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Abstract

The unsupervised learning of semantics from text is the “holy grail” of Natural Lan-
guage Processing. Many applications dealing with textual information require classifi-
cation of words into semantic classes including dialogue systems, language modeling as
well as semantic web.

In this thesis, we investigate several similarity metrics for semantic similarity com-
putation between words and induction of semantic classes. All of the proposed al-
gorithms are fully automatic, without using any manually-crafted knowledge source.
Thus, they are unsupervised and language independent.

First, we propose unsupervised algorithms for combining semantic similarity met-
rics for the task of automatic class induction. The semantic similarity metrics that are
evaluated and combined are based on narrow- and wide-context cosine similarity. The
metrics are combined using linear weights that are computed ‘on the fly’ and are up-
dated at each iteration of the class induction algorithm, forming a corpus-independent
metric. The proposed algorithms are evaluated on two corpora: a semantically hetero-
geneous news domain (HR-Net) and an application-specific travel reservation corpus
(ATIS). It is shown, that the (unsupervised) adaptive weighting scheme outperforms
the (supervised) fixed weighting scheme. Up to 50% relative error reduction is achieved
by the adaptive weighting scheme.

In our second approach, we propose a soft-decision, unsupervised clustering al-
gorithm that generates semantic classes automatically using the probability of class
membership for each word, rather than deterministically assigning a word to a seman-
tic class. Semantic classes are induced using an unsupervised, automatic procedure
that uses a context-based similarity distance to measure semantic similarity between
words. The proposed soft-decision algorithm is compared with various “hard” clus-
tering algorithms and it is shown to improve semantic class induction performance in
terms of both precision and recall for a travel reservation corpus.

Lastly, we propose two novel web-based metrics for semantic similarity computa-
tion between words. The first metric considers only the page counts returned by a
search engine. The second metric downloads a number of the top ranked documents
and applies “wide-context” and “narrow-context” metrics. The proposed metrics work
automatically, without consulting any external knowledge resource. The metrics are
compared with WordNet-based methods. The metrics’ performance is evaluated in
terms of correlation with respect to the pairs of the commonly used Charles-Miller
dataset. The proposed “wide-context” metric achieves 71% correlation, which is the
highest score achieved among the fully unsupervised metrics in the literature up to

x
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Introduction

The unsupervised learning of semantics from text is the “holy grail” of Natural Lan-
guage Processing, contributing to the natural language understanding task. Many
applications dealing with textual information require classification of words into se-
mantic classes including dialogue systems, language modeling, speech understanding
and machine translation, as well as web applications. For example, a natural language
understanding module, embedded in dialogue system, requires knowledge of semantic
classes in order to semantically parse the transcribed audio stream. In the field of in-
formation retrieval, semantic classes can be used for semantic document representation
and query expansion. For example, during a web search the submitted query is often
semantically reformed by the user for getting a new set of results in order to access more
relevant documents than in the initial query. Usually the refined query contains words
that are semantically close to the words of the initial query. In query expansion the
addition of semantically related words can increase the relevant retrieved documents,
which in other case may be missed. This introduces the idea of semantic representation
and retrieval instead of simplistic lexical string matching. Generally, query expansion
is able to increase the recall of the retrieved documents.

Statistical language modeling attempts to capture regularities of natural language
using text processing. An example of such regularity is the frequent co-occurrence of
two words. This phenomenon is well modeled through a statistical approach that gives
a measurement to the event of co-occurrence. Furthermore, this embodies an abstract
relationship about the two words. Their co-occurrence reflects a kind of association
between them. From this point of view each word contains an amount of information
about the other words of its lexical environment. Moving to a higher level, we can say
that a word has some conceptual relationships with the words of its context.

The contextual computational model of semantics is referred as the word-space
model. A model that measures the semantic relationship between words is defined
with respect to the vocabulary which forms a high-dimensional space whereas each
word can be considered as one dimension. The word-space model reflects a spatial
representation of word meaning. The key idea of this model is that semantic similarity
can be represented as proximity in n-dimensional space, where n is the cardinality of
vocabulary set. Spatial proximity between words as a representation of their semantic
similarity seems to be very intuitive and naturally derived with respect to the way
that human conceptualize similarities. The distributional (contextual) hypothesis of
meaning assumes that words with similar distributional properties have similar mean-
ing. Statistical methods can learn the distributional properties of words which can be

xiii
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employed into similarity measures in order to compute similarity scores between words
and derive semantic classes.

Manual construction of semantic classes is a time-consuming task and often requires
costly expert knowledge. Furthermore, semantics are sensitive to domain changes. The
meaning of a word changes as the word is used in different domains with different ways.
An automatic or semi-automatic algorithm for extracting semantic classes from text
leads to the rapid development of many natural language processing systems, capturing
the specific semantics for the domain of interest.

Many approaches have been proposed in the literature that perform text mining
in order to capture semantic information and induce semantic classes. A number of
methods are applied on text corpora, such as collections of news articles. More recent
methods exploit the world wide web, which is an extremely large multilingual source
of textual information with an increasing rate of growth. Both types of the above
approaches can supervised or unsupervised. The notion of supervision has the sense
that human knowledge is incorporated in the procedure of semantics’ acquirement. An
example of a supervised technique is the use of annotated corpora where the contained
entries are tagged linguistic properties. Also, many methods apply human corrections
that are given as feedback to the system. Furthermore, manually-crafted knowledge
resources, such as dictionaries, thesauri and ontologies, are used by various methods.

In this thesis, we adopt the unsupervised approach in order to capture semantic in-
formation. In particular, the experimental corpora are unrestricted (raw text) without
any kind of encoded linguistic information. Using this tactic, no knowledge resources
are used. The proposed algorithms work automatically, thus, they are language inde-
pendent.

The research effort of this thesis can be divided in three branches:

1. We use the assumption that similarity of context implies similarity of meaning.
Using this hypothesis, we apply several statistical contextual similarity metrics in
order to compute semantic similarity between words. These metrics embody dif-
ferent ranges of contextual scopes. “Narrow-context” and “wide-context” metrics
are defined and linearly combined, using an adaptive weighting scheme, through-
out an iterative procedure. The idea behind metric combination is that each
individual metric serves a classifier with its own advantages, so the combination
of different classifier is able to lead to more robust and qualitative results. In
other words, our motivation for creating an adaptive weighting scheme, is that
the relative performance of each metric varies from iteration to iteration. It is
expected that by updating the weights of each metric at each iteration the com-
bined metric performance can significantly improve. In addition, our goal is to
create a fully unsupervised, corpus-independent metric combination algorithm
that does not require experiment on held-out data to compute the weights. Se-
mantic classes are generated according to the computed similarity scores. This
work is discussed in Chapter 3.

2. Using the distributional hypothesis of meaning, as before, we propose a soft-
clustering algorithm. Words are allowed to be assigned to more than one seman-
tic class, via a probabilistic membership function. Furthermore, each categorized
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word retains its lexical type. This is motivated by the idea that the presence
of lexical and semantic information can contribute to the better estimation of
probabilities, in order to automatically induce semantic classes. Also, this ap-
proach alleviates the drawbacks of hard-clustering where (a) multiple semantic
categorizations for words are ignored, (b) erroneous word assignments are retained
throughout the iterative procedure, (c) the lexical type of categorized words are
not considered because the words are substituted by a class labels, and (d) gener-
ated classes containing nonterminals tend to form overgeneralized concepts. This
work is presented in Chapter 4.

3. Lastly, we exploit the world wide web using search engines in order to compute
semantic similarity scores. The core motivation of this approach is that the
web does not suffer from data sparseness, so similarity between words can be
better estimated. Similarity scores are computed using (i) hit counts for queries
submitted to web search engines, and (ii) by downloading a number of top ranked
documents and applying the above similarity metrics. Chapter 5 deals with this
work.

The rest of the thesis is organized as follows: Chapter 1 introduces some basic material
on N-gram statistical language modeling, since the N-gram probabilities are used in
the “narrow-context” metrics. Chapter 2 describes other metrics that estimation of
semantic similarity between words. Some of them are used as “wide-context” metrics.
The rest chapters deal with the research contribution of this thesis. Chapter 3 presents
the automatic combination of similarity metrics. The soft-clustering algorithm is dis-
cussed in Chapter 4. Chapter 5 describes the web-based similarity metrics. Chapter 6
summarizes the research conclusions of this thesis and outlines interesting directions
for future work.



Chapter 1

N-gram Statistical Language
Modeling

1.1 Introduction

This chapter introduces some basic material on N-gram statistical language modeling.
Statistical language modeling tries to acquire regularities of natural language using
corpora processing [95]. Corpora are collections of text, e.g., news articles, scientific
papers, transcribed dialogues; they can be considered as informative resources. The
statistical approach of text processing is naturally being used by researchers due to
the categorical character of language and the large vocabularies, in order to estimate
numerous parameters [95].

It is generally accepted that words of natural languages have meaning and that the
meaning of a sentence is formed by its words [64]. A word can be viewed as a corpus-
related event which whenever it occurs, it transmits a message. One of the various
interpretations for the lemma “word”, given by Oxford Dictionary, is “intelligence, a
message” [25]. The notion of “word” in linguistics is denoted by the term “lexeme” [64]
and it is the minimal unit of language, which has one or more semantic interpretations.
A word exists with other words and these units build more larger comprehensive units:
phrases, sentences, paragraphs, etc. For example, “bank” is a lexeme, while “bank
financial institution” and “bank-edge of a river” consist of lexemes. It is reasonable to
claim that a word preserves a kind of conceptual relationship with its neighboring words,
in some way. From this point of view each word contains an amount of information
about the other words of its’ lexical environment. We can say that the occurrence of a
word is dependent to the context words . This assumption was advocated as “a word
is characterized by the company it keeps” by J.R. Firth and it is known in linguistics
as the distributional hypothesis. Thus, it is possible to utilize the surface statistics of
language in order to proceed to a deeper level.

1.2 Language modeling

In few words, a language model gives the probability P (s) of a sentence s. Very
often the domain of statistical language modeling overlaps the domain of computational

1
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linguistics. A way to discriminate the two fields in terms of language modeling is the
following. Let S be a word sequence (i.e., surface form) and let M be some underlying
structure (i.e., semantics) related with it. In general, statistical language modeling
estimates P (S), while computational linguistics deals with the estimation of P (S | M)
[95].

The first significant use of language modeling was made in 1980. Since then many
techniques of language modeling have been proposed [43]. The majority of the lan-
guage models decomposes the sentence probability, P (s), into a product of conditional
probabilities

P (s) = P (w1 . . . wn) =
N∏

i=1

P (wi|hi) (1.2.1)

where wi is the ith word in the sentence and hi = {w1, w2, . . . , wi−1} is the sequence of
preceding words (the history of wi).

During the last three decades many language modeling techniques have been pro-
posed in the literature. In [95], many major established approaches are discussed, and
the thorough work of Goodman [30] makes a comparative study of them.

In the next section we present the popular N-gram language model, being used in
a variety of commercial and research systems.

1.3 N-gram language modeling

A word sequence is useful to be modeled for a variety of reasons. For example, in
many cases one may want to predict the next word in a sequence. The prediction
becomes applicable when it can be measured. A probabilistic language model treats
words as events, distributing to them a probability mass. Furthermore, as we will see,
it is possible to estimate the probability even for a completely unknown word; imagine
a neologism that will be “invented” by the future generations!

The simplest language probabilistic model let any word to follow any other word
with equal probability. For example, if the vocabulary of a certain natural language
consists of 75.000 unique words, then the probability of any word following any other
word equals to 1

75.000 . A more complex language model uses the frequency of occurrence
of a word. For example, the previous paragraph has totally 81 words, in which the
words “word” and “a” occur 3 and 5 times, respectively. According to the simple
language model the words “word” and “a” have 3

81 and 5
81 probability, respectively,

to follow any word. But for the sequence “to predict the next”, the word “word” is
more reasonable than “a” to follow “next”. This intuitive observation considers the
conditional probability of a word given the previous word, instead of using the relative
word frequency.

1.3.1 General

The N-gram language model considers the language as a Markov process of order N−1.

P (wi|hi) = P (wi | wi−N+1, . . . , wi−1) ≈ P (wi | wi−1
i−N+1) (1.3.1)
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Equation 1.3.1 states that the probability of word wi given all the previous words of
the sentence can be approximated by the probability given only the previous N − 1
words.

N-gram probabilities are computed by counting and normalizing the N-gram occur-
rences. For the bigram case the conditional probability of word wi−1 given that it is
followed by word wi is computed as

P (wi|wi−1) =
C(wi−1wi)∑
w C(wi−1w)

=
C(wi−1wi)
C(wi−1)

(1.3.2)

Equation 1.3.2 takes the count of wi−1wi bigram and divides it by the sum of all bigrams
that have wi−1 as first word. Note that the latter sum is equal to the count of wi−1

unigram. For the general case of N-gram model the above equation is written as

P (wi|wi−1
i−N+1) =

C(wi−1
i−N+1wi)

C(wi−1
i−N+1)

(1.3.3)

Equations 1.3.2 and 1.3.3 use the frequency interpretation of probability [78], applying
the technique of Maximum Likelihood Estimation (MLE). Even with large corpora
many N-grams occur only once or they have low counts, so, the computation of N-
gram probabilities remains a sparse estimation problem. This fact is prescient with
Chomsky’s observation that a model suffering from lack of data assigns low probability
to a phrase regardless its sensical or grammatical correctness [59]. Thus, it is preferable
not to apply MLE of N-gram probabilities in a straightforward way, based on counts.
Instead, several smoothing approaches [14] can be used in order to smooth the ML
estimates.

1.3.2 Smoothing

The N-gram models are trained from corpora. In practice, every training corpus is
of finite size, so, naturally some acceptable N-grams are bound to be absent. This
intrinsic characteristic of corpora leads to zero and low counts of N-grams. Using the
MLE approach the absent N-grams are assigned zero probability, while the probabilities
of low-count N-grams are underestimated.

Consider the sentence “put language back into language modeling” 1. If the bigram
“put language” has never occurred in the training corpus, then

P (language | put) =
C(put language)∑

w C(put w)
=

0
a
, a > 0 (1.3.4)

The probability of sentence P (put language . . . modeling) = 0. Clearly, this is an
underestimate for the sentence probability, since in real life there is an “amount” of
probability by which the sentence is likely to occur.

Smoothing battle the problem of data sparseness by re-evaluating the zero- and low-
probabilities and assigning them non-zero values. The name of this strategy describes

1This statement belongs to F. Jelinek, suggesting that the statistical natural language techniques
should also take into consideration the deep structure of language [44].
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what is actually happens. Smoothing techniques make the probability distributions
more uniform: adjust low probabilities upward and high probabilities downward [14].
Next, we briefly survey some of the most widely-used smoothing strategies in order to
outline the underlying ideas.

Additive smoothing

This is a simplistic technique of smoothing, since it pretends that an N-gram occurs δ
times more than it does, where 0 < δ ≤ 1 [61, 47, 42]. For example, for the bigram
case we have [14]

PAdd(wi | wi−1) =
δ + C(wi−1 wi)

δ | V | +
∑

wi
C(wi−1 wi)

(1.3.5)

where set V is the vocabulary of the training corpus and |V | denotes the cardinality
of V . In general, the additive smoothing has poor performance [26, 27].

Good-Turing estimate

The key idea of Good-Turing smoothing is the exploration of N-grams of high counts
in order to re-estimate the amount of probability mass that is to be given to N-grams
with zero or low counts [29]. The Good-Turing estimate feigns that for any N-gram
that occurs r times we can feign that it occurs r? times:

r? = (r + 1)
kr+1

kr
(1.3.6)

where kr+1 and kr is the number of N-grams that occur exactly r + 1 and r times,
respectively. For instance, if a bigram occurs r times, the corresponding probability is

PGT (wi | wi−1) =
r?∑r=1

∞ rkr

(1.3.7)

In particular, the Good-Turing estimate is applied as stand alone N-gram smoothing
approach, because does not combine hign- and low-order models that obtain better
performance [14].

Deleted interpolation

It is fruitful to interpolate higher-order N-gram models with lower-order N-gram mod-
els, because there are cases whereas there is no sufficient data to compute probabilities
for the higher-order models [45]. So, the lower-order models is more trustworthy, pro-
viding supplementary useful information.

PDelInt(wi|wi−1
i−N+1) = λ1(wi−1

i−N+1)PML(wi|wi−1
i−N+1) + λ2(wi−1

i−N+1)PDelInt(wi|wi−1
i−N+2)
(1.3.8)

The smoothed model of Equation 1.3.8 use recursion as interpolates linearly an N th-
order model estimated with maximum likelihood and an N th−1-order smoothed model
[10]. Note that the λ weights sum to 1:∑

i

λi = 1 (1.3.9)
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Each λ value is a function of the context. The optimal λ(w
i−1
i−N+1) is different for

different histories. For example, a context that have been occurred for many times
should be given a high weight since its’ distribution tends to be reliable. In contrast,
for a history of low frequency, a lower λ weight will be reasonable. For the training of
the λ parameters many approaches have been proposed in the literature [45, 2, 13, 14].

Witten-Bell smoothing

The Witten-Bell smoothing can be considered as an instance of deleted interpolation
[110]. 2 As Equation 1.3.8, the N th-order maximum likelihood model is linearly inter-
polated with the N th−1-order smoothed model:

PWB(wi|wi−1
i−N+1) = λ(wi−1

i−N+1)PML(wi|wi−1
i−N+1) + (1− λ(wi−1

i−N+1))PWB(wi|wi−1
i−N+2)
(1.3.10)

The computation of λ(wi−1
i−N+1) parameter requires the number of unique words that

follow the history wi−1
i−N+1. This number is denoted as U1+(wi−1

i−N+1•). Using a more
formal notation we write [14]

U1+(wi−1
i−N+1•) =| {wi : C(wi−1

i−N+1wi) > 0} | (1.3.11)

The number of words that occur one or more times (1+) are denoted by U1+. The
symbol • is used for a free variable (in our case, word) that is summed over. The
parameter λ(wi−1

i−N+1) is calculated as

λ(wi−1
i−N+1) = 1−

U1+(wi−1
i−N+1•)

U1+(wi−1
i−N+1•) +

∑
wi

C(wi
i−N+1)

(1.3.12)

Substituting Equation 1.3.12 into Equation 1.3.10, we have

PWB(wi|wi−1
i−N+1) =

C(wi
i−N+1) + U1+(wi−1

i−N+1•)PWB(wi|wi−1
i−N+2)∑

wi
C(wi

i−N+1) + U1+(wi−1
i−N+1•)

(1.3.13)

According to Equation 1.3.10, we use the higher-order model with probability λ(wi−1
i−N+1),

while the lower-order model is used with 1 − λ(wi−1
i−N+1) probability. The probability

mass that equals to the 1− λ(wi−1
i−N+1) probability, is the probability of a word that is

not observed immediately after the wi−1
i−N+1 history in the training data, but appears

in any later position.

