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Effective velocity and effective dispersion coefficient for finite-sized
particles flowing in a uniform fracture

Scott C. James∗,1 and Constantinos V. Chrysikopoulos

Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA

Received 19 June 2002; accepted 5 March 2003

Abstract

In this work we derive expressions for the effective velocity and effective dispersion coefficient for finite-sized spherical partic
neutral buoyancy flowing within a water saturated fracture. We considered the miscible displacement of a fluid initially free of par
another fluid containing particles of finite size in suspension within a fracture formed by two semi-infinite parallel plates. Particle s
occurs due to the combined actions of molecular diffusion and the dispersive effect of the Poiseuille velocity profile. Unlike Taylor di
here the finite size of the particles is taken into account. It is shown that because the finite size of a particle excludes it from th
moving portion of the velocity profile, the effective particle velocity is increased, while the overall particle dispersion is reduced. A
derivation applied to particles flowing in uniform tubes yields analogous results. The effective velocity and dispersion coefficient d
this work for particle transport in fractures with uniform aperture are unique and ideally suited for use in particle tracking models.
 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Sir Geoffrey Taylor [1] introduced an effective dispe
sion coefficient for soluble matter flowing in a cylindric
tube. Often referred to as the Taylor dispersion coeffici
it is a function of the dissolved constituent’s molecular d
fusion coefficient and the fundamental system parame
(i.e., centerline flow velocity and tube radius). Aris [2] e
tended this work through moment analysis in a more ge
alized manner. Sankarasubramanian and Gill [3], Johns
DeGance [4], and Brenner [5,6] continued the study of
ternal flow and transport by developing exact solutions
the dispersion of reactive solutes in a tube. Following
Taylor–Aris procedures, scientists have examined var
aspects of contaminant transport in parallel-plate syste
For example, Shapiro and Brenner [7–9] and Berkowitz
Zhou [10] have obtained approximate analytical models
the dispersion of reactive solutes in parallel-plate geome
and concluded that the Taylor dispersion coefficient need

* Corresponding author.
E-mail address:scjames@sandia.gov (S.C. James).

1 Present address: Sandia National Laboratories, Geohydrology De
ment, P.O. Box 5800, Albuquerque, NM 87185-0735, USA.
0021-9797/03/$ – see front matter 2003 Elsevier Science (USA). All rights r
doi:10.1016/S0021-9797(03)00254-6
.

be modified to account for system geometry and for pa
cle flux at system boundaries due to wall reactions. Effec
parameters were also derived by Grindrod [11,12] using
asymptotic spectral comparison method. Other impor
contributions include analytical solutions for contamin
transport in fractured porous media, where contaminant
subject to plug flow advection, dispersion, matrix diffusi
sorption, and decay (Tang et al. [13]; Sudicky and Frind [1
Cormenzana [15]). Also, Abdel-Salam and Chrysikop
los [16] derived closed-form analytical solutions for co
taminant transport in single, uniform rock fractures with a
without penetration into the rock matrix for constant co
centration as well as constant flux boundary conditions.

It is often assumed that solutes are infinitesimally sm
and that axial advection and transverse diffusion chiefly g
ern contaminant fate and transport in fractures. Whil
is true that many contaminants are of molecular size,
is not always the case (Chrysikopoulos and Abdel-Sa
[17]). Many studies have shown colloids to be ubiquito
in groundwater while often having an affinity for reacti
contaminants (Smith and Degueldre [18]; Contardi et
[19]). Essentially, if a contaminant sorbs onto a collo
the colloid itself becomes a contaminant (Abdel-Salam
Chrysikopoulos [20,21]).
eserved.

