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ABSTRACT 
 
The purpose of this thesis is to examine research in medical image retrieval. In particular 
we are interested in medical X-Ray images. Such research is useful because automation is 
a desired property in modern medical centres since it can enhance their efficiency and 
improve the quality of service offered to the public. A general presentation of existing 
Content – Based image Retrieval (CBIR) systems is provided, however, the thesis 
focuses on the landmark based image alignment problem. Two error functions, are 
compared, for solving the alignment problem, the least squares and the least absolute 
error functions. Two solutions to the least square problem are compared to the solution of 
the least absolute value problem. Least Squares was solved using a quaternion-based 
solution and a theoretical approach as proposed in the Iterative Closest Point (ICP) and 
Active Shape Models (ASM) approaches. After the investigation of the Gaussian 
distributions, for both algorithms, it was found that the assumptions of the least 
formulation are not valid so we led to another solution of the error function that was the 
absolute error approach, and in terms of this Nelder – Mead algorithm was implemented. 
The two approaches were compared using three criterion and least square found better 
solution overall but the other one reacts better in specific points of the shapes. Both error 
functions performed well providing reasonably good alignment. 
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1.  Introduction 
 
The purpose of this thesis is to examine the development of a system to help in the 

analysis of medical X-Ray images. Such a system can be applied to modern medical 
centres and help doctors and hospital staff in their everyday tasks that are related to 
medical image processing and especially X-Ray analysis. Automation is a desired 
property in modern medical centres since it can enhance their efficiency and improve the 
quality of service offered to the public.  

The construction of a full scale medical image analysis system is a challenging 
task. Such a system should provide storage or access to storage of medical images and 
efficient retrieval methods on a patient or image content basis. This should ideally be 
done in an on demand context, since access to such information is usually time critical. 
Content based access is important since it enhances the ability of doctors and researchers 
to access information that may improve their understanding of the field of study, through 
the provision of relevant cases to the ones they study in the everyday work. It is also the 
case that more efficient retrieval than based on keywords can be performed since retrieval 
is done on shape basis and can return objects that for example have the same deficiencies. 
For example, a doctor may require a bone leg with a certain deficiency in the upper part. 
Not all bone leg images are thus relevant and a refinement base don the particular 
deficiency has to be made.  Due to the aforementioned reasons, Content Based Image 
Retrieval (CBIR) has been an active research field.  

A presentation of the structure of such systems is provided in chapter two. Two of 
the most prominent such systems are presented. These are the IRMA system and the 
NLM system. In principle, the construction of such a system relies on a database of 
classified and indexed images, which is later used for retrieval. Such a database is the 
NHANES II X-Ray database which is also presented in this thesis and has been used to 
retrieve images in order to test the ideas that are presented in the text. The purpose of 
CBIR systems is to classify and index medical images to improve retrieval time and 
accuracy. Also they play an active role in the content-based retrieval since each such 
query has to be done in the same terms as the ones used for the classification process and 
is thus applied to each new image. 
          Indexing is usually performed in a number of sub steps. These commonly involve 
segmentation, feature extraction, feature vector organization and classification. 
Segmentation is the process where each individual element if the medical image is 
identified. Then, feature extraction on each individual part is performed. Using feature 
extraction a number of global usually numeric features are extracted from the relevant 
image part. These features are used to form a feature vector that maps each image on a 
point in a usually multi-dimensional feature space. This point is the identity of the image 
in this space. Similar images are likely to exist somewhere in the vicinity of this point. In 
this sense such a process is basic to classification which is the last step of the storage 
process. After all these steps are performed, classification provides terms that group 
images in a meaningful way that assists retrieval. Retrieval can then performed either on 
lectical terms (for example find arm X-Rays) or on a similarity term, e.g. find images that 
contain bone structures similar to an input bone structure. In the first case, the query runs 
through the already stored image classification attributes and returns the matching ones. 
In an image-content based query the image has first to be analyzed in the same sense as 
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the already stored images, and then images with similar properties are looked up in the 
database.  
           This thesis is focusing in the first step of the indexing process which is also useful 
in the retrieval process, which is segmentation. Image segmentation is usually performed 
using edge detection followed by an image alignment. Edge-detection works by scanning 
the image for edges and results in identifying objects in the image by linking edges. 
Objects of interest have then to be aligned to a ‘model’ object that exists in the database 
so that feature analysis can be performed. If the objects are not aligned properly, feature 
extraction and subsequently the later steps are likely to fail. The reason for this is that 
parts of the human body that are represented in medical images appear in different 
absolute positions and with varying orientations in the medical image. Thus, if not 
aligned, the feature extraction algorithm that works using image coordinates of shapes 
will produce noisy and uncertain feature vectors. By aligning the images before feature 
extraction, the feature space becomes robust and correctly represents the image space. 
For the purpose of this thesis the Kirsch algorithm is used for edge detection. It is found 
to be useful and to correctly segment the medical image in the relevant parts. The thesis 
is focusing more on the alignment problem. In particular, two algorithms for alignment 
based on landmarks are used to align an image to a ‘model’ or simply another image. 
These algorithms require landmarks to be present on the image. Landmarks mark 
individual points of the image and can be placed either manually from experienced 
personnel or automatically on the part of the image under investigation. They should 
definitely be present in points that reveal structural or shape properties of the object to be 
aligned. Landmark selection is also particularly important since the feature extraction 
algorithm is also working using the previously defined landmarks and thus requires 
carefully selected landmarks so that the model shapes will be closer to the reality. 
However, the landmark based approach is error prone in the sense that human body parts 
from different people are inherently different and anomalies caused by age or are present 
from birth in some people do not appear in others. In this sense, it is usual that images 
have different number of landmarks, and also that landmarks are not positioned in the 
same order. Thus, a landmark based alignment algorithm should be invariant to the 
number of landmarks and to the order by which the landmarks were added on the image. 
Alignment algorithms work by minimizing the distance between the two shapes that have 
to be aligned using a gradient based iterative process. These shapes are usually a ‘model’ 
or mean shape that has been constructed from the database and a new shape to be added 
in the database or to be use din a query. A simple classification example is to compare the 
error of the alignment algorithm for a number of model shapes and the new shape. 
Through this process a rough filtering of the shape candidates can be performed.  
           Alignment is performed by minimizing a certain error function. We compare two 
error functions the least squares one and the least absolute value one.  Two alignment 
algorithms that are presented in this thesis and work using least squares minimization of 
the over determined problem are the Iterative Closest Point (ICP) and the Active Shape 
Models (ACM) algorithm. They are implemented, tested and compared and the results 
are presented in the text. In addition, the Nelder Mead non-linear optimization algorithm 
is used to minimize the least absolute value error function. The algorithm performs 
comparably to the ICP and ACM algorithms.  
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In chapter 4 of this thesis, we present a survey of norm - based orientation 
techniques, along with a theoretical preview of the existing solutions of the over 
determined problem. Least squares and Linear Programming is briefly discussed in this 
chapter. After these comes the investigation of the Gaussian Assumptions in the least 
square approached algorithms. Distributions histograms show the need for another 
treatment of the error function which is the absolute error approach. 
          In chapter 5, the ASM (Active Shape Models) algorithm is presented and 
implemented. Results showing the performance of this algorithm are also presented. In 
general, this algorithm is found to work properly, however there are some serious 
deficiencies present. These are related to the fact that no provision is made for shapes 
with differences in numbering and number of landmarks. In this sense, new landmarks 
have to be added when missing using interpolation and numbering has to be manually 
checked. This is a cumbersome process given the variability of human body parts and 
thus the algorithm is not so efficient. Thus, we equip this algorithm with a closeness 
metric to match points between shapes in order demonstrate a proper solution. The ASM 
paper is interesting also because it presents a method for generating model objects of the 
shapes based on the eigenvectors and eigenvalues of the covariance matrix as this is 
defined by the landmarks of a large number of images.  

In the sixth chapter of this thesis the ICP is presented and implemented. The 
algorithm is tested in situations where shapes have different number of landmarks and 
also in cases where landmarks have different numberings. It is found to work very well in 
both cases. The reason for this, is the fact that the algorithm compares one point to 
another based on a distance metric. In this sense points are assigned to other points in 
each algorithm step, based on this metric and possible differences in numbering are 
eliminated using a proper transformation of the object to be aligned. Also this closeness 
metric works well in the case where the model and the shape to be aligned have a 
different number of landmarks. This is due to the fact that the algorithm matches as 
points of the shape to be aligned to the model point so that distance of only the relevant 
points is used and ignore the points that are not mapped are ignored. The closest point 
matching idea thus is proved to be very useful in the context of landmark based image 
alignment. The ICP algorithm is also found to be quite efficient since a few iterations are 
usually enough for convergence. 

In chapter seven the least absolute value error function is presented and solved 
using the Nelder-Mead algorithm and an implementation is provided. The algorithm 
attempts to minimize a scalar-valued nonlinear function of 4 real variables using only 
function values. The Nelder – Mead algorithm falls in the general class of ‘direct search’ 
methods, which maintain at each step a simplex, a triangle in two dimensions. The 
algorithm is tested in similar situations as the others algorithms. It provides with 
satisfactory results in all the previous cases.  

Furthermore, in chapter eight a number of experiments and tests is performed for 
the three algorithms. Three criteria were used in terms of this comparison. All algorithms 
were tested in three cases and aligned 20 shapes to a ‘model shape’ Also mean square 
error and absolute error were used for the comparison of the algorithms. Standard 
deviation per landmark and for the error was measured. Overall least square approach 
minimize the error for all the points in stead of absolute error approach which is forcing 
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as many points as possible to minimum error.  A group of diagrams were mined and the 
results were presented.   
          Finally, chapter nine and ten present the conclusion and the bibliography on which 
this thesis was based.  
          In conclusion, this thesis is focusing in the alignment problem. We find that 
algorithms that can provide solution to this problem exist and we compare three of them. 
Least squares solution is optimal in case that the residuals obey a Gaussian distribution. If 
this is not the case, the assumptions of the least squares formulation are not valid, leading 
to suboptimal formulations of the problem. In such cases other norm formulations could 
lead to more robust results. In our problem we investigated the distribution of residuals 
from the least square formulation and found them to deviate from the Gaussian 
distribution. For this reason we also tested the least absolute error formulation and 
compared results.  
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2. Content-Based Image Retrieval (CBIR) in Medical 
Applications 

 

2.1 Introduction  
              

Content-based image retrieval (CBIR) aims at describing the complex object 
information of digital images by non-textual features, which are applicable for efficient 
query processing. Color, texture, and shape are used within the first CBIR approaches 
such as the query by image content (QBIC) system[1]. Besides the raw data layer 
representing the initial images, QBIC models a feature layer on which the retrieval 
operates. For the content based retrieval engine (CORE), objects and spatial relationships 
are described by “concepts” within the interpretation layer[2]. In Blobworld, this layer is 
referred to as scheme layer. It is build from ellipsoids (“blobs”) representing local image 
regions of uniform color or texture on an abstract level of interpretation [3]. However, 
two or three semantic layers are insufficient to model medical knowledge form 
image retrieval and results are poor when common CBIR algorithms are applied to 
medical images.  

Content-Based Image Retrieval refers to the retrieval of images that are indexed 
by features derived from the image pixels. CBIR features may include texture, boundaries 
of objects, geometric relationships among objects, grayscale or color histograms, etc. 
CBIR is different from conventional image retrieval systems in two ways:  

(i) the methods used to index  (a conventional system has a human 
indexer enter text that describes image contents)  

(ii) in the methods used to retrieve (conventionally, retrieval of images is 
by relational database queries on the text used to index the image) 

 

2.2 Background and Related work 
 

The ever-increasing volume of medical images, the economic impracticality of 
manually indexing these images, and the inadequacy of human language alone to 
describe image contents that are visually recognizable and medically significant, such as 
shape and geometry, color, texture of objects within images, all provide impetus for 
research and development toward practical Content-Based Image Retrieval (CBIR) 
systems that could become a standard offering of the medical library of the future. 

Some approaches for content-based image retrieval have been published which 
are specially designed to support medical tasks. KORN et al[4] describe a system for fast 
and effective retrieval tumor shapes in mammogram x-rays. Another approach is 
ASSERT’s, that operates only on high resolution computed tomography of the 
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lung[5].Here, a phusician delineates the region bearing a pathology and marks a set of 
anatomical landmarks when the image is entered into the database. ASSERT has 
extremely high data entry costs, which prohibit its application for clinical routine. LONG 
et al. Access a large collection of 17.000 spine radiographs by means of shape analysis, 
where biomedical categories such as “anterior osteophytes present/not present” are 
distinguished automatically[6]. The data entry costs are low, but queries are limited to 
pre-defined categories. CHU et al. present a knowledge-based image retrieval system 
with spatial and temporal constructs [7]. Brain lesions are extracted automatically within 
three-dimensional data sets from computed tomography and magnetic resonance imaging. 
Their representation model consists of an additional knowledge-based layer within the 
semantic model. This layer provides a mechanism for accessing and processing spatial, 
evolutionary and temporal queries. But, these concepts for medical image retrieval are 
task-specific, i.e. limited to a distinct modality, organ, or diagnostic study and hence, 
usually not direct transferable to other medical applications. Another two CBIR systems 
X-rays spine images are: 

1. The IRMA project: A Content-Based Image Retrieval in Medical Applications 
(http://irma-project.org) 

2. NLM/CEB- A prototype Content-based Image Retrieval System for spine X-rays 
(http://nlm.nih.gov) 

Analytically these two projects work as follows: 
 

2.3 Introduction to IRMA project 
 
IRMA project is a project that has been stated in the Department of Medical 

Informatics and the Department of Diagnostic Radiology of Technology (RWTH) in 
Aachen at Germany. The objective of this work was to be developed a general structure 
for semantic image analysis that is suitable for content-based image retrieval in medical 
applications and architecture for its efficient implementation.  

