

Block-C: A block-based visual environment for supporting the

teaching of C programming language to novices

Kyfonidis Charalampos1, Moumoutzis Nektarios2, Christodoulakis Stavros3

1 Computer & Information Sciences
University of Strathclyde
Glasgow G1 1XH, UK

{charalampos.kyfonidis@strath.ac.uk}c

2, 3 School of Electronic & Computer Engineering
Technical University of Crete
Chania, Crete 73100, Greece

{stavros@ced.tuc.gr, nektar@ced.tuc.gr}

Abstract: Many barriers exist for novice programmers when confronted with the C
programming language, such as its low level orientation, cryptic syntax and ambiguous
compiler error messages. This paper presents the design and development of a block-based
visual shell for the C programming language following the recognition over recall design
pattern to eliminate syntax errors and enable the effective internalization of C programming
language constructs. The evaluation studies provide evidence of the effectiveness of this shell,
in tutorial/lab settings without the presence of human tutors.

Keywords: C language, teaching programming, learning, block programming, visual
programming, syntactic error prevention

1. INTRODUCTION

Teaching introductory programming courses has received much attention the last years. This
is mainly due to the ubiquitous use of computers, the proliferation of the so called cultures of
participation [7], end-user programming [19] and end-user software engineering [14]. These
trends are addressing software tools that provide powerful scripting languages to enable
flexible customization and rich interactive content development by end-users. In this respect,
knowledge of computer programming concepts is nowadays necessary for most knowledge
workers including scientists, engineers and technologists. Consequently, many higher
education departments have included introductory programming courses in their curricula.
Furthermore, many countries1,2 extend their curricula in secondary or even primary education
to address the development of basic programming skills. The importance of computer
programming has received even more attention recently through an international computer
coding campaign titled “The Hour of Code”3 within the context of Computer Science Week4.

The introduction of programming courses in educational curricula is much facilitated by
the proliferation of Educational Programming Languages (EPLs). Through their engaging
graphical environments, EPLs promote situated learning by enabling the development of
video games, computer animations and other digital artefacts. Many such languages are based
on a Lego-like block-based paradigm5. Code is assembled from command blocks that are
handled visually like Lego bricks. This approach addresses some of the most significant
shortcomings related to the use of general purpose programming languages to introduce
novices to the concepts of programming [22]. Although very effective, EPLs cannot be always
used in introductory programming courses due to the fact that in many cases such courses
require the use of a general purpose programming language.

The work reported in this paper addresses the above issues by proposing an approach to
exploit the positive experience drawn from block-based EPLs. In particular, it presents Block-

1 http://www.computingatschool.org.uk/data/uploads/internationalcomparisons-v5.pdf
2 http://www.nextgenskills.com/israel-leads-the-way-on-computer-science-in-schools/
3 http://www.theverge.com/2013/12/9/5191162/hour-of-code-computer-science-campaign-obama-
cantor-support
4 http://csedweek.org
5 http://blog.acthompson.net/2012/12/programming-with-blocks.html

 1

C, an engaging visual environment on top of C language. This environment enables novice
programmers advance effectively in their first programming steps. It provides guidance and
prevents usual coding errors (e.g. syntax errors) and thus increases the productivity of its
users. Last but not least, it leverages the positive experiences drawn from EPLs to offer a
Lego-like block-based graphical shell over the C programming language following the
recognition over recall user interface design pattern.

The rest of this paper is structured as follows: Section 2 presents related work with respect
to languages and platforms that enable effective learning of programming concepts. Section 3
addresses the design and implementation of Block-C exploiting the block-based programming
paradigm. Evaluation studies that document the effectiveness of Block-C are presented in
Section 4. Section 5 concludes and presents plans for futures work.

2. RELATED WORK

Teaching programming to novices has been a subject of research for many years. Beginning
with Smalltalk [12] in 1972 a whole new discipline started to evolve. Over the years
researchers tried to find more intuitive ways to guide novices over programming. Visual
Computing offers a firm ground for such intuitive approaches.

Following a concise classification of Visual Computing software [20] there are two
specific categories that are relevant to the work reported here: Visual Programming
Languages (VPLs) and Visual Environments for Textual Languages (VETLs). Some of the
most known examples of VPLs for educational use are Scratch[21], Etoys[11], and StarLogo
TNG [13]. Alice [20], Greenfoot [10], Java2Sequence [1] and many others are examples of
VETLs, offering graphical shells over general purpose programming languages (mainly Java).

