
Ontology Mapping and SPARQL Rewriting for
Querying Federated RDF Data Sources

(Short Paper)

Konstantinos Makris1, Nektarios Gioldasis1, Nikos Bikakis2, and Stavros
Christodoulakis1

1 TUC/MUSIC Lab, Technical University of Crete, Greece
{makris, nektarios, stavros}@ced.tuc.gr

2 KDBS Lab, National Technical University of Athens, Greece
bikakis@dblab.ntua.gr

Abstract. The web of data consists of distributed, diverse (in terms of
schema adopted), and large RDF datasets. In this paper we present a
SPARQL query rewriting method which can be used to achieve interop-
erability in semantic information retrieval and/or knowledge discovery
processes over interconnected RDF data sources. Formal mappings be-
tween different overlapping ontologies are exploited in order to rewrite
initial user SPARQL queries, so that they can be evaluated over different
RDF data sources on different sites. The proposed environment is uti-
lized by an ontology-based mediator system, which we have developed in
order to provide data integration within the Semantic Web environment.

1 Introduction

Information access from federated resources, distributed over the internet, is
extremely important for Semantic Web applications and end users. In this paper,
we introduce an environment that provides transparent access to federated RDF
data sources. A set of mappings between OWL ontologies is defined in order to
integrate the access to the federated resources. The queries of the Semantic Web
users are expressed in SPARQL over an OWL ontology. The mappings are used
to transform the original SPARQL query, through rewriting, to a set of SPARQL
queries which are used to access the federated RDF data sources.

We focus on the following research issues: (a) determination of the ontology
mapping types, which can be used in the context of SPARQL query rewriting, (b)
modeling of the mappings between a source ontology and the target ontologies,
(c) rewriting of the SPARQL queries posed over a source ontology in terms of
the target ontologies.

Ontology mapping in general is a task that has received tremendous attention
by the Semantic Web community [6], [7], [3]. In this work we are only interested
in the specification of the kinds of mappings between OWL ontologies, which
can be exploited by the SPARQL query rewriting process. Despite the extensive
studies, to the best of our knowledge, there is no work addressing the problem
of ontology mappings in the context of SPARQL query rewriting.

In the field of query rewriting, limited studies examine the problem of posing
a SPARQL query over different RDF datasets. An approach [4] which comes
closer to ours, with some of its parts based on a preliminary description of
our work [8], proposes a method that exploits transformations between RDF
structures (i.e. graphs) in order to perform SPARQL query rewriting. Compared
to our approach, where mappings rely on Description Logic semantics, this choice
seems to restrict the mappings expressivity and also the supported query types.

Paper Outline. Section 2 describes the mapping model which has been devel-
oped in order to express mappings between OWL ontologies. Sections 3 and 4
provide an overview of the SPARQL query rewriting process. Section 5 presents
an illustrative query rewriting example, while Sect. 6 concludes our work.

2 Ontology Mapping Model

In order for SPARQL queries posed over a source ontology to be rewritten in
terms of a target ontology, mappings between the source and target ontologies
should be specified. In Fig. 1, we show the structure of two overlapping ontolo-
gies. The source ontology describes a store, while the target ontology describes
a bookstore. Between these two ontologies, various kinds of mappings can be
identified.

In this section we introduce a model for the expression of mappings between
OWL ontologies in the context of SPARQL query rewriting. In this context,
some mapping types may not be useful, and therefore not examined here, due
to the lack of specific features (e.g. aggregates) in the current specification of
SPARQL. Such mapping types are described in [5] and some of them could be
useful for post-processing the query results but not during the query rewriting
and query answering process.

Product

Science

price: int

name:string
id: uri

Textbook

title:string
isbn:uri

size: int

Book

partOf Collection

Publisher

publishes

partOfSeries

Source Ontology Target Ontology

author:string

Novel

Literature

CSFoundationsCD

Publisherpublisher

Pocket

FoundationsOfCS

author

Person

name:string

price: int

Computing

ComputerScience

Internet

Mathematics

Fig. 1. Semantically Overlapping Ontologies. The rounded corner boxes represent
classes. They are followed by their object/datatype properties. The rectangle boxes
represent individuals. The arrows represent relationships between basic constructs.