Compared to standard CBIR systems, at least three additional semantic levels of 
abstraction are needed to be coped with the complex medical knowledge that is to be 
handled by a general system for content-based image retrieval in medical applications. A 
low-level of medical knowledge is determined by the imaging modality including 
technical parameters, the orientation of the patient position with respect to the imaging 
system, the body region examined, and the functional system under investigation. Based 
on prototype images, a mid-level of knowledge is described by regions of interest (ROIs) 
within the images, and a high level is obtained from information regarding the spatial or 
temporal relationships or relevant objects. 

 

2.3.1 The 7 steps of processing 
 

o Consequently, IRMA splits the retrieval process into seven consecutive steps(Fig. 
2.1). 

o The categorization step aims at determining for each image entry the imaging 
modality and its orientation as well as the examined body region and functional 
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system. So, a detailed hierarchical coding scheme was developed[8], which 
exceeds the complexity of existing tags of the digital imaging and 
communications in medicine (DICOM) standard. Automatic categorization is 
based on a reference of 10.000 images selected from clinical routine and manually 
classified by experienced radiologists. The automatic categorization of query-by-
example images is performed by combining DICOM header information and 
global image features describing the entire image. 

o Registration in geometry (rotation, translation, scaling) and contrast generates a 
set of transformation parameters that is stored for the corresponding image in each 
of its likely categories. Registration is based on prototypes which are manually 
defined for each category, and further incorporate medical expert knowledge into 
the IRMA systems. The transformation is not performed at this step of processing; 
instead the generated parameters are utilized at higher layers of abstraction. 

o The feature extraction step derives local image descriptions, i.e. a feature value 
(or a set of values) is obtained for each pixel. These can be category-free or 
category specific, such as the application of an active shape model (ASM) that 
uses a priori-knowledge derived from the respective category. 

o Decoupling feature selection from feature extraction allows integrating both 
image category and querying context into the abstraction process. 

o Indexing provides an abstraction of the previously generated and selected image 
features, resulting in a compact image description. According to the selected 
feature set, this is done via clustering of similar image parts into regions 
represented by their second area moment description as ellipses. The hierarchical 
indexing enables the processing of ROIs, which are marked by the user when 
issuing a query. The ROI is not determined a-priori, the incorporation of medical 
mid-level knowledge becomes possible. 
Only, the retrieval step requires online computations while all other steps can be 
performed automatically in batch mode at entry time of an image into the 
database.  
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                       Figure 2.1 IRMA processing steps (resulting in seven semantic layers (blue) 

                

2.3.2 Results of the IRMA approach 

  
Although manual labeling of the IRMA reference database is still in progress, the 

system was already used for processing basic queries, i.e. queries regarding the category 
of images. Based on a subset of 1.617 images from six body regions (abdomen, limbs, 
chest, breast, skull, and spine) acquired with various modalities in several orientations, a 
statistical classifier based on the tangent distance performed with 8% error rate [9]. Table 
2.2.1 shows results of other methods on this data. The results of IRMA ‘s approach are 
obvious very good. 
 

 
Table 2.2 Error rates of different methods on the subset of 1.617 images from the IRMA    reference 
database. 
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. 

 

     The IRMA reference database holds 3,879 images that have been labeled                
according to the IRMA code (Table 2). Since the frequency of imaged body regions 
reflects the clinical situation, chest radiographs occur most often. In addition, the sub-
region classes are distributed irregularly. Classes with less than ten examples were not 
considered for leaving-one-out experiments. A downscaled image representation of 16 x 
16 pixels results in 256 features that were used for a 5-nearest-neighbor correlation-based 
classifier. Regardless of modality, orientation and biological system, automatic 
classification of the anatomic region is possible with error rates of 11.6% and 15.8% 
using leaving-one-out for eight body regions and for 26 relevant sub-regions, 
respectively. Taking into account the large number of categories and the high variability 
within the categories due to the various imaging modalities, the obtained results are 
excellent. Also the IRMA concept pursues all likely categories for later processing steps: 
When the three or five most likely sub-regions are considered for each sample, the error 
rate for 26 sub-regions drops to 8.4% and 5.6%, respectively. For these experiments, the 
15 and 25 nearest neighbors were analyzed. The error rates can be further decreased by 
combining the correlation-based classifier with a statistical classifier. If each classifier 
contributes the 8 and 13 nearest neighbors, error rates yield 6.9% and 4.8%, respectively. 
Preliminary results were also obtained for the web-based interfaces. The IRMA code 
editor is used for manual labeling of reference images (Figure 2.2). The IRMA code can 
be edited either directly by typing in the code or by selecting the entries from selection 
boxes. Based on prior selections, the sub-codes offered are adopted properly. All changes 
are recorded in a history protocol stored in the central database for easy error recovery 
(Fig. 2.2). 
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Figure 2.2 Web based interface for manual reference categorization (top) and logging of code 
modifications within the central database (bottom) 

 

 
. 

 

 
 
 

2.4 Introduction to the NLM/CEB project 
 

Two of the projects that have been created in “Lister Hill National Center for 
Biomedical Communications, National Library of Medicine”, are: 
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(1) NHANES II 
(2) Content-Based Image Retrieval (CBIR) system 
NHANES II is a database that contains demographic, anthropometric, adult health  

questionnaire and physical examination data for 20.322 NHANES II survey participants. 
Also contains 17.000 cervical and lumbar spine x-ray images. All these x-ray images 
have been made publicly available through an FTP archive that is publized on the CEB 
Website. To view these images in full spatial and grayscale resolution, CEB has 
developed a Java image viewer that is publicly available from the same site, 550 of these 
images have been converted to the standard TIFF 8-bit form and made publicly available 
also. 

CBIR system is a technique applied to the NHANES II x-ray images, and 
eventually to other biomedical images. Specific objectives include: 

o Conduct R&D in the steps needed for content-based indexing, shape 
segmentation, feature extraction, feature vector organization and classification 

o Conduct R&D into techniques for image-based retrieval 
o Develop the algorithms needed to implement both indexing and retrieval 
o Design and develop a next-generation CBIR system (incorporating these 

algorithms) to serve as a platform for evaluating techniques that index and 
retrieve the NHANES II images in an effective manner 

o In the ling term, extend CBIR techniques developed for the NHANES II 
images to other biomedical images[11] 

 

2.4.1 System Overview 
 

CBIR comprises both indexing and retrieval, defined as follows: 
• Indexing  - the computer-assisted data reduction of images into mathematical 

features. Indexing may be subdivided into the steps of  
                                 - Segmentation – the computer-assisted determination of the 
boundaries of the objects of interest  
                                 - Feature extraction – the reduction of the boundaries that result 
from the segmentation process into mathematical “feature vectors” that capture the shape 
properties of interest  
                                 - Feature vector organization – the organization of the feature 
vectors in the database into a structure optimized for searching efficiency  
                                 - Classification – the computer-assisted labeling of segmented 
objects into categories of interest.  
 

• Retrieval  - the user interaction to retrieve desired images from the database, this 
comprises  

                                 - User query formulation – the method used to specify the query, 
the advanced methods of interest are query by image example and query by sketch 
applied via different search paradigms, such as target-search, category search, and open 
ended browsing   
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                                 - User query feature extraction – the reduction of the user’s 
exemplary image or sketch into a mathematical feature vector compatible with the feature 
vectors stored in the database  
                                 - Query search space strategy – the search strategy used to 
efficiently search the database of feature vectors for those near to the user query feature 
vector; usually, a search strategy is defined by the choice of organization of the feature 
vectors  
                                 - Similarity matching method – the method used to compare input 
and stored image features and to measure similarity between them.  

 

     The segmentation work focus in particular on Active Shape Modeling (ASM). The 
ASM formulation that was followed is that described by Cootes and Taylor[15] of the 
University of Manchester.  

 

 
                      Figure 2.3 CBIR system 
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                                Figure 2.4 CBIR system 

In Figures 2.3 and 2.4 are shown the Block Diagram of the CBIR system: Indexing 
system and Retrieval system, respectively 

 

2.4.2 Results of NLM – CEB project 
 
  The results acquired from the implementation of the NLM – CEB project can be 
grouped as follows for each part of the retrieval process:  
     1. Segmentation: Fully automated segmentation - feature extraction from medical 
images is a very challenging problem with no method directly applicable as found in the 
literature. Its quality is affected by three important factors: viz., technique, image quality, 
and image size - resolution. Hence, computer assisted segmentation is usually a more 
promising approach. Significant problems were faced with poor image quality in the 
digitized spine x-ray images where segmentation methods often confuse tissue and 
vertebra boundaries. Also techniques that have been known to work well for smaller 
images often do not scale well when presented with higher resolution images.  Poor 
segmentation results were observed on application of fairly robust color and texture 
segmentation techniques  
2. Feature Representation: The dimensionality of the represented feature is highly 
correlated with the quality and inversely with efficiency of retrieval. Such a system must 
ensure that the representation technique faithfully captures the image content/semantics. 
This must be achieved because of the performance evaluation on retrieval quality of 
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vertebrae with anterior osteophytes. The method selected for representing vertebra 
boundaries was Fourier descriptors following initial reduction in dimension using 
polygon approximation. It was found that while the method did fairly well (70% retrieval 
precision) on complete shape queries, the users were unable to focus on specific regions 
of the pathology. Intuitive modifications to the query shape were not comparably 
represented resulting in low quality retrieval. This led the developers of the system to 
pursue research into partial or incomplete shape matching. In a recent evaluation of 
retrieval performance improvement through the use of partial shape matching, it was 
observed that for pathological shapes the retrieval relevance improved by a factor of 2.2. 
That is, the average retrieval performance improved from 3.815 relevant matches with a 
standard deviation of 1.66 in the top 10 retrieved shapes to on average 8.125 relevant 
matches with a standard deviation of 0.25. 
3. Feature organization: The initial evaluation of hierarchical clustering showed that there 
is a significant performance improvement over linear searches. In a set of experiments on 
a 1298 shape database, on average only 176 leaf nodes needed to be accessed for a 13 
nearest neighbor (most similar shapes) query. In scaling the range to 40 nearest 
neighbors, it needed to access an average of only 315.25 nodes. This is a significant 
improvement over 1298 accesses required in a linear search. It is, however, optimized for 
only one feature. Additionally, it uses shape descriptions with a fixed number of 
boundary points since it requires the similarity measure to be a metric. The Procrustes 
distance that was used as a similarity measure is a metric, but operates only on 
boundaries with fixed number of points. Fixed number of points in low dimension can 
affect image feature detail and consequently adversely affect retrieval quality. 

                          

 

2.5 The need for content-based medical image retrieval 
 

There are several reasons why there is need for additional, alternative image 
retrieval methods apart from the steadily growing rate of image production.  

The goals of medical information systems have often been defined to deliver the 
needed information at the right time, the right place to the right persons in order to 
improve the quality and efficiency of care processes. Such a goal will most likely need 
more than a query by patient name, series ID or study ID for images. For the clinical 
decision-making process it can be beneficial or even important to find other images of the 
same modality, the same anatomic region of the same disease. Although part of this 
information is normally contained in the DICOM headers and many imaging devices are 
DICOM-compliant at this time, there are still some problems. DICOM headers have 
proven to contain a fairly high rate of errors, for example for the field anatomical region 
rates of 16% have been reported[10] 

Clinical decision support techniques such as case-based reasoning or evidence-
based medicine can even produce a stronger need to retrieve images that can be valuable 
for supporting certain diagnoses. 
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It needs to be stated that the purely visual image queries as they are executed in 
the computer vision domain will most likely not be able to ever replace text-based 
methods as there will always be queries for all images of a certain patient, but they have 
the potential to be a very good complement to text-based on their characteristics. Still, the 
problems and advantages of the technology have to be stressed to obtain acceptance and 
use of visual and text-based access methods up to their full potential. 

Besides diagnostics, teaching and research especially are expected to improve 
through the use of visual access methods as visually interesting images can be chosen and 
can actually be found in the existing large repositories. The inclusion of visual features 
into medical studies is another interesting point for several medical research domains. 
Visual features do not only allow the retrieval of cases with visual similarity but different 
diagnoses. In teaching, it can help lecturers as well as students to browse educational 
image repositories and visually inspect the results found. This can be the case for 
navigating in imaging atlases [http://www.loni.ucla.edu/MAP/index.html]. It can also be 
used to cross-correlate visual and textual features of the images. 

 
  
 

2.6 Relation of CBIR systems with Image Registration  
 
              As it was mentioned above 7 steps of processing are required for the image 
retrieval of a CBIR system. After the image categorization, which is the first one, comes 
the image registration. Registration requires, in geometry, rotation, translation and scaling 
also generates a set of transformed parameters that is stored for the corresponding image 
in each of its likely categories. Image registration is needed for the feature extraction of 
the image. In the next chapter we are discussing the existing medical image registration 
methods 
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3. Medical Image Registration Methods 
 
 

3.1 Introduction 
 

Information gained from two images acquired in the clinical track of events is usually 
of a complementary nature thus proper integration of useful data obtained from the 
separate images is often desired. A first step in this integration process is to bring the 
modalities involved into spatial alignment, a procedure referred to as registration. After 
registration, a fusion step is required for the integrated display of the data involved. 

 

3.2 Criteria used for classification of registration methods 
 

The classification of registration methods used here is based on the criteria formulated 
by van den Elsen, Pol & and Viergever [132]. Nine basic criteria are used, which can 
each be subdivided again. The nine criteria and primary subdivisions are given in the 
following table. 
  
