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Abstract 

The ultimate goal of the genomic revolution, is understanding the genetic causes, the 

blueprint that specifies the exact ways that genetic components, like genes and proteins, 

interact to make a complex living system, behind phenotypic characteristics of organisms. 

Nowadays, genome-wide gene expression technologies have been available and are of   

great importance in many scientific areas such as clinical prognosis, diagnosis and 

treatment. This availability has made at least a part of this goal closer and led, both 

biologists and computational scientists, to introduce a variety of methodological 

approaches, well suited for both qualitative and quantitative level modeling and simulation, 

for the analysis of genetic interactions in terms of predicting the genetic and proteomic 

associations as well as modeling the relationships among the studied genetic components. 

These approaches have the potential to elucidate the effect of the nature and topology of 

interactions on the systemic properties of organisms. 

In this thesis, we model and process, by implementing two different methodological 

approaches, the relationships between genes and proteins, in order to examine 

relationships as well as novel genomic signatures, fundamental and of great significance in 

the creation of breast cancer and cancer metastasis. These approaches are two different 

algorithms, HotNet2 and Activity Vector, which create gene interaction subnetworks after 

processing gene expression data, which have been selected from a larger dataset, and 

protein-protein interaction networks. Finally, we evaluate the results, for their biological 

significance and their statistical prediction in an independent dataset. 
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Περίληψη 
 

Απώτερος στόχος της γονιδιωματικής επανάστασης, είναι η κατανόηση των γενετικών 
αιτίων, το ‘’αποτύπωμα’’ που καθορίζει τους ακριβείς τρόπους που οι γενετικές μόρια, 
όπως γονίδια και πρωτεΐνες, αλληλεπιδρούν για να κάνουν ένα πολύπλοκο σύστημα 
διαβίωσης, πίσω από φαινοτυπικά χαρακτηριστικά των οργανισμών. Στισ μέρες μας, είναι 
διαθέσιμες τεχνολογίες γονιδιακής έκφρασης μεγάλης σημασίας σε πολλούς 
επιστημονικούς τομείς όπως η κλινική πρόγνωση, διάγνωση και θεραπεία. Η προσφορά 
αυτή έχει κάνει τουλάχιστον ένα μέρος αυτού του στόχου εφικτό και οδήγησε,  βιολόγους 
σε συνεργασία με ειδικευμένους επιστήμονες/προγραμματιστές, να εισαγάγουν μια 
ποικιλία μεθοδολογικών προσεγγίσεων, κατάλληλη τόσο σε ποιοτικό όσο και ποσοτικό 
επίπεδο, για την μοντελοποίηση και την προσομοίωση, της ανάλυση των γενετικών 
αλληλεπιδράσεων όσον αφορά την πρόβλεψη των γενετικών και πρωτεομικών ενώσεων, 
καθώς και για την μοντελοποίηση των σχέσεων μεταξύ των προαναφερθέντων στοιχείων. 
Οι προσεγγίσεις αυτές έχουν τη δυνατότητα να αποσαφηνιστεί η επίδραση της φύσης και 
της τοπολογίας των  αλληλεπιδράσεων αυτών, στις συστημικές ιδιότητες των οργανισμών. 
Σε αυτή την διπλωματική, μοντελοποιούμε και επεξεργαζόμαστε, με την εφαρμογή δύο 
διαφορετικών μεθοδολογικών προσεγγίσεων, τις σχέσεις μεταξύ γονιδίων και πρωτεϊνών, 
προκειμένου να εξεταστούν οι μεταξύ τους σχέσεις και αλληλεπιδράσεις, με σκοπό και την 
εξαγωγή νέων γονιδιωματικών υπογραφών, οι οποίες έχουν καθοριστική και μεγάλη 
σημασία στη δημιουργία καρκίνου του μαστού και στη μετάσταση του καρκίνου. Αυτές οι 
προσεγγίσεις είναι δύο διαφορετικοί αλγόριθμοι, ο HotNet2 και ο Activity Vector,με την 
εφαρμογή των οποίων δημιουργούνται γονιδιακά υποδίκτυα αλληλεπίδρασης μετά την 
επεξεργασία των δεδομένων γονιδιακής έκφρασης, τα οποία έχουν επιλεγεί από ένα 
μεγαλύτερο σύνολο δεδομένων, και σε συνδιασμό με πρωτεινικά δίκτυα αλληλεπίδρασης. 
Τέλος, τα αποτελέσματα μας αξιολογούνται βάσει της  βιολογικής σημασίας τους καθώς 
και την στατιστική τους ικανότητα για την πρόβλεψη του καρκίνου σε ένα ανεξάρτητο 
δείγμα. 
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1         
       Introduction               

 
Cancer refers to any one of a large number of diseases, characterized by abnormal changes 
in cells, which cause mutations in genes, or by uncontrollable division of cells which have 
the ability to infiltrate and destroy normal body tissue, causing metastasis. These mutations 
are responsible for deregulating the physiological growth of cells and prevent them from 
maintaining healthy. The genes are in each cell’s nucleus, which acts as the brain that 
controls each cell. Normally, when old cells wear out, healthy new cells take their place 
through an orderly process of cell growth. But over time, mutations occur and can change 
the normal flow that genes work in our body. As a result, they “turn on” certain genes and 
“turn off” others in a cell. That deregulated cell starts dividing without control or order, 
producing more cells same as it concluding in the formation of a tumor. A tumor may be 
benign or malignant. As benign is characterized when it is not dangerous to health and 
malignant when it is potentially dangerous. Benign tumors are not considered cancerous, 
their cells are close to normal in appearance, they grow slowly, and they do not invade 
nearby tissues or spread to other parts of the body. Malignant tumors are cancerous. If left 
unchecked, malignant cells eventually can spread beyond the original tumor to other parts 
of the body and cause metastasis. Several studies in the recent years have been proposed 
in order to identify pathways that give rise to metastasis. The study of network-based 
pathway identification and classification supports the notion that cancer is a ‘disease of 
pathways’. 
As we mentioned above everything starts from the “brain” that controls each cell. Genes 
have a fundamental role in the heredity process and their expression level stands as the 
measure to judge their effect on every biological process. In this work, given a dataset of 
preprocessed gene expression data from control and cancer patients, we visualize and 
compare the network topology of the pathways which involve the genetic/proteomic 
relationships that are considered significant in breast cancer development, from two 
methodological  approaches. Our data consist of 4.174 differentially expressed genes. In the 
next chapter we explain the biological and mathematical knowledge in the area of 
bioinformatics, needed for our study. In order to capture and model the relationships 
between those genes and the proteins they encode, in chapter 3 we present the two 
different methodologies, two different algorithms, HotNet and Activity Vector .Both 
approaches integrate, differently, the gene expression and network data sets which are 
given as input  and conclude to subnetworks discriminative of metastasis. The point of 
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HotNet is to find “groups” of genes, network-connected, that are statistically significant 
even though they’re not necessarily individually significant. 
 
Activity Vector traces markers of metastasis within gene expression profiles. These markers, 
unlike the approaches proposed in other studies; do not consist of individual genes or 
proteins, but from the relationships and interactions between these molecules. Under the 
form of proteins subnetworks, derived from a larger protein-protein interaction network, 
these markers can be used to identify genetic alterations and to predict the likelihood of 
metastasis in unknown samples.  

After generating the subnetworks from each methodology, we examine how the resulting 
pathways behave and relate. Last but not least we evaluate them, in a new independent 
dataset, after applying a classification algorithm, SVM, and also taking into consideration 
their biological significance. Finally, our results are presented in chapter 4. 
 
 
 

1.1 Breast Cancer 

 
Breast cancer is an uncontrolled growth of breast cells. It is a malignant tumor that has 
developed from cells in the breast. Most of the time breast cancer either begins in the cells 
of the lobules, which are the milk-producing glands, or the ducts, the passages that drain 
milk from the lobules to the nipple. Less commonly, breast cancer can begin in the stromal 
tissues, which include the fatty and fibrous connective tissues of the breast.  
 
 
 
   
 
        
 
 
 
 
 
 
 
 
 

 

Figure1.1 Anatomy of the female breast. The nipple, areola, lymph nodes, lobes, lobules, ducts, and other 

parts are shown.[1] 
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Over time, cancer cells can invade nearby healthy breast tissue and make their way into the 
underarm lymph nodes, (Figure1.1) small organs that filter out foreign substances in the 
body. If cancer cells get into the lymph nodes, they then have a pathway into other parts of 
the body. Breast cancer is always caused by a genetic abnormality, a wrong change in the 
genetic material. However, only 5-10% of cancers are due to an abnormality inherited from 
the parents. Instead, 85-90% of breast cancers are due to genetic abnormalities that 
happen as a result of the aging process. [1, 2]  
Cancer is one of the prevalent diseases that bring about death worldwide. Given that 
scientists have sequenced the human genome, it is now time to use these genomic data, 
and the high-throughput technology developed to generate them, to confront major health 
problems such as cancer. [3] The medical and scientific community has therefore come in 
the conclusion, that it is very important to develop individualized treatment. To achieve the 
above objective new techniques ought to be developed, in different domains such as 
bioengineering and bioinformatics. 
 
 

1.2 Breast cancer and Bioinformatics 
 
Breast cancer occurs in both men and women. Although a cure for each stage of breast 
cancer has not yet been found, identifying the genetic mutations that cause the disease can 
play an important role. 
Bioinformatics is an integrative area combining biological, statistical and computational 
sciences. Bioinformatics enables cancer researchers not only to manage, analyze and 
understand the currently accumulated, valuable, high-throughput data, but also to 
integrate these in their current research programs. The need for bioinformatics will become 
even more important as new technologies increase the already exponential rate at which 
cancer data are generated. 
The main aim of bioinformatics is the application of statistics and computer science in the 
field of molecular biology. We have therefore to do with the development and the 
advancement of databases, algorithms, computational and statistical techniques and theory 
to solve formal and practical problems arising from the management and analysis of 
biological data. 
 
 

1.3 Genomic Analysis 

 
In genetics the term Genomics refers to the field that combines recombinant DNA, DNA 

sequencing methods, and bioinformatics to sequence, assemble, and analyze the function 

and structure of genomes. Advances in genomics have triggered a revolution in discovery-

based research to understand even the most complex biological systems. 
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Gene expression profiling is being applied in many areas of research in order to identify 
new targets for treatment, resistance mechanisms and to improve the current tools of 
prognosis and treatment. However the vast scale of data generated, in combination with 
the different protocols, platforms and analysis methods make the studies difficult for the 
clinicians to understand. In addition, computational scientists and statisticians that 
participate in the process of data analysis are often not well informed of the sample 
collection processes or the impact of genetics .Therefore a pressing need has occurred for 
better understanding of the challenges and limitations of microarray approaches, both in 
experimental design and data analysis. 
The investigation of the roles and functions of single genes is a primary focus of molecular 
biology or genetics and is a common topic of modern medical and biological research. 
Research of single genes does not fall into the definition of genomics unless the aim of this 
genetic, pathway, and functional information analysis is to elucidate its effect on, place in, 
and response to the entire genome’s networks. [4] 
 
 

1.4 Network Analysis 
 
In the field of Bioinformatics the main goal of several studies has been revealing the 
pathways that give rise to cancer as well as identifying genetic alterations that determine 
clinical phenotypes. The relationships between fundamental molecules such as DNA, RNA, 
proteins and metabolites and the interactions between them, can be described as 
networks. Networks can be modeled and simulated using various methodological 
approaches [5, 6]. Once the model has been chosen, the parameters need to be fit to the 
data. Even the simplest network models are complex systems involving many parameters, 
and fitting them is a non-trivial process, known as network inference, network 
identification, or reverse engineering. Genetic networks are often described statistically 
using graphical models. The interpretation of the network structure constitutes a serious 
challenge in microarray analysis due to the fact that the sample size is small compared to 
the number of considered genes. As a result many standard algorithms for graphical models 
are considered inapplicable. In order to better understand genetic networks we have to 
look at graph theory and models. 
Graph theoretical models (GTMs) are used mainly to describe the topology, or architecture, 
of a network. These models feature relationships between genes and possibly their nature, 
but not dynamics: the time component is not modeled at all and simulations cannot be 
performed. GTMs are particularly useful for knowledge representation, as most of the 
current knowledge about gene networks is presented and stored in databases in a graph 
format. In GTMs gene networks are represented by a graph structure, G (V, E), where V = 
{1, 2,….., n} represent the gene regulatory elements, e.g. genes, proteins, etc., and E = {(I, j) 
|I, j ∈ V } the interactions between them, e.g. activation, inhibition, causality, binding 
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specificity, etc. Most often G is a simple graph and the edges represent relationships 
between pairs of nodes, although hyper edges, connecting three or more nodes at once, 
are sometimes appropriate. Edges can be directed, indicating that one (or more) nodes are 
precursors to other nodes. They can also be weighted, the weights indicating the strengths 
of the relationships. Either the nodes, or the edges, or both are sometimes labeled with the 
function, or nature of the relationship, i.e. activator, activation, inhibitor, inhibition, etc. 
The edges imply relationships which can be interpreted as temporal (e.g. causal 
relationship) or interactional. 
 
Many biologically pertinent questions about gene regulation and networks have direct 
counterparts in graph theory and can be answered using well established methods and 
algorithms on graphs. There is also great interest in network medicine for modeling 
biological systems. Methods using high-throughput data for inference of regulatory 
networks rely on searching for patterns of partial correlation or conditional probabilities 
that indicate causal influence. Such patterns of partial correlations found in the high-
throughput data, possibly combined with other supplemental data on the genes or proteins 
in the proposed networks, or combined with other information on the organism, form the 
basis upon which such algorithms work. Such algorithms can be of use in inferring the 
topology of any network where the change in state of one node can affect the state of 
other nodes. 
 