2.1 Abstract Syntax and Semantics

The basic constructs of OWL are the classes c, the object properties op, the
datatype properties dp and the individuals i. In order to define the mapping
types which are useful for the rewriting process, we use Description Logics (DL).
We treat OWL classes as DL concepts, OWL properties as DL roles and OWL
individuals as DL individuals. Following our convension, let C,D be OWL classes
(treated as atomic concepts), R, S be OWL object properties (treated as atomic
roles) and K, L be OWL datatype properties (treated as atomic roles). Similarly,
let a, b, c, vop be individuals and vdp be a data value.

An interpretation I consists of a non-empty set ∆I (the domain of the inter-
pretation) and an interpretation function, which assigns to every atomic concept
A a set AI ⊆ ∆I , to every atomic role B a binary relation BI ⊆ ∆I ×∆I and
to every individual k an element kI ∈ ∆I (based on [1]).

In Tables 1, 2 and 3 we present the set of class and property constructors that
we use for the mapping definition. In these tables we introduce some new con-
structors (preceded with asterisk) which should not be confused with the basic
DL constructors defined in [1]. In addition to the constructors, a DL knowledge
base consists of common assertional axioms, i.e. inclusion (v, w) and equality
(≡). The semantics of concept/role inclusion and equality are available in [1].

Table 1. Class constructors used in the definition of mappings.

Name Syntax Semantics

Intersection C uD CI ∩DI

Union C tD CI ∪DI

∗Class Restriction C.(R cp vop) {α ∈ CI | ∃b. (α, b) ∈ RI ∧ b cp vop}
C.(K cp vdp) {α ∈ CI | ∃b. (α, b) ∈ KI ∧ b cp vdp}
C.(R cp S) {α ∈ CI | ∃b, ∃c. (α, b) ∈ RI ∧ (α, c) ∈ SI ∧ b cp c}
C.(K cp L) {α ∈ CI | ∃b, ∃c. (α, b) ∈ KI ∧ (α, c) ∈ LI ∧ b cp c}

cp ∈ {6=,=}, cp ∈ {6=,=,≤,≥, <,>}

Definition 1 (Class Expression). A class expression is a class or any com-
plex expression between two or more classes, using union or intersection opera-
tions. A class expression is denoted as CE and is defined recursively in (1). Any
class expression can be restricted to the values of one or more object property
expressions OPE (Definition 2) or datatype property expressions DPE (Defi-
nition 3), using the comparators cp ∈ {6=,=} and cp ∈ {6=,=,≤,≥, <,>}, re-
spectively. Moreover, it is possible for a class expression to be restricted on a set
of individuals having object/datatype property values with a specific relationship
between them.

CE := c | CE u CE | CE t CE | CE.(OPE cp vop) | CE.(DPE cp vdp)
| CE.(OPE1 cp OPE2) | CE.(DPE1 cp DPE2)

(1)

Table 2. Object property constructors used in the definition of mappings.

Name Syntax Semantics

Intersection R u S RI ∩ SI

Union R t S RI ∪ SI

Composition R ◦ S {(α, c) | ∃b. (α, b) ∈ RI ∧ (b, c) ∈ SI}
∗Inverse inv(R) {(b, α) | (α, b) ∈ RI}
∗Domain Restriction R.domain(C) {(α, b) | (α, b) ∈ RI ∧ α ∈ CI}
∗Range Restriction R.range(C) {(α, b) | (α, b) ∈ RI ∧ b ∈ CI}

Definition 2 (Object Property Expression). An object property expression
is an object property or any complex expression between two or more object prop-
erties, using composition, union or intersection operations. An object property
expression is denoted as OPE and is defined recursively in (2). Inverse property
operations are possible to appear inside an object property expression. Any object
property expression can be restricted on its domain and/or range using a class
expression to define the applied restrictions.

OPE := op | OPE ◦OPE | OPE uOPE | OPE tOPE | inv(OPE)
| OPE.domain(CE) | OPE.range(CE)

(2)

Table 3. Datatype property constructors used in the definition of mappings.