 
I. 
Dimensionality 

    

II. Nature of 
registration 
basis 

1.Extrinsic 2. Intrinsic 3. Non-Image 
based 

 

III. Nature of 
transformation 

1. Rigid 2. Affine 3. Projective 4. Curved 

IV. Domain of 
transformation 

    

V. Interaction     
VI. 
Optimization 
procedure 

    

VII. Modalities 
involved 

1. Monomodal 2. Multimodal 3. Modality to 
modal 

4. Patient to 
modality 

VIII. Subject 1. Intrasubject 2. Intersubject 3. Atlas  
IX. Object     
 
 
 
 

A registration procedure can always be decomposed into three major parts: the 
problem statement, the registration paradigm, and the optimization procedure. The 
problem statement, the choice of paradigm and the optimization procedure together 
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provide a unique classification according to the nine criteria mentioned. Although criteria 
are heavily intertwined and have many cross-influences, it can be said that the problem 
statement determines the classification according to criteria ‘Modalities involved’, 
‘Subject’, and ‘Object’, and has a direct bearing on the criteria ‘Dimensionality’ and 
‘Nature of Transformation’. The paradigm influences the criteria ‘Nature of Registration 
Basis’, ‘Nature of Transformation’, ‘Domain of Transformation’, and ‘Interaction’ most 
directly, while the optimization procedure influences criterion ‘Interaction’ and controls 
‘Optimization Procedure’.  
 

3.2.1 Dimensionality 
 
      The main division here is whether all dimensions are spatial, or that time is an added 
dimension. In either case, the problem can be further categorized depending on the  
number of spatial dimensions involved. Most current papers focus on the 3D/3D  
registration of two images (no time involved). 3D/3D registration normally applies to the 
registration of two tomographic datasets, or the registration of a single tomographic 
image to any spatially defined information, e.g., a vector obtained from EEG data. 2D/2D 
registration may apply to separate slices from tomographic data, or intrinsically 2D 
images like portal images.  Time series of images are acquired for various reasons, such 
as monitoring of bone growth in children (long time interval), monitoring of tumor 
growth (medium interval), post-operative monitoring of healing (short interval), or 
observing the passing of an injected bolus trough a vessel tree (ultra-short interval). If 
two images need to be compared, registration will be necessary except in some instances 
of ultra-short time series, where the patient does not leave the scanner between the 
acquisition of two images. The same observations as for spatial-only registrations apply. 
 
 
 

3.2.2 Nature of registration basis 
 

 
Image based registration can be divided into extrinsic, i.e., based on foreign objects 

introduced into the imaged space, and intrinsic methods, i.e., based on the image 
information as generated by the patient. Extrinsic methods rely on artificial objects 
attached to the patient, objects which are designed to be well visible and accurately 
detectable in all of the pertinent modalities. As such, the registration of the acquired 
images is comparatively easy, fast, can usually be automated, and, since the registration 
parameters can often be computed explicitly, has no need for complex optimization 
algorithms. The main drawbacks of extrinsic registration are the prospective character, 
i.e., provisions must be made in the pre-acquisition phase, and the often invasive 
character of the marker objects. Non-invasive markers can be used, but as a rule are less 
accurate. A commonly used fiducial object is a ‘stereotactic’ frame [25 - 32] screwed 
rigidly to the patient’s outer skull table, a device which until recently provided the best 
“gold standard” for registration accuracy. Such frames are used for localization and 
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guidance purposes in neurosurgery. Sometimes other invasive objects are used, such as 
screw-mounted markers [33 - 41], but usually non-invasive marking devices are reverted 
to. Most popular amongst these are markers glued to the skin [42 - 53], but larger devices 
that can be fitted snugly to the patient, like individualized foam moulds, head holder 
frames, and dental adapters have also been used, although they are little reported on in 
recent literature [54 - 58, 42]. The nature of the registration transformation is often 
restricted to be rigid (translations rotations only).  
     Intrinsic methods rely on patient generated image content only. Registration can be 
based on a limited set of identified salient points (landmarks), on the alignment of 
segmented binary structures (segmentation based), most commonly object surfaces, or 
directly onto measures computed from the image grey values (voxel property based). 
      Landmarks can be anatomical, i.e., salient and accurately locatable points of the 
morphology of the visible anatomy, usually identified interactively by the user[42, 43, 46, 
58 – 87, 29, 48 -51, 31],  or geometrical, i.e., points at the locus of the optimum of some 
geometric property, e.g., local curvature extrema, corners, etc, generally localized in an 
automatic fashion [88 - 97]. Anatomical landmarks are also often used in combination 
with an entirely different registration basis [58, 42, 46, 72, 76, 78, 81, 82, 83]  methods 
that rely on optimization of a parameter space that is not quasiconvex are prone to 
sometimes get stuck in local optima, possibly resulting in a large mismatch For the 
optimization of the latter measure the Iterative closest point (ICP) algorithm [98] 
(implemented in this thesis) and derived methods are popular. Its popularity can be 
accredited to its versatility –it can be used for point sets, and implicitly and explicitly 
defined curves, surfaces and volumes–, computational speed, and ease of implementation. 
The Procrustean optimum can sometimes be computed, using e.g., Arun’s method [99], 
but is more commonly searched for using general optimization techniques. Yet other 
methods perform landmark registration by testing a number of likely transformation 
hypotheses, which can, e.g., be formulated by aligning three randomly picked points from 
each point set involved.  
     Segmentation based registration methods can be rigid model-based [100 - 119] where 
anatomically the same structures (mostly surfaces) are extracted from both images to be 
registered, and used as sole input for the alignment procedure. They can also be 
deformable model based [120 - 130], where an extracted structure (also mostly surfaces, 
and curves) from one image is elastically deformed to fit the second image. The rigid 
model based approaches are probably the most popular methods currently in clinical use.  
     The voxel property based registration methods stand from the other intrinsic methods 
by the fact that operate directly on the image grey values, without data reduction by the 
user or segmentation Despite its drawbacks, principal axes methods are widely used in 
registration problems that require no high accuracy, because of the automatic and very 
fast nature of its use, the easy implementation. Theoretically, these are the most flexible 
of registration methods, since they –unlike all other methods mentioned– do not with 
reducing the grey valued image to relatively sparse  extracted information, but use all of 
the available information throughout the registration process.  
     It seems paradoxical that registration of multimodal images can be non-image based, 
but it is possible if the imaging coordinate systems of the two scanners involved are 
somehow calibrated to each other. This usually necessitates the scanners to be brought in 
to the same physical location, and the assumption that the patient remains motionless 
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between both acquisitions. These are prohibitive prerequisites in nearly all applications, 
but they can be sufficiently met in applications involving the use of ultrasound. Since 
ultrasound systems can come as hand-held devices that are equipped with a spatial 
(optical) localization system, they are easily calibrated, and can be used while the patient 
is immobilized on the CT, MR or operating gantry. The technique of calibrated 
coordinate systems is also often used in registering the position of surgical tools mounted 
on a robot arm to images. 

 
 
 
 

3.2.3 Nature of transformation 
 
An image coordinate transformation is called rigid, when only translations and 

rotations are allowed. If the transformation maps parallel lines onto parallel lines it is 
called affine. If it maps lines onto lines, it is called projective. Finally, if it maps lines 
onto curves, it is called curved or elastic. Each type of transformation contains as special 
cases the ones described before it, e.g., the rigid transformation is a special kind of affine 
transformation. A composition of more than one transformation can be categorized as a 
single transformation of the most complex type in the composition, e.g., a composition of 
a projective and an affine transformation is a projective transformation, and a 
composition of rigid transformations is again a rigid transformation. A rigid or affine 3D 
transformation can be described using a single constant matrix (a) equation:  jiji xay =  
where x and y are the old and new coordinate vectors. In the rigid case, this equation is 
constrained as: 
 
 

                          
 
 
where t is an arbitrary translation vector, and r is a 3 x 3 rotation matrix defined by: 
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i.e.,  )(ir  rotates the image around axis i by an angle ia  . In the affine case, r is 
unrestricted. In the projective case, it can only be used a constant matrix representation if 
employing homogeneous coordinates: jijiii xauuuy =−= 1/  , where a is an arbitrary 4x4 
constant matrix. Curved transformations cannot in general be represented using constant 
matrices. Most applications represent curved transformations in terms of a local vector 
displacement (disparity) field: )(xtxy iii += , or as polynomial transformations in terms 
of the old coordinates. 
 
 
 
 
 

3.2.4 Domain of the transformation 
 

A transformation is called global if it applies to the entire image, and local if 
subsections of the image each have their own transformations defined. In Figure 3.1 we 
can see examples of all transformation types mentioned. 

 
                                                Figure 3.1 Examples of 2-D transformations 
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3.2.5 Interaction 
 

Concerning registration algorithms, three levels of interaction can be recognized. 
Automatic, where the user only supplies the algorithm with the image data and possibly 
information on the image acquisition. Interactive, where the user does the registration 
himself, assisted by software supplying a visual or numerical impression of the current 
transformation. Semi-automatic, where the interaction required can be of two different 
natures: the user needs to initialize the algorithm, e.g., by segmenting the data, or steer 
the algorithm.  

Extrinsic methods are often automated, since the marker objects are designed to be 
well visible and detectable in the images involved. The users are required to roughly 
point out the marker region, or supply a seed point located in the marker (semi-
automatic). Of the intrinsic methods, the anatomical landmark and segmentation based 
methods are commonly semi-automatic and the geometrical landmark and voxel property 
based methods are usually automated. Fully interactive methods are reported on very 
little in the recent literature.  
 
 
 
 
 
 
 
 
 

3.2.6 Optimization procedure 
 
     The parameters that make up the registration transformation can either be computed 
directly, i.e., determined from the available data, or searched for, i.e., determined by 
finding an optimum of some function defined on the parameter space. In the former case  
the use of computation methods is restricted almost completely to applications relying on 
very sparse information, e.g., small point sets. In the case of searching optimization 
methods, most registration methods are able to formulate the paradigm in a standard 
mathematical function of the transformation parameters to be optimized. This function 
attempts to quantify the similarity as dictated by the paradigm between two images given 
a certain transformation. Popular techniques are Powell’s method [156] the Downhill 
Simplex method [157]. Frequent additions are multi-resolution (e.g., pyramid) and 
multiscale approaches to speed up convergence, to reduce the number of transformations 
to be examined and to avoid local minima. Some registration methods employ non-
standard optimization methods that are designed specifically for the similarity function at 
hand, such as the ICP algorithm (which is implemented in this thesis and is created for 
rigid model based registration). In optimization procedure the general task of all the 
methods is to minimize the error function. In ICP algorithm the aim is to minimize the 
Euclidean distance. Usually this distance is used.  In each of the pre-mentioned methods a 
different algorithm is created and used to success this task.  
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   A very popular algorithm for optimization is the Powell algorithm. It follows the idea 
of  subsequent directional minimizations  in order  to find optimization problem solution. 
Once the starting point is chosen, there is always the dilemma how to generate directions 
for the line search subroutine.  Iterating though a set of versors is mathematically correct 
as they span the optimization domain but can turn out to be   ineffective if the objective 
function forms narrow curving valleys. The improvement would be to choose the next 
direction so that while optimizing along it the gradient stays perpendicular to the current 
direction. Such a pair of directions is called conjugate.  

 
                     Figure 3.2 Directional optimization along versors vs conjugate directions 

 
Directional optimization along versors vs. conjugate vectors is shown on figure 3.2. The 
first two steps (black arrows) are done in the direction of versors. The third and fourth 
can be done also along versors (black arrows) but it  is much better  to perform  it using a 
conjugate  vector (arrows nearby) that is created utilizing experience from the last two 
steps. The steps taken along conjugate vectors lead immediately to the function 
minimum.  Usually to make a new conjugate direction it is needed to have Hessian matrix 
(or its approximation) of the function being optimized. Powell suggested a routine in 
which to make next direction one utilizes solely the data form the last N line searches. 
The routine preserves algorithm’s quadratic convergence rate but its drawback is that 
directions tend to be linearly dependent. This can be omitted in several ways: one of them 
is to give up  the direction  set periodically and to start over with a set of versors.  
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3.2.7 Modalities involved in the registration                                             
 

Four classes of registration tasks can be transferred based on the modalities that are 
involved. In monomodal applications, the images to be registered belong to the same 
modality, as opposed to multimodal registration tasks, where the images to be registered 
stem from two different modalities. In modality to model and patient to modality 
registration only one image is involved and the other “modality” is either a model or the 
patient himself. It is used the term “modality” in a loose sense, not only applying to 
acquired images, but also to mathematical models of anatomy or physiology, and even to 
the patient himself. Such inclusions are necessary to properly type-cast the four 
categories according to the actual registration task to be solved. The classification is 
closed if only the actual coordinate systems that need to be related are considered , i.e., 
the coordinate systems referring to the actual modalities named in the problem statement. 
 For example: 

o For diagnostic purposes, two myocardial SPECT images are acquired of the 
patient, under rest and stress conditions. 

Their registration is a monomodal application. 
o To relate an area of dysfunction to anatomy, a PET image is registered to an MR 

image. This is a multimodal application. 
o To register an MR to a PET image, a PET image image is first simulated from the 

MR image, and the real and simulated PET images are registered. This is still a 
multimodal application. 

o An example of modality to model is the registration of an MR brain image to a 
mathematically defined compartimental 

model of gross brain structures. 
o In radiotherapy treatment, the patient can be positioned with the aid of registration 

of in-position X-ray simulator images to a pre-treatment anatomical image. 
Although the registration task is performed using only the images acquired, the 
actual task of patient positioning is clearly an example of patient to modality 
registration. 

In the categories ‘modality to model’ and the ‘patient to modality’ as it is explained 
before the term ‘modality’ is not applying to images but to mathematical models of 
anatomy or physiology or to the patient himself. In the first case the model is the image 
and the ‘modality’ is registered to the model. In the second case the model is existed from 
the experience of the past and with this knowledge the patient is positioned creating the 
‘modality’.        
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3.2.8 Subject 
 
     When all of the images involved in a registration task are acquired of a single patient, 
it is referred as intrasubject registration. If the registration is accomplished using two 
images of different patients (or a patient and a model), this is referred to as intersubject 
registration. If one image is acquired from a single patient, and the other image is 
constructed from an image information database obtained using imaging of many 
subjects, this is named as atlas registration. Intrasubject registration is by far the most 
common of the three, used in almost any type of diagnostic and interventional procedure. 
Intersubject and atlas registration appear mostly in 3D/3D MR or CT brain image 
applications. The nature of the registration transformation is mostly curved; these 
applications are always intrinsic, either segmentation based or voxel property based, 
using the full image content. Some applications use rigid transforms, but their application 
is limited. Others use anatomical landmarks for a deformation basis of a curved 
transformation; unfortunately such applications often require the transformation in large 
image areas to be interpolated from the nearest landmark transformations, which  may 
prove unreliable. The use of intersubject and atlas matching can notably be found in the 
areas of gathering statistics on the size and shape of specific structures, finding 
anomalous structures, and transferring segmentations from one image to another. 
 