Absolute smoothing

In absolute smoothing [74] a higher-order model is interpolated with a lower-order
model. However, instead of multiplying the higher-order distribution by a factor
λ(i−1

i−N+1), the higher-order distribution is derived by subtracting a fixed discount D 6 1
from each non-zero count.

PAbs(wi|wi−1
i−N+1) =

max{C(wi
i−N+1)−D, 0}∑

wi
C(wi

i−N+1)
+ (1− λ(wi−1

i−N+1))PAbs(wi|wi−1
i−N+2)

(1.3.14)
2This method was introduced as M ethod C in [110].



6

In order to make the distribution sum to 1, the λ(wi−1
i−N+1) factor is computed as

λ(wi−1
i−N+1) = 1− D∑

wi
C(wi

i−N+1)
U1+(wi−1

i−N+1•) (1.3.15)

In [74], a suggested value for D is

D =
n1

n1 + 2n2
(1.3.16)

where n1 and n2 are the total number of N-grams of the higher-order distribution with
exactly one and two counts, respectively.

Kneser-Ney smoothing

In Kneser-Ney smoothing [53] the higher-order model is interpolated with a lower-order
model and the higher distribution is discounted as in absolute smoothing. The differ-
ence between absolute and Kneser-Ney smoothing is in the lower-order distribution.
In Kneser-Ney method, the lower-order distribution is proportional to the number of
different words that it follows. Consider for example a language model trained over
a corpus about computer industry and the word “Packard”. If the frequency of this
word is high, then the MLE of the unigram probability will, also, be high. The idea of
Kneser-Ney smoothing is that the unigram probability of word “Packard”must be low,
since it folows only one different word, “Packard”.

PKN (wi|wi−1
i−N+1) =

max{C(wi
i−N+1)−D, 0}∑

wi
C(wi

i−N+1)
+

+
D∑

wi
C(wi

i−N+1)
U1+(wi−1

i−N+1•)PKN (wi|wi−1
i−N+2)

(1.3.17)

In order to make the distribution sum to 1, we take

PKN (wi|wi−1
i−N+2) =

U1+(•wi
i−N+2)

U1+(•wi−1
i−N+2•)

=
| {wi−N+1 : C(wi

i−N+1) > 0} |
| {wi−N+1, wi : C(wi

i−N+1) > 0} |
(1.3.18)

1.3.3 Backoff

One main contribution of the discussed smoothing methods is the solution of the prob-
lem caused by the zero-count N-grams. Moreover, there is another methodology that
tackle this problem. Suppose that there are no occurrences of a particular trigram,
wi−2 wi−1 wi, in the training corpus. In this case we can estimate the trigram prob-
ability P (wi | wi−2 wi−1) using the bigram probability P (wi | wi−1). In the same
manner, if there are no counts of the bigram wi−1 wi, we can estimate P (wi | wi−1)
using the unigram probability P (wi). This strategy is called backoff. According to the
above description of backoff method, an amount of probability mass is taken away from
the higher-order models and is distributed to the lower-order models [65, 48, 43]. Of
course, the resulted probability estimation must remain valid, i.e., sums to one.
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The backoff model was introduced by Katz [50] and is similar to the deleted in-
terpolation in the sense that the construction of an N-gram model is based on an N-1
model. The difference between backoff and deleted interpolation is that in backoff, for
example, if there are non-zero frequency trigarm, we use only these counts without
interpolating the bigram and unigram models [48]. The “back off” step downwards to
a lower-order model is followed if there are zero counts for the higher-order model 3.

For a trigram language model, the backoff method is defined as [48]

P (wi | wi−2 wi−1) =


PML(wi | wi−2 wi−1), if C(wi−2 wi−1 wi) > 0

α1PML(wi | wi−1), if C(wi−2 wi−1 wi) = 0

and C(wi−1 wi) > 0

α2PML(wi), otherwise
(1.3.19)

Some smoothing techniques assume that the unseen N-grams are all equally probable
and an amount of probability mass is distributed ti them according to an even scheme.
A more neat and fair way is to combine smoothing with backoff for distributing the
probability mass to the unseen events. The smoothing quantifies the total mass of
probability that must be reserved for the unseen events and the backoff procedure
defines how to assign the reserved probability.

Let’s consider Equation 1.3.19. The presence of α parameters ensures that the
computed probability is a valid probability. This can be explained as follows. If the
frequency of the trigram of interest is non-zero, then the PML(wi | wi−2 wi−1) prob-
ability that is computed over relative frequencies is a true probability. Otherwise, we
have to back off to a lower-order model, and, then, we will add extra probability mass,
resulting to a non-true probability. So, the backoff model must be smoothed. Using
these considerations, the PML(·) probabilities of Equation 1.3.19 must be substituted
by smoothed probabilities P̃ (·). The use of smoothing saves an amount of probability
mass for the lower-order models. Moreover, the α parameters guarantee that the sum
of the distributed (to the lower-order models) portions of probability mass is equal to
the initially saved amount of probability [48]. In the general N-gram case, the prob-
ability mass that must be given form an N-gram to an N-1-gram is defined as follows
[48].

α(wi−1
i−N+1) =

1−
∑

wi:C(wi
i−N+1)>0 P̃ (wi | wi−1

i−N+1)

1−
∑

wi:C(wi
i−N+1)>0 P̃ (wi | wi−1

i−N+2)
(1.3.20)

Note that the α parameter is a function of the history wi−1
i−N+1. Also, recall that the P̃ (·)

probabilities are estimated using smoothing. In final, Equation 1.3.19 is reformulated
3 Some variants of the backoff method look to a lower-order model if the counts of interest are less

than a predefined threshold [51].
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as [48]

PBo(wi | wi−2 wi−1) =


P̃ (wi | wi−2 wi−1), if C(wi−2 wi−1 wi) > 0

α(wi−1
i−2)P̃ (wi | wi−1), if C(wi−2 wi−1 wi) = 0

and C(wi−1 wi) > 0

α(wi− 1)P̃ (wi), otherwise
(1.3.21)

Some approaches when apply the backoff method treat N-grams of only one occurrence
as zero-frequency events.

1.3.4 Class-based n-gram language modeling

Some words are related with other words regarding their meaning and syntactic use,
e.g., Monday and Saturday. Their vicinal words very often tend to have similar proba-
bility distribution. Of course their use is not identical. It is unlikely to hear a conscious
researcher saying to his colleagues It’s Monday! Let’s go clubbing! The assignment of
words into classes it is possible to provide more reasonable probability computation for
the less frequent (or unknown) histories under the assumption that they are similar to
other more frequent histories.

Let the vocabulary V be partitioned into C classes, whereas a word wi is grouped
to a class ci ∈ C. The language model is defined to be n− gram class model if it is an
n-gram model and if 1 ≤ i ≤ n. The sentence probability of Equation 1.2.1 becomes
[11]

P (w1 . . . wn) =
n∏

i=1

P (wi|ci)P (ci|h
′
i) (1.3.22)

where the history is h
′
i = {c1, c2, . . . , ci−1}. In general, an n-gram class language model

has fewer independent parameters than an n-gram language model, as is presented in
Table 1.1. This type of language modeling can be viewed as another way to tackle data

Model Number of independent parameters
n-gram V n − 1

n-gram class V + Cn − C − 1

Table 1.1: Number of independent parameters for n-gram and n-gram class models

sparseness. However, the quality of a class-based n-gram model is strongly depended on
the clustering procedure. In semantically narrow domains, such as ATIS [86], sufficient
results are obtained using human-built semantic classes [109]. Of course, improvement
is not always guaranteed, especially for broader domains. Automatic techniques of
clustering have been proposed, which resulted to sufficient improvements [11, 52, 24].
Also, an n-gram language model can be linearly interpolated with a class-based one
[112].
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1.4 N-gram language modeling toolkits

We list some widely-used toolkits for N-gram language modeling that are freely avail-
able:

• CMU-Cambridge Statistical Language Modeling toolkit: the first version
was written by Roni Rosenfeld at Carnegie Mellon University [17]. The current
version is available at http://mi.eng.cam.ac.uk/∼prc14/toolkit.html.

• SRI Language Modeling Toolkit: developed in the SRI Speech Technology
and Research Laboratory [106]. In addition, the toolkit was enhanced during
several summer workshops organized by Johns Hopkins University/CLSP. It can
be downloaded from http://www.speech.sri.com/projects/srilm/download.html.

• HTK toolkit: originally developed at the Machine Intelligence Laboratory of
the Cambridge University Engineering Department [113]. The toolkit is primar-
ily used for building and manipulating HMMs for speech recognition, however it
includes a component for N-gram language modeling. It is available for down-
loading at http://htk.eng.cam.ac.uk/.

1.5 Evaluation of language models

The field of information theory [102] provides some useful notions in order to measure
the performance of a language model. Entropy and perplexity are used to evaluate a
language model.

Natural language is a kind of information source and a natural language sentence
can be considered as a emitted signal, being a sequence of words. The distribution
of the next word is highly dependent to the previous words. There is a great deal of
variability and uncertainty in natural language. Entropy is a measure of information.
Alternatively, entropy can be considered as a measure of“uncertainty” of a random
variable. Let W be a random variable that ranges over the corpus vocabulary V and
has a probability function Pw. The entropy of the random variable is

H(W ) = −
∑
w∈V

P (w) log2 P (w) (1.5.1)

If log base 2 is used, the resulting units called binary digits. If the base 10 is used, the
resulting units are expressed in decimal digits. Intuitively, entropy can be interpreted
as a lower bound of bits that are required in order to encode a chunk of information
according to an optimal encoding [48].

Given that a language model uses all possible vocabulary words to predict the next
words, it follows that the model embodies a per-word entropy (entropy rate). The per-
word entropy of a language model, L, for all possible sequences of words w1, w2, . . . , wm

is as follows [113]

H(L) = − lim
m→∞

1
m

∑
w1,w2,...,wm

P (w1, w2, . . . , wm) log2 P (w1, w2, . . . , wm) (1.5.2)
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If the language being modeled is ergodic [18], the summation in Equation 1.5.2 can be
omitted and H(L) becomes [113]

H(L) = − lim
m→∞

1
m

log2 P (w1, w2, . . . , wm) (1.5.3)

It is interesting to note that if we have a long enough sequence of words (given the
ergodicity), then H(L) can be approximated as [113]

Ĥ(L) = − 1
m

log2 P (w1, w2, . . . , wm) (1.5.4)

Equation 1.5.4 has a suitable form for measuring the quality of a language model in
terms of per-word entropy. This measurement is achieved by the notion of perplexity
as [113]

PP = 2Ĥ(L) (1.5.5)

If we substitute Equation 1.5.4 into Equation 1.5.5, we have [113]

PP = P̂ (w1, w2, . . . , wm)−
1
m (1.5.6)

that is the perplexity of a language model. P̂ (w1, w2, . . . , wm) denotes the estimated
probability that the language model, L, assigns to the sentence w1, w2, . . . , wm.

Perplexity can be seen as a measurement giving the average number of the most
probable words ,which can follow any word, with equal probability. It follows that more
qualitative language models have lower perplexities.

1.6 Other language models

Despite the popularity and the successful use of N-gram language models, many other
approaches have been proposed and used. It is beyond the scope of this thesis the
complete discussion of them, but it is worth to briefly present few of other techniques
of language modeling.

• Decision tree models: The space of histories is arbitrarily partitioned according
to arbitrary binary questions. The questions are asked at the internal nodes. The
probability P (w | h) is computed at each leaf [1]. This approach it is likely to
outperform N-gram models but is computationally costly [95].

• Maximum entropy models: Many models of language modeling suffer by data
fragmentation. For example, as the order of the model increases, the data for
estimation of the new parameters decreases. The maximum entropy approach
was introduced in [20]. The main idea of this method is that arbitrary knowledge
sources can be incorporated [94, 93], avoiding the problem of data fragmentation.
As knowledge source is meant any function of a word and its history.

• Dimensionality reduction: The motivation behind this method is that the
“true” (in other words, practically useful) size of the vocabulary is lower than the
original size. In [5], the approach of latent semantic analysis [19] was applied in
order to reduce the dimensionality of the vocabulary.
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Of course, many other methods for language modeling have been proposed in the
literature. The survey of Rosenfeld [95] gives a short, yet complete, description of the
whole field. The extended study of Goodman [30] presents several experiments with
informative evaluation results.

1.7 Summary

In this chapter we discussed N-gram statistical language modeling, trying to acquire
regularities of natural language using text processing, by computing N-gram probabili-
ties. Smoothing and backoff techniques were presented for the problem of data sparse-
ness problem. Also, an evaluation measurement for the quality of language models was
defined. In final, freely available toolkits for N-gram statistical language modeling, as
well as some other language modeling methods were briefly presented.



Chapter 2

Semantic Similarity Metrics

2.1 Introduction

In the previous chapter we studied various modeling techniques of natural language
by the perspective that the surface of language (i.e., statistical regularities) can lead
to a deeper knowledge. As deeper knowledge we may regard the “correctness” of a
word sequence, expressed with a probability value, calculated by a language model. Of
course, this is only an initial, pre-mature achievement compared to the whole richness
of language. However, is still a step towards the inner structure of language.

In this chapter we discuss some major metrics that attempt to provide a numerical
estimation of semantic similarity between words. The first family of metrics explores
the lexical environment of words, motivated by the assumption that there is a cor-
relation between context and meaning. Also, we present a second family of metrics
that exploits knowledge resources, like thesauri and ontologies, in order to compute
semantic similarities.

2.2 Contextual similarity metrics

The computational model of semantics is refered as word-space model by Hinrich
Schütze [99]. A model that measures the semantic relationship between words is de-
fined with respect to the vocabulary which forms a high-dimensional space whereas
each word can be considered as one dimension. The word-space model reflects a spatial
representation of word meaning. The key idea of this model is that semantic similarity
can be represented as proximity in n-dimensional space, where n is the cardinality of
vocabulary set [98].

Spatial proximity between words as a representation of their semantic similarity
seems to be very intuitive and naturally derived with respect to the way that human
conceptualize similarities. This geometric metaphor of meaning has been pointed out
by the work of Lackoff and Johnson [56, 57]. They state that metaphors form the
raw base of abstract conceptualization. Also, they argue that these metaphors are
used by human mind for reasoning about abstract and complex phenomena, such as
natural language and semantics. This physical tendency of human mind places the
conceptual locations of words with similar meaning to be “near” each other, while the

12
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dissimilar words are placed “far apart. Of course, a sole word in a high-dimensional
space gives no additional information for deeper understanding off the word. The space
must be populated with other words in order to apply the proximity as an indicator of
similarity. The geometric metaphor of meaning conceptualize the words as locations in
a word-space and the similarity is considered as the proximity between the locations
[98].

2.2.1 The distributional hypothesis of semantic similarity

The word-space model provides not only a spatial representation of meaning, but also
naturally suggests a way to build the model. That is, only the words are used with
no a priori knowledge or constraints about the underlying semantics. Statistical ap-
proaches are valuable tools in order to learn the distributional properties of words. This
framework is suitable for measuring the proximity as is reflected by the distributional
similarity. The next step is the semantic similarity estimation, which is motivated by
the distributional (contextual) hypothesis of semantically similar words. This hypoth-
esis assumes that words with similar distributional properties have similar meaning.

One of the first studies of the distributional hypothesis is the work of Rubenstein
and Goodenough [96], stating that “words which are similar in meaning occur in sim-
ilar contexts”. Schütze and Pedersen [100], re-phrased this hypothesis, considering
the data sparseness problem, as “words with similar meanings will occur with similar
neighbors if enough text material is available”. The linguist Zelling Harris [31, 32] ini-
tialy believed that it is possible to typologize the whole of linguistic phenomena using
their distributional behavior without intrusion of other features. Later, he extended his
distribution-based analysis, considering that in many cases the meaning goes beyond
the formal linguistic theory, affected by many extralinguistic factors, such as social
situations. Even in these cases, Harris was suggested that will always exist a distri-
butional correlation between the extralinguistic factors and the influenced linguistic
phenomena. The core idea of his work is that the differences of meaning are mediated
by differences of distribution: “. . . if we consider words or morphemes A and B to be
more different in meaning that A and C, then will often find that the distributions of A
and B are more different than the distributions of A and C. In other words, difference
of meaning correlates with difference of distribution”.

The earliest, 1965, validation of the distributional hypothesis was conducted by
Rubenstein and Goodenough [96]. They compared the contextual similarities of 65
noun pairs with synonymy scores assigned by students. It is worth to quote their con-
clusions; (a) “there is a positive relationship between the degree of synonymy (semantic
similarity)existing between a pair of words and the degree to which their contexts are
similar”, and (b) “it may safely inferred that a pair of words is highly synonymous if
their contexts show a relatively great amount of overlap. Inference of degree of syn-
onymy from less amounts of overlap, however, is apparently uncertain since words of
low or medium synonymy differ relatively little in overlap”. Moreover, Rubenstein and
Goodenough, state that the generalization of the above conclusions is dependent on
factors like vocabulary size and homogeneity of content. Three decades later, 1991,
Miller and Charles [70] repeated the experiment of Rubenstein and Goodenough us-
ing 30 of the 65 pairs and they reached similar results, supporting the distributional
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(contextual) hypothesis.
However, the distributional assumption faces a criticism, which claims that a simple

word-space is inefficient to represent the complete nature of semantic similarity between
words. Hence, it does not give an exact discrimination between semantic relations,
such as synonyms, antonyms, and hyponyms. This critique is valid if certain semantic
relations are a priori well-defined, but from another point of view these relations are
not axiomatic. Thus, the distributional hypothesis seems to formalize a useful tool,
operating on the broad notion of semantic similarity [98].

2.2.2 Contextual metrics

In this section we briefly present some major techniques that rely solely in context in
order to estimate the semantic similarity between words. From this point of view, these
metrics are unsupervised; they require no external knowledge and, thus, they can be
regarded as language independent.

Mutual Information

Mutual information is an information theoretic concept that measures an association
norm between words. Word association is an important notion of psycholinguistics,
especially in te field of lexical retrieval. Imagine the case when a subject thinks of a
word after he/she experienced a previous one. The strength among the two words is
referred as their association norm.

Mutual information between two words, w1 and w2, having probabilities P (w1) and
P (w2), respectively, is defined to be [15]

I(w1, w2) =
P (w1, w2)

P (w1)P (w2)
(2.2.1)

The physical interpretation of Equation 5.3.3 is that it compares the probability of
seeing words w1 and w2 together with the probability of meeting the words indepen-
dently 1. If there is a strong association between w1 and w2, then the joint probability
P (w1, w2) will be greater than P (w1)P (w2), giving I(w1, w2) >> 0. In the case that
there is no remarkable relation between the two words, then P (w1, w2) ≈ P (w1)P (w2),
resulting to I(w1, w2) ≈ 0. Last, if words w1 and w2 have complementary distributional
properties, then the joint probability wlll be less than the product of the unigram prob-
abilities, leading to I(w1, w2) << 0 [15].