Name Syntax Semantics

Intersection K u L KI ∩ LI

Union K t L KI ∪ LI

Composition R ◦K {(α, c) | ∃b. (α, b) ∈ RI ∧ (b, c) ∈ KI}
∗Domain Restriction K.domain(C) {(α, b) | (α, b) ∈ KI ∧ α ∈ CI}
∗Range Restriction K.range(cp vdp) {(α, b) | (α, b) ∈ KI ∧ b cp vdp}

cp ∈ {6=,=,≤,≥, <,>}

Definition 3 (Datatype Property Expression). A datatype property ex-
pression is a datatype property or any complex expression between object and
datatype properties using the composition operation, or between two or more
datatype properties, using union or intersection operations. A datatype property
expression is denoted as DPE and is defined recursively in (3). Any datatype
property expression can be restricted on its domain values using a class expres-
sion to define the applied restrictions. In addition, the range values of a datatype
property expression can be restricted on various data values vdp, using a com-
parator cp ∈ {6=,=,≤,≥, <,>}.

DPE := dp | OPE ◦DPE | DPE uDPE | DPE tDPE
| DPE.domain(CE) | DPE.range(cp vdp)

(3)

2.2 Ontology Mapping Types

In this section we present a rich set of 1:N cardinality mapping types, in order
for mappings of these types to be used for the rewriting of a SPARQL query.

Class mapping (cs rel CEt, rel := ≡ | v | w). A class from a source ontology
s can be mapped to a class expression from a target ontology t.

Object property mapping (ops rel OPEt, rel := ≡ | v | w). An object prop-
erty from a source ontology s can be mapped to an object property expression
from a target ontology t.

Datatype property mapping (dps rel DPEt, rel := ≡ | v | w). A datatype
property from a source ontology s can be mapped to a datatype property ex-
pression from a target ontology t.

We note here that the equivalence/subsumption between two different prop-
erties or between a property and a property expression, denotes equivalence/
subsumption between the domains and ranges of those properties or property
expressions. The proof for the above statement is available in [9].

Individual mapping (is ≡ it). An individual from a source ontology s can
be mapped to an individual from a target ontology t.

3 SPARQL Query Rewriting Overview

Query rewriting is done by exploiting a predefined set of mappings which is
based on the different mapping types described in Sect. 2.2. The SPARQL query
rewriting process lies in the query’s graph pattern rewriting. The rewritten query
is produced by replacing the rewritten graph pattern to the initial query’s graph
pattern. Consequently the rewriting process is independent of the query type
(i.e. SELECT, CONSTRUCT, ASK, DESCRIBE) and the SPARQL solution sequence
modifiers (i.e. ORDER BY, DISTINCT, REDUCED, LIMIT, OFFSET).

Graph pattern operators (AND, UNION, OPTIONAL, FILTER) remain the same
during the rewriting process. Variables, literal constants, operators and built-in
functions appearing in a FILTER expression, remain also the same. We use 1:1
cardinality mappings for the rewriting of IRIs which may appear inside a FILTER
expression.

Since a graph pattern consists basically of triple patterns, the most important
part of a SPARQL query rewriting is the triple pattern rewriting. Triple patterns
may refer either to data (e.g. relationships between instances) or schema (e.g. re-
lationships between classes and/or properties) information. Due to the inability
in handling all the different triple pattern types in the same manner, we distin-
guish triple patterns into Data Triple Patterns (Definition 4) and Schema Triple
Patterns (Definition 5). Triple patterns having a variable on their predicate part
are not taken into consideration, since they can deal either with data or schema
info.

Let L be the set of literals, V the set of variables, I the set of IRIs, IRDF

the set containing the IRIs of the RDF vocabulary, IRDFS the set containing
the IRIs of the RDF Schema vocabulary and IOWL the set containing the IRIs
of the OWL vocabulary.

Definition 4 (Data Triple Pattern). The triple patterns that only apply to
data and not schema info are considered to be Data Triple Patterns, e.g. (?x,
rdf:type, src:Product). A tuple t ∈ DTP (Data Triple Pattern set - shown in (4))
is a Data Triple Pattern.

DTP = (I ′ ∪ L ∪ V)× (I ′ ∪ {rdf : type, owl : sameAs})× (I ′ ∪ L ∪ V) (4)

I ′ = I − IRDF − IRDFS − IOWL (5)

Definition 5 (Schema Triple Pattern). The triple patterns that only apply
to schema and not data info are considered to be Schema Triple Patterns, e.g.
(?x, rdfs:subClassOf, src:Product). A tuple t ∈ STP (Schema Triple Pattern set
- shown in (6)) is a Schema Triple Pattern.

