solve the keyword search problem, over a collection of encrypted data

that can be outsourced to cloud providers; this scenario is very similar to the one of

privacy preserving point querying, where words are mapped to searchable values and

document-ids to tuple-ids contained in a particular searchable value.

Table 2.1 summarizes the most representative works on SSE schemes, along with their

security guarantees and corresponding costs.

The most efficient and secure solutions are the static version of the Kamara et al.

approach [35], the approaches of Cash et al. [36] and [37].

2.5.2 Syntax of SSE schemes

In this section, we present the syntax of an SSE scheme. The use of such syntax allows

us to consider any SSE scheme as a ”black-box”.

An indexed-based SSE scheme over a dictionary ∆ consists of five polynomial time

algorithms (SSE = (KeyGen, Enc, Trpdrm, Search, Dec)) which are the following:
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SSE.KeyGen is a probabilistic key generation algorithm that receives as input a secu-

rity parameter k and outputs a secret key K

SSE.Enc(K,DB) is a probabilistic algorithm that receives a key K and a database so

as to output the encrypted database (EDB) which contains a secure index I.

SSE.Trpdr(K,w) is a deterministic algorithm that generates a trapdoor for a given

keyword. In particular it receives as inputs a key K and a keyword w, in order to output

a trapdoor t.

SSE.Dec(K,ci) is a deterministic algorithm, which receives as inputs a secret key K and

a ciphertext ci, and outputs the corresponding plaintext.

Note that the client or the data owner executes the above algorithms. The same does

not apply for the following algorithm, which is carried out by the server (or the cloud

provider).

SSE.Search(EDB,t) is a deterministic algorithm, which receives as inputs the en-

crypted database, the secure index I, which is contained in EDB and a trapdoor t,

produced by a specific word w∗. Furthermore, it outputs a set of all ciphertexts that

comprise the word w∗.

2.5.3 Security Analysis of SSE schemes

In [30] Song et al. lay the foundation for many subsequent works in the area of SSE

schemes. Their work is secure under Chosen Plaintext Attacks (CPA), a powerful security

definition which cannot be achieved with the use of a DET encryption scheme. Later,

Goh in [31] explained why CPA security is not adequate for the case of SSE schemes

but the work he proposed was not secure either. In [22], Curtmola et al. introduced the

state-of-the-art security guarantees for any SSE scheme and provided solutions to achieve

these security guarantees. For further discussion about the evolution of SSE schemes,

we refer the reader to a recent survey about SSE schemes [39]. The conclusion of this

section is that DET approaches present severe leakages, and thereby cannot be used for

answering point queries in a secure manner.

In more detail Curtmola et al. proved in [22] that all the previous security definitions

for SSE schemes did not provide adequate security guarantees. Curtmola also introduced

two new adversarial models for SSE, which are widely used as state-of-the-art definitions

for SSE to date. The first is the non-adaptive (IND-CKA1), which guarantees the security
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of a scheme if the adversary (or the party who runs the queries) generates all queries at

once. The adaptive (IND-CKA2) is considered a strong security definition for SSE,

due to the fact that it overcomes the aforementioned limitation of IND-CKA1. An

additional contribution of Curtmola et al. in 2011 [40] was that they transformed the

above indistinguishability security definitions into proven simpler equivalent ones. These

definitions are known as semantic security definitions. For simplicity reasons we use

semantic security definitions , which are presented below.

(Adaptive semantic security). Let SSE = (Gen, Enc, Trpdr, Search, Dec) be an

index-based SSE scheme and consider the following probabilistic experiments, where A is

a stateful adversary, S is a stateful simulator and L1, L2 are stateful leakage algorithms:

Real*SSE,A(k)

K ← Gen(1k)

(D, stA) ← A0(1k)

(I, c) ← EncK(D)

(w1, stA)← A1(stA, I, c)

t1 ← Trpdr(w1)

for 2 ≤ i ≤ q

(stA, wi)← Ai(stA, I, c, t1, ..., ti−1)

ti ← Trpdr(wi)

end

let t = (t1, ..., tq)

Aq(stA, I, c, t) returns a bit b,

which is the output of the experiment

Sim*SSE,A,S(k)

(D, stA) ← A0(1k)

(I, c) ← S0(L1(D))

(w1, stA)← A1(stA, I, c)

(t1, stS)← S1(stS, L2(D, w1))

for 2 ≤ i ≤ q

(stA, wi)← Ai(stA, I, c, t1, ..., ti−1)

(ti, stS)← Si(stS, L2(D, w1, ..., wi−1))

end

let t = (t1, ..., tq)

Aq(stA, I, c, t) returns a bit b,

which is the output of the experiment

We say that SSE is adaptively semantically (L1, L2)-secure if for all polynomial-

size adversaries A = (A0, ..., Aq), such that q = poly(k), there exists a non-uniform

polynomial-size simulator S = (S0, ..., Sq), such that

|Pr[RealSSE,A(k) = 1]− Pr[SimSSE,A,S(k) = 1]| ≤ negl(k)

where the probabilities are over the coins of Gen and Enc.

The L1 leakage function:

L1(D) = (|I|, [id(w)]w∈∆, [id(D)]D∈D, [|D|]D∈D)
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where |I| is the size of the index, [id(w)]w∈∆ denotes the identifier of each range in the

space of the keywords (∆, [id(D)]D∈D represents the identifier of each unique document

and [|D|]D∈D is the size of each document.

The L2 leakage is defined by

L2(D, w) = (ACCPt(w), id(w))

where ACCPt(w) is the access pattern defined by the sequence (id1, ..., id#Dw).

Note that the SSE-1 scheme proposed by Curtmola et al. in [22], the SSE scheme

introduced by Chase et al. in [34], as well as the static versions of the SSE scheme

suggested by Kamara et al. in [35] take into account these leakages. The approaches of

Cash et al. [36, 37] minimize the L1 leakage, by restricting the leaks to an upper limit

for the number of input data.

More intuitively, the above security definition comprises the execution of a real and

a simulated protocol. The real protocol executes the exact corresponding SSE scheme

directly on the input data (which is outputted by the adversary), whereas the simulated

protocol attempts to simulate the real protocol without having any access to the input

data. The simulator receives as input only the information contained in the leakage

functions. Therefore, if there exists a simulator that can correctly simulate the SSE

scheme by using functions L1, L2, while the adversary is outputting adaptive queries,

then the SSE scheme is adaptively secure and the worst case leakage is the information

contained in L1, L2.
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Related Work

This section presents an overview of research conducted on privacy preserving range

queries.