The enumerator of Equation 5.3.3 denotes the joint probability of two words that
is computed over the times that word w2 follows word w1. This consideration can be
extended by using a context window size parameter. This window allow us to search
for the co-occurrence of both words within a length of contexts; in other words, to use
different scopes. Usually small window sizes capture fixed expressions (like, duty free)
and other relations of short range. Larger windows are able to provide a raw indication
of relationships, formed over larger range.

1Note that we deal with unigram and bigram probabilities which can be estimated using any tech-
nique of language modeling, presented in the previous chapter. This probability estimation holds for
every N-gram probability throughout this thesis, unless a different estimation is declared.
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Kullback-Leibler metric

The Kullback-Leibler (KL) divergence is a measure of the difference between two prob-
ability distributions. Suppose two distributions, P and Q of a discrete random variable.
Their KL divergence is computed as

DKL(P‖Q) =
∑
y∈Y

P (y) log
P (y)
Q(y)

(2.2.2)

over all values y ∈ Y . The KL metric is not a distance metric because it is not
symmetric (DKL(P‖Q) 6= DKL(Q‖P )) and does not satisfy the triangle inequality
(DKL(P‖Q) + DKL(Q‖P ) � DKL(Q‖Z)).

In fact, KL metric is a measure of dissimilarity 2, since equals to 0 when the two
distributions are the same, and greater than zero otherwise. This intuitively explains
the reason why the KL metric does not satisfy the triangle inequality: in [34], Hatzi-
vassiloglou and McKeown observed that dissimilarity is not transitive.

One may wonder about the usefulness of KL divergence given that is not a valid
distance metric. The answer to this question can be reached through the fields of
statistics, information theory, and the maximum entropy principle. The proof goes
beyond the scope of this thesis, so we will mention the concluded results. Given that
the KL metric measures the dissimilarity between two distributions, the greater their
divergence is, the easier (on average) their discrimination is [55, 58]. From another
point of view, if the difference between distributions P and Q is large, then P and Q
is dissimilar, so, it is inefficient (on average) to use Q instead of P [55, 58].

We can apply the KL metric to measure the semantic dissimilarity between two
words, w1 and w2, based on the distributional hypothesis which assumes that similar
words have similar contextual distribution. First, we have to define exactly which
context we aim to consider. Assume that for each word we examine its’ immediate
context. In order to have a visualization of this consider a word, w, with its’ immediate
context in a sequence

. . . v1,L w v1,R . . .

where v1,L represents the first word appeared in the left of word w, and v1,R is the first
word occurred in the right of w. For the moment, by immediate context let’s mean
the words that is possibly follow (right contexts) the words of interest w1andw2. In
particular, we measure the divergence between the bigram probability distributions of
words w1 and w2, denoted by the corresponding capital letters W1 and W2, respectively.
These distributions are defined over all possible contexts, that is the words of the corpus
vocabulary V . So far, the dissimilarity of words w1 and w2 can be computed using the
KL divergence of the corresponding right bigram conditional probability distributions
W1 and W2, as

DR
KL(W1‖W2) ≡ DR

KL(w1, w2) =
∑

v1,R∈V

P (v1,R | w1) log
P (v1,R | w1)
P (v1,R | w2)

(2.2.3)

2Despite the fact that KL is a dissimilarity metric, is still useful to indicate semantic similarity, as
dissimilarity is the other side of the coin of semantic relationships.
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where v1,R denotes the first word that occurs in the right contexts of word wi (i =
1 or 2), P (v1,R | wi) is the bigram conditional probability of the bigram wi v1,R given
that word wi has occurred. Also, note that the two bigram distributions, W1 and W2,
are compared over the whole vocabulary V 3. It must be noted that the dissimilar-
ity computed by Equation 2.2.3 is not complete with the sense that we should, also,
compute the divergence of W2 and W1 for the right contexts:

DR
KL(W2‖W1) ≡ DR

KL(w2, w1) =
∑

v1,R∈V

P (v1,R | w2) log
P (v1,R | w2)
P (v1,R | w1)

(2.2.4)

Moreover, in order to have a left context-dependent divergence we have to formulate
Equations 2.2.3 and 2.2.4 for the left contexts, as

DL
KL(W1‖W2) ≡ DL

KL(w1, w2) =
∑

v1,L∈V

P (v1,L | w1) log
P (v1,L | w1)
P (v1,L | w2)

(2.2.5)

and

DL
KL(W2‖W1) ≡ DL

KL(w2, w1) =
∑

v1,L∈V

P (v1,L | w2) log
P (v1,L | w2)
P (v1,L | w1)

(2.2.6)

, respectively. The left-context bigram probabilities are calculated using the reversed
word order. In final, the symmetric left and right contextual dissimilarity between
words w1andw2 is [79]

DL,R
KL (w1, w2) = DL

KL(w1, w2) + DL
KL(w2, w1) + DR

KL(w1, w2) + DR
KL(w2, w1) (2.2.7)

A drawback of the KL metric is its’ unbounded character, since has ratios with denom-
inators which are probable to approach zero value. Hence, few words can dominate the
computation of the KL divergence. This is more likely to happen when poor training
data are available with few counts for some N-grams. Instead, bounded metrics can be
used, as we will see next.

Information-radious metric

The Information-radious (IR) metric is similar to the KL metric, with the difference
that is bounded, since the denominator is the average of the probability distributions:

DIR(P‖Q) =
∑
y∈Y

P (y) log
P (y)

1
2(P (y) + Q(y))

(2.2.8)

By definition the denominator is greater than zero, thus no constaints are imposed on
the training data and estimates that may approach zero can be used directly. As in

3It is possible that we will not have training data for some certain bigrams. In this case it is
strongly advisable to use the backoff strategy during the language modeling construction, in order to
use a lower-order model for the probability estimation of the unseen events.
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KL metric, the divergences of bigram conditional probability distributions W1 and W2,
and vice versa, are

DR
IR(W1‖W2) ≡ DR

IR(w1, w2) =
∑

v1,R∈V

P (v1,R | w1) log
P (v1,R | w1)

1
2(P (v1,R | w1) + P (v1,R | w2))

(2.2.9)
and

DR
IR(W2‖W1) ≡ DR

IR(w2, w1) =
∑

v1,R∈V

P (v1,R | w2) log
P (v1,R | w2)

1
2(P (v1,R | w1) + P (v1,R | w2))

(2.2.10)
for the right contexts, respectively. Similarly, for the left contexts we have

DL
IR(W1‖W2) ≡ DL

IR(w1, w2) =
∑

v1,L∈V

P (v1,L | w1) log
P (v1,R | w1)

1
2(P (v1,L | w1) + P (v1,L | w2))

(2.2.11)
and

DL
IR(W2‖W1) ≡ DL

IR(w2, w1) =
∑

v1,L∈V

P (v1,L | w2) log
P (v1,L | w2)

1
2(P (v1,L | w1) + P (v1,L | w2))

(2.2.12)
Finally, the symmetric left and right contextual dissimilarity among words w1 and w2

is computed as [79]

DL,R
IR (w1, w2) = DL

IR(w1, w2) + DL
IR(w2, w1) + DR

IR(w1, w2) + DR
IR(w2, w1) (2.2.13)

Each of the four terms of the above summation has an upper bound value equal to
log(2), so the maximum score of absolute dissimilarity 4 is 4× log(2).

Manhattan-norm metric

The Manhattan-norm (MN) metric can be considered as a geometric distance (it is
closely related with Euclidean distance) and is, also, a true distance metric as the term
“norm” indicates. It is computed as

DMN (P‖Q) =
∑
y∈Y

| P (y)−Q(y) | (2.2.14)

The MN metric computes the absolute difference between the bigram conditional prob-
abilty distributions W1 and W2. Due to the absolute function the MN metric is sym-
metric:

DMN (P‖Q) ≡ DMN (Q‖P )
4Of course, the phrase “absolute dissimilarity” does not rely on any linguistic basis, since it is

impossible to define a universal ground truth for dissimilarity. The quoted phrase is given with a
technical sense. By the same sense, two words are computed to share semantically absolute similarity
if they have identical contextual distributions.
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The contextual distance between the bigram conditional probability distributions W1

and W2 is

DR
MN (W1‖W2) ≡ DR

MN (w1, w2) =
∑

v1,R∈V

| P (v1,R | w1)− P (v1,R | w2) | (2.2.15)

for the right contexts. In similar manner, the distribution distance for the left context
is defined as

DL
MN (W1‖W2) ≡ DL

MN (w1, w2) =
∑

v1,L∈V

| P (v1,L | w1)− P (v1,L | w2) | (2.2.16)

Last, the left and right contextual distance (hence, dissimilarity) between words w1

and w2 is calculated as [79]

DL,R
MN (w1, w2) = DL

MN (w1, w2) + DR
MN (w1, w2) (2.2.17)

Each of both terms of Equation 2.2.17 has a lower and upper bound of zero and two,
respectively. Thus, two words of identical contextual distributions will have a zero
value of MN distance, while a distance score equal to 4 indicates absolute dissimilarity.

Cosine similarity metric

The Cosine (CS) metric is a similarity metric in contrast to the above dissimilarity
measures. It is computed as

DCS(P‖Q) =

∑
y∈Y P (y)Q(y)√∑

y∈Y P (y)2
∑

y∈Y Q(y)2
(2.2.18)

Note that the CS metric is symmetric:

DCS(P‖Q) ≡ DCS(Q‖P )

For the distributions W1 and W2, the CS metric computes their vector product. Each
vector is a sequence of bigram conditional probabilities. The contextual similarity
between the bigram conditional probability distributions W1 and W2 is

DR
CS(W1‖W2) ≡ DR

CS(w1, w2) =

∑
v1,R∈V P (v1,R | w1)P (v1,R | w2)√∑

v1,R∈V P (v1,R | w1)
∑

v1,R∈V P (v1,R | w2)

(2.2.19)
for the right contexts. Similarly, for the left context we have

DL
CS(W1‖W2) ≡ DL

CS(w1, w2) =

∑
v1,L∈V P (v1,L | w1)P (v1,L | w2)√∑

v1,L∈V P (v1,L | w1)
∑

v1,L∈V P (v1,L | w2)

(2.2.20)
In final, the left and right contextual similarity between words w1 and w2 is computed
as [79]

DL,R
CS (w1, w2) = DL

CS(w1, w2) + DR
CS(w1, w2) (2.2.21)

Each of both terms of Equation 2.2.21 has a lower and upper bound of zero and one,
respectively. Thus, two words of identical contextual distriutions will have CS similarity
score equal to two.
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Cosine similarity metric using context window

In the field of Information Retrieval documents and queries are often represented by
vectors, in a space calles vector space model. This representation is widely used for
similarity computation between documents and queries, document classification and
clustering. Such a vector can be represented as

d = (t1, t2, . . . , tN )

where ti is the ith element (feature) of the vector. Various schemes are used for the
definition of the feature values:

• binary: 1 if the feature occurs, else 0.

• term frequency: the frequency of feature.

• term frequency-inverse document frequency (tf-idf): greater importance
is given to a feature that occurs frequently in a document, while appears rarely
in the whole document collection.

Inspired by this approach, we can represent a word, instead of a vector, with respect
to its contexts, in order to compute word similarity. This representation is called bag-of-
words model. We rely on the distributional hypothesis of similarity, using the contexts
of each word as features.

In “bag-of-words” [101, 41] models, for each word w in the vocabulary a context
window size WS is selected. The right and left contexts of length WS in the corpus are
considered for word w, e.g.,

[vWS,L ... v2,L v1,L] w [v1,R v2,R ... vWS,R]

where vi,L and vi,R represent the ith word to the left and to the right of w respectively.
The feature vector for every word w is defined as

Tw,WS = (tw,1, tw,2, ..., tw,N )

where tw,i is a non-negative integer and WS is the context window size. Note that
the feature vector size is equal to the vocabulary size N , i.e., we have a feature for
each word in the vocabulary V . The ith feature value tw,i reflects the occurrences of
vocabulary word vi within the left or right context window WS. This feature value
is set according to a Binary or a Term Frequency scheme. As we saw, Binary scheme
assigns 1 if the word vi appears within the left and right window context of size WS
for the word w, while Term Frequency scheme assigns the number of occurrences of
vi in left and right WS. Both schemes assign a 0 value if vi does not exist within
WS. The “bag-of-words” model using Binary or Term Frequency Scheme, measures
the similarity of two words, w1 and w2, as the product of their corresponding feature
vectors, Tw1,WS and Tw2,WS , like the cosine similarity metric [77, 41]:

CSBoW,WS(w1, w2) =
∑N

i=1 tw1,itw2,i√∑N
i=1(tw1,i)2

√∑N
i=1(tw2,i)2

(2.2.22)

given a context window of length WS.
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2.3 Resource-based similarity metrics

In this section we present several methods that exploit knowledge resources in order
to compute semantic similarity . So, these measures are supervised, since they rely on
external knowledge. The usual used resources are ontologies that can be considered
as structured models for knowledge representation. In general, an ontology describes
the logical structure of a domain. It consists of terms that represent the domain con-
cepts, relationships among the terms and properties for each term that describe several
features and attribute of the term 5. Concepts are usually organized in a hierarchical
taxonomy. The most general concepts are located at the top of the taxonomy, while
the more specific concepts are found in lower positions.

2.3.1 Ontology types

Ontologies can be categorized into: (a) domain ontologies, and (b) generic ontologies.
Domain ontologies represent knowledge of a specific domain, while generic ontologies
represent a generic (in other words, common sense) knowledge about the world.

Some representative examples of generic ontologies are [88]:
(a) WordNet [4, 69], that tries to model the lexical knowledge of native English speakers.
It includes nouns, verbs, adjectives and adverbs, which are grouped into synonym sets,
synsets. Each synonym set represents a concept.
(b) SENSUS [54], which it was constructed as an extension and re-organization of
WordNet. Each node represents one concept and the concepts are linked with IS-A
relations.
(c) Cyc Knowledge Base [76, 89], which includes terms and relations between them,
combined with a large amount of human knowledge, expressed by facts, rules and
heuristics, for reasoning.

Some major examples of domain ontologies are [88]:
(a) UMLS [73], MESH [72]. UMLS includes a vast amount of multilingual concepts
about health and biomedicine. MESH is the acronym for Medical Subject Heading
and is a thesaurus of medicine vocabulary, consisting of sets of terms, hierarchically
structured.
(b) GO (Gene Ontology) [8, 37] deals with genomic data, like protein description.
(c) SDTS [105] includes data about topographic maps and hydrographic charts.

2.3.2 Ontology approaches

Ontologies can represent knowledge with different ways. So,different methods exist for
comparing concepts within or across ontologies. Next, we present a brief description of
the main approaches [88].

• Single ontology approach: All the knowledge sources are linked to only one,
global ontology. There is a common vocabulary regarding the entity semantics.
The object of each component source are related to the global model. This

5When we discuss about ontologies “terms” and “concepts” will be used interchangeably.
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approach is suitable for cases where all the individal sources have almost the
same domain view.

• Hybrid approach: Each knowledge source use its own ontology to describe the
semantics. However, all ontologies are constructed over one common vocabulary.
The common vocabulary includes basic terms (primitives), which the individual
ontologies use in order to derive more complex terms. A complex term can be
built by applying some operations, such as union or intersection, over the simple
terms.

• Multiple ontology approach: Several knowledge sources are described by dif-
ferent ontologies. Also, there is no common vocabulary to be shared. The com-
parison of concepts is a difficult task and several methods have been proposed in
the literature trying to address this interesting problem.

2.3.3 Ontology-based metrics

The data of knowledge sources are represented by properties and is hierarchically orga-
nized. The hierarchy has a taxonomic structure, containing superclasses and subclasses,
and is constructed according to the ontology that corresponds to the knowledge source.
The question is how the concepts are semantically compared upon this representation.
In this section, we present several metrics that exploit this knowledge organization in
order to measure the semantic similarity between concepts. In general, the ontology-
based semantic similarity metrics can be distinguished to the following four categories:
(a) a metric examine how close the two concepts are positioned in the taxonomy, (b) the
shared information between the two concepts is considered, (c) a metric is based on the
properties of the concepts, and, (d) the above approaches are combined [88]. For these
categories we present some major methods for computing semantic similarity, based on
the study of Raftopolou and Petrakis [88].

Let C be the set of concepts of an IS-A taxonomic structure. The desired measure-
ment is the semantic similarity, sim, between two terms/concepts c1, c2 ∈ C.

Edge-counting metrics

This type of methods considers the proximity of two terms c1 and c2 in the taxonomy.
In [87], a metric is proposed that is function of the shortest path between two terms,
defined as

simsp(c1, c2) = 2maxP − L (2.3.1)

where maxP is the maximum path length between two terms, encountered in the whole
taxonomy. The minimum number of links between c1 and c2 is denoted by L. This
metric assigns greater similarity score to concepts that are located in close positions
in the hierarchy. Li et al. [60] proposed a method that combines the shortest path
between c1 and c2 and the taxonomic depth of the most specific common concept c.
The most specific common concept c is defined to be the common parent of c1 and c2

with the less IS −A links of c1 and c2.

simLi(c1, c2) = exp−αL expβH − exp−βH

expβH +exp−βH
(2.3.2)
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where H is the number of IS-A links from the most specific common concept c to the
root of the taxonomy. The parameters α ≥ 0 and β > 0 scale the weight that is given
to the shortest path length and depth, respectively.

Information content metrics

The measures of this category exploit the information content of each term. In practice,
the information content of a concept c is related to the frequency of an instance of
concept in some large corpus. The probability P (c) is the probability of seeing an
instance of concept c. This probability is defined as P (c) = freq(c)

N , where N denotes
the number of terms in the taxonomy. Also, freq(c) =

∑
n∈words(c) n, where words(c)

is the number of terms subsumed by c (having c as parent). The probability of most
informative subsumer of terms c1 and c2 is

Pmis = (c1, c2) = minc∈S(c1,c2){P (c)} (2.3.3)

where S(c1, c2) is the set of concepts that subsume c1 and c2. Lin [62], proposed the
following metric for measuring the similarity between c1 and c2.

simLin(c1, c2) =
2 ln Pmis(c1, c2)

lnP (c1) + lnP (c2)
(2.3.4)

Jiang and Conrath [46], suggested the following distance metric.

distJiang(c1, c2) = −2 ln Pmis(c1, c2)− (lnP (c1) + lnP (c2)) (2.3.5)

In order to compute similarity between c1 and c2, we take 1− distJiang(c1, c2).

Feature-based metrics

The previous metrics do not consider the term features for similarity computation. The
following metric proposed by Tversky [107] considers also the features of terms in order
compute semantic similarity. Each term has a description set that includes a number
of words, indicating its features.

simTversky(c1, c2) =
| C1 ∩ C2 |

| C1 ∩ C2 | +κ | C1 \ C2 | +(κ− 1) | C2 \ C2 |
(2.3.6)

C1 and C2 correspond to the description sets of c1 and c2, respectively. Parameter κ
takes values between zero and one, defining the weight given to non-common features
of c1 and c2.