 

1.5 Related Work 

 
In the field of Bioinformatics, in order to comprehend cancer mechanisms and improve the 
methods of prognosis, many studies focus on the analysis of gene expression profiles to 
identify genomic relationships linked to metastasis as well as pathways and associations 
between mutations and phenotype. The incorporation of Protein-protein interaction (PPI) 
networks, co-expression networks or pathways from databases such as KEGG, has been 
proposed to overcome variability of prognostic signatures and to increase prognostic 
performance. 
Studies have been made that focus on the interaction or association between single gene 
and clinical outcomes. Pauling et al.in [7] has proposed a mutual-information based 
integrative network analysis for the identification of gene pairs associated with clinical 
outcome. The produced networks are analyzed over multiple genomic profiles. This study 
has led to the development of a tool named MINA that integrates the proposed analysis. 
Friedman et al., 2000 in [8] proposes an approach based on the well-studied statistical tool 
of Bayesian networks. This study focuses on revealing interaction between genes by taking 
into account their expression levels. Furthermore, this approach aims to uncover patterns 
by  examining statistical properties of dependence and conditional independence in 
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genomic data. Several approaches have been proposed to score known pathways by the 
coherency of expression changes among their member genes [9-15]. 
A number of approaches [17-18]  have been demonstrated for extracting relevant 
subnetworks based on coherent expression patterns of their genes or on conservation of 
subnetworks across multiple species ,Sharan et al, 2005 in[19],using protein–protein 
interaction networks which derive from literature, the yeast two-hybrid system, or mass 
spectrometry [16]. More recently, methods to discover mutated subnetworks have been 
introduced.[20-21]. 
This work is an implementation of two studies Chuang et al.,2007 in [22]  and Vandin et al. 
in [23-24]. Chuang et al.,2007  study proposes a protein network-based approach that 
identifies markers not as individual genes but as subnetworks extracted from protein 
interaction databases. Whereas, Vandin et al., proposed mutated sub-networks which are 
associated with clinical outcome by developing and applying HotNet [23] and HotNet2[24] 
algorithm. Pearson’s correlation based approaches [25, 26], clustering and classification 
algorithms [27, 28, 29,30] have been successfully used to elucidate the functional 
relationship between genes and pathways, but they are unlikely to directly output the 
specific gene networks in response to abnormal physiological conditions such as diseases, 
due to experimental errors and the genetic complexity [31, 32]. Their main drawback is 
their limited performance when the experimental data is insufficient, especially when the 
number of the features under examination exceeds the number of samples. This makes the 
estimation of a network structure a challenging problem due to the uncertainty of 
calculation of the correlation matrix. The information contained in the expression data is 
limited by the tissue quality, the experimental design, noise, and measurement errors. 
These factors negatively affect the estimation of causal relationships in network structure 
and the derivations of dependencies enclosed between neighbored genes and/or proteins 
[33]. 
In this context, our goal in this thesis is to implement the two different methodologies into 
our genomic dataset and locate the structural differences within the network between the 
two populations (cancer-control). 
The gene expression profile of each gene differentiates along the samples and according to 
the group that each sample belongs; the value of each gene alters significantly. Therefore 
we aim in finding the genes that most differ between the two groups and are more likely to 
dominate in our networks. 
The resulting subnetworks will give us the information we need in order to determine how 
the genes behave and probably going to behave ,as well as how they influence each other 
so as to have a better knowledge in predicting “cancer triggering” relations/pathways.
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1.6 Thesis Outline and Innovation 
 
The necessary theoretical background for the development of this thesis is covered in 
chapter 2. This chapter is divided in two parts. The first, concerning the human genome and 
biological concepts regarding DNA microarrays form the Biological background. Gene 
networks and methodologies concerning the analysis of DNA microarray data as well as the 
construction of gene networks under multiple methodological approaches compose the 
second part, the mathematical background involving the knowledge in the field of 
bioinformatics and its applications. In chapter 3, we introduce the proposed methodology 
concerning this study. Moreover, we analyze in detail the steps chosen for the elaboration 
of the two selected methodologies Activity Vector and Hotnet2 algorithm, for the gene 
network construction as well as an introduction to the evaluation method implemented for 
the generalization ability of the observed results .The integration of the breast cancer gene 
expression dataset and the two methodologies is presented in section 4, as well as the 
generation of networks from our data along with their organization in subnetworks. Our 
results were evaluated after applying the SVM (Support Vector Machine), classifier for 
statistical prediction and after the examination of their biological significance. Finally, the 
bioinformating tools for the biological assessment of our results as well as the 
computer/software requirements needed are mentioned. 
 
The innovative concept of this thesis involves the process of gene expression data from two 
different methodological approaches, especially from HotNet2 algorithm were the 
implementation with input scores from gene expression data has not been explored yet. 
Moreover, unlike similar studies, we produce a result which derives and is being evaluated 
as a group of significant relationships between genes, combining the results from the two 
methodologies, and not examining each genomic signature separately. Apart from the 
statistical part, the extraction of subnetworks with two different methodological 
approaches, we extend our study a step further combining the resulted subnetworks and 
choosing stronger connected subnetworks as well as their biological significance Finally, we 
must mention that many approaches have been proposed to compare results of gene 
selection methods or even information of different type of experiment data. In this thesis 
we attempt a comparison and combination of significant results of subnetwork operations. 
 
 

 
 
 
 

 



Theoretical Background 

17 
 

2         
Theoretical Background 

 
This chapter is divided in two theoretical parts: first the Biological background is introduced 
and second is the mathematical background (bioinformatics), needed for the composition 
of this thesis. In the first section an introduction to the human genome is presented. The 
domain of the human genome and the significance of DNA microarrays as well as their 
analysis are covered in section 2.1. Following, in section 2.2, which constitutes the 
beginning of the second theoretical part, we introduce the scientific field of machine 
learning and pattern recognition followed by a general interpretation of the data in section 
2.3. Moreover, in section 2.4 the process of feature subset selection (FSS), applied in DNA 
microarray data, which is distinguished in three fundamental algorithms, also presented, 
wrappers, filters and embedded methods, is interpreted. Continuing on section 2.5 and 2.6, 
the general process of classification and an introduction of classifiers , including linear and 
non linear classifiers, along with the classification method (SVM), implemented in this 
thesis, are covered respectively. Furthermore in section 2.7, different evaluation methods 
are described such as holdout validation, k-fold cross validation, leave one out cross 
validation, repeated random sub-sampling validation and bootstrap resampling. 
Finally, the relationship of network biology and bioinformatics is introduced in section 2.8 
where a part of different biological networks that exist are presented. 
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A.BIOLOGICAL BACKGROUND 

 
2.1 The Human Genome  
 
Human Genome 

 

The human genome refers to the complete set of human genetic information, the study, 
analysis and mapping of which, has been the subject of the “Human Genome Project”[34]. 
All living things are composed of cells, small units of biological activity, surrounded by a 
semi permeable membrane and have the remarkable ability to of itself in an environment 
from which other living systems are absent. In the simplest forms of life, such as single cells, 
a new body is the result of each cell division. Instead, a new person in multicellular 
organisms created after many cell divisions. The higher organisms such as humans consist 
of groups of cells that interact with each other thereby ensuring a harmonious cooperation 
and functioning. 
The molecule of DNA (deoxyribonucleic acid) that occurs in 23 pairs of chromosomes of 
each cell contains the entire genetic signature of living beings. The set of DNA molecules 
present in a cell are the genetic material called genome. Genes, the basic physical and 
functional unit of heredity, being only a fraction of the total genome, are DNA fragments 
containing critical information for the synthesis of proteins in a particular cell type. Today, it 
is estimated that a total of 24,500 genes encode proteins. That number shrinks to 20,500 
genes according to recent studies.[35] 
The remaining genome is composed of non-coding regions, responsible for regulating the 
production of proteins, and whose functions may include chromosomal structural integrity. 
The discovery that DNA contains the code for life, urged  a global effort to understand how 
the genome sequences of many organisms associated with their health. The study of the 
human genome led to the genomic revolution since the notification of the first draft 
sequence of the genome had a huge impact on human cancer research. 
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DNA 

As we have already mentioned, each gene is made of DNA. Deoxyribonucleic acid ( DNA) is 
a molecule that carries most of the genetic instructions used in the development, 
functioning and reproduction of all known living organisms as well as many viruses.  
DNA and RNA are nucleic acids which alongside proteins and carbohydrates, compose the 
three major macromolecules essential for all known forms of life. Most DNA molecules 
consist of two biopolymer strands coiled around each other to form a double helix. The two 
DNA strands called polynucleotide due to the fact that they are composed of simpler units, 
called nucleotides. Each nucleotide is composed of nitrogen, containing nucleobase, 
cytosine I, guanine (G), adenine (A), or thymine (T), as well as a monosaccharide sugar, 
called deoxyribose, and a phosphate group. The nucleotides are joined to one another in a 
chain by covalent bonds between the sugar of one nucleotide and the phosphate of the 
next, resulting in an alternating sugar-phosphate backbone. According to base pairing rules 
(A with T, and C with G), hydrogen bonds bind the nitrogenous bases of the two separate 
polynucleotide strands to make double-stranded DNA. The total amount of related 
DNA base pairs on Earth is estimated at 5.0 x 1037, and weighs 50 billiontonnes.  

 
RNA 

As mentioned above RNA is a nucleic acid, a large bimolecul, but contrary to DNA is found 

not as a double-strand but as a single-strand folded on to itself. RNA genome is the 

molecule that carries the genetic instructions of many viruses. There are different types of 

RNA named according to the biological process in which they participate. Messenger RNA 

(mRNA) carries information from DNA to the ribosome, a large and complex molecul, where 

the protein synthesis in the cell takes place. The coding sequence of the mRNA determines 

the amino acid sequence in the protein that is produced. However, many RNAs do not code 

for protein. 

These non-coding RNAs (“ncRNA”) as transfer RNA (tRNA) and ribosomal RNA (rRNA can be 

encoded by their own genes (RNA genes), but can also derive from an mRNA nucleotide 

sequence, called introns.  Both are involved in the process of translation. There are also 

non-coding RNAs involved in gene regulation, processing and other roles.  
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Figure2.1 Illustration of a gene, part of a cell, with the double-stranded DNA and a chromosome.[69] 

 

 
GENES 

A gene is a small piece of the genome. It’s the genetic equivalent of the atom: As an atom is 
the fundamental unit of matter, a gene is the basic physical and functional unit of heredity. 
Genes, which are made up of DNA, are found on chromosomes and act as instructions to 
make molecules called proteins. In humans, genes vary in size from a few hundred DNA 
bases to more than 2 million bases. The Human Genome Project has estimated that 
humans have between 20,000 and 25,000 genes. 
Every person has two copies of each gene, one inherited from each parent. How the two 
copies interact with each other determines an organism’s characteristics. Most genes are 
the same in all people, but a small number of genes (less than 1 percent of the total) are 
slightly different between people. This small number of genes is called alleles which are 
forms of the same gene with small differences in their sequence of DNA bases. These small 
differences contribute to each person’s unique physical features. 
   
 

Gene Expression  

The cell transcribes the genetic sequence into messenger RNA (messenger RNA –mRNA). 
Then, the mRNA is translated into triplets structuring an amino acid sequence, of the 
structural components of the protein. Specifically, the codon , as any nucleotide triplet is 
named, is coding the synthesis of an amino acid according to the standard genetic code 
which is common to almost all organisms. Essentially, the nucleotide triplet was proposed 
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by the existence of 20 different amino acids in living organisms. Thus, 3 is the smallest 
possible number to 43 ≥ 20. In detail, 43 = 64 is the number of all different triads of the four 
nucleotides obtained by replacement. However, it appears that there is a gap between the 
number of different triads and the number of different amino acids. In other words, the 
genetic code is redundant. The first two nucleotides of each codon are fixed and they 
characterize the encoding of a single amino acid. The third nucleotide of a codon can be 
altered and yet still encode the synthesis of the same amino acid. The process that 
determines the level of protein production from a gene is called, gene expression. The gene 
expression levels (of a gene) indicate the approximate number of RNA copies (of this gene) 
and correlated to the amount of production of the corresponding proteins (encoding this 
gene). Thus, the expression of a gene provides a measure of the activity of this gene under 
specific biochemical conditions. This way we can monitor the effect of a gene in a particular 
biochemical process by examining the distribution of expression levels. 

 
DNA Microarray and analysis 

 

The DNA microarray technology is a method for gaining information for gene functions as 
well as probing in parallel, expressions of thousands of genes. Due to the fact that a 
mutation, or alteration, in a particular gene’s DNA may contribute to a certain disease, 
there was an eager need for the development of a test that can trace these mutations. This 
was achieved through DNA microarray technology, based on the availability of gene 
sequences, arrayed on a solid surface [36]. Thousands of DNA probes are arranged in a 2D 
array, typically on glass slides .Microarrays can be used to study the extent to which certain 
genes are turned on or off in cells and tissues.  In this case, instead of isolating DNA from 
the samples, RNA is isolated and measured. The total pool of mRNA from experimentally 
manipulated cells or tissues are used to generate cDNAs,   mRNA transcript’s sequences, 
which are labeled using fluorescent nucleotides. A single experiment using this microarray 
technology can now provide systematic quantitative information on the expression of over 
45,000 human transcripts within cells in any given state, enabling the investigator to inquire 
the whole genome at once. [37] Two types of microarray are in current use; they can be 
categorized by how the DNA probes are immobilized on the slide: the in situ synthesized 
Affymetrix GeneChips which utilizes photo-lithography for embedding cDNA probes on 
silicon chips, and the spotted cDNA (or oligonucleotide) microarrays developed at Stanford 
University which utilizes robotic spotting of aliquots of purified cDNA clones. Scientists 
conduct large-scale population studies, to determine how often individuals with a particular 
mutation actually develop a type of cancer, or to identify the changes in gene sequences 
that are most often associated with particular diseases.  This has become possible because, 
just as is the case for computer chips, very large numbers of ‘features’ can be put on 
microarray chips, representing a very large portion of the human genome. 
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 Microarray can be a valuable tool in order to define transcriptional signatures bound to a 
pathological condition, to determine whether the DNA from a particular individual contains 
a mutation in their genes as well as to exclude molecular mechanisms tightly bound to 
transcription.  Microarray analysis frequently does not imply a final answer to a biological 
problem but allows the discovery of new research paths which let to explore it by a 
different perspective. 
Today, DNA microarrays are used in clinical diagnostic tests for some diseases. Sometimes 
they are also used to determine which drugs might be best prescribed for particular 
individuals, because genes determine how our bodies handle the chemistry related to those 
drugs. With the advent of new DNA sequencing technologies, some of the tests for which 
microarrays were used in the past now use DNA sequencing instead. But microarray tests 
still tend to be less expensive than sequencing, so they may be used for very large studies, 
as well as for some clinical tests. 
The principal steps of a microarray analysis are: 
 
 Gene intensity measurements and data normalization. 
 Statistical validation of differential expression. 
 Functional data mining 
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B.BIOINFORMATICS BACKGROUND 
 
 

2.2 Machine Learning and Pattern Recognition 
 
2.2.1 Dataset  
 
Our data is presented as a set of N samples. Each sample contains the expression value of K 
genes also called predictors. In the dataset, each sample N can be expressed as a vector 

  ∈    where i = 1,...., N. To each of the samples, a class label y is assigned. The data can 
also be expressed in array form as X ∈ RN,K where each row represents a sample containing 
the expression values of K genes, while the class labels of all samples are expressed as a 
vector y ∈  RN. 

 
Pattern recognition [38-40] is classified in the field of machine learning, a scientific area 
that focuses on the recognition of patterns and regularities in vast amount of data. Machine 
learning depends to the kind of data that we have at our disposal, thus pattern recognition 
can be achieved accordingly. The learning method that we can have is supervised learning, 
unsupervised learning and reinforcement learning.  
 

 Supervised learning 
Supervised learning entails learning a mapping between a known dataset called the training 
dataset, a set of input variables X and an output variable Y , and applying this mapping to 
predict the outputs for unseen data. If the desired output consists of continuous variables, 
then the task is called regression whereas cases, in which the output falls within discrete 
values the task is called classification. Supervised learning is the most important 
methodology in machine learning and it also has a central importance in the processing of 
class prediction in DNA microarray data analysis. 
 

 Unsupervised learning 
 Unsupervised learning is the type of machine learning that is trying to find hidden structure 
in data with unlabeled responses. Due to the fact that the data given are unlabeled, this 
concludes that there is no error or reward signal to evaluate a potential solution. Various 
unsupervised classification techniques can be employed with DNA microarray data in 
microarray data analysis that affect statistical analysis, in the part of class discovery. 
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 Reinforcement learning  
Reinforcement learning is the type of machine learning where an agent interacts with its 
environment. The agent senses the environment, and based on this sensory input choosing 
an action to perform in it. This action changes the environment in some manner and this 
change is communicated to the agent through a scalar reinforcement signal. Reinforcement 
learning utilizes a positive or negative reward signal sent to the agent after an action is 
complete. 
 
 

2.2.2 Patterns –Classes – Features 

 
DNA microarray analysis falls within supervised learning. In machine learning and pattern 
recognition the features can be symbolic (e.g. color) or numerically (e.g. height).The 
combination of some features is the feature vector. A pattern is a composition of 
characteristics which are divided into specific decision areas called classes. The classes are 
separated by decision boundaries. The n-dimensional space defined by the feature vector 
space is called feature space. Feature spaces may overlap each other, allowing patterns of 
different classes to share same characteristics. Moreover, each pattern can be illustrated in 
the set of features F. Thus, each feature can be a member not only of different patterns but 
also different classes. The classification model is a pair of variables {x, ω} where x is a 
collection of features, feature vector, and ω is the concept of observation, the label. [41-42] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   (i)                        (ii)       (iii) 
 

Figure2.2 Pattern recognition: (i) class Membership-Description Space Ω, (ii) Realized pattern space P (iii) 
Measurement space F/genes 
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2.2.3 Implementation of pattern recognition 

 
As we mentioned above in machine learning, pattern recognition focuses on making 
reasonable decisions about the categories of the patterns. Pattern recognition [43] is a two 
phase process:  
 
a. Training/Learning and 
b. Detecting/Classifying 
  
This process begins with the acquisition of data through measurements. These data are 
subjected to pre-processing in order to isolate patterns of interest. The next step of this 
process is the selection of features in order to find the best representative subset. In the 
second phase, the combination of features through supervised, unsupervised or 
reinforcement learning models, as to assign a pattern to a class, is called Classification. 
Classification [44] is a representative example of pattern recognition. It implements the 
process of learning a target function f, that maps each set of features x, in the predefined 
tagged classes y. Usually the data set is divided into a training set and a control set ,test set. 
The training set used to build the model and the test set to evaluate it.  
 