STP =
(
(I ∪ L ∪ V)× I × (I ∪ L ∪ V)

)
−DTP (6)

Since a triple pattern consists of three parts (subject, predicate, object),
in order to rewrite it we have to follow a three-step procedure by exploiting
mappings for each triple pattern’s part. The rewriting procedure follows a strict
order. Firstly, the triple pattern is rewritten using the mapping which has been
specified for its predicate part, resulting to a graph pattern which may contain
one or more triple patterns. Then, the resulted graph pattern is rewritten triple
pattern by triple pattern, using the mappings of the triple patterns’ object parts.
Finally, the same procedure is repeated for the triple patterns’ subject parts.
Variables, blank nodes, literal constants and RDF/RDFS/OWL IRIs which may
appear in a triple pattern part do not affect the rewriting procedure. This means
that the variables of the initial query appear also in the rewritten query.

We note that the rewriting of a triple pattern, is not dependent on mapping
relationships (i.e. equivalence, subsumption). These relationships, affect only the
evaluation results of the rewritten query over the target ontology. The complete
set of functions that perform triple pattern rewriting, the algorithms that per-
form graph pattern rewriting, as well as a set of examples is available in [9].

4 Data Triple Pattern Rewriting

In this section, we provide an overview of the set of functions that perform
Data Triple Pattern rewriting based on a set of mappings. These functions are
actually rewriting steps in the process of Data Triple Pattern rewriting. We
have formally shown [9] that each rewriting step that is performed, in order to
rewrite a triple pattern, is semantics preserving, in the sense that it preserves the
mapping semantics. The complete set of functions, including those that perform
Schema Triple Pattern rewriting, as well as a set of examples is available in [9].

Let Dx
y be the function that produces the resulted form of a Data Triple

Pattern, after being rewritten by x ∈ {s, p, o} (subject, predicate, object). The
subscript y ∈ {c, op, dp, i} shows the type of x (e.g. class, object property, etc.).
The function D takes as arguments a Data Triple Pattern t, as well as a mapping
µ. In what follows, we use the subscripts s and t to denote that a class, a property
or an individual belongs to the source or target ontology, respectively.

4.1 Rewriting by Triple Pattern’s Predicate Part

In order to rewrite a Data Triple Pattern by its predicate part only property
mappings can be used, since a class or an individual cannot appear on a triple
pattern’s predicate part.

Rewriting based on object property mapping. Let ops be an object prop-
erty from the source ontology which is mapped to an object property expression
from the target. Having a Data Triple Pattern t = (subject, ops, object) with ops
in its predicate part and anything in its subject and object parts, we can rewrite
it by its predicate part, using a predefined mapping µ and the function (7).

Dp
op(t, µ) =

(subject, opt, object) if µ : ops → opt

Dp
op(t1, µ1) AND if µ : ops → opt1 u opt2,

Dp
op(t2, µ2) where t1 = (subject, opt1, object),

t2 = (subject, opt2, object),
µ1 : opt1 ≡ OPEt1, µ2 : opt2 ≡ OPEt2

Dp
op(t1, µ1) if µ : ops → inv(opt),

where t1 = (object, opt, subject)
and µ1 : opt ≡ OPEt

(7)

Rewriting based on datatype property mapping. Let dps be a datatype
property from the source ontology which is mapped to a datatype property ex-
pression from the target. Having a Data Triple Pattern t = (subject, dps, object)
with dps in its predicate part and anything in its subject and object parts, we can
rewrite it by its predicate part, using a predefined mapping µ and the function
(8).