Many studies [5, 9, 10, 15, 22] have been conducted for VPLs and VETLs in order to
support novices in computer programming, such as the ones listed above. These studies aim to
investigate the effectiveness of the corresponding VPLs and VETLs in terms of aiding and
guiding learning. Furthermore, there has been research on more specific issues such as the
impact of syntax error in learning computer programming [3, 4] as well as more student/user-
centric studies [2, 18].

The first general purpose VETL that supports the full range of capabilities of the
underlying programming language, is HyperPascal [17]. One of the most complete works in
the field and similar to Block-C is blockly [8]. Blockly is an online block-based editor which
produces Javascript, python and XML code. Also some pre-made block-based games are
hosted in the blockly project, such as a modern pre-programmed “turtle graphics” design
platform resembling Logo [6]. To the best of our knowledge, there is no such approach
reported in the literature for the C programming language, which is the focus of our work.

3. DESIGN AND IMPLEMENTATION

Block-C is a general purpose VETL designed for making more effective the learning of the C
programming language for novices. The major aspects of this work is the elimination of
syntax errors by providing a block-based interface that promotes recognition over recall.
Block-C specifically targets novices that are introduced to programming through the C
programming language. Its aim is to facilitate their first steps in programming while at the
same time enable the internalization of core programming concepts and C language structures
so that after successful introduction to programming, the novices can proceed with ordinary
plain-text C code. In this respect, Block-C is to be considered as a transient tool to support
novices. This transiency is in many aspects closely related to scaffolding [23] as defined and
used in the educational sciences. Scaffolding refers to learning situations where learners are
gradually constructing their knowledge on their own through the facilitation of a more
knowledgeable peer. The facilitator provides only hints and prompts which are later removed
when the learners develop a certain level of autonomy and self-motivation. Block-C is
especially useful in cases when human facilitators cannot be physically or virtually present
meaning that scaffolding could occur through a technological intervention that will mitigate
the absence of a knowledgeable human peer.

Block-C is implemented in Java as an extension of OpenBlocks [22], which is an open
source JAVA framework released by STEP laboratory of MIT6. OpenBlocks could be used to

6 http://education.mit.edu/openblocks

 2

build VPLs dynamically by describing the properties of the blocks and the graphic
environment in an XML file.

 Figure 1: A simple program in Block-C, and its exported code in C.

Figure 1 above presents an overview of the user interface offered to the users of
Block-C while Figure 2 below shows the corresponding plain-text C code for the program

depicted above.

Figure 2: A simple program in Block-C, and its exported code in C.

3.1 DESIGN DECISIONS

Block-C aims at providing learning efficiency and usability through a comprehensible
interface that helps and guides learners. Therefore, the recognition over recall user interface
design pattern [16] was adopted and the following design decisions were made:

 Interaction with understandable notions only - Learners should be relieved from
notions that are not directly needed or used by them. Learners should not be expected
to manipulate readily resources or tokens which cannot be easily understood such as
libraries and the corresponding #include pre-compiler directive.

 Syntactic error prevention - To overcome the learning barrier of syntactic errors,
syntax guidance should be given for the formation of correct C language expressions
in a way that eliminates such errors. This is accomplished by the use of visual blocks
that make explicit the structure of language expressions. Furthermore, to reduce the

 3

complexity of the syntax of C, a restricted grammar is used in Block-C incorporating
all structures that are necessary to introduce a novice to C programming.

 Beautified code - Guide learners to writing well-structured code. To this end
automatically completion of parentheses, brackets, and code block limits are
important aspects that should be supported. This is accomplished again through the
use of graphical blocks. These blocks provide direct support for beautified code,
balanced parenthesis and brackets as depicted in Figure 1.

 Transitivity of the tool - Enable learners to gradually move from using Block-C to
using ordinary plain-text C programming. To this end, Block-C translates block-based
code to C plain-text code and provides both viewing options. This way, it promotes
the understanding of the correspondence between the command blocks and the actual
C statements and their syntax (see Figure 2).

3.2 OPENBLOCKS EXTENSION

The core functionality of OpenBlocks could not address all usability requirements set at the
design phase. Furthermore, several suggestions were given by test users during the first
evaluation cycle (see next section for details). Most of them called for enhancements in the
core functionality of OpenBlocks. Therefore, a number of OpenBlocks extensions were
implemented (blocks' copying, colour coding, user-defined blocks, plain C translation, etc.).