 

 
 
 
 
 

 
 
 
 
 
 

Figure2.3 Pattern Classifier 

 
General process of classification in machine learning is to train classifier to accurately 
recognize patterns from given training samples and to classify test samples with the trained 
classifier. Classifier is the algorithm that implements classification and maps input data to 
class which performs classification. Finally, it is ought to evaluate the decision taken. This 
involves applying the trained classifier to an independent test set of labeled patterns.  
The process is described in detail in sections 2.5-2.7.
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Figure2.4 Pattern recognition process 

 

 
 
 

 
 



Theoretical Background 

27 
 

 

2.4 Feature Subset Selection (FSS) 
 

After acquiring the gene expression data calculated from the DNA microarray, 2 stages 
follow: feature selection and pattern classification. The purpose of feature selection can be 
thought of as the search through the space of feature subsets of genes that might be 
informative for the prediction by statistical, information theoretical methods, etc. [44, 45, 
46, 47].  
A typical feature selection process involves two phases:  
 Selection of characteristics and  
 Fitting the model to evaluate performance.  

 
It consists of three steps: 

i. The first step is the creation of a candidate set which contains a subset of the original 
features through certain research strategies .Three are the main feature selection 
techniques:  

 

 Control cases: t-test 
The basic idea in the t-test is to check if the mean value of the attribute of each class 
differs significantly from another. T-test is the most popular option when the data 
follow a normal distribution. 

 
The aim is to check which of the following two cases applies: 
H1: The feature has a different average value in each class 
H0: The feature has the same average in each class 

 
If H0 (null hypothesis) is applied then feature is discarded because it is difficult on 
this basis to distinguish data into categories. On the contrary if H1 (alternative 
hypothesis) is applicable, the attribute values differ considerably between categories 
and can be distinguished easily. This feature is selected. 
 

 The Receiver Operating Characteristic (ROC) curve 
If when applying the previous method, the respective average values are close, the 
information may not be sufficient to guarantee good properties classification. The 
ROC technique gives information on the overlap between categories after quantifying 
an area defined by two curves. 
 

 Fisher Discrimination Ratio 
In order to quantify the resolution of a feature Fisher Discrimination Ratio is used. 
The ratio is independent of the distribution followed by the class and defined as: 
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These criteria do not take into consideration the correlations between features and also do 
not exploit the cross- correlation coefficient between them. In the scalar selection of 
characteristics, after choosing a criterion is needed to prioritize features in descending 
order and calculate the cross-correlation of the first in hierarchy, with all the rest. The 
cross-correlation process may affect significantly the hierarchy of features. 
 
Additionally, in feature selection a high-dimensional generalization scheme which 
maximizes the mutual information between the joint distribution and other target variables 
is found to be useful. 
 
The mutual information (MI) of two discrete random variables X and Y is defined as: 
 

                     
      

        
 

 

 ∈ 

 

 ∈ 

 

 
, where        is the joint probability distribution function of X and Y, and p(x) and p(y) are 
the marginal probability distribution functions of X and Y respectively. In the case 
of continuous random variables, the summation is replaced by a definite double integral 
 

                    
      

        
     

 

 

 

 

 

 
, where        is now the joint probability density function of X and Y, and and  are the 
marginal probability density functions of X and Y respectively. 
Mutual information measures the information that X and Y share. Thus this can be 
translated as a measurement of the “knowledge” one of these variables gives us, in order 
to reduce uncertainty about the other. In the case that X and Y are independent, then 
knowing X does not give any information about Y and vice versa, so their mutual 
information is zero. On the other hand, if X is a deterministic function of Y and Y is a 
deterministic function of X then all information conveyed by X is shared with Y:  
Knowing X determines the value of Y and vice versa. 
 As a result, in this case the mutual information is the same as the uncertainty contained 
in Y (or X) alone, namely the entropy of Y (or X). Moreover, this mutual information is the 
same as the entropy of X and as the entropy of Y, with a very special case of this is 
when X and Y are the same random variable. 
Mutual information is a measure of the inherent dependence expressed in the joint 
distribution of X and Y relative to the joint distribution of X and Y under the assumption of 
independence.  
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Mutual information therefore measures dependence in the following sense: 
(X; Y) = 0 if and only if X and Y are independent random variables. this is easy to see in 

one direction: if X and Y are independent, then                     and therefore:  

    
      

        
         

Moreover, mutual information is nonnegative I(X; Y) ≥ 0 and symmetric                 
 

ii. Continuing on with the steps needed to create a candidate set of features the second 
step is the evaluation of the candidate set and assess the usefulness of characteristics 
in the set. Based on the assessment, some features in the candidate set may be 
rejected or added to selected set of features. 

 
iii. Finally, the last step is to determine whether the current set of selected features is 

quite good after applying certain switching criteria. If the set meets the prerequisites, 
a selection algorithm characteristics will return all of the selected features, 
otherwise, it will be repeated until the stop criterion is satisfied. 

 
  
In supervised learning, feature selection is often viewed as a search problem in a space of 
feature subsets. To carry out this search we must specify a starting point, a strategy to 
traverse the space of subsets, an evaluation function and a stopping criterion. Depending 
on how and when the utility of selected characteristics is evaluated, different methods may 
be adopted which are divided into three categories: Filter, Wrapper and embedded models. 

 
 
2.4.1 Filter methods 

 
 Filter approaches [48, 49] remove irrelevant features according to general characteristics 
of the data. Filter algorithms provide fast execution, since they do not include repetitions 
and they are not based on a specific classifier. They have a simple construction, which 
typically uses a simple search strategy and characteristics evaluation criterion is planned 
based on a specific criterion, the feature/feature subset relevance.  In this method for every 
possible characteristics combination we choose a criterion (e.g. Bhattacharya distance, 
Divergence, Scatter Matrices) and select the best combination of features vector. We must 
note that filter algorithms are relatively robust against overfitting and may fail to select the 
most “useful” features. The primary advantage of filter methods is their speed and ability to 
scale, to large datasets. 
Filter methods are divided into multivariate and univariate methods. Multivariate methods 
are able to find relationships among the features, while univariate methods consider each 
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feature separately. Uninvariate filter techniques can be divided into two categories: 
parametric and model-free methods. In parametric methods the data is drawn from a given 
 probability distribution while in model-free methods, or non parametric, the data may not 
follow a normal distribution. In microarray studies the most widely used techniques are t-
test and ANOVA. 

 
 
Significance Analysis of Microarrays (SAM) 
 
Significance Analysis of Microarrays (SAM) [50, 51], is a filter, univariate, statistical 
technique for finding significant genes in a set of microarray data. It was proposed by 
Tusher, Tibshirani and Chu and the software was written by Michael Seo, Balasubramanian 
Narasimhan and Robert Tibshirani. SAM identifies genes with statistically significant 
changes in expression by assimilating a set of gene-specific tests. Each gene is assigned a 
score on the basis of its change in gene expression relative to the standard deviation of 
repeated measurements for that gene. Genes with scores greater than a threshold are 
chosen as potentially significant. The percentage of such genes identified by chance is the 
false discovery rate (FDR). To estimate the FDR, nonsense genes are identified by analyzing 
permutations of the measurements. The threshold can be adjusted to identify smaller or 
larger sets of genes, and FDRs are calculated for each set.  
The cutoff for significance is determined by a tuning parameter delta, chosen by the user 
based on the false positive rate. One can also choose a fold change parameter, to ensure 
that called genes change at least a pre-specified. 
 
 
 
 
 

 
 
      Figure2.5 Filter process 
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2.4.2 Wrapper methods 
 

Wrapper approaches[48] apply machine learning  algorithms  to  feature  subsets  and  use  
cross-validation to  evaluate  the  score  of  feature  subsets. Wrapper methodology 
provides a way to resolve the problem of choice characteristics independent of the learning 
engine that we have chosen. For each combination of feature vectors to estimate the 
possibility of false classification is estimated and choose based on the lower smallest error.  
The execution performance is slow due to repetitions and retraining required and the lack 
of generality as to the method of identification, however the learning machine can be 
considered as a black box which makes the method ideal to use  anywhere. In this method 
the criterion that is used is the feature subset “usefulness” measurement. Finally, we must 
mention that wrapper methods, in principle, result in the most “useful” features, contrary 
to filter methods which are prone to overfitting. The main disadvantage of wrapper 
approaches is that during the feature selection process, the classifier must be repeatedly 
called to evaluate a subset 
 
 

 
 

Figure2.6 Wrapper process 

 
2.4.3 Embedded methods 
 
The embedded model algorithms [47, 48] incorporate the feature selection as part of the 
training/ load process model, and the utility of the characteristics is obtained by optimizing 
the function of the learning model.  This method does not separate the training data in the 
training dataset and in a set of validation data. Embedded methods are similar to wrappers 
and they use the same criterion, features subset usefulness. Their advantage is that they 
are less computationally expensive and less prone to overfitting. 
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Recursive Feature Elimination (RFE) 
 
Recursive feature elimination is an embedded feature selection approach  based on the 
idea to repeatedly construct a model ,for example an SVM or a regression model, and 
choose the best or worst performing feature, for example based on coefficients, setting the 
feature aside and then repeating the process with the rest of the features. This process is 
applied until all features in the dataset are exhausted. Features are then ranked according 
to when they were eliminated. As such, it is a greedy optimization for finding the best 
performing subset of features. The least significant feature is determined through a feature 
weighting scheme which can be the weight given to each feature by a linear classifier or by 
non-linear feature weighting methods.  
 
 

 
 

Figure2.7 Embedded method process 

 

 

 

Figure2.8 Feature Subset Selection Methods 
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2.5 Classification  
  
2.5.1 Classification analysis 
 
As we already mentioned the aim of classification is to find a rule, which, based on external 
observations, assigns a sample to one of several classes, which implements  training a 
classifier to accurately recognize patterns from given training samples and to classify test 
samples with the trained classifier.  Binary classification is the simplest case where the 
classifier categorizes the samples of given set into two different classes based on that rule. 
 
2.5.2 Classifiers 
 
Classifier is the algorithm that implements classification and maps input data to class which 
performs classification. Classifiers are divided to linear and nonlinear. [49] 
 

2.5.2.1 Linear and non-Linear Classifier 
 
A linear classifier  can separate two classes only, when they are linearly separable, i.e. there 
exists a hyperplane ,in two-dimensional case just a straight line, that separates the data 
points in both classes. An opposite case is that classes are linearly inseparable. In this case it 
is still possible that only few data points are in the wrong side of a hyperplane, and thus the 
error in assuming a linear boundary is small. Depending on the degree of error, linear 
classifier can still be preferable, because the resulting model is simpler and thus less 
sensitive for overfitting (poor generalization ability to new data points). However, some 
classes can be separated only by a non-linear boundary and we need a nonlinear classifier.  
More precisely: Let's have numeric attributes            whose values are denoted by 

         For example if   can have values between        then              . 
These compose attribute space                                .  
All data points lie somewhere in this space. If the points fall into two classes, there is some 
boundary which separates them. If the classes are linearly separable, then in two-
dimensional case we can describe the boundary by a line, for 3-dimensional data we need a 
plane and for higher dimensional data a hyperplane. One way to define this hyperplane is a 
discriminant function             , which is 0 on the plane, positive, when 
            belongs to class 1, and negative otherwise. The discriminant function is linear 
i.e.  
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The simplest example of non-linear boundary is exclusive-or function of two attributes: 
              if    is true or    is true, but not both.  
However if we map the datapoints to higher dimensional attribute space, it becomes 
possible to separate the classes by a hyperplane. 
In this study, the linear classifier that is implemented is linear Support Vector Machine 
(SVM).Other examples of linear classifiers are RLS methods like RR and the LASSO, as well 
as RVM. An example of a nonlinear classifier is K Nearest Neighbor (K-NN) Classifier which 
classifies new samples depending on a set of samples closest to them, which are called their 
“nearest neighbors”. 
 

 
 
    (i)      (ii) 
 

Figure2.9 Linear (i) and non-linear (ii) problems. [67] 

 

2.6 Classification Methods 
 
2.6.1 Support Vector Machines (SVM) 
 
Support Vector Machines [52] are supervised learning methods used for classification and 
regression tasks that originated from statistical theory. SVM is a suitable algorithm to deal 
with interaction among features and redundant features. The advantage of Support Vector 
Machines is that they can make use of certain kernels in order to transform the problem, 
such that we can apply linear classification techniques to non-linear data. Applying the 
kernel equations arranges the data instances in such a way within the multi-dimensional 
space, that there is a hyper-plane that separates data instances of one kind from those of 
another. The kernel equations may be any function that transforms the linearly non-
separable data in one domain into another domain where the instances become linearly 
separable. Kernel equations may be linear, quadratic, Gaussian, or anything else that 
achieves this particular purpose. Once the data is divided into two distinct categories, our 



Theoretical Background 
 

35 
 

aim is to get the best hyper-plane to separate the two types of instances. This hyper-plane 
is important because it decides the target variable value for future predictions. The learnt  
hyperplane is optimal in the sense that it maximizes the margin while minimizing some 
measure of loss on the training data. Support vectors are those instances that are either on 
the separating planes on each side, or a little on the wrong side. SVMs have been shown to 
work well for high dimensional microarray datasets. One important thing to note is that the 
data to be separated needs to be binary. Even if the data is not binary, Support Vector 
Machines handles it as though it is, and completes the analysis through a series of binary 
assessments on the data. 
 

Linear SVM  
 
In this part of section we further explain the case of the simple linear SVM algorithm 
[22],[23] in order to be more clearly the concept of support vectors. Linear SVMs are 
particular linear discriminant classifiers.  
Given a training set X of N samples of the form: 
 

                 ∈   
      ∈                    

 
where xi the samples and yi the class labels, the support vector method approach aims at 
constructing the maximum - margin hyperplane of dimension R(m-1)  that separate the 
samples having         from those having       . Any hyperplane can be expressed as 
the set of samples x satisfying: 

          
 
,where b a real constant and w the normal vector to the hyperplane. The offset of the 
hyperplane from the origin along the normal vector w can be expressed by the parameter  
 

   
. If the data are linearly separable, there are two hyperlplanes which can be described 

by the equations : 
 

            
             

 
that fully separate the two classeses without any samples between of them. The region 

bounded by these hyperplanes is called “the margin” and is equal to  
 

   
. The aim is to 

maximize the margin, so     need to be minimized. Given the fact that     is minimized, 
samples of either class may fall into the margin, so in order to avoid it, extra constraints 
need to be applied:  

 
          , for samples of class         
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          , for samples of class         
 
The above equations can be expressed in one as: 
 

             , for          

 
 

Moreover, the previous constrained equation can be expressed as an optimization 
problem:  
 
Minimize in w, b 

    
Subject to 

             , for          

 

This optimization problem is difficult to solve because it is necessary to calculate the norm 
of w, which involve a square root. Without changing the solution it is possible to substitute  

    with  
 

 
    . So the optimization problem can be also expressed as:  

 

Minimize in w, b 
 

 
     

 Subject to   
             , for          

 
 

By using the Lagrange multipliers    , the previous problem can be expressed as a problem 
of quadratic programming: 
 

      
   

   
   

 
 

 
     

 
                  

 

   

 

 

 

 
 
Then, conforming to the stationary Katush – Kuhn – Turkey condition, the solution can be 
expressed as a linear combination of the training input vectors: 

      

 

   

     

Only a few of the Lagrange multipliers    will be greater than zero. These corresponding     

are the support vectors and lie on the margin, satisfying: 
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Solving the above equation for b can derive that the support vectors also satisfy: 

          
 

  
                  

 
The   depends on       , so it will vary among the samples. In that manner, a more stable 
approach for b is to average over all supports vectors:  

   
 

   
            

   

   

 

The optimization problem can also be expressed in its dual form, using the fact that  

         and        
 
        . In dual form the classification task takes into 

account only a function of the supports vectors, which are a small subset of the set of the 
training samples that lie on the margin. Thus, the problem expressed in dual form is 
computationally efficient. 
 