http://www.elsevier.com/locate/jcis
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Much of the groundwork for the development of the
fective parameters for finite particles flowing in a fractu
was based upon particle flow and transport in a tube.
though the solution of Brenner and Gaydos [22] is qu
broad in nature, it is difficult to implement in a model
colloid transport in fractured media. Often, there is insu
cient information about colloidal interactions with the flu
or medium to accurately define the coefficients in their
fective parameters. In this work, the effective velocity a
effective dispersion coefficient for finite-sized, hard, sph
ical colloidal particles with neutral buoyancy are deriv
from first principles in an intuitive fashion. It is shown th
the finite size of a particle excludes it from the slowest m
ing portion of the velocity profile near the walls of a fra
ture, causing the effective velocity of a particle plume
be greater than the corresponding mean solute velocity.
thermore, particle size exclusion leads to a decrease in
effective dispersion coefficient of a particle plume. Wh
used in a particle tracking algorithm, excellent agreem
with an analytical solution is demonstrated.

2. Mathematical derivations

2.1. Effective velocity

Assume that a fully developed, unidimensional, Poiseu
velocity distribution exists within a fracture as shown
Fig. 1, expressed as (Fox and McDonald [23, p. 392])

(1)u(z)=Umax

[
1− 4

(
z

b

)2
]
.

The mean fluid velocity is

(2)�U = 1

b

b/2∫
−b/2

u(z) dz= 2

3
Umax,

whereUmax is the maximum velocity of the interstitial flui
along the centerline of the fracture;z is the coordinate direc
tion perpendicular to the walls of the fracture with its orig
at the center of the fracture; andb is the aperture of the frac
ture. Furthermore, assume that a spherical particle tra

Fig. 1. Schematic illustration of the fracture considered in this study
with a velocity corresponding to the local flow velocity
its centroid. Particle–wall overlap is not allowed. Hydrod
namic, gravitational, van der Waals, and electrostatic fo
are not considered in the calculation of particle veloc
As particle penetration of the fracture wall is not perm
ted, the finite size of a particle does not allow it to sam
the slowest moving portion of the velocity profile near
the wall. The average (or effective) velocity of a parti
is estimated by integrating the Poiseuille velocity distrib
tion over the aperture available to a particle and dividing
that same available aperture. The available aperture is
original aperture,b, less the diameter of a particle,dp . Size
exclusion leads to an effective particle velocity of

Ueff = Umax

b− dp

(b−dp)/2∫
(−b+dp)/2

[
1− 4

(
z

b

)2
]
dz

(3)= 2

3
Umax

[
1+ dp

b
− 1

2

(
dp

b

)2
]
.

Note that the effective particle velocity (3) is greater than
mean fluid velocity (2) because the particle diameter m
not be larger than the fracture aperture(dp/b < 1). Also, it
is evident that the effective velocity of a particle increa
with increasing particle diameter.

2.2. Effective dispersion coefficient

The two-dimensional, unsteady, advection–diffus
equation with axial advection and transverse diffus
representing the two governing transport mechanism
(Berkowitz and Zhou [10])

(4)
∂n(x, z, t)

∂t
=D ∂

2n(x, z, t)

∂z2
− u(z)∂n(x, z, t)

∂x
,

wheren is the number concentration of colloids andD is the
molecular diffusion coefficient of a particle with diamet
dp, given by the Stokes–Einstein diffusion equation (B
et al. [24, p. 513]),

(5)D = kT

3πηdp
,

wherek is Boltzmann’s constant,T is the absolute tempera
ture, andη is the dynamic viscosity of the interstitial fluid.

In the present derivation, the molecular diffusion in t
axial direction is neglected because it is negligible rela
to the axial dispersion due to the parabolic velocity profi
All axial particle movement is due to advection. A qua
steady-state assumption is made by considering only ad
tion across the plane moving with the center of mass
colloid particle plume such thatx and t may be collapsed
into a single coordinate thereby eliminating transient term
(4). This can be achieved by the coordinate transformati

(6)ξ = x −Uefft .
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Fig. 2. Schematic illustration of the “velocity defect” represented by
shaded areas. Bold arrows indicate axial advection of particles and
arrows indicate transverse molecular diffusion of particles.

