

Technical University of Crete

School of Electronic and Computer

Engineering

Thesis

“ Cache Management Policies for Streaming Proxies : the cases of fixed

and variable video sizes and collaboration among proxies ”

Athanasios Kyriazis

Examining Committee:

 Professor Michael Paterakis, Supervisor

 Assoc. Professor Polychronis Koutsakis

 Assoc. Professor Aggelos Mpletsas

Chania, 2015

i

Ευχαριστίες

Με την ολοκλήρωση της παρούσας διπλωματικής εργασίας θα ήθελα να ευχαριστήσω

αρχικά τον επιβλέποντα της διπλωματικής μου εργασίας κ. Μιχάλη Πατεράκη που μου

έδωσε την δυνατότητα να ασχοληθώ με κάτι που μου αρέσει και με ενδιαφέρει, καθώς επίσης

και για τις πολύτιμες συμβουλές και το ενδιαφέρον του. Τον ευχαριστώ για όλα όσα μου έμαθε

κατά τη διάρκεια της συνεργασίας μας και το θεωρώ τιμή μου που συνεργάστηκα μαζί του.

Ακόμη θα ήθελα να ευχαριστήσω τα μέλη της εξεταστικής μου επιτροπής κ. Πολυχρόνη

Κουτσάκη και κ. Άγγελο Μπλέτσα που ασχολήθηκαν να διαβάσουν και να εξετάσουν την

διπλωματική μου εργασία.

Επίσης η ολοκλήρωση της διπλωματικής μου εργασίας σηματοδοτεί την ολοκλήρωση

των σπουδών μου. Για αυτό το λόγο θα ήθελα να ευχαριστήσω τους γονείς μου Αλέκο και

Έφη Κυριαζή, καθώς επίσης και την γιαγιά μου Πελαγία Κυριαζή που με στηρίζουν

οικονομικά και ψυχολογικά όλα αυτά τα χρόνια ώστε να καταφέρω να περατώσω με

επιτυχία τις σπουδές μου. Ακόμη θα ήθελα να ευχαριστήσω την αδερφή μου (επίσης Πελαγία

Κυριαζή) για την βοήθειά της στην συγκεκριμένη εργασία αλλά και για την στήριξη και την

αγάπη της όλα αυτά τα χρόνια.

Τέλος θα ήθελα να ευχαριστήσω την κοπέλα μου Τίφανη Δανιήλ για τη βοήθεια και

τη στήριξή της και όλους τους φίλους μου (Χρόνης, Βουτσάς, Νίκος, Μανώλης, Στέλιος,

Αλέξανδρος, Στέλιος, Δημήτρης, Βασίλης, Γιάννης) για όλα αυτά τα υπέροχα χρόνια που

περάσαμε κατά τη διάρκεια της φοίτησης μου στο πολυτεχνείο.

Αθανάσιος Κυριαζής

ii

Abstract

The easy access on the Internet, the exponential growth of the Internet traffic and the ever

enlarging sizes of files which are transferred over it, often lead to network congestion and

significant delays in many applications that require timely data transfer. The most important part

of data transfer over the Internet corresponds to media streaming applications which require a large

portion of the available bandwidth, while at the same time there is the need of achieving low

delays, because the delays in these applications are very annoying to the users and some of them

may not be willing to experience them. In order to improve the services provided to the users of

these applications, the techniques of video caching and of collaborative caching are used. Video

caching embodies proxy servers on the network in order to keep frequently accessed data at

locations close to the clients. Collaborative caching uses group of proxies which can collaborate

with each other, and achieve better performance than with independent standalone proxies. This

Thesis proposes new efficient algorithms for video caching which manage the cache of the proxy

servers for video transfer in real time and compares them to existing algorithms. Also, a new

effective collaborative scenario is proposed and evaluated.

In the first two parts of the Thesis the performance of three existing efficient algorithms in

the literature, the Number of Common Clients - Size (NCCS), the Least Recently and Least

Frequently Used (LRLFU) and the Least Recently Used (LRU) is evaluated and compared for the

cases of fixed and variable video sizes. In each of the first two parts of the Thesis a new cache

management algorithm is also designed and proposed, this new algorithm consists of a

combination of existing efficient algorithms. In the first part of the Thesis the proposed new

algorithm (referred to as the LRLFU_Aggressive) does not perform much better than the existing

algorithms, but in the second part the proposed new algorithm (referred to as the

LRLFU_Modified) significantly improves the performance of the system in comparison to the

existing algorithms. In the cache replacement algorithms we examine a value defined for each

video, namely the caching value, which is based on the popularity of the videos, in order to retain

in the cache the most popular videos. For each requested video which does not exist into the cache,

other videos have to be removed (the ones with the lower caching values) in order for the new

video to be cached. The performance metrics we use to evaluate and compare the algorithms in

our system are the Video Hit Ratio and the Fraction of the Delayed Starts.

iii

In the third part of the Thesis a collaborative scheme of two client communities each

associated with one proxy server, is defined and studied. While most of the studies in the area of

collaborative proxies use the same cache management algorithm in each proxy and assume that

each client community communicates via the corresponding proxy with the same content server,

in our collaborative system we have used a different cache management algorithm in each of the

two proxies and we assumed that there are two content servers each one associated with one of the

client communities. Furthermore, we assumed that each of the client communities communicates

via the corresponding proxy only with its corresponding content server. Also, we assumed that

there is an overlap between the contents of the two content servers. Each of the two different cache

management algorithms used in the collaborative scheme caches different videos in the

corresponding proxy, and this helps the overall system performance. From the results of our

simulation study we derive important conclusions for the performance of the examined

collaborative scheme.

iv

Contents

Ευχαριστίες .. i

Abstract ... ii

List of Figures ... vii

List of Tables ... ix

Chapter 1 : Introduction .. 1

1.1 Introduction to Video Caching in Streaming Proxies .. 1

1.1.1 Main problems and features of streaming media .. 2

1.1.2 Basic Principles and Architecture of Video Caching ... 3

1.1.3 Basic Characteristics of Collaborative Caching ... 5

1.1.4 Basic Protocols for On-line Video Streaming [18] ... 6

1.2 Related Work.. 7

1.2.1 System Model ... 8

1.2.2 Memory Management ... 10

1.2.3 Various Probability Distributions ... 12

1.3 Goals and Contribution of the Thesis ... 13

1.4 Thesis Outline .. 14

Chapter 2 : Design and Performance Evaluation of Fixed-Video Size Cache Management

Policies .. 16

2.1 Introduction .. 16

2.2 System Model ... 17

2.2.1 Network Topology .. 17

2.2.2 Cache Management/Replacement Policies ... 17

2.3 Performance Evaluation ... 20

2.3.1 Performance Metrics ... 20

2.3.2 Simulation Model.. 21

2.3.3 Simulation Results .. 22

2.3.3.1 The impact of different cache sizes ... 25

2.3.3.2 The impact of different number of videos in the content server 27

v

2.3.3.3 The impact of different values of skew parameter in popularity distribution . 29

2.4 Conclusions .. 31

Chapter 3 : Design and Performance Evaluation of Variable Video Size Cache Management

Policies .. 32

3.1 Introduction .. 32

3.2 System Model ... 33

3.2.1 Network Topology .. 33

3.2.2 Cache Management/Replacement Policies ... 33

3.3 Performance Evaluation ... 35

3.3.1 Performance Metrics ... 35

3.3.2 Simulation Model.. 35

3.3.3 Simulation Results .. 38

3.3.3.1 The impact of different cache sizes ... 40

3.3.3.2 The impact of different number of videos in the content server 42

3.3.3.3 The impact of different values of the Standard Deviation of the Normal

Distribution for the Video Sizes ... 44

3.3.3.4 The impact of different values of skew parameter in popularity distribution . 46

3.3.3.5 The examination of Byte-Hit Ratio versus time .. 48

3.4 Conclusions .. 49

Chapter 4 : Design and Performance Evaluation of a simple Collaborative Scenario 50

4.1 Introduction .. 50

4.2 System Description .. 51

4.2.1 Network Topology .. 51

4.2.2 Cache Management/Replacement Policies ... 52

4.3 Performance Evaluation ... 53

4.3.1 Performance Metrics ... 53

4.3.2 Simulation Model.. 54

4.3.3 Simulation Scenarios .. 57

4.3.4 Simulation Results .. 57

4.3.4.1 The impact of different overlap percentage ... 57

vi

4.3.4.2 The impact of different values of the overlap percentage on the Local and

Remote Video-Hit Ratios of the two cache replacement policies 59

4.3.4.3 The impact of different cache sizes ... 61

4.4 Conclusions .. 63

Chapter 5 : Conclusions ... 64

5.1 Overview of Work .. 64

5.2 Main Conclusions and Contribution .. 65

5.3 Ideas for Future Work .. 66

References .. 67

vii

List of Figures

Chapter 1

Figure 1.1 : Architecture of Video Caching.. 4

Figure 1.2 : Structure of a Simple Collaborative Scenario ... 6

Chapter 2

Figure 2.1 : Video-Hit Ratio versus time (expressed as number of requests served) 23

Figure 2.2 : Fraction of Delayed Starts versus time (expressed as number of requests served) ... 24

Figure 2.3 : Video-Hit Ratio versus time (expressed as number of requests served) for λ=4,

Runs=1500 .. 24

Figure 2.4 : Video-Hit Ratio versus cache size... 26

Figure 2.5 : Fraction of Delayed Starts versus cache size .. 26

Figure 2.6 : Video-Hit Ratio versus number of total videos ... 28

Figure 2.7 : Fraction of Delayed Starts versus number of total videos... 28

Figure 2.8 : The impact of skew in Zipf video popularity on VHR.. 30

Figure 2.9 : The impact of skew in Zipf video popularity on Fraction of Delayed Starts 30

Chapter 3

Figure 3.1 : Normal Distribution for Variable video sizes with mean = 500 MB, Sd = 200 MB . 36

Figure 3.2 : Video-Hit Ratio versus time (expressed as number of requests served) 39

Figure 3.3 : Fraction of Delayed Starts versus time (expressed as number of requests served) ... 39

Figure 3.4 : Video-Hit Ratio versus cache size... 41

Figure 3.5 : Fraction of Delayed Starts versus cache size .. 41

Figure 3.6 : Video-Hit Ratio versus number of videos ... 43

Figure 3.7 : Fraction of Delayed Starts versus number of videos ... 43

Figure 3.8 : The impact of the Standard Deviation of the Normal Distribution on VHR 45

Figure 3.9 : The impact of the Standard Deviation of the Normal Distribution on the Fraction of

Delayed Starts ... 45

Figure 3.10 : The impact of the skew in Zipf video popularity distribution on VHR 47

Figure 3.11 : The impact of the skew in Zipf video popularity distribution on the Fraction of the

Delayed Starts ... 47

Figure 3.12 : Byte-Hit Ratio versus time (expressed as number of requests served) 48

viii

Chapter 4

Figure 4.1 : Collaborative Scenario .. 52

Figure 4.2 : The impact of different values of the overlap percentage on VHR........................... 58

Figure 4.3 : The impact of different values of the overlap percentage on Fraction of Delayed Starts

... 59

Figure 4.4 : The impact of different values of the overlap percentage on Local and Remote Video-

Hit Ratio of the two proxies .. 60

Figure 4.5 : Video-Hit Ratio versus cache size, Overlap = 44% .. 62

Figure 4.6 : Fraction of Delayed Starts versus cache size, Overlap = 44% 62

ix

List of Tables

Table 2.1 : System Parameters together with their default values .. 22

Table 3.1 : System Parameters together with their default values .. 37

Table 4.1 : Overlap expressed in terms of the number of common video files and in terms of the

cumulative probability of the Zipf distribution ... 55

Table 4.2 : System Parameters together with their default values .. 56

1

Chapter 1 : Introduction

1.1 Introduction to Video Caching in Streaming Proxies

The internet was designed as a free place for the whole world to communicate and interact

on a broad scale. However, the easy access on it, the ever enlarging sizes of files which are

transferred and the exponential growth of Internet traffic which shows no sign of slowing down,

often lead to network congestion and significant delays in many applications that require timely

data transferring. Especially nowadays, the most important part of data transfer has been occupied

by media streaming applications, like on-line video lectures, streaming live tv, on-line movies and

many others. The access to streaming media requires a high and stable transmission rate to satisfy

the end user. But, because of their large size, streaming media requires a large portion of the

available bandwidth which is one of the most important problems facing the internet today.

Because of the stringent requirements of streaming media on network bandwidth, delay and loss

rate, the delivery of multimedia contents with high quality and low cost over the internet is

problematic even today, when the internet has experienced strong growth. An important role in

the development of these problems, plays the rapid increase of users who have access to internet.

As the number of users increases, it becomes more and more difficult for the system to serve their

needs, which are to view the whole video without any interrupts or delays. These factors mentioned

above, create the most significant problems in streaming media transfer and for that reason they

are analyzed in section 1.1.1.