 
3.2.9 Object 
 

The list in with the modalities (in p.40) is not theoretically complete, but 
composed of those imaging areas encountered in recent literature. It is noteworthy that 
the majority of papers concerns global head registration, even if the registration method 
used could possibly be used in other image areas. 
 
 

 
 

 
 

3.3 Overview of Medical Image Registration Methods 

 
There is a definite shift in research from extrinsic to intrinsic methods, although 

clinically used methods are often still extrinsic. Of the intrinsic methods, the surface 
based methods appear most frequently, closely followed by “full image content” voxel 
property based methods. Instances of the latter type are slowly setting the standard for 
registration accuracy, a place formerly reserved for frame and invasive fiducial based 
registrations. The application of full image content voxel property based methods is 
however still largely limited in the extensive application field of intra-operative 
registration and radiotherapy treatment related registration (both requiring patient to 
modality registration). Especially in the area of intra-operative registration, surface based 
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methods are dominant, and voxel based methods almost absent. The reasons may be 
clear: it is relatively easy to obtain a surface from the patient, either using laser scanning, 
probes, 2D imagery, etc. , while obtaining reliable image information for voxel property 
based methods is more difficult: intra-operative imaging may not even be part of the 
normal surgical routine. If it is, images are usually 2D, and if 3D, of a relative poor 
quality given common equipment and acquisition sequence constraints in the operating 
theater. Moreover, surface based methods are, on the average, still faster than voxel 
property based methods. However, a problem with surface based methods is that they 
cannot cope with shift of relevant anatomy relative to the surface used in the registration, 
which may be severely restraining to intra-operative application. This problem may be 
solved using voxel based methods, but given the current state of affairs considering 
Registration methods, surgical protocol, and intra-operative imaging, this will not be 
done in the very near future. In the case of radiotherapy treatment related registration 
(patient positioning, and patient position verification), the future will certainly include 
more of voxel based methods: imaging (X-ray simulator images and portal images) is 
already part of the common clinical treatment routine; radiotherapy relies almost 
exclusively on imaging for (tumor) localization, unlike surgery, where the visual 
impression is still the most important cue. It is not unlikely that this will change soon for 
a number of surgical applications, given the current trend of less and less invasive 
surgery that requires making use of advanced imaging techniques. Furthermore, given a 
computed transformation, many applications do not require complex visualization 
techniques, but can be adequately handled using subtraction techniques. Multimodal 
applications cannot be discussed in general terms, the applications are simply too diverse. 
It is tempting, but incorrect, to say registration results are some what more satisfying in 
methods involving scintigraphic imaging, perhaps because the relatively blurry nature of 
the images allows for a slightly larger displacement. In, e.g., CT to MR registration, a 
displacement of a pixel can sometimes be obvious to the naked eye, and to obtain an 
accuracy in this order of magnitude, we cannot avoid to investigate precision at the 
acquisition level, (e.g., the distortions induced by field inhomogeneity in MR images), 
which are of the same order of magnitude. However, the resolution of the images should 
not be used to formulate a clinically relevant level of accuracy: it is very well possible 
that a SPECT to MR registration requires a higher accuracy than some instance of CT to 
MR registration, even though it is likely that the smaller error is more easily assessed by 
the naked eye in the latter case. The actual level of accuracy needed is in many 
applications still an unknown, and cannot accurately be quantified, even by the clinicians 
involved. Intra-operative registration and methods on patient positioning in radiotherapy 
are in clinical use with apparent good results at a number of sites. On the diagnostic use 
of registration (modality to modality), much less information can be found. We suspect 
that, bearing in mind the possible clinical potential of diagnostic registration, it is actually 
used very little. The reasons for this are, probably, in essence of a logistic nature: unlike 
in the intra-operative scene (where all imaging and operations take place in the same 
room), in many multimodal diagnostic settings images are acquired at different places, –
often even at different departments–, by different people, at different times, often 
transferred to different media, and frequently evaluated by different specialist 
diagnosticians. Besides these logistic reasons, it is also often unclear how a registration 
can optimally be used in the diagnostic process. It has already been pointed out that much 



 33

research can still be done in this area. Many methods can still be considered barred from 
meaningful clinical application by the fact that they are as yet improperly validated. 
Although the proper verification methods are known in most cases, and coarsely laid out 
in the previous section, for most applications the painstaking work of conducting the 
many experiments involved is only now starting.  

 
 
 

3.11 Why choose ICP and ASM algorithms 
 
     In this thesis three methods were selected: ICP, ASM and Nelder - Mead algorithms in 
terms of the alignment process. ASM and ICP algorithms treat the problem in the least 
squares sense unlike to Nelder – Mead which uses the least absolute solution. These 
methods do not use any segmentation but are rather based on landmarks. We selected 
these algorithms in order to test the potential of landmark based approaches to 
registration, the effects of outliers to the least squares problem and the benefits of a 
robust formulation steaming from a least absolute error approach.  The landmarks that 
were used for the representation of the shapes were fixed manually with the use of a 
special designed program called MousePos with programming language C++. The user 
can easy design the points at the corners of the vertebrae so that minimum loss of data for 
the followed registration.  
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4. Norm-based approaches in orientation problems 
 

4.1 Models and Curve fitting 
 
      If all the parameters appear linearly and there are more observations than basis 
functions, we have a linear least squares problem. The design matrix X is m-by-n with 
m>n. We want to solve: 
                                                yX ≈β   (i) 
This system is over determined- there are more equations than unknowns. So we cannot 
expect to solve the system exactly. The Orientation problem minimizes the mean squared 
error between two matched points sets under rigid-body transformations. In more words, 
a free point set A is matched to a fixed point set B such that a matching function 

BA ⎯→⎯:μ exists. An error function 
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is minimized over all rotations R(.) and translations t.  
        Faugeras and Hebert represent the rotation as a unit quaternion and discovered the 
first solution in 1983. Horn rediscovered this technique around 1985 and published in 
1987 in the most referenced solution to this problem. An alternate solution which 
represents the rotation as a rotation matrix and uses a singular value decomposition to 
find the optimal rotation was discovered by Arun in 1986, although a similar computation 
for computing the angle between subspaces was in Bjorck and Golub. Also representing 
rotation as a rotation matrix but solving the optimal rotation with the eigenvalue 
decomposition was discovered independently by Shwarz and Sharir  in 1987 and in 1988. 
A set of degenerate cases was corrected by Umeyama in 1991. A fourth and more 
obscure solution technique represents rotation and translations together as dual number 
quaternions and was discovered by Walker. An overview of techniques is presented in the 
following. 
       A common approach to the solution of linear equation as in (i) is curve fitting. Let t 
be the independent variable and let y(t) denote an unknown function of t that we want to 
approximate. Assume there are m observations, i.e. values of y measured at specified 
values of t. 
                                    mityy ii ,...,1),( ==  
The idea is to model y(t) by a linear combination of n basis functions, 
                                   )(...)()( 11 ttty nnφβϕβ ++≈  
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The design matrix X is a rectangular matrix of order m-by-n with elements 
                                   )( ijij tx φ=  
The design matrix usually has more rows than columns. In matrix-vector notation, the 
model is 
                                    βXy ≈  
The symbol ≈  means “is approximately equal to."  
     The basis functions φj(t)  can be nonlinear functions of t, but the unknown parameters, 
βj , appear in the model linearly. The system of linear equations 
                                    yX ≈β  
is over determined if there are more equations than unknowns.  
The basis functions might also involve some nonlinear parameters α1,…,αp The problem 
is separable if it involves both linear and nonlinear parameters. 
                                    ),(...),()( 11 atatty nnφβϕβ ++≈  
The elements of the design matrix depend upon both t and a. 
                                     xi,j=φξ(ti,a) 
 
Some common models are: 
Straight line: If the model is also linear in t, it is a straight line. 
          21)( ββ +≈ tty  
 
Polynomials: The coefficients jβ  appear linearly.  
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Rational functions: The coefficients in the numerator appear linearly; the 
coefficients in the denominator appear nonlinearly. 
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Exponentials: The decay rates, λj, appear nonlinearly. 
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Log-linear: If there is only one exponential, taking logs makes the model 
linear, but changes the fit criterion. 
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Gaussians: The means and variances appear nonlinearly. 
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4.2 Norm – Based solutions 
 
The residuals are the differences between the observations and the model, 
 
 

                                      ∑−=
n

ijjii atyr
1

),,(ϕβ   i=1,…,m 

  
Or, in matrix-vector notation, 
 
                                       β)(aXyr −=  
 
      We want to find the  a’s and β’s that make the residuals as small as possible. 
There are several possibilities: 
 

• Interpolation: If the number of parameters is equal to the number of obser- 
vations, we might be able to make the residuals zero. For linear problems, 
this will mean that m = n and that the design matrix X is square. If X is 
nonsingular, the β’s  are the solution to a square system of linear equations. 
                                      yX \=β  

• Least squares: Minimize the sum of the squares of the residuals. 

                                        ∑=
m

irr
1

22  

 
• Weighted least squares: If some observations are more important or more 

accurate than others, then we might associate different weights, wj , with 
different observations and minimize 

                                        ∑=
m

iiw
rwr

1

22  

 
For example, if the error in the ith observation is approximately ei, then we 
choose: wi = 1/ei. 
 

• One-norm: Minimize the sum of the absolute values of the residuals. 
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This problem can be reformulated as a linear programming problem, but it is 
computationally more diffcult than least squares. The resulting parameters 
are less sensitive to the presence of spurious data points or outliers.  
 

•  Infinity-norm: Minimize the largest residual. 
                                        ii

rr max=
∞

 

This is also known as a Chebyshev fit and can be reformulated as a linear 
programming problem. Chebyshev fits are frequently used in the design of 
digital filters and in the development of approximations for use in mathemat- 
ical function libraries. 
      

  

4.3 Least Squares approach 
 
        
                                                 2min yX −ββ   
A theoretical approach to solving the over determined system begins by multiplying both 
sides by TX . This reduces the system to a square, n-by-n system known as the normal 
equations: 
                                                   yXXX TT =β  
If there are thousands of observations and only a few parameters matrix X is quite large, 
but the matrix XX T  is small. So, y is projected onto the space spanned by the columns 
of X. Continuing with this theoretical approach, if the basis functions are independent, 
then  XX T is nonsingular and 
                                                   yXXX TT 1)( −=β  
However there are several undesirable aspects to this theoretical approach. Using a 
matrix inverse to solve a system of equations is more work and less accurate than 
solving the system by Gaussian elimination. But. More importantly, the normal 
equations are always more badly conditioned than the original over determined system. 
In fact, the condition number is squared. 
                                                    2)()( XkXXk T =  
With finite precision computation, the normal equations can actually become singular, 
and 1)( −XX T nonexistent, even though the columns of X are independent.  
Here is an extreme example: 
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If δ is small, but nonzero, the two columns are of X are nearly parallel, but are still 
linearly independent. The normal equations make the situation worse. 
 

                                    
If  810−<δ , the matrix XX T computed with double-precision floating-point arithmetic 
is exactly singular ant the inverse required in the classic textbook formula does not exist. 
     One popular solution of the over-determined least squares solution is the 
pseudoinverse. The definition of the pseudoinverse makes use of the Frobenius norm of a 
matrix 

                                  
The Moore-Penrose pseudoinverse generalizes and extends the usual matrix inverse. The 
pseudoinverse is denoted by a dagger superscript, 

                                      
If X is square and non-singular, then the inverse are the same,  

                                     
Ix X is m-by-n with m>n and X has full rank, then its pseudoinverse is the matrix 
involved in the normal equations, 

                                     

The pseudoinverse has come, but not all, of the properties of the ordinary inverse. is 
a left inverse because  

                                       

is the n-by-n identity. But is not a right inverse because 

                                       
only has rank n and so cannot ny the m-by m identity. 
The pseudoinverse does get as close to a right inverse as possible in the sense that out of 
all the matrices Z that minimize 
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also minimizes  
 

                                                    
 
It turns out these minimization properties also define a unique pseudoinverse even if X is 
rank deficient. 
 
 

4.4 Linear Programming for least absolute error approaches 
 
 

 
 
 

      Linear programming is the most important problem in mathematical optimization and 
operations research.     Applications include:  

• Resource allocation -   We seek to invest a given amount of money so as to 
maximize our return. Our possible options, payoffs, and expenses can usually be 
expressed as a system of linear inequalities, such that we seek to maximize our 
possible profit given the various constraints. Very large linear programming 
problems are routinely solved by airlines and other corporations.     

• Approximating the solution of inconsistent equations -   A set of m linear 
equations on n variables , , is overdetermined if m > n.   Such 
overdetermined systems are often inconsistent, meaning that no assignment of 
variables simultaneously solves all the equations. To find the variable assignment 
that best fits the equations, we can replace each variable by and solve the 
new system as a linear program, minimizing the sum of the error terms.  

• Graph algorithms - Many of the standard graph problems described in this book, 
such as shortest paths, bipartite matching, and network flow, can all be solved as 
special cases of linear programming.       Most of the rest, including traveling 
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salesman, set cover, and knapsack, can be solved using integer linear 
programming.        