Combinational metrics

The metrics of this category combine ideas from the above three categories. Rondriquez
et al. [92] proposed a similarity metric that distinguish term features into three types:
(a) functions, (b) parts, and (c) attributes. For example, for the term “university”,
the phrase “to educate” serves as a function. The words “wall” and “door” may be
considered as parts, while “design properties” can be assumed as other attributes.
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Then, the similarity between two terms c1 and c2 is calculated by a linear combination
of three similarity factors. Each similarity factor is computed with respect to one of
the three feature types.

simRondriquez(c1, c2) = λfSf (c1, c2) + λpSp(c1, c2) + λaSa(c1, c2) (2.3.7)

The weights λf , λp, and λa, and the corresponding similarity scores (Sf , Sp, and
Sa), stand for function, parts, and attributes term features, respectively. Note that
λf + λp + λa = 1. Also, for Sf , Sp, and Sa computation the Tversky [107] metric is
used.

2.4 Summary

In this chapter we introduced the distributional hypothesis of semantic similarity. That
is, similarity in context implies similarity of meaning. Next, we presented fully con-
textual techniques for computing semantic similarity between words. These metrics
are considered to be unsupervised, since they require no external knowledge. Last,
we briefly described some major methods that exploit knowledge resources, such as
ontologies, in order to compute semantic similarity.



Chapter 3

Unsupervised Combination of
Metrics for Semantic Class
Induction

3.1 Introduction

Many applications dealing with textual information require classification of words into
semantic classes including dialogue systems, language modeling, speech understand-
ing and machine translation. The use of knowledge sources, such as dictionaries and
thesauri, for this task have some disadvantages compared to corpus-based, automatic
methods [33]:

• The entries must be generated by hand that is a time-consuming effort.

• Possible changes to some entries may demand a revision of the knowledge source
in order to preserve its consistency.

• Many entries are not present to some particular sources.

• In many cases, the entries give a general sense of the meaning, without being
specific to any domain. This is contradictory to the fact that the meaning of a
word changes as the word is used in different domains with different ways.

• The source construction is relatively subjective, since it is depended on human
expertise and assumptions, while an automatic approach is based on examples
extracted from an actual corpus.

The lack of data is very often for systems designed for new domains and requires
significant manual effort. An automatic or semi-automatic algorithm for extracting
semantic classes from text leads to the rapid development of many natural language
processing systems, capturing the specific semantics for the domain of interest.

Semantic parsing has important role in speech recognition, since spontaneous spo-
ken utterances it is possible to have disfluencies and ungrammatical parts [84]. In
[84], a statistical framework for semantic parsing is described. Semantic classes are

24
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used for writing rules of a semantic grammar about a travel information domain. The
input is parsed and the appropriate substrings are mapped to the corresponding se-
mantic classes. Using this representation, two information models are exponentially
combined in order to resolve utterance ambiguity. The work of Fosler-Lussier and Kuo
[24], presents an attempt for rapid dialogue system development in a domain with small
amounts of training data. In [24], semantic classes are integrated into language models,
for a natural language understanding module of an ASR dialogue system. Figure 3.1
shows how the original string (line 1) can be parsed using several levels of semantic
parsing (lines 2-4). This approach can use reduced amount of required data for building

Figure 3.1: Utterance island parsing (Fosler-Lussier & Kuo, [24]).

language models. Also, a significant reduction of perplexity and ASR word error rate
were reported, for such task with poor training data. In [49], a speech understanding
system is described that answers questions about restaurants. A stochastic context-free
grammar (SCFG) is used to smooth a bigram grammar and add structural constraints,
as is shown in Figure 3.2. Suppose that the speech recognizer directs the sequence “I

Figure 3.2: Semantic parsing in SCFG grammar (Jurafsky et al., [49]).

want British” to the parser. Then the parser will derive words “food”, “restaurant”,
“places”, “cuisine”, etc, as following words. These words are members of the same
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semantic class “FOOD-RESTAURANT”, as is shown in Figure 3.2. The use of SCFG
is reported to improve word error rate.

Semantic class construction and semantic similarity metrics are also important for
web applications such as web search and document retrieval. For example, a user
during web search often rephrases slightly the submitted query in order to get a new
set of results, which it is likely to contain more relevant documents. In such cases the
user includes in the reformed query words that are synonymous or semantically related
to the words of the initial query. In query expansion the addition of semantically
related words to the query it is likely to increase the relevant retrieved documents,
which in other case may be missed [28]. This raises the idea of semantic representation
and retrieval rather than lexical string matching [21]. In [108, 66, 23], the queries are
expanded using related words, acquired from WordNet. In general, query expansion
is shown to increase the recall of the retrieved documents. Gaugh et al. [28] added
semantic similar words to queries according to a similarity measure. The similarity
between query and candidate additional words was calculated using a corpus-based
cosine similarity measure.

Our approach [41] 1 : we propose unsupervised algorithms for combining semantic
similarity metrics for the problem of automatic class induction. The idea behind metric
combination is that each individual metric serves a classifier with its own advantages,
so the combination of different classifier is able to lead to more robust and qualitative
results. The automatic class induction algorithm is based on the work of Pargellis et
al. [79]. The semantic similarity metrics that combined are based on narrow- and
wide-context cosine similarity. The metrics are combined using linear weights that are
computed ‘on the fly’ and are updated at each iteration of the class induction algorithm,
forming a corpus-independent metric. Specifically, the weight of each metric is selected
to be inversely proportional to the inter-class similarity of the classes induced by that
metric and for the current iteration of the algorithm. The automatic calculation of
weights extends the work of Pangos et al. [77], where similarity metrics were combined
according to fixed weights, estimated an held out data. The proposed algorithms are
evaluated on two corpora: a semantically heterogeneous news domain, HR-Net [36], and
an application-specific travel reservation corpus, ATIS [86]. Our approach is presented
in Sections 3.3 - 3.6.

3.2 Related work

Numerous corpus-based techniques have been proposed for generating semantic classes.
Some approaches consider the semantic relatedness by a relatively formal linguistic
point of view and attempt to identify semantic relations such as hypernymy/homonymy
and meronymy. Other methods rely on the distributional hypothesis of meaning, that
is the contextual similarity implies similarity of meaning. The latter approach derives
classes of words that their contextual use indicate that they share the same particular
meaning.

Hearst [35] proposed a method for automatic acquisition of hyponymy relation. A
1Joint work with Athanasios Tegos. Tegos is currently graduate student in the De-

partment of Electronics and Computer Engineering, Technical University of Crete.



27

noun B is a hyponym of a noun A, if B is a subtype or instance of A. For example
“Nick Cave” is a hyponym of “artist” (and “artist” is a hypernym of “Nick Cave”).
She selected by hand three lexico-syntactic patterns by text observation, that indicate
hyponymy. These patterns were used in order to extract automatically another three
patterns. Hearst tested this procedure for discovering meronymy relation, but with-
out great success. Berland and Charniak [7] extended the work of Hearst by finding
lexical patterns that indicate meronymy. Meronyny stands for part-whole relation.
For example, “floor” is part of “building”. For predefined pairs of words that are re-
lated with a part-whole relation, they collected sentences that include the pair words
within close proximity. From these sentences they extracted by manual inspection five
lexico-syntactic patterns as indicators for meronymy. An example sentence is “. . . the
basement of the building”. Berland and Charniak reported that the success of their
method compared to the work of Hearst [35] for meromyny identification, is due to
the use of a large corpus. More recently, Snow et al. [104], suggested a method for
automatic classifier for hypernym/hyponym relation. They used examples of known
hypernym pairs in order to automatically extract new examples of lexico-syntactic
patterns. The acquired patterns were used for the training of the classifier.

Caraballo [12] used the Wall Street Journal to acquire conjunctions of noun phrases
(e.g., “executive vice-president and treasurer”) and appositives (e.g., “James H. Rosen-
field, a former CBS executive). The motivation behind his work is that nouns in con-
juctions or appositives tend to be semantically related. Then the head words of each
noun phrase were stemmed, forming the nouns of interest. A vector was constructed
for each noun, including as features the counts for how many times each other noun
appears in a conjunction or a appositive with it. The semantic similarity between two
nouns was computed by applying the cosine metric over the noun vectors. Caraballo
used a bottom-up clustering method in order to create a tree of all of the nouns. First,
each noun was put into its own node and the cosine similarity was computed between
each pair of nodes. The two most similar nouns were combined by assigning them a
common parent. Next, the new node’s similarity was computed to each other node by
taking a weighted average of the similarities between each of its children and the other
node. As before, the two most similar nodes were allowed to be merged together under
a common parent.

The work of Lin and Pantel [63] exploits dependency relationships between words
in order to generate semantic classes. As a dependency relationship is defined an
asymmetric binary relationship between a word called head and another word called
modifier. The structure of a sentence can be represented by dependency relationships.
Note that a sentence word is possible to have more than one modifiers, but each word
can modify (if does) at most one word. The following figure gives an example of the
dependency relationships for the sentence “John found a solution to the problem”.
The dependency relationships in Figure 3.3 are represented by arrows. An arrow is
directed from the head to the modifier. Also, the depicted labels for each arrow denote
several types of dependency relationships. Each word is represented by a vector which
has as features the dependency relationships that were extracted from the corpus.
The similarity between words is computed according to their feature vectors. Given
this vector representation, a heuristic algorithm is used to cluster words into semantic
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Figure 3.3: Example of dependency relationships within sentence (Lin & Pantel, [63]).

classes.
Siu and Meng [103] proposed a semi-automatic method for clustering word into

semantic classes, relying on the distributional hypothesis of meaning. They applied
an iterative procedure for word clustering, resulting to a hierarchical class generation.
Clustering was considered to be spatial and temporal. For spatial clustering the KL
divergence was computed between the contextual probability distributions, in order to
estimate the semantic similarity between words. The measure of Mutual Information
was used for temporal clustering, estimating how much two consecutive words co-occur.
An example of generated clusters is shown below.

SC14: francisco, jose
TC15: los angeles
TC16: san SC14

The clusters are labeled with SCi or TCi, denoting spatial and temporal clustering,
respectively. Note that TC16 produce “san francisco” and “san jose” using the nonter-
minal SC14 which was generated in a previous iteration. Also, multiple merges were
allowed for clusters of the same iteration. For example, (nashville, toronto), (nashville,
tampa), and (detroit, nashville) can be merged into a single spatial cluster (nashville,
toronto, tampa, detroit). Using this technique nonterminals with greater number of ter-
minals can be quickly generated. However, this merging strategy was allowed to applied
over a predefined, fixed number of clusters that were generated during the same itera-
tion. Next, the clusters were post-processes by hand-editing, according to the following
four operations: (a) some of the SCi and TCi tags were substituted by meaningful la-
bels, such as month, etc., (b) some terminals were completed for some categories (for
example the missing days in a cluster of week days were added), (c) clusters that be-
longed to the same semantic class were consolidated, and (d) irrelevant nonterminals
and terminals were discarded. Thus, the nature of this approach is semi-automatic.

Pargellis et al. [79] extended the work of Siu and Meng [103] by proposing an
unsupervised, iterative procedure for inducing semantic classes. The suggested system
consists of three components: (a) a lexical phraser, (b) a semantic generalizer, and
(c) a corpus parser. The lexical phraser identify frequently co-occurring words by
applying a weighted point-wise mutual information measure. For example, consecutive
words like “New York” are chunked into a single entry, e.g., “New York”. The second
module, semantic generalizer, generates rules that map words (or previously induced
classes) to semantic classes. The core idea of semantic generalizer is the distributional
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hypothesis of meaning. The similarity between two words is computed according to
their contextual distributions. Pargellis et al. experimented with four different metrics:
(a) Kullback-Leibler, (b) Information-radious, (c) Manhattan-norm, and (d) Cosine
similarity. A comparative study of these metrics about automatic induction can be,
also, found in [80]. During a system iteration a metric outputs an ordered list of pairs
that is ranked according to semantic similarity. Each pair is assumed to form a semantic
class. A predefined, fixed number of top pairs are used for the induction of semantic
classes during for every system iteration. After every generation of induction classes the
module of corpus parser is run. All instances of the generated classes are substituted
in the corpus with the corresponding semantic label. It should be noted that the class
labels are artificial tags, without denoting the class concept. The generated by the
lexical phraser chunks are retained if they were assigned to an induced class by the
semantic generalizer. The whole procedure is repeated, as is depicted by Figure 3.4.
The above system was applied in four different corpora. The first three were about

Figure 3.4: Auto-induced semantic classes system (Pargellis et al., [79]).

small, homogeneous domains dealing with movie information, travel information, and
a children’s computer game. The fourth corpus was about a heterogeneous domain,
containing sentences from the Wall Street Journal. In addition, a longer-term goal of
the work of Pargellis et al. is the study of similarities of different domains by identifying
which semantic classes are related across different domains. A previous study of domain
similarities can be found in [81].

More recently, Pangos et al. [77], proposed an algorithm for unsupervised semantic
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class induction which is based on the hypothesis that similarity of context implies simi-
larity of meaning. Two semantic similarity metrics that are variations of the cosine sim-
ilarity distance were used in order to measure the semantic distance between words and
to automatically generate semantic classes. The first metric computes “wide-context”
similarity between words using a “bag-of-words” model, while the second metric com-
putes “narrow-context” similarity using a bigram language model. A hybrid metric
was proposed as the linear combination of the wide and narrow-context metrics, using
fixed weights, estimated over held out data during an a priori experimental procedure.
The semantic metrics were evaluated on two corpora: a semantically heterogeneous
web news domain, HR-Net [36], and an application-specific travel reservation corpus,
ATIS [86].

3.3 Proposed method

In this chapter, we focus on the problem of adaptive unsupervised weight estimation
for combining multiple similarity metrics. The class induction system proposed in
[77] works iteratively, updating a hierarchical structure of semantic classes in each
iteration. Our motivation for creating an adaptive weighting scheme, is that the relative
performance of each metric (in terms of precision and recall) varies from iteration to
iteration. It is expected that by updating the weights of each metric at each iteration
the combined metric performance can significantly improve. In addition, our goal is
to create a fully unsupervised, corpus-independent metric combination algorithm that
does not require experiment on held-out data to compute the weights. Next, we propose
a fully unsupervised adaptive algorithm for combining semantic similarity metrics.

As in [77], we follow an iterative procedure for automatic induction of semantic
classes, consisting of two main components: a class generator and a corpus parser.
The class generator, explores the context information of every word, calculating the
similarity between words; the semantic similarity metric combines two or more vari-
ations of the Cosine similarity metric. Semantically similar words or concepts are
grouped together into classes. The corpus parser, re-parses the corpus using the class
definitions generated by the class generator, i.e., substitutes all instances of each class
member with the corresponding class label. The class generator and corpus parser are
run sequentially and iteratively over the corpus.

3.3.1 Cosine Similarity Metrics

Our approach relies on distributional hypothesis of meaning: similarity of context
implies similarity of meaning. We assume that words, which are similar in contextual
distribution, have a close semantic relation [79, 96]. Both narrow- and wide-context is
taken into account as described next.

Wide-context metric: Bag-of-words model

In “Bag-of-words” [101] models, for each word w in the vocabulary a context win-
dow size WS is selected. The right and left contexts of length WS in the corpus are
considered for word w, e.g.,
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[vWS,L ... v2,L v1,L] w [v1,R v2,R ... vWS,R]

where vi,L and vi,R represent the ith word to the left and to the right of w respectively.
The feature vector for every word w is defined as Tw,WS = (tw,1, tw,2, ..., tw,N ) where
tw,i is a non-negative integer and WS is the context window size. Note that the feature
vector size is equal to the vocabulary size N , i.e., we have a feature for each word in the
vocabulary V . The ith feature value tw,i reflects the occurrences of vocabulary word vi

within the left or right context window WS. This feature value is set according to a
Binary (Bin.) or a Term Frequency (Freq.) Scheme.

This feature value is set according to a Binary (Bin.) or a Term Frequency (Freq.)
Scheme:

Binary Scheme:

tw,i =

 1, if vi ∈ NWS,LR

0, if vi /∈ NWS,LR

Term Frequency Scheme:

tw,i =

 f(vi|WS), if vi ∈ NWS,LR

0, if vi /∈ NWS,LR

where f(vi|WS) is frequency of vi within a left and right window context of size WS
for the word w and for the whole corpus.

The “Bag-of-words” metric, SA,WS , using Binary or Term Frequency Scheme, mea-
sures the similarity of two words, w1 and w2, as the cosine similarity of their corre-
sponding feature vectors, Tw1,WS and Tw2,WS [77]:

SA,WS(w1, w2) =
∑N

i=1 tw1,itw2,i√∑N
i=1(tw1,i)2

√∑N
i=1(tw2,i)2

(3.3.1)

given a context window of length WS.

Narrow-context metric: N-gram language model

In an N-gram language model a word w is considered with its neighboring words v1,L

and v1,R in the left and right contexts within a sequence. In order to calculate the
similarity of two words, w1 and w2, we compute the cosine distance between two feature
vectors; each feature vector of a word w measures the conditional probability of all
possible contexts vi given that word p(vi|w), i.e., each vector contains bigram language
model probabilities for (context, word) pairs. Semantic similarity is defined as

SB(w1, w2) = SL
B(w1, w2) + SR

B(w1, w2) (3.3.2)

where the two terms of Eq. (3.3.2) are [79]:

SL
B(w1, w2) =

∑N
i=1 p(vi,L|w1)p(vi,L|w2)√∑N

i=1 p(vi,L|w1)2
√∑N

i=1 p(vi,L|w2)2
(3.3.3)
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SR
B(w1, w2) =

∑N
i=1 p(vi,R|w1)p(vi,R|w2)√∑N

i=1 p(vi,R|w1)2
√∑N

i=1 p(vi,R|w2)2
(3.3.4)

where V = (v1, v2, ..., vN ) is the vocabulary set, and p(vi|w) is the conditional proba-
bility of word vi preceding w in the corpus given word w, i.e., the (vi, w) bigram model
probability.

3.3.2 Generating Word Classes

Similarity metric SA,WS or SB output a list of pairs, ranked according to the semantic
similarity of their members, from semantically similar to semantically dissimilar. Words
and semantic classes (induced in previous system iterations) are valid members of such
pairs. From this list that contains all possible word pairs in the corpus, one has to
choose a fixed number of top ranking pairs in order to induce the next set of semantic
classes. In [79], a new class label is created for each pair and the two members are
assigned to the new class. However, there is no way to merge more than two lexical
units at one step which may lead to a large number of hierarchically nested classes.
In [103], a more insightful clustering algorithm is proposed generating multiple class
merges. However, the number of class merges is predefined and remains constant for
all system iterations.