Many techniques like collaborative caching or streaming proxies have been used to control

the media traffic and improve the quality of data transfer. Without the use of proxies on a congested

network, users are likely to experience problems such as jagged video, patchy audio and

unsynchronized video and audio as packets are dropped or arrive late. By using the proxy, it is

possible to increase the quality of service, reduce pauses and buffering during playback and save

network bandwidth. Even better results can be achieved using a hierarchy of proxies which can

cooperate with each other. This is done by the technique of collaborative caching. So, it is worth

2

mentioning how video caching and streaming proxies work in section 1.1.2, describe the technique

of collaborative caching in section 1.1.3 and give a quick description of protocols and architectures

which are used to streaming media transfer in section 1.1.4. The rest of this Chapter is organized

as follows. The relevant work in the field of video caching and how the work in this Thesis is

affected by it, is described in section 1.2. In section 1.3 the contribution of the Thesis is presented

and discussed and finally in section 1.4 the outline of the work in this Thesis is given.

1.1.1 Main problems and features of streaming media

The streaming media content is sent in compressed form over the internet and is displayed

by the viewer in real time. With streaming media a web user does not have to wait to download an

entire file in order to play it. Instead, the media is sent in a continuous stream of data and is played

as it arrives. This characteristic of streaming media has the advantage that users do not have to

wait to download the entire file in case they want to watch it immediately. But, in this way many

problems are created, such as the bandwidth limitations or the difficulty to be transferred very

large files. These problems are created because of the specific features of streaming media and are

discussed below.

The main feature of streaming media which cannot be limited is their large size. Of course

that size varies depending on the quality of media and the compression that has been used. For

example, a one hour file with quality of 240p and H.264 compression could be about 200MB, an

SD (Standard Definition) file with MPEG-2 compression 1.5 GB and a FullHD 1080p file with

MPEG-4 compression could reach 7 or 8 GB. Thus, it is clear that there are fundamental limitations

in storage, especially in systems that provide high quality streaming media.

The second important feature of streaming media is the huge bandwidth requirements.

These requirements are directly influenced by the file size. It is reasonable that, the larger the file

to be transferred, the greater the bandwidth required in order to transmit the file without problems

to the user. To understand the required bandwidth in a system, a simple example is given next.

Let’s consider a system with 100 users who are watching simultaneously one video with SD

quality. The bit rate required to avoid delays and pauses is about 3.5 Mbps * 100 = 350 Mbps [17]

unless multicasting is used effectively. Of course there is no system that provides only one video

3

file and it is very often in popular steaming media systems that there are much more than 100 users

watching at the same time the same video. If we take into account the fact that most of the videos

today are High Quality, it is obvious that the total bandwidth required is very high.

Finally, another feature of streaming media not considered in this Thesis, is that the viewers

have freedom of movements within the video. According to surveys, most of the users do not

watch the entire video. Instead, they watch a part of it or they use forward and backward

movements. The immediate result of such user actions is to abruptly cut the data flow and

complicate the way the system manages the available memory.

It is obvious that, for the reliable and timely data transfer to the users some performance

metric goals, should be met. These performance metrics, constitute the performance evaluation

criteria of our system that we will see in Chapters 2, 3 and 4. These metrics are the Video Hit Ratio

(VHR) and the Fraction of Delayed Starts (DS) which are briefly described below.

With the term of Video Hit Ratio we mean the number of times the proxy server found an

object requested by the user in the cache, divided by the total number of times it looked for some

object in the cache. It is obvious that, the higher the VHR, the more effective the cache is at

improving the system performance. The other performance metric, referred to as the Fraction of

Delayed Starts corresponds to the fraction of times a user needs to wait, until it starts watching a

video. The Fraction of Delayed Starts is the result of the “distance” between the video server and

the user (client). We need to reduce the Fraction of Delayed Starts as much as possible in order to

satisfy the users and improve the overall system performance.

To improve the quality of service provided to the user and to reduce the problems

mentioned above, the technique of Video Caching is used which we analyze in the next section.

1.1.2 Basic Principles and Architecture of Video Caching

In recent years because of the problems that have been presented and discussed in section

1.1.1, the real time streaming media transfer received considerable attention by researchers in the

field. Many techniques have been proposed to reduce these problems, one of which is the video

caching. The main idea of video caching is to keep frequently accessed data at locations close to

the clients. In that way, retrieving data from these caching locations, reduces transmission time

4

across the internet and the workload imposed on the server. For streaming media objects, caching

becomes especially attractive due to their features which are long duration, predictable sequential

nature of accesses and high network resource requirements. The architecture of video caching

consists of three basic parts which are represented in Figure 1.1 and their functions are described

below.

The first part is the clients. With the term of client, it is meant the program that establishes

connections for the purpose of sending requests. A very simple example of a client is the browser

of a computer when the user clicks to watch a video.

The second part is the proxy server [19]. This is the main part of video caching. A proxy

server is a dedicated computer or a software system running on a computer that acts as an

intermediary between an endpoint device, such as a computer, and another server from which a

user or client is requesting a service. When a proxy server receives a request for a video, it looks

first in its local cache. If it finds the content, it returns it to the user without having to forward the

request to the Internet. If the content is not in the cache, the proxy server, acting as a client on

behalf of the user, requests the video from the server out on the Internet. When the content is

returned, the proxy server relates it to the original request and forwards it on to the user.

Finally the third part is the Content Server in which all videos that exist in the system, or

the videos that will be created in the future are stored. Its work is to accept connections in order to

service requests by sending back responses.

Figure 1.1 : Architecture of Video Caching

http://searchstorage.techtarget.com/definition/cache

5

Although proxy caching is a really effective technique, with the ever increasing traffic on

the internet there is the need of better architectures. So, a better technique developed, is to have a

hierarchy or group of proxies that will be able to cooperate with each other. This technique named

collaborative caching is described in section 1.1.3.

1.1.3 Basic Characteristics of Collaborative Caching

In general, proxies grouped together can achieve better performance than independent

standalone proxies. Specifically, at group of proxies can collaborate with each other to increase

the aggregate cache space, balance loads and improve system scalability. Many collaborative

scenarios have been developed over the years, each of which with its own characteristics. But, the

main idea of all collaborative scenarios is that when a cache miss occurs (that is the requested

video is not in the cache) the proxy does not immediately request the video file from the content

server. Instead, the proxy first searches for the file in another proxy into the collaborative group.

If the file exists in another proxy, then the proxy brings the file and immediately serves the clients

with low delay. Only if none of the proxy caches has the video, then the proxy contacts the Content

server and requests for the file. Collaboration among caching systems requires the ability to

identify other caches and to learn about their current content. This feature is implemented

differently in each scenario, depending on the system structure that has been used. Ideally, a cache

would always know the current state of all the other caches, in order to immediately know where

to look about the requested content. However, it is impractical to keep a consistent and up-to-date

view of all proxy cache contents. The architecture of a quite simple collaborative scenario is given

in Figure 1.2.

6

Figure 1.2 : Structure of a Simple Collaborative Scenario

1.1.4 Basic Protocols for On-line Video Streaming [18]

The popularity of Internet multimedia applications has grown dramatically in the past

several years, spurred by the penetration of the Web and the increasing capacity of backbone and

local-access networks. Although HTTP can be used to transfer audio and video content, most

multimedia transmissions are simply initiated on the Web. So, the Integrated Services working

group of IETF developed a model of internet services which is called integrated services and

includes best-effort service and real-time service. This model consists of RTP, RTCP and RTSP

protocols which help to improve the quality of services provided to the clients by the system. To

understand how these protocols work we give a quick description of each of them.

The RTP protocol provides the basic functionality for transferring real-time data over

packet networks. Since RTP does not include mechanisms for reliable delivery or flow control,

transport of RTP packets must rely on underlying protocols such as UDP and TCP. RTP typically

runs over UDP, though TCP is sometimes used for reliable transport or to stream across firewalls

that discard UDP packets.

7

The RTCP protocol monitors the delivery of RTP packets. The protocol provides feedback

on the quality of data distribution, establishes an identification for each participant, scales the

control packet transmission with the number of participants and provides minimal session control

information. RTCP packets consist of source descriptors, sender reports, receiver reports, BYE

packets and APP packets, where a BYE packet is sent to report that one more sources have left the

session and the APP packets are intended to experimental use. Receiver reports include the fraction

of RTP packets lost, the sequence number of the last RTP packet received, and the packet

interarrival jitter. Senders can use this information to modify their transmission rates or to switch

to a different encoder. The sender reports include the stream's SSRC, the sequence number of the

last RTP packet sent, the wallclock time of the last transmission, and the number of RTP packets

and bytes sent. The client can use the RTP timestamp and wallclock time information for media

synchronization.

Finally the RTSP protocol coordinates the delivery of multimedia files, acting as a “VCR

remote control”. RTSP typically runs over TCP, though UDP can also be used. RTSP is stateful

and has several different methods. The OPTIONS method inquires about server capabilities and

the DESCRIBE method inquires about the properties of a particular file. Client and server state

machines are created with the SETUP method, which also negotiates transport parameters. The

client sends a SETUP message for each stream in the file. Streaming of the file is initiated with

the PLAY method, which can include a Range header to control the playback point. The

TEARDOWN method terminates the session, releasing the resources at the server and client sites.

The protocol also includes a number of recommended or optional methods.

1.2 Related Work

In order to solve the problems mentioned in previous sections and improve techniques that

support high quality steaming media, considerable research has been done. These studies focus

their interest on the use of proxy servers for storing the most popular videos. Each work use

different methods in order to achieve the desirable result.

8

The different methods mostly concern on how the system is structured (system model) as

well as on the way the system manages the memory. However, important role on the

implementation of each system play the different distributions that have been used to implement

the different sizes of videos, the user request arrival processes and the popularity of each video.

1.2.1 System Model

In studies presented in the literature, different system models have been implemented.

There is the simple system model that was described in section 1.1.2 and systems like that, or

variations of that, have been used in [7] and [16]. Also, there is the collaborative system model

which has grown rapidly in recent years and a simple form of it was described in section 1.1.3.

Some studies that uses collaborative caching models are [1], [3] and [8]. Finally, some studies use

a video segmentation scheme with two or three caches. Different segments of the same video can

be stored in these caches. In our Thesis, ideas from the first two system models above have been

adopted, while the segmentation schemes have not been considered. However, since video

segmentation is an important technique for video caching, we briefly discuss it here for

completeness.

In [1] and [2] many different system models have been proposed in order to evaluate the

proposed therein cache management policy (LRLFU). Specifically, in [2] a simple scenario has

been considered with a far-distant origin server, proxy servers located close to the client

populations, and client devices. Also, two video segmentation schemes have been used. In the first

scheme, a media object consists of multiple equal-size blocks, where the block is the smallest unit

of transfer. Blocks of a media file received by the proxy server are then grouped into variable-size,

distance-sensitive segments. The segment size increases exponentially from the beginning

segment of the video, forming a pyramid. In second video segmentation scheme considered, the

first segment consists of a small number of blocks Bp, forming the prefix of the video and later

segments consist of a larger fixed number of blocks. Bp is chosen in a way to guarantee that enough

blocks will be in the cache to mask the latency in the server-proxy path in order to guarantee

continuous streaming of the video once it is started. Every proxy in these schemes, caches different

parts of the video files (Cache A is used for prefix and Cache B for the remaining segments of the

9

video) and use different cache replacement and admission policies. In [1], the same segmentation

schemes as in [2] are used, but a collaborative scenario has also been added. In this collaborative

scenario a hierarchical tree topology is considered, consisting of proxies equipped with a small

size cache, located very close to the client communities and used to serve one client community

each (referred to as type A proxies) and proxies equipped with a much larger size cache than that

of type A proxies, located further away from the client communities and used to serve more than

one client community each. If a client requests a video from a type A proxy and this proxy does

not have the prefix of this video, it asks the others type A proxies for it. If it finds it there, it caches

it and then sends it to the client. Instead, in the non-collaborative scenario, if the prefix of a

requested video is not found in the corresponding type A proxy, then the video is requested from

the corresponding type B proxy and the server and there is a delayed start for this video request.

In [5] a simple system structure with a single VPS (Content Server), a single proxy cache

and multiple clients is examined. Also, a stochastic model-based algorithm incorporating a multi-

level Hidden Markov Model (HMM) for video segmentation and indexing has been used.

Furthermore, it has been assumed that three video quality layers, namely Vorg (for the basic video

quality layer) and, Vmid and Vbase (for the two lower video quality layers), are generated for each

video segment. The studies in [3] and [4] are variants of [5] with more complicated system models.

In [4] the system consists of one or more origin servers that host video content and a number of

proxy caches. Each proxy cache is responsible for clients in a certain geographical area in the sense

that their requests to video content first reach that proxy cache. In [3] a collaborative scenario with

a number of cooperating geographically distributed proxy caches at the edge of network is

proposed. In this study, the proposed framework supports multiple levels of client privileges in

terms of the visual quality and content abstraction of the delivered video.