      The standard algorithm for linear programming is called the simplex method.   Each 
constraint in a linear programming problem acts like a knife that carves away a region 
from the space of possible solutions. We seek the point within the remaining region that 
maximizes (or minimizes) f(X). By appropriately rotating the solution space, the optimal 
point can always be made to be the highest point in the region. Since the region (simplex) 
formed by the intersection of a set of linear constraints is convex, we can find the highest 
point by starting from any vertex of the region and walking to a higher neighboring 
vertex. When there is no higher neighbor, we are at the highest point.    While the basic 
simplex algorithm is not too difficult to program, there is a considerable art to producing 
an efficient implementation capable of solving large linear programs. For example, large 
programs tend to be sparse (meaning that most inequalities use few variables), so 
sophisticated data structures must be used.   There are issues of numerical stability and 
robustness, as well as which neighbor we should walk to next (so called pivoting rules).   
Finally, there exist sophisticated interior-point methods, which cut through the interior 
of the simplex instead of walking along the outside, that beat simplex in many 
applications.    

 

4.5 Investigation of Assumptions 
 
      Least squares solution is optimal in case that the residuals obey a Gaussian 
distribution. If this is not the case, the assumptions of the least squares formulation are 
not valid, leading to suboptimal formulations of the problem. In such cases other norm 
formulations could lead to more robust results. In our problem we investigated the 
distribution of residuals from the least square formulation and found them to deviate from 
the Gaussian distribution. For this reason we also tested the least absolute error 
formulation and compared results. The algorithm that is selected and implemented, in 
terms of this kind of formulation, is the Nelder – Mead algorithm and is presented in 
chapter 7.  
     The following figures present the histograms of residuals in the x and y directions, 
respectively. These distributions appear more as uniform than as normal.  In essence, the 
least squares approach forces the error at individual points to a large area around the 
optimal (zero).  
       Three cases were, firstly, investigated for the comparison of the alignment of the 
three algorithms. These are: 

1. ‘Normal Case’ – This is the case that all the landmarks are well fixed around the 
boundaries of the vertebrae with the numbering to begin from the up-left corner. 

2. ‘Random Case’ – This is the case that the numbering of the landmarks begins 
from other part of the vertebrae than the previous (up-left corner). 

3. ‘Improper Case’ – This is the case that the landmarks are not well fixed around 
the boundaries of the vertebrae.  
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                                                        Figure 4.1 X- histograms ICP 

 
 
 
 

 
                                                       Figure 4.2 Y histograms ICP 
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                                                         Figure 4.3 X-histograms ASM 

 
 

 
                                                    Figure 4.4 Y-histograms ASM 

                                                                            



 43

- The residuals are not obeying a Gaussian distribution, so we lead in another way of 
solving the error function that is discussed above. This is the least absolute error 
formulation. The algorithm that is selected and implemented, in terms of this kind of 
formulation, is the Nelder – Mead algorithm and is presented in chapter 7, the results are 
compared. 
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5. Active Shape Models (ASM) – ‘Smart Snakes’  
 
 

5.1 Introduction and Related work 
 

Accurate and precise segmentation of anatomical structures is an essential 
component in many biomedical image analysis procedures. Delineation of bone 
structures, in digital X-ray images, is a prerequisite in many orthopedic examinations. 
Since manual delineation of these anatomical structures is very tedious and time 
consuming, fast and accurate computer-aided segmentation methods are required. 

Traditional low-level segmentation techniques, relying only on pixel intensity 
homogeneity or discontinuity, often generate incorrect object delineations, especially in 
digital X-ray images with typically low contrast between overlapping structures. High-
level delineation techniques are additional a priori shape information to constrain the 
search for the object boundary. In contrast to many other computer vision application 
areas where the objects to be recognized can be described using simple models with a 
small number of parameters, anatomical structures in medical images are complex shaped 
objects with inter-individual shape variability. Deformable models such as popular 
“Active Contour approaches (snakes)” of Kass et al. [133], are capable of modeling the 
significant shape complexity by continuously deformable curve. These models, however, 
are free to take almost any arbitrary smooth shape, without being constrained on the 
overall shape.  

A single anatomical structure over different individuals is characterized by a 
generic shape with small deviations around it, which can be learned from a training 
set of images of such objects. This is a priori knowledge can be used to limit the 
deformations in order to obtain acceptable shapes. [134,135] 

Yuille et al. [describe hand built models consisting of various geometric parts 
designed to represent image features; they also describe methods for adjusting their 
models to best fit an image. Unfortunately both the models and the optimization 
techniques have to be individually tailored for each application.  

Staib and Duncan [136] use a Fourier shape model, representing a closed 
boundary as a sum of trigonometric functions of various frequencies. They also used a 
form of iterative energy minimization technique to fit a model to an image. However, 
using trigonometric functions does not always provide an appropriate basis for capturing 
shape variability, and is limited to closed boundaries.  

Lowe[137] describes a technique for fitting projections of three-dimensional 
parameterized models to two dimensional images by iteratively minimizing the distance 
between lines in the projected model and those in the image.  

The method that is proposed in [138],[139] and implemented in this thesis, is a 
method of building flexible models by representing the objects as sets of labeled points 
and examining the statistics of their co-ordinates over a number of training shapes- point 
Distribution Models (PDMs). In [138] it is described an iterative optimization scheme for 
PDMs allowing initial estimates of the pose, scale and shape of an object in an image to 
be refined. The linear nature of the model  leads to simple mathematics allowing rapid 
execution. Because the models can accurately represent the models of shape variation of 



 45

a class of objects they are compact and prevent ‘implausible’ shapes from occurring. 
Since PDMs can represent a wide variety of objects the same modeling and refinement 
framework can be applied in many different applications. Given an estimate of the 
position, orientation, scale and shape parameters of an example in an image, adjustments 
to the parameters can be calculated which give a better fit to the image. Suggested 
movements are calculated at each model point, giving the displacement required to get to 
a better location. These movements are transformed to suggested adjustments of the 
parameters, giving a better overall fit of the model instance to the data. By applying 
limits to the ranges of the parameters it can be ensured that the shape of the instance 
remains similar to the original training examples. Enforcing these limits applies global 
shape constrains, allowing only certain deformations to occur. Because the models 
attempt to deform to better fit the data, but only in ways which are consistent with the 
shapes found in the training set that is called ‘Active Shape Models’ or ‘Smart Snakes’. 
 

5.2 The Point Distribution Model 
 

The Point Distribution Model (PDM) is a way of representing a class of shapes 
using a flexible model of the position of labeled points placed on examples of the class. 
The points can represent the boundary or significant internal locations of an object 
(Figure 5). 

In [138], [139] the algorithm is applied to resistors (Figure 5). 
 
 
 

 
                                Figure 5.1 32 point model of the boundary of a resistor 
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5.3 Labeling the Training Set 
 

In order to model a shape, it is represented by a set of points. For the vertebraes it 
have been chosen to place landmarks around the boundary, as shown in Figure 6. The 
labeling of the points is important, each labeled point represents its boundary. For 
instance in the vertebrae model points 0 and 45 always represent the ends of the 
vertebraes, points 0,14,25,37 represents the angles of the vertebraes. The method works 
by modeling how different labeled points tend to move together as the shape varies. If the 
labeling is incorrect, with a particular landmark placed at different sites on each training 
shape, the method will fail to capture shape variability.    

MousePos is a program especially designed for the manually placing of 
landmarks around the vertebrae in the Digital X-Rays images and is designed with the 
use of Microsoft C++ program language. It is used in both implementations of ASM and 
ICP algorithms. 
 

5.4 Capturing the statistics of a set of aligned shapes 

 
     If a set of aligned shapes is available the mean shape and variability can be found. The 
mean shape is calculate as follows: 
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The modes of variation, the ways in which the points of the shape tend to move together, 
can be found by applying principal component analysis to the deviations from the mean: 
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The 2n x 2n covariance matrix S can be calculated: 
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The modes of variation of the points of the shape are described by the unit eigenvectors 
of S, ip  (i=1 to 2n) such that  
                                           iii pSp λ=  
(where iλ   is the i’th eigenvalue of S, 1+≥ ii λλ   ,      1=i

T
i pp          

The eigenvectors of the covariance matrix corresponding to the largest eigenvalues 
describe the most significant modes of variation in the variables used to derive the 
covariance matrix, and the proportion of the total variance explained by each eigenvector 
is equal to the corresponding eigenvalue. 
Any shape in the training set can be approximated using the mean shape and a weighted 
sum of these deviations obtained from the first t modes 
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5.5 Aligning the training set 
 
The modeling works by examining the statistics of the co-ordinates of the labeled 

points over the training set. In order to be able to compare equivalent points from 
different shapes, they must be aligned inn the same way with respect to a set of axes. If 
they are not, they can not be compared like to like and any statistics derived would be 
meaningless. The required alignment is achieved by scaling, rotating and translating the 
training shapes so that they correspond as closely as possible. The aim is to minimize a 
weighted sum of squares of distances between equivalent points on different shapes. This 
is a form of Generalized Procrustes Analysis [140]. 

We will first consider aligning a pair of shapes. Let ix  be a vector describing the 
n points of the thi  shape in the set; 

                                  T
ininikikiiiii yxyxyxyxx ),,...,,,...,,,,( 111100 −−=  

Let ][ jj xM  be a rotation by jθ  and a scaling by js . Given two similar shapes ix  
and jx  we can choose jθ , js  and a translation jyx tt ),(  mapping ix  onto ][ xx xM  so as 
to minimize the weighted sum 
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For 2 shapes (1) is becoming 
                                       ))(())(( 2121 xMxWxMxE T

j −−=  
We can write: 
                                       θcossax =  and θsinsay =  
then the least squares approach leads to a set of four linear equations: 
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The weights can be chosen to give more significance to these points which tend to be 

most ‘stable’ over the set-the ones which move about least with respect to the other 
points in a shape. The weighted sum that is used is defined as follows: let klR  be the 
distance over the set of shapes; it can be chosen a weight kw  for the thk  point using 

                                           1
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Rk kl
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If a point tends to move around a lot with respect to other points in the shape, the sum 
of variances will be large, and a low weight will be given. If, however, a point tends to 
remain fixed with respect to the others, the sum of variances will be small, a large weight 
will be given and matching such points in different shapes will be a priority.  

In order to align all the shapes in a set it is used the algorithm as follows: 
1) Rotate, scale and translate each of the shapes in the set to align to the first shape 
Repeat 
2) Calculate the mean of the transformed shapes 
3) Either 
a) Adjust the mean to a default scale, orientation and origin 
b) Rotate, scale and translate the mean to align to the first shape 
4) Rotate, scale and translate each of the shapes again to match to the adjusted mean. 
Until convergence. 
Stage 3 inside the iteration loop is required to renormalize the mean. Without this the 

algorithm will not convergence- there are in effect )1(4 −sN  constrains on sN4  variables 

yx tts ,,,θ  for each shape- the mean will shrink, rotate or slide off to identify. Constrains 
on the pose and scale of the mean allow the equations to have a unique solution. Either 
the mean is scaled, rotated and translated so it matches the first shape, or an arbitrary 
default setting can be used, such as choosing an origin at its centre of gravity, an 
orientation so that a particular part of the shape is at the top and a scale so that the 
distance between two points is one unit. 

The convergence condition can be tested by examining the average difference between 
the transformations required to align each shape to the recalculated mean and its identity 
transformation. The method converges to the same result independent of which shape is 
aligned to in the first stage. 
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And W is a diagonal matrix of weights for each point 
 
 
 
 

5.6 Examples using Active Shape Models 
 

5.6.1 Finding resistors with an ASM 
  

T. F Cootes and C. J. Taylor have used this technique successful to find resistors. 
They have constructed a Point Distribution Model of a resistor representing its boundary 
using 32 points (Figure 5). Figure 7 shows an image of part of a printed circuit board with 
the resistor boundary model superimposed as it iterates towards the boundary of a 
component in the image. They interpolate an additional 32 points, one between each pair 
of model points around the boundary, and calculate adjustments to each point by finding 
the strongest edge along profiles 20 pixels long centered at each point. They use a model 
with 5 degrees of freedom. Each iteration takes about 0.025 seconds on a Sun Sparc 
Workstation. 
 
 

 
                                                                              Figure 5.2 Resistors 

 
         (a)                  (b)                     (c)                  (d)                    (e)                  (f) 
Figure 5.2: Section of printed circuit board with resistor model superimposed, showing its 
initial position and its location after 30, 60, 90 and 120 iterations. 

(a) Original image 
(b) Initial Position 
(c) After 30 iterations 
(d) After 60 iterations 
(e) After 90 iterations  
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(f) After 120 iterations   
 The ends of the wires are not found correctly since they are not well not defined.  

 
The resistor shapes were aligned, arranging the mean shape to be horizontal and 

scaling so the average distance of each point of the mean from its center of gravity is one 
unit. The most significant eigenvalues of the covariance matrix derived are shown in the 
Table 2 above: 

 

 
Table 5.1Eigenvalues of the covariance matrix derived from a set of resistor shapes. 

 
 
 
 
 
 
 
 

5.6.2 Finding hands with an ASM 
 

Another  Point Distribution Model is constructed of a hand representing the 
boundary using 72 points.  
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               (a)                             (b)                               (c)                                 (d) 
                                                      Figure 5.3 Hands 

 
Figure 4.3 : Image of a hand with hand model superimposed, showing its initial position 
and its location after 100, 200 and 350 iterations. 

(a) Initial Position 
(b) 100 iterations 
(c) 200 iterations  
(d) 350 iterations 
 

Figure 5.3 shows an image of a hand and an example of the model iterating 
towards it. The adjustments are calculated to each point by finding the strongest edge on 
a profile 35 pixels long centered on the point. The shape model has 8 degrees of freedom, 
and each iteration takes about 0.03 seconds on a Sun Sparc Workstation. The result 
demonstrates that the method can deal will limited occlusion.  

As in the previous example the method works reliably, given a reasonable starting 
approximation. The example shows that the method is tolerant to quite serious errors in 
the starting approximation, though this depends on the amount of clutter in the image. 

 

4.7 How it works 
 

The ASM algorithm is implemented with a main program which name is 
solve_alignment and a sub program which name is solve_system in MATLAB 7.1.  

• In the first 21 lines the main program reads the landmarks of the shapes. The 
points can be 45 or user defined. 