Dp
dp(t, µ) =

(subject, dpt, object) if µ : dps → dpt

Dp
op(t1, µ1) AND if µ : dps → opt ◦ dpt,

Dp
dp(t2, µ2) where t1 = (subject, opt, ?var),

t2 = (?var, dpt, object),
µ1 : opt ≡ OPEt, µ2 : dpt ≡ DPEt

Dp
dp(t1, µ1) if µ : dps → dpt.range(cp vdp),

FILTER(object cp vdp) where cp ∈ {6=,=,≤,≥, <,>},
vdp = data value,
and t1 = (subject, dpt, object),
µ1 : dpt ≡ DPEt

(8)

4.2 Rewriting by Triple Pattern’s Object Part

When a property appears on the object part of a triple pattern, we conclude that
the triple pattern deals with schema info, as there is no way for a non RDF/
RDFS/OWL IRI to appear at the same time in the triple pattern’s predicate
part. Similarly, in case that a class appears on a triple pattern’s object part, the
only factor which can be used to determine the triple pattern’s type (Data or
Schema Triple Pattern), is whether the RDF property rdf : type appears on the
predicate part or not. Thus, the only cases mentioned for the rewriting of a Data
Triple Pattern by its object part concern individuals, as well as classes with the
precondition that the RDF property rdf : type appears on the triple pattern’s
predicate part at the same time.

Rewriting based on class mapping. Let cs be a class from the source on-
tology which is mapped to a class expression from the target ontology. Having
a Data Triple Pattern t = (subject, rdf : type, cs) with the class cs in its object
part, the RDF property rdf : type in its predicate and anything in its subject
part, we can rewrite it by its object part, using a predefined mapping µ and the
function (9).

Do
c(t, µ) =

(subject, rdf : type, ct) if µ : cs → ct

Do
c(t1, µ1) UNION if µ : cs → ct1 t ct2,

Do
c(t2, µ2) where t1 = (subject, rdf : type, ct1),

t2 = (subject, rdf : type, ct2),
µ1 : ct1 ≡ CEt1, µ2 : ct2 ≡ CEt2

Do
c(t1, µ1) AND if µ : cs → ct.(dpt cp vdp),

Dp
dp(t2, µ2) where cp ∈ {6=,=,≤,≥, <,>},

FILTER(?var cp vdp) vdp = data value,
t1 = (subject, rdf : type, ct),
t2 = (subject, dpt, ?var),
µ1 : ct ≡ CEt, µ2 : dpt ≡ DPEt

(9)

Rewriting based on individual mapping. Let is be an individual from the
source ontology which is mapped to an individual it from the target ontology.
Having a Data Triple Pattern t = (subject, predicate, is) with is in its object
part and anything in its predicate and subject parts, we can rewrite it by its
object part, using a predefined mapping µ and the function (10).

Do
i (t, µ) = (subject, predicate, it) if µ : is ≡ it (10)

4.3 Rewriting by Triple Pattern’s Subject Part

Generally, when a class or property appears on the subject part of a triple pattern
we conclude that the triple pattern involves schema info, as there is no way for
a non RDF/RDFS/OWL IRI to appear at the same time in the triple pattern’s
predicate part. Thus, the only case mentioned for the rewriting of a Data Triple
Pattern by its subject part concerns individuals.

Rewriting based on individual mapping. Let is be an individual from the
source ontology which is mapped to an individual it from the target ontology.
Having a Data Triple Pattern t = (is, predicate, object) with is in its subject
part and anything in its predicate and object parts, we can rewrite it by its
subject part, using a predefined mapping µ and the function (11).

Ds
i (t, µ) = (it, predicate, object) if µ : is ≡ it (11)

5 Query Rewriting Example

Consider the query posed over the source ontology of Fig. 1: “Return at most 20
titles of pocket-sized scientific books and optionally their authors. The results
should be formed in ascending order based on the title value.”. The SPARQL
syntax of the source query is shown below:

@PREFIX src: <http://www.ontologies.com/SourceOntology.owl#>.

@PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

SELECT ?name ?author

WHERE{ ?x src:name ?name. ?x rdf:type src:Science.

?x rdf:type src:Pocket. OPTIONAL{?x src:author ?author}
} ORDER BY ?name LIMIT 20

Let the available predefined mappings be m1, m2, m3 and m4 (presented
below). For their representation we use the abstract syntax presented in Sect. 2.2.

m1 : src : name w trg : title, m2 : src : author ≡ trg : author ◦ trg : name,
m3 : src : Science ≡ trg : ComputerScience t trg : Mathematics,

m4 : src : Pocket ≡ trg : Textbook.(trg : size ≤ 14)

In order to rewrite the initial query’s graph pattern GP , every triple pattern
of GP should be rewritten by its predicate, object and subject part, as described
in Sect. 3. The rewriting procedure is shown in Fig. 2. Firstly, the initial graph
pattern is rewritten triple pattern by triple pattern using the mappings of the
triple patterns’ predicate parts. Triple patterns containing an RDF/RDFS/OWL
property on their predicate part do not result in modifications.