In [7] a simple system with geographically dispersed origin servers is proposed, while in

[8] a collaborative caching system that allows a program to choose different caching methods for

its data is studied. Finally in [10] an Internet streaming media delivery architecture, consisting of

caches deployed at the edge of the Internet, streaming media objects that are replicated either

entirely or partially on these caches and clients, whose requests are satisfied (possibly jointly) by

servers and caches is considered.

10

1.2.2 Memory Management

Over the years, many different methods for cache management have been proposed and

used on systems implementing streaming media caching. The first methods implemented, were

the LRU (Least Recently Used) and the LFU (Least Frequently Used) which both have been used

in many streaming media caching systems [1]-[16], either as the main cache management policies

or for the purpose of comparisons. Although these methods are quite simple, they have

disadvantages especially in terms of the efficiency of cache management. Some later works tried

to improve these methods, an example is the LRLFU method that has been introduced in [1] and

[2] and constitutes a combination of LRU and LFU. Another method that has been proposed in the

literature and was shown to outperform LRU and LFU is the NCCS [3]-[5]. Many other techniques

based mostly on LRU and LFU have been proposed in the literature, like ARC [15], RBC [6],

LRU-MRU [8], GDSF [12], as well as others, but none of them have been considered in our Thesis.

LRU is the most widely used cache replacement policy in many different system areas. The

data objects in an LRU cache are sorted by the last time used and LRU replaces the least recently

used object when cache is full. However, LRU has an important disadvantage referred to as the

"cold cache pollution" [13]. For instance, in LRU whenever a new object is inserted in the cache,

it is put on the top of the cache stack. If the object is not popular (e.g. it is used only once), it will

take some time before it is moved down to the bottom of the stack (marked as “least recently used”)

and dropped from the cache. Nevertheless, it is a method easy to implement and performs well in

specific situations. The caching value of a video which is used to implement LRU is given by the

expression
1

T−T′
 , where T is the current time and T′ is the last time that this video has been

requested. A number of recency-based policies are more or less extensions or variants of the LRU

policy. With no exaggeration, all researches in [1]-[16] have used LRU in some way (e.g. as a

cache management policy, as a comparison case or as a basis for inspiration to create a new more

efficient cache management policy).

LFU is a frequency based policy that tries to replace those videos that have rarely been

accessed and keep in the cache the popular videos that are already accessed many times. The LFU

policy replaces the least frequently used video when an existing video in the cache needs to be

evicted for a newly arrived video. However, the LFU policy has a serious drawback that is referred

to as the "hot cache pollution" [13], which is, that videos that have accumulated a large number of

11

requests in the beginning of system operation, may not be accessed again. These stale videos

occupy and waste the cache space. Thus, there is no free space for new videos to be cached. As a

result, cache hit ratio may be severely decreased. The video caching value that has been used to

implement LFU is given only by one variable that is denoted by RF in many studies, RF is equal

to the number of requests the specific video has received until now. LFU has been used in many

works in the literature, either as basis for inspiration to created new efficient cache management

policies or as a comparison case, [1]-[6], [8], [9], [13].

LRLFU (Least Recently and Least Frequently Used) constitutes a combination between

the LRU and the LFU policies. It is capable of capturing the changing popularities of the various

videos by attaching a caching value to each video according to how recently and how frequently

the video has been requested and decides to cache the most ‘valuable’ videos. The results of the

performance study in [1] have shown that the LRLFU cache management policy when applied to

a simple topology of proxies and compared with previous work in this area (which uses the LRU-

i policy that constitutes a variant of the LRU) improves the byte-hit ratio, reduces the fraction of

user requests with delayed starts and requires less CPU overhead. The caching value in the LRLFU

policy is given by the expression
RF

T−T′
 , where RF is the number of requests for a specific video

until now, T is the current time and T′ is the last time that this video has been requested. In that

way, LRLFU alleviates the problems of both the LRU and LFU policies and has been used in many

works as the cache management policy or as comparison case, [1], [2], [16].

The NCCS (Number of Common Clients over Size) cache management policy has been

considered in [3]-[5] and is compared with both the LRU and LFU policies. The results have shown

that it outperforms both the LRU and LFU policies on the scenarios that have been considered.

These scenarios assume that there is a time window (which is set to 3 seconds). Also, the client

requests are clustered and a batch group of client requests arrives within this window. Every batch

contains on average 150 client requests. Furthermore, it is assumed that there are three versions of

video visual quality Vorg, Vmid and Vbase for each video with the corresponding size (Vorg is the

biggest video file which is of high-quality while Vmid and Vbase are smaller video files with lower

quality) and the proxy cache generates Vmid and Vbase from Vorg in real time after fetching Vorg

from the VPS and stores all of them locally. The caching value of the NCCS policy is given by the

expression
NCC

FS
, where NCC is the number of common client requests requesting the particular

12

video and FS is the requested video size. In the NCCS cache replacement policy, the video file

with the minimum caching value is first identified and the versions Vorg, Vmid and Vbase of the

identified video file are removed in that order, until there is enough space to load the requested

video file in the proxy cache.

1.2.3 Various Probability Distributions

A main part of each simulation based system consists of the distributions used to emulate

the various stochastic functions of the system. These distributions are often used to implement the

client video preferences or otherwise the popularity of each video, the way that the user requests

are arriving and the sizes of each video file. Of course, depending on the work considered in the

literature, for some of these system functions no probability distribution is used. For example in

[3], [6], [7] and [16] the file size is assumed fixed. In addition, in some works, probability

distributions are used to model the data bandwidth, the viewing time limit [3] e.t.c. These

probability distributions are usually used for mobile clients and they are not considered in our

work.

The vast majority of the studies [1]-[10] have implemented the arrivals of requests with the

Poisson process with parameter λ (mean arrival rate), which is selected differently in every case.

For example, authors in [1], [2] assume that client requests for videos arrive according a Poisson

process with mean interarrival time equal to 60 secs, that is 1 req/min on the average. In [3], [4] a

Poisson arrival Process with maximum delay of 4s and variance of 2s is assumed, in [7] the mean

request arrival rate is 30 reqs/hour and in [9] is equal to 0.2 reqs/sec.

For the implementation of the popularity of videos some studies use the uniform

distribution [3], [4]. But most studies use a Zip-f Distribution [1], [2], [6], [7], [9], [10], [16]

because it has been shown that Zipf models much better the video popularity. That happens

because the more recently accessed videos are accessed more frequently than the older videos, so

they should be more popular and the distribution should be skewed. That cannot be achieved with

a uniform distribution. Also a significant advantage of the Zipf distribution is that there is the

ability to adjust it on each system simply by changing its skew factor. If the value of skew factor

is set equal to 1, the Zipf distribution becomes the uniform.

13

Finally, the varying video file sizes can be modeled based on a uniform or a normal

distribution. As mentioned before, in some systems it is assumed that the video file sizes are fixed.

The most common distribution used for varying video file sizes is the uniform [1], [2], [4]. In some

studies, more than one scenarios have been examined, where the first scenario considers with fixed

file sizes and in the second scenario a probability distribution for the video file sizes is used [4].

Also the normal distribution has been used [10], because the normal distribution with a high

variance tends to be similar to the uniform probability distribution. So, by changing the value of

the variance of the normal distribution we can observe the change in system performance.

1.3 Goals and Contribution of the Thesis

As we have already mentioned, our main goal is to reduce the Fraction of Delayed Starts

and increase the Video Hit Ratio. To achieve these goals we have created a new system model

which is based on ideas from [1]-[5].

In the first part of our work which consists of the simplest scenario we have used both the

LRLFU and NCCS cache management policies to create a new cache management policy. Also

we have not used video segmentation but we have taken the idea from [3]-[5] to use a time window

and to process the user requests that have arrived within each time window at the end of the

window, a characteristic not present in [1], [2]. In addition, we have used a Zip-f like distribution

to model the video popularity instead of the uniform distribution used in [3]-[5]. Initially we

assume that all videos have a fixed size, like in [3], and that user requests arrive according to a

Poisson process.

Subsequently, in the second part of our work we introduce a popularity distribution for the

varying video file sizes. We have used a normal distribution to implement the different video file

sizes instead of [1], [2], [4] in which a uniform distribution has been used. Finally, we also

designed a new cache management policy, a little different from our previous one, which achieves

better performance.

In the last part of our work a new system based on collaborative scenarios from [1] and [3]

is considered. The system model considered is quite simple, but we propose a new technique that

14

has not been used in works [1]-[5]. We only use two collaborative proxies and assume that each

of them implements a different cache management policy. Specifically, one of the proxies

implements the best cache management policy and the other one implements the worst cache

management policy according to the results from the second part of our work. Finally these two

proxies take their content from two different content servers. These two content servers do not

store the same videos, we assume that there is only an overlap of their contents.

In order to make fair comparisons, we have implemented the cache management policies

from [1] and [3] as well as the LRU policy, and we compare the results based on our performance

metrics.

1.4 Thesis Outline

The remainder of this work is organized as follows. In Chapter 2 the first part of the work

is presented, which is based on the assumption that all videos are of the same size. Initially, in

section 2.1 we introduce the basic ideas of video caching in proxy server and the way we manage

the storage. In section 2.2 we explain in more details the architecture of our system and the way in

which data are stored. In section 2.3 the performance metrics of our system are presented, the

simulation model is described as well as results obtained by the simulated scenarios are presented.

Finally, in section 2.4 we present the conclusions that have been obtained by the performance

study in this Chapter.

In Chapter 3 the second part of our work is presented. In contrast to Chapter 2, we assume

here that the videos which are stored in the Content Server have variable sizes. In section 3.1 an

introduction to videos with variable sizes is given and the reasons we decided to introduce this

feature are explained. In section 3.2 we describe the changes that have been made, in the algorithms

and on how the cache storage is managed, so that the system can support videos with variable

sizes. In section 3.3 the performance metrics are presented, the simulation model is described and

the corresponding results are given. Finally, in section 3.4 we discuss our conclusions.

In Chapter 4 the third and final part of our work is presented, which consists of the

implementation of a collaborative caching scenario. In section 4.1 we introduce the characteristics

15

of this scenario. In section 4.2 we describe the changes have be made in the algorithms and on how

the cache storage is managed, so that the system can support the collaborative scenario. In section

4.3 the performance metrics of this system are presented, the simulation model is described and

the corresponding results are given. Finally, in section 4.4 we discuss our conclusions.

Finally, in Chapter 5 the conclusions of the work in this Thesis are presented. In section

5.1 we discuss the overview of our work, in section 5.2 we provide the main conclusions of our

work and we discuss our research contribution, while in section 5.3 we present some ideas for

future work.

16

Chapter 2 : Design and Performance Evaluation of Fixed-Video Size

Cache Management Policies

2.1 Introduction

In this Chapter we introduce various algorithms for storing videos in proxy caches. In our

simulation study we implement two algorithms that have already been used (LRU, LRLFU), a

slightly modified version of the NCCS algorithm, and we propose an efficient new cache

management algorithm. All these algorithms are capable of capturing the changes on video

popularities by attaching a caching value to each video according to the different cache

management policies. Each policy decides to cache the most “valuable” video and replace the most

“useless” video according to its caching value. In our study in this Chapter we assume that all

videos have the same size, the system consists of one proxy server with a single cache and users

watch the videos serially from the beginning to the end. To compare the variable cache

management policies we use two performance metrics which are : (1) the Video Hit Ratio and (2)

the Fraction of Delayed Starts. In the next sections we describe the network topology, the cache

management and replacement algorithms, the performance metrics, the simulation model and we

present the results of our simulation study.

17

2.2 System Model

2.2.1 Network Topology

The system architecture that we consider is shown in Figure 1.1. Our system consists of a

far-distance content server, a single proxy server and client devices. All the video files are stored

in the content server, the proxy server is located close to the clients and caches a percentage of the

content server files, which are the most popular based on their caching values. Clients send

requests which are directed to the proxy server. If the proxy has the video file requested into its

cache, it transmits it to the client and the video file remains into the cache. If the proxy has not the

video file requested, it sends a request to the content server asking for the file. The content server

sends the file to the proxy and the proxy serves the client. The new file is stored into the cache by

removing another video file. It is also assumed that the bandwidth between the proxy and the

clients is sufficient to support video streaming with negligible latency. So, if a requested file exists

in the cache there is a request hit and no delayed start is experienced by the client. In case the

requested video file does not exist in the cache there is a request miss and the proxy needs to

communicate with content server to bring it. Because the latency between the content server and

the proxy is quite significant, the client experiences a delayed start.

2.2.2 Cache Management/Replacement Policies

As we already mentioned in section 2.1, we have adopted three different cache

management algorithms and we have implemented them in our system. These are, the LRLFU

algorithm from [1], [2], the LRU algorithm and a modified version of the NCCS algorithm from

[3], [4]. We have also implemented a new cache management algorithm which is more aggressive

than LRLFU and we refer to this algorithm by the name LRLFU_Aggressive. Bellow we discuss

the cache management policy which have been implemented and the way we have implemented

the four different cache replacement algorithms.