4. EVALUATION

Block-C was initially evaluated through a usability evaluation process. This process led to the
refinement of the intermediate versions. In order to measure the effectiveness of the final
version of the tool in a tutorial/lab setting, a controlled experiment was conducted. In total 32
first-year volunteer students participated, all of them following the introductory programming
course in C at the department of Production Engineering and Management of the Technical
University of Crete. The distribution of the participants in the control (C) and test group
(Block-C) was random; 16 students were assigned to each group. Both groups were asked
accomplish three tasks of increased difficulty over a two-hours tutorial.

Table 1: Participants' profiles (programming experience and gender)

None Limited Moderate Sum Percentage
Male 6 12 1 19 60%

Female 4 9 0 13 40%
Sum 10 21 1 32 100%

Those three tasks were chosen to cover the basic C programming concepts such as
variables, conditional statements, boolean and arithmetic expressions, loops, input/output etc.
Therefore, the first task required the implementation of a menu-driven program in which a
number of if-else statements were required as well as the use of a while-loop statement. The
second task required two nested for-loops. The third task required nested loop structures and a
non-trivial operator for conditional checks.

During the evaluation four tutors were present but their interventions were restricted only
to significant logical errors. No further assistance was given. The participants were asked to
accomplish three tasks of increased difficulty in two hours. Statistics about the tasks
accomplished and the time needed for each participants were recorded. The aggregated results
which correspond to the number of users finished each task, are shown in Table 2.

Table 2: Number of users who finished each task with C and Block-C

Task Method Users Finished Sum

1
Block-C 16

28
C 12

2
Block-C 9

14
C 5

3 Block-C 6 8
C 2

 4

The total number of task finished with Block–C, in the same time duration, was
significantly higher than with C (p=0.039). Table 3 presents the improvement in the number
of students that finished each task.

Table 3: Improvement of Block-C over C (based on the number of users who finished each task).

Task 1 2 3
Improvement x1.33 x1.8 x3

According to these results, Block-C can be arguably considered as an effective tool that
increases productivity of students in tutorial/lab settings by disencumbering them from the
burden of syntactic mistakes. This fact is very important for the learning process of novice
programmers because it enables them to focus on the logic part of their programs, rather than
on the syntactic idiosyncrasies of the C programming language. As already stated, the tutors
did not help learners with syntactic issues, a fact that reveals the effectiveness of Block-C in
supporting self-study of novices without the presence of human facilitator.

5. CONCLUSIONS - FUTURE WORK

Educational programming languages are proven to offer an engaging learning environment for
novices. Block−C aims to transfer this positive perspective in introductory C language
courses. Employing the recognition over recall design pattern, Block−C succeeds in
eliminating syntax errors and provide an engaging graphical shell over C. Its experimental
evaluation demonstrates clear evidence of increased productivity, a fact that is of high
significance when human facilitators are not present or unable to serve in a personalized
manner a large number of students.

Following the promising evaluation results reported in this paper, further work is to be
done to investigate the long term effects of using Block−C throughout a C programming
course. Future plans include the integration of an execution panel and a graphical debugger
directly in Block−C, as well. Step-by-step code execution through the debugger is expected to
provide a deeper and more intuitive understanding of programs and offer an engaging
demonstration tool for course lectures as well. Finally, a web-based version is to be
considered exploiting the blockly project [Fraser et al. 2011].

ACKNOWLEDGMENTS

The authors would like to thank all students that participated in the experiments, the teacher
and postgraduate students of the department of Production Engineering and Management of
the Technical University of Crete. Especially the authors would like to thank Ms. Georgia
Kyriakaki for the valuable help she provided during and after the experiment.

This work was partially funded in the scope of the following projects: pSkills (502843-
2009-LLP-GR-COMENIUS-CMP), ALICE (518106-LLP-1-2011-1-IT-GRUNDTVIG-GMP).
Block-C has been used to enhance learning interventions within the context of the Open
Discovery Space project - http://portal.opendiscoveryspace.eu (FP7-ICT-PSP: 297229).

REFERENCES

[1] Barros J. P., Biscaia L., and Vitória M. Java2Sequence: a tool for the visualization of
object-oriented programs in introductory programming. Proceedings of the 16th
annual joint conference on Innovation and technology in computer science education.
2011. pp 369-369.