Rewritten GP by Predicate (GPp)Initial Graph Pattern (GP)

?x src:name ?name .

?x rdf:type src:Science .

?x rdf:type src:Pocket .

OPTIONAL{?x src:author ?author}

?x trg:title ?name .

?x rdf:type src:Science .

?x rdf:type src:Pocket .

OPTIONAL{
?x trg:author ?var1 .

 ?var1 trg:name ?author}

(8), m
2

(8), m
1

Rewritten GPp by Object (GPo)

?x trg:title ?name .

{?x rdf:type trg:ComputerScience}
UNION
{?x rdf:type trg:Mathematics}

?x rdf:type trg:Textbook .
?x trg:size ?var2 .
FILTER (?var2 <= 14)

OPTIONAL{
 ?x trg:author ?var1 .
 ?var1 trg:name ?author}

(9), m
3

(9),m
4

Fig. 2. Triple pattern rewriting by predicate and object part. The parameters upon the
arrows denote the rewriting function and the mapping used by the rewriting process.

Similarly, the resulted graph pattern GPp is rewritten triple pattern by triple
pattern using the mappings of the triple patterns’ object parts. Triple patterns
containing variables on their object part do not result in modifications. The same
procedure is repeated for the resulted graph pattern GPo, using the mappings of
the triple patterns’ subject parts. However, the graph pattern remains the same
since every triple pattern of GPo contains a variable in its subject part.

Finally, the rewritten SPARQL query, in terms of the target ontology of
Fig. 1, is provided by replacing the initial query’s graph pattern GP with GPo.

6 Conclusion

In this paper we presented a method that exploits ontology mappings in order
to rewrite SPARQL queries posed over a source ontology, in terms of a target
ontology. For this purpose, we also introduced a formal model for describing
ontology mappings which can be used in the rewriting process. The proposed
SPARQL query rewriting method has been implemented as part of an ontology-
based mediator system developed in the TUC/MUSIC Lab.

Our current research focuses on evaluating the system performance, exploit-
ing advanced reasoning techniques during the query rewriting, and developing
methodologies for the optimization of the query mediation process. Moreover,
this work is going to be integrated with our XS2OWL [10] and SPARQL2XQuery
[2] frameworks, in order to allow access to heterogeneous web repositories.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The
Description Logic Handbook. Cambridge University Press (2003)

2. Bikakis, N., Gioldasis, N., Tsinaraki, C., Christodoulakis, S.: Querying xml data
with sparql. In: DEXA. LNCS, vol. 5690, pp. 372–381. Springer (2009)

3. Choi, N., Song, I.Y., Han, H.: A survey on ontology mapping. SIGMOD Record
35(3), 34–41 (2006)

4. Correndo, G., Salvadores, M., Millard, I., Glaser, H., Shadbolt, N.: Sparql query
rewriting for implementing data integration over linked data. In: 1st International
Workshop on Data Semantics (2010)

5. Euzenat, J., Polleres, A., Scharffe, F.: Processing ontology alignments with sparql.
In: CISIS. pp. 913–917 (2008)

6. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
7. Kalfoglou, Y., Schorlemmer, W.M.: Ontology mapping: The state of the art. In:

Semantic Interoperability and Integration. Dagstuhl Seminar Proceedings (2005)
8. Makris, K., Bikakis, N., Gioldasis, N., Tsinaraki, C., Christodoulakis, S.: Towards

a mediator based on owl and sparql. In: WSKS. LNCS, vol. 5736 (2009)
9. Makris, K., Gioldasis, N., Bikakis, N., Christodoulakis, S.: Sparql rewriting for

query mediation over mapped ontologies. Tech. rep., Technical University of Crete
(2010), http://www.music.tuc.gr/reports/SPARQLREWRITING.PDF

10. Tsinaraki, C., Christodoulakis, S.: Interoperability of xml schema applications with
owl domain knowledge and semantic web tools. In: ODBASE. LNCS, vol. 4803.
Springer (2007)