When a client request for a specific video arrives to the proxy server, the proxy server acts

as follows. First it looks for the video in its cache. If the requested video is stored in the cache,

18

then its caching value is updated and the video is sent to the client. Instead, if the requested video

is not stored in the cache, then the cache replacement policy is activated. The cache looks in its

content for the less popular video, that is the video with the minimum caching value, and the proxy

requests the new video from the content server. The video with the minimum caching value is

removed from the cache and the new video is cached and is sent to the client. Since all videos have

the same size, when one video is removed from the cache the new video that has been requested

can it stored in its place. The new video obtains a caching value according to the rule of the cache

replacement algorithm in use. Also, in our study we assume that time is divided into time windows,

of equal length. In cache management policies that are time dependent (LRU, LRLFU,

LRLFU_Aggressive) we update the caching values of all the videos in the cache at the end of each

window.

In the LRU cache replacement policy the caching value depends on how recently a specific

video has been requested. The video requested more recently has the higher caching value and is

placed on the top of LRU stack, while the oldest video requested has the minimum caching value

and is placed at the bottom of LRU stack. That means the oldest video, is the video victim and it

will be removed first from the cache when a new video needs to be stored in the cache. The caching

value of a video file in the LRU algorithm is given by the expression
1

T−T′
 , where T is the current

time and T′ is the last time that this video has been requested. The difference T-T′ in the

denominator of the caching value is the time elapsed from the last request of a specific video. To

update the caching value of a video file stored in the cache, we have to update the value of T, that

is the current time, at the end of each window.

In the LRLFU replacement policy the caching value depends on how recently and how

frequently a specific video has been requested. The caching value of a video file in the LRLFU

algorithm is given by the expression
1

T−T′
∗ 𝑅𝐹 , where

1

T−T′
 is the same fraction as in LRU. Here,

the caching value of LRU is multiplied with the RF, which is a counter that counts the number of

times a video has been requested from the time it has been stored in the cache until the current

time. A video not stored in the cache that has been requested within the last time window is not

necessarily the most valuable video as it happens in the LRU. Instead, if this video is requested for

the first time it might be less valuable than other videos that have been requested some time

windows before, but they have been requested frequently and they have a high RF value. The

19

counter RF is updated each time that a cached video is requested and when a video is dropped off

the cache its RF value is deleted. The next time that a request for that video will come, the value

of RF will start from one. Finally, as in LRU, we update the value of current time T at the end of

each time window.

In the NCCS replacement policy the caching value of a video file depends on how many

times the video is requested within the current time window divided by the file size. In our study

in this Chapter where all the video files are assumed to have the same size, the NCCS policy does

not depend on the file size because the denominator of the video caching value will be the same

for all the videos. So, while in [3], [4], the caching value is given by the expression
NCC

FS
 , where

NCC is the number of common client requests for the particular video file and FS is the file size,

in our simulation in this Chapter the NCCS caching value consists only of the NCC. In other words,

we only count how many times a request for a specific video arrives in each time window. In this

case, the NCCS replacement policy is not very efficient. For this reason only in this Chapter we

propose a modified NCCS replacement policy. This cache replacement policy, referred to as the

NCCS_Modified, chooses from the candidate videos to be removed (i.e., among which have the

least NCC value), the video which has been requested first in the past. The caching value in the

NCCS_Modified policy is given by the product NCC* T′, where T′ is the last time the video has

been requested.

The cache replacement policy that we propose in this Chapter is the LRLFU_Aggressive

policy. The LRLFU_Aggressive is a combination of LRLFU and NCCS. The caching value we

propose in this replacement policy is given by the expression
RF+NCC

T−T′
 . The idea is to give a boost

to videos which have been requested the most times in a specific window without losing the

characteristics of LRLFU. However, the results that have been obtained from our simulations, as

we will see in the next section, are not as good as we expected.

20

2.3 Performance Evaluation

2.3.1 Performance Metrics

In order to achieve efficient use of the proxy cache, the system has to store the most

valuable videos and the cache should have the ability to quickly adapt its content to popularity

changes. So, the system’s goal is to achieve to reduce the amount of data transferred from the

content server to proxy. An important system performance metric is the Video-Hit Ratio (VHR)

which is defined as the total number of times a video is found in the proxy cache when a request

for that video arrives, divided by the total number of videos that have been requested during the

duration of the simulation. The VHR metric gives us an indication of network traffic because the

bigger the VHR is, the less videos need to be transferred from the content server and consequently

the less network bandwidth is required.

A second important performance metric is the Fraction of Delayed Starts which is defined

as the percentage of the total video requests that have been served with delay, divided by the total

number of requests that have been served by the system during the duration of the simulation.

There is a delayed start for a requested video if the video is not stored in the cache when requested

and the proxy needs to contact content server to bring it. We want to reduce the Fraction of Delayed

Starts as much as possible, because if this metric take big values it means that the cache

management policy tends to store the wrong videos into the cache. The delay in the beginning of

a video playback is very annoying to the client and in the end some clients may not be willing to

experience it.

Although we introduce both the VHR and the Fraction of Delayed Start metrics, it is worth

mentioning that in our case of full video caching these are complementary, that is, they always

have a sum equal to one. This happens because in the policies examined in the Thesis we store

whole videos in the cache instead of video segments.

21

2.3.2 Simulation Model

In the next section the simulation results of the four different policies introduced in section

2.2.2 are presented.

We assume that time is divided into equal length windows, where each window length is

equal to 30 sec. The client requests for the videos, arrive according to a Poisson process, therefore

the inter-arrival times are independent exponentially distributed random variables with mean
1

𝜆
,

where λ is the Poisson arrival rate. The default value for
1

𝜆
 is equal to 5 sec, that is, on average we

have 0.2 requests per second. Consequently, in each time window we have on average 30*0.2 = 6

requests arriving. We run our simulation for 30.000 windows which corresponds to about 10 days

of real system operation. Also, in 30.000 windows we have on average 30.000 * 6 = 180.000

requests arriving.

As mentioned in section 1.2 the most commonly used and effective distribution to simulate

the popularity of videos in video caching systems is the Zipf distribution. In our simulation study,

the popularity of each of the V videos is assumed to follow a Zipf-like distribution Zipf (s,V),

where s corresponds to the degree of skew and V to the total number of videos in the content

server. Every video x, x {1,….,V} has a probability given by px =
𝑐

𝑥1−𝑠
 , to be requested by the

clients, where c =
1

∑
1

𝑥1−𝑠
𝑉
𝑥=1

 is a normalization constant. For s=0 the distribution is highly skewed,

while for s=1 the distribution is uniform with no skew. In our simulation the default value used for

s is equal to 0.2.

In our system the content server size as well as the cache size are expressed in terms of the

number of videos. We assume that there are V=2000 distinct videos of equal sizes that are stored

in the content server. Also, the total capacity of the proxy cache is taken to be equal to 200 videos,

which corresponds to 10% of the content server capacity.

In Table 2.1 below, all the parameters of the simulation in this Chapter together with their

default values are given.

22

Parameters Definition (Default values)

w Window duration (30 sec)

1

𝜆

Mean request inter-arrival time (5 sec)

V Number of distinct video titles (2.000)

s Parameter s of Zipf distribution (0.2)

C Total cache capacity (200 Videos)

Runs Number of time windows in a simulation run (30.000)

Table 2.1 : System Parameters together with their default values

2.3.3 Simulation Results

In this section we present and discuss the performance results for the four cache

management policies. In Figure 2.1 our first performance metric, the VHR, is presented versus

time, while in Figure 2.2 the Fraction of Delayed Starts versus time is also presented. As we can

see from the simulation results the LRLFU policy achieves the higher VHR and consequently the

least Fraction of Delayed Starts. Our policy, the LRLFU_Aggressive, comes second with a small

difference from the LRLFU. The LRU is quite worse than the LRLFU and the LRLFU_Aggressive

and finally the NCCS_Modified comes last with very low VHR and quite high Fraction of Delayed

Starts. As it can been seen from the results our idea for a more Aggressive LRLFU policy does not

help to increase the VHR, while the NCCS policy performs very poorly.

Specifically, the LRLFU policy finds in the cache 47.9% of the total requested videos,

while the LRLFU_Aggressive, that we proposed, finds in the cache 46.1% of the total requested

videos. That means the LRLFU outperforms the LRLFU_Aggressive in terms of the VHR by

1.8%. This result shows us that the NCC factor that we have introduced in the numerator of the

caching value fraction of the LRLFU_Aggressive policy does not help the cache to adapt better to

changes of video popularity.

23

One can agree that this happens because in our system only 6 requests arrive on average

within each time window, which means that the NCC counter takes small values. For that reason,

we run another simulation the results of which are shown in Figure 2.3. In that simulation we set

1

𝜆
 = 0.25 sec which means that on average 4 requests arrive per second, consequently 4*30 = 120

requests per time window. We run this simulation only for 1.500 windows which corresponds to

180.000 requests in total. From the results of this scenario the NCCS_Modified policy again

achieves very low VHR results quite similar to those of our default scenario. Also, in this scenario

we observe a slightly reduced performance gap (1%) between LRLFU and LRLFU_Aggressive

policies. Therefore, we conclude that the NCCS_Modified policy cannot capture the popularities

of the videos and this is the main reason why the NCCS_Modified finds in the cache only 35.4%

of the requested videos. It is worth mentioning here that in the studies in which the NCCS cache

replacement policy has been proposed ([3]-[5]), a uniform distribution was used for the popularity

of videos, instead of the Zipf distribution.

Finally, the differences in the VHR between the LRU and the two LRLFU methods are

expected, as similar results have been obtained in [1], [2], and this is due to the fact that the RF

factor which counts the frequency of the requests for a particular video helps the cache to better

adapt to the popularities of the videos.

Figure 2.1 : Video-Hit Ratio versus time (expressed as number of requests served)

24

Figure 2.2 : Fraction of Delayed Starts versus time (expressed as number of requests

served)

Figure 2.3 : Video-Hit Ratio versus time (expressed as number of requests served) for λ=4,

Runs=1500

25

In the next three sections we examine the impact of different cache sizes, of different

number of videos stored in the content server and the impact of different values of the skew

parameter s of the Zipf popularity distribution.

2.3.3.1 The impact of different cache sizes

In this section, the effectiveness of the four cache replacement policies examined in this

Thesis is presented for different values of the total cache size. The results for the VHR are shown

in Figure 2.4 and for the Fraction of Delayed Starts in Figure 2.5. In this scenario we vary the

cache size from 100 videos to 500 videos, while we maintain constant the total size of content

server. This means that we vary the percentage of the videos stored into the cache from 5%-25%

of the total videos in content server. From the results it is seen that the effectiveness of the four

cache replacement policies follows the same trend as in section 2.3.3. When we store more videos

in the cache, we expect that the VHR is improved and that the Fraction of Delayed Starts is reduced

for all the cache management policies. From the results we see that by increasing the cache size

the difference between the LRLFU_Aggressive and the LRLFU policies is reduced, but this

reduction is very low. Specifically, when the cache stores 100 videos (5% of content server) the

LRLFU is better than the LRLFU_Aggressive by 2.1%, while when the cache stores 500 videos

(25% of content server) this difference is 1.1%. Instead, the difference between the

NCCS_Modified and the LRU policies is increased, with the increase of the cache size. This

difference is 3.6% for the smallest cache (with 100 videos) and becomes 4.8% for the biggest cache

(with 500 videos). The LRLFU policy is the best method, and the NCCS_Modified the worst.

26

Figure 2.4 : Video-Hit Ratio versus cache size

Figure 2.5 : Fraction of Delayed Starts versus cache size

27

2.3.3.2 The impact of different number of videos in the content server

In this section, we vary the total number of videos in content server from 1000 to 3000,

maintaining the cache capacity equal to 10% of content server’s capacity. The results for the VHR

are shown in Figure 2.6, while those for the Fraction of Delayed Starts in Figure 2.7. When we

increase the total number of videos in the content server, the VHR is also increased, while the

Fraction of Delayed Starts decreases. These changes on the curves of VHR and of the Fraction of

Delayed Starts are very slow. This is expected for two reasons. On the one hand, by increasing the

total number of videos, the cache replacement policies have to choose the most popular videos

among more videos. So there would be more requests to less popular videos, which most probably

are not stored in the cache. The result of this fact is to slightly reduce the VHR and increase the

Fraction of the Delayed Starts. On the other hand, by increasing the total number of videos, the

cache size is increased, so as to continue storing 10% of the total videos. Therefore, there is more

space in the cache for the requests for less popular videos we mentioned before. The result is that

the increase of cache size prevails to the requests for less popular videos and there is a slow

increase in VHR and a slow decrease in the Fraction of Delayed Starts. This is why we observe

slow changes, instead of the sharp changes of the curves in section 2.3.3.1.