3.1 Range Searchable Symmetric Encryption Scheme

Li et al. in [21] proposed the first range searchable symmetric encryption scheme. This

approach extends a solution proposed by Goh in [31] for the case of range queries. The

main drawback of the proposed scheme is its inadequate security level, since it does not

use the state-of-the-art security definition proposed by Curtmola et al. in [40]. In con-

trast, they only prove index indistinguishabilty by using the IND-CKA security definition

introduced by Goh in [31], which however has several limitations. More specifically, not

only does IND-CKA assume a non-adaptive adversary, but also it does not require secure

trapdoors. Curtmola et al. proved in [40] that even IND2-CKA proposed by Chang and

Mitzenmacher, which is stronger than IND-CKA can be trivially satisfied by any non

secure SSE scheme. Specifically in the case of privacy preserving range queries, query

privacy is essential as the tokens may disclose the queried range. In such cases the pro-

posed scheme cannot achieve any kind of token privacy, and to prove this we provide the

following toy attack. If the trapdoor matrix has 2(logm − 1) rows, then the adversary

knows that the queried interval is [1,m − 1] where m the size of the domain, e.g. given

m=8 the adversary notices that if the number of rows equals 4, then the queried range is

[1,6]. In terms of efficiency the proposed algorithm requires time complexity O(|R|logn),

where R is the number of data items in the query result, the token size is a matrix with
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dimensions w*r, where r is the number of hash functions in the bloom filters and w the

number of dyadic intervals (w ∈ [1, 2 ∗ logn − 1]). The same algorithm has space com-

plexity equal to O( rn
ln2
logn). This approach further proposes 2 optimization algorithms in

order to improve the search time by minimizing the number of nodes that a query needs

to traverse. These are the Traversal width and the Traversal Depth optimization algo-

rithms. However, the first has a worst case complexity equal to O(n2) and also neither

of the two optimization algorithms is included in any security analysis.

3.2 Order Preserving Encryption

In the recent years significant research is conducted around the subject of Order Preserv-

ing Encryption Schemes (OPE) [41, 42, 26, 9, 43, 10, 44, 45, 11, 46, 47, 48, 49, 50, 12].

OPE schemes are deterministic encryption schemes that preserve the order of the plain-

text, allowing the execution of efficient range queries directly on encrypted data on the

cloud. An ideal security guarantee for OPE schemes meets the IND-OCPA security def-

inition, ensuring that no other information is revealed besides the order of the plaintext

values. Among the family of OPE schemes, only the recent works of Popa et al. in [12]

and Kerschbaum et al. [51] achieve IND-OCPA, while the rest achieve weaker security

guarantees and appear to have further leakages besides the order. However, all OPE

schemes, including [12], [51], have two major drawbacks which are the the disclosure of

the order and the distribution leakage of repeated ciphertexts due to determinism. There-

fore, an adversary who is either aware of the domain of the encrypted values or gathers

statistical data is capable of building a mapping between the actual and the encrypted

values.

3.3 Bucketization Approaches

Hacigumus et al. [4] proposed a bucketization based approach that Hore et al. [1] further

extended and improved. The bucketization technique presupposes data partitioning into

buckets that are eventually stored in the cloud. The client side retains the respective

indices, whose number increases linearly with the number of buckets, also affecting the

index search process in the same manner. Whenever a range query is to be executed all

buckets containing query results are retrieved from the server. However, false positive
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values are also included in the retrieved buckets and need to be filtered out from the

final answer. This process is carried out on the client side and requires the decryption

of all tuples contained in the buckets leading to an often prohibitive cost. Furthermore,

updating data is expensive since it requires re-distribution of the tuples. More specifically,

it tunes security to the desired level with the cost of degrading efficiency respectively (use

of the trade-off between efficiency and privacy).

Wang et al. in [3] create Rp-trees, hierarchical encrypted indices that allow the execu-

tion of efficient range queries. They also use the Asymmetric Scalar-product Preserving

Encryption approach proposed by [52], in order to perform the bucket encryption (R-

tree node) process. Furthermore, they conduct a marginal analysis based on the impact

of ordering information leakage on the matter of privacy. They emphasize on the fact

that encryption schemes which reveal order information can lead to unacceptable privacy

loss and that renders them impractical for real applications. The reduction of ordering

information leakage implies the existence of false positives, a trade-off that is tuned by

selecting an appropriate tree structure. However, an increased number of false positives

burdens the client side in a manner that was previously mentioned.

In terms of security these approaches do not provide any proof.

3.4 Predicate Encryption

Predicate encryption query schemes guarantee strong security definitions, while causing at

the same time high computational overhead. In predicate encryption schemes a ciphertext

is associated with a set of hidden attributes S. We define a predicate function f() and a

token created by the master secret key. Using this token in function f() the client can

check whether this secret set for a ciphertext is satisfied (f(s)=1) without decrypting the

data.

Boneh and Waters [13] proposed public key based encryption schemes that can support

conjunctive subset equality and range queries. Note that, this scheme hides the attributes

for messages that match a query. This is defined in [14], as the match concealing property.

The complexity of a data record is linear with the range size, which is inefficient in the

case of big ranges. This encryption scheme also suffers from big ciphertext sizes.

Shi et al. in [14] provided a relaxation on Boneh’s encryption scheme on security

guarantees. This scheme cannot hide attributes from messages that are matched by a
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token, defined as Matched Revealing. Also, this approach requires linear scan of the data,

while revealing the plaintexts of the queried range.

Lu proposed in [15] a predicate encryption scheme with logarithmic time search com-

plexity. As she mentioned, her method suffers from the frequency analysis attack and

the query access pattern problem.

The aforementioned approaches guarantee Data Confidentiality, but they do not pro-

vide any Access Privacy guarantees. The attack presented in [23] can occur in any of the

previous approaches.

3.5 FHE - HE

Homomorphic cryptosystems(HE) cannot support privacy preserving range queries, since

an appropriate range query homomorphic cryptosystem does not exist. Fully homomor-

phic encryption (FHE) scheme, proposed by Gentry [53] is a generalization of homo-

morphic encryptions, that allows the execution of any arbitrary function, including range

queries on encrypted ciphertexts, without requiring any decryption. Yet, it appears to

be totally impractical due to the required ciphertext size and computational time that

sharply increase as we increase the security level.

3.6 Access Privacy

Querying on data may lead to the reveal of sensitive information about the data and in

such cases access privacy is essential. Among the proposed protocols guaranteeing Access

Privacy, the most prominent ones are Private Information Retrieval [54] and Oblivious

RAM [16] from the Crypto community. Note, that these approaches are potential so-

lutions to the aforementioned problem, but they introduce an additional computational

overhead which in practice is prohibitive.

Private Information Retrieval is a memory structure that allows retrieving data from

remote database servers securely, without disclosing the selected item [54]. Certain PIR

solutions suggest using a single server [55] and others involve multiple servers [54]. Early

efforts proposed single server-based PIR solutions that required a considerable computa-

tional overhead [56]. However, research conducted on recently developed PIR solutions

showed that this protocol can also be efficient [57].
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Using Oblivious RAM on the cloud server is one way to yield practical PIR solutions,

as proposed in [58]. The main concept of Oblivious RAM is to shuffle and rearrange data

items in the RAM, while data accesses occur.

Some alternative methods have been suggested, that aim to provide secure and ef-

ficient access to the data. Such methods are Index Shuffling and Covered Search that

protect accesses on encrypted indices [59], and hybrid approaches that employ PIR on

partial data [60].
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Chapter 4

Our approach

In this section we propose four novel algorithms that satisfy the security model described

in Section 4.1. All algorithms are adaptive, i.e. queries can be executed in both manners

sequentially and continuously as opposed to previous works, e.g. [21], which presume

that all queries are executed together in a single batch. The common approach followed

by all these works is the utilization of SSE schemes to enable the composition of any

possible range query by a small set of chunks that are indexed and accessed efficiently

and securely. The algorithms differ on the methods of deriving the chunks and executing

the queries, providing different security and performance guarantees.