• After this plots the shapes 
• Then plots the shapes as they are at the beginning. 
• In the next step calls the sub_program: solve_system to compute  
• The solve_system finds the solution of the C matrix. This matrix is a 4x4 matrix 

and it can be solved mathematically with the Cramer low.  
• We return to the main program and calculate the mean 
• Then we align the mean to first shape 
• Align shapes to the mean 
• Finally, plots the results. 

 
The ASM works well with N landmarks fixed for every shape. When one shape has 
less points from the others the program can not be executed.  
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5.8 Results and figures of the ASM algorithm 

 
The ASM algorithm is implemented in MATLAB 7.1 with the use of MousePos. 

MousePos is a especially designed program in C programming language  for the 
manually fixing of the landmarks in the X-ray digital images. These images are from the 
NHANES II database. These images are available in the website:  

 
 
 

o In Figure 5.4 we can see one X-ray digital image from the NHANES II database. 
The image is of the lumbar part of the human body. 

 
 
 
 

 
                                                                    Figure 5.4 Mouse Pos 
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o In Figure 5.5 we can see a screen of  the MousePos program with 15 manually 
fixed landmarks at the boundary of the lumbar: 

 
 
 
 
 

 
                                                   Figure 5.5 (‘L04531’ image) 
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                                                                Figure 5.6 ASM implementation 

 
o In Figure 5.6 we present the implementation of ASM algorithm, for the alignment 

of two shapes with 15 landmarks normal fixed, as in Figure 5.5,  (‘L04531’ and 
‘L12966’ images), the blue shape is the model, the green is the shape before and 
dafter the alignment in all ASM figures: 

  
           

- In these figures we can see, that in all the cases the corresponding points have been 
located with accuracy. Even in the case that the shape is not well fixed the algorithm 
execute the alignment and in the third case where the ‘to be aligned’ shape was 
smaller than the ‘model shape’ ASM seems to align with precision. A disadvantage of 
this algorithm is that it fails to execute when the one the shape ‘to be aligned’ has less 
landmarks from the ‘model shape’. 
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                                Figure 5.7  X-ray digital image where the landmarks are not fixed properly 
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                            Figure 5.8 The alignment when one of the shapes has random fixed points. 
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6.  The Iterative Closest Point Algorithm (ICP) 
 
 

6.1 Introduction and related work 
 

Little work has been published in the area of registration (pose estimation, 
alignment, motion estimation) of 3-D free-form shapes. Most of the existing literature 
addressing global shape matching or registration have been addressed limited classes of 
shapes, namely, 

1) polyhedral models, 
2) piecewise- (super) quadric models [141], [142], 
3) point sets with known correspondence.  

Historically, free-form shape matching using 3-D data was done by Faugeras and 
his group at INRIA [143], where the demonstrated effective matching with Renault auto 
part (steering knuckle) in the early 1980’s. This work popularized the use of quaternions 
for least squares registration of corresponding 3-D sets in the computer vision 
community. The alternative use of the singular value decomposition (SVD) algorithm 
[144], [145], [146] was not as widely known in this time frame. The primary limitation of 
this work was that it relied on the probable existence of reasonably large planar regions 
within a free-form shape. 

Schwartz and Sharir [147] developed a solution to the free-form space curve 
matching problem without feature extraction in late 1985. They used a nonquaternion 
approach to computing the least squares rotation matrix. The method works well with 
reasonable quality curve data but has difficulty with very noisy curves because the 
method uses arclength sampling of the curves corresponding point sets.  

Haralick et al [148] addressed the 3-D point-set pose estimation problem using 
robust methods combined with the least squares SVD registration approach, which 
provided a robust statistical alternative to the least squares quaternion or SVD point set 
matching. This algorithm is able to handle statistical outliers and could theoretically be 
substituted for our quaternion-based algorithm as long as the determinant of the 
orthogonal matrix is strictly a positive one.  

Singular value decomposition (SVD) is a very powerful set of techniques dealing 
with sets of equations or matrices that are either singular or numerically very close to 
singular. SVD allows one to diagnose the problems in a given matrix and provides 
numerical answer as well. Any m x n matrix a (m >= n) can be written as the product of 
an m x n column-orthogonal matrix u, an n x n diagonal matrix with positive or zero 
elements, and the transpose of an n x n orthogonal matrix v: 

where  
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and 

     

The diagonal elements of matrix w are the singular values of matrix a and non-
negative numbers. 

Horn [149] derived an alternative formulation of Faugera’s method [143] of least 
squares quaternion matching that uses the maximum eigenvalue of a 4x4 matrix instead 
of the maximum eigenvalue. 

Szeliski [150] also describes a method for estimating motion sparse range data 
without correspondence between the points and without feature extraction. His primary 
goal was to create a method for estimating the motion of the observer between two range 
images frames on the same terrain, Given the set of the points from one, he applies a 
smoothness assumption to create a smoothing spline approximation of the points. Then, a 
conventional steepest descent algorithm is used to rotate and translate the second data set 
so that it minimizes the sum of the covariance-weighted z differences between the points 
and the surface. His approach is based on a regular xy-grid structure, and true 3-D point-
to-surface distances are not computed. The steepest-descent approach is a slower 
alternative to reaching the local minima than in ICP algorithm described below.  

Horn and Harris[151] also addressed the problem of estimating the exact rigid-
body estimation of the observer given sequentially digitized range image frames of the 
same terrain. They describe a range rate constraint equation and an elevation rate 
constraint equation. The result is a noniterative least squares method that provides a six-
degree-of-freedom motion estimate as long as the motion between frames of data is 
relatively small. This method is much quicker than the one proposed by Szeliski, but is 
not clear that this method generalizes to arbitrary rotations and translations of a shape. 

Kamgar-Parsi et al. [152] also describe a method for the registration of multiple 
overlapping range images without distinctive feature extraction. This method works very 
well using the level sets of 2.5-D range data but is essentially restricted to the three 
degrees of freedom in the plane since the work was addressed toward piecing together 
terrain map data. 

Li [153] addressed free-form surface matching with arbitrary rotations and 
translations. His method forms an attributed relational graph of fundamental surface 
regions for data and model shapes and then performs graph matching using an inexact 
approach that allows for variability in attributes as well as in graph adjacency 
relationships. This approach relies on extraction of derivative-based quantities. 
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The work of Gilbert and Foo [154] and Gilbert et al. [155] is related in that it 
addresses the computation of distance between two object shapes. Such methods could be 
the basis for similar shape matching techniques, like ICP.  

5.2 Quaternion 

Quaternion algebra is one possible way to represent 3 dimensional orientation, or 
other rotational quantity, associated with a solid 3D object. 

6.2.1 Description 

There are a number of ways to think about complex numbers: 

• As a mathematical quantity and algebra which, if we do certain operations, allows 
us to calculate the results of rotations in 3 dimensions.  

• It is similar to axis-angle except that real part is equal to cos(angle/2) and the 
complex part is made up of the axis vector times sin(angle/2).  

• Quaternion numbers are an extension of complex numbers with  

Quaternions have 4 dimensions, one real dimension and 3 imaginary dimensions. 
Each of these imaginary dimensions has a unit value of the square root of -1, but they are 
different square roots of -1 all mutually perpendicular to each other, known as i,j and k. 
So a quaternion can be represented as follows: 

a + i b + j c + k d 

It may seem strange that there are 3 square roots of -1, but we are working in 4 
dimensions so there are at least 3 ways to get round from +1 to -1. Here is an attempt to 
draw 4 dimensions in 2 dimensions:  

 

                       Figure 6.1 Quaternions 
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6.2.2 Practical uses of quaternions. 

We can use quaternions to represent 3D rotations and calculate the result of 
applying one rotation and then applying a subsequent rotation. To calculate the result of 
rotation represented by q followed by p we have to apply the product q * p. As well as 
concatenating rotations we can also use quaternions to interpolate between rotations. 

Quaternion multiplication and orthogonal matrix multiplication can both be used 
to represent rotation. If a quaternion is represented by qw + i qx + j qy + k qz , then the 
equivalent matrix, to represent the same rotation, is: 

1 – 2*qy2 – 2*qz2 2*qx*qy – 2*qz*qw 2*qx*qz + 2*qy*qw 
2*qx*qy + 2*qz*qw 1 – 2*qx2 – 2*qz2 2*qy*qz – 2*qx*qw 
2*qx*qz – 2*qy*qw 2*qy*qz + 2*qx*qw 1 – 2*qx2 – 2*qy2 

This assumes that the quaternion is normalized (sqw + sqx + sqy + sqz =1), if not it 
should be normalized before doing the conversion.  

o The proof of this result follows: 

To transform point P2 to point P1 we use 

P2=q * P1 * q’  

we want to find the matrix [M] that will do the same transform. 

P2 = [M] P1 

So assume P1 = (0,x,y,z) then multiplying out gives: 

q * P1 * q’= ( - qx*x –qy* y- qz*z + i ( qw*x + qy*z- qz*y) + j (qw*y – qx*z + qz*x) + 
k (qw*z + qx*y – qy*x ) ) * (qw – i qx – j qy – k qz) 

= (- qx*x –qy* y- qz*z)*qw – ( qw*x + qy*z- qz*y)*-qx –(qw*y – qx*z + qz*x)*-qy- 
(qw*z + qx*y – qy*x )*-qz 
+ i (( qw*x + qy*z- qz*y)*qw + (- qx*x –qy* y- qz*z)*-qx + (qw*y – qx*z + qz*x)*-qz- 
(qw*z + qx*y – qy*x )*-qy) 
+ j ((- qx*x –qy* y- qz*z)*-qy – ( qw*x + qy*z- qz*y)*-qz+ (qw*y – qx*z + qz*x)*qw + 
(qw*z + qx*y – qy*x )*-qx) 
+ k ((- qx*x –qy* y- qz*z)*-qz + ( qw*x + qy*z- qz*y)*-qy – (qw*y – qx*z + qz*x)*-qx 
+ (qw*z + qx*y – qy*x )*qw) 
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= - qx*qw*x –qy*qw* y- qz*qw*z + qw*qx*x + qy*qx*z – qz*qx*y + qw* qy*y – qx* 
qy*z + qz* qy*x + qw*qz*z + qx*qz*y – qy*qz*x  
+ i ( qw*qw*x + qy*qw*z- qz*qw*y + qx*qx*x +qy*qx* y+ qz*qx*z – qw*qz*y + 
qx*qz*z – qz*qz*x + qw*qy*z + qx*qy*y – qy*qy*x 
+ j ( qx*qy*x +qy*qy* y+ qz*qy*z + qw*qz*x +qy*qz*z- qz*qz*y + qw*qw*y – 
qx*qw*z + qz*qw*x – qw*qx*z – qx*qx*y + qy*qx*x ) 
+ k (qx*qz*x +qy*qz* y+ qz*qz*z – qw*qy*x – qy*qy*z+ qz*qy*y + qw*qx*y – 
qx*qx*z + qz*qx*x + qw*qw*z + qx*qw*y – qy*qw*x ) 

grouping the x,y and z terms and putting them in a matrix gives: 

 

qw*qw + qx*qx- qz*qz- qy*qy - qz*qw+qy*qx- qw*qz+ qx*qy  qy*qw + qz*qx + qx*qz + qw*qy 
qx*qy+ qw*qz+ qz*qw+ qy*qx qy*qy- qz*qz+ qw*qw – qx*qx  qz*qy+qy*qz- qx*qw- qw*qx 
qx*qz- qw*qy+ qz*qx- qy*qw qy*qz + qz*qy+ qw*qx+ qx*qw  qz*qz- qy*qy- qx*qx+ qw*qw 

 

since qw*qw + qx*qx+ qz*qz+ qy*qy = 1 this gives 

 

1- 2*qz*qz- 2*qy*qy - 2* qz*qw+2*qy*qx                      2*qy*qw +2* qz*qx 
2*qx*qy+ 2*qw*qz 1 – 2*qz*qz – 2*qx*qx                     2*qz*qy- 2*qx*qw 
2*qx*qz2*qw*qy - 2*qy*qz + 2*qw*qx                       1- 2*qy*qy- 2*qx*qx 
 

 

6.3 The ICP algorithm  
 

• The Iterative Closest Point (ICP) algorithm proposes a solution to the registration 
Problem: Given a “model” two-dimensional (2-D) shape and a “data” (2-D) shape, 
estimate the optimal translation and rotation that register the two shapes by minimizing 
the mean square distance between them. 
- The ICP algorithm is a quaternion-based algorithm. The unit quaternion is a four vector 

t
R qqqqq ][ 3210=

→

, where 00 ≥q  and 12
3

2
2

2
1

2
0 =+++ qqqq . The 3x3 rotation matrix 

generated by a unit quaternion is: 
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- If P is a measured data point set to be aligned with a model set X, where PX NN =  and 

where each point of 
→

= }{ ipP  corresponds to the point 
→

= }{ ixX  with the same index. 
The mean square function to be minimized is: 
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- The “center of mass” 
→

pμ of the point set P and the “center of mass” 
→

xμ for the X point 
set are given by: 
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- The cross-covariance matrix pxΣ of the sets P and X is given by: 
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- The components of the anti-symmetric matrix ij

T
pxpxijA )( Σ−Σ=  are used to form the 

column vector TAAA ][ 123123=Δ (6). With this vector we can form the symmetric 

4x4 matrix )( pxQ Σ . 
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where: )( pxtr Σ  is  the trace of the cross-covariance matrix of the sets P and X 
      and 3I  is the 3x3 identity matrix. 
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- The optimal rotation is selected as the unit eigenvector  

                     tqqqqq ][ 3210=
→

 (8) 

 
Corresponding to the maximum eigenvalue of the matrix )( pxQ Σ . 
- The optimal translation vector is given by  

                                    
→→→→

−= pRxT qRq μμ )( (9) 
 
- The least squares quaternion operation is )( pNO and is denoted as  
                                

                                  ),(),( XPQdq ms =
→

   (10) 

where msd  is the mean square point matching error. The notation )(Pq
→

 is used to denote 

the point set P after transformation by the registration vector 
→

q .  
- In the description of the algorithm, a data shape P is moved (registered, positioned) to 
be in best alignment with a model shape X. The data and the model shape may be 
represented in any of the allowable forms. For our purposes, the data shape must be 
decomposed into a point set if it is not already in point set form. The number of points in 
the data shape can be denoted as pN . Let xN  be the number of points, line segments or 
triangles involved in the model shape. The distance metric d between an individual data 

point 
→

p  and a model shape X can be denoted: 

                                    
→→

∈

→

−=
→

pxXpd
Xx

min),(  

The closest point in X that yields the minimum distance is denoted 
→

y  such that 

),(),( Xpdypd
→→→

=  where Xy∈
→

. Let Y denote the resulting set of closest points and let 
C be the closest point operator:d 
                                               ),( XPCY =  
Given the resultant corresponding point set Y, the least squares registration is computed 
as described above: 

                                                ),(),( YPQdq =
→

 
- The positions of the data shape point set are then updated via 

                                                )(PqP
→

=  
 
 
- The ICP algorithm can be stated: 

• The point set P with PN  points from the data shape and the model shape X with 

XN , are given. 
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• The iteration is initialized by setting PPO = , tq ]0,0,0,0,0,0,1[0 =
→

 and k=0. The 
registration vectors are defined relative to the initial data set 0P  so that the final 
registration represents the complete transformation. Here are the four steps that 
are applied until convergence within a tolerance τ . 