We extend the latter algorithm by allowing varying number of class merges [38],
described next. The algorithm examines multiple pairs and finds those pairs that
have a common element. Provided that certain conditions are met, a new class label
is created and the union of these pairs is assigned to this class. Assume that the
pairs (one,two), (one,ten), (two,twenty) were ranked at the upper part of the list.
According to the proposed algorithm, the class (one,two,ten,twenty) will be created.
To avoid over-generalizations only pairs that are rank ordered close to each other are
allowed to participate in this process. The parameter “Search Margin”, SM , defines
the maximum distance between two pairs (in the semantic distance rank ordered list)
that are allowed to be merged in a single class. Consider the ranked pairs of Table 3.1.
For SM = 2 the classes (one,two,ten) and (monday,friday,sunday) will be generated,

Position in List 1 2 3 4 5
Pairs one two two ten monday friday friday sunday ten twenty

Table 3.1: Top ordered pairs, ranked according to semantic similarity.

while for SM = 3 the classes (one,two,ten,twenty) and (monday,friday,sunday) will
be generated. By adding the search margin SM constraint it was observed that the
semantic homogeneity of the created classes was better preserved.

3.3.3 Combined Similarity Metrics

Combining similarity metrics of various context lengths makes it possible to utilize
multiple lexical scopes of the contextual information. In [77], two different metrics
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were linearly combined using fixed weights: SA,WS=50 with broad lexical scope and SB

that focuses on the immediate context of each word.
Our goal is to improve on the combined metric by adding multiple context lengths

and, most importantly, to automatically and adaptively estimate the weights assigned
to each contributing individual metric. We propose the following weighted linear com-
bination:

C(w1, w2) =
M∑

m=1

λmSm(w1, w2) (3.3.5)

where Sm can be any of SA,WS(w1, w2) or SB(w1, w2) (for various context lengths WS).
Note that λm varies from iteration to iteration and that

M∑
m=1

λm = 1 (3.3.6)

Unsupervised Weight Estimation

The hybrid metric C takes into account different metrics with different lexical scopes
using a weighted linear combination. The weight λm estimation algorithm is motivated
by the work in [85], where it is shown that the “optimal” weights for the combined clas-
sifier should be approximately inversely proportional to the classification error rate of
each (stand-alone) classifier. In order to have an unsupervised weighting metric, how-
ever, we need some estimate of the individual classification error rates of the component
metrics. Assuming equal priors (and variance normalized data) the classification error
rate can be assumed to be approximately proportional to the inter-class similarity (or
inversely proportional to the inter-class distance). Thus the optimal weights should be
inversely proportional to the inter-class similarity. This agrees with our intuition that
greater importance should be given to the individual metric Sm that achieves better
class separability.

Consider that (at iteration I) the metric Sm generates a number of classes ci,m from
the top NP ranking word pairs; where i is the class index for metric Sm. The quality
of class induction for each metric at iteration I is measured by employing a criterion
of inter class similarity. Specifically, the inter class similarity between two classes, ci

and cj generated by Sm is computed as:

Di,j,m =

∑
wk∈ci,m

∑
wl∈cj,m

Sm(wk, wl)

| ci,m | | cj,m |
(3.3.7)

where | . | denotes set cardinality. The average inter class similarity Dm,avg for metric
Sm is computed by averaging over all similarity scores between all possible pairs of
classes (i, j):

Dm,avg = 〈Di,j,m〉(i,j). (3.3.8)

Finally, the combination weight λm assigned to Sm is equal to the inverse of the average
inter class similarity:

λm =
1

µmDm,avg
(3.3.9)
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Note that µm is a smoothing factor and is a moving average of Dm,avg over all past
system iterations.

3.4 Experimental corpora and procedure

The first corpus we experimented with was the semantically heterogeneous HR-Net
corpus that was downloaded from the Hellenic Resources Network [36]. Specifically,
news in English from the Hellenic Radio (ERA) between 01/01/2005 and 05/11/2005
were gathered. HTML tags were removed from each document. The number of articles
in the corpus is 2,082, the total number of words is 549,660, the size of the vocabulary is
22,904 words, the average number of words per document is 264, the maximum number
of words found in a document is 1,495 and the minimum 41. The second corpus we
experimented with was the domain specific ATIS corpus [86]. This corpus contains
transcribed utterances dealing with travel information. We used an experimental corpus
consisting of 1,705 utterances. The total number of words is 19,197 and the size of
vocabulary is 575 words [77].

3.4.1 Corpora samples

For example purposes we present a political article from the HR-Net corpus:
“at least people were injured yesterday during violent clashes that erupted in a refugee
camp south of the gaza strip between activists of the palestinian groups fatah and
hamas the conflict took place in the camp al mugazi when fatah members who had
gathered to celebrate their partys victory in the area in the recent municipal elections
met with a group of hamas members who were also celebrating their groups victory
in the gaza strip according to hospital sources five of the injured people had gunshot
wounds meeting between sharon and abbas in the meantime israeli pm ariel sharon and
palestinian president mahmoud abbas are expected to meet sometime in the next two
weeks for the first time since abbas came to office as per sharons spokesperson david
baker the meeting will take place during the second week of february and the talks
would aim to make progress between both sides contingent on continued efforts by the
palestinians to prevent terrorism to israel”.

Also, some example utterances from the ATIS corpus are shown below.

do you have a flight from charlotte to atlanta on june first
do you have flights from saint petersburg to toronto on monday

how much does it cost to rent a car in tacoma

The HR-Net corpus is semantically most diverse, compared to the ATIS corpus, because
contains news articles. In contrast, ATIS includes short utterances of limited length
and vocabulary that are oriented to the needs of a specific task. For both corpora,
punctuation and letter capitalization were not taken into consideration during the
experiments.

3.4.2 Experimental steps and parameters

The following experimental steps are performed:
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1. One or more variations of wide-context metric SA,WS is/are calculated.

2. Narrow-context metric SB is calculated. For the SB metric, the Bigram Language
Model was built using the CMU Statistical Language Modeling toolkit, applying
Witten-Bell discounting and using back-off weights to compute the probability of
unseen bigrams.

3. The results of each of the above metrics are normalized using min-max normal-
ization.

4. The λ weights are computed using Equation (3.3.9).

5. The hybrid C metric is calculated and semantic classes are induced according to
the algorithm described in Section 3.3.2.

6. All occurrences of the derived class members in the corpus are substituted by the
corresponding class label.

7. The above procedure is repeated until the specified number of iteration SI is
reached.

The following experimental parameters must be defined:

1. The context window WS for SA,WS as well as the scheme used, Binary (Bin.) or
Frequency (Freq.) as described in Section 3.3.1.

2. The total number of system iterations (SI).

3. The number of induced semantic classes per iteration (IC).

4. The size of Search Margin (SM) defined in Section 3.3.2.

5. The number of pairs NP considered for inter-class similarity and weight compu-
tation as discussed in Section 3.3.3.

3.5 Evaluation

3.5.1 Benchmark

In order to evaluate the induced semantic classes for the HR-Net corpus, we used as a
benchmark a taxonomy of 43 semantic classes including 1,820 word-members, manually
crafted by two researchers. Table 3.2 illustrates 5 representative handcrafted classes
along with example members. Every word was assigned only to one hand-crafted class
and our system was tested only for these 1,820 words.

For the evaluation procedure of the ATIS corpus, we used a manually crafted se-
mantic taxonomy, consisting of 38 classes that include a total of 308 members. Every
word was assigned only to one hand-crafted class. Table 3.3 shows 5 representative
handcrafted classes along with some members. For experimental purposes, we gen-
erated manually characteristic “word chunks”, e.g., T W A → T W A. Also, for the
ATIS experiments, all 575 words in the vocabulary were used for similarity metric
computation and evaluation.
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Class Name Members
Education university, school, student...
Politics Karamanlis, president, minister...

Law prosecutor, judge, crime...
Health hospital, surgery, pharmaceutical...
Sports Olympiacos, UEFA, Rehhagel ...

Table 3.2: Example of semantic classes from HR-Net benchmark

Class Name Members
Fairtype one way, round trip, nonstop...

City Los Angeles, Boston, New York...
Airline Delta, Lufthansa, T W A...
Meal meal, lunch, breakfast ...
Day Monday, Friday, Sunday...

Table 3.3: Example of semantic classes from ATIS benchmark

3.5.2 Evaluation measurements

For both corpora the evaluation focused only on the terminal semantic classes (hier-
archical class generation was not evaluated). Every induced class was evaluated with
respect only to the corresponding handcrafted class without examining its relationships
with other classes over the taxonomy. An induced class is assumed to correspond to a
handcrafted class, if at least 50% of its members are included (“correct members”) in
the handcrafted class. Precision and recall are calculated as follows:

precision =
∑m

i=1 ci∑m
i=1 αi

(3.5.1)

recall =
∑m

i=1 ci∑r
j=1 βj

(3.5.2)

where m is the total number of induced classes, r is the total number of handcrafted
classes, ci is the “correct members” of the ith induced class, αi is the total number
of members of the ith induced class and βj is the total number of members of the jth

handcrafted class that occur in the corpus.

3.5.3 Experimental Results

In Figure 3.5(a), the cumulative precision achieved by the metrics SA,WS , SB and their
combination λ1SA,WS=3 +λ2SB, is shown for the ATIS corpus (solid line). The weights
for the combined metric are computed adaptively at each iteration using Equation 3.3.9;
the weights are shown in Figure 3.5(b). For this experiment we used the following
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parameters: Freq. Scheme for SA,WS=3, SI = 20, IC = 10, SM = 5, NP = 50. Note
that the cumulative precision of the combined metric with fixed weights λ1 = 0.35 and
λ2 = 0.65 is also shown in Figure 3.5(a) (dotted line). It is interesting to note that
the adaptive weighting schemes significantly outperforms the fixed weighting scheme in
this experiment. The precision achieved for the metric SA,WS=3 is good in the first few
iterations but quickly decreases well below the precision of the SB metric. In general,
the ATIS corpus favors the narrow-context metrics.

(a) (b)

Figure 3.5: (a) Cumulative precision for the ATIS task for two individual metrics and
two combined metrics (adaptive vs fixed weighting scheme), (b) Assigned weights for
the ATIS task (adaptive weighting scheme).

The adaptive weights λ1,2 in Figure 3.5(b) take reasonable values; as the precision
of SA,WS=3 relative to SB decreases so does λ1 relative to λ2. The increase in the value
of λ1 after iteration 8 could be due to sparse data for weight estimation. Overall, at
iteration SI = 20 the adaptively weighted combined metric generates 33 classes with
224 members achieving a recall of 72.7% (see Table 3.4).

In Figure 3.6(a), the cumulative precision achieved by three variations of SA,WS (Bi-
nary scheme, window sizes 50, 10, and 2), and their combinations is shown for the HR-
Net corpus. Two combined metrics are shown both using adaptively computed weights:
C = λ1SA,WS=50+λ2SA,WS=10+λ3SA,WS=2, and C ′ = λ′1SA,WS=50+λ′2SA,WS=10. Note
that: SI = 20, IC = 10, SM = 10, NP = 50 for this experiment. The three metric
combination C significantly outperforms the two metric combination C ′ in terms of
precision. Also note that C outperforms the best of the SA,WS metrics and achieves up
to 50% relative error rate reduction. The semantically heterogeneous nature of HR-Net
corpus allows multiple metrics of different lexical scopes to be combined successfully.

In Figure 3.6(b), the assigned weights for the three-metric combination C are shown.
During the very early iterations SA,WS=10 is weighted most, but after the 6th iteration
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(a) (b)

Figure 3.6: (a) Cumulative precision for the HR-Net task for three individual and two
combined metrics (three-way and two-way adaptive combination), (b) Assigned weights
for the three-way combination metric for the HR-Net task.

SA,WS=50 is assigned the greatest weight. The metric with the smallest window size,
SA,WS=2, is given the lowest λ value.

This is consistent with the experiments in [77] showing that the wide-context metrics
outperform the narrow-context ones for the semantically heterogeneous HR-Net corpus.
It is interesting to note that when the proposed unsupervised weight computation
algorithm is used there is no need to select metrics based on corpus characteristics.
Instead a corpus independent combined metric can be used and automatically poor
performing metrics will be weighted less in the combination. This is consistent with
the corresponding precision curves and agrees with our intuition. Note that at iteration
SI = 20 the combined metric C generates 20 classes with 304 members and achieves
precision of 16.7%.

The following table shows the recall across different experiments. We can see that
the adaptive weightings are relatively close to the fixed parameters in terms of recall,
so the improvement in precision is not at the expense of recall.

3.6 Conclusions

We have presented an algorithm for unsupervised computation of weights to individual
metrics of different lexical scopes. The metrics are linearly combined into a hybrid
metric. The proposed algorithm monitors the efficiency of each individual metric and
attempts to assign greater weight to the “best-performing” metric. Experiments on
two different corpora showed that the adaptively computed weights outperform the
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Recall at SI(%) 1 5 10 15 20
ATIS:adaptive λ1,2 11 31.2 46.1 64 72.7
ATIS:fixed λ1,2 12.7 33.1 49.7 65.3 75
ATIS:SA,WS=3 14.9 34.4 44.8 53.2 63.3
ATIS:SB 6.5 30.2 45.8 59.4 70.1
HR-Net:adaptive λ1,2,3 1.3 5 9.8 13.9 16.7
HR-Net:adaptive λ′1,2 0.8 5 9.6 13.3 16.6
HR-Net:SA,WS=50 1 5.7 9.5 13.5 16.9

Table 3.4: Recall scores of adaptive and individual metrics (for ATIS and HR-Net
corpus).

fixed weight computation scheme. Also three metric combination (wide-, mid- and
narrow-context size) significantly outperformed each one of the individual metrics in
terms of precision and recall of generated classes. The proposed unsupervised met-
ric combination algorithm makes it possible to employ a corpus-independent semantic
similarity metric for semantic class induction. Future work will investigate how to in-
clude estimation error variance is the weight estimation criterion as discussed in [85].
Combination of other types of semantic similarity measures it is, also, interesting to be
investigated.



Chapter 4

A Soft-Clustering Algorithm for
Automatic Induction of Semantic
Classes

4.1 Introduction

In the previous chapter we described a method of word hard clustering, according to
which a word is deterministically assigned to an induced semantic class. After a word
assignment , the word is substituted by a class label and this representation is used
during the next iterations. The hard clustering approach is used by almost all the
related works [103, 80, 79, 77] appeared in the literature. However, the single class
assignment suffers from some drawbacks:

• Other possible categorizations are ignored.

• Erroneous word assignments are retained throughout the iterative procedure of
the system. So, induced classes of later iterations may include previous wrong
assignments.

• The lexical type of a categorized word is not considered, since the word was
substituted by a class label. In other words, a fraction of the corpus lexical
information is eliminated.

• As the words are substituted by class labels, the semantic generalizer form new
classes containing nonterminals and the system tends to overgeneralize classes.

Our approach [39]: in order to alleviate the disadvantages of the hard word
clustering, we propose a soft-decision, unsupervised clustering algorithm that generates
semantic classes automatically using the probability of class membership for each word,
rather than deterministically assigning a word to a semantic class. Also, every word
retains its lexical type. This is motivated by the idea that the presence of lexical
and semantic information can contribute to the better estimation of probabilities, in
order to automatically induce semantic classes. Semantic classes are induced using
an unsupervised, automatic procedure that uses a context-based similarity distance to

40
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measure semantic similarity between words. The proposed soft-decision algorithm is
compared with various “hard” clustering algorithms, evaluated on a travel reservation
corpus, ATIS [86]. Our approach is presented in Sections 4.3 - 4.6.

4.2 Related work

To our knowledge only one data-driven approach has been proposed in the literature
that automatically clusters words into more than one class [82, 58]. Pereira et al. [82]
proposed a method for hierarchical clustering of words according to their distribution
in particular syntactic contexts. They considered transitive main verbs and the head
nouns of their direct objects, working with articles form the Associated Press. The
clustering procedure follows a deterministic annealing, in which a parameter β is con-
tinuously being increased. Initially, the parameter β is set to a very low value and a
single cluster is formed whose centroid is the average of all noun distributions. Next,
the value of β is slowly increased. For any β there is a number of leaf clusters that
corresponds to a minimum of a so-called free energy function. This function incor-
porates the KL divergence between noun and centroid distributions and the cluster
membership entropy. For some leaf clusters there is a critical, lowest β value for which
the particular cluster an be split. In general, the splitting procedure can be repeated
until a desired number of clusters or model cross-entropy is reached. Figure 4.1 shows

Figure 4.1: Soft clustering using free energy function (Pereira et al., [82]).

an experiment dealing with the 64 most frequent nouns appeared as heads of sirect
objects for the verb “fire”. For each cluster are shown the four most similar words to
the cluster centroid. Cluster 1 corresponds to the weaponry sense of verb “fire”, while
cluster 2 reflects refers to the corresponding personnel. Regarding the split of cluster 1,
note that words “missile” and “rocket” participate in cluster 3, as well as in cluster4.
This clustering method was evaluated using two types of measurements: (a) relative
model entropy, and (b) performance for the procedure of deciding which of two verbs
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is more likely to have a noun as a direct object.
A remarkable portion of research efforts regarding word clustering adopts the per-

spective of class-based language modeling. The following reference to works about word
clustering is, also, closely related to Chapter 3. However, in this chapter some major
works are briefly described from a clustering-oriented point of view. This is because
the main idea of the proposed method [39] of this chapter deals with word soft cluster-
ing. In contrast, Chapter 3 was focused to the unsupervised combination of similarity
metrics [41], while the word hard clustering method was treated as an issue of minor
research interest.

The first thorough study of class-based N-gram language modeling was conducted
by Brown et al. [11]. Initially each word was assigned into a distinct class. Next, the
average mutual information was computed among adjacent classes. All possible merges
between pairs of classes were tested, and the merge that gave the least loss in average
mutual information was retained. After generating a set of classes by successive merges,
some words were moved from one class to another. For these word movings the mutual
information was computed for the corresponding class. In final, the reassignment of a
word terminates by finding a cluster with greater mutual information. This procedure
results to a tree structure as is shown in Figure 4.2. The constructed class-based model

Figure 4.2: Word clustering using mutual information (Brown et al., [11]).

was interpolated with a word-based model. The perplexity of the interpolated model
over the Brown corpus was reported to be equal to 236, while the perplexity of the
word-based model was 244.

In [3], the approach of Brown et al. [11] was tested over a newspaper texts from
Peole’s Daily and compared with a method that used minimum discrimination infor-
mation as a distance metric. This metric was used in the place of mutual information
in order to find the least loss in average mutual information among pairs of classes.
The suggested in [3] method was reported to give perplexity reduction comparable to
the results of [11], while it was shown to be computationally cheaper.