Wlog., our discussion assumes that the data is initially contained in a relational table.

The table contains two attributes, the tuple-id, which contains identification data for the

record (e.g., name, social security id) and the tuple-value that contains the numerical data

on which we want to allow range queries (e.g., salaries, dates converted to integers). 1 For

example, in an outsourced personnel repository, the tuple-id could map to employee-id,

whereas the tuple-value could map to the emplyee’s salary, age, or any other sensitive

numerical information.

1This tuple construction assumes that we want the final – decrypted – answer to contain the ids

corresponding to the queried range. However, depending on the setup, the id attribute could be extended

to contain additional details, even the full record. Essentially, the id attribute is handled as a binary

encrypted object by the algorithms, and therefore it can contain abritrary private information.
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4.1 Security Game

In order to prove that our proposed Privacy Preserving Range Querying protocol is secure,

we extend the state-of-the-art security definition of SSE schemes to the setting of range

querying. In 2006 Curtmola et al. proved in [22] that all the previous security definitions

for SSE schemes did not provide adequate security guarantees. Curtmola also introduced

two new adversarial models for SSE, which are widely used as state-of-the-art definitions

for SSE to date. The first is the non-adaptive (IND-CKA1), which guarantees the security

of a scheme if the adversary (or the party who runs the queries) generates all queries at

once. The adaptive (IND-CKA2) is considered a strong security definition for SSE, due to

the fact that it overcomes the aforementioned limitation of IND-CKA1. More specifically,

now the adversary is allowed to take into account the observations of previous queries

in order to select the new queries, and thereby this empowers the adversary by allowing

her to perform more sophisticated attacks. An additional contribution of Curtmola et al.

in 2011 [40] was that they transformed the above indistinguishable security definitions

into proven simpler equivalent ones. These definitions are known as semantic security

definitions. For simplicity reasons we use semantic security definitions.

The key idea of our approach is that we separate a range into chunks, we associate

each chunk with a label, and we use an SSE scheme to retrieve the separate chunks

that constitute the queried range. In the case of range queries, we cannot directly use

the security definitions targeted for SSE schemes. An intuitive explanation is that these

security definitions are applied to word search problems. In such problems the client

queries a word, and the server returns all documents that contain the queried-word.

Yet, in the range queries problem the client desires to search within a specific range.

We decompose this range into a union of multiple chunks (word-searches) according

to the method described in Section 3. Note that in our approach the multiple chunk-

searches are not independent, whereas the same does not necessarily apply to the word

search problem. We extend the CKA2 definition to a range-querying CKA2-security

(RQ-CKA2) definition, thus rendering it appropriate for a Range Searchable Symmetric

Encryption (RSSE) scheme. Intuitively, the above definition supports that an RSSE

scheme is adaptively secure, if the adversary cannot distinguish a real RSSE protocol from

a simulated one. Note that the L-functions (Leakage functions) used by the Simulator,
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represent the total leakage that can be observed by any polynomial-time adversary during

the execution of the proposed scheme.

Definition: RQ-CKA2 security. Let RSSE = (KeyGen, Enc, Trpdr, Dec, Range-

Search) be a index-based range SSE scheme and consider the following probabilistic

experiments, where A is a stateful adversary, S is a stateful simulator and L1, L2 are

stateful leakage functions:

Real*RSSE,A(k)

K ← Gen(1k)

(D, stA) ← A0(1k)

(I, c) ← EncK(D)

(F(range1), stA)← A1(stA, I, c)

t1 ← Trpdr(F(range1))

for 2 ≤ i ≤ q

(stA, (F(rangei))← Ai(stA, I, c, t1, ..., ti−1)

if condition then

ti ← Trpdr(F(rangei))

else

skip the query, ti ← ∅
end

let t = (t1, ..., tq)

Aq(stA, I, c, t) returns a bit b,

which is the output of the experiment

Sim*RSSE,A,S(k)

(D, stA) ← A0(1k)

(I, c) ← S0(L1(D))

(F(range1), stA)← A1(stA, I, c)

(t1, stS)← S1(stS, L2(D,F(range1)))

for 2 ≤ i ≤ q

(stA, F(rangei))← Ai(stA, I, c, t1, ..., ti−1)

(ti, stS)← Si(stS, L2(D,F(range1), ...,F(rangei−1)))

end

let t = (t1, ..., tq)

Aq(stA, I, c, t) returns a bit b,

which is the output of the experiment

RSSE is adaptively semantically secure -(L1, L2, F, condition)-RQ-CKA2 - if for all

polynomial-size adversaries A = (A0, ..., Aq), such that q = poly(k), there exists a non-

uniform polynomial-size simulator S = (S0, ..., Sq) such that

|Pr[RealRSSE,A(k) = 1]− Pr[SimRSSE,A,S(k) = 1]| ≤ negl(k)

where the probabilities are over the coins of Gen and Enc.

The leakage functions contain the total amount of information that is leaked. More

specifically, L1 and L2 leakage functions are directly inherited from the SSE schemes. In
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particular, the simulator uses L1 in order to correctly simulate the encrypted index, while

she uses L2 to answer the range queries posed by the adversary.

Function F is defined as follows:

F : X → Y ,

X: all possible ranges and Y: all ranges ∈ ∆ (dictionary)

4.2 Quadratic algorithm

As a warm-up we present Quadradic, a simple-naive algorithm, which offers strong secu-

rity guarantees but requires quadratic space. At the site of the data owner, the algorithm

first constructs and populates a new table that maps the tuple-ids to all possible query

ranges on which their corresponding tuple-values are contained. For example, in the

outsourced personnel repository, an employee with salary = 1000 would be contained

in all possible ranges [x, y] satisfying min ≤ x ≤ 1000 and max ≥ y ≥ 1000, where

min and max correspond to the extremes of the domain of salary values. The algorithm

will create a record for each such range, mapping tuple-id with a textual representation

of the range, i.e., “[x,y]”. The owner then generates a secret key K (SSE.KeyGen, cf.

Section 2.5.2) and encrypts the table with it, using standard SSE encryption (SSE.Enc).

The encrypted index is then uploaded to the untrusted server, e.g., the cloud machines.

Querying of the encrypted index for any query range “[x,y]” is performed via stan-

dard SSE functionality, i.e., by producing a trapdoor from the query range and the

secret key (SSE.Trapdoor), and sending this trapdoor to the SSE index for answering

(SSE.Search). The results are received in encrypted form, and decrypted at the query

initiator site (SSE.Dec).

Creating the index incurs a space and computational complexity of O(nm2), where n

is the number of tuples at the initial database, and m = max−min is the domain size of

the value to be indexed, i.e., the salary. Querying, on the other hand, has a complexity

of O(r) for the untrusted server, where r is the size of the answer. (The query initiator

only needs to send one query.) In terms of privacy, notice that the prescribed protocol

inherits the privacy guarantees of the utilized SSE since it executes a single point query

per range. The following theorem summarizes the properties of the approach.
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Theorem 4.2.1. The Quadratic algorithm is (L1, L2, F, true)-RQ-CKA2 secure if the

utilized SSE scheme is (L1, L2)-CKA2 secure. The complexity of the algorithm is O(nm2)

for building the index, where m = max−min, and O(r) for query answering, with r de-

noting the size of the answer.