1. Compute the closest points: ),( XPCY kk =  

2. Compute the registration: ),(),( 0 kkk YPQdq =
→

 

3. Apply the registration: )( 01 PqP kk

→

− =  
4. Terminate the iteration when the change in mean-square error falls below a preset 

threshold 0>τ  specifying the desired precision of the registration: τ<− −1kk dd . 
• The ICP algorithm guarantees that a local minimum of a mean square objective 

function is found. This minimum depends on the initial registration and may not 
be the global one. The registration vector corresponds to the smallest of local 
minima is selected.  

• The idea of the convergence theorem that rules the ICP algorithm is:1)the least 
squares registration generically reduces the average distance between 
corresponding points during each iteration, whereas 2) the closest point 
determination generically reduces the distance for each point individually. 

 

6.4 Convergence Theorem for the ICP algorithm 
 

A convergence theorem for the ICP algorithm can be stated and proved. The key 
ideas are that: 

1) Least squares registration generically reduces the average 
distance between corresponding points during each 
iteration, whereas 

2) The closest point determination generically reduces the 
distance for each point individually. 

This individual distance reduction also reduces the average distance because the average 
of a set of smaller positive numbers is smaller. 
Theorem: ‘The iterative closest point algorithm always converges monotonically to a 
local minimum with respect to the mean-square distance objective function.’ 
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6.5 Initial states for Global Matching 

 
Dealing with the initial state problem we can adopt the following definition of the 

first two moments of the distribution of geometry in P and X : 
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Where E[.] represents the sample expectation (averaging) operator. If the point data set 
P covers a significant portion of the model shape X such that the condition  
                                           )()()(1 xpx trtrtra Σ≤Σ≤Σ         
 
Holds for a sufficiently large factor,  71.02/11 ≈=a   then it is found that it is 
generally not necessary to use multiple initial translations states, as long as enough 
rotation states are used. This factor 1a   is the allowable occlusion percentage for global 
matching. The exact value of  1a   could be computed for any given class of object shapes 
via exhaustive testing if that is desired. 

There are two reasonable options for the initial translation state: 
1)Apply the ICP algorithm directly to the point set P using multiple rotation states 

about its center of mass  
→

pμ   ,or 
2) transform it first so that the centers of mass of P and X coincide, and than apply 

ICP. 
In our implementation it is applied the second method. 
It is found no differences in the final registration results between 1) not translating 

and 2) pre-translating the point set when using an adequately large set of initial rotations. 
In fact, any translation state suffices because the ICP algorithm is very insensitive to the 
initial translation state when used for global matching. Also it is observed that pre-
translating the data point set’s center of mass generally saves a few iterations (e.g. 2 to 4) 
out of the usual 20 or so total.. 

A further simplification in the global shape matching algorithm can be 
accomplished for most generic shapes, where principal moments demonstrate some level 
of distinctness. Let  zyx ppp ≥≥   be the square roots of the eigenvalues of  pΣ  , and let  

zyx rrr ≥≥  . If the following sets of conditions hold: 
  
                          xy pap 2≤       yz pap 2≤     
                          xy rar 2≤          yz rar 2≤  
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For a specified value of 2a  , e.g., 71.02/12 ≈=a  ,one can reliably match the 
basic shape structure of data and model using only the eigenvectors of the matrices pΣ     

and  xΣ  . Again, the exact value of 2a  could be computed for any given set of objects 
and any given level of sensor noise via exhaustive testing if needed. In this case of 
eigenvalue distinctness, the identity transformation and the 180 degrees rotations about 
the eigenvector axes corresponding to xx rr ,   and zr   provide a very good set of only four 
initial rotations that yield the correct global minimum for a wide class of model shapes. 

If two of the three eigenvalues are approximately equal but significant different 
from the third for both data and model shapes, the number of initial states need only be 
expanded for rotations about the nonambiguous axis, thereby reducing the total number 
of initial rotations states. 

If neither of the above cases for global matching hold true (i.e. zyx ppp ≈≈   and  

zyx rrr ≈≈ then it must be used a fine sampling of quaternion states that cover the entire 
surface of the northern hemisphere of the unit 4 sphere uniformly.  

 
 
 

 

6.6 How it works 
 
- The ICP algorithm program was implemented in MATLAB 7.1 and analytically works 
as follows: 
 

1. Recognizes the shapes from the selected 15 landmarks(Fig.1). The landmarks are 
fixed manually by the MousePos. 
2. Computes the mean square for each shape, as it is described in equation (2) 
3. Finds the “center of mass” for the point set P and for the point set X, by equation 

(3),(4). 
4. Changes the dimensions of the shapes from 45x2 to 45x3, by adding a third 

column of nulls so that the equation for quaternion can be used (The Quaternion 
method can be used only for 3-D shapes, eq.(10).). 

5. After finished aligning and adding 3-D dimension, it finds the TR and QT, who 
are the rotation matrix and the translation vector respectively 

6. Then it computes the initial error 
a. The registration error (reg_error) is the error between the shape P and Y(Y 

matrix is described later). 
b. The y_error is the error between shape X1 and shape P. 

7. After this, it finds the closest points of X1 (model) to shape we want to align (P). 

This can be done from the equation: 
→→

∈

→

−= pxXpd
Xx

min),( . The closest point is 

the point that the distance is minimum. So we compute the minimum distances. 
This point is added to matrix (Y). This work id done iteretavily, so that Y matrix 
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has 45x3 dimensions, as X1 and P (Y may have same points, if they are the 
closest points. 

           - Y now contains the closest points of the model. This is done by ICP_ONLY. 
8. ICP_ONLY is a sub-program and works as follows: 

- Computes rotation and translation matrices to align P to X1 (model). 
a. First calculates the cross-covariance of X1 and P, from (5). 
b. Secondly, finds A, delta and Q, from equations (6),(7). 
c. Thirdly, finds the eigenvectors and the eigenvalues. The eigenvalue that 

corresponds to the maximum eigenvalue is selected as the optimal 
rotation, from eq. (8) 

- Then computes the Rotation matrix, from equation (1), and the translation vector, 
from eq.(9). 

9. Then, in the main program (ICP1teliko), we update the rotation and translation 
matrix from (ICP_ONLY). This is done so finally to have one rotation and 
translation matrix that can be applied to the initial shape. P is the shape that 
changes after each iteration. 

10. Then, applies rotation an translation matrices and plots the results (figures…) 
11. Finally, computes the registration error. 
 

6.7 Equivalence between ICP and ASM  
 
     After the statements of ASM and ICP algorithms we can prove the equivalence of the 
equations that are used for the measure of the distances between the points of the ‘model 
shape’ and ‘the shape to be aligned’. The problem that we deal with in this thesis can be 
defined as follows: We have two shapes or more that are represented with N landmarks 
(points) each one. Let them be x1 and x2, our purpose being to align x2 to x1. We assume 
shape x1 to be the model shape. If the above procedure can be accomplished in a 
satisfactory way, we can use it to align any shape to an ideal model shape x1. 
Mathematically the problem can be treated as follows: We want to minimize the distance 
between the two shapes. To define the between shape distance we use the sum of the 
‘Euclidean distances’ of the landmark points of the two shapes. By minimizing the 
between shape distance we align the two shapes. The Euclidean distance between two 
points P1, P2 in two dimensions is given by the following formula: 
                                          2

12
2

1212 )()(),( yyxx PPPPPPd −+−=                            (1) 
 
The two algorithms that are implemented in this thesis, so far, for the achievement of the 
alignment of the N shapes are the ASM and the ICP algorithms. Each of the algorithms is 
dealing with the problem in a different way; however both are trying to minimize the 
Euclidean distance between the two shapes. 
- In the ASM algorithm the equation to be minimized is: 
                                      ))(())(( 2121 xMxWxMxE T −−=               (2) 
 
In (2) x1 is the model and M(x2) is x2 transformed in case to be aligned to x1with the use 
of the rotation and the translation. If there are N landmarks we have N equations. If we 
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ignore W then equation (2) effectively represents the sum of all the distances of the each 
landmark from the respective landmark of the model shape, and is using the Euclidean 
distance definition as defined in (1).  
- In the ICP algorithm the equation to be minimized is: 
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i
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p
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→

ix   is the model and  
→→→

− TiR qpqR )( is the transformed shape. This is obvious that the 
distance is the Euclidean distance. So we can reach the statement that the two models (2) 
 

6.7 Results and figures of the ICP algorithm 
 

The ICP algorithm is implemented in MATLAB 7.1 with the use of MousePos,  
which is a especially designed program in C++ programming language for the manually 
fixing of the landmarks in the X-ray digital images. These images are from the NHANES 
II database. These images are available in the website:  
http://archive.nlm.nih.gov/proj/ftp/ftp.php 
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                                                             Figure 6.2 ICP ‘The Normal Case’ 
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     - With color blue is the model shape, with green the shape before and after the 
alignment (in all ICP figures).                                                 

o In Figure 6.2 it is shown the implementation of the ICP program, with the use of 
the ICP_ONLY subprogram, for the alignment of two shapes with 15 landmarks 
normal fixed, as in Figure 5.6 (of ASM’s figures),  (‘L04531’ and ‘L12966’ 
images): 
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                                                             Figure 6.3 The ‘Random Case’ 

                                                            
 
 
 
  
 

o In Figure 6.3 it is shown the implementation of the ICP program when the one 
shape has random fixed landmarks 
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                                                              Figure 6.4 The ‘Improper Case’ 

 
 
 
 
                                

o In Figure 6.4 is the implementation of the ICP algorithm when the points are not 
fixed properly. 

 
- In the previous figures we show the ICP’s alignment. In all the investigated cases the 
algorithm worked very efficient. If we focus to the model’s shape points and to the ‘to be 
aligned’ shape points, in all the cases the distances are very small. A very strong 
advantage of ICP algorithm, is that, because of the Closest Point matrix, this algorithm 
can execute the alignment independent of the number of the landmarks that were used for 
the representation of the shape ‘to be aligned’. This can be done because the Closest point 
matrix applies to its matrix the closest points to each point of the shape ‘to be aligned’.    
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7. Nelder-Mead algorithm 
 
 

7.1 Introduction 
 
     The Nelder – Mead algorithm attempts to minimize a scalar-valued nonlinear function 
of n real variables using only function values, without any derivative information (expicit 
or impicit). The Nelder-Mead method falls in the general class of direct search methods. 
A large subclass of direct search methods, including the Nelder – Mead method, maintain 
at each step a nsimplex, a geometric figure in n dimensions of nonzero volume that is the 
convex hull of n+1 vertices. Each iteration of a simplex direct search method begins with 
a simplex, specified by its n+1 vertices and the associated function values.   
     A simplex method for finding a local minimum of a function of several variables has 
been devised by Nelder and Mead. For two variables, a simplex is a triangle, and the 
method is a pattern search that compares function values at the three vertices of a 
triangle. The worst vertex, where f (x, y) is largest, is rejected and replaced with a new 
vertex. A new triangle is formed and the search is continued. The process generates a 
sequence of triangles (which might have different shapes), for which the function values 
at the vertices get smaller and smaller. The size of the triangles is reduced and the 
coordinates of the minimum point are found. The algorithm is stated using the term 
simplex (a generalized triangle in N dimensions) and will find the minimum of a function 
of N variables. It is effective and computationally compact. 
 

7.2 The Nelder – Mead algorithm 
 
      The Nelder-Mead algorithm was proposed as a method for minimizing a real-valued 
function f(x) for nx ℜ∈ . Four scalar parameters must be specified to define a complete 
Nelder-Mead method: coefficients of reflection (p), expansion (x), contraction (γ), and 
shrinkage(σ). According to the original Nelder-Mead paper, these parameters should 
satisfy: 
                     (a)  p>0, x>1 ,x>p , 0<γ<1 , and 0<σ<1 
                     (b) p=1, x=2, γ=1/2, and , σ=1/2  
The general conditions (a) are assumed for the one-dimensional case and the standard 
case (b) in the two-dimensional analysis. 

 

7.3 Statement of the algorithm 
 
     At the beginning of the kth iteration, 0≥k  a simplex kΔ  is given, along with its 
vertices, each of which is a point in nℜ . It is always assumed that iteration k begins by 
ordering and labeling these vertices as: )(

1
)(

1 ,..., k
n

k xx +  such that: 
                                           )(

1
)(

2
)(

1 ... k
n

kk fff +≤≤≤                    
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where )(k
if  denotes )( )(k

ixf . The kth iteration generates a set of n+1 vertices that define 
a different simplex for the next iteration, so that kk Δ≠Δ +1 . Because we seek to minimize 
f, we refer to )(

1
kx  as the best point or vertex, to )(

1
k

nx +  as the worst point, and to )(k
nx  as the 

next-worst point. Similarly, we refer to )(
1

k
nf +  as the worst function value, and so on. 