We also computed the Zipf cumulative probability mass function for the different numbers

of total videos. We note that if the cache replacement policies were ideal and they stored only the

most popular videos, the VHR for 1000 total videos in content server would be 52.4%, while for

3000 total videos would be 55%. From our results, we see that for 1000 total videos the VHR of

LRLFU is 46.7% and the VHR of LRLFU_Aggressive is 45% and for 3000 total videos the

corresponding results for LRLFU is 49.1%, while for LRLFU_Aggressive is 47.4%.

Consequently, it is seen that these cache replacement policies achieve quite good VHR relative to

the ideal VHR values. Instead, the NCCS_Modified policy achieves again very low results with

the VHR to be equal to 33.5% for 1000 total videos and 36.9% for 3000 total videos. The LRU

policy achieves performance results in between to those of the other methods as in the previous

sections.

28

Figure 2.6 : Video-Hit Ratio versus number of total videos

Figure 2.7 : Fraction of Delayed Starts versus number of total videos

29

2.3.3.3 The impact of different values of skew parameter in popularity distribution

The results in Figures 2.8 and 2.9 show the impact of the degree of the skew parameter in

the Zipf video popularity distribution on the VHR and the Fraction of Delayed Starts. As already

mentioned, small values of the parameter s correspond to a more skewed popularity distribution

(more clients are interested in fewer videos), while higher values of the parameter s correspond to

a more uniform popularity distribution (client’s preferences are dispersed among a plethora of

videos). So, when the parameter s approaches zero, it is easier to distinguish the most popular

videos because their probabilities of appearance are higher. When the parameter s approaches one,

the probabilities of appearance of each video are close to each other. This scenario is quite

important because it can give us an indication for the “behavior” of the examined policies in a

system where the clients have almost the same preferences for the various videos and in a

completely different system where the clients have quite different preferences.

From the presented results we observe that as the parameter s increases the VHR decreases

while the Fraction of Delayed Starts increases. For values of s smaller than 0.5 which corresponds

to a skewed popularity distribution, we observe that the trend of the four cache replacement

policies is the same as in previous simulations. The LRLFU policy achieves the best results in term

of VHR and of the Fraction of Delayed Starts, the LRLFU_Aggressive is a little worse while the

NCCS_Modified achieves quite low cache efficiency. However, as the value of s increases the

four policies achieve almost the same results. For s equal to 0.8 which corresponds to a popularity

distribution very close to uniform, the LRLFU policy achieves a VHR equal to 10.8%, the

LRLFU_Aggressive equal to 10.6% while the other two methods achieve VHR equal to 10.5%.

These results show us that the efficiency of all the cache replacement policies examined is very

low for big values of s.

30

Figure 2.8 : The impact of skew in Zipf video popularity on VHR

Figure 2.9 : The impact of skew in Zipf video popularity on Fraction of Delayed Starts

31

2.4 Conclusions

From the simulation results presented in this Chapter we conclude that the

LRLFU_Aggressive policy we proposed does not achieve the expected results. Instead, the

LRLFU policy outperforms the LRLFU_Aggressive in all the scenarios we examined. Also, the

NCCS_Modified policy does not perform well in our system model in which we assumed a Zipf

distribution for the video popularities and fixed file sizes. The only case in which all the four

policies achieve almost the same performance results is when we assumed a Zipf distribution with

s equal to 0.8, which corresponds to a distribution very close to uniform. Finally, the LRU policy

although as we explained in section 1.2.2 is an easy method to implement, achieves not so good

performance.

32

Chapter 3 : Design and Performance Evaluation of Variable Video

Size Cache Management Policies

3.1 Introduction

In this Chapter we examine various algorithms for storing videos in proxy caches. In

contrast to Chapter 2, this Chapter we assume variable video sizes. With this change we can

implement the NCCS cache replacement policy as it has been proposed in [3] and [4], and we

propose a new algorithm which performs better in the case of variable video sizes. Also, we

implement two cache management policies from Chapter 2 (namely the LRLFU and LRU). We

decided to not implement the LRLFU_Aggressive policy in this Chapter. We took this decision

because we expected that LRLFU_Aggressive will outperform LRLFU. However, the simulation

results of Chapter 2 have shown the opposite. Furthermore, we slightly change the cache

management policies in order to support variable video sizes and we continue using the same

network topology as in Chapter 2. The performance metrics are the same as in Chapter 2, that is,

the Video Hit Ratio and the Fraction of Delayed Starts, while in one simulation experiment we

introduce a different performance metric, the Byte Hit Ratio. We also introduce some new

characteristics in our simulation model in order to achieve to implement the variable video sizes.

In the next sections we discuss the changes which have been adopted in this Chapter and we present

and discuss the simulation results.

33

3.2 System Model

3.2.1 Network Topology

In this Chapter we have used the same network topology as in Chapter 2 with a far-distance

content server, a single proxy server and client devices. For the details refer to section 2.2.1.

3.2.2 Cache Management/Replacement Policies

As we already mentioned in section 3.1, we have implemented four different algorithms in

our simulation study with the aim to compare them. In this section we discuss the cache

management policies of these algorithms and the changes which have been made in order to

support variable video sizes. We also discuss the new algorithms that we have implemented for

cache replacement, which are the NCCS and a modification of the LRLFU which is more suitable

for systems with variable video sizes. We will refer to the latter algorithm as LRLFU_Modified.

The algorithms LRU and LRLFU which have also been implemented in this Chapter are the same

as in Chapter 2. For more details on the latter algorithms refer to section 2.2.2.

Since in this Chapter we assume that the videos have variable sizes and that content server

stores 2000 videos, the cache size cannot be expressed in terms of the number of videos stored.

However, we assume that the cache can store 10% of total volume of the videos which are stored

in the content server. Consequently, during the duration of the simulation the cache content

expressed in terms of the number of videos stored varies according to the size of videos which are

stored by each algorithm. For example, in our simulation the LRU and the LRLFU policies whose

caching value does not depend on the file size store about 200 videos, the LRLFU_Modified policy

whose caching value depends on the file size stores about 240 videos, while the NCCS policy

whose caching value heavily depends on the file size stores about 420 videos. In this Chapter in

which variable video sizes are supported, when a client request arrives to proxy server the proxy

server acts as follows. First it looks for the video in its cache and if the requested video is stored

in the cache, the caching value is updated and the proxy serves the client. Otherwise, the requested

video has to be transferred from the content server and stored into the cache. If the cache is not

34

full and there is enough space, the video is stored. Otherwise, the cache replacement policy is

invoked and the four algorithms act as follows. First they look for the less popular video with the

minimum caching value which is the video victim and it has to be removed from the cache. When

the video victim is removed from the cache, there is not always the necessary space in the cache

to store the requested video because the video victim may be smaller than the requested video. For

that reason we have implemented a recursive function which removes the number of videos

required until there is enough space for the requested video to be stored. Sometimes the video

victim is quite big and the requested video is much smaller. The result is that after such a

replacement takes place, the subsequent requested videos, depending on their sizes, could be stored

without invoking the replacement algorithms. The new videos are assigned a caching value

according to the replacement algorithm in use. The remaining characteristics of the cache

management policies are the same as in Chapter 2 (section 2.2.2).

In this Chapter the NCCS replacement policy has been implemented as it has been

introduced in the literature in [3], [4] in our system model, which assumes a Zipf popularity

distribution for the videos. The caching value that we have used is given by the expression
NCC

FS
 ,

where NCC is the number of common clients requesting that particular video file and FS is the

video size. So, here we can see the performance of NCCS policy in a different system setup than

the one examined in the literature. From the simulation results presented in the next sections we

can see that the NCCS policy achieves again poor performance.

The new cache replacement policy we propose in this Chapter consists a combination of

the NCCS and the LRLFU policies and is referred to as the LRLFU_Modified policy. The idea is

to make the LRLFU algorithm more adaptable to variable video sizes. For that reason the caching

value we propose for the LRLFU_Modified policy is given by the expression
RF

T−T′
 *

1

FS
 , where

the expression to the left of the multiplication is the caching value of LRLFU policy and FS denotes

the video file size. In that way we want to achieve to store the most valuable videos which have

also the right size, so as to efficiently use the cache storage. At the same time, if a large size video

is quite valuable it will remain into the cache, while a small video which is not valuable will be

removed. From the simulation results presented in the next sections we see that this algorithm

achieves better performance than that of the LRLFU algorithm.

35

3.3 Performance Evaluation

3.3.1 Performance Metrics

In this Chapter we have used the same performance metrics as in Chapter 2, namely the

Video Hit Ratio and the Fraction of Delayed Starts. For the details of these two performance

metrics refer to section 2.3.1.

Furthermore, the system model with the variable video sizes in this Chapter gives us the

ability to examine another performance metric which is the Byte Hit Ratio (BHR). The Byte Hit

Ratio is similar to Video Hit Ratio, with the difference that in the BHR we count the total number

of Bytes found in the cache in contrast to the total number of videos that is counted in the VHR.

So, the BHR is defined as the total number of bytes found in the proxy cache when a request for a

video arrives, divided by the total number of bytes for all the videos that have been requested

during the duration of the simulation. We have chosen to examine this performance metric because

we want to see the changes, if any, on the performance of the four cache replacement algorithms

when we count bytes of videos found in the cache instead of number of videos. The BHR

performance metric has been also examined in the literature, [1]-[4]. However in our system model

in which we replace entire videos and no video segmentation is used, the VHR performance metric

is more appropriate than BHR. It happens because the VHR counts entire videos while the BHR

counts bytes, which correspond to segments of videos. For that reason we have chosen to run only

one simulation experiment for BHR, simply to observe the changes.

3.3.2 Simulation Model

Our simulation model in this Chapter is similar to the simulation model in Chapter 2, but

we have added some characteristics in order to support variable video sizes. In this section we

mention the characteristics which remain the same and we discuss the characteristics that have

been added.

As in Chapter 2, we assume here that the time is divided into time windows and the client

requests arrive according a Poisson process with the same parameters. Also, we run our simulation

36

experiments for the same number of time windows with those in Chapter 2. Finally, we again

assume that there are 2000 distinct videos in the content server and that the popularity of these

videos is given by a Zipf-like distribution with the same parameters as in Chapter 2.

In our simulation model in this Chapter we have added a normal distribution to model the

variable video sizes. As mentioned in section 1.2.3 the most common distribution used in the

literature for varying video sizes is the uniform. However, we chose the normal distribution

because we assume that most of the videos have sizes near the mean of the video size distribution

and only a few videos have considerably larger or smaller sizes. Furthermore, with the normal

distribution we can examine many scenarios by simply changing the standard deviation of the

video size distribution (which is denoted by Sd in this Chapter). We further assume that the mean

of the normal distribution is equal to 500 MB, while the default value of standard deviation is 200

MB. A histogram of the distribution we have used with the above parameters is shown in Figure

3.1. Notice that we have filtered the values of video sizes to not take values bigger than 1000 MB

and smaller than 10 MB. We decided to filter the video sizes as above to support cases of higher

Sd values than 200 MB.

Figure 3.1 : Normal Distribution for Variable video sizes with mean = 500 MB, Sd = 200

MB

37

As we can see from Figure 3.1 the majority of the videos has video sizes from 400 MB to

600 MB while only a few videos are smaller than 200 MB or larger than 800 MB. As the standard

deviation is increased the video sizes tend to be uniformly distributed, while as we decrease the

standard deviation there are more videos with sizes near the mean size and less videos with bigger

or smaller sizes.

Furthermore, it is worth noticing that since the content server stores 2000 video files this

corresponds to a total capacity equal to 2000*500 = 1.000.000 MB or 1 TB on average.

Consequently, the total capacity of the cache, which is assumed to be equal to 10% of the content

server, is equal to 100.000 MB or 100 GB on average.

In Table 3.1 below, all the parameters of the simulation model for this Chapter together

with their default values are given.

Parameters Definition (Default values)

w Window duration (30 sec)

1

𝜆

Mean request inter-arrival time (5 sec)

V Number of distinct video titles (2.000 about 1 TB)

s Parameter s of Zipf distribution (0.2)

C Total cache capacity (about 100 GB)

m Mean of the Normal Distribution for the video sizes (500 MB)

Sd Standard Deviation of the Normal Distribution for the

video sizes (200 MB)

Runs Number of time windows in a simulation run (30.000)

Table 3.1 : System Parameters together with their default values

38

3.3.3 Simulation Results

In this section we present and discuss the performance results for the four cache

management policies. In Figure 3.2 the VHR is presented versus time, while in Figure 3.3 the

Fraction of Delayed Starts versus time is also presented. As we can see from the simulation results,

the LRLFU_Modified algorithm that we propose in this Chapter achieves the higher VHR and

consequently the lowest value for the Fraction of Delayed Starts. The LRLFU policy comes second

with small difference from our proposed policy. The LRU and the NCCS algorithms achieve

results comparable to the corresponding results in Chapter 2. The LRU policy is quite worse than

the LRLFU policy and the LRLFU_Modified policy while the NCCS policy comes last with very

low VHR and quite high Fraction of Delayed Starts. As it can been seen from the presented results,

the NCCS policy performs very poorly even though it takes into account in its caching value the

sizes of the various video files. Furthermore, our idea to introduce the video size in the caching

value of the LRLFU_Modified help this policy to outperform the LRLFU in terms of the VHR and

the Fraction of Delayed Starts.