Applying the preceding coordinate transformation in
yields the partial differential equation

(7)D ∂
2n(ξ, z)

∂z2
= [
u(z)−Ueff

]∂n(ξ, z)
∂ξ

,

where the termu(z) − Ueff = uξ (z) is termed the “veloc
ity defect,” defined as the velocity that is a function oz
at a pointξ = 0 that follows the first moment of a partic
plume in time. Subtracting the effective velocity (3) fro
the Poiseuille (parabolic) velocity profile (1) yields

(8)uξ (z)= u(z)−Ueff = Umax

3

[(
1− dp

b

)2

− 12

(
z

b

)2
]
.

Figure 2 illustrates the velocity defect. Note that partic
in the shaded regions have a tendency to diffuse in the d
tion of the open arrows because of the concentration gra
induced by the velocity defect. It is in these shaded reg
where axial particle advection (indicated by the bold arro
and transverse particle diffusion (indicated by the open
rows) are important. With respect to the moving frame
reference, the velocity of a particle that is in contact with
wall is negative:uξ ((b−dp)/2)= −(2/3)Umax(1−dp/b)2.
Consequently, the apparent velocity of the particles in
shaded areas to the left of the moving frame of refere
is negative as indicated by the direction of the bold arro
Because the mean particle velocity at the plane for wh
ξ = 0 is zero, the transfer of particles across this plane
pends only on the transverse variation ofn. In view of (8),
the governing equation (7) can be expressed as

(9)
∂2n(ξ, z)

∂z2
= Umax

3D

[(
1− dp

b

)2

− 12

(
z

b

)2
]
∂n(ξ, z)

∂ξ
.

Employing the assumption that transverse concentration
dients induced by axial advection are quickly smoothed
by transverse molecular diffusion after the frame of r
erence has moved beyond an “entrance length” (Kes
and Hunt [25, Eq. (11)]), the rate of change of the pa
cle number concentration with respect to the moving fra
-
t

-

of reference can be assumed to be nearly constant a
the aperture of the fracture. This assumption implies
∂n(ξ, z)/∂ξ may be replaced with∂n(ξ)/∂ξ . Integration
of (9) with respect toz yields

∂n(ξ, z)

∂z
= Umaxb

3D

[(
1− dp

b

)2
z

b
− 4

(
z

b

)3
]
∂n(ξ)

∂ξ

(10)+C(ξ),
whereC(ξ) is an integration constant. Imposing the nond
persive flux boundary condition across the centerline (z= 0)
because of neutral particle buoyancy requires that the
gration constant vanish:

(11)
∂n(ξ, z)

∂z

∣∣∣∣
z=0

= 0 ⇒ C(ξ)= 0.

Integration of (10) with respect toz yields

n(ξ, z)= Umaxb
2

6D

[(
1− dp

b

)2(
z

b

)2

− 2

(
z

b

)4
]
∂n(ξ)

∂ξ

(12)+ ncl(ξ),

wherencl(ξ) is an integration constant. Note that evaluat
n(ξ,0) proves thatncl(ξ) is actually the particle concentr
tion at the centerline of the fracture.

The average particle concentration in thez-direction over
the entire fracture aperture is defined by integrating the
ticle number concentration across the fracture and divid
by the fracture aperture:

(13)n̄(ξ)= 1

b

b/2∫
−b/2

n(ξ, z) dz.

Substituting (12) into (13) and performing the integrati
the average colloid concentration is

n̄(ξ)= Umaxb
2

6D

[
7

120
− 1

6

dp

b
+ 1

12

(
dp

b

)2
]
∂n̄(ξ)

∂ξ

(14)+ ncl(ξ).