The work of Bellegarda et al. [6] proposes a framework for word clustering formu-
lated from the perspective of information retrieval, applying latent semantic analysis.
While traditional approaches consider word co-occurrence within narrow contexts, Bel-
legarda et al. search for word co-occurrence at document level. A document is assumed
as a semantically homogeneous set of sentences. A matrix of co-occurrences between
words and articles from ARPA North American Business News corpus was constructed.
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Singular value decomposition was applied, resulting to singular vector representation
for words and documents. Next, a distance metric was defined over the generated vec-
tor space. In final, the singular vectors were clustered according to their distance. In
particular, the K-means algorithm was used to partition the vocabulary into a small
set of superclusters. Afterwards, bottom-up clustering was applied for each superclus-
ter. However, no evaluation results were reported for work, but only some interesting
observations about the semantic nature of the resulting clusters, were stated.

In [75], various class-based N-gram language models are interpolated with word-
based models. Classes correspond to part-of-speech, as well as to automatically gener-
ated groupings. In general, the interpolated models had better performance regarding
perplexity reduction and worrd error rate improvement.

4.3 Proposed method

Almost all of the above approaches for automatic induction of semantic classes assign
deterministically a word into a particular induced class. In this chapter, we propose
an iterative soft-decision, unsupervised clustering algorithm, which instead of deter-
ministically assigning a word to a semantic class computes the probability of class
membership in order to generate semantic classes. The proposed soft clustering al-
gorithm is compared to the hard clustering algorithm, used in [103, 79, 41]. Various
other “hard” clustering algorithms are also evaluated that use lexical-only, or lexical
and (auto-induced) semantic information for deriving class estimates. Next, we briefly
describe the “hard” clustering procedure, in order to be easily compared with the “soft”
clustering algorithm that follows.

4.3.1 Hard clustering algorithm

We follow a fully unsupervised, iterative procedure for automatic induction of semantic
classes, consisting of a class generator and a corpus parser [79]. The class generator,
explores the immediate context of every word (or concept) calculating the similarity
between pairs of words (or concepts) using KL metric. The most semantically similar
words (or concepts) are grouped together generating a set of semantic classes. The
corpus parser, re-parses the corpus and substitutes the members of each induced class
with an artificial class label. These two components are run sequentially and iteratively
over the corpus (the process is similar to the one shown in Figure 4.4 but with a hard
decision in step II).

Class generator

Our approach relies on the idea that the similarity of context implies similarity of
meaning [96]. We assume that words, which are similar in contextual distribution,
have a close semantic relation [103, 79]. A word w is considered with its neighboring
words in the left and right contexts within a sequence:

. . . wL
1 w wR

1 . . .
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In order to calculate the distance of two words, wx and wy, we use a relative entropy
measure, Kullback-Leibler (KL) distance, applied to their conditional probability dis-
tributions [103, 79, 82]. For example, the left KL distance is

KLL(wx, wy) =
N∑

i=1

p(wL
i |wx) log

p(wL
i |wx)

p(wL
i |wy)

(4.3.1)

where V = (w1, w2, ..., wN ) is the vocabulary set. The similarity of wx and wy is
estimated as the sum of the left and right context-dependent symmetric KL distances:

KL(wx, wy) = KLL(wx, wy) + KLL(wy, wx)+

+ KLR(wx, wy) + KLR(wy, wx)
(4.3.2)

If wx and wy are lexically equivalent, then KL(wx, wy)=0.
Using distance metric KL the system outputs a ranked list of pairs, from seman-

tically similar to semantically dissimilar. The semantic classes are built as it was
described in Section 3.3.2.

Corpus parser

The corpus is re-parsed after the class generation. All instances of each of the induced
classes are replaced by a class label. Suppose that the words “Noon” and “LA” are
categorized to the classes <time> and <city>, respectively.1 The sentence fragment
“Noon flights to LA” becomes “<time> flights to <city>”. After the corpus re-parsing,
the algorithm continues to the next system iteration. So, the lexical type of the clus-
tered words is substituted by semantics and it is not present anymore in the corpus
during the next iterations.

4.3.2 Soft clustering algorithm

The previously described hard clustering algorithm suffers from some drawbacks. First,
a word is deterministically assigned to only one induced class. This isolates the word
from additional candidate semantic classes. Furthermore, if the word categorization
is false, then the erroneous induced class is propagated to the next class generation
via the next iterations, leading to cumulative errors. Also, as the corpus is re-parsed,
lexical information is being eliminated and substituted by the imported auto-induced
semantic tags. This it is likely to produce fallacious semantic over-generalizations [79].

We propose a fully unsupervised, iterative soft clustering algorithm for automatic
induction of semantic classes. The proposed algorithm follows a similar procedure as
the hard clustering algorithm but alleviates the aforementioned disadvantages. A word
is soft-clustered to more than one induced class according to a probabilistic scheme of
membership computation thus reducing the impact of classification errors. In addition,
the lexical nature of the corpus is preserved by equally weighting lexical and derived
semantic information in the distance computation metric. Thus the soft clustering
algorithm combines both lexical and induced semantic information as explained next.

1The algorithm has no concept of these classes and the above labels are used only for example
reasons. In practice alphanumerics are used for each semantic class as it is created.
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Soft class n-gram language model

Recall the example of Section 4.3.1 where the words “Noon” and “LA” are categorized
to the classes <time> and <city>, respectively. The key idea of the proposed soft
clustering algorithm allows words to belong to more than one induced semantic classes.
In Figure 4.3 each word that belongs to multiple classes is represented by multiple

Figure 4.3: Sentence fragment with multiple semantic representations after the 1st

iteration of class induction.

triplets (wi, cj , p(cj |wi)), where wi is the word itself, cj is the label of an induced se-
mantic class (concept) and p(cj |wi) is the probability of class membership, that is the
probability of word wi being member of class cj , defined next. This “soft” class as-
signment shown in Figure 4.3 is represented as (Noon,<time>,0.45), (Noon,<city>,0.05)
and (LA,<time>,0.075), (LA,<city>,0.425). Note that it is not required that all words
are assigned to classes; the multi-class soft-assignment criterion will be discussed next.
Additionally, for all corpus words we retain the lexical form; for each word wi there
is an (additional) triplet (wi, wi, p(wi|wi)) with fixed probability p(wi|wi) ≡ 0.5, e.g.,
(Noon,Noon,0.5). By design the probability mass is equally split between the lexical
and semantic information, i.e., for each word the sum of class membership probabilities
over all classes is equal to 0.5 and equal to the probability of the word retaining its
lexical form.2

A number of semantic classes are generated at every system iteration. We define
the set Sn of induced classes generated up to the nth iteration, the corpus vocabulary
set V containing all words, and their union Cn = Sn

⋃
V . Using the above definitions

we propose an n-gram language model for the class labels and words, elements of set
Cn. The maximum likelihood (ML) unigram probability estimate for cj is(

p̂(cj)
)

ML
=

∑
∀wi∈V p(cj |wi)∑
∀wi∈V
∀cj∈Cn

p(cj |wi)
(4.3.3)

i.e., the sum of class membership probabilities of every vocabulary word with respect
to cj . The corresponding maximum likelihood estimate for the bigram probability of a

2 Note that, as shown in Figure 4.3, words that are not (yet) candidates for any semantic class have
a lexical form probability equal to one, e.g., (flights, flights,1).
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sequence cj , cj+1 is (
p̂(cj+1|cj)

)
ML

=

∑
∀wi∈V p(cj+1|wi)p(cj |wi)∑

∀wi∈V p(cj |wi)
(4.3.4)

In the case of unseen bigrams we use the back-off language modeling technique [43, 48]
to estimate the bigram probability as:

p̂(cj+1|cj) = backoff(cj)p̂(cj+1) (4.3.5)

The proposed soft class language model is built on both lexical and semantic context
and differs somewhat from traditional class-based language models [52, 11].

Induction of semantic classes

The proposed system using the soft clustering algorithm works similarly to the hard
clustering system, with the addition of the class membership calculation algorithm.
The soft-clustering algorithm consists of three steps class generator, membership cal-
culator and corpus parser, as shown in Figure 4.4. At the last iteration, words are
(hard-)assigned to classes using the same rules for both the soft- and hard-clustering
algorithms (thus, the main difference between the two algorithms is in the better esti-
mation and smoothing of the contextual probabilities in the soft-clustering case). An
example 1st system iteration is also shown in this figure.

Class generator

First, each corpus word is transformed to the triplet format. Second, a soft class n-
gram language model is built, as defined before. Then the KL distances between words
are computed according to Equations 4.3.1 and 4.3.2. Note that the probabilities are
computed using the generalized n-gram estimation Equations 4.3.3, 4.3.4 and 4.3.5.
Next a set of semantic classes is generated using the pair merging strategy, described
in Section 3.3.2. For each candidate class the class membership probability is computed
using the membership calculation algorithm outlined next.

Membership calculator

Given the set of semantic classes Sn generated at the nth system iteration, the prob-
ability of class membership between words and each class sj of Sn is computed. This
is not done for the entire corpus vocabulary, but only for the words that were assigned
deterministically to the classes of Sn by the class generator. In other words, we relax
the word-class hard assignment to word-classes soft assignment but otherwise keep the
iterative process of word to class assignment as in the hard clustering algorithm. Let
the words that are assigned to classes up to iteration n be members of a set Xn⊂V .
Also, recall that each word member of Xn is retained (assigned to itself) with fixed
probability equal to 0.5. The probability of class membership between a word, wi, and
a class (or itself), cj , is given by the following equations:

p(cj |wi) ≡ 0.5, (4.3.6a)
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Figure 4.4: Soft clustering system architecture and example iteration.

if cj =wi and wi ∈ V , and

p(cj |wi) ≡
e−KL(sj ,wi)∑

∀sj∈Sn e−KL(sj ,wi)
, (4.3.6b)

where cj ∈ Sn and wi ∈ Xn⊂V .
The KL distance between a word wi and a class cj =sj is computed as follows: (i)

the corpus is parsed and each word in cj (excluding wi) is substituted by the appropriate
class label, (ii) a bigram language model is built using Equations 4.3.3-4.3.5, and (iii)
the KL distance is calculated using Equation 4.3.2. Then the equations above are
applied to compute the probability of class membership.

The motivation behind Equation 4.3.6b is that words that are semantically similar
to a class are member candidates for this class. The enumerator of Equation 4.3.6b dis-
tributes exponentially less membership probability mass to the classes that have greater
KL distance from the word wi . The exponential form of Equation 4.3.6b has more
drastic separability regarding strong and weak class candidates compared to a linear
equation. Equation 4.3.6b is a slightly modified reverse-sigmoid membership function,
commonly used in fuzzy logic. Note that the total probability of class membership for
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every soft-clustered word wi ∈ Xn equals to 1, i.e.,

∑
∀cj∈Cn

p(cj |wi)=

0.5+0.5︷ ︸︸ ︷∑
∀sj∈Sn

p(cj =sj |wi) + p(cj =wi|wi)=1, (4.3.7)

where wi ∈ Xn. The equation implies a linear, fixed combination between lexical and
semantic information, which are equally weighted 3. Every word of Xn is allowed to
participate into the generated classes of Sn with membership probabilities summing to
0.5, while it is also lexically retained with a fixed probability equal to 0.5.

Corpus parser

The corpus parser re-parses the corpus and substitutes the words in the middle field of
the triplet with the appropriate class labels, assigning the corresponding probabilities
of class membership to the third field. For example, given that the word “Noon” was
assigned to the classes <time> and <city> with membership probabilities 0.45 and
0.05 respectively, it is parsed as (Noon,<time>,0.45) and (Noon,<city>,0.05), as is
shown in Figure 4.3. Additionally, every corpus word is lexically retained with fixed
probability equal to 0.5, if it was soft clustered (else 1). For example, the word “flights”
was not grouped to any induced class by the class generator. The corpus parser keeps
its’ lexical form as (flights,flights,1). For the word “Noon” for instance, that was soft-
clustered to the classes <time> and <city> the lexical probability is 0.5.

4.4 Experimental corpus and procedure

We experimented with the ATIS [86] corpus which consists of 1,705 transcribed utter-
ances dealing with travel information. The total number of words is 19,197 and the
size of vocabulary is 575 words.

We studied the performance of the proposed soft-clustering algorithm in terms of
precision and recall. We compare the soft-clustering to the hard clustering algorithm
where a word is assigned only to a single induced class [41]. Also, we conducted a
hard-clustering experiment where the semantic classes are induced in a single itera-
tion, henceforth referred as lexical. In the lexical experiment, no generated labels are
imported to the corpus and only lexical information is exploited for class induction.
Finally, we conducted a hard-clustering experiment where semantic and lexical infor-
mation is combined using equal and fixed weights of 0.5, henceforth referred as the
hard+lexical experiment. These additional experiments are included to help us better
understand the cause of improvement of the proposed algorithm vs the one in [41];
specifically if the improvement is due to mixing lexical and semantic information, or
using soft- instead of hard-clustering (or both).

The three components of the proposed soft-clustering algorithm are run sequentially
and iteratively over the corpus, as depicted by Figure 4.4.

The following parameters must be defined:
3This weighting scheme is the optimal combination, estimated on held-out data.
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1. The total number of system iterations (SI).

2. The number of induced semantic classes per iteration (IC).

3. The size of Search Margin (SM) defined in Section 4.3.1.

The same iterative procedure and parameters are also followed and defined for the
hard-clustering algorithm, described in Section 4.3.1.

Regarding the lexical experiment, the class generator of Fig. 4.4 is run once (SI=1),
generating the total required semantic classes for evaluation.

4.5 Evaluation

4.5.1 Benchmark and evaluation measurements

For the evaluation procedure of the ATIS corpus, we used a manually crafted semantic
taxonomy, consisting of 38 classes that include a total of 308 members. Every word
was assigned only to one hand-crafted class. For experimental reasons, we generated
manually characteristic “word chunks”, e.g., New York→ New York. Also, for the
ATIS experiments, all 575 words in the vocabulary were used for similarity metric
computation and evaluation.

The evaluation focused only on the terminal semantic classes. Every induced class
was evaluated with respect only to the corresponding handcrafted class without examin-
ing its relationships with other classes over the taxonomy (hierarchical class generation
was not evaluated). An induced class is assumed to correspond to a handcrafted class,
if at least 50% of its members are included (“correct members”) in the handcrafted
class. The induced semantic classes were evaluated in terms of precision and recall.

Representative examples of the benchmark of semantic classes, as well as definition
of precision and recall can be found in Section 3.5.1 and Section 3.5.2, respectively.

4.5.2 Experimental Results

Figure 4.5 presents the achieved precision and recall for the soft and hard clustering
algorithms, and also for the lexical and hard+lexical ones. Precision and recall were
computed for 80 induced semantic classes, using SM=10.

The proposed soft algorithm generated 80 classes at the 3rd iteration. During
the previous two iterations we calculated the probability of class membership over 15
induced classes (5 and 10 classes at 1st and 2nd iteration). The hard and hard+lexical
algorithm was run for 3 iterations, generating 5 deterministic classes at 1st iteration,
10 at 2nd and the rest 65 classes at the 3rd iteration. During the lexical experiment 80
classes were generated at 1st iteration.

The proposed soft algorithm (•) outperforms the other approaches (hard (4), lex-
ical and their combination hard+lexical), especially for the first 40 induced classes,
in terms of precision. It is also interesting that the lexical algorithm outperforms the
hard clustering algorithm (4). The poor performance of the hard algorithm (4) is
caused by a number of erroneous induced classes which are deterministic and they
are propagated from iteration to iteration. Regarding recall scores, the soft algorithm
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Figure 4.5: Precision and recall of soft, hard, lexical and hard+lexical algorithms on
the ATIS corpus.

(•) is shown to achieve consistently higher results than the other approaches. Also
the fixed combination hard+lexical performs slightly better than the other two “hard”
algorithms indicating that the combination between lexical and semantic information
does provide some performance advantage.

4.6 Conclusions

In this chapter, a soft-clustering algorithm for auto-inducing semantic classes was pro-
posed that combines lexical and semantic information. It was shown, that the proposed
algorithm outperforms state-of-the-art hard-clustering algorithms such as [41]. It was
also shown that most of the improvement is due to the introduction of soft-clustering
(via a probabilistic class-membership function) and less so to the combination of lexical
and semantic information for class induction. The soft-clustering algorithm contributes
to the better estimation and smoothing of the contextual probabilities, compared to
the hard-clustering approach. Future work may investigate the effectiveness of the
soft-clustering algorithm for various application domains, as well as computational
complexity issues (compared with hard-clustering). Also, the optimal combination of
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various metrics of lexical and semantic information in the semantic similarity distance
can be incorporated in the soft-clustering method.



Chapter 5

Unsupervised Semantic
Similarity Computation using
Web Search Engines

5.1 Introduction

The world wide web is an extremely large multilingual source of textual information
with an everyday increasing rate of growth. It provides a cheap and easy opportunity
of publishing that is accessible even to the less-equipped person or organization, in
contrast to other conventional means of publishing. The web can be considered as a
living space which exists in parallel with the real world. Using this analogy, the web
projects real life’s knowledge to an unrestricted information canvas that includes bil-
lions of hypertext documents. This a space of loose coexistence, rather than a strictly
organized community, of information units. The nature of published data ranges from
informal information, like personal pages and blogs, to more formal types, such as
newswire and government sites. The thematic character of the available data spans
from generic easy readings, e.g., commercial advertisements and magazine-style arti-
cles, to deep thoughts, like philosophical essays and scientific studies. The web as a
heterogeneous source of information is natural to embody various styles of expressive
writing, since it hosts different authors in different areas of interest. For example, a
textual advertisement consists of few words in order to be easily and quickly under-
stood by the consumers. On the other hand, a specialized document includes expert
terminology in order to preserve its integrity and it is intended for specific groups of
people.

New words, neologisms and hapax legomena, are added frequently to the web. Thus
it is the obvious place for mining semantic relationships for unseen words. Most of the
text-based approaches to semantic similarity employ hand-crafted filtering rules and
language resources to obtain and process the text corpus. As a result these methods
are not of much use for applications where human and language resources are sparse.
Recently there has been much research interest in developing text-based approaches
for estimating probabilities and semantic similarity for unseen words; most of these
methods use the web and search engines for text corpus mining.

52
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Zhu and Rosenfeld [114] proposed a method for exploring the world wide web to
acquire trigram estimates for statistical language modeling. N-grams were submitted
as phrase queries to web search engines. The estimated web probability for a trigram
w1w2w3 is P̂web(w3 | w1w2) = C(w1w2w3)

C(w1w2) , where C(.) is the N-gram count or the web
page count, returned by the search engine. The web probability estimates were com-
pared to a baseline corpus containing 103 millions words. The comparison showed that
the two sources (web and corpus) were in almost complete agreement. Three different
search engines were used for query submission: AltaVista, Lycos, and FAST. Each
web-based language model was interpolated with an existing N-gram language model,
using linear and geometric interpolation. The interpolated models were evaluated over
a speech recognition task, using utterances from the TREC-7 Spoken Document Re-
trieval track data. The interpolated models showed significant improvement of word
error rate, compared to the traditional baseline. Another interesting observation was
that the choice of particular search engine or interpolation scheme did not have a
significant impact on the performance of the interpolated model.