Specifically, the proposed LRLFU_Modified policy finds in the cache 50.7% of the total

requested videos, while the LRLFU policy finds 48.7%. That means the LRLFU_Modified policy

outperforms the LRLFU both in terms of the VHR and the Fraction of Delayed Starts, by 2%. This

result indicates that the LRLFU_Modified policy stores in the cache the videos which are the most

popular and at the same time have the best suitable size. This explains why the LRLFU_Modified

policy better adapts both in terms of popularity and video size changes.

Also the results show that both the LRU (which has a VHR equal to 40.3%) and the LRLFU

policies achieve almost the same results with the corresponding ones in Chapter 2 in terms of the

VHR and the Fraction of Delayed Starts. The latter is expected because in these two policies the

variable video size is not taken into account in their caching values.

Finally, the NCCS policy finds in the cache only 29.1% of the total requested videos. Our

expectation was that the NCCS policy would perform better in the system model of this Chapter

relative to that of Chapter 2 because its video caching value takes into account the variable video

size. However, as it can been seen from the results the NCCS policy cannot capture at all the

popularities of the various videos when these popularities follow a Zipf distribution.

39

Figure 3.2 : Video-Hit Ratio versus time (expressed as number of requests served)

Figure 3.3 : Fraction of Delayed Starts versus time (expressed as number of requests

served)

40

In the next four sections we examine the impact of different cache sizes, different number

of videos stored in the content server, different values of the standard deviation of the Normal

distribution of file sizes and of different values of the skew parameter s of the Zipf video popularity

distribution. Finally, in section 3.3.3.5 we present the results of a simulation scenario with the new

performance metric, the BHR.

3.3.3.1 The impact of different cache sizes

In this section, the effectiveness of the four cache replacement policies examined in this

Chapter is presented for different values of the total cache size. The results for the VHR are shown

in Figure 3.4 and those for the Fraction of Delayed Starts in Figure 3.5. As in the corresponding

scenario of Chapter 2, we vary the percentage of the bytes of videos stored in the cache from 5%

to 25% of the total bytes of videos stored in content server, while we maintain constant the total

size of the content server. In this Chapter the cache size and the total size of the content server are

measured in bytes and each cache replacement algorithm stores different number of videos in the

cache according to its caching value function.

From the presented results, it can be observed that the effectiveness of the four cache

replacement policies follows the same trend as in section 3.3.3. It is expected that as the cache

storage is increased the VHR is improved and the Fraction of Delayed Starts is reduced for all the

cache management policies. We also observe that by increasing the cache size, the difference

between the LRLFU_Modified and the LRLFU policies remains almost constant with the

LRLFU_Modified being better by about 1.4%. Instead, the difference between the NCCS and the

LRU policies is increased, with the increase of the cache size. This difference is 12.6% for the

smallest cache (which corresponds to 5% of content server) and becomes 17.1% for the biggest

cache (which corresponds to 25% of content server). The LRLFU_Modified policy remains the

best and the NCCS the worst with big differences between each other.

41

Figure 3.4 : Video-Hit Ratio versus cache size

Figure 3.5 : Fraction of Delayed Starts versus cache size

42

3.3.3.2 The impact of different number of videos in the content server

In this section, we vary the total number of videos in content server from 1000 to 3000,

while maintaining the cache capacity equal to 10% of content server’s capacity. In Figures 3.6 and

3.7 the results for the VHR and for the Fraction of the Delayed Starts are given. We observe that

by increasing the total number of videos in the content server the results of the VHR and the

Fraction of Delayed Starts remain almost the same for each of the four cache management policies.

Specifically, from the results of the three first cache management policies, namely the LRLFU, the

LRLFU_Modified and the LRU, we see that the VHR is slightly increased and the Fraction of

Delayed Starts is slightly decreased. From the results of the NCCS policy we observe some ups

and downs which also are very slow.

More specifically, the NCCS with 1000 videos stored in the content server finds in the

cache 24.3% of the requested videos while with 3000 videos in the content server this percentage

becomes 24.9%, an increase of about 0.6%. Instead, in the LRU policy which achieves the highest

increase of the VHR as the total number of videos in the content server increases, the VHR from

1000 to 3000 videos is increased by 3.4%. The LRLFU policies have almost the same increase in

terms of VHR from 1000 to 3000 videos stored in the content server, about 2%.

 These results are expected, as it was mentioned in the discussion in section 2.3.3.2,

because there are two factors which affect the cache management policies when we increase the

total number of videos. On one hand, when the total number of videos is increased, the cache size

is also increased accordingly which is positive, on the other hand the cache management policies

have to search for the popular videos among many more videos.

Finally, we observe that the performance hierarchy of the four cache management policies

does not change, with the LRLFU_Modified policy to be the best and the NCCS policy the worst.

43

Figure 3.6 : Video-Hit Ratio versus number of videos

Figure 3.7 : Fraction of Delayed Starts versus number of videos

44

3.3.3.3 The impact of different values of the Standard Deviation of the Normal Distribution

for the Video Sizes

In this section we vary the Standard deviation (Sd) parameter of the Normal Distribution,

used for the simulation of the variable video sizes, from Sd equal to 100 to Sd equal to 800. The

results in Figures 3.8 and 3.9 show the impact of the different values of Sd on the VHR and on the

Fraction of Delayed Starts. As already mentioned, as Sd increases the video sizes tend to be more

uniformly distributed while as we decrease Sd there are more videos with sizes near to the mean

and less videos with bigger or smaller sizes. In our simulations when Sd = 100 the majority of the

videos have sizes between 400 MB and 600 MB (the mean is equal to 500 MB) and there are few

videos with size smaller than 400 MB or higher than 600 MB. Instead, when Sd approaches 800

MB all the video sizes between 10 MB and 1000 MB (remember that we filter out values smaller

than 10 MB and higher than 1000 MB) have almost the same probability to appear. The simulation

scenario in this section is an important one because we can examine the cache management policies

in two different systems at the same time, one with normally distributed video sizes and the other

with uniformly distributed video sizes.

From the presented results, we first observe that the LRLFU and the LRU policies achieve

almost the same performance results in terms of the VHR and the Fraction of Delayed Starts for

all the examined different values of Sd. This is expected because the video caching values of these

two policies do not depend on the video sizes. Instead, the other two cache management policies

examined, namely the LRLFU_Modified policy and the NCCS policy contain the video size in

their video caching value functions. By increasing the parameter Sd, the VHR for these two policies

is also increased and the Fraction of Delayed Starts is decreased. Specifically, for Sd =100 the

LRLFU_Modified policy achieves a VHR equal to 48% while for Sd = 800 it achieves a VHR

equal to 53.5%. The corresponding results for the NCCS policy are 19.5% and 32.8%, respectively.

Therefore, we conclude that both the LRLFU_Modified and the NCCS policies achieve better

performance in a system model with uniformly distributed video sizes than in a system with

normally distributed video sizes with relatively low values of Sd.

Finally, it is worth mentioning that for Sd = 800 the LRLFU_Modified increases the

difference from the LRLFU policy, compared with the results shown in the previous sections, and

outperforms it by 4%. On the other hand the NCCS policy approaches the LRU policy.

45

Specifically, for Sd = 100 the difference between these two policies is 20.5% and for Sd = 800 this

difference becomes 7.3%.

Figure 3.8 : The impact of the Standard Deviation of the Normal Distribution on VHR

Figure 3.9 : The impact of the Standard Deviation of the Normal Distribution on the

Fraction of Delayed Starts

46

3.3.3.4 The impact of different values of skew parameter in popularity distribution

The results in Figures 3.10 and 3.11 show the impact of the value of skew in the Zipf video

popularity distribution on the VHR and on the Fraction of Delayed Starts. We have discussed in

section 2.3.3.3 how the different values of the skew parameter affect the video popularity

distribution.

From the results presented in this section we observe that as the parameter s increases each

of the four cache management policies is affected in a different way. Firstly, the three of the four

cache management policies, namely the two LRLFU policies and the LRU policy follow the same

trend. For these policies, as the parameter s increases, the VHR is quickly decreased while the

Fraction of the Delayed Starts is also quickly increased. However, for values of the parameter s

between 0.5 and 0.8 in which the video popularity distribution tends to be uniform the VHR for

the LRLFU_Modified and the LRU policies decreases slower than the VHR of the LRLFU policy.

Specifically, for s = 0.1 the LRLFU policy outperforms the LRU policy by 8.7%, for s = 0.5 this

difference becomes 6.7%, while for s = 0.8 these two policies almost achieve the same results (the

difference is only 1%). Furthermore, the LRLFU_Modified policy outperforms the LRLFU policy

only by 0.9% for s = 0.1 while for s = 0.8 the difference becomes 5%. Instead, the difference

between the LRLFU_Modified policy and the LRU policy is pretty much maintained, it is reduced

only by 3.7%, from 9.7% for s = 0.1 to 6% for s = 0.8.

The “behavior” of the NCCS policy is quite different than the other three policies. For

values of the parameter s from 0.1 to 0.4 we observe a very slow decrease of the VHR and a very

slow increase of the Fraction of Delayed Starts while for values of s from 0.4 to 0.8 the NCCS

policy maintains the same performance. From the results we see that the NCCS policy for s = 0.5

outperforms the LRU policy by 3.5%, for s = 0.6 it outperforms the LRLFU policy by 2.3% and

for s equal to 0.7 or 0.8 it outperforms all the other cache management policies. Specifically, the

NCCS policy in comparison to LRLFU_Modified policy for s = 0.1 is worse by 34.6% while for

s = 0.8 the NCCS policy outperforms the LRLFU_Modified by 4.2%. These results of NCCS are

expected, because as we already mentioned the NCCS adapts better to uniformly distributed video

popularities.

47

Figure 3.10 : The impact of the skew in Zipf video popularity distribution on VHR

Figure 3.11 : The impact of the skew in Zipf video popularity distribution on the

Fraction of the Delayed Starts

48

3.3.3.5 The examination of Byte-Hit Ratio versus time

In this section we examine the performance of the four cache management policies in terms

of the Byte Hit Ratio (BHR) performance metric introduced in section 3.3.1. In Figure 3.12 the

results of the BHR versus time are presented. We can notice several differences in comparison to

the corresponding results of the VHR shown in Figure 3.2. First we observe that the performance

of the NCCS policy is quite worse in terms of the BHR. Specifically, the VHR of the NCCS is

29.1% while the BHR of the NCCS is 12.3% which is a significant difference. This result is

expected if we consider that the NCCS policy stores the videos with the smallest sizes. For the

same reason we observe a reduction in the LRLFU_Modified policy in terms of BHR in

comparison to VHR. This small reduction compared to the one in the NCCS case, is due to the fact

that the caching value of the LRLFU_Modified policy is affected by more factors than the video

size (i.e., the request frequency and the time elapsed since the last request of the videos). The

reduction of the LRLFU_Modified policy is enough for the LRLFU policy to outperform it by

0.8%. Finally, the LRLFU and the LRU policies, the caching values of which do not depend on

the video size, achieve the same BHR performance.

Figure 3.12 : Byte-Hit Ratio versus time (expressed as number of requests served)

49

3.4 Conclusions

From the results presented and discussed in this Chapter we conclude that our proposed

LRLFU_Modified policy outperforms the LRLFU policy in terms of the VHR and the Fraction of

Delayed Starts in all the examined scenarios. Also, the LRLFU_Modified policy improves its

performance in comparison to the LRLFU policy in the scenarios examined in sections 3.3.3.3 and

3.3.3.4. Generally, when a system model with uniformly distributed video sizes or uniformly

distributed video popularities is assumed, the factor of the video size in the video caching value of

the LRLFU_Modified policy helps it to retain its performance at high levels, in comparison with

the LRLFU and LRU algorithms. This can be shown from the comparison of the results in sections

3.3.3, 3.3.3.4 and 3.3.3.5. In section 3.3.3 in which our default scenario is examined, the

LRLFU_Modified policy outperforms the LRLFU policy by 2%, while in section 3.3.3.4 this

difference for Sd = 800 becomes 4% and in section 3.3.3.5 for s = 0.8 it becomes 5%.

Another important conclusion is that in our system model the NCCS policy achieves again

very poor performance results. This happens because the NCCS policy cannot adapt well to Zipf

video popularities with low values of the skew s. On the other hand, from the scenario in section

3.3.3.5 in which for s = 0.8 (which corresponds to an almost uniform video popularity distribution)

we see that the NCCS policy outperforms all the other cache management policies.