Maximize in    

           

 

   

  
 

 
         
   

  
     

   

 

   

  
 

 
         
   

         

   
, subject to            

 
       and the kernel function is defined by                 

 
 
  

 
 
 

Figure2.10 The SVM learns a hyperplane which best separates two classes. Red dots have a label yi = +1 
while blue dots have a label yi = -1 
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2.6.2 Relevance Vector Machine (RVM) 

 
The relevance vector machine [5],[39] is a sparse kernel technique for both regression and 
classification. It has an identical functional form to Support Vector Machine (SVM), handles 
data with less limitations because it consists a special case of Bayesian Logistic Regression 
that utilizes a specific type of prior probabilities on the feature weights, called Automatic 
Relevance Determination (ARD) priors that automatically eliminate irrelevant features from 
the model. RVM is formed as a linear combination of data-centered basis functions, which 
are called relevance vectors. In comparison to SVMs, the advantages of RVMs are on 
several aspects including generalization ability and sparseness of the model. In particular, 
while the SVMs represent decisions, RVMs are based on a Bayesian formulation of a linear 
model with an applicable prior which is introduced over the weights governed by a set of 
hyperparameters and bring about a sparse performance. As a consequence, they can 
generalize well and provide assumptions at low computational cost, since it typically uses 
dramatically fewer kernel functions.  
RVM is a predictive model that directly models the posterior probability of a class    , given 
a sample         . The RVM requires class labels of the form  ∈       , where in the case 
of binary classification           ∈                ∈    . It computes a model which 
has the form                   , where       is a basis function and       the logistic 
sigmoid function. Thus according to the RVM procedure, each basis function      
        is given by the kennel and each kernel is associated with one data point. The ARD 

priors have the form                   
    

    . Many of the    are led to infinity and 
the corresponding features are removed from the model, during the ARD process. 
 

2.7 Evaluation Methods 
 

Evaluation methods [36] are techniques for assessing how the results of statistical analysis 
will generalize to an independent data set. The main idea behind the evaluation methods is 
to split data, once or several times, for estimating how accurately a predictive model will 
perform in practice: Part of data, the training set, is used for training each model, and the 
remaining part, the test set, is used for estimating the accuracy of the model.  
 
 

2.7.1 Holdout Validation  
 
Holdout Validation is the simplest cross validation method. The dataset is partitioned in two 
sets, the training set and the testing set. Using the training set only, which consists of the 
majority of available samples the model, is trained. Then the function is asked to predict 
the output values for the data in the testing set where the values are unknown. The errors 
it makes are accumulated to give the mean absolute test set error, which is used to 
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evaluate the model. The advantage of this method is that it is usually preferable to the 
residual method and takes no longer to compute. However, the drawback of the method is 
that its evaluation can have a high variance. The evaluation may depend heavily on which 
data points end up in the training set and which end up in the test set, and thus the 
evaluation may be significantly different depending on how the division is made. These 
limitations of this holdout method can be overcome with other validation methods at the 
expense of higher computational cost. 
 
 
 
 

        Total samples      
 

Training Set 

 

  Test  Set 
 

 

Figure 2.11 Holdout Validation method 

 
 
2.7.2 K-Fold Cross Validation (K-Fold CV)  
 
As we mention before we can use other cross validation methods to improve over the 
holdout method. K-fold cross validation is one of them. Here, the data set is divided 
into k subsets, and the holdout method is repeated k times. Each time, one of the k subsets 
is used as the test set and the other k-1 subsets are put together to form a training set. 
Then the average error across all k trials is computed. The advantage of this method is that 
it matters less how the data gets divided. Every data point gets to be in a test set exactly 
once, and gets to be in a training set k-1 times. The variance of the resulting estimate is 
reduced as k is increased. The disadvantage of this method is that the training algorithm 
has to be rerun from scratch k times, which means it takes k times as much computation to 
make an evaluation. A variant of this method is to randomly divide the data into a test and 
training set k different times. The advantage of doing this is that you can independently 
choose how large each test set is and how many trials you average over. 
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Figure 2.12 K-Fold Cross Validation method 

 
 

2.7.3 Leave One Out Cross Validation (LOOC) 
 
 Leave-one-out cross validation is K-fold cross validation taken to its logical extreme, with K 
equal to N, the number of data points in the set. This means that for each fold use N-1 
samples for training and the remaining sample for testing. As before the average error is 
computed and used to evaluate the model. The evaluation given by leave-one-out cross 
validation error is good, but at first it seems very expensive to compute. Fortunately, locally 
weighted learners can make LOO predictions just as easily as they make regular predictions. 
That means computing the LOO validation error takes no more time than computing the 
residual error and it is a much better way to evaluate models.  

 

  

Figure 2.13 Leave One out Validation method
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2.7.4 Repeated Random Sub-Sampling Validation 
 
In Repeated random sub-sampling validation [25],[26] the dataset splits K times. Each data 
split randomly selects a fixed number of samples without replacement. For each such 
iteration, the model is fit to the training data, and predictive accuracy is assessed using the 
validation data. The results are then averaged over all iterations. In this method unlike k-
fold cross validation, the proportion of the training split is not dependent on the number of 
folds. But the disadvantage using Repeated random sub-sampling is that some observations 
may never be selected in the validation subsample, whereas others may be selected more 
than once. 
 

 

Figure 2.14 Repeated random sub-sampling Validation method
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2.7.5 Bootstrap Resampling Validation 
 
The bootstrap resampling validation method [25],[26], also called bootstrapping, is a 
random sampling technique with replacement. In this method, a number of B bootstrap 
datasets of fixed size are randomly selected with replacement, from a dataset with N 
samples, usually the same number of N samples. Then, using the holdout method already 
mentioned, each bootstrap dataset can be divided into training and test sets. At the end of 
the procedure in order to get a stable estimation, the statistics are calculated for each 
bootstrap dataset and are averaged over all bootstrap datasets. 
 

 
 

Figure 2.15 Bootstrap Resampling Validation 

 

2.8 Networks  
 
The term Biological Networks is assigned on biological processes which are represented as 
networks. Biological networks are the interpretation of the interaction between molecules 
such as DNA, RNA, proteins and metabolites. 
There are different types of biological networks. The most fundamental are presented: 
 

 Metabolic networks 

Metabolic networks refer to the pathways that include the main chemical, mostly enzyme-
dependant reactions needed to keep an organism in an internal regulation that maintains a 
stable, constant condition of a living system, called homeostasis.  
Directed edges are drawn between enzymes (proteins that catalyze (accelerate) chemical 
reactions) and substrates (molecules acted upon by an enzyme) .Thus, enzymes and 
substrates correspond to nodes, directed edges to metabolic reactions in a metabolic 
network.

Dataset Resampling 



Theoretical Background 

43 
 

 

 Transcriptional regulation networks 
 
Transcriptional regulation networks are model regulation of gene expression .Gene 
regulation is a process by which information from genes is turned into gene products 
(RNA or protein) and  enables the cell to control its structure and function. Genes are 
the nodes and the edges are directed Transcription factor protein X, binds regulatory 
DNA regions of a gene to regulate (stimulate or repress transcription of a gene) the 
production rate of protein Y. 
 

 Protein-protein interaction networks 
 
Protein-protein interaction networks (PPIs) can be associations of proteins such as 
functional interactions and their role is highly important for the structure and the 
function of a cell. These interactions participate in signal induction and play an 
important role in many diseases (e.g., cancer) .we can encounter stable interactions 
that form a protein complex (a form of a quaternary protein structure, set of proteins 
which bind to do a particular function ( e.g., ribosome),or transient interactions, 
which form the dynamic part of PPI networks ,are brief interactions that modify a 
protein that can further change PPIs –(e.g., protein kineases, add a phosphate group  
to a target protein). It is estimates state that about 70% of interactions is stable and 
30% are dynamic PPI are essential to almost every process in a cell. Thus, 
understanding PPIs is crucial for understanding life, disease, as well as the 
development of new drugs . 
 

 Gene co-expression network (GCN) 
 
A gene co-expression network (GCN) is an undirected graph, where each node 
corresponds to a gene, and a pair of nodes is connected with an edge if there is a 
significant co-expression relationship between them.[53] Having gene expression 
profiles of a number of genes for several samples or experimental conditions, a gene 
co-expression network can be constructed by looking for pairs of genes which show a 
similar expression pattern across samples, since the transcript levels of two co-
expressed genes rise and fall together across samples. Gene co-expression networks 
are of biological interest since co-expressed genes are controlled by the same 
transcriptional regulatory program, functionally related, or members of the same 
pathway or protein complex. 
The direction and type of co-expression relationships are not determined in gene co-
expression networks like in a gene regulatory network (GRN) .Compared to a GRN, a 
GCN does not attempt to infer the causality relationships between genes and in a 
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GCN the edges represent only a correlation or dependency relationship among 
genes. Modules or the highly connected sub graphs in gene co-expression networks 
correspond to clusters of genes that have a similar function or involve in a common 
biological process which causes many interactions among themselves. 
Gene co-expression networks are usually constructed using datasets generated by 
high-throughput gene expression profiling technologies such as Microarray or RNA-
Sequencing. 
 
 

 Bayesian Networks 
Bayesian Networks [54] are a class of graphical probabilistic models that provide a 
well-ordered representation for the expression of joint probability distributions 
(JPDs) and inference. Their application is found in many domains such as the of 
inference of cellular networks, modeling protein signaling pathways, systems biology, 
data integration, classification and genetic data analysis. They combine two very well 
developed mathematical areas: probability and graph theory. A Bayesian network 
consists of an annotated directed acyclic graph         where the nodes   ∈     are 
random variables representing gene expressions and the edges indicate the 
dependencies between the nodes. The random variables are drawn from conditional 
probability distributions            , where        is the set of parents for each 
node. A Bayesian network implicitly encodes the Markov Assumption that given its 
parents; each variable is independent of its non-descendants.  
Besides the set of dependencies (children nodes depend on parent nodes) a Bayesian 
network implies a set of independencies too. This probabilistic framework is very 
appealing for modeling causal relationships because one can query the joint 
probability distribution for the probabilities of events (represented by the nodes) 
given other events.  
From the joint distribution one can do inferences, and choose likely causalities. 
The complexity of such a distribution is exponential in the general case, but it is 
polynomial if the number of parents is bounded by a constant for all nodes. 
 
 
 

 Boolean Networks 
 
Boolean Networks [54] are a class of graphical deterministic models represented as a 
graph         annotated with a set of states                   together with a 

set of Boolean functions                   ,   :      
       . Each node    has 

associated to it a function, with inputs the states of the nodes connected to   .
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The state of node    at time t is denoted as        the state of that node at time t+1 is 
given by                                          where     are the states of the 

nodes connected to   . This set of functions determines topology connectivity on the 
set of variables, which then become nodes in a network. 
In biological Boolean networks each node represents a gene which takes on two 
possible values, as mentioned, 0 and 1 and the way these nodes interact with each 
other is formulated by standard logic functions. 
In Boolean networks, genetic interactions and regulations are inextricably linked with 
the assumption of biological determinism. Though, a gene regulatory network is not 
a closed system and has interactions with its environment and other genetic 
networks, and it is also likely that genetic regulations are inherently stochastic; 
therefore, Boolean networks will have limitations in their modeling power. 
Probabilistic Boolean networks [55] were introduced to address this issue, such that 
they are composed of a family of Boolean networks, each of which is considered a 
context. At any given time, gene regulations are governed by one component 
Boolean network and network switching is possible such that at a later time instant, 
genes can interact under a different context. In this sense, probabilistic Boolean 
networks are more flexible in modeling and interpreting biological data. Interaction 
networks have proven to be a useful source of information for analyzing genomic 
data. Using gene expression data we attempt to estimate the network structure using 
gene and protein information. Boolean Network models belong to the group of 
qualitative network models, because they do not yield any quantitative predictions of 
gene expression in the system. 
 

 
Figure2.16 Gene Network Inference [68] 
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3        

          Methodology 
 
Pathway analysis searches for sets of genes differentially expressed in certain phenotypes 
in order to examine complex diseases, such as cancer. Reasons lying in genetic, 
physiological, and environmental factors, are responsible for cancer development and thus 
understanding their interactions enables effective research, diagnosis, and treatment. In 
this section we extend the network-based algorithm HotNet2 as well as the Activity Vector 
algorithm, to find gene clusters involved in breast cancer. Breast cancer gene expression 
data were acquired from two groups of (mRNA) samples (104 control-425 cancer cases). 
The dataset was pre-processed through a univariate feature subset selection (FSS) method, 
“Significant analysis of Microarray” (SAM), presented in section 3.4. We have already stated 
in section 2, part B, the existence of various methods for feature subset selection (FSS) and 
their significance in DNA Microarray analysis. Section 3.1, refers to the implementation of 
the two algorithms, respectively. Rather than identifying all genes associated with the 
disease, both algorithms, seek to identify clusters/markers of genes which are related to 
each other and to the disease. The results are presented in section 4. Furthermore the most 
important step in our methodology is the evaluation of our results. In this context, in 
section 3.2 our goal is to examine how the results of the statistical analysis will generalize to 
an independent data set. Our results have undergone statistical prediction analysis through 
classification. A linear classification technique was implemented with the Support Vector 
Machine (SVM) classifier [57].  
 
 
 
 
 
 
 
 
 
 
 
 

http://en.wikipedia.org/wiki/Statistics
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3.1 Algorithms implementing Biological Networks 
 
The main focus of networking approaches is to build target-independent networks that 
describe the pair-wise relations between molecules. The number of personal genomes 
sequenced has grown rapidly over the last few years and is likely to grow further. Within 
the last few years, several advanced approaches to address the construction of biological 
networks from gene-expression data have been proposed, many of them mention in 
section 1.5. In this study we focus on the work of Chuang et al., 2007 in [22] that proposes a 
protein network-based approach that identifies markers not as individual genes but as sub 
networks extracted from protein interaction databases and we present the Activity Vector 
algorithm while applying it in our gene expression dataset. Moreover we present the 
Hotnet2 algorithm which extends the work of Vandin et al., 2012 in [23] where HotNet 
algorithm is proposed for mutated sub-networks associated with clinical outcome. 
 

 
3.1.1 Kernel-based algorithms 
 
Kernel-based algorithms, such as Gaussian processes [56] or support vector machines [57] 
are enjoying great popularity in the statistical learning community. The common idea 
behind these methods is to express  prior beliefs about the correlations, the similarities, 
between pairs of points in data space X in terms of a kernel function K :          , and 
thereby to implicitly construct a mapping            to a Hilbert space Hκ, in which the 
kernel appears as the inner product, 
 

        =               (1) 
 
[57]. With respect to a basis of   , each data point then splits into (a possibly infinite 
number of) independent features, a property which can be exploited to great effect. Graph-
like structures occur in data in many guises, and in order to apply machine learning 
techniques to such discrete data it is desirable to use a kernel to capture the long-range 
relationships between data points induced by the local structure of the graph. 
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3.1.2 Diffusion kernels  
 
Diffusion kernels is a special class of exponential kernels, [58] based on the heat equation 
[59], and show that these can be regarded as the discretisation of the familiar Gaussian 
kernel of Euclidean space.  
 

