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Abstract 

The gasoline range and saturate fractions compositional data of oils carry significant 
geochemical information. In this master thesis we investigate the ability of 
chemometric methods in revealing of the oil families for the Devonian petroleum 
systems. The multivariate statistical methods were applied to the gasoline range and 
saturate fraction data for 146 oil samples from the Western Canada Sedimentary 
Basin. 

Master thesis is organized in four chapters. Chapter 1 focuses on the introduction of 
the geological setting of the sampling area. Chapter 2 covers the principles for the 
methods of dimensionality reduction. The methods employed here are: hierarchical 
clustering, principal component analysis (PCA), kernel principal component analysis 
(KPCA), k-means clustering and hierarchical clustering. In chapter 3 we focus in a 
more detailed examination of geochemical information contained in gasoline and 
saturated fractions and we introduce the characteristics indices for these fractions. 
Finally in chapter 4 we examine four models aiming to separate the oils into families 
and we investigate the performance of each model in family affiliation. For the first 
two models normalized values of original component data for the gasoline and 
saturated fractions were used, while in models 3 and 4 calculated characteristic 
geochemical indices were used. Due to geochemical similarity among oil samples, 
the first two models did not give satisfactory results for oil affiliation. Model 3 gives 
the best results and reveals two distinct families in oil samples and finally model 4 
give results for three different oil families. 
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1. Geological setting 
 

1.1 Devonian Petroleum Systems and Exploration Potential 
The Devonian is a geologic period of the Paleozoic. This era starts at the end of the 
Silurian period, about 420 million year ago and it ends with the beginning of the 
Carboniferous period, about 359 million year ago. Furthermore the Devonian period 
is divided further in three subdivisions, the Early, Middle and Late. For the needs of 
master thesis we focus on the formation rocks that corresponding in middle 
Devonian geological period.  

In Southern Alberta and especially in the Devonian formations exist numerous 
porous and permeable reservoirs, but a few major hydrocarbon traps have revealed 
and drilling activities are very limited. Previous studies have shown that source rock 
exist and hydrocarbons have been generated in the Nisku, Winnipegosis, and 
Exshaw/Lower Banff in Southern Alberta. There is also associated hydrocarbon 
production in the Lower Banff to Big Valley, in the Nisku and in the Winnipegosis as it 
is shown in figure 1.2.  

The previous work of Dr. Andy Mort of the Geological Survey of Canada (GSC) on 
source rock evaluation of selected samples from cores in the Beaverhill Lake and 
Winnipegosis shows the presence of oil prone source rocks within these intervals as 
referred in [Mort et al 2015]. The evaluation of oils in the Leduc, Nisku, Beaverhill 
Lake and Winnipegosis reveals an evaporite related source. 

Oil is being produced from a dolomite in the Winnipegosis formation in the Rich area 
immediately to the south of the Big Valey Stettler Leduc platform. The Winnipegosis 
depositional environment in this area was in the evaporitic interior of a carbonate 
platform. The dolomite is lied above the salt of the Prairie Evaporite. The oil that had 
trapped in the reservoir is heavy with gravity of 25 API, and the geochemical analysis 
indicates an evaporitic algal source, which should be common in a platform interior. 
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In figure 1.1 the table of lithostratigraphic units for the Devonian subsurface of the 
Western Canada Sedimentary Basin is presented. 

 
Figure 1.1: Table for lithostratigraphic units for the Devonian formations of the Western Canada 
Sedimentary Basin (source: Fowler et al 2001). 

1.2 Source rock formations in Western Canada 
In the following map (Figure 1.2) the distribution of Elk Point Group basinal source 
rocks and the major depositional facies and paleoenvironments in Western Canada 
Sedimentary Basin are shown. 

 

Figure 1.2: The distribution of source rocks and the major depositional facies in Western Canada 
Sedimentary Basin (source: Fowler et al 2001). 
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At this point of our analysis, we will briefly describe the major formation systems 
that existing in the area under study. 

Elk Point System 

In the Elk Point System clastic dominated shoreline to offshore carbonate platform 
capped with evaporates exist. There is one major oil pool at the location Rich with 
Original Oil in Place (OOIP) 2.6 mmbbl and 23 API gravity. Source material is mainly 
basal algal laminites. 

Beaverhill Lake System 

In the Southeastern Alberta, the group of Beaverhill Lake was deposited as 
prograding series of carbonate ramps of the North West carbonate ramps in the 
Souris River Platform. The ramp complex is time equivalent to the alluvial and 
backstopping Swan hills platform, which were developed on the West Alberta Ridge 
to the north and west. The Slave Point equivalent at the base of the system had a 
salt basin deposited that is surrounded by evaporitic platform interior sediments. At 
this point, the geochemical data from previous studies indicates also an evaporitic 
source. There is no production from the Beaverhill Lake although dolomitized 
reservoirs are present and there are many indications of source rocks.  