Semantic similarity metrics are also used in Semantic Web applications, like auto-
matic annotation of web pages [16] and social networks construction [68, 71]. Cimiano
et al. [16] used linguistic patterns to identify certain ontological relations using the
web as a large corpus to overcome the data sparseness problem. This approach applied
linguistic regular expressions to discover instance-concept relations in the text. For
an instance a concept is suggested, with regard to an existing ontology, according to
the maximal evidence derived from web statistics. As is shown in Figure 5.1, “South

Figure 5.1: Automatic annotation of a web page with regard to an ontology (Cimiano
et al., [16]).

Africa” is the instance of interest, while the candidate concepts are “country” and “ho-
tel”. The used linguistic pattern is the “is a” expression, denoting an IS −A relation.
The greatest hits were retrieved for the “South Africa is a country”. Thus, “South
Africa” was mapped to the “country” concept in the ontology. This procedure results
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to an annotating of a web page using a reference ontology. Mori et al. [71], applied
a similarity metric to calculate the context similarity between entity pairs in order to
cluster them according to their similarity. After the creation of clusters, a number
of terms were extracted from each cluster and used as labels in order to describe the
relations among the entity pairs. The final goal this work was the social networks con-
struction. This method is illustrated by Figure 5.2. Another important exploitation of

Figure 5.2: Social networks construction using web search engines and similarity metrics
(Mori et al., [71]).

world wide web using search engines is for word sense disambiguation. In [67], a web
search engine was used in order to disambiguate nouns, verbs, adverbs and adjectives,
according to their senses found in WordNet. First, the words of interest are paired and
the disambiguation of one word is tried with regard to the context of the other word.
For this task several queries were sent to a search engine consisting of different senses
(found in WordNet) of one word, while the other word was kept fixed. The sense were
ranked according to the number of the returned hits. For computational purposes only
a number of the top ranked senses were selected. Next, the order of retained senses
was refined using the WordNet hierarchy. The evaluation shown 80% and 91% average
accuracy for the first and first two ranked senses, respectively.

Our approach [40]: we focus on the problem of fully unsupervised semantic sim-
ilarity computation, no hand-crafted rules or resources are employed. Web search
engines are used for text corpus mining and context-based similarity distances are au-
tomatically computed on this corpus. The core motivation of this approach is that
the web does not suffer from data sparseness, so similarity between words can be bet-
ter estimated. Unsupervised semantic similarity estimation algorithms are important
because they require no expert knowledge and no language resources; for many lan-
guages and applications this is the only realistic choice. In addition to their practical
interest, automatically acquiring semantic similarity from text can also help us better
understand the human language acquisition process, which is also (at the semantic
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level) mostly unsupervised. The metrics’ performance is evaluated in terms of correla-
tion with respect to the pairs of the commonly used Charles-Miller dataset [70]. Also,
the proposed metrics are compared with WordNet-based methods. Our approach is
presented in Sections 5.3 - 5.6.

5.2 Related work

The metrics that measure semantic similarity between words or terms can be divided
into three main categories regarding the use of knowledge resource or not:

• Resource-based metrics, consulting only human-built knowledge-bases, such as
WordNet.

• Metrics that perform text mining, relying on knowledge resources.

• Unsupervised metrics that are fully text-based, exploring only the raw textual
information. The metrics of this category are fully automatic and do not use any
knowledge resource.

Several methods of the first category have been proposed in the literature regarding
the use of WordNet and other knowledge resources for semantic similarity computation
1.

Rada et al. [87] proposed a method for exploiting WordNet [69] in order to compute
semantic similarity between words. A fragment of WordNet hierarchy is shown in
Figure 5.3, where words are linked with IS −A relationships. One direct approach for

Figure 5.3: A fragment of WordNet hierarchy (Li et al., [60]).

similarity computation between two words is to identify the minimum length of path
1A brief description of resource-based similarity metrics can be, also, found in Section 2.3.3
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that connects the two concepts containing the words of interest. Thus, this metric is
an edge-based method. For example, in Figure 5.3 the shortest path between “boy”
and “girl” is “boy-male-person-female-girl”, resulting to minimum length of path equal
to 4. The concept “person” is called subsumer for the words “boy” and “girl”. In
similar fashion, the minimum length path between “girl” and “teacher” is 6. So, one
could claim that “boy” is more similar to “girl” than ‘teacher” to “girl”. In the case
of a polysemous word there are multiple paths between two words. Then, only the
shortest path is selected. Rada et al. reported that this approach has satisfactory
performance on constraint medical semantic nets. When this method is applied over
broader semantic hierarchy, such as WordNet, the results may be not so accurate [60].
For example, the minimum path from “girl” to “animal” equals to 4, which is less than
the minimum path from “girl” to “teacher”. Of course, it is not reasonable to claim
that “girl” is more similar to “animal” than to “teacher”. In the work of Petrakis et al.
[83] the method proposed by Rada et al. [87] is characterized as edge counting method.
Also in [83], the correlation performance of Rada et al. metric is reported to be 0.59,
for the 28 noun pairs of the Charles-Miller [70] data set.

Jiang and Conrath [46] suggested a metric that combines edge-based method with
information content as a decision weight. In particular, the information content (IC)
is computed in order to determine the strength of an edge which links a parent and a
child node. The information content of a concept c is defined as IC(c) = log−1P (c).
The probability of encountering an instance of concept c is denoted by P (c). Several
approaches have been proposed for the estimation of P (c) using a corpus [90, 91, 46].
In the work of Jiang and Conrath the Brown Corpus was used. The semantic similarity
between two words was defined to be the summation of edge weights along the shortest
path that links these two words. The Jiang and Conrath method is considered as an
information content method by Petrakis et al. [83]. The obtained correlation score of
Jiang and Conrath method , with respect to the 28 noun pairs of Charles-Miller data
set, equals to 0.83, as is noted in [83].

Li et al. [60] extended the above methods by considering more information from
the semantic hierarchy. They relied on the hypothesis that concepts at upper layers of
the hierarchy are semantically more general with less similarity between them. On the
other hand, they assumed that concepts which are located at lower layers embody more
concrete semantics with stronger similarity. In addition, the local semantic density of
words was taken into account by Li et al. Local semantic density is the information
content of a concept. It was estimated from the Brown Corpus. Using these consider-
ations, Li et al. proposed a similarity metric between two words that is a function of
shortest path length, depth of subsumer in the hierarchy, and local semantic density.
This method was evaluated with regard to 28 noun pairs from Charles-Miller data set,
obtaining 0.82 correlation. The Li et al. metric is defined as an edge counting method
in the work of Petrakis et al. [83].

The presented methods, edge counting [87, 60], and information content [46], are
more capable for comparing words from the same ontology. Different ontologies have
different structure and information content, so there are not directly comparable. The
similarity computation between words of different ontologies is a difficult task and often
employ feature-based and hybrid methods. Feature-based methods compute similarity
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between two words according to word properties (e.g., definitions) or word relations
with other words in the hierarchy. Hybrid methods combine edge counting, informa-
tion content, and feature-based methods [83]. Recntly, Petrakis et al. [83] proposed
a semantic similarity hybrid method, X-Similarity, for computing similarity between
words from different ontologies. Two ontologies were used, WordNet and Mesh. It
should be noted that the X-Similarity metric can be, also, applied for semantic sim-
ilarity computation over a single ontology. The performance of X-Similarity method
(using only WordNet) over 28 noun pairs of Charles-Miller data set was reported to
give 0.74 correlation.

The work of Bollegala et al. [9] belongs to the second category of metrics, that is a
method that perform text mining using a knowledge resource. For each pair of words
numerous queries were submitted to Google web search engine. The computation of
similarity incorporated two information sources: (a) the returned page counts, and
(b) several lexico-syntactic patterns extracted from responded snippets. A snippet is a
chunk of text of limited length, provided by the search engine that gives information
about the local context of the query. The lexico-syntactic pattern extraction was based
on 5.000 pairs of synonymous nouns, taken from WordNet. The proposed by Bollegala
et al. metric, SemSim, achieved 0.83 correlation, evaluated in the 28 noun pairs of
Charles-Miller data set.

Regarding the third category of metrics, there is little work for the computation of
semantic similarity between words only by querying web search engines (with use of any
knowledge source). In [9], three co-occurrence measures were tested, which use only the
returned page counts for the sumitted queries: Jaccard, Overlap, and Dice coefficient,
and point wise mutual information. With respect to the referred noun pairs of Charles-
Miller data set , Jaccard and Dice coefficients resulted to 0.259 and 0.267 correlation,
respectively. Overlap coefficient and point wise mutual information achieved 0.382 and
0.548 correlation, respectively. These co-occurrence metrics are simplistic, since it is
likely two words to appear in a page without being semantically closely related. For
example, “orange” is a fruit, but also is the name of a company. Sahami et al. [97],
measured the similarity between short text snippets by using web search engine results
to get greater context for the examined snippets. The implementation and evaluation
of Sahami method by Bollegala et al. [9] was reported to give 0.579 correlation for the
above benchmark of noun pairs.

5.3 Proposed method

We propose two novel web-based metrics for semantic similarity computation between
words. Both metrics use a web search engine in order to exploit the retrieved informa-
tion for the words of interest. The first metric considers only the page counts returned
by a search engine, based on the work of [9]. The second is fully text-based; downloads a
number of the top ranked documents and applies “wide-context” and “narrow-context”
metrics (see Chapter 3). The proposed metrics work automatically, without consulting
any external knowledge resource.
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5.3.1 Page-count-based similarity metrics

The basic idea under this approach is that the word co-occurrence is likely to indicate
some kind of semantic relationship between words. A quick approximation of word
co-occurrence can be estimated exploring the web. However, the number of documents
in which a certain word pair co-occurs, does not express a direct semantic similarity.
In addition, it is reasonable to, also, take into account the number of documents that
include the each pair component individually for normalization purposes. 2 In other
words, for a word pair, we need to know the information that the two words share,
normalized by the degree of their independence. We define the following [22]:

{D}: a set containing the whole document collection that are indexed and accessi-
ble by a web search engine
|D |: the number of documents in collection {D}
wi: a word or term
{D |wi}: a subset of {D}, documents indexed by wi

{D |wi, wj}: a subset of {D}, documents indexed by wi and wj

f(D |wi): the fraction of documents in {D} indexed with wi

f(D |wi, wj): the fraction of documents in {D} indexed with wi and wj

We use three co-occurrence measures in this work, Jaccard coefficient, Dice coeffi-
cient and Mutual Information, to compute semantic similarity between word pairs as
in [9]. The Jaccard coefficient is a measurement calculating the similarity (or diversity)
between sets. We use a variation of the Jaccard coefficient defined as:

Jaccard(wi, wj) =
f(D |wi, wj)

f(D |wi) + f(D |wj)− f(D |wi, wj)
(5.3.1)

In probabilistic terms, Equation 5.3.1 finds the maximum likelihood estimate of the
ratio of the probability of finding a document where words wi and wj co-occur over the
probability of finding a document where either wi or wj occurs3. If wi and wj are the
same word then the Jaccard coefficient is equal to 1 (absolute semantic similarity). If
two words never co-occur in a document then the Jaccard coefficient is 0.

The Dice coefficient is related to the Jaccard coefficient and is computed as:

Dice(wi, wj) =
2f(D |wi, wj)

f(D |wi) + f(D |wj)
(5.3.2)

Again, the Dice coefficient equals to 1 if wi and wj are identical, and 0 if two words
never co-occur.

2It is interesting to note that web-based co-occurrence metrics often outperform more elaborate
corpus-based metrics. This shows that overcoming the data sparseness problem is sometimes more
important than building an accurate estimator. For example an improved n-gram language probability
estimation using web n-gram occurrence can be found in the literature [114].

3Normalization by the total number of documents |D | is the same for the nominator and denomi-
nator, and can be ignored.



59

If we consider the occurrence of words wi and wj as random variables X and Y , re-
spectively, then the pointwise mutual information (MI) among X and Y measures the
mutual dependence between the appearance of words wi and wj [15]. The maximum
likelihood estimate of MI is

MI(X, Y ) = log
f(D|wi,wj)

|D|
f(D|wi)
|D|

f(D|wj)
|D|

(5.3.3)

Mutual information measures the information that variables X and Y share. It quan-
tifies how the knowledge of one variable reduces the uncertainty about the other. For
instance, if X and Y are independent, then knowing X does not give any information
about Y and the mutual information is 0. For X = Y , the knowledge of X gives
the value of Y without uncertainty and the mutual information is 1. Note that the
fractions of documents are normalized by the number of documents indexed by the
search engine, |D|, giving a maximum likelihood estimate of the probability of finding
a document in the web that contains this word.

5.3.2 Fully text-based similarity metrics

Two semantic similarity metrics that are variations of the cosine similarity metric are
used in order to measure the semantic distance between words and to automatically
generate semantic classes. The first metric, CSW

WS , computes “wide-context” similarity
between words using a “bag-of-words” model, while the second metric, CSN , computes
“narrow-context” similarity using a bigram language model 4.

These metrics rely on the idea that similarity of context implies similarity of mean-
ing. We hypothesize that words, which appear in similar lexical environment (left and
right contexts), have a close semantic relation [96, 103, 79].

In “bag-of-words” [101, 41] models, for each word w in the vocabulary a context
window size WS is selected. The right and left contexts of length WS in the corpus are
considered for word w, e.g., [vWS,L ... v2,L v1,L] w [v1,R v2,R ... vWS,R], where
vi,L and vi,R represent the ith word to the left and to the right of w respectively. The
feature vector for every word w is defined as Tw,WS = (tw,1, tw,2, ..., tw,N ) where tw,i

is a non-negative integer and WS is the context window size. Note that the feature
vector size is equal to the vocabulary size N , i.e., we have a feature for each word in the
vocabulary V . The ith feature value tw,i reflects the occurrences of vocabulary word
vi within the left or right context window WS. This feature value is set according to
a Binary (Bin.) or a Term Frequency (Freq.) Scheme. The binary Scheme assigns
1 if the word vi appears within the left and right window context of size WS for the
word w, while the term frequency scheme assigns the number of occurrences of vi in
left and right WS. Both schemes assign a 0 value if vi does not exist within WS. The
“bag-of-words” metric, CSW

WS , using binary or term frequency scheme, measures the
similarity of two words, w1 and w2, as the cosine distance of their corresponding feature

4These metrics are, also, defined in Chapter 3. We repeat their definition here in order to make
Chapter 5 self-contained.
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vectors, Tw1,WS and Tw2,WS [77, 41]:

CSW
WS(w1, w2) =

∑N
i=1 tw1,itw2,i√∑N

i=1(tw1,i)2
√∑N

i=1(tw2,i)2
(5.3.4)

given a context window of length WS.
In an N-gram language model a word w is considered with its neighboring words

v1,L and v1,R in the left and right contexts within a sequence. In order to calculate
the similarity of two words, w1 and w2, we compute the cosine similarity between two
feature vectors; each feature vector of a word w measures the conditional probability
of all possible contexts vi given that word p(vi|w), i.e., each vector contains bigram
language model probabilities for (context, word) pairs. Semantic similarity is defined
as

CSN (w1, w2) = CSN
L (w1, w2) + CSN

R (w1, w2) (5.3.5)

where the two terms of Equation 5.3.5 are [79, 41]:

CSN
L (w1, w2) =

∑N
i=1 p(vi,L|w1)p(vi,L|w2)√∑N

i=1 p(vi,L|w1)2
√∑N

i=1 p(vi,L|w2)2
(5.3.6)

CSN
R (w1, w2) =

∑N
i=1 p(vi,R|w1)p(vi,R|w2)√∑N

i=1 p(vi,R|w1)2
√∑N

i=1 p(vi,R|w2)2
(5.3.7)

where V = (v1, v2, ..., vN ) is the vocabulary set, and p(vi|w) is the conditional proba-
bility of word vi preceding w in the corpus given word w, i.e., the (vi, w) bigram model
probability.

The bigram language model was built using the CMU Statistical Language Modeling
Toolkit [17]. The “wide-context” and “narrow-context” metrics assign 0 similarity score
to completely dissimilar words, and 1 in the case of identical words.

5.4 Experimental dataset and procedure

We experimented with (i) page-count-based, and (ii) contextual similarity metrics,
described in Section 5.3.1 and Section 5.3.2, respectively.

5.4.1 Experimental dataset

As a benchmark we used the commonly used Miller-Charles dataset [70]. This dataset
consists of noun pairs that were rated according to their semantic similarity by 38
human subjects. The assigned similarity scores range from 0 (not similar) to 4 (perfect
synonymy). The selection of this dataset was motivated by its wide use. This fact
enabled us to compare our work with other approaches of different nature that were,
also, evaluated on this dataset.
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Type 1 “w1 AND w2” (e.g., “boy AND lad”)
Type 2 “w1”, “w2” (e.g., “boy”, “lad”)

Table 5.1: Query types

5.4.2 Downloading procedure

For the contextual similarity metrics, for each pair, “w1 w2”, of Miller-Charles dataset,
we downloaded the 100 top ranked documents for the following query types: The URLs
for the top ranked documents were retrieved using the Yahoo search engine via the
Yahoo Search API which is freely available [111]. In Table 5.1 the first query type is a
single query, which retrieves documents containing both words. The second query type
consists of two distinct queries; the first one requires documents that contain, at least,
w1, while the second query is satisfied by documents in which w2, at least, appears.
For the first query type up to 100 documents were downloaded for each word pair (100
documents per word were downloaded for the second query type).

The motivation behind using the two different query types is that the type of
documents retrieved by each type of query is semantically different. The Type 1 “and”
query is expected to retrieve documents that are semantically homogeneous, while the
Type 2 query will produce documents that are semantically more diverse. As a result
using corpora generated from “and” type queries, i.e., for a particular word pair, the
corresponding feature vectors are built on the basis of a relatively coherent lexical
environment, since the component words co-occur in each retrieved document. In
contrast, the use of Type 2 query type results to more diverse feature vectors. In this
case the feature vector for each pair word is constructed using different documents of,
probably, different expressive style and semantic content. In previous work [41], we have
seen better results for semantic similarity computation in semantically homogeneous
corpora. Also the optimum context length (window size) varies significantly depending
on the semantic homogeneity of the corpus (smaller for semantically homogeneous
corpora).

5.5 Evaluation

In this section, we present a comparative evaluation of the referred similarity metrics,
in terms of correlation, with respect to the human rating of Miller-Charles pairs. First,
the page-count-based similarity metrics defined in Section 5.3.1 are evaluated. Next,
we evaluate the proposed fully text-based similarity metrics defined in Section 5.3.2.
The proposed metrics are also compared with metrics that use WordNet as a knowledge
source.