Proof sketch: To begin with, we define function F as F (rangex) = rangex, as well

as a simulator that proceeds as follows. Given the L1 leakage, the simulator is able to

simulate the data structures of the RSSE scheme. For each query q, recall that the

simulator is given the L2 leakage function. She uses the query pattern to determine if

the query is new and therefore she meets two cases (1) the range has appeared before (2)

the range has not appeared before. The simulator uses the L2 function to determine in

which of the aforementioned cases does the specific range query fall into. If it belongs

to Case (1) then it returns the previously generated token, whereas if it belongs to Case

(2) then the simulator randomly selects the token. It also needs to store the token that

corresponds to a specific queried-range, as well as the random choice that was made for

each range-token.

4.3 Linearithmic algorithm

Even though the quadratic algorithm offers the optimal security guarantees, i.e., the ones

offered by the underlying SSE scheme, its high storage complexity makes it impractical.

To address this constraint we propose the linearithmic algorithm which requires only

O(n logm) cost, i.e., a factor of m2/ logm less cost than quadratic. The key concept

behind Linearithmic’s performance is that any possible query range between min and

max can be constructed by the union of at most O(logm) disjoint and sequential dyadic

ranges [61], i.e., ranges of the form [k2j + 1, (k + 1)2j], for integers j ∈ [0, n] and k ∈
[0, 2n−j], and m = max−min. For example, with min = 1, query range [3, 7] can be

constructed by combining the dyadic ranges [3, 4], [5, 6] and [7, 7], whereas query range

[2, 4] is constructed by combining [2, 2] and [3, 4].

The Linearithmic algorithm builds on this observation, i.e., it constructs an inverted

index of dyadic ranges over the SSE scheme, and uses these to efficiently answer range

queries. This index is essentially an unencrypted inverted index of the tree of dyadic

ranges (cf. Fig. 4.1), yet without storing the links between the tree nodes and without
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Figure 4.1: The tree of dyadic ranges.

constructing empty nodes. Precisely, at the site of the data owner the algorithm con-

structs a table that maps the tuple-ids (e.g., the employee ids) to all dyadic ranges that

contain the corresponding tuple-values (the salaries). This means that each tuple id ends

up in logm dyadic ranges and the total number of dyadic ranges is only 2m − 1. The

table is subsequently encrypted using the SSE scheme.

Notice that, in contrast to the quadratic algorithm, querying now requires retrieving

the tuples for more than one dyadic ranges. Since SSE schemes are only focused on single

token search (e.g., a single keyword, or a single dyadic range), retrieving more than one

correlated dyadic ranges that correspond to a single user query adds an extra leakage.

In the following, we present two different query policies over the constructed index and

formally quantify the introduced leakage of each one.

Minimal dyadic cover. This is the simplest query policy. The query initiator first

breaks the query range to the minimal dyadic cover 2.1. Then, a trapdoor is produced

for each dyadic range, and all trapdoors are packed together as a complex trapdoor and

sent to the SSE index for getting the answers. All answers are returned back to the query

initiator and decrypted using the secret key.

In terms of performance, minimal dyadic cover policy requires executing at most

O(logm) distinct queries in the SSE per query. The cost of producing, retrieving and

decrypting the answer is O(r), where r is the size of the answer. In terms of security, the

fact that for each user query we now need to execute O(logm) queries introduces new
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leakages, beyond the leakages inherited from the SSE scheme, i.e., L1 and L2.

To demonstrate this extra leakage intuitively, consider a toy example where min = 1

and max = 8. Range query [2, 7] is the only valid range query in this domain that will

be split to 4 dyadic ranges, [2, 2], [3, 4], [5, 6], [7, 7] (cf. also Fig. 4.1). Therefore, the

untrusted server can always map any query containing four trapdoors to the range query

[2, 7]. A different leakage example includes running query [4, 6] and then query [4, 4]. In

this case the server will be able to find the inclusion of the second query to the first. In

fact, subsequently running more queries with overlap can give sufficient information to

the untrusted server to discover the whole structure of the tree of dyadic ranges. Notice

that sending the trapdoors one by one, or even introducing delays between them, would

still not help – eventually the untrusted server would be able to correlate the dyadic

ranges belonging in a single complex query, e.g., when no other query was executed in

parallel with this query in the SSE index. As such, the linearithmic algorithm with

this querying algorithm is not (L1, L2, true)-RQ-CKA2 secure. In particular, it cannot

reach the adaptive RQ-CKA2 security definition as it lacks secure trapdoors. The recent

work of Li et al. [21] faces the exact same problem, and thereby it cannot be considered

adaptively secure.

Uniform Range Cover. We are able to reduce the extra leakage by modifying the

querying algorithm such that all queries of the same length generate the same number

of trapdoors (i.e., they are all answered by the same number of dyadic ranges). This is

achieved by integrating in the query execution algorithm a technique originally proposed

in a different context (delegatable PRFs) by Kiayias et al. [28]. For each query q of

length |q|, the algorithm first computes the maximum number of required dyadic ranges

for all queries of length |q|. Let this number be denoted with `(|q|). For example, for

range queries of length 2, `(2) = 2 (the maximum number of dyadic ranges occurs when

the query includes any two nodes that are not siblings), whereas for queries of length 4,

`(4) = 3. Then the algorithm breaks q to the minimal dyadic cover. If the number of

resulting dyadic ranges is less than `(|q|), some of the dyadic ranges are replaced with

their children as follows: starting from the right-most dyadic range in the minimal dyadic

cover, the range is replaced with its children, until the total number of ranges equals `.

Finally, the trapdoors are produced for the ` dyadic ranges and sent to the SSE index

for answering.
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In terms of cost, Uniform Range Cover policy introduces the same complexity (both

network and computation as the Minimal Dyadic Cover policy, i.e., O(logm) distinct

queries per range query, and O(r) cost for sending and decrypting the answer. In terms

of security, this policy decreases the extra leakage by making the same-length range

queries indistinguishable, under the condition that the queries have an empty overlap.

The following theorem summarizes the properties of the Uniform Range Cover algorithm.

Theorem 4.3.1. The Linearithmic algorithm with Uniform Range Cover is (L1, L2, F,

(
⋃k−1
i=1 qi) ∩ qk = ∅)-RQ-CKA2 secure if the utilized SSE scheme is (L1, L2)-CKA2

secure. The complexity of the algorithm is O(n logm) for building the index, where m =

max−min, and O(logm+r) for query answering, where r denotes the size of the answer.

Proof sketch: To begin with, we define the F leakage function, as F (rangex) =

|URC(rangex)|, and the simulator as follows. Given the L1 leakage, the simulator is

able to simulate the encrypted data structures of the RSSE scheme. For each query q,

the simulator is given the leakage function F and the L2 leakage. By using the query

pattern (obtained from the L2 and F leakages), the simulator checks if the required range

has appeared before, or if it intersects with any previously queried range. In the first

case the simulator outputs the same tokens that were generated before. Otherwise, in

the second case the simulator rejects the requested query because the condition is not

met. Now if the queried range does not belong to neither of the aforementioned cases,

the simulator uses the L2, F leakages to simulate the token. In particular, it uses the

F leakage to correctly simulate the token size, and then it randomly selects F (rangex)

tokens. Subsequently, the simulator uses the access pattern found in the L2 leakage to

correctly simulate the result of the requested range query. The final step of the simulator

is to store the tokens that corresponded to the specific queried-range, as well as the

random selection that was made for each range-token.