Leduc System 

The depositional pattern of the Leduc formation is the following:  
The margins of the carbonate platform are placed in direction to north and west. The 
margins have well developed dolomite porosity. Mainly peritidal carbonates and 
evaporates consist the interior of the platform. Vertical seals are present but lateral 
seal would have to due to structural high adjacent to a fault as mention in [Mort et al 
2015].  

Furthermore Leduc has oil and gas production and this production of oil and gas 
reveals, challenge in trapping because there are internal barriers to flow and 
structural and diagenetic traps. 

Nisku System 

The Nisku system is the main proven productive formation in Southern Alberta. An 
early Nisku prograding carbonate platform is present in the South with a biogenic 
carbonate accumulations barrier and a platform interior evaporitic basin. These 
evaporitic dolomites have variable thickness due to the occurrence of salt 
dissolution, which results in structural closures, charged with light oil. In the EnChant 
area over forty million barrels have been produced from Nisku/Arcs dolomites. 
Geochemical data indicates that Nisku is most likely charged from self-sourcing 
evaporate related algal laminates. 
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Wabamun System 

At the area of the Wabamun Stettler the depositional environment consist of tight 
evaporates and dolomites, deposited in a platform inner of evaporate basin. The 
overlying Upper Big Valley Wabamun member is a limy limestone, but it become 
dolomitized in many areas and finally is producing oil and gas from horizontal wells. 
The probable source is the overlying Exshaw source rork, the Alberta Bakken, made 
up of Big Valley dolomites, Bakken dolomitic siltstones and, the most productive 
member, the Lodgepole lower Banff sandstone to siltstone. 

The structural history of Southern Alberta is very complex. It was the result of the 
development of a horst and graben system. The existence of the Sweet Grass arch 
results in the dip changing from down to the west-southwest to being down to the 
northwest as referred in [Mort et al 2015]. As a result many of the fault blocks 
remain open to the south. Conventional traps could also occur due to porosity pinch 
out, within the carbonate platforms. 

In addition there is potential for unconventional regional hydrocarbon traps that 
were developed in porous, but low permeable dolomites within the evaporitic 
interiors of the carbonate platforms. The dolomites could be charged from inter-
bedded evaporitic algal laminates. In order to develop these reservoirs, it is 
necessary to use horizontal drilling and completion techniques. 

 

1.3 Summary of previous studies on family affiliation of oils 
The main phase of oil generation and migration from Devonian Strata took place 
during the late Cretaceous – Early Tertiary for the majority of the Western Canada 
areas. Briefly the source formations have the following characteristics: 

Keg River formation: In La Crete Sub-basin 

In this sub-basin there are Upper and lower Keg River members with 1-5 meters 
thickness. The Keg River formation is considered as an excellent potential source 
rock. The organic matter is regarded as type II to type II-I, with the value of Hydrogen 
Index (HI) in the range of 500-600. It is assumed that has low level of maturity, with 
mainly algal bloom organic facies. Keg River kerogen samples behaves as immature 
to marginally mature with most Tmax values in the range of 420-430 oC as referred in 
[Flower et al 2001]. 

In Upper and Lower Keg River members the available studies reveal different 
biomarkers characteristics. The Saturated Fraction Gas Chromatogram (SFGCs) of the 
lower members contains: lower molecular weight n-alkanes with low 
pristane/phytane ratios. In Upper members: higher amounts of C20+ n-alkanes are 
present. 
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Beaverhill Lake 

The source rock is mainly carbonate and especially in southern Alberta appears as a 
good enough hydrocarbon source rock. The organic matter is categorized as type II, 
with maturity ranges from 0.55% to 0.65% RoVE.  

Slave Point Formation 

The organic matter of Slave Point formation is kerogen type II/III with values of 
Hydrogen Index in the range of 170-390. The basic depositional environment is 
lagoonal. The Nisku oils have higher maturity compared to Leduc oils. The thickness 
of the Lower Nisku formation is 1-7 meters and there are mainly in basinal platform 
areas. The depositions were mainly open-marine and classified as type II organic 
matter with Hydrogen Index (HI) values in the range of 400-600 in East-Central 
Alberta and these oils are considered as  immature. Furthermore, the depositional 
environment was marine-derived and especially unicellular Prasinophyte alginites. 
The SFGs are dominated by C15-C21 normal alkanes. The Pristane to Phytane ratios 
vary between 0.73-1.73. The Nisku formation is more mature in the area of Cynthia 
Shale Basin with 1.0-1.1 % RoVE. 

Carmose formation 

For the Carmose formation, previous studies identify four possible source units with 
the following characteristics: 

Unit 1, potential source rock is of type I organic matter with high Hydrogen Index 
values. 