An undirected, unweighted         graph   is defined by a vertex set  and an edge set  , 

concluding to a set of unordered pairs         where        ∈    whenever the vertices  

            are joined by an edge (   ~    ). 
Equation  

 

  
       

 

, where   is real parameter, suggests using an exponential kernel with generator 
 

                          
     

                      
                   
                    

                                                
 

 
 
, where    is the degree of vertex i, the number of edges emanating from vertex i.  
The negative aspect of this matrix is called the Laplacian of    , and it plays a central role in 

spectral graph theory. For any vector   ∈      , complies that 
 

               
 

     ∈ 

 

 
 
, showing that H is, negative semi-definite. The following functions, 
 

                           

 

      

 
, implement that H can also be considered an operator. In fact, it is easy to show that on a 
square grid in m-dimensional Euclidean space with grid spacing h, H=h2 is just the finite 
difference approximation to the familiar continuous Laplacian 

  
  

   
   

  

   
     

  

   
   ,
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and that in the limit h →0 this approximation becomes exact. 
In analogy with classical physics, where equations of the form 
 

  

    
      

 
are used to describe the diffusion of heat and other substances through continuous media, 
the equation 
 
 

 

  
        

 
, with H as defined in (1), is called the heat equation on Γ, and the resulting kernels are 
called diffusion kernels or heat kernels.  
We remark that diffusion kernels are not restricted to simple unweighted graphs. For 
multigraphs or weighted symmetric graphs, all that is needed is to set      to be the total 

weight of all edges between i and j and reweight the diagonal terms accordingly.  
 

 
3.1.2.1 Random Walks 
 
It is well known that diffusion is closely related to random walks. A random walk on an 
unweighted graph Γ is a stochastic process generating sequences          where   ∈   in 

such a way that                
 

  
       and zero otherwise. A lazy random walk on 

Γ with parameter   
 

      
 is very similar, except that when at vertex i, the process will 

take each of the edges emanating from i with fixed probability 
 

                           . 
 
, and will remain in place with probability       . Considering the distribution p (     ) in 
the limit      with N=1/                , concludes that diffusion kernels are the 
continuous time limit of lazy random walks. This analogy also shows that       can be 
regarded as a sum over paths from i=j, namely the sum of the probabilities that the lazy 
walk takes each path. 
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3.1.2.2 Random walk with restart 
 
Given a gene/protein interaction network, random walk starts from a protein g and at each 

time step moves to one of the neighbors with the probability              The walk 
can also restart from g with probability β. 
 This process is defined by a transition matrix W. 

                          
     

 
      

                                      
 

                                                      

                                             
 

 
, deg (j) is the number of neighbors or the degree of protein   , in the interaction network. 
The variable β represent the probability with which the walk starting at    is forced to 
restart from   . 

The random walk will reach a stationary distribution described by the vector   
 , the     

column of F. 
 

  
   =        

       
  

 
 

When   
   =  

 we can get 

 
  
                 

  
 

  
  is the vector with  1 in position i and 0 is in the remaining positions.  

The part               is called diffusion matrix F. 
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3.2.2 Hotnet2  
 
HotNet2 (diffusion-oriented subnetworks) is the updated version of the original HotNet 
algorithm proposed in [7]. It is an algorithm for finding significantly altered subnetworks in 
a large gene interaction network and it was developed for identifying significantly mutated 
groups of interacting genes from large cancer sequencing studies.  It uses an "insulated" 
heat diffusion process, a diffusion kernel analogous to random walk with restart to model 
diffusion of heat, or gene scores, to better capture the local topology of the interaction 
network and filters the graph by an automatic threshold selection. 
 
 HotNet2 rather than selecting connected components in an undirected influence graph   
identifies strongly connected components in a directed influence graph. It is a general 
algorithm for choosing high weight subnetworks in a vertex-weighted network. The 
diffusion process applied encodes the source of heat within the network allowing HotNet2 
to uncover significantly "hot" subnetworks with wide ranges of heat scores.HotNet2 also 
uses an asymmetric influence score, different permutation as a testing method as well as 
parameter selection procedures. 
 
HotNet2 algorithm performs the following steps: 
 

i. Heat Diffusion. HotNet2 employs an insulated heat diffusion process [61,62] that 
captures the local topology of the interaction network surrounding a protein. At each 
time step, nodes in the graph pass to and receive heat from their neighbors, but also 
retain a fraction β of their heat, governed by an insulating parameter β, defined by 
the Multinet interaction network. In this work β=0.50. The process is run until 
equilibrium; the amount of heat on each node at equilibrium thus depends on its 
initial heat, the local topology of the network around the node, and the value β. If a 
unit heat source is placed at node j (e.g. a gene in    in one sample) then the amount 

of heat on node i is given by the (i, j) entry of the diffusion matrix F defined by, 
 

                
 
 where 

                               

                                    

 

      
                                      

 
                                                      

                                              

 
 
 , as we have already mentioned. 
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 W is a normalized adjacency matrix of the graph G. We interpret        as the 
 influence that a heat source placed on   has on   . The insulated diffusion  process  

 is generally asymmetric, i.e.                    
 The diffusion matrix F depends only on the graph G, and not the heat vector 
  h   which represents the input. Therefore the influence for a given β needs to be 
 computed only once for a given interaction network. 
 

 
 

Figure3.1 Heat diffusion process 

 

ii. Exchanged heat matrix. The insulated heat diffusion process described above 
encodes the local topology of the network, assuming unit heat is placed on nodes. To 
jointly analyze network topology and gene scores given by the initial heat vector h  , 
we define the exchanged heat matrix E: 
 
    

 
  where  

 
   is the diagonal matrix with entries      . 

 
                      is the amount of heat that diffuses from node    to node 

  on the network             heat is placed on    , which we interpret as the 

similarity        ,also not symmetric.  
 
 

iii. Identification of hot subnetworks. A weighted directed graph H is formed whose 
nodes are all measured genes. If            , then there is a directed edge, from 
node j to node i, of weight       . HotNet2 identifies strongly connected components 
in H.  

 A strongly connected component C in a directed graph is a set of nodes such that for 
 every pair     of nodes in C there is a path from          
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iv. Statistical test for subnetworks. HotNet2 returns a list of subnetworks, each 
containing at least S genes, and employs a two-stage statistical test [63] to assess the 
statistical significance of the returned list of subnetworks. The first stage of the test 
computes a p-value for the number of subnetworks with at least S genes that are 
returned, for different values of S. We can thus determine an S such that the number 
of connected components of size ≥ S is significant, with a particular p-value. This p-
value measures the significance of the number of subnetworks of a minimum size s, 
but does not say which, if any, of the individual subnetworks is significant. The 
second stage of the test estimates the false discovery rate (FDR) ,the expected ratio of 

false discoveries among the subnetworks assessed as significant by the method [64]. 
To calculate the diffusion matrix HotNet2 has two parameters β and δ, described in 
section 3.2.2.2, and selects values for both of these parameters using automated 
procedures. The variable β is selected from the protein-protein interaction network, 
independently of any gene scores and it is chosen to balance the amount of heat that 
diffuses from a protein to its immediate neighbors and to the rest of the network. In 
our case β=0.50. The value of δ is the edge weight parameter. It’s used to make sure 
the HotNet2 will not find large subnetworks using random data.  

 

 
 

 
 
 

Figure3.2 Generalization of Hotnet2 for clinical data 
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3.2.2.2 Parameters β and δ 
 

 Insulated heat-diffusion: β 

The parameter β is chosen for a given protein-protein interaction network, and 
remains fixed for different heat datasets. β is chosen in order  to balance the amount 
of heat that diffuses from a protein to its neighbors and to the rest of the network. 
This was done by computing the amount of heat retained in the neighbors of vertices 
(“source proteins”) with different network centrality. In choosing parameter β the 
goal is to choose a variable such that all proteins retain most of their heat in their 
immediate neighbors. The process is described in detailed in [24]. 

 
 

 Minimum edge weight: δ 

The edge weight parameter δ is chosen such that to avoid finding large subnetworks 
using random data. Specifically, for each dataset and interaction network, we 
generated 100 random networks with the same degree distribution as the original 
network by performing       connected edge swaps, where E is the set of edges in 
the interaction network, ensuring that each node retains the same degree as in the 
original network and that the resulting network is connected, setting Q = 100 [65]. In 
order to conclude in the δ parameter each permuted network is examined and the 
minimum  δ is identified such that all strongly connected components found have 
size  Lmax, for Lmax = 5, 10,15, 20. For each Lmax, the median of these values of δ is 
calculated across the 100 permuted networks .For each run, the selected value is the 
smallest δ with the most significant (P < 0, 05) subnetwork sizes k. 
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3.2.3 Activity Vector 
 
A remaining hurdle to pathway-based analysis is that the majority of human genes have not 
yet been assigned to a definitive pathway. As we have already mentioned protein–protein 
interaction networks are used to assign sets of genes to discrete subnetworks. The Activity 
Vector algorithm is a protein-network-based approach for identifying markers of metastasis 
within gene expression profiles, which can be used to identify genetic alterations and to 
predict the likelihood of metastasis in unknown samples. These markers consist of 
subnetworks of interacting proteins within a larger human protein–protein interaction 
network and are not individual genes or proteins. 
 
The primary input to Activity vector consists of a gene expression matrix of the 4174 genes 
and their expression levels, as well as an interaction network. In order to examine both 
algorithms and their resulting subnetworks under the same construction criteria we used 
the Multinet interaction network mentioned previously 
 
Activity Vector algorithm performs the following steps: 
 

i. Creation of subnetwork activity matrix 
The gene expression levels drawn from each type of cancer (i.e., control or cancer) 
are transformed into a ‘subnetwork activity matrix’. For a given subnetwork Mk in 
the interaction network, the activity α ,represents its vector of activity scores over 
the samples, is a combined z-score, which is designated the activity    , and  c 

represent the corresponding vector of class labels (cancer or control).In order to 
result in    , expression values      are normalized to z-transformed scores     ,a 

process that assists in the use of data directly in the calculation of significant changes 
in gene expression between different samples and conditions.  The activity matrix 
calculation derives from: 
 

     
   

  
 

 

 
, where n is the number of studied genes. The score    , has for each gene i, mean 

μ=0 and s.d. σ=1, over all samples j and the individual     of each member gene in the 

subnetwork are averaged into    .[66]. 
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ii. Searching for significant subnetworks 

 
After overlaying the expression vector of each gene on its corresponding protein in 
the interaction network, subnetworks with considerably significant activities are 
found via a greedy search. A subnetwork can be referred as a module of the given 
protein network. The process for calculating a module starts only with a starting node 
which can be any node in the protein network and iteratively expands. The module 
expands under two criteria:   
 

 the new node is adjacent to any node already in the module, and 

 it improves the overall score, a value that measures how "good" a module is, of the 
module.  
 
If no node can be added that meet the two criteria above, the process of building a 
module stops due to the fact that no addition increases the score over a specified 
improvement rate r.  A module is calculated for each node/protein in the network 
and all the collected modules are called real modules. Many types of statistic, such as 
the t or Wilcoxon score tests, could be used to score the relationship between a and 
c as well as the Mutual Information test which we have already mentioned in chapter 
2.4 and we have chosen for this study. 
It is considered that the median distance d between any two proteins in the human 
protein–protein interaction network is five, thus, we set d=2 to provide a sufficient 
number of neighbors while keeping the search local.  
The parameter r is set 0.05 to avoid over-fitting to the expression data used. The 
majority of searches terminate due to the constraint on r, increasing the value of d 
has only marginal effect on the results. 
 

iii. Permutation process 
Most of the real modules were produced at random and are statistically insignificant. 
These modules must be removed. The way to filter out insignificant modules is by 
passing them through statistical tests. First, a gene expression vector and its 
corresponding protein are randomly associated. After the randomization all modules 
are recalculated and scored respectively. Finally these modules are collected 
together and are called random modules. 
This randomized process is repeated many times. In this study we have chosen 100 
random trials. In general, the more random trials, the better the results, but the 
computation time becomes longer. 
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iv. Selection of significant subnetworks 

Significant subnetworks are selected based on null distributions estimated from 
permuted subnetworks, after three significance tests.  
 

 Statistical Test 1: The scores of all random modules are collected together and are 
placed in a null distribution. If a real module's score is insignificant when compared 
against the null distribution, it is discarded. 
 

 Statistical Test 2: The random module scores are used to estimate the parameters of 
a distribution. In this work we have selected mutual information for a scoring 
method, and the gamma distribution is used. If a real module has an insignificant 
score compared to the distribution, it is discarded. 
 

 Statistical Test 3: We test whether the mutual information with the disease class is 
stronger than that obtained with random assignments of classes to patients. The 
gene expression vectors of a real module are combined into one vector. A score is 
calculated based on this vector. The order of the vector's columns is then randomized 
in 20.000 trials. Another score is calculated from this randomized vector. This 
randomization process is repeated many times, yielding a null distribution of mutual 
information scores for each trial. Finally, the real score of each subnetwork is indexed 
on this null distribution and if compared to it is insignificant, the module is discarded. 
In this study, significant subnetworks are selected hat satisfy all three tests with 
   0.05,    0.05, and    0.00005. 
 

 
 
 
 
 



Methodology 

58 
 

 

 
 
 

 

 
 

 
 

Figure3.3 The generalized process of the Activity vector algorithm [22] 
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3.3 Evaluation of the Results 
 

3.3.1 Statistical Evaluation-Generalization 
 
In the third part of our methodology the evaluation of our results from the implementation 

of both algorithms is presented, in section. In microarray and data analysis evaluation 

methods are used to estimate the generalization ability of genome signature, that is to 

discover predictive relationships of the results in unknown data .Evaluation methods can be 

performed in a portion of the existing dataset as well as in an independent/new dataset, 

called the training set while a test set is used for evaluating whether the discovered 

relationships are accurate. A test set is a set of data used to assess the strength and utility 

of a predictive relationship. Cross-validation, explained in section 2.7 is a well known and 

used strategy because of its simplicity and its universality. The k – fold cross validation 

approach, implemented in this study, can also be used to assess how the results of 

a statistical analysis will generalize to an independent data set. In this context, a new 

independent dataset is used and the procedure of 10 – fold cross validation is repeated.  

 

3.3.2 Biological Evaluation 
 
Apart from the important step of the statistical evaluation of our results and their 
prediction ability, a fundamental role in the process of evaluation is the biological 
significance of the resulted genes. In combination, these two methods can help us uncover 
known as well as new relationships between genes/proteins which if applying either one or 
the other separately, our conclusion would be incomplete and would lack in terms of 
statistical as well as biological significance. In section the results from the biological 
evaluation of our resulted genes is presented. 
 
 
 
 
 
 
 
 
 
 

https://en.wikipedia.org/wiki/Data
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Figure3.4 Proposed methodology
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3.4 Significant Analysis of Microarrays (SAM) 
 
As we have already mentioned the feature gene subset selection process is one of the 
crucial steps in DNA microanalysis. In section 2.4.1.1 we have presented the theoretical 
knowledge of the filter univariate method called “Significance Analysis of Microarrays” 
(SAM) [40, 41]. Here we present the general process of SAM in terms of microarray analysis 
with gene expression values from two classes of pathological subjects. Our dataset is 
composed of 529 (mRNA) samples which have a large number of gene expression (4174 
genes) levels as features. This data set had all ready undergone a filtering process with 
SAM, in order to reduce the number of genes by keeping the most significant set from a 
larger dataset. SAM uses a modified t-statistic and permutations of the repeated 
measurements of the data in order to decide if the gene expression is strongly related to 
the response.  
The SAM procedure follows. 
 

i. SAM Input: The input to SAM is gene expression measurements from a set of 
microarray experiments, as well as a response variable from each experiment. The 
data should be put in an Excel spreadsheet and have a specific format. The overview 
of the file must meet some requirements in order to proceed successfully. The first 
row has the information about the response measurement; all remaining rows have 
gene expression data, one row per gene. The columns represent the different 
experimental samples. 
 

ii. Class definition: There are many different types of response such as quantitative, 
one class, two class (unpaired, paired), multiclass, survival data, time course and 
pattern discovery. In our case, gene expression measurements were separated into 
two classes (unpaired). These classes are two sets of measurements, in which the 
experiment units are all different. Particularly, we have two groups: healthy controls 
and cancer patients, with samples from different patients. Thus the response variable 
is grouped using numbers 1 (healthy control) – 2 (cancer patient).  
 