4.4 Single Trapdoor Range Cover algorithm

The Single Trapdoor Range Cover algorithm (STRC for short) further reduces leakage by

introducing false positives. The goal of STRC is to enable answering any abritrary range

query by retrieving exactly one dyadic range from the SSE index, thereby addressing the

L3 privacy leakage of the linearithmic algorithm. Precisely, STRC augments the SSE
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index to include also the ranges of the form [k2j + 2j−1 + 1, (k+ 1)2j + 2j−1], for j and k

integers and j ≥ 1. Intuitively, this additional data corresponds to adding in the dyadic

tree all nodes that cover the range corresponding to any two cousin nodes with distance

1 (i.e., the nodes that are at the same level and have different parents that are siblings –

the red-dotted nodes in Figure 4.2). Similar to the linearithmic algorithm, empty dyadic

ranges are not included in the index.
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Figure 4.2: The dyadic ranges tree augmented by the STRC algorithm.

This augmented index enables efficient execution of any possible query by retrieving

a single query range. In particular, the query initiator always queries for the smallest

node from the augmented index that fully covers the query range. For example, if the

query is [2, 4], the query initiator will ask for [1, 4], whereas if the query is [4, 5], the query

initiator will ask directly for [4, 5]. Clearly, this strategy may lead to false positives, i.e.,

tuples that should normally not be included in the answer will be returned to the user

and filtered locally. However, the algorithm guarantees that the number of tuple values

that will be wrongly included in the query will be less than or equal to 3|q|, where |q|
denotes the query length.

Notice that, even though the new index enables executing any query with a single

trapdoor, which makes the queries indistinguishable, the number of replications of each

tuple is not identical. For example, a tuple with tuple-value 1 will be replicated 4 times

in the SSE index whereas a tuple with tuple-value 4 will be replicated 6 times. To avoid

introducing new leakage during updates (we will discuss more for updates in Section 4.7),

we resort to padding. In particular, after constructing the inverted index, the data

owner adds random tuples to the index such that the total index size becomes exactly

n(2 logm− 2). These random tuples have a tuple-value that is outside the domain range

Ioannis Demertzis 29 July 2015



4. OUR APPROACH

of the real data, in order not to pollute possible query results, e.g., tuple-value= max +1.

Subsequently, the padded index is encrypted using the SSE scheme, and then outsourced.

The following theorem summarizes the properties of the algorithm.

Theorem 4.4.1. The STRC algorithm is (L1, L2, F, true)-RQ-CKA2 secure if the uti-

lized SSE scheme is (L1, L2)-CKA2 secure. The complexity of the algorithm is O(n logm)

for building the index, where m = max−min.

Proof sketch: To begin with, we define function F such that F (rangex) = rangey,

where rangey ∈ ∆Linearthmic−STRC (Function F () maps the input range to a range in the

dictionary, thus minimizing the false positive values). In addition, we define a simulator

that proceeds as follows. Given the L1 leakage, the simulator is able to simulate the data

structures of the RSSE scheme. For each query q, recall that the simulator is given the

L2 and F leakage functions. Firstly the simulator evaluates the requested range using

the F leakage function to acquire the mapping of the specific range to ∆Linearthmic−STRC .

Then, she uses the query pattern to determine if the query is new, and therefore meets

one of the two cases (1) the range has appeared before (2) the range has not appeared

before. The simulator uses the L2 function to determine in which of the aforementioned

cases does the specific range query fall into. If it belongs to the first case then it returns

the previously generated token, whereas if it belongs to the second case the simulator

randomly selects the token. It also needs to store the token that corresponds to a specific

queried-range, as well as the random choice that was made for each range-token.

Notice that, even though the number of wrongly-included keys in the query is at most

O(r), the number of false positives in the final answer is bounded only by n. Such a

high number of false positives can be due to a pathological scenario caused by extremely

skewed distributions of the tuple values (e.g., the salaries). For example, consider a data

set where n−1 tuples have a tuple value equal to 1, and one tuple has a value of 3. If the

range query is [2, 3], then the returned tuples would be the ones within [1, 4], i.e., n− 1

false positives. It is straightforward to get stricter (probabilistic) bounds for particular

distributions, e.g., uniform, but this is not a generic solution. The interactive algorithm

proposed in the next section addresses this limitation, in a way orthogonal to the values

distribution.
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4.5 Linear - URC

The Linear approach is based on the utilization of DPRFs. The idea is to deploy the

DPRF functionality across the dyadic interval nodes. The storage requirements of the

Linear approach are O(n), since the actual data are stored once in the leaves of a GGM

tree. The search processing and communication costs at the client side are logarithmic

in the size of the domain as the URC algorithm is being used. Regarding the proposal

of the Linear-URC RSSE scheme, our contribution lies in the fact that we are the first

to present how to integrate DPRF with SSE schemes, and we are also the first to prove

that the Linear-URC approach is an adaptively secure RSSE scheme.

In general, SSE schemes employ a PRF function in SSE.Enc() and the same PRF

function with the same key is additionally used in SSE.Trpdr(). Our Linear-URC

RSSE approach replaces these PRF values with DPRF ones. The construction algorithm

receives as inputs the min and max domain values, and then shifts all the tuples so that

the minimum domain value becomes 0. Note that it has to store the minimum value

in order to correctly respond to range queries. If the max - min value does not equal

2x − 1, for some integer x > 1, the construction algorithm computes the next power

of two, denoted as j. Subsequently, it randomly selects and stores a secret key k. The

construction algorithm computes 2j PRF values by using the DPRF functionality and

the secret key k. Furthermore, it associates each of the 2j values with their corresponding

PRF value. For example value 3 is mapped to fk(0011) = G0(G0(G1(G1(k)))) assuming

that the minimum value is 0 and the maximum value is 15.

The SSE.Trpdr() algorithm uses the same secret key as the one used by SSE.Enc().

More specifically, SSE.Trpdr() initially computes the corresponding PRF values of the

URC nodes. For each of these nodes, SSE.Trpdr() outputs the respective PRF value,

as well as the respective height location in the tree. Then, SSE.Search() utilizes the

DPRF functionality to reach the PRF-leaf values of each URC node and returns all the

encrypted tuples associated with the corresponding PRF values; nodes at level 0 are

PRF-leaf values. For example, let us assume that the client posed the range query 2-5.

Then, function SSE.Trpdr(2-5) returns the following three < PRF-value, level > pairs,

< Fk(001), 1 >,< Fk(0100), 0 >,< Fk(0101), 0 >. The SSE.Search() algorithm only

computes the PRF values of the first pair Fk(0010), Fk(0011), as the remaining pairs are
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located in level 0 of the tree, i.e. they are PRF-leaf values. Finally, SSE.Search() outputs

the tuples associated with the PRF-leaf values.