Note that due to averaging overb, the term∂n(ξ)/∂ξ can be
replaced by∂n(ξ)/∂ξ . Solving (14) forncl(ξ) and substitut-
ing the resulting expression into (12) definesn(ξ, z) in terms
of the average concentration across the fracture:

n(ξ, z)= Umaxb
2

6D

[
− 7

120
+ 1

6

dp

b
− 1

12

(
dp

b

)2

(15)

+
(

1− dp
b

)2(
z

b

)2

− 2

(
z

b

)4
]
∂n̄(ξ)

∂ξ
+ n̄(ξ).

The effective dispersion coefficient is derived from
flux of particles across a plane that is moving with the fi
moment of the particle plume in time. The average flux
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particles in the axial direction relative to the moving coor
nate,ξ , is given by

J̄ = 1

b− dp

(b−dp)/2∫
(−b+dp)/2

n(ξ, z)uξ (z) dz

(16)= − 2

945

U2
maxb

2

D

(
1− dp

b

)6
∂n̄(ξ)

∂ξ
,

where the latter transformation is a consequence of emp
ing (8) and (15). The average flux is calculated only for
portion of the fracture available to the particles, hence
region spanned by the limits of integration.

Using the effective velocity as a moving frame of re
erence, the transport of particles within the fracture m
be viewed as a dispersion problem. Consequently,
advection–diffusion equation may now be redefined
Fick’s second law of diffusion along the moving frame
reference,ξ , with diffusion coefficientDeff. Thus, the un-
steady transport of particles can be expressed through u
the continuity equation assuming there is no particle ge
ation (Bird et al. [24, p. 555]),

(17)
∂n̄(ξ)

∂t
= −∂J̄

∂ξ
.

Substituting the expression for average particle flux (16)
the preceding equation yields

(18)
∂n̄(ξ)

∂t
=Deff

∂2n̄(ξ)

∂ξ2 ,

where the effective dispersion coefficient,Deff, represents
the apparent particle spreading arising from the comb
effect of the advective flux of particles across the plane m
ing with the center of mass of a particle plume plus mole
lar diffusion. It is defined as

(19)Deff =D + 2

945

U2
maxb

2

D

(
1− dp

b

)6

.

For the limiting case where a particle becomes neglig
small, dp → 0, the preceding expression for the effect
dispersion coefficient for finitely sized particles reduces
the classic Taylor dispersion coefficient

(20)DTaylor =D + 2

945

U2
maxb

2

D .

3. Discussion

Figure 3 compares the effective dispersion coefficient
particles using (19) to an equivalent Taylor dispersion co
ficient, (20). It should be noted that the molecular diffus
coefficient used in both the effective and Taylor dispers
coefficients was calculated from (5), even though the Ta
dispersion coefficient assumes infinitesimally small pa
cles. Figure 3 demonstrates that when the particle dia
ter is 6.5% of the fracture aperture, the effective dispers
f

Fig. 3. Effective and Taylor dispersion coefficients as a function of
ticle-diameter-to-fracture-aperture ratio. The fracture is representativ
what might be found in the subsurface withb = 1 × 10−4 m, Umax =
1× 10−6 m/s, atT = 288.15 K.

coefficient of the particle plume is 50% less than the co
sponding Taylor dispersion coefficient.

The limiting cases where the particle diameter beco
infinitesimally small (dp → 0) as well as when the part
cle diameter is comparable to the fracture aperture (dp → b)
are also examined. As the diameter of a particle beco
infinitesimally small, the effective velocity with which th
particle plume travels is reduced to the mean flow veloc
Ueff = 2

3Umax andDeff =DTaylor. This is in agreement with
the assumption of an infinitesimally small solute made
Taylor in his derivation. At the limit of the particle diamet
approaching the fracture aperture, the effective velocity
particle plume becomesUmax while the corresponding effec
tive dispersion coefficient reduces to the molecular diffus
coefficient. Both results arise directly from the assumpti
that each particle is assumed to travel with a velocity eq
to that found at its centroid due to the hydraulic gradient
that particle–wall overlap is not permitted. An increased p
ticle diameter to fracture aperture ratio implies a narro
range of velocities for a colloid plume, thereby decreas
the dispersive effect of the velocity gradient. If a plume
subject to a single velocity, it spreads by molecular diffus
alone. The expected behavior ofDeff at both limits of small
and large particles is evident from (19).