Unit 2, potential source rock is 1-2.3 m in gross thickness and contains type I organic 
matter. 

Unit 3, potential source rock exists in the middle of Nisku formation with 3-4 m 
thickness and also contains type I organic matter. 

Finally the unit 4 potential source rock contains an isolated type I organic matter of 
terrestrial-influenced organic facies B and C [2]. In addition to, the maturity of 
organic matter varies from immature in Eastern region to late oil window. 

Carmose/Nisku formation:  

For the Carmose/Nisku formation members the Saturated Fraction Gas 
Chromatograms are dominated by lower molecular weight n-alkanes,. The Pristane 
to Phytane ratio varies between 0.6-1.20 (for the most samples in previous studies 
the value of this index is less than one (1)). In addition to, similar results in maturity 
levels found between Carmose Member and Nisku formation. 
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Birdbear Formation 

The Birdbear formation is a very thin (usually a few millimeters) potential source 
rock, with organic matter of Type I and III. The values of Hydrogen Index are in the 
range of 138-802 mg HC/g TOC, which is very similar to the Carmose member. The 
pattern of depositional environment ranges from water lagoonal to tidal flat. 

Wabanum group  

Wabanum group is reported in very few reports, one of these is [Flower et al 2001]. 
In the area of British Columbia a Basinal laminate facies exist at the base of 
Wabanum.  

In table 1.1 a brief comparison among the different source rock formations are 
presented: 

Formation Organic 
matter 

HI value 
and Tmax 

Additional Information 

Keg River Type II 
to Type 
II-I 

500-600  
420-430 oC 

Upper and Lower Keg River members. In 
lower molecular weight n-alkanes with low 
pristine/phytane ratios. In Upper members: 
higher amounts of C20+ n-alkanes. 

Beaverhill 
Lake 

Type II high HI 
values 

Source rock is carbonate. Maturity ranges 
~0.55% to 0.65% RoVE. Immature 

Slave Point Type 
II/III 

170-390 HI 
value 

Lagoonal type settings 
 

Nisku Type II 400-600 HI 
value 

SFGs are dominated by C15-C21 n-alkanes. 
Marine-derived, unicellular Prasinophyte 
alginites. Relatively low thermal maturity. 

Leduc   Immature in comparison with Nisku.  
Carmose 
 

Type I HI high Units 1, 2, 3 and 4 potential source rocks. 
Unit 4 is isolated and has terrestrial-
influenced organic facies. Maturity of 
organic matter varies from immature 
(Eastern region) to late oil window. 

Carmose / 
Nisku 

  SFGC dominated by lower molecular weight 
n-alkanes, low amount of C17 compounds. 

Birdbear Type I 
and III 

138-802 Very similar to the Carmose. Few 
millimeters potential source rock. Organic 
facies C and E. Water lagoonal to tidal flat 
paleoenviroments. 

Wabaunum   Thermal over-mature difficult to access its 
original hydrocarbon potential. 

Table 1.1: Comparison for the different source rock formations 
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2. Chemometric Exploratory data analysis 
 

2.1 Dimensionality reduction 
The term Dimensionality reduction is used for methods aiming to find a suitable 
lower dimensional space in order to represent the original multivariate data.  

The exploration of low-dimensional data is easier as the discovery of structure or 
patterns and the creation and checking of statistical hypotheses is more convenient. 
Dimension reduction enables the visualization of the data in an appropriate form 
with the use of the scatter plots, especially if dimensionality of the original data is 
reduced to 2-D or 3-D as mention in [Martinez 2011]. 

One common method for dimensionality reduction could be the process of selection 
subsets of the variables in order to process and analyze them in groups. However, in 
some cases, with this approach we could eliminate a lot of useful information. An 
alternative of this first approach could be the creation of new variables that are 
functions (e.g., linear or nonlinear combinations) of the original variables. 
Dimensionality reduction methods lead to a mapping from the higher dimensional 
space to a lower-dimensional one, while we keep all the information of all available 
variables. In general, this mapping can be linear or nonlinear. 

 

2.2 Principal Component Analysis – PCA  
The main purpose and goal of principal component analysis (PCA) is the attempt to 
reduce the dimensionality from p to d, where d < p, while at the same time we try to 
explain as much as the variation of the original data set as possible. With the PCA 
technique, we transform the original data to a new set of coordinates or variables. 
These coordinates or variables can be a linear combination of the original variables. 
In addition, the observations that are transformed in the new principal component 
space are uncorrelated. The aim of this method is to achieve better information and 
understanding of the original data by looking at the observations in the new space. 