50

Chapter 4 : Design and Performance Evaluation of a simple

Collaborative Scenario

4.1 Introduction

In this Chapter we introduce a collaborative scenario with two proxy servers, where each

of them is served by a different content server and serves different client communities. In our

simulation study we implement different algorithms for each proxy cache. The first proxy cache

is assumed to run the best cache replacement policy while the second proxy cache runs the worst

cache replacement policy from the policies examined in Chapter 3. Therefore, the first proxy cache

uses the LRLFU_Modified policy and the other proxy cache uses the NCCS policy. Furthermore

we assume that there is an overlap between the video contents of the two content servers. We have

also adapted the above two cache replacement policies to our collaborative scenario. We have used

the same system model as in Chapter 3 with variable video sizes with the necessary changes in

order to support the collaborative scenario and the same performance metrics as in Chapters 2 and

3. In the next sections we describe the system considered in this Chapter and we present its

performance evaluation, while we also discuss the changes which have been adopted relative to

Chapter 3 in order to support the collaborative scenario.

51

4.2 System Description

4.2.1 Network Topology

The system architecture that we consider for the collaborative scenario of this Chapter is

shown in Figure 4.1. Our system consists of two far-distance content servers, two proxy cache

servers and two different client communities, one for each proxy cache server. The two content

servers in general store different video files with an overlap between their contents. Each proxy

cache server is located close to its client community and sends requests for videos to its content

server. As it is seen from the Figure 4.1 the LRLFU_Modified proxy cache server communicate

only with Content Server 1 and the NCCS proxy cache server communicate only with Content

Server 2, to request for the video files that they do not have in their cache. Each proxy cache server

receives requests from different client communities and it caches a fraction of its content server

files, which are the most popular based on their caching values. The procedure for each proxy

cache when a request for a video arrives is described next. If the proxy has the video file requested

into its cache, it transmits it to the client and the video file remains in the cache. In that case we

have a request hit and no delay start is experienced by the client. If the proxy has not the video file

requested, then it first looks for the file in the other proxy cache in the collaborative scheme which

is denoted by the cycle in Figure 4.1. If a proxy finds the requested video file in the other proxy

cache, then the proxy brings the file in its cache without delay and it serves the client. So, in this

case we also assume that we have a request hit. The only case that there is a request miss and the

proxy has to contact its content server to bring the video file requested, is when the requested video

does not exist in either of the two proxy caches. In that case the client experiences a delayed start

because the latency between the content server and the proxy is quite significant. When a new

video file arrives, either from the other proxy in the collaborative scenario or from the content

server, it is always stored in the cache by removing other video files, if necessary. Finally, we

assume that the bandwidth between the proxy and the clients is sufficient to support video

streaming with negligible latency.

52

Figure 4.1 : Collaborative Scenario

4.2.2 Cache Management/Replacement Policies

As mentioned in section 4.1, we have implemented different cache replacement algorithm

for each of the two proxy caches in order to achieve efficient use of memory of the entire system.

In this section we discuss the cache management algorithms that have been used and the changes

which have been implemented for them to support the collaborative scenario. For cache

replacement, we have adopted the best and the worst cache replacement policies from the policies

examined in Chapter 3. These are the NCCS and the LRLFU_Modified algorithms. For more

details of these algorithms the reader is referred to section 3.2.2.

Most of the characteristics that we have assumed for the cache management policies in this

Chapter are the same with the ones in Chapter 3. Consequently, assuming that each of the two

caches can store 10% of the content of its content server, the LRLFU_Modified policy stores about

240 videos and the NCCS policy stores about 420 videos in total (for an explanation refer to the

discussion in section 3.2.2). In this Chapter in which the collaborative scheme is assumed, when a

53

client request arrives to a proxy server, the proxy server acts as follows. First it looks for the video

in its cache and if the requested video is stored in the cache, the caching value is refreshed and the

proxy serves the client. If the requested video is not stored in the cache, the proxy first looks for

the video in the other proxy cache before it contacts its content server. If the proxy finds the

requested video in the cache of the other proxy, it has to free the necessary space by removing

other videos in order to bring the requested video in its cache. We implement this by running a

recursive function until the necessary space is freed to store the new video. The new video gets a

caching value according to the replacement algorithm used. In the case that the proxy server does

not find the video in its cache or in the other’s proxy cache, it has to contact to content server with

a delay cost. The rest of this procedure is exactly the same with the one discussed in section 3.2.2

of Chapter 3.

It is worth mentioning that the idea to use two different cache management policies in our

collaborative scenario may seem quite unusual. Our idea was based on the expectation that had we

implemented the same policies in each of the two proxies, the result would have been that the two

proxies would store almost the same videos in their caches. Therefore, there would not be much

help from one proxy to the other. Instead, with the collaborative scheme introduced here with two

very different cache management policies used by each of the two proxies, the collaboration

between them would be significant. This is due to the fact that these two cache management

policies store very different videos in their caches, thus it is quite probable to find a requested

video in one of the two proxies and transmit it to the requesting client without delay cost.

4.3 Performance Evaluation

4.3.1 Performance Metrics

In this Chapter we have used the same performance metrics with the ones in Chapters 2

and 3, namely the Video Hit Ratio and the Fraction of Delayed Starts. For the details of these two

performance metrics the reader is referred to section 2.3.1.

54

4.3.2 Simulation Model

The simulation model in this Chapter supports the same characteristics with the simulation

model in Chapter 3 with the variable video sizes, however we have added some extra features

which are necessary for the implementation of the collaborative scenario. In this section we

mention the common characteristics with the ones in Chapter 3, and we discuss the extra features.

As in Chapters 2 and 3 we assume here that the time is divided into time windows of equal

length and that the client requests arrive according a Poisson process. The difference in this

Chapter is that we have two client communities and two proxy servers. We assume that we have

two content servers with 2000 videos each. The popularity of these videos is given by a Zipf-like

distribution as explained in Chapter 2. Finally the sizes of the various videos are random and are

distributed according to the same normal distribution with the one in Chapter 3.

In our system model here we have added the characteristic of an overlap between the

contents of the two content servers. The idea is to examine the efficiency of the cache replacement

algorithms in a collaborative scenario where the two content servers do not have the same content.

We have run scenarios for different overlaps between the contents of the two content servers. The

overlap is defined as the number of common videos stored in the two content servers which are

further assumed to be the most popular among all the videos stored in the two content servers. For

example, our default value of the overlap equal to 100 videos corresponds to 5% in terms of the

number of videos stored in each of the content servers and to a cumulative popularity equal to

44%. Although our default value of the overlap is equal to 100 videos, in our simulations we have

run some scenarios for different values of overlap. In our results we express the overlap as the

cumulative popularity of the common video files according to the Zipf popularity distribution. In

Table 4.1 below we give the values of the overlap in terms of the number of common total videos

that we have chosen to experiment with in our simulations, together with the corresponding

cumulative probability from the Zipf video popularity distribution.

55

Overlap expressed in terms of the total

number of common videos

(corresponding percentage)

Overlap expressed in terms of cumulative

probability of the Zipf video popularity

distribution

20 videos (1%) 25%

50 videos (2.5%) 35%

100 videos (5%) 44%

200 videos (10%) 54%

300 videos (15%) 61%

400 videos (20%) 66%

500 videos (25%) 70%

Table 4.1 : Overlap expressed in terms of the number of common video files and in terms of

the cumulative probability of the Zipf distribution

The values shown in Table 4.1 are expected and this difference is created because the

increase in terms of common videos is linear while the increase in terms of the Zipf popularity

follows the Zipf distribution with s equal to 0.2. It means that this increase is very fast especially

in the beginning of the Zipf distribution which concern the most popular videos. Finally, all the

parameters of the simulation of this Chapter and their default values are given bellow in Table 3.1.

56

Parameters Definition (Default values)

w Window duration (30 sec)

1

𝜆

Mean request inter-arrival time (5 sec)

V1 Number of distinct video titles in the Content Server 1

(2.000 about 1 TB)

V2 Number of distinct video titles in the Content Server 2

(2.000 about 1 TB)

C1 Total cache capacity of the LRLFU_Modified Proxy Cache Server

(about 100 GB)

C2 Total cache capacity of the NCCS Proxy Cache Server

(about 100 GB)

Overlap Overlap between the contents of the two content servers V1 and V2

(100 videos the 44% most popular videos)

s Parameter s of the Zipf distribution (0.2)

m Mean of the Normal Distribution for the video sizes (500 MB)

Sd Standard Deviation of the Normal Distribution for the video sizes

(200 MB)

Runs Number of time windows in a simulation run (30.000)

Table 4.2 : System Parameters together with their default values

57

4.3.3 Simulation Scenarios

It is worth mentioning that we have run three different simulation scenarios for our

collaborative scheme. Our basic scenario is the one described in section 4.2.1 in which each proxy

runs a different cache replacement policy. The other two scenarios examined are similar to our

basic scenario with the difference that each of the two proxy caches runs the same cache

replacement policy. In the first case, the two proxy caches run the LRLFU_Modified cache

replacement policy and in the second case they run the NCCS cache replacement policy. As

expected, the results for the latter two cases were poor. When the two caches in our collaborative

system use the same cache replacement policies they cannot help each other because they store the

same videos in their caches most of the times. Even in the case where the two proxies run the

NCCS policy, in which frequently the videos stored in the two caches are different, because they

depend on the requests which arrive in the last few windows, we do not observe significant

differences in the system performance. For the above reasons we chose not to present the results

of these two collaborative scenarios. So, in the next sections we only present the results of our best

collaborative scenario.

4.3.4 Simulation Results

4.3.4.1 The impact of different overlap percentage

In this section we present and discuss the performance results of our collaborative scenario

when we vary the percentage of the overlap between the contents of the two content servers. The

overlap is expressed here in terms of the cumulative probability of the Zipf video popularity

distribution. We have examined separately the performance of the LRLFU_Modified proxy cache

and the NCCS proxy cache in terms of the Video Hit Ratio and the Fraction of Delayed Starts. The

corresponding results are shown in Figures 4.2 and 4.3, respectively.

 As we can see from Figure 4.2 for overlap equal to 25%, the VHR of the LRLFU_Modified

is higher than that of the NCCS by 9.7%. As the overlap between the contents of the two content

servers increases, the VHR of the NCCS proxy cache increases at a higher rate compared to the

58

VHR of the LRLFU_Modified which also increases but at a very lower rate. The same trends are

observed for the Fraction of Delayed Starts, where in the case of the LRLFU_Modified proxy we

observe a slow reduction while in the case of the NCCS the Fraction of Delayed Starts is reduced

at a faster rate with the increase of the overlap. As a result, the NCCS proxy outperforms the

LRLFU_Modified proxy for values of overlap higher than 39.4%. Specifically for overlap equal

to 35% the LRLFU_Modified proxy cache outperform the NCCS proxy cache by 2.1% while for

overlap equal to 44% the NCCS proxy outperforms the LRLFU_Modified proxy by 2.3%. This

performance difference, with the NCCS proxy being better, increases slowly with the increase of

the overlap for values of the overlap higher than 44%. Finally, this performance difference

becomes equal to 4.5% for an overlap equal to 70%.

If we take into account the fact that our simulations in Chapters 2 and 3 showed that the

NCCS policy achieved very low performance, especially when compared to the LRLFU_Modified

policy, the results shown in Figures 4.2 and 4.3 are rather unexpected. The only explanation we

could give is that in our collaborative scheme the NCCS proxy is helped very much by the

collaboration with the LRLFU_Modified proxy, while the LRLFU_Modified proxy is not helped

at all by the collaboration with the NCCS proxy. In order to ascertain this conclusion we have run

a simulation described in the next section in which we measure the local and the remote Video Hit

Ratio for each proxy cache.

Figure 4.2 : The impact of different values of the overlap percentage on VHR

59

Figure 4.3 : The impact of different values of the overlap percentage on Fraction of

Delayed Starts

4.3.4.2 The impact of different values of the overlap percentage on the Local and Remote

Video-Hit Ratios of the two cache replacement policies

In this section we run a simulation scenario in which the local and the remote VHR are

shown for each proxy cache in order to ascertain and explain the results in the previous section.

To make clear what we mean with the terms of local and remote VHR we explain them below.

When the proxy which runs the LRLFU_Modified policy finds a video requested by a client in its

cache, we say that have a local hit. Instead, when this proxy does not find the requested video in

its cache but it finds it in the other proxy cache which run the NCCS policy then we say that we

have a remote hit. In a similar way we define the local and remote VHR of the NCCS proxy.

In Figure 4.4, the results of the local and remote VHR for the two proxy caches are shown.

As we can see from these results, the LRLFU_Modified proxy finds locally 51.5% of the total

number of requested videos for all the values of the overlap. The remote VHR of the

LRLFU_Modified proxy is very close to zero. Specifically, for percentage of overlap between

25% and 44%, it is about 10-3 % while it reaches 1.7% for overlap equal to 70%. These results

clearly demonstrate that the LRLFU_Modified proxy is not helped at all from the collaboration

60

with the NCCS proxy. In contrast, the results clearly demonstrate that the NCCS proxy finds a

very high percentage of the total number of requested videos in the remote proxy cache.