 
Figure3.5 Assign experiments to two groups (1, 2)
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iii. Processing input:  The area that represents the data should be highlighted. Then the 

SAM button in the toolbar must be selected and a dialog rises. The dialog box gives 
the opportunity to the user to select the type of response variable and to change any 
of values of the default parameters. Moreover the user should specify if the data are 
from (micro)array or a sequencing experiments and for two class and paired data, 
one has to specify if the data is in the logged (base 2) scale or not  
 

 
 

Figure3.6 Highlighting and invoking SAM



Methodology 

63 
 

 

 

 
 

Figure3.7 SAM Dialog Box 

 
In order to determine if the expression of any genes is significantly related to the response 
the procedure of repeated permutations of the data is as follows: 

1. For each gene, compute a statistic d-value, which is the observed d-value for that 
gene. 

2. Order the genes according to their d- values. 
3. Randomly shuffle the values of the genes between groups 1 and 2, such that the 

reshuffled groups 1 and 2 respectively have the same number of elements as the 
original groups 1 and 2. Compute the d-value for each randomized gene. 

 

 
(a)             (b) 

Figure3.4 (a) original grouping, (b) randomized grouping 
 

4. Order the genes according to their permuted d- values. 
5. Repeat steps 3 and 4 many times. Thus, each gene has many randomized d-values 

corresponding to its rank from the observed (unpermitted) d-value (100 or 200 
permutations are descent for initial exploratory analysis). Then, take the average of 
the randomized d-values for each gene which is the expected d-value of that gene.
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6. Plot the observed d-values versus the expected d-values 
7. For each permutation of the data, compute the number of positive and negative 

significant genes for a delta parameter, which is the cutoff for significance, chosen by 
the user based on the false positive rate. The median number of significant genes 
from these permutations is the median False Discovery Rate (FDR). Thus, any genes 
designated as significant from the randomized data are being picked up purely by 
chance. Therefore, the median number picked up over many randomizations is a 
descent estimate of FDR. 
 

iv. SAM Output: While running the SAM, if there is any missing data in your 
spreadsheet, a new worksheet named SAM Imputed dataset containing the imputed 
dataset is added to the workbook, unless this worksheet is not added. Therefore, the 
software adds two more worksheets to the workbook. There is one which is hidden 
called SAM Plot data which contains the plot of the observed d-values versus the 
expected d-values and the user can interact with. Particular, a block dialog which is 
called Sam Plot Controller, shown in figure 3.6, gives the chance to the user to 
change the delta parameter and examine the effect on the false positive rate. If user 
wants a more stringent criterion, there is also a fold change parameter that he can 
select. Positive significant genes are labeled in red on the SAM plot, while negative 
significant genes are green.  The List Delta Table button lists the number of significant 
genes and the false positive rate for a number of values of delta. The List All Genes 
prints out all genes in the dataset. After choosing the delta parameter a sheet named 
SAM Output is showed, including any output.  

 

 
Figure3.8 The SAM Plot Controller on the front side, 

The SAM Plot sheet on the second sheet



Methodology 

65 
 

The output for list of significant genes has a specific format. Particularly, it contains 
the row number, which is the row in the selected data rectangle, the gene name as 
well as the gene Id. It also contains the SAM score (d), which is the t-statistic value 
with the numerator and the denominator(s + s0) of it. Moreover, the q-value, which 
is the lowest False Discovery Rate at which the gene is called significant as well as the 
local FDR, which is the false discovery rate for genes with scores d that fall in a 
window around the score for the given gene are also printed . Finally, in any testing 
problem, false positive rate (for example FDRs) are calculated, but is also important 
to consider false negative rates. Thus, a miss rate table is printed which gives the 
estimated false negative rate for genes that do not make the list of significant genes. 
 
 
 
 

  

Figure3.9 Processing data set with SAM 

 
In the beginning of this thesis conduction we processed our genes aiming in a further 
reduction of their number so as to conclude in a smaller subset of significant 
differentially expressed genes. After using SAM, we reached the number of 84 
significant genes. Though, the purpose of the HotNet2 and Activity Vector algorithms 
is to find significant subnetworks of genes through a large data set of both genes that 
are significant and genes that are not. Due to the requirements of the two algorithms 
we have selected to work with the original data set of 4.174 genes. 

Microarray experiments 

Expression values Input 

SAM 

 List differentially expressed 
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4 
Results 

 
In this chapter we present the results from our proposed methodology. In section 4.1 we 
introduce the dataset that we have used, followed by section 4.2, 4.3 were the resulting 
subnetworks from each algorithm implementation is presented. Furthermore, in section 4.4 
the statistical significance as well as the resulted genome signature significance of the SVM 
implementation results is assessed. 
 

4.1 Dataset 
The original, preprocessed, dataset consists of 4.174 breast cancer genes and the 
measurements of their expression values, acquired from two groups of 529 (mRNA) 
samples, 104 healthy control and 425 cancer cases and it was provided by Stelios 
Sfakianakis.  
 
 
 
 
 

 

 

 

 

 

  

 

                                                           Figure 4.1: Dataset structure 
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The primary input to HotNet2 consists of a list of genes and gene scores, as well as an 
interaction network, represented by an influence matrix describing interaction levels 
between genes. In this work one set of input data was used for network-based analysis and 
the used network for this set derived from Multinet, an interaction network which includes 
protein-protein, phosphorylation, metabolic, signaling, genetic and regulatory interactions 
from multiple databases. The MultiNet network consists of 109,597 interactions among 
14,445 proteins. After the removal of self-loop interactions and multiple edges between 
interactions the resulting MultiNet influence matrix, represented as a sparse square matrix 
in MATLAB, represented a network of 14,398 genes by defining an influence score for each 
gene pair based on Multinet’s gene interactions and a heat diffusion process. Breast cancer 
gene expression data was provided by Stelios Sfakianakis. These data consisted of fold 
changes in expression from healthy control subjects to breast cancer patients for 4.174 
preprocessed genes. Corresponding p-values were based on the magnitude of these fold 
change and gene-specific variability of expression, as well as the adjusted for multiple 
hypothesis testing p values. Because the testing procedure is carried out for hundreds of 
gene sets, it is critical to apply a proper adjustment to control for type I error. In our 
analysis, we use the q value, which is a counterpart of the p value in the context of false 
discovery rate, to assess the statistical significance of gene associations [60].From these 
4.174, 3.385 genes were contained in the Multinet network. HotNet2 assumes larger scores 
are more important, so in this context, the q-values of the dataset had to be inverted. Thus, 
the score used for analysis was − log10 (q), which produced an appropriate distribution of 
scores to differentiate genes without extreme variance. 
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4.2 HotNet2 Algorithm results 

As we have discussed above, the following results were produced from HotNet2 algorithm, 

after using a gene score conversion of − log10 (q). The gene expression data set was 

analyzed with the Multinet network. 

After analyzing the genes scores from the breast cancer data in HotNet2, 4 significant 

subnetworks were found. In the resulting subnetworks, shown in figure 4.2, where 1 cluster 

of 9 genes was found and 3 clusters of at least 10 genes. Based on HotNet2 tests permuting 

the gene scores across the tested genes, the probability of finding 1 clusters of size 9 was 

0.07 and 3 clusters of size at least 10 was 0.04 shown in Table4 1. Enrichment p-values are 

based on a null hyper geometric distribution over genes in the HotNet2 and Bonferroni-

corrected for the number of pathways and components tested.  

 

 

(A) 
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(B) 

Figure 4.2 (A) Subnetwork A(i) of k minimum size of components 9 (B) Subnetworks B(i), B(ii), B(iii) of k 

minimum size of components 10. Color depicts gene scores. 

 

 

 

 

 

 

 

 

Table4.1 p-values for the significance of clusters of a 

given size, based on expected numbers of clusters from 

permutation tests of gene scores. 

 

 

SIZE k EXPECTED ACTUAL P-VALUE 

2 181.6 187 0.3 

3 61.24 61 0.61 

4 27.7 23 0.95 

5 13.83 12 0.81 

6 7.71 6 0.84 

7 4.56 5 0.46 

8 2.84 4 0.3 

9 1.61 4 0.07 

10 1.03 3 0.04 
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4.3 Activity Vector Algorithm results 

In order to analyze the genes scores from the breast cancer data with Activity vector we 

used the Cytoscape plug-in, PinnacleZ, which is the implementation of the algorithm 

presented in [22]. As we have already mentioned our goal is to result in significant 

subnetworks after applying the same criteria in both algorithms. Therefore the input gene 

expression data set was also analyzed with the Multinet network. After the implementation 

of the algorithm we resulted in 332 real modules. The common denominator of both 

methodologies is ten common genes which appear to be common. From the 332 modules 

we decided to analyze the ones that had these common genes with the HotNet2 resulting 

subnetworks as well as the highest module score. The 10 common genes are the following:  

HCLS1 

AIMP2 

APOD 

SIGIRR 

ENO2 

PDCD6 

ACTR2 

HNRNPH3 

TRPC1 

EIF3F 

 

Table4.2 Mutual genes between HotNet2 and Activity vector resulting subnetworks. 

 

 

Figure 4.3 Two representative Activity Vector subnetworks 
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The Activity Vector subnetworks, with the higher module score, involving the 10 common 

genes, are presented in the next table. 

network
1 

network 
2 

network
3 

network
4 

netwok
5 

network
6 

network 
7 

netwok
8 

network
9 

network 
10 

BCL3 BCL3 ADRB2 

HIST2H2B

E EIF4B EIF4B ACTR2 CSNK2A2 GATA2 YY1 

BUB3 AIMP2 APOD CALM2 ATF2 ANKS1A BAK1 YY1 IRF3 ATF4 

CENPE CTNNBL1 EIF4B CFL1 CRIM1 CAV1 CTTN HDAC5 CDC45 BCLAF1 

HCLS1 

HIST2H2B

E FGFR1 E2F1 CSNK2A2 CSRP1 GDF11 ABCE1 ENO2 ACTG2 

HHAT HSPA4 GRB10 GATA2 IRAK1 EDNRB INHBA ATF4 ENSA CCDC106 

MAPK13 IRF3 GRINL1A H2AFX PELI2 EPHB3 MCL1 BCLAF1 HIF1A EEF1G 

PITX1 ISG15 HDAC5 LEF1 RBM17 PCBP2 PMAIP1 EEF1A1 MCM3 HNRNPH3 

TRAF4 ITGA5 MYO9A PDCD6 SIGIRR SCP2 

SMARCA

4 EIF3F NFYA KAT2B 

USP7 MORF4L2 NEDD4 THOC4 SOX10 TRIM24 STK38L RPS7 PTPN1 KAT5 

 

SPP1 PDCD6IP 

 

YY1 TRPC1 

  

SMARCA5 PTPN4 

  

PRPF8 

     

SREBF1 TRIM68 

  

SMURF2 

     

YWHAQ 

  

Table 4.3 Activity vector highest scoring modules involving common genes to HotNet2.Color red depicts 

each of the 10 common genes. 

In this point we have to mention that network1 and network2 might have small differences 

after every run of the algorithm, although keeping the same module score. We have 

decided to work with an instance of the algorithm implementation and concluded in the 

total number of 89 genes. The genes we have assembled from the combination of both 

algorithms, consist the most significant genomic signatures from the original 4.174 genes 

dataset. In section 4.4 that follows we present the statistical and biological evaluation of 

the results. 
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Figure 4.4 Process for resulting genomic signature 
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4.4 Generalization Ability of Genomic Signature 

New Dataset 

The new dataset was selected from Gene expression Omnibus (Geo) database involving 

gene expression profiles of 104 breast cancer and 17 normal breast biopsies. The GEO 

access number is GSE42568.For each sample, there are measurements of 54.675 genes. 

Each value is calculated as Log2 GC-RMA signal intensity. 

Generalization Ability  

As already mentioned in section 3.3.1, the aim of this field is to access the generalization 

ability of the genomic signature. A good generalization performance is achieved when a 

genomic signature is able to predict the label of unseen samples correctly. Our final 

genomic signature consists of 51 genes derived from HotNet2 algorithm as well as 89 

genes, after the combination of both methodologies. After the implementation of both 

algorithms we resulted, as previously mentioned, in 10 common genes. As mentioned 

above, the 10 genes derived from the application of two different methodologies, that 

apply different clustering criteria on our data, and seem to stand out for their statistical 

significance in prediction to a new dataset. Thus, 89 genes, including the 10 common genes, 

are selected from the new dataset in order to be used for accessing the generalization 

ability of the model to an independent dataset. However, there are 24 genes that have the 

same code to the original dataset, while 65 genes of them appear with multiple codes in 

the new dataset. For this reason, concerning the 65 genes, with more than one code, 

standard deviation of each gene is extracted in order to decide which code is able to be 

used as shown in Figure4.5 and the same procedure was applied for every gene. The gene 

with the higher standard deviation is preferred, since these genes are extended over a 

wider range of values. 

 

Figure4.5 Standard deviation of 6 multiple genes in the new dataset 
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Finally, the genomic signature of the new dataset is composed of 89 significant genes and is 
used to access the generalization ability of the model. As mentioned in section 3.3.1, the 10 
fold cross validation approach is applied which generates 9 training datasets and only one 
test set. This process is repeated 10 rounds. In each round, one of the folds is used for 
validation, and the other 9 folds for training. Then the SVM as well as the RVM classification 
method is performed. The process is repeated 200 times and the overall results are 
averaged. Finally, as we can see in Table4.4 the observed mean classification accuracy is 
very good, performing very good generalization performance when it comes to the 
classification of unknown samples. In addition, 11 from 15 genes after applying the SVM 
algorithm are included in the 21 genes selected from RVM. Additionally, 2 genes (SIGIRR 
and PDCD6) from the starting dataset of 10 mutual genes are included in the resulting 21 
and 15 genes, respectively. The same procedure was implemented to access the 
classification significance of the original set of the 10 common genes from which the 89 
genes derived.  
 
 

Genomic Signature Size 

(new dataset) 

Mean Classification Accuracy (%) Mean Genes 

89 genes RVM  97.05% 21 

89 genes SVM 95% 15 

10 genes RVM 96.6% 8 

10 genes SVM 93% 10 

 
Table4.4 Generalization Ability of Genomic Signature Results 

 

From the above results it appears that the 10 common genes – from the set of 89 

important genes-also provided high classification accuracy in an independent data set. As 

mentioned above, the 10 genes derived from the application of two different algorithms 

seem to stand out for their statistical significance in a new dataset. The results enable as to 

assume that the 10 selected common genes represent significant seeds in order to proceed 

in an inquiry process, although they are not all part of the resulting 15 and 21 genes 

selected from the group of 89 genes. However, the two different methodologies considered 

in this study were selected because of their effectiveness in finding and creating small -

potentially significant- subnetworks using a large network of known interactions 

(MultiNet).So in biological level we examine the set of 89 genes that emerged and we 

believe are associated with breast cancer. In section 4.5 the biological evaluation of the 89 

and 51 final genomic signatures follows.  
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4.5. Biological Evaluation 
In this work, we performed enrichment analyses in order to gain meaningful biological 
pathways with statistical significance of both Activity Vector and HotNet2 resulting 
subnetworks that might reflect the phenotype of breast cancer.  
 