The PCA methodology can be briefly presented as follows: We start with centered 

data matrix CX  with dimensions n X p. This matrix contains the observations that 

are centered about the mean.  With other words, the sample mean has been 
subtracted from each row.  Thus we form the sample covariance matrix S as 

1
1n

= ⋅ ⋅
−

T
C CS X X  , where the superscript T denotes the matrix transpose. The jk-th 

element of the sample covariance matrix S is given by 

1

1 ( ) ( ),  , 1, 2,..., ,
1

n

jk ij j ik k
i

S x x x x j k p
n =

= ⋅ − ⋅ − =
− ∑   
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with  

1

1 .
n

j ij
i

x x
n =

= ⋅∑   

The following step is the calculation of the eigenvalues and eigenvectors of the S 

matrix, the eigenvalues can be found by solving the following equation for each jl ,  

pj ,...,2,1=  

| |   0S l− ⋅ =I (Equation 2.1), where I  is an identity matrix with dimensions p x p 
and | |•  denotes the determinant. The result of equation 2.1 is to produce a 
polynomial equation of degree p. The eigenvectors are obtained if we solve the 

following set of equations for ja   

( 0   1, 2,..., ,jl ) j p− ⋅ ⋅ = =jS I a   

subject to the condition that all the set of eigenvectors is orthogonal. The previous is 
equal to that the magnitude of each eigenvector is equal to one, and they are 
orthogonal to each other: 

1

0,    , 1, 2,...,   .for i j p and i j

⋅ =

⋅ = = ≠

T
i i

T
j i

a a

a a
  

At this point, we must recall from the matrix algebra the following statement: any 
square, symmetric and nonsingular matrix could be transformed to a diagonal matrix 
using the following transformation: 

= ⋅ ⋅TL A S A , where the columns of A contain the eigenvectors of matrix S, and the 
L matrix is a diagonal matrix which has the eigenvalues along the diagonal. 

The final step in the Principal Component Analysis (PCA) is to use the eigenvectors of 
S in order to obtain new variables called principal components (PCs). The Principal 
Components (PCs) are obtained by solving the following equation: 

( )  1, 2,..., ,jz j p= ⋅ − =T
ja x x  (Equation 2.2) where the elements of a vector provide 

the weights or the old variables coefficients in the new PC coordinate space. 

We transform the observations of the initial data to the PC coordinate system with 
the following equation: 

= ⋅CZ X A  (Equation 2.3)  

The principal component scores are in the matrix Z. An important characteristic of 
these PC scores is that they have zero mean and are uncorrelated. We could also use 
a different transformation of the original observations in X. In this case the PC scores 
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will have mean z . But we are able to invert this transformation in order to get an 
expression relating the initial or original variables as a function of the Principal 
Components (PCs), which is given by the following equation: 

.x x A z= + ⋅   

To sum up, Principal Components (PCs) are the transformed variables and Principal 
Components (PCs) scores are the individual transformed data values. 

The dimensionality that has the principal component scores in equation (2.3) is also 
p, so no dimensionality reduction has been done. But from the linear algebra we 
know that, the sum of the variances of all original variables is equal to the 
summation of the eigenvalues. On the other hand, the general idea of dimensionality 
reduction with the technique of PCA is the following. We could include in our 
analysis only the PCs with the highest eigenvalues, thus we explained the highest 
amount of variation with the fewest dimensions or PC variables.  

Thus we can reduce the dimensionality to d with the following equation: 

= ⋅d C dZ X A  

where dA  contains the first d eigenvectors or columns of A. dZ  is an n x d matrix 

because now each observation has only d elements and dA  is a p x d matrix. 

To make a conclusion, the main purpose of principal component analysis (PCA) is to 
analyze the data in order to identify patterns that represent the data “well”. The 
principal components can be seen as new axes of the dataset that maximize the 
variance along those axes. Theses axes are not anything more, but the 
eigenvectors of the covariance matrix. In other words, the target of PCA is to find 
the axes with maximum variances along which the data is most spread. 

2.3 Kernel Principal Component Analysis - KPCA 
The Kernel Principal Component Analysis is a powerful technique for extracting 
structure from data and extends conventional principal component analysis (PCA) to 
a high dimensional feature space. With KPCA we are able to extract up to N, where N 
is the number of samples, nonlinear principal components without expensive 
computation.  

Furthermore the conventional PCA extracts principal components in the input space, 
while the extension of KPCA is the extraction of principal components of variables 
(or features) that are nonlinearly related to the input variables, the nonlinear 
principal components.  

The computation procedure of KPCA is the following: 
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The first step is to project samples from the input space to a high dimensional 
feature space 

 ( ) ,  d Dx R x R D d∈ →Φ ∈ >>   

In kernel PCA an arbitrary Φ function is selected. This function is never calculated 
explicitly, thus we have the possibility to use high-dimensional Φ’s because we have 
never evaluate in that space the data. 

The widely used kernels are the linear