Clearly, particle size should be considered when inve
gating the transport of finite-sized particles through a wa
saturated fracture. It should be noted that there have
other derivations of effective velocity and dispersion
efficients for solutes and particles in cylindrical and p
nar systems (DiMarzio and Guttman [26]; Anderson a
Quinn [27]; Brenner and Gaydos [22]); however, the
sults presented in this study are directly applicable to col
transport in a uniform aperture fracture.

4. Effects of viscous forces

Although the effects of the fracture walls upon collo
motion have not been addressed thus far, it is importan
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note that as a colloid approaches a wall (its surface less
a few diameters away), significant changes in velocity
diffusivity are noted. Specifically, the velocity and diffus
ity parallel and perpendicular to the wall decrease in
ferent proportions (i.e., diffusion is no longer isotropic a
because the colloid may not penetrate the wall, its perpen
ular velocity must approach zero as it nears the wall, w
parallel velocity is reduced) (van de Ven [28, Eq. (6.13
Unfortunately, these effects may not be incorporated
the analytical derivation presented above, although m
complicated solution approximations exist (e.g., metho
reflections, matched asymptotic solutions for “inner” a
“outer” regions, and truncated power series expansion
Goldman et al. [29], O’Neill and Stewartson [30], and Go
and O’Neill [31], respectively). In this treatment of effe
tive parameters, if the constantsUmax andD are replaced
with simple symmetric (even) functions,Umax(z) andD(z),
respectively, the wall effects may be estimated. Howe
unless the colloid is larger than 10% of the aperture, e
effects are negligible through more than 90% of the fr
ture, yet very near to the walls, they are significant. With
breaking the solution space into different zones, no sim
integrable function can express the correction factor ap
priately. For example, a nonanalytically integrable expon
tial representation of the hydrodynamic correction factor

(21)F(z)= 1+ α− α exp

[
−

(
2z

b− dp
)β]

,

whereα (real) andβ (large, positive, and even) are consta
that are calculated to match the curves of van de Ven
Fig. 6.4]. Although the preceding correction factors may
be carried through the analytical treatment of effective
rameters, a numerical solution exists. While this numer
treatment of effective parameters is beyond the scope o
work, incorporating wall effects through (21) would serve
decreaseUeff andDeff. Any symmetric equation that appro
imates the hydrodynamic correction factors may be used
therefore (21) should not be considered unique.

5. Extension to flow in cylindrical tubes

5.1. Mathematical derivation

To extend our results to finite-sized particles flowing i
cylindrical tube, a derivation equivalent to that performed
Cartesian coordinates was performed in cylindrical coo
nates. The Poiseuille velocity profile in a tube of radiusR is

(22)u(r)=Umax

[
1−

(
r

R

)2
]
,

wherer is the radial distance from the center of the tu
The mean velocity within the tube is�U = Umax/2 and the
effective velocity of a finite-sized particle is

(23)Ueff = 1

2
Umax

[
1+ dp

R
− 1

4

(
dp

R

)2
]
.

The governing equation for particle transport in a tube

(24)
∂n(r, z, t)

∂t
= D
r

∂

∂r

[
r
∂n(r, z, t)

∂r

]
− u(r)∂n(r, z, t)

∂z
.

Following the same procedures used to derive the effe
dispersivity of a particle in a fracture (see Section 2.2),
effective dispersion coefficient in a uniform tube is

(25)Deff =D + 1

192

U2
maxR

2

D

(
1− dp

R

)6

.

Again, for infinitely small particles, (23) and (25) are
complete accord with the results of Taylor [1].