[2] Cardell-Oliver R., and Doran Wu P. UWA Java tools: harnessing software metrics to
support novice programmers. Proceedings of the 16th annual joint conference on
Innovation and technology in computer science education. 2011. pp 341-341.

[3] Denny P., Luxton-Reilly A., and Tempero E. All syntax errors are not equal. Proceedings
of the 17th ACM annual conference on Innovation and technology in computer
science education. 2012. pp 75-80.

[4] Denny P., Luxton-Reilly A., Tempero E., and Hendrickx J. Understanding the syntax
barrier for novices. Proceedings of the 16th annual joint conference on Innovation
and technology in computer science education. 2011. pp 208-212.

 5

[5] Fesakis G., and Serafeim K. Influence of the familiarization with scratch on future
teachers' opinions and attitudes about programming and ICT in education. ACM
SIGCSE Bulletin. vol. 41. 2009. pp 258-262.

[6] Feurzeig W. "Programming-Languages as a Conceptual Framework for Teaching
Mathematics. Final Report on the First Fifteen Months of the LOGO Project". 1969.

[7] Fischer G. "Understanding, fostering, and supporting cultures of participation".
interactions. vol. 18. 2011. pp 42-53.

[8] Fraser N. Blockly: A visual programming editor. Published. Google, Place. 2013.
[9] Garlick R., and Cankaya E. C. Using Alice in CS1: a quantitative experiment. Proceedings

of the fifteenth annual conference on Innovation and technology in computer science
education. 2010. pp 165-168.

[10] Henriksen P., and Kölling M. Greenfoot: combining object visualization with interaction.
Companion to the 19th annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications. 2004. pp 73-82.

[11] Kay A. "Squeak etoys, children & learning". online article. vol. 2006. 2005.
[12] Kay A. C. The early history of Smalltalk. History of programming languages---II. 1996.

pp 511-598.
[13] Klopfer E., Scheintaub H., Huang W., and Wendel D. (2009) StarLogo TNG, In Artificial

Life Models in Software, pp 151-182, Springer.
[14] Ko A. J., Abraham R., Beckwith L., Blackwell A., Burnett M., Erwig M., Scaffidi C.,

Lawrance J., Lieberman H., and Myers B. "The state of the art in end-user software
engineering". ACM Computing Surveys (CSUR). vol. 43. 2011. p 21.

[15] Kölling M. "Greenfoot: a highly graphical IDE for learning object-oriented
programming". ACM SIGCSE Bulletin. vol. 40. 2008. pp 327-327.

[16] Lidwell W., Holden K., and Butler J. Universal principles of design, revised and
updated: 125 ways to enhance usability, influence perception, increase appeal, make
better design decisions, and teach through design. Rockport Pub. (2010).

[17] Lyons P., Simmons C., and Apperley M. Hyperpascal: A visual language to model idea
space. Proceedings of the 13th New Zealand Computer Society Conference. vol. 492.
1993. p 508.

[18] Mohamed Shuhidan S., Hamilton M., and D'Souza D. Understanding novice programmer
difficulties via guided learning. Proceedings of the 16th annual joint conference on
Innovation and technology in computer science education. 2011. pp 213-217.

[19] Myers B. A., Ko A. J., and Burnett M. M. Invited research overview: end-user
programming. CHI'06 extended abstracts on Human factors in computing systems.
2006. pp 75-80.

[20] Pausch R., Burnette T., Conway M., DeLine R., and Gossweiler R. "Alice: A rapid
prototyping system for virtual reality". Course Notes. vol. 2. 1994.

[21] Resnick M., Maloney J., Monroy-Hernández A., Rusk N., Eastmond E., Brennan K.,
Millner A., Rosenbaum E., Silver J., and Silverman B. "Scratch: programming for
all". Communications of the ACM. vol. 52. 2009. pp 60-67.

[22] Roque R. V. "OpenBlocks: an extendable framework for graphical block programming
systems". 2007.

[23] Sawyer R. K. The Cambridge handbook of the learning sciences. Cambridge University
Press. (2005).

 6

	1. INTRODUCTION
	2. RELATED WORK
	3. DESIGN AND IMPLEMENTATION
	3.1 DESIGN DECISIONS
	3.2 OPENBLOCKS EXTENSION

	4. EVALUATION
	5. CONCLUSIONS - FUTURE WORK
	REFERENCES