 

Table 4.5 List of genes that participate in Activity vector subnetworks. The 89 genes of Activity vector network are 

mapped to the corresponding Entrez Gene IDs and described according to their encoded gene products. Breast 

cancer-associated genes are highlighted in red. Brown highlighted Entrez Gene IDs are the overlapping genes within 

the Activity vector subnetworks. The starting node of each subnetwork is highlighted in a green background, while 

the 10 common genes of both algorithms are highlighted in a blue background 

Entrez Gene ID Gene Symbol Description

SubNetwork 1 (Module Score: 0.091)

602 BCL3 B-cell  CLL/lymphoma 3

7874 USP7 ubiquitin specific peptidase 7 (herpes virus-associated)

9184 BUB3 budding uninhibited by benzimidazoles 3 homolog (yeast)

55733 HHAT hedgehog acyltransferase

1062 CENPE centromere protein E, 312kDa

3059 HCLS1 hematopoietic cell-specific Lyn substrate 1

5603 MAPK13 mitogen-activated protein kinase 13

5307 PITX1 paired-like homeodomain 1

9618 TRAF4 TNF receptor-associated factor 4

SubNetwork 2 (Module Score: 0.09)

3661 IRF3 interferon regulatory factor 3

602 BCL3 B-cell  CLL/lymphoma 3

7965 AIMP2 aminoacyl tRNA synthetase complex-interacting multifunctional protein 2

9636 ISG15 ISG15 ubiquitin-like modifier

8349 HIST2H2BE histone cluster 2, H2be

6696 SPP1 secreted phosphoprotein 1

3308 HSPA4 heat shock 70kDa protein 4

9643 MORF4L2 mortality factor 4 l ike 2

3678 ITGA5 integrin, alpha 5 (fibronectin receptor, alpha polypeptide)

56259 CTNNBL1 catenin, beta l ike 1

SubNetwork 3 (Module Score: 0.081)

10015 PDCD6IP programmed cell  death 6 interacting protein

145781 GCOM1 GRINL1A complex locus

10594 PRPF8 PRP8 pre-mRNA processing factor 8 homolog (S. cerevisiae)

154 ADRB2 adrenergic, beta-2-, receptor, surface

4734 NEDD4 neural precursor cell  expressed, developmentally down-regulated 4

347 APOD apolipoprotein D

10014 HDAC5 histone deacetylase 5

2887 GRB10 growth factor receptor-bound protein 10

4649 MYO9A myosin IXA

64750 SMURF2 SMAD specific E3 ubiquitin protein l igase 2

1975 EIF4B eukaryotic translation initiation factor 4B

2260 FGFR1 fibroblast growth factor receptor 1

SubNetwork 4 (Module Score: 0.1)

1869 E2F1 E2F transcription factor 1

1072 CFL1 cofil in 1 (non-muscle)

10016 PDCD6 programmed cell  death 6

51176 LEF1 lymphoid enhancer-binding factor 1

2624 GATA2 GATA binding protein 2

8349 HIST2H2BE histone cluster 2, H2be

805 CALM2 calmodulin 2 (phosphorylase kinase, delta)

3014 H2AFX H2A histone family, member X

SubNetwork 5 (Module Score: 0.086)

1386 ATF2 activating transcription factor 2

57161 PELI2 pellino homolog 2 (Drosophila)

59307 SIGIRR single immunoglobulin and toll-interleukin 1 receptor (TIR) domain

84991 RBM17 RNA binding motif protein 17

51232 CRIM1 cysteine rich transmembrane BMP regulator 1 (chordin-like)

3654 IRAK1 interleukin-1 receptor-associated kinase 1

6663 SOX10 SRY (sex determining region Y)-box 10

7528 YY1 YY1 transcription factor

1459 CSNK2A2 casein kinase 2, alpha prime polypeptide

1975 EIF4B eukaryotic translation initiation factor 4B
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As demonstrated in the methodology and results section, a number of fourteen significant 
subnetworks have been obtained by using Activity Vector and HotNet2 algorithmic 
approaches. The genes of the resulting subnetworks were mapped to unique Entrez Gene 
IDs, and described according to their encoded gene products (Tables 4.4, 4.5), upon which 
enrichment analysis methods have been applied.  
 

 

Table 4.5 (continue) List of genes that participate in Activity vector subnetworks. The 89 genes of Activity vector 

network are mapped to the corresponding Entrez Gene IDs and described according to their encoded gene products. 

Breast cancer-associated genes are highlighted in red. Brown highlighted Entrez Gene IDs are the overlapping genes 

within the Activity vector subnetworks. The starting node of each subnetwork is highlighted in a green background, 

while the 10 common genes of both algorithms are highlighted in a blue background 

Entrez Gene ID Gene Symbol Description

SubNetwork 6 (Module Score: 0.086)

5094 PCBP2 poly(rC) binding protein 2

7220 TRPC1 transient receptor potential cation channel, subfamily C, member 1

2049 EPHB3 EPH receptor B3

8805 TRIM24 tripartite motif-containing 24

23294 ANKS1A ankyrin repeat and sterile alpha motif domain containing 1A

1465 CSRP1 cysteine and glycine-rich protein 1

6342 SCP2 sterol carrier protein 2

1910 EDNRB endothelin receptor type B

1975 EIF4B eukaryotic translation initiation factor 4B

857 CAV1 caveolin 1, caveolae protein, 22kDa

SubNetwork 7 (Module Score: 0.087)

3624 INHBA inhibin, beta A

10097 ACTR2 ARP2 actin-related protein 2 homolog (yeast)

23012 STK38L serine/threonine kinase 38 like

10220 GDF11 growth differentiation factor 11

6597 SMARCA4 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4

578 BAK1 BCL2-antagonist/kil ler 1

5366 PMAIP1 phorbol-12-myristate-13-acetate-induced protein 1

4170 MCL1 myeloid cell  leukemia sequence 1 (BCL2-related)

2017 CTTN cortactin

SubNetwork 8 (Module Score: 0.084)

9774 BCLAF1 BCL2-associated transcription factor 1

1915 EEF1A1 eukaryotic translation elongation factor 1 alpha 1

6059 ABCE1 ATP-binding cassette, sub-family E (OABP), member 1

10014 HDAC5 histone deacetylase 5

6201 RPS7 ribosomal protein S7

8665 EIF3F eukaryotic translation initiation factor 3, subunit F

468 ATF4 activating transcription factor 4 (tax-responsive enhancer element B67)

7528 YY1 YY1 transcription factor

1459 CSNK2A2 casein kinase 2, alpha prime polypeptide

SubNetwork 9 (Module Score: 0.073)

3661 IRF3 interferon regulatory factor 3

5770 PTPN1 protein tyrosine phosphatase, non-receptor type 1

4800 NFYA nuclear transcription factor Y, alpha

2624 GATA2 GATA binding protein 2

8467 SMARCA5 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 5

2029 ENSA endosulfine alpha

4172 MCM3 minichromosome maintenance complex component 3

3091 HIF1A hypoxia inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor)

2026 ENO2 enolase 2 (gamma, neuronal)

10971 YWHAQ tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, theta polypeptide

6720 SREBF1 sterol regulatory element binding transcription factor 1

8318 CDC45L CDC45 cell  division cycle 45-like (S. cerevisiae)

SubNetwork 10 (Module Score: 0.083)

9774 BCLAF1 BCL2-associated transcription factor 1

72 ACTG2 actin, gamma 2, smooth muscle, enteric

55128 TRIM68 tripartite motif-containing 68

8850 KAT2B K(lysine) acetyltransferase 2B

29903 CCDC106 coiled-coil domain containing 106

5775 PTPN4 protein tyrosine phosphatase, non-receptor type 4 (megakaryocyte)

3189 HNRNPH3 heterogeneous nuclear ribonucleoprotein H3 (2H9)

10524 KAT5 K(lysine) acetyltransferase 5

1937 EEF1G eukaryotic translation elongation factor 1 gamma

7528 YY1 YY1 transcription factor

468 ATF4 activating transcription factor 4 (tax-responsive enhancer element B67)
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Table 4.6 List of genes that participate in HotNet2 subnetworks. The 51 genes of HotNet2 network are mapped to 

the corresponding Entrez Gene IDs and described according to their encoded gene products. Breast cancer-

associated genes are highlighted in red. The 10 common genes of both algorithms are highlighted in a blue 

background 

Entrez Gene ID Gene Symbol Description

SubNetwork 1 (p- value = 0.04)

5243 ABCB1 ATP-binding cassette, sub-family B (MDR/TAP), member 1

10097 ACTR2 ARP2 actin-related protein 2 homolog (yeast)

1058 CENPA centromere protein A

8527 DGKD diacylglycerol kinase, delta 130kDa

1729 DIAPH1 diaphanous homolog 1 (Drosophila)

1730 DIAPH2 diaphanous homolog 2 (Drosophila)

8665 EIF3F eukaryotic translation initiation factor 3, subunit F

10456 HAX1 HCLS1 associated protein X-1

3059 HCLS1 hematopoietic cell-specific Lyn substrate 1

3709 ITPR2 inositol 1,4,5-triphosphate receptor, type 2

9764 KIAA0513 KIAA0513

4599 MX1

myxovirus (influenza virus) resistance 1, interferon-inducible protein p78 

(mouse)

5311 PKD2 polycystic kidney disease 2 (autosomal dominant)

63898 SH2D4A SH2 domain containing 4A

6455 SH3GL1 SH3-domain GRB2-like 1

7137 TNNI3 troponin I type 3 (cardiac)

7220 TRPC1 transient receptor potential cation channel, subfamily C, member 1

23214 XPO6 exportin 6

SubNetwork 2 (p- value =  0.04)

9255 AIMP1 aminoacyl tRNA synthetase complex-interacting multifunctional protein 1

7965 AIMP2 aminoacyl tRNA synthetase complex-interacting multifunctional protein 2

435 ASL argininosuccinate lyase

8880 FUBP1 far upstream element (FUSE) binding protein 1

50628 GEMIN4 gem (nuclear organelle) associated protein 4

3212 HOXB2 homeobox B2

3735 KARS lysyl-tRNA synthetase

4332 MNDA myeloid cell  nuclear differentiation antigen

5859 QARS glutaminyl-tRNA synthetase

5917 RARS arginyl-tRNA synthetase

293 SLC25A6

solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), 

member 6

6632 SNRPD1 small nuclear ribonucleoprotein D1 polypeptide 16kDa

6647 SOD1 superoxide dismutase 1, soluble

51593 SRRT serrate RNA effector molecule homolog (Arabidopsis)

SubNetwork 3 (p- value = 0.04)

347 APOD apolipoprotein D

1191 CLU clusterin

3101 HK3 hexokinase 3 (white cell)

3952 LEP leptin

3953 LEPR leptin receptor

4023 LPL lipoprotein l ipase

64386 MMP25 matrix metallopeptidase 25

5730 PTGDS prostaglandin D2 synthase 21kDa (brain)

5649 RELN reelin

7436 VLDLR very low density l ipoprotein receptor

SubNetwork 4 (p-value = 0.07)

311 ANXA11 annexin A11

310 ANXA7 annexin A7

2026 ENO2 enolase 2 (gamma, neuronal)

3189 HNRNPH3 heterogeneous nuclear ribonucleoprotein H3 (2H9)

3483 IGFALS insulin-like growth factor binding protein, acid labile subunit

10016 PDCD6 programmed cell  death 6

11040 PIM2 pim-2 oncogene

6144 RPL21 ribosomal protein L21

59307 SIGIRR single immunoglobulin and toll-interleukin 1 receptor (TIR) domain
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In particular, we utilized two enrichment analysis systems: (i) The WEB-based GEne SeT 
AnaLysis Toolkit (WebGestalt) [70], which is a software application that enables the 
translation of the identified gene sets into a better comprehension of key biological issues, 
and (ii) The Genes-to-Systems Breast Cancer (G2SBC) Database [71] which is a 
bioinformatics source that collates and integrates gene, transcript and protein data which 
are known from the literature to be associated with alterations in breast cancer cells. 
 
Enrichment analysis, defined as a secondary analysis on large gene sets that derived from 
high-throughput experiments (e.g. microarrays), can provide statistically over-or under-
represented terms which are within a genomic signature of interest giving an insight into 
the underlying biological themes.  
Thus, statistical methods such as hypergeometric distribution and cumulative 
hypergeometric distribution that are used by WebGestalt and G2SBC respectively enable us 
to identify enriched paths in each genomic subnetwork signature and to consider that these 
routes have key functions in our study. 
 

 
Table 4.7 Enriched pathways in HotNet2 subnetworks. Breast cancer-associated genes are highlighted in red. 

Common genes of both algorithms are in italic and bold. The common pathways of both WebGestalt and G2SBC 

enrichment analyses are highlighted in a green background 

Tables 4.6 and 4.7 demonstrate the results of enrichment analysis of genomic subnetwork 
signatures of both algorithmic approaches. Enrichment analysis revealed that a number of 
genes in each subnetwork of both algorithmic approaches participate in significantly 
enriched pathways (<0.05), such as EGF-EGFR Signaling Pathway, Apoptosis, Jak-STAT 
signaling pathway that are well-known cancer-related pathways regarding the “hallmarks of 
cancer” [72,73].  
 
 
 

WebGestalt G2SBC

Phosphatidylinositol signaling system (KEGG) (DGKD ITPR2) [adjP=0.0013] Phosphatidylinositol signaling system (KEGG) (ITPR2 DGKD) [P=3.18E-02]

Pancreatic secretion (KEGG) (TRPC1  ITPR2) [adjP=0.0013]

Calcium signaling pathway (KEGG) (TRPC1  ITPR2) [adjP=0.0031]

Regulation of actin cytoskeleton (KEGG) (DIAPH2 DIAPH1) [adjP=0.0035]

Aminoacyl-tRNA biosynthesis (KEGG) (KARS RARS QARS) [adjP=3.21e-06] Aminoacyl-tRNA biosynthesis (KEGG) (KARS QARS RARS) [P=1.94E-04]

Gene Expression (Reactome) (KARS QARS RARS SNRPD1 AIMP2  AIMP1) 

[P=3.10E-03]

Metabolism of non-coding RNA (Reactome) (SNRPD1 GEMIN4) [P=3.82E-03]

Adipocytokine signaling pathway (KEGG) (LEP LEPR) [adjP=0.0005] Adipocytokine signaling pathway (KEGG) (LEP LEPR) [P=7.94E-03]

Jak-STAT signaling pathway (KEGG) (LEP LEPR) [adjP=0.0015] Jak-STAT signaling pathway (KEGG) (LEP LEPR) [P=3.89E-02]

Cytokine-cytokine receptor interaction (KEGG) (LEP LEPR) [adjP=0.0021]

Neuroactive ligand-receptor interaction (KEGG) (LEP LEPR) [adjP=0.0021]

Metabolic pathways (KEGG) (HK3 PTGDS) [adjP=0.0268]

AMPK signaling (Wiki) (LEP LEPR) [adjP=0.0003]

Leptin signaling pathway (Wiki) (LEP LEPR) [adjP=0.0003]

Adipogenesis (Wiki) (LPL LEP) [adjP=0.0004]

 Lack of statistical significance for the identified biological pathways  Lack of statistical significance for the identified biological pathways

SubNetwork 1 (p-value = 0.04)

SubNetwork 2 (p-value = 0.04) 

SubNetwork 3 (p-value = 0.04)

SubNetwork 4 (p-value = 0.07)

Enriched Pathways
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Table 4.8 Enriched pathways in Activity Vector subnetworks. Breast cancer-associated genes are highlighted in red. 