5.2. Comparison to other studies

DiMarzio and Guttman [26] investigated the case of fl
ible polymers flowing through a gel permeation column
counting for some hydrodynamic wall effects and derived
expression for the effective velocity equivalent to (23) a
an expression for the effective dispersion coefficient tha
equivalent to (25).

Anderson and Quinn [27] derived the following expre
sion for the effective velocity of a submicrometer parti
passing through a porous membrane,

Ueff = 1

2
Umax

[
1+ dp

R
− 1

4

(
dp

R

)2
]

(26)×
[

1− 1

6

dp

R
− 0.02

(
dp

R

)3
]
,

but they did not determine an equation for the effective
persion coefficient.

Brenner and Gaydos [22] performed a comprehen
moment analysis to obtain effective parameters of

(27)Ueff = 1

2
Umax

[
1+ dp

R
− 1.225

(
dp

R

)2

+O(
d2
p

)]

and

Deff =D
[

1+ 0.231

(
dp

R

)
− 9

16

(
dp

R

)
ln

(
2R

dp

)

− 9

16

(
dp

R

)2

ln

(
2R

dp

)
+O(

d2
p

)]

(28)

+ 1

192

U2
maxR

2

D

[
1− 0.931

(
dp

R

)

+ 2.42

(
dp

R

)2

+O(
d2
p

)]
,
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Fig. 4. Comparison of the effective parameters derived in this study
appropriate parameters reported in previous studies. The top plot relat
ratio of effective dispersion to Taylor dispersion as a function of part
to tube diameter ratio. The bottom plot illustrates the relationship betw
the ratio of the effective velocity to the mean flow velocity and the ratio
particle to tube diameter.

with coefficients incorporating the effects of London, v
der Walls, viscous, and Debye double layer forces. Note
to first order, the expressions (23) and (25) derived here c
pare well with those of Brenner and Gaydos [22].

Figure 4 compares expressions (23) and (25) with
corresponding expressions derived by DiMarzio and G
man [26], Anderson and Quinn [27], and Brenner and G
dos [22]. Clearly, the various results are somewhat differ
however, they indicate that the overall trend for finite-siz
particles is faster travel and decreased dispersion with
creasing particle size. Certainly, the expressions derive
Brenner and Gaydos [22] are most general, but obtai
the coefficients in their equations requires more informa
than just the particle size and the diameter of the cy
der. Of importance is to note that the expression (28)
the effective dispersion coefficient derived by Brenner
Gaydos [22] goes through a minimum atdp/R = 0.149 and
surpasses the Taylor dispersion coefficient atdp/R = 0.277.
Theoretically, Taylor dispersion represents the upper lim
dispersion in a tube.

All of the previous studies discussed in this section fo
only on particle transport in cylindrical tubes. To our know
edge, the effective parameters (3) and (19) derived in
work for particle transport in water-saturated fractures w
uniform aperture are unique. Furthermore, they are ea
implemented in particle-tracking algorithms while requiri
knowledge only of the fracture aperture and particle dia
ter.
6. Particle tracking analysis

To further illustrate the effect of particle size on par
cle transport in a uniform, water-saturated fracture, parti
tracking simulations were conducted. Particle-tracking a
rithms are stochastic solutions to linear partial differen
equations that do not provide direct numerical solutions
therefore do not suffer from numerical dispersion as do
finite element and finite difference methods. Each partic
individually considered (i.e., stored in a memory locatio
thus retaining its own unique characteristics including,
example, particle diameter.