Specifically, the NCCS proxy finds in its cache (locally) only 25.3% of the total number of

requested videos for all the values of the overlap. The remote VHR of the NCCS increases with

the increase of the overlap. One important conclusion is that for percentage of overlap higher than

25.3%, the remote VHR of the NCCS proxy becomes higher than the local VHR. For overlap equal

to 25%, the remote VHR of the NCCS proxy is 16.7% (8.6% less than the local VHR) while for

overlap equal to 70% the remote VHR becomes 32.1% (6.8% higher than the local VHR).

Therefore, the collaborative scheme significantly helps the NCCS proxy while the

LRLFU_Modified proxy achieves almost the same results with the corresponding in the non-

collaborative schemes of Chapter 3.

Figure 4.4 : The impact of different values of the overlap percentage on Local and Remote

Video-Hit Ratio of the two proxies

61

4.3.4.3 The impact of different cache sizes

In this section we present and discuss the performance results of our collaborative scenario

when we vary the total cache size, while the overlap between the contents of the two content

servers is equal to 44% or 100 videos. The results for the VHR are shown in Figure 4.5 and those

for the Fraction of Delayed Starts in Figure 4.6. As in the corresponding scenario of Chapter 3, we

vary the percentage of the bytes of videos stored in the cache from 5% to 25% of the total bytes of

videos stored in content server, while we maintain constant the total size of the content server. We

chose to run this simulation scenario with overlap equal to 44% (the default value of the overlap)

because for this value the performance difference of the two examined policies is small, with the

NCCS being the best. This will help us to better observe the changes of the curves and the trends

of the two policies.

From the presented results, it can be observed that the trend of the two policies is the same,

since with increasing the cache storage the VHR is improved and the Fraction of Delayed Starts is

reduced for both the LRLFU_Modified and the NCCS policies. The changes between the two

curves are noticed on the increase rate of the VHR and on reduce rate of the Fraction of Delayed

Starts. For the smallest cache size the LRLFU_Modified policy achieves worse performance

results than the NCCS policy while for the largest cache size it happens the opposite. It means that

the VHR of the LRLFU_Modified policy increases more quickly than the VHR of the NCCS

policy and the Fraction of Delayed Starts reduces more quickly than the Fraction of Delayed Starts

of the NCCS policy. More specifically, for cache size equal to 5% of content server size the

difference on VHR between the two policies is 1.8% with the NCCS being the best while for cache

size equal to 25% this difference becomes 2.6% with the LRLFU_Modified being best this time.

As it seems rom the presented results for values of cache size smaller than 15% the NCCS

outperforms the LRLFU_Modified while for bigger values of cache size than 15% the

LRLFU_Modified outperforms the NCCS.

62

Figure 4.5 : Video-Hit Ratio versus cache size, Overlap = 44%

Figure 4.6 : Fraction of Delayed Starts versus cache size, Overlap = 44%

63

4.4 Conclusions

From the results presented and discussed in this Chapter we conclude that the proposed

collaborative scheme improves the overall system performance. Especially for the network

topology we examined and for a high percentage of overlap, both the NCCS and the

LRLFU_Modified policies achieve very good performance and at the same time store different

videos in the two caches thus better serving the client requests. We also observe that the NCCS is

helped much more from the collaboration than the LRLFU_Modified, and its performance in the

collaborative scheme of this Chapter is better by up to 27% compared to the one in Chapter 3 (with

no collaboration). Furthermore, in the collaborative scheme with increasing the size of each cache

the performance also increases and the two policies achieve very close performance results.

64

Chapter 5 : Conclusions

5.1 Overview of Work

In the first part of the Thesis (Chapter 2), we have studied four different algorithms for

video caching designed to reduce the bandwidth requirements and shield the clients from delays.

In our system model, we implemented three video caching algorithms from the literature and we

combined the two of them to create a new algorithm, referred to as the LRLFU_Aggressive with

the aim to improve the performance of the two previous algorithms. However from the

experimental results we concluded that the new algorithm achieves worse performance than the

one of the two algorithms used in the combination, namely the LRLFU.

In the second part of this Thesis (Chapter 3), we again combined the same two algorithms

in a little different way in a slightly different system model with variable video sizes. We inserted

the characteristic of the video size in the caching value of the LRLFU and we referred to the new

algorithm as the LRLFU_Modified. The experimental results show that the new algorithm

outperforms both the other two initial algorithms.

In the third part of the Thesis (Chapter 4), we examined the performance of a system with

two collaborative proxies where each of them is implemented to run a different video caching

algorithm. Specifically, in the system model of Chapter 4 we used the best and the worst algorithms

of Chapter 3 because these two algorithms store very different videos in their caches and they

could collaborate better. As it is shown from the experimental results in Chapter 4, the

collaborative system model that we consider improves the performance of the entire system.

Although the cache operating under the high performance algorithm (the LRLFU_Modified) does

not gain in performance by the collaboration with the cache operating under NCCS algorithm, it

retains its good performance, while the cache operating under the low performance algorithm (the

NCCS) achieves better performance than the one using the LRLFU_Modified algorithm.

65

5.2 Main Conclusions and Contribution

The initial purpose of the Thesis was to combine some characteristics of efficient video

caching algorithms presented in [1]-[5] so as to compare the performance of the two different

cache replacement policies (the NCCS and the LRLFU) in various scenarios. We introduced a new

system model which combines characteristics from two system models of the literature. We also

introduced and evaluated in Chapters 2 and 3 various ideas for effective video caching in our

system model and a collaborative scenario in Chapter 4. From our simulation results, interesting

conclusions can be drawn, which are discussed next.

From the results in Chapters 2 and 3, we conclude that the NCCS algorithm performs

poorly when it is assumed that the video popularities follow a Zipf distribution. The NCCS

algorithm achieves very low performance in both cases of fixed and variable video sizes. Instead,

when the video popularities follow a uniform distribution, the NCCS policy achieves equal or

better performance than that of the LRLFU algorithm. In all other cases, the LRLFU policy

achieves better performance than that of the NCCS policy.

In Chapter 2 we proposed an algorithm similar to the LRLFU with the difference that we

took into account batch arrivals in the caching value of each video. From the results we concluded

that this change does not improve the performance of the LRLFU algorithm. Instead, our new

algorithm is outperformed by the LRLFU. For that reason we decided not to examine this algorithm

in the subsequent Chapters of the Thesis.

In the second part of this Thesis (Chapter 3) we introduced in the system model the case of

variable video sizes and we proposed a new algorithm referred to as the LRLFU_Modified. The

caching value of the new algorithm is equal to the LRLFU caching value divided by the video size.

Our simulation results have shown that this change in the caching value helps the

LRLFU_Modified algorithm to outperform the LRLFU algorithm by 2% (for video sizes

distributed according to a normal distribution) to 5% (for video sizes distributed according to a

uniform distribution). An additional conclusion is that if our algorithm is chosen to manage the

cache of a video segmentation system with the performance metric being the Byte Hit Ratio, the

video segmentation scheme must be designed carefully in order to obtain better performance than

that of the LRLFU algorithm in this case.

66

In the last part of the Thesis (Chapter 4), a collaborative scheme has been proposed and

evaluated. From the corresponding performance results we conclude that in general when there is

a collaborative scheme of proxies designed carefully so that each proxy runs a different cache

replacement algorithm, the overall system performance is improved. Especially for the collaborative

system architecture examined in Chapter 4 and for big percentage of overlap between the contents of

the two content servers, both the NCCS and the LRLFU_Modified algorithms achieve very good

performance and at the same time they store more videos in the two caches to better serve the client

preferences. Our results show that the proxy which runs the NCCS policy is helped much more by

the collaboration than the other proxy which runs the LRLFU_Modified algorithm. Finally, the

proxy running the NCCS algorithm in the collaborative scheme achieves a performance which is

better by up to 27% relative to the performance achieved by the same proxy with no collaboration.

5.3 Ideas for Future Work

An interesting idea for future work would be to expand the collaborative scheme to support

more than two proxies and client communities. It would be a little complicated, because for the

implementation of this idea the system architecture of the collaborative scheme needs to be

designed carefully.

It would also be interesting to evaluate the performance of the examined algorithms in a

system video caching model which supports video segmentation. In such system model there

would be two or three types of cache, each type used to store different segments of videos (prefix,

suffix e.t.c.) and potentially running different cache replacement algorithms.

Finally, another interesting feature which could be added to our system model is the case

of multiple personalized versions of a video or a video segment at varying levels of content

abstraction. A feature like this has been implemented in [3], in which it was assumed that there are

three versions for each video and each version represents a distinct level of visual quality with a

corresponding video file size.

67

References

 [1] A. Satsiou, M. Paterakis, “Frequency-Based Cache Management Policies for Collaborative

and Non-collaborative Topologies of Segment Based Video Caching Proxies,” in Springer

Multimedia Systems, vol. 12, Sept. 2006, pp. 117-133.

 [2] A. Satsiou, M. Paterakis, “Impact of Frequency-Based Cache Management Policies on the

Performance of Segment Based Video Caching Proxies”, in Proc. of the 2004 IFIP Networking

Conference, Athens, Greece, 2004, pp. 1120-1131.

[3] S. M. Bhandarkar, L. Ramaswamy, H. K. Devulapally, “Collaborative caching for efficient

dissemination of personalized video streams in resource constrained environments”, in Springer

Multimedia Systems, vol.20, Jan. 2013, pp. 1-23

 [4] P. Parate, L. Ramaswamy, S.M. Bhandarkar, S. Chattopadhyay, H.K. Devulapally,

“Efficient Dissemination of Personalized Video Content in Resource-Constrained Environments”,

in Proc. of the 5th International Conference Collaborative Computing (CollaborateCom 2009),

Washington, DC, 11–14 Nov. 2009, pp. 1-9.

 [5] S. Chattopadhyay, S. M. Bhandarkar, Y. Wei, L. Ramaswamy, “Video Personalization and

Caching for Resource Constrained Environments”, in Proc. of the International Workshop on

Mobile Multimedia Processing, Tampa, Florida, Dec. 2008.

[6] J. M. Almeida, D. L. Eager, M. K. Vernon, “A Hybrid Caching Strategy for Streaming

Media Files”, in Proc. of the Multimedia Computing and Networking, San Jose, CA, Jan 2001, pp.

200-212.

[7] E. Balafoutis, A. Panagakis, N. Laoutaris, I. Stavrakakis, “The Impact of Replacement

Granularity on Video Caching”, in Proc. of the 2nd IFIP Networking Conference, Pisa, Italy, May

2002, pp. 214-225.

 [8] X. Gu, C. Ding, “On the Theory and Potential of LRU-MRU Collaborative Cache

Management”, in Proc. of the 10th International Symposium on Memory Management, San Jose,

CA, Jun 2011, pp. 43-54.

68

[9] Z. Xiang, Q. Zhang, W. Zhu, Y. Zhong, “Cost-Based Replacement Policy for Multimedia

Proxy across Wireless Internet”, in Proc. of the IEEE GlobeCom, San Antonio, TX, vol. 3, 25-29

Nov 2001, pp. 2009-2013

[10] S. Jin, A. Bestavros and A. Iyengar, “Accelerating Internet Streaming Media Delivery

using Network-Aware Partial Caching”, in Proc. of the 22nd IEEE International Conference on

Distributed Computing Systems, Vienna, Austria, 02-05 Jul 2002, pp. 153-160.

[11] L. Shi, Z. Wang, Y. Yao, L. Wei, “Streaming Media Caching Model Based on Knapsack

Problem”, in Journal of Networks, vol. 6, Aug 2011, pp. 1379-1386.

[12] J. Dilley, M. Arlitt, “Improving Proxy Cache Performance-Analyzing Three Cache

Replacement Policies”, Technical Report, HP Laboratories, Palo Alto, CA, Oct 1999.

[13] R. Ayani, Y. M. Teo, Y. Seen Ng, “Cache Pollution in Web Proxy Servers”, in International

Parallel and Distributed Processing Symposium, IEEE Computer Society, Apr 2003, pp. 248 .

[14] J. S. Kushwah, J. K. Gupta, M. S. Yadav, H. Madan, “Modified LRU Algorithm to

Implement Proxy Server with Caching Policies”, in International Journal of Computer Science

Issues, Vol. 8, Issue 6, Nov 2011, pp. 352

[15] N. Megiddo, D. S. Modha, “Outperforming LRU with an Adaptive Replacement Cache

Algorithm”, in IEEE Computer, Vol. 37, Issue 4, Apr 2004, pp. 58-65

[16] M. Neves, M. Rodrigues, E. Azevêdo, D. Sadok, A. Callado, J. Moreira, V. Souza,

“Selecting the most suited cache strategy for specific streaming media workloads”, in Proc. of the

International Symposium on Integrated Network Management, May 2013, pp. 792-795

[17] http://en.wikipedia.org/wiki/Bit_rate#Video

[18] http://www9.org/w9cdrom/349/349.html

[19] http://whatis.techtarget.com/definition/proxy-server

http://en.wikipedia.org/wiki/Bit_rate#Video
http://www9.org/w9cdrom/349/349.html
http://whatis.techtarget.com/definition/proxy-server