5.5.1 Evaluation of page-count-based metrics

The correlation scores between the page-count-based semantic similarity metrics of
Equations 5.3.1 - 5.3.3 and human ratings of Miller-Charles pairs are presented in
Table 5.2. The similarity metrics based on the Jaccard and Dice coefficients achieve
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Metric Jaccard Dice Mutual Information
Correlation 0.32 0.33 0.43

Table 5.2: Correlation of page-count metrics.

similar correlation. This is reasonable given the similarity of the two metrics. The
Mutual Information metric achieves significantly better performance. This is due to
the use of the logarithm non-linearity in the score computation and the different nor-
malization used in this metric. Overall, all the page-count-based metrics obtain poor
correlation results. This is expected considering that no textual information is included
in this metrics, only the page counts information.

5.5.2 Evaluation of fully text-based metrics

Next we evaluate the “wide-context” metric, CSW
WS , which computes similarity between

words using a “bag-of-words” model and the “narrow-context” metric, CSN , which is
based on a bigram language model. For the “wide-context” metric we studied the
impact of the feature vector weighting scheme (binary or term frequency), as well as
how the window size (WS) affects the semantic similarity computation.

Figure 5.5.2 illustrates the correlation between the “wide-context” similarity metric
and the human ratings of 28 Miller-Charles pairs. The correlation is shown for both
binary and term frequency weighting schemes and various window sizes WS. The
similarity metric was computed on the top 100 documents retrieved by the search
engine for web queries of Type 1 (“and”) for each of the 28 word pairs. The correlation
performance of the “narrow-context” metric is also shown for the same query type as
a dotted line.

We observe that the correlation decreases as the value of window size, WS, increases;
best results are obtained for window size two or three. This suggests that the immediate
context (preceding and following two words) is sufficient to compute semantic similarity
using “and” query type 1. Furthermore, the “wide-context” metric using the binary
scheme outperforms the term frequency weighting scheme. This is probably due to
the fact that the term frequency scheme gives more weight to the commonly occurring
context words that are often “non-content” words (aka stop-words). These non-content
words dominate the similarity calculation between the two term frequency vectors,
while the binary weighting scheme is more robust to the presence of such words. The
bigram “narrow-context” metric achieves almost equal performance with the “wide-
context” metric of the term frequency scheme and WS = 2, since both metrics use
contextual frequency weighting schemes. Overall, the highest correlation is obtained
by the “wide-context” metric using the binary scheme and WS = 2, and it is equal to
0.71.

In Table 5.3 the correlation for the “wide-context” metric using the binary scheme
and WS = 2 is shown as a function of the number of Type 1 retrieved documents.
As expected performance degrades as the number of downloaded documents per word
pair decreases. Note that good correlation (0.69) is achieved even when the top 50
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Figure 5.4: Correlation of fully text-based metrics for queries of Type 1

downloaded documents are used in the similarity computation.

No. of Docs 5 10 25 50 75 100
Correlation 0.41 0.50 0.66 0.69 0.69 0.71

Table 5.3: Correlation vs. number of docs.

The use of queries of Type 2 resulted to unexpectedly poor correlation scores. This
is probably due to the very different types of document retrieved with Type 2 queries,
i.e., lack of semantic homogeneity in the downloaded corpus.

5.5.3 Unsupervised vs supervised metrics

In this section we compare the performance of the proposed unsupervised metrics with
other supervised and unsupervised metrics. All of them were evaluated with respect to
the 28 pairs of Charles-Miller dataset in terms of correlation. A metric is considered to
be unsupervised if does not consult any knowledge resource. The main characteristics
of each metric are summarized in Table 5.4. The detailed semantic similarity scores and
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Metric Use of (
√

: yes, X: no) Need of Correlation
WWW Page Snippets Lexico- WordNet Download external
Search counts Syntactic documents knowledge
engine patterns

Jaccard
√ √

X X X X X 0.32

Dice
√ √

X X X X X 0.33

MI
√ √

X X X X X 0.43

Sahami
√

X
√

X X X X 0.58

SemSim
√ √ √ √ √

X
√

0.83

Li X X X X
√

X
√

0.82

Jiang X X X X
√

X
√

0.83

X-Similarity X X X X
√

X
√

0.75

Proposed CSW
WS=2

√
X X X X

√
X 0.71

(Binary)

Table 5.4: Characteristics of several similarity metrics

the overall correlation with human scores are presented in Table 5.5 for each metric.
The Li [60], Jiang [46], and X-Similarity [83] metrics exploit the semantic hierarchi-

cal structure of WordNet, to compute semantic similarity as described in Section 5.2.
All three metrics achieve higher correlation, but at the cost of using additional infor-
mation that was not derived from text in an automatic unsupervised manner.

The performance of the web-based metrics is summarized as follows. The resource-
based SemSim metric, proposed in [9], achieves a correlation score that is similar to the
ontology-based methods above. The fully unsupervised Sahami [97] metric is shown
to have a moderate correlation (results are reproduced from the implementation and
evaluation in [9]). The lowest correlation scores are achieved by the metrics that con-
sider only the returned page counts for a query: Jaccard, Dice and mutual information
(MI) metrics. The proposed unsupervised, “wide-context” metric CSW

WS=2 with the bi-
nary weighting scheme achieves the highest correlation (0.71) among the unsupervised
metrics.

5.6 Conclusions

We presented two types of unsupervised, web-based metrics for semantic similarity
computation between words. Both types use a web search engine in order to exploit
the retrieved information for the words of interest. The first type considers only the
page counts returned by the search engine. The second type is fully text-based and
needs a number of the top ranked documents to be downloaded. We applied two
“wide-context” metrics and a “narrow-context” metric to the downloaded documents.
The proposed metrics do not consult any external knowledge resource. The metric
performance was evaluated on the commonly used Charles-Miller word pair dataset.

The page-count-based metrics produced low to mid correlation with human scores.
Good correlation scores were obtained with the fully text-based metric using a bi-
nary weighting scheme, especially for small context windows. The semantic distance
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Word Pair Miller- Jaccard Dice MI Sahami SemSim Li Jiang X-Similarity Binary
Charles CSW

WS=2

chord-smile 0.13 0.14 0.14 0.78 0.09 0 0.13 0.35 0.2 0.4

rooster-voyage 0.08 0.03 0.03 0.76 0.2 0.02 0 0.08 0 0

noon-string 0.08 0.2 0.21 0.79 0.08 0.02 0 0.18 0 0.16

glass-magician 0.11 0 0 0.82 0.14 0.18 0.14 0.68 0.14 0.18

monk-slave 0.55 0.23 0.24 0 0.1 0.38 0.45 0.39 0.32 0.19

coast-forest 0.42 0.61 0.63 0.81 0.25 0.41 0.25 0.29 0.18 0.76

monk-oracle 1.1 0.07 0.07 0.77 0.05 0.33 0.25 0.34 0.28 0.47

lad-wizard 0.42 0.09 0.1 0.82 0.15 0.22 0.45 0.32 0.36 0.37

forest-graveyard 0.84 0.13 0.13 0.85 0 0.55 0.09 0.19 0.07 0.11

food-rooster 0.89 0.03 0.03 0.76 0.8 0.6 0.04 0.4 0.05 0.35

coast-hill 0.87 0.99 0.99 0.82 0.29 0.87 0.44 0.71 0.34 0.18

car-journey 1.16 0.33 0.35 0.75 0.19 0.29 0 0.33 0.03 0.52

crane-implement 1.68 0.08 0.09 0.78 0.15 0.13 0.44 0.59 0.29 0.1

brother-lad 1.66 0.22 0.23 0.88 0.24 0.34 0.45 0.28 0.45 0.58

bird-crane 2.97 0.28 0.29 0.86 0.22 0.88 0.55 0.73 0.37 0.59

bird-cock 3.05 0.16 0.17 0.79 0.06 0.6 0.82 0.73 0.45 0.44

food-fruit 3.08 0.85 0.86 0.83 0.18 0.99 0.13 0.63 0.09 0.79

brother-monk 2.82 0.33 0.35 0.88 0.27 0.38 0.82 0.91 0.44 0.63

asylum-madhouse 3.61 0.07 0.08 0.95 0.21 0.77 0.82 0.97 0.44 0.51

furnace-stove 3.11 0.67 0.68 1 0.31 0.89 0.23 0.39 0.47 1

magician-wizard 3.5 0 0 0.92 0.23 1 1 1 0.1 0.59

journey-voyage 3.84 0.37 0.39 0.84 0.52 0.99 0.82 0.88 0.52 0.75

coast-shore 3.7 0.8 0.82 0.87 0.38 0.95 0.81 0.99 0.66 0.5

implement-tool 2.95 1 1 0.87 0.42 0.68 0.81 0.97 0.48 0.8

boy-lad 3.76 0.22 0.23 0.87 0.47 0.97 0.82 0.88 0.44 0.67

automobile-car 3.92 0.61 0.63 0.82 1 0.98 1 1 1 0.76

midday-noon 3.42 0.14 0.15 0.88 0.29 0.82 1 1 1 0.74

gem-jewel 3.84 0.44 0.45 0.91 0.21 0.69 1 1 1 0.53

Correlation 1 0.32 0.33 0.43 0.58 0.83 0.82 0.83 0.75 0.71

Table 5.5: Correlation for several types of similarity metrics

was computed for each word pair on a corpus of 50-100 retrieved documents where the
words co-occurred. The best performance achieved for this metric was 0.71, which is the
highest correlation score among the fully unsupervised metrics in the literature. Fur-
thermore, we compared the proposed metrics with various state-of-art resource-based
metrics that use ontologies (e.g., WordNet) to compute semantic similarity. Over-
all, the performance of the proposed method is satisfactory given that the method is
language-independence, fully automatic, requires little computation-power and small
amounts of web text.

Future work deals with investigating a variety of criteria for improving the seman-
tic similarity method including better document selection (as opposed to web search
engine ranking) and better context word feature extraction (including unsupervised
algorithms for stemming and part of speech tagging). Further research is needed to
better understand the limited performance for Type 2 queries and for the frequency
weighting scheme.



Chapter 6

Conclusions and Future Work

In this chapter we summarize the research contribution of this thesis and we provide
useful directions for future work. This thesis proposed several fully unsupervised sim-
ilarity metrics for computing semantic similarity between words and concepts. We
investigated metrics with a range of contextual scope: from narrow to wide context.
We experimented with the adaptive linear combination of metrics (see Chapter 3 ).
Also, we used the computed similarity scores in order to cluster words into seman-
tic classes. For the clustering procedure we used both hard and soft approaches (see
Chapter 4 ). Furthermore, we considered the world wide web as the largest corpus and
we used search engines to acquire textual data for computing semantic similarity (see
Chapter 5 ). Next, we summarize the conclusions for the above research areas, giving
also some hints for future work.

6.1 Unsupervised combination of metrics for semantic class
induction

We experimented with two types of corpora: a semantically heterogeneous news do-
main, and an application-specific travel reservation corpus. An individual “narrow-
context” metric performed better than individual “wide-context” metrics with regard
to the homogeneous, application-specific corpus. This is because the utterances have
short length, so the immediate context is capable for meaning identification. On the
other hand, for the semantically heterogeneous corpus, individual “wide-context” met-
rics obtained better results, compared to the individual “narrow-context” metric. This
happened because the semantic diversity of the latter domain requires a broader contex-
tual scope in order to estimate semantic similarity. The proposed adaptive weighting
scheme of metric was observed to outperform the individual metrics and the fixed
combination of them, for both types of corpora. The proposed algorithm achieves
to monitor the efficiency of each individual metric and assigns automatically greater
weight to the “best-performing” metric. Thus, there is no need to select metrics based
on corpus characteristics. Instead a corpus independent combined metric can be used
and automatically poor performing metrics will be weighted less in the combination.

Future work will investigate how to include estimation error variance is the weight
estimation criterion. Combination of other types of semantic similarity measures it is,

66
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also, interesting to be investigated.

6.2 Soft-clustering algorithm for automatic induction of
semantic classes

We proposed a soft-clustering algorithm for auto-inducing semantic classes that com-
bines lexical and semantic information. It was shown, that the proposed algorithm
outperforms state-of-the-art hard-clustering algorithms. The poor performance of the
hard-clustering algorithms is because a number of erroneous deterministic classes are
generated and propagated from iteration to iteration. So, the useful lexical informa-
tion substituted by wrong labels. In contrast, the proposed a soft-clustering avoids
this phenomenon by combining lexical and semantic information. It was also shown
that most of the improvement is due to the introduction of soft-clustering (via a prob-
abilistic class-membership function) and less so to the combination of lexical and se-
mantic information for class induction. The soft-clustering algorithm contributes to
the better estimation and smoothing of the contextual probabilities, compared to the
hard-clustering approach.

From a technical point of view, the proposed soft-clustering algorithm has a sig-
nificant computational complexity, so more work is needed towards this direction. It
is interesting to test the proposed algorithm on various application domains. Also,
the optimal combination of several metrics of lexical and semantic information in the
semantic similarity metric can be incorporated in the soft-clustering method.

6.3 Unsupervised semantic similarity computation using
web search engines

We presented two types of unsupervised (no external knowledge resource, such as Word-
Net, are used), web-based metrics for semantic similarity computation between words.
Both types use a web search engine in order to exploit the retrieved information for
the words of interest. The first type considers only the page counts returned by the
search engine. The second type is fully text-based and needs a number of the top
ranked documents to be downloaded. We applied two “wide-context” metrics and a
“narrow-context” metric to the downloaded documents. The metric performance was
evaluated on the commonly used Charles-Miller word pair data set. The page-count-
based metrics produced low to mid correlation with human scores. This shows that
the co-occurrence of two words in a document can not form a strong implication of
their semantic relation. Good correlation scores were obtained with the fully text-
based metric using a binary weighting scheme, especially for small context windows.
The semantic distance was computed for each word pair on a corpus of retrieved docu-
ments where the words co-occurred. The best performance achieved for this metric was
0.71, which is the highest correlation score among the fully unsupervised metrics in the
literature. So, the similarity estimation via contextual metrics is more reliable than
the simplistic page-count-based approach. The performance of the proposed method is
satisfactory given that the method is language independent, fully automatic, requires
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little computation-power and small amounts of web text.
Future work deals with investigating a variety of criteria for improving the seman-

tic similarity method including better document selection using the provided search
options. We can also process the downloaded documents using stemming and part of
speech tagging. Furthermore, we can apply the proposed web-based similarity com-
putation framework for tasks such as word sense disambiguation. Longer-term goals
of our work in this area will attempt to: (a) capture the time evolution of a relation
between two entities by using the timestamps of the retrieved documents, (b) discover
several subjective considerations for a specific event, (c) interpret the nature of a sim-
ilarity score (negative or positive relation). For example, it is challenging to identify
automatically whether a political event implies cooperation or conflict between the
participated parties.

6.4 Looking through the window: an epilogue of self-
criticism

A look through the lab window reveals the existence of a big picture: a tremendous se-
mantic interchange is lying on the backbone of every social system. It forms an active
multilingual process of information dissemination, ranging from personal communi-
cations to news broadcast intended for population masses. In this thesis we proposed
several unsupervised metrics for the automatic computation of similarity and induction
of semantic classes. One may wonder about the practical significance of the presented
achievements. We believe that this question is the application-oriented part of a broader
and deeper crucial issue under discussion. How the semantics are encoded in the use
of language (spoken and written) with regard to different aspects of communication?

We saw that the word-space model provides a sufficient spatial representation of
meaning. According to this model the contextual similarity metrics are conditioned to
the distributional properties of the working domain. Thus, these methods are naturally
biased by the applied model and limited by the training data. The used word-space
model in combination with similarity metrics and class induction process attempted a
migration from lexical to semantic space. This try was triggered on the basis of particu-
lar examples of language use, encountered in the training data. Any set of training data
remains finite, while the creative power of language is not always predictable and the
embodied semantics are also influenced by extralinguistic factors. So, we can not claim
that the extracted semantics of this work are axiomatic and correspond to a universal
ground truth. However, this research highlighted an applicable model for spatial rep-
resentation of semantics and similarity measures, resulting to reasonable results with
regard to certain thematic domains.

The majority of dialogue systems are designed for well-specified applications, hav-
ing certain tasks to accomplish. In other words, the commercial dialogue systems do
not deal with general purpose natural language understanding, in contrast to a Turing-
style intelligent system. In such systems the automatic induction of semantic classes
gives a quick view to the system designer about the expected concepts, helping by
this way to the rapid system development. Moreover, these classes contribute to the
semantic analysis of the recognized spoken utterance. A recognized sentence can be in
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partial semantically parsed or assigned to a structure under a rule set of a context-free
grammar. Also, the knowledge of semantics is a step towards the pragmatic analysis.
Additionally, semantic classes can be employed in class-based language modeling. It
was reported that the interpolation of word- and class-based language models obtains
reduced perplexity compared to the word-based models, for example, 236 vs 244, re-
spectively. Obviously, a dialogue system preserves on average its operational capability
even with a modest subsystem like a language modeling component. However, a more
sophisticated subsystem is still useful, especially for the cases that are beyond of a
typical use. In practice, such cases may be rare, but their cost it is possible to be
inversely proportional to their frequency. For example, imagine a dialoque system not
dealing with the industry of enjoyment (e.g., purchase movie tickets), but managing
calls for medical incidents which can be ordinary or urgent.

Another domain for applying similarity metrics and semantic classes is the Semantic
Web and Information Retrieval. In general, this domain is semantically more diverse
compared to the field of dialogue systems. This happens because a huge number of
information sources are manipulated along with a large number of users with different
needs. The use of semantics suggests the semantic representation and retrieval, rather
than the simplistic lexical matching. For example, a query submitted to a search engine
can be extended by including to it semantically similar terms to the originally keywords.
Furthermore, the returned documents can be clustered on a basis of semantic distance.
Several studies showed that this the semantic approach contributes to greater recall
scores. Clearly, such systems can have reasonable performance without incorporating
semantic information. In such case, their response will be focused on the lexical types
by which they were questioned. Of course the above statement is an exaggeration,
but emphasize how myopic tactic is to use only lexical features, while the language
is enriched by a plethora of semantic properties. Very often it is useful to provide a
semantically broader collection of information (greater recall). The key idea for this
task is the use of semantics. At least, this approach may be optional for the users that
have no time constraints to browse the results of a search.

The practical gain by the knowledge of semantics through an unsupervised approach
is significant by the sense that a bit of progress is achieved towards the automatic
natural language understanding. An issue of first priority is to understand how the
semantics are encoded and used in the natural language. The problem of the practical
use of semantics with regard to a specific application has lower priority.

At this point we can revisit the following statement of Jelinek: “put language back
into language modeling”. The language modeling techniques and their applications are
well-studied. The big goal is to study further how the deep structure of language is
organized and used, and by which ways we can employ this knowledge into the methods
of natural language processing.
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