The idea of integrating the DPRF functionality with the URC query policy and the

SSE schemes, in order to configure an RSSE scheme, leads to additional leakages com-

pared to the Linearthmic-URC approach. In particular, the L1 leakage function increases

with the size of the value domain, and thereby renders it possible for the simulator to

correctly simulate the dictionary. Additionally, the simulator is enhanced with the L3

leakage. The extra leakage is quantified as follows:

L3(D,node) = (ACCPw(node), level(node), id(node))

where node corresponds to non-DPRF values, level(node) indicates the height of the the

DPRF-node, ACCPw(range) is the ordered sequence of DPRF leafs corresponding to the

input-node (id(w1), ..., id(w|range|)).

On the analysis of the L3 leakage it is worth noting that for each observed node in

Linear-URC, the adversary derives the full order of the noticed node’s leaves, but not

the order of the remaining nodes. This is a substantial downgrading of security, but

quantifying the leakage enables us to propose a more efficient RSSE scheme. Note that

even though the OPE schemes provide a slightly more efficient solution than Linear-URC,

still Linear-URC outperforms the security guarantees of OPE schemes.

The following theorem summarizes the properties of the algorithm.

Theorem 4.5.1. The Linear (DPRF) algorithm with Uniform Range Cover is (L1, L2 ∪
L3, F, (

⋃k−1
i=1 qi)∩qk = ∅)-RQ-CKA2 secure if the utilized SSE scheme is (L1, L2)-CKA2

secure. The complexity of the algorithm is O(n) for building the index, and O(logm+ r)

for query answering, where r denotes the size of the answer.

Proof sketch: To begin with, we define function F as F (rangex) = |URC(rangex)|
and the simulator as follows. Given the L1 leakage the simulator is able to simulate

the encrypted data structures of the RSSE scheme. In particular knowing the domain of

values (assuming that it is a power of 2, if not then the simulator computes the next power

of the maximum size of the domain), allows the simulator to compute all the nodes of the

DPRF tree and associate each input tuple with the corresponding DPRF leaf. Then she

deploys the SSE scheme, which is (L1, L2)-CKA2 secure, with a trapdoor computation

produced by the DPRF functionality instead of the; Kiayias et al. have proved that a
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delegatable PRF is indistinguishable from a PRF. For each query q, the simulator is given

the leakage functions F , L2 and the DPRF oracle. With the use of the query pattern,

the simulator checks if the required range has appeared before, or if the required range

intersects with any previously queried range. In the first case the simulator outputs the

same tokens which were generated before, while in the second case the simulator rejects

the requested query because the necessary condition is not met. Now if the queried range

does not belong to either of the aforementioned cases, the simulator uses the L2, L3, F

leakages to simulate the token. In particular, it uses the F leakage to correctly simulate

the token size, and then it randomly selects F (rangex) tokens. With the use of the

L3 leakage, the simulator knows the level of each node, which reveals the number of

computations required to obtain the DPRF values. Additionally, the L2 leakage function

contains for each node the respective DPRF leafs in a sorted manner, thus allowing

the simulator to correctly simulate the result of the requested range query. Finally, the

simulator needs to store the tokens that correspond to a specific queried-range, as well

as the random choice that was made for each range-token.

4.6 Interactive algorithm

To enable bounding the number of false positives, even in the presense of high skew in the

tuple values, we consider an interactive, two-rounds, algorithm. Briefly, the algorithm

constructs two indexes using STRC, the data index and the pointers index. The data

index is used for storing the tuples ordered by their tuple values, e.g., the salary, whereas

the pointers index contains pointers on the starting and ending positions for each tuple

value in the first index.

The data index is constructed as follows. First, the data owner sorts all tuples based

on the tuple value, with ties broken at random. All tuples are then indexed by STRC,

but now using their position in the ordered list as the value for indexing. Conceptually,

the constructed index corresponds to a tree that has a single tuple per leaf, (i.e., a total

of n leaves), and the order of leaves (from left to right) is the same as the order of tuples

in the ordered list (cf. Fig. 4.3). Notice that, since the placement of the tuples in the

data index solely depends on the order of each tuple in the sorted list, the formed dyadic

ranges do not correspond to the real tuple values. For example, the dyadic range [1, 4]

will contain the four tuples with the lowest tuple values. Their corresponding tuple values
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may, or may not be contained in the range [1, 4]. As such, the data index alone is not

sufficient for executing range queries on the tuple values efficiently.

The pointers index covers this requirement by providing an efficient and secure way to

retrieve the starting and ending positions for each of the observed tuple values. Concep-

tually, the pointers index is an inverted index that maps each non-empty dyadic range to

a list of starting and ending positions – one starting and ending position for each distinct

tuple value contained in the dyadic range. For instance, since the data index depicted in

Fig. 4.3 contains three tuples with tuple value 1 at positions 1 to 3, the corresponding

pointers for dyadic range [1, 1] will be 1 and 3 (cf. Fig. 4.4). Similarly, dyadic range [1, 2]

will contain the same pointers, since there is no tuple with value 2 in the data index,

whereas range [1, 4] will contain both the starting and ending pointers for 1 and for 3,

i.e., only for the values that occur in the data set.

Query execution starts from the pointers index, to locate the starting and ending

positions of the query range. For example, query [1, 2] will return starting position 1

and ending position 3. Then, the user locates the smallest dyadic range from the data

index that fully contains the starting and ending position (i.e., [1, 4]), and executes the

query. Note that querying each of the indexes requires exactly one query message, thereby

making the queries indistinguishable. The query at the data index may return some false

positives in addition to the true answers, but the number of false positives is now strictly

bounded by 3r, where r is the size of the correct answer. It is important to note that

this worst-case bound is unaffected by the distribution of the tuple values, in contrast to

the case of STRC (Section 4.4).

The following theorem summarizes the properties of the Interactive algorithm.

Theorem 4.6.1. The Interactive algorithm is (L1, L2, F, true)-RQ-CKA2 secure if

the utilized SSE scheme is (L1, L2)-CKA2 secure. The complexity of the algorithm is

O(n log n) for building the index, where m = max−min, and O(log n + r) for query

answering, where r denotes the size of the answer.

Proof sketch: To begin with, we define the F function to be identical to the respec-

tive one in the non-interactive STRC proof. We prove the Interactive STRC protocol

to be secure by using the same security game as the one used in the non-interactive

protocol, yet with certain modifications. Firstly, in this case we have two instances of

the STRC (L1, L2, true)-RQ-CKA2 secure scheme. The first STRC scheme is deployed
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for the pointer index to which we refer as index 1, i.e. RSSE1 = (Gen1, Enc1, Trpdr1,

Search1, Dec1), while the second STRC scheme is deployed for the data index to which

we refer as index 2, i.e. RSSE2 = (Gen2, Enc2, Trpdr2, Search2, Dec2). Furthermore, the

interactive security game corresponds to an RSSE scheme which includes the following

algorithms (Gen, Enc, Trpdr, Search, Dec). We denote each of these functions with

bold writing in order to emphasize on the new functionality introduced by this security

scheme. Every time, we call the Gen function which subsequently calls both, the func-

tion for the pointers index (Gen1) and the function for the data index (Gen2); the same

action is also performed for the rest of the functions marked with bold. Also D1 denotes

the database which is retrieved after the preprocessing of the input data for the pointers’

index and similarly D2 is the databases associated with the data index.
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Figure 4.3: Interactive Protocol - Data index

We define the Simulator as follows. Given the L1(D1) and L1(D2) leakages the sim-

ulator is able to simulate the encrypted data structures of the interactive RSSE scheme.