Particle-tracking techniques have frequently been app
to investigations of contaminant transport in porous
fractured media (Chrysikopoulos et al. [32]; Thompson
al. [33]; James and Chrysikopoulos [34–36]; Reimus
James [37]; Chrysikopoulos and James [38]). The gen
particle tracking transport equation consists of an abso
term, in this case due to advection; and a stochastic term
resenting dispersion in the system (Kitanidis [39]). In vec
notation the particle-tracking equation is given by (Thom
son and Gelhar [40])

(29)Xm = Xm−1 + A(Xm−1) t + B(Xm−1) · Z
√
 t,

where exponentm is the numerical step number,Xm is
the three-dimensional position vector at time levelm t ,
A(Xm−1) is the absolute forcing vector evaluated atXm−1

(i.e., a function of the velocity distribution),B(Xm−1) is a
deterministic scaling second-order tensor evaluated atXm−1

(i.e., a function of the dispersion coefficient), andZ is a vec-
tor of three independent normally distributed random nu
bers with zero mean and unit variance. The terms of
diagonal second-order tensorB(Xm−1) are equal to

√
2D

(Ahlstrom et al. [41]).
The two-dimensional particle tracking equations for

uniform aperture fracture examined in this work can be w
ten as

(30)

xm = xm−1 +Umax

[
1− 4

(
zm−1

b

)2
]
 t +Z1

√
2D t,

(31)zm = zm−1 +Z2
√

2D t.

Using the effective velocity and dispersion coefficient
rived in this work, the preceding two-dimensional parti
tracking equations may be replaced by a one-dimensi
particle tracking equation:

(32)xm = xm−1 +Ueff t +Z1
√

2Deff t.

Particles encountering the wall are reflected as a mirror
age (James and Chrysikopoulos [33]).

Breakthrough curves generated for both the one- and
dimensional particle tracking algorithms were indistingui
able from a breakthrough curve obtained by the analyt
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Fig. 5. Snapshots of a 5,000-particle plume with (a) infinitesimally sm
diameter determined by a two-dimensional particle tracking algorit
(b) diameterdp = 5 × 10−6 m determined by a two–dimensional par
cle tracking algorithm; and (c) diameterdp = 5 × 10−6 m determined by
a one-dimensional particle tracking algorithm employing the derived e
tive parameters (heret = 70 days,b= 1×10−4 m,Umax= 1×10−6 m/s,
andT = 288.15 K).

solution provided by Carslaw and Jaeger [42, p. 258],

(33)n̄(x, t)= n0

(4πDefft)1/2
exp

[
− (x −Uefft)

2

4Defft

]
,

wheren0 is the initial number of particles introduced into t
fracture per cross-sectional area of the fracture (James [
Note that (33) is the analytical solution to (18) subject
an instantaneous particle injection described byn̄(ξ,0) =
n0δ(ξ) andn̄(∞, t)= 0, whereδ is the Dirac delta function
with ξ replaced byx −Uefft .

Snapshots of particle tracking simulations for both
finitesimally small and finite-sized particles are presen
in Fig. 5. Results are obtained after approximately 70 d
of travel time using a time step of t = 100 s through a
fracture with apertureb = 1 × 10−4 m and centerline ve
locity of Umax = 1 × 10−6 m/s. Figure 5a is a snapshot
two-dimensional particle tracking results for infinitesima
small particles (D = 8.41×10−14 m2/s). Figure 5b present
two-dimensional particle tracking results for particles w
diameterdp = 5 × 10−6 m (5% of the fracture aperture
and diffusion coefficient determined by the Stokes–Eins
equation. Figure 5c is a snapshot from the one-dimens
particle tracking algorithm based on the effective para
ters derived in this work for particles with finite diame
(dp = 5 × 10−6 m). It should be noted that thez-location
of each particle across the fracture in Fig. 5c was rando
selected after thex locations of the particles in the plum
were determined. Comparing Fig. 5a with Figs. 5b and
two important features are evident. First, the mean p
cle locations for the particle plumes in Figs. 5b and 5c
.

l

greater than the mean particle location in Fig. 5a due to
increased average particle velocity for the plumes of fin
sized particles as determined by (3). Second, the spre
the particle plumes in Figs. 5b and 5c is less than tha
Fig. 5a because the finite size of the particles reduces
effective dispersion of the particle plume according to (1
Certainly, the particle tracking results show that the fin
size of the particles do indeed affect the transport beha
of a particle plume. The snapshots of the particle plum
in Figs. 5b and 5c show indistinguishable characteris
suggesting that the two-dimensional particle tracking eq
tions can be replaced by the more computationally effic
one-dimensional particle tracking equation that employs
effective parameters.