 
- Initial triangle BWG 
 
     Let f (x, y) be the function that is to be minimized. To start, we are given three 
vertices of a triangle: Vk = (xk , yk), k = 1, 2, 3. The function f (x, y) is then evaluated at 
each of the three points: zk = f (xk , yk) for k = 1, 2, 3. The subscripts are then reordered so 
that z1 ≤ z2 ≤ z3. The next notation is used: B = (x1, y1), G = (x2, y2), and W = (x3, y3) B is 
the best vertex, G is good (next to worst or next to best), and W is the worst vertex. 
 
- Midpoint of the good side 
 
     The construction process uses the midpoint of the line segment joining B and G. It is 
found by averaging the coordinates: 
 

                                       )
2

,
2

(
2

2121 yyxxGBM ++
=

+
=  

 
 
 
- Reflection Using the Point R 
 
     The function decreases as we move along the side of the triangle from W to B, and it 
decreases as we move along the side from W to G. Hence it is feasible that f (x, y) takes 
on smaller values at points that lie away from W on the opposite side of the line between 
B and G. We choose a test point R that is obtained by “reflecting” the triangle through the 
side BG. To determine R, we first find the midpoint M of the side BG. Then draw the line 
segment from W to M and call its length d. This last segment is extended a distance d 
through M to locate the point R ( Figure 7.1). The vector formula for R is 
 
                                      R = M + (M − W) = 2M − W 
 
 
 
 
- Expansion Using the Point E 
 
     If the function value at R is smaller than the function value at W, then we have moved 
in the correct direction toward the minimum. Perhaps the minimum is just a bit farther 
than the point R. So we extend the line segment through M and R to the point E. This 
forms an expanded triangle BGE. The point E is found by moving an additional distance 
d along the line joining M and R (Figure 7.2). If the function value at E is less than the 
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function value at R, then we have found a better vertex than R. The vector formula for E 
is 
 
                                     E = R + (R − M) = 2R − M 

 
Figure 7.1 The triangle BGW and midpoint M and reflected point R for the Nelder-Mead method 

 

 
Figure 7.2 The triangle BGW and point R and extended point E 

 

 
 
 
 
 
- Contraction Using the Point C 
 
     If the function values at R and W are the same, another point must be tested. Perhaps 
the function is smaller at M, but we cannot replace W with M because we must have a 
triangle. Consider the two midpoints 1C and 2C of the line segments WM and MR , 
respectively (see Figure 7.3). The point with the smaller function value is called C, and 
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the new triangle is BGC. Note. The choice between 1C and  2C  might seem inappropriate 
for the two-dimensional case, but it is important in higher dimensions. 
 
- Shrink toward B 
 
     If the function value at C is not less than the value at W, the points G and W must be 
shrunk toward B (see Figure 7.4). The point G is replaced with M, and W is replaced 
with S, which is the midpoint of the line segment joining B with W. 
 
- Logical Decisions for Each Step 
      
     A computationally efficient algorithm should perform function evaluations only if 
needed. In each step, a new vertex is found, which replaces W. As soon as it is found, 
further investigation is not needed, and the iteration step is completed. The logical details 
for two-dimensional cases are explained in table 7.1. 
 

 
Figure 7.3 The construction point 1C  or 2C  for Nelder-Mead method. 
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Figure 7.4 Shrinking the triangle towards B. 

 
 
 

 
                                   Table 7.1 Logical decisions for the Nelder-Mead algorithm. 
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7.4 Results and Figures of the Nelder-Mead algorithm 
      
     Nelder Mead algorithm is implemented with the use of Matlab 7.1. In Figure 7.5 is the 
‘normal case’, in Figure 7.6 is the ‘random numbering of the points’ case, in Figure 7.7 is 
‘Improper case. If the one of the two shapes has fewer points than the other the algorithm 
fails to execute the alignment. 
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                                                      Figure 7.5 ‘The normal case’ 

 
- With blue color is the model shape, with green the shape before and after the alignment. 
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                                                Figure 7.6  ‘The random numbering case’ 
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                                                   Figure 7.7 The ‘Improper case’ 

  
- Overall, the algorithm in the first and the third cases worked well. But in the ‘random 
numbering case’ it seems that the distances between are models to be bigger than in the 
other two algorithms. The same disadvantage with the ASM algorithm also appears here; 
when one shape has different number of landmarks the algorithms cannot align the two 
shapes. 
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8. Experiments 

 

8.1 Implementation of ICP, ASM and Nelder-Mead algorithms with 20 shapes 
represented by 15 landmarks each. 

 
Three criteria are used for the comparison of the algorithms. In all of them 19 

shapes are aligned to the ‘model shape ’which is the ‘mean shape’. In the first one we 
have 3 cases as we have seen in the previous chapters. 15 points are fixed with the use of 
MousePos program to represent the shapes. The original digital X-ray vertebrae image 
(Figure 8.2) is extracted from the NHANNES II database 
(http://archive.nlm.nih.gov/proj/ftp/ftp.php).  

In this section 20 shapes represented from 15 landmarks aligned to a model-
shape. As it is mentioned before ICP algorithm aligns the shapes to the ‘Closest point 
shape’, ASM to the ‘mean shape’, and Nelder-Mead to the ‘first shape’ of the 20. Here 
the three algorithms were aligned the 20 shapes to the ‘mean shape’, in case to be 
compared.  

  
o The first case is if the landmarks are fixed properly, this means that landmarks are 

fixed exactly at the boundary of the vertebrae and with right to left numbering.  
(Figure 8.1). The two algorithms worked very well, ICP and ASM works with 
more accuracy. All the alignments are in Figure 8.3. 

 
                                                                   Figure 8.1 MousePos ‘The Normal Case’ 
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                                                                          Figure 8.2 X-Ray Image 
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                                               Figure 8.3 The ‘Normal Case’ 

 
- With black is the shape before the alignment (original), with red is the ‘model shape’, 
with blue is ASM, with cyan LIN and with green the ICP alignment. 
 

o The second case is when the landmarks are not fixed properly (not properly 
means that the landmarks are not fixed exactly at the boundary of the shape). 
Again, here the three algorithms behave very well (ICP has more precision). 
Figure 8.4 shows how the landmarks can look like and in figure 8.5 the 
alignments of ASM, ICP and Nelder-Mead. 

 
                                                        Figure 8.4 MousePos ‘The Improper Case’ 
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                              Figure 8.5 The ‘Improper case’ 

                                                                          
 
 
 

o The third case considers if the numbering of the points begins not from the left 
corner of the vertebrae but from a random part as shown in Figure 8.6. In Figure 
8.7 are shown the registration of the algorithms. 

 
                                                               Figure 8.6 Mouse Pos – ‘Different Numbering Case’ 
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                                                           Figure 8.7 ‘The Different Numbering Case’ 

 

                                                                               

- Overall algorithms work with a lot of accuracy in all the 3 cases that are investigated in 
the first section.  
 

8.2 Error Curves 
 
     The second criterion follows. In this section is calculated the mean square error given 
from the following equation: 
 

                                    ∑
=

−+−
N

Ni
mimi yyxxN 22 )()(2/1  (1) 

Where ix  and iy  are the coordinates of all the shapes (here 20), 
and     mx  and my  are the coordinates of the model shape. 
 

o The investigated case is the ‘normal case’. In figure 8.8 is shown the mean square 
error for ASM, ICP and Nelder-Mead algorithms   
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                                                                                   Figure 8.8 Square Error 
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In Figures 8.9 can be seen the standard deviation of each landmark. 
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                                                              Figure 8.9 Standard Deviation per landmark 

 
 
                                                                      

 

- When all the algorithms align with the mean shape as the ‘model shape’, ASM and ICP 
algorithms seem to have the minimum square error and standard deviation.                             
- Nelder-Mead algorithm seems to have worst square error than the other algorithms.  
The third criterion used for the comparison of the algorithms elaborates on how Nelder – 
Mead treats the problem. Let’s see the distribution of error for each algorithm, for the X 
points (8.10), for the Y (8.11) points and for both (8.12) when the square error falls from 
-30 to 30.  
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                                                                    Figure 8.10 X-Landmarks 

 
                                                                        Figure 8.11 Y-landmarks 
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                                                               Figure 8.12 All-landmarks 

                                                                               

 
 
 
- The Nelder – Mead works in another way than the least square approach algorithms, 
trying to keep as many as possible points in ‘small error’. This is manifested via the 
concentration of more error values close to zero for the Nelder – mead algorithm than the 
other two algorithms. 
 
A more thorough investigation of the distribution of errors is attempted through a study 
of the cumulative distribution of the absolute error. In Figure 8.13 we can see again the 
absolute error, but this time focusing in how many points have error<T(where T is the 
absolute error), and in Figures 8.14 and 8.15 are the mean absolute error and the variance 
of error, respectively. 
The equation that was used for the designing of these cumulative distributions diagrams 
was the one that measures the absolute error and is the following:  
 

                                         )()(2/1
1

mimi

N

i
yyxxN −+−∑

=

 

We can see that the Nelder – Mead reacts with more accuracy when the error is smaller 
than 2, at he first 10 points. Also, ASM and ICP algorithms have same behavior; they 
work well after the first 10 points. 
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                                               Figure 8.13 Points under the Threshold 
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                                              Figure 8.14 Focusing in a part of Fig. 8.13 
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                                           Figure 8.15 Mean Error for point Under Threshold 
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                                               Figure 8.16 Focusing in a part of Fig.8.15  
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                                     Figure 8.17 Std Error for points under Threshold 
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                                  Figure 8.18 Focusing in a part of Fig. 8.17  
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- As we can see Nelder – Mead has the least mean error if the error is under the threshold 
of 5. This means that it forces a few points to very small errors, without being affected 
from larger errors at others points. This can be seen more clearly if we focus in these 
particular parts of the diagrams. Figures 8.13, 8.15 and 8.17 which are parts of figures 
8.14, 8.16 and 8.18 respectively. 
 
 
     Three criteria were used in terms of the comparison of the approaches. Firstly, from 
figures 8.3, 8.5 and 8.7 algorithms look to work well, but with a more detailed 
investigation, with the use of the square error and the absolute error, ASM and ICP work 
with more accuracy than the Nelder – Mead overall(Fig. 8.8 and 8.9). Square error 
reaches almost the value of 30 in some cases for the linear algorithm, which means that it 
doesn’t has precision at these points. The comparison of the standard deviation of the 
three algorithms for each individual landmark in Fig. 8.10, which shows the deviation of 
each point from the mean one, shows the same results as previous; the least squares 
approaches work more efficiently. The expected result from the beginning of this thesis 
was that the absolute error algorithms work in the following way: ‘leave the remote 
points (which have the most absolute errors) and align the others with more accuracy’. In 
those terms a more detailed investigation followed and the distribution histograms were 
derived (Fig. 8.11, 8.12 and 8.13). In these diagrams we can see how the algorithms react 
in a specific of error (from -30 to 30). We can see that the Linear algorithm has the larger 
distribution in 0, which agrees with the assumption discussed before. In Figures 8.14, 
8.15 and 8.16 we present the absolute error of the points that belong under a threshold of 
error, the mean error and the standard deviation of these points. Figures 8.17, 8.18 and 
8.19 focusing in the same specific part of the three diagrams where the Neler – Mead 
reacts better than the others. 
         As conclusion we can say that the least square approach trying to minimize the 
error for all the points involved and in the other hand the absolute error approach 
minimize the error of the points with small error without being matched affected by 
others. The least squares solution is optimal in case that the residuals obey a Gaussian 
distribution. If this is not the case, as it is in this problem, the assumptions of the least 
squares formulation are not valid, leading to suboptimal formulations of the problem. In 
such cases other norm formulations could lead to more robust results. In our problem we 
investigated the distribution of residuals from the least square formulation and found 
them to deviate from the Gaussian distribution. For this reason we also tested the least 
absolute error  
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9.  Conclusion and further work 
 
 

The purpose of this thesis was to examine registration based on landmarks. In 
particular we were interested in medical X-ray images. A general presentation of existing 
CBIR systems was done focusing in IRMA and NLM-CEB projects, also an overview 
about the two main parts of the CBIR systems, was presented, which are the indexing and 
the retrieval parts. A part of the indexing process is the registration problem. This thesis 
is focused on the landmark-based image registration problem. 

A brief overview of the existing registration methods is presented. Extrinsic, 
intrinsic methods and non-image based registration techniques is discussed. Also norm-
based approaches in orientation problems are presented, existing solutions in least 
squares and in absolute error approaches.    

Generally the registration problem is an over determined problem, so least squares 
approach is a very common way of treating these kinds of problems. In this term two 
algorithms were selected: Active Shape Models (ASM) and the Iterative Closest 
Algorithm (ICP). These two algorithms were implemented and compared. It was found 
that they aligned N shapes to a ‘model shape’ with a lot of accuracy in three investigated 
cases. 

Least squares is optimal in case that the residuals obey a Gaussian distribution. If 
this is not the case, the assumptions of the least squares formulation are not valid, leading 
to suboptimal formulations of the problem. In such cases other norm formulations could 
lead to more robust results. In our problem we investigated the distribution of residuals 
from the least square formulation and found them to deviate from the Gaussian 
distribution. For this reason we also tested the least absolute error formulation. Nelder – 
Mead algorithm was selected and implemented and compared with the other two. 

The comparison of least squares approach and least absolute error approach was 
made using three criteria. The first was the implementation of these three algorithms with 
19 shapes aligned to a ‘model shape’, represented with 15 landmarks each. Each of the 
algorithms worked very well. The second one was the measure of the mean square error, 
the absolute error and the standard deviation per landmark. Also histograms distribution 
diagrams presented as third criterion, and showed that the ‘least squares algorithms’ 
worked in more precision general but ‘the absolute error algorithm’ in few points is less 
than in the other approach.  

Overall, least squares is the optimal solution for these kind of problems in case that 
the residuals obey a Gaussian distribution, if this not valid the absolute error solution is 
more efficient. 
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