For each query q, recall that the simulator is provided with the L2(D1, w), L2(D2, w)

and F leakage functions. We stress out that the adversary outputs the requested range,

denoted as rangepointq , but the simulator also needs the correct range of a specific data

index, depicted as rangedataq . Let us assume that the simulator obtains the additional

information of rangedataq , without introducing extra leakage, by receiving this information

as input from the data owner herself i.e. the data owner undertakes the intermediate step

i.e. she receives as input the token for rangepointq and by having access to the decryp-

tion oracle, she decrypts the results of this range and returns rangedataq to the simulator.

Thus, the simulator possesses for each requested range q, the corresponding range of the
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Figure 4.4: Interactive Protocol - Pointers Index

data index. Then, it encounters three cases. The first case (1) is that rangepointq has

appeared before, the second case (2) is that rangedataq has appeared before, and finally

case (3) represents the situation where neither rangepointq nor rangedataq (the case where

rangepointq has appeared before but rangedataq has not, cannot take place in this protocol).

In case (1) the simulator uses L2(D1, w), L2(D2, w) and outputs the same tokens for both

rangepointq and rangedataq that were generated before. In case (2) the simulator randomly

selects and stores the token that corresponds to rangepointq but returns the same token

that was previously generated for rangedataq . Finally, in case (3) she randomly selects the

tokens for rangepointersq and rangedataq , and in addition she needs to store the tokens that

correspond to the specific queried-range, as well as the random choice that was made for

each range-token.

4.7 Handling updates

Even though the discussion up to now focused on index construction for static data sets,

the proposed algorithms can be extended to handle updates as well. The challenge is

twofold: (a) to enable efficient inserts and deletes and b) to avoid leaking extra informa-

tion.

Dynamic SSE schemes (DSSE, for short) enable updates, but only by a substan-

tial compromise on both security and performance. In fact, the state-of-the-art DSSE

schemes with sublinear update cost (e.g. [35, 38]) cannot achieve the leakages achieved
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by static SSE schemes. Furthermore, the most efficient DSSE scheme still suffers from

high computational and storage complexity, and is impractical for big data applications.

As such, in this work we choose to integrate our algorithms with static SSE schemes, and

to enable updates using a technique for dynamization of static data structures of Bentley

and Saxe [62]. Even though the following discussion considers the linearithmic algorithm

for simplicity, it also applies to STRC and the interactive algorithm.

The main idea is that we organize n sequential updates (both insertions and deletions)

to a collection of at most log n independent encrypted indexes. In detail, for each new

tuple, the data owner runs the linearithmic algorithm, with a fresh secret key, to construct

a new SSE index that contains only this tuple. The single-tuple index is subsequently

uploaded to the untrusted server. Whenever two indexes of the same size s are detected

(where s is a power of 2), these are downloaded by the data owner, decrypted, and

merged to form a new SSE index of size 2s, again with a fresh secret key. The new index

is then used to replace the two indexes of size s. Clearly, a merging may have a cascading

effect, i.e., subsequent merges. In this case, all merges are executed at the same time for

avoiding redundant work, i.e., construction and uploading of the intermediary indexes.

In terms of querying, all queries are executed to all SSE indexes available at the time

of the query, and the results are sent back encrypted to the query initiator. Since the

indexes are created using different secret keys (generated on the fly using SSE.KeyGen),

the data owner keeps track of these log n keys locally.

As typical in big data management systems, e.g., hbase, tuples are not explicitly

deleted. Instead, we modify the tuple structure to include a deletion flag. Deletions are

simulated by inserting cancellation tuples, i.e., new tuples with the same tuple-ids and

tuple-values, but with the deletion flag set to true. Cancellation tuples are also included

in the query results, enabling the query initiator to filter out the deleted tuples. A normal

and a cancellation tuple are be fully removed during merging of two indexes, if they end

up in the same index.

In terms of cost, it is straightforward to show that the maximum number of concurrent

indexes is at most log n, where n is the number of updates. The total space complexity

is the sum of the space required by the individual indexes Ik, i.e.,
∑logn

k=1 |Ik|. A standard

result guarantees that the total space complexity of all indexes is the same as the space

complexity of the corresponding employed algorithm of [62]. The amortized insertion

time per tuple increases by a factor of log n compared to the time of the static algorithm.
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Query execution cost is increased by a factor of O(log n) of the corresponding algorithm,

since we now need to query at most log n different indexes. The number of false positives

for algorithms STRC and Interactive stays the same.
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Chapter 5

Experimental Evaluation

This section presents the experimental evaluation of our proposed algorithms. Our pri-

mary goal is to clearly illustrate the performance of the presented range symmetric en-

cryption schemes.

5.1 Data Sets

The experimental evaluations were performed on two real datasets. The first real dataset

was derived from the US Postal Service (USPS) and contains the annual incomes [63]

of the company’s employees. This dataset comprises 389,032 salary tuples. The specific

attribute is a real number which has been transformed to an integer. The second real

dataset is the Gowalla [64] dataset, which consists of 6,442,890 users’ check-in records

from February 2009 to October 2010. We performed encrypted range queries on the

time stamp attribute of the second data set. The values corresponding to the time

stamp attribute were also transformed to integers with the use of the same encoding as

in [21]. Furthermore 5 million records were selected in a random uniform manner from

the Gowalla dataset that were subsequently partitioned into 10 fixed sized datasets whose

size varies from 0.5 to 5 million records with a scaling factor of 0.5 million records.

5.2 Implementation details

Our experiments were carried out using a single core of a DELL latitude E6520 computer

with 8GB RAM and Linux operating system. As we discussed in ?? the proposed schemes

Ioannis Demertzis 39 July 2015



5. EXPERIMENTAL EVALUATION

utilize Searchable Encryption schemes as black-boxes. For this reason, we implemented

the T-Set algorithm proposed by Cash et al. in [36] in Java. In addition, for both the

T-Set implementation and the encryption we used AES-CBC, HMAC-SHA1 and HMAC-

SHA-512 (provided by the javax.crypto package). Cash et al. described T-Set as a hash

table with B buckets each of size S. The configuration of values B and S depends on the

number of the input data N and the space overhead parameter k, such that the overflow

probability of any bucket after storing N tuples in this hash table is sufficiently small and

constant. Also the total size B ∗ S of the hash table should be O(N) (for further details

we refer the reader to the original paper [36]). We conducted all the experiments with

space overhead parameter k equal to 1.1, and the S value equal to 6000. Te number of

buckets B was determined based on k, S and N so that negligible overflow probability

was achieved.

5.3 RSSE schemes

We performed experimental evaluation on the Linearthmic - MDC, the Linearthmic -

URC, the non-interactive STRC, the Linear - URC and the interactive STRC approaches,

in terms of construction time, as well as index size. We excluded from our experiments

the Quadratic RSSE scheme, for reasons that were included in section ??. In brief, it has

prohibitive storage demands and construction time. Note that the Linearthmic-MDC and

Linearthmic-URC schemes have the same construction time and storage demands since

they only differ in the range query policy. Additionally, as we have discussed in ?? the

non-interactive and interactive STRC approaches introduce false positives, so we evaluate

the respective performance.