Starting nodes are underlined, while common genes of both algorithms are in italic and bold. The common pathways 

of both WebGestalt and G2SBC enrichment analyses are highlighted in a green background 

Considering the subnetworks of each algorithm, both WebGestalt and G2SBC enrichment 
analyses yielded significant pathways and some paths are in convergence among them 
(Tables 4.6, 4.7). This is expected, given that the G2SBC is a specific source with breast 
cancer annotations. This specificity can also explain the fact that some pathways identified 

WebGestalt G2SBC

Regulation of toll-l ike receptor signaling pathway (Wiki) (USP7 MAPK13) 

[adjP=0.0004]  Lack of statistical significance for the identified biological pathways

RIG-I-l ike receptor signaling pathway (KEGG) (IRF3 ISG15) [adjP=0.0003] RIG-I-l ike receptor signaling pathway (KEGG) (IRF3 ISG15) [P=8.89E-03]

ECM-receptor interaction (KEGG) (ITGA5 SPP1) [adjP=0.0003] ECM-receptor interaction (KEGG) (ITGA5 SPP1) [P=1.23E-02]

Toll-l ike receptor signaling pathway (KEGG/Wiki) (SPP1 IRF3) [adjP=0.0003, 

adjP=0.0006] Toll-l ike receptor signaling pathway (KEGG) (IRF3 SPP1) [P=1.75E-02]

Focal adhesion (KEGG/Wiki) (ITGA5 SPP1) [adjP=0.0009, adjP=0.0008] Integrin cell  surface interactions (Reactome) (ITGA5 SPP1) [P=2.45E-02]

Osteoclast Signaling (Wiki) (SPP1 AIMP2 ) [adjP=3.30e-05]

Regulation of toll-l ike receptor signaling pathway (Wiki)  (SPP1 IRF3) 

[adjP=0.0008]

Endocytosis (KEGG) (PDCD6IP ADRB2 SMURF2 NEDD4) [adjP=4.40e-07] Endocytosis (KEGG) (ADRB2 NEDD4 PDCD6IP SMURF2) [P=8.44E-04]

Ubiquitin mediated proteolysis (KEGG) (SMURF2 NEDD4) [adjP=0.0006] Ubiquitin mediated proteolysis (KEGG) (NEDD4 SMURF2) [P=4.44E-02]

Neural Crest Differentiation (Wiki) (HDAC5 FGFR1) [adjP=0.0005]

Melanogenesis (KEGG) (CALM2 LEF1) [adjP=0.0003] Telomere Maintenance (Reactome) (H2AFX HIST2H2BE) [P=6.92E-03]

Pathways in cancer (KEGG) (LEF1 E2F1) [adjP=0.0020] Melanogenesis (KEGG) (CALM2 LEF1) [P=1.14E-02]

miRNAs involved in DDR (Wiki) (H2AFX E2F1) [adjP=2.95e-05]

miRNA regulation of DNA Damage Response (H2AFX E2F1) [adjP=0.0002]

DNA damage response (Wiki) (H2AFX E2F1) [adjP=0.0002]

Adipogenesis (Wiki) (GATA2 E2F1) [adjP=0.0004]

EGF-EGFR Signaling Pathway (Wiki) (CFL1 E2F1) [adjP=0.0006]

Regulation of toll-l ike receptor signaling pathway (Wiki) (SIGIRR  IRAK1 PELI2) 

[adjP=5.26e-06]  Lack of statistical significance for the identified biological pathways

Calcium signaling pathway (KEGG) (TRPC1  EDNRB) [adjP=0.0007] Calcium signaling pathway (KEGG) (EDNRB TRPC1 ) [P=5.01E-02]

Apoptosis (Wiki) (BAK1 MCL1 PMAIP1) [adjP=1.56e-06] Apoptosis (Reactome) (BAK1 PMAIP1) [P=4.53E-02]

DNA damage response (only ATM dependent) (BAK1 PMAIP1) [adjP=0.0002]

RNA transport (KEGG) (EIF3F  EEF1A1) [adjP=0.0004] Metabolism of proteins (Reactome) (EEF1A1 RPS7 EIF3F ) [P=1.74E-02]

Translation Factors (Wiki) (EIF3F  EEF1A1) [adjP=4.91e-05]

3' -UTR-mediated translational regulation (Reactome) (RPS7 EIF3F ) 

[P=3.18E-02]

Cell cycle (KEGG/Wiki) (YWHAQ CDC45L MCM3) [adjP=1.00e-05, adjP=1.05e-05] Cell cycle (KEGG) (MCM3 CDC45L YWHAQ) [P=3.36E-03]

Insulin signaling pathway (KEGG) (PTPN1 SREBF1) [adjP=0.0007] Insulin signaling pathway (KEGG) (PTPN1 SREBF1) [P=4.38E-02]

SIDS Susceptibil ity Pathways (Wiki) (YWHAQ NFYA HIF1A GATA2) [adjP=1.70e-06] DNA Replication (Reactome) (MCM3 CDC45L) [P=4.56E-02]

Adipogenesis (Wiki) (HIF1A GATA2 SREBF1) [adjP=1.15e-05]

DNA Replication (Wiki) (CDC45L MCM3) [adjP=9.11e-05]

SREBP signalling (Wiki) (NFYA SREBF1) [adjP=0.0002]

G1 to S cell  cycle control (Wiki) (CDC45L MCM3) [adjP=0.0002]

Androgen receptor signaling pathway (Wiki) (10524 8850) [adjP=0.0002]  Lack of statistical significance for the identified biological pathways

SubNetwork 5 (Module Score: 0.086)

Enriched Pathways

SubNetwork 1 (Module Score: 0.091)

SubNetwork 2 (Module Score: 0.09)

SubNetwork 3 (Module Score: 0.081)

SubNetwork 4 (Module Score: 0.1)

SubNetwork 6 (Module Score: 0.086)

SubNetwork 7 (Module Score: 0.087)

SubNetwork 8 (Module Score: 0.084)

SubNetwork 9 (Module Score: 0.073)

SubNetwork 10 (Module Score: 0.083)
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by G2SBC enrichment analysis did not achieve statistical significance in Activity Vector 
subnetworks 1, 5 and 10 (Table 4.7). 
It is interesting to note that the subnetwork 4 that derived from HotNet2 algorithm lacks of 
both statistical and biological significance in terms of network structure and biological 
entity respectively (Table 4.6). 
 
Considering the subnetworks of both algorithms, enrichment analyses by WebGestalt and 
G2SBC revealed that only two pathways are in convergence between Activity Vector and 
HotNet2 algorithms (Tables 4.6, 4.7). The common enriched pathways are the “Calcium 
signaling pathway” and “Adipogenesis” paths with implications in breast cancer pathology 
[74,75]. The intracellular Ca2+ is known as one of the vital signalings in regulation of several 
cellular functions, and its homeostasis dysregulation is recognized as one of the driving 
forces in proliferation, migration, invasion, and metastasis [74]. Adipogenesis is “the 
process during which fibroblast like preadipocytes developed into mature adipocytes”, 
which in turn are “non-trivial, dynamic partners of breast cancer cells”. It is reported that 
adipocytes located close to invasive cancer cells are fundamental for breast tumor 
development and progression [75]. Possibly, the essential roles of “Adipogenesis” and 
“Calcium signaling pathway” in the development and expression of breast cancer 
phenotype justify their appearance in both Activity Vector and HotNet2 subnetworks. 
 
Moreover, we found that a large number of the identified pathways of both algorithms 
such as Focal adhesion, Insulin signaling pathway, Toll-like receptor signaling, Pathways in 
cancer, RIG-I-like receptor signaling pathway, Adipocytokine signaling pathway, Calcium 
signaling pathway and Cell cycle, reported as “risk pathways” in a recent breast cancer 
study [76] where a combined meta-analysis on multi-omics breast cancer data (gene 
expression, DNA methylation, DNA copy number and somatic mutation) was conducted. 
 
Finally, performing an enrichment analysis on the whole genomic network signature of each 
algorithm, we found a large number of significant pathways, additionally to the 
aforementioned pathways. In order to achieve an overview of these results, we annotated 
specific pathway terms with generic pathway terms, as shown in Table 4.8, which also 
highlight the biological significance of the discovered pathways in relation to breast cancer 
[73]. 
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Table 4.9 Comparison of both Activity Vector and HotNet2 resulting networks and subnetworks according to their 

enrichment analysis 

Enrichment Analyses on the SVM and RVM genomic signatures of Activity Vector algorithm 
gave similar results by discovering biologically significant pathways. SVM was slight 
superior to RVM (data not shown). The appearance of a minor number (one) of common 
genes in SVM and RVM signatures explains further the crucial role of the interconnected 
genes in both Activity Vector and HotNet2 genomic subnetwork signatures and the central 
role of subnetwork/network structure as prediction model. 
 

Activity Vector HotNet2 

10  SubNetworks  (Module Scores: 0.07-0.1) 4 SubNetworks (P-values: 0.04 & 0.07) 

Activity Vector Network includes a list of 89 Genes HotNet2 Network includes a list of 51 Genes 

31 genes (34.83%) are associated with breast cancer  20 genes (39.21%) are associated with breast cancer 

Distinct Activity Vector Pathways are involved in  different 

processes: Folding, sorting and degradation, Cell growth 

and death, Development, Immune system,  Nervous 

system,  Circulatory system, Cancers                                                                  

Distinct HotNet2 Pathways are involved in different 

processes: Metabolism,  Lipid metabolism,  Metabolism of 

nucleotides 

Networks and SubNetworks Comparison 

Enriched Pathways

Common Pathways in Networks: RNA transport, Calcium signaling pathway, Focal adhesion, Regulation of 

actincytoskeleton, Adipogenesis, AGE-RAGE pathway                                                                                                                                                                                                            

Common Pathways in SubNetworks: Calcium signaling pathway, Adipogenesis  

Distinct Pathways in SubNetworks and Networks of both algorithms are involved in same processes:                                                                    

Gene Expression, Signal transduction, Signaling molecules and interaction, Cellular community, Cell motility, Digestive 

system,  Endocrine system                                                   
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5       

Conclusion 
 
 The aim of this thesis was to conclude in a significant genomic signature, to examine the 
pathways that are involved in cancer development or give rise to metastasis and to 
compare the results from both algorithms HotNet2 and Activity Vector, implemented. We 
presented an approach for identifying significant gene interaction networks and accurate 
genomic signatures by implementing two different methodological approaches, HotNet2 
and Activity Vector algorithm.  The proposed methodology is performed on a dataset that is 
composed of two different populations. Particularly, the original dataset consists of 529 
samples related to breast cancer, 104 of which correspond to patients that are 
healthy/control, while 425 constitute the cancer samples, in combination with a large 
network of known interactions, MultiNet. The dataset was preprocessed through an 
univariate filter method Significance Analysis of Microarrays (SAM). First we examined the 
data by applying the HotNet2 algorithm and resulted in 4 significant subnetworks that 
implicate 51 genomic signatures. Furthermore, using the same criteria we implemented the 
Activity Vector algorithm which concluded, after a different approach from HotNet2, in 332 
real subnetworks/markers. From the resulted subnetworks we examined the possibility of 
finding common pathways or genes. In particular, we combined the resulting subnetworks 
from both methodological approaches and we came across 10 common genes. Taking into 
account these findings we decided to examine and evaluate the Activity Vector networks 
that include these 10 genomic signatures and their interaction to other genes, due to the 
fact that we have a larger amount of subnetworks (332 modules), thus the opportunity to 
examine many more interactions. This way, we concluded in 89 significant genes. 
Moreover, we are interested in the generalization ability of the observed results. The ability 
of how the results of a statistical analysis will generalize to an independent data set was 
evaluated as well as their biological significance. Finally, a good generalization performance 
is achieved when a genomic signature is able to predict the label of unseen samples 
correctly. In that manner, a new independent dataset is used and the procedure of 10 – 
fold cross validation is repeated. The observed mean classification accuracy was 
approximately 93% for 10 mean genes selected, performing very good generalization 
performance when it comes to the classification of unknown samples. We decided to focus 
on the original dataset of the 10 mutual genes as they constitute a good group of seeds in 
order to start an inquiry process with the group of 89 genes that derived from these 10 
genes, and undergone evaluation through two different classification methods SVM, a 
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deterministic algorithm as well as RVM a probabilistic method. In addition, we found that 
single genes might not be biologically important and we consider that subnetwork 
evolution triggers groups of genes with biological implication. 

 It is ought to be mentioned that as in any computational approach, our findings are limited 

by the quality and quantity of input data. The methodology could further be applied after 

including additional samples, and better interaction networks. 

As far as the two methodological approaches implemented are concerned, HotNet2 

algorithm is an interactive open source algorithm suitable for other applications, both 

biological and non-biological. In particular, genome-wide association studies (GWAS) and 

other studies of genetic diseases face an analogous problem of identification of 

combinations of genetic variants with a statistically significant association to a phenotype. 

With an appropriate gene score, the HotNet2 algorithm can be applied to such data as we 

achieved in this study. On the other hand, Activity Vector algorithm is implemented and 

accessed through a Cytoscape plugin, PinnacleZ that gives us no access to the code but 

enables us to select different thresholds to be applied on the statistical tests as well as the 

ability to choose between t-test and mutual information test, to be performed on our data. 

Finally, both algorithms, especially HotNet2, demand large computational time.  

 
Overall, after and the biological evaluation our analyses result in the following important 
issues: 
 

• We identify 14 significant subnetworks that include: 
▫  well-known cancer-related pathways (Toll-like receptor signaling pathway, 

EGF-EGFR Signaling Pathway, Calcium signaling pathway) considering the 
“hallmarks of cancer” as well as  

▫ pathways with recently or less recognized roles in breast cancer including 
Leptin signaling pathway, and RIG-I-like receptor respectively. 

• Significantly enriched pathways (p<0.05) indicate: 
▫ high internal consistency among subnetwork genes (as groups) of each 

algorithmic approach and  
▫ relatively low consistency between the resulted HotNet and Activity Vector 

subnetworks themselves.  
• HotNet and Activity Vector subnetworks converge at a higher information level; 

when a specific pathway term is annotated with a generic pathway term (Signal 
transduction, Cell motility). 

• The existence of a high number of cancer-associated genes in enriched pathways and 
in subnetworks highlights their major roles in interconnection of genes within the 
breast cancer-specific subnetworks, and in turn demonstrates the great utility of the 
subnetwork structure. 
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• Our network analysis provides a blueprint to explore new therapeutic opportunities 
across subnetworks in order to meet the requirements for flexible or advanced 
pathway identification and diagnostic prediction through classification.  

• The extracted signatures composed of “89 significant genes” and “51 significant 
genes” have both discriminative and predictive properties and can play a 
classification role in discriminating healthy controls from breast cancer patients. 

• The subnetwork structure, as a disease model, aids the study of biological 
interactions and facilitates clinical interventions.  

• Considering many networks organization structures reveals significant common 
procedures but can also be used in a complementary way as to enrich the pathology 
aetiology and/or progression. 
 

 Our analysis verifies that the search of common genes within multiple signatures might 
ignore important similarities at a higher (pathway) level. Common pathways instead of 
genes reveal a wealth of similar procedures indicated by groups of genes in each signature 
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6  
Implementation aspects 

Finally we ought to mention the hardware/software used for the conduction of this thesis. 

In order to be able to run HotNet2 algorithm our system was: 

Hardware: 

 SUPERCASE PC CHASSIS SKP 378, MIDI TOWER 

 SUPERCASE PSU 500W, SERIES FORCE, 12CM FA, power Supply 

 MSI MB B85M-G43, SOCKET INTEL LGA1150, CS, motherboard 

 CORSAIR RAM DIMM 8GB CMV8GX3M1A1600C11, D, Ram 

We upgraded the Ram memory due to the requirements of the system to 2x8GB 

 INTEL CPU CORE i5 4590, 4C/4T, 3.30GHz, C, CPU 

 CORSAIR SSD 2.5" 120GB CSSD-F120GBLS, MLC, Disk ssd 

 TOSHIBA HDD 3.5"2TB, disk 2tb 

Software: 

 Linux/Unix 

 Python 2.7 

 NumPy 1.6.2 

 SciPy 0.10.1 

 NetworkX 1.7 

 h5py 2.4.0 

 Fortran or C compiler (optional but recommended for performance) 

HotNet2 will likely work with additional versions of Python, h5py, NetworkX, NumPy, and 

SciPy, but alternative configurations has not been tested. 

For the implementation of the Activity Vector algorithm our system was: 

Software: 

 Cytoscape_v2.6.3 

 Cytoscape plugin PinnacleZ 

http://python.org/
http://www.numpy.org/
http://www.scipy.org/
http://networkx.github.io/
http://www.h5py.org/
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