7. Summary

In this work an effective velocity (3) and an effecti
dispersion coefficient (19) for finite-sized, spherical, pa
cles traveling in a uniform aperture fracture are derived.
slowly flowing carrier fluid forms a parabolic velocity pr
file within the fracture. Because particle–wall overlap is
allowed, and because a particle is assumed to flow at a v
ity equal to that found near its centroid, the size of a part
physically excludes it from the slowest moving portion
the velocity profile located at the fracture walls. While t
size exclusion serves to increase the effective travel velo
of a particle plume, it also decreases its effective disper
coefficient. The effective dispersion coefficient derived h
is found to be similar in form to the Taylor dispersion co
ficient. In fact, in the limit of a particle diameter becomi
infinitesimally small, the newly derived effective dispersi
coefficient reduces to the classic Taylor dispersion co
cient. Extension of the parallel plate results to a unifo
tube show similar particle behavior. Although other inve
gators have derived expressions forUeff andDeff applicable
to particle transport in cylindrical tubes, the effective pa
meters derived in this work for particle transport in fractu
with uniform aperture are unique. A particle tracking ana
sis is presented to compare the results between the tran
of particles that are either infinitesimally small or of fin
diameter. The results presented in this work suggest
the finite size of constituent particles increases the e
tive plume velocity and decreases the overall spreading
particle plume.
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Appendix A. Nomenclature

A absolute forcing vector (L t−1)
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h.D.
b fracture aperture (L)
B deterministic scaling tensor (L t−1/2)
C integration constant (L−4)
dp particle diameter (L)
D dispersion coefficient (L2 t−1)
Deff effective dispersion coefficient for a plume

finite-sized particles (L2 t−1)
DTaylor Taylor dispersion coefficient for a plume of infin

tesimally small particles (L2 t−1)
D molecular diffusion coefficient (L2 t−1)
J̄ average axial flux of particles relative to the movi

coordinateξ (L−2 t−1)
F hydrodynamic correction factor for wall effects (–
k Boltzmann’s constant (M L2 t−2 T−1)
m time step number (–)
n number concentration of particles per unit volum

of interstitial fluid (L−3)
n̄ average number concentration of particles per

volume of interstitial fluid across the fracture (L−3)
n0 initial number of particles introduced into the fra

ture per cross-sectional area of the fracture (L−2)
ncl number concentration of particles per unit volum

of interstitial fluid at the centerline of a fractu
(L−3)

r radial distance from the center of a cylindric
tube (L)

R radius of a cylindrical tube (L)
t time (t)
 t time step (t)
T absolute temperature of the interstitial fluid (T)
u(z) local interstitial fluid velocity (L t−1)
uξ (z) velocity defect, equal tou(z)−Ueff (L t−1)
�U mean velocity of the interstitial fluid (L t−1)
Ueff effective velocity of a particle (L t−1)
Umax maximum interstitial fluid velocity along the cen

terline in thex-direction (L t−1)
x coordinate along the fracture length (L)
X three-dimensional position vector (L)
z coordinate perpendicular to the fracture (L)
Z1,Z2 randomly generated normally distributed numb

with zero mean and unit variance (–)
Z three-dimensional vector of randomly genera

normally distributed numbers with zero mean a
unit variance (–)

α constant in the hydrodynamic correction factor (
β constant in the hydrodynamic correction factor (
δ Dirac delta function (–)
η dynamic viscosity of the interstitial fluid

(M L−1 t−1)
ξ coordinate transformation, equal tox −Uefft (L)
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