5.4 Construction Time & Index Size

The experimental results showed that constructing an RSSE schemes is linear with the

number of data items, both in terms of time and space. Figures 5.1, 5.2 and Table 5.1

show the construction time as well as the respective required storage for each proposed

RSSE scheme. We observed that the interactive STRC approach yields the highest cost,

both in terms of construction time and space. The interpretation of this remark lies in

the fact that interactive STRC builds two non-interactive STRC instances, one for the
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RSSE scheme Constr. Time (sec) Index size (MB)

Linear - URC 7.276 10.30

Linearthmic-MDC & URC 140.410 195.7

Non-Interact. STRC 283.442 391.4

Interactive STRC 330.030 419.14

Table 5.1: Construction time & Storage (USPS dataset)

data index and one for pointer index. Furthermore, in the case of the Gowalla dataset

Figures 5.1, 5.2, we noticed that interactive STRC requires less than 2x time and storage

demands compared to the non-interactive STRC, while in the USPS dataset interactive

STRC requires almost 1.2x more time and space compared to the non-interactive. This

is due to the fact that the salaries in the Gowalla dataset follow an almost uniform

distribution, whereas in the USPS dataset the same values are skewed. In addition, the

mean ratio of the distinct values to the total records in the Gowalla dataset is 93.81%,

whereas in the USPS dataset it is 4.66% . The worst case scenario for interactive STRC

is to require double time and storage compared to non-interactive STRC. Note that

this happens when the distribution of the range attributes is uniform and the ratio of

the unique range values to the total number equals 100%. In order to compare the

construction performance of our work with the [21], we have to stress out that the only

meaningful comparison that can be performed is between the Linearthmic-MDC RSSE

scheme with the approach in [21], as the rest of the schemes are incomparable with [21]

since they provide much stronger security guarantees. Hence, we noticed that in the

Gowalla dataset case (studied in both works) the constructions of Linearthmic-MDC

RSSE outperform those of [21] in terms of time and space, and also Linearthmic-MDC

does not introduce false positives as the work of Li. Finally, note that all the proposed

RSSE schemes, except from the Linear one, can be fully parallelized in each level of the

index tree without affecting the query processing policy, while the same is not applicable

in [21].
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Figure 5.1: Index size - Gowalla Dataset
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Figure 5.2: Construction time - Gowalla Dataset
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5.5 Evaluation of False Positives

We experimentally evaluated the average false positives rate for the non-interactive STRC

RSSE scheme and for the interactive STRC RSSE scheme; the rest of the proposed al-

gorithms do no require false positives, and therefore are excluded from the following

experiments. In Section ?? we discussed that the number of false positives in the in-

teractive STRC RSSE scheme is bounded for each query by at most 3r, where r is the

actual answer. The aforementioned point indicates that applications that need a constant

number (linear in the answer size) of false positives for each query, should use STRC.

Figures 5.3, 5.4 shows that the average false positives rate for the non-interactive and

interactive STRC schemes in both evaluation datasets, changes according to the size of

the range query. In particular, the x-axis represents the range size which is determined by

the percentage of the domain it includes. Note that in our experiments the queried values

follow uniform distribution. We observed that the difference in the average false posi-

tive rates produced by the non-interactive and interactive STRC is bigger for the USPS

dataset, which contains skewed data, and smaller in the Gowalla dataset. Figures 5.5, 5.6

shows the average false positives ratio for the 10 fixed datasets from Gowalla, while we

modify in Figure 5.5 the range size and in Figure 5.6 the query result size. Furthermore,

the amortized false positives number for each query in both the non-interactive and in-

teractive schemes is less than 75%, which corresponds to the theoretical worst case false

positives bound in interactive-STRC. Finally, note that the average false positives rate

for both the evaluated STRC schemes is incomparable with the corresponding false pos-

itive rates of the works presented in [21], since the security guarantees in [21] are much

weaker and unrealistic for any real application.
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Figure 5.3: Average false positive rate evaluation - Gowalla Dataset
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Figure 5.4: Average false positive rate evaluation - Salaries Dataset
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Figure 5.5: Average false positive rate evaluation - Gowalla Dataset
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Figure 5.6: Average false positive rate evaluation - Gowalla Dataset
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Conclusively, this work presents the first adaptive Range Searchable Symmetric Encryp-

tion schemes by extending the very mature research area of SSE schemes. We provided the

first adaptive RSSE security definition, which is used in order to guarantee the security

of our own proposed RSSE schemes. Moreover, we showed how to reach this security def-

inition with the use of the Quadratic RSSE scheme which introduced however prohibitive

computational and storage demands. Thus, we proposed several other practical RSSE

schemes, both in terms of efficiency and security that present security-performance trades-

offs. We described the Interactive STRC scheme which achieves optimal search time and

security guarantees by introducing a linear in the answer number of false positives. In

addition, we studied a general solution to address updates in our RSSE schemes without

introducing additional leakages. We outperform the contemporary related work both in

terms of efficiency and security, by proposing the first privacy preserving range query

schemes that hide sensitive information regarding the order of the encrypted results and

that cannot be attacked by [23, 24] (Quadratic, Linearthmic-URC, the non-interactive

and interactive STRC RSSE schemes). Finally, we verified the practical performance

of our schemes with the theoretical complexities and showed that our RSSE schemes

outperform the closest to our work proposed approaches in the area of RSSE [21].
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6.2 Future Work

A significant matter not discussed in this thesis is the case of privacy preserving multi-

dimensional range queries. Therefore, developing a generalization of the proposed RSSE

approaches can be achieved by extending the Linearthmic, non-interactive and interactive

STRC schemes with an additional logn factor for each dimension.

Moreover, the proposed approaches could be integrated with techniques provided by

Oblivious RAMs in order to further improve their security guarantees and to completely

hide leakages such as query and access patterns which are introduced by the used SSE

schemes. Note that Linearthmic-URC, as well as non-interactive and interactive STRC

reveal query and access patterns, as they are an extension of SSE schemes. Yet these

leakage functions do not include information about the order of the encrypted query

result as happens in our other proposed schemes and in similar related works.

Additionally, we have to examine how to further improve the efficiency of our proposed

RSSE schemes by assuming the existence of non-colluding servers, which is a relaxation

of our proposed security definition.

Finally, throughout the thesis the adversary is designated with specific properties i.e.

she is curious but honest. It would be interesting to extend the proposed approach in

such a way that malicious adversaries and hostile environments are handled and dealt

with, simulating therefore real world conditions. This can be easily achieved by adding

message integration techniques (MAC protocols).
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scalable searchable symmetric encryption with support for boolean queries. In: Ad-

vances in Cryptology–CRYPTO 2013. Springer (2013) 353–373 11, 14, 40

[37] Cash, D., Jaeger, J., Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M., Steiner, M.:

Dynamic searchable encryption in very-large databases: Data structures and imple-

mentation. (2014) 11, 14

[38] Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption

with small leakage. (2014) 11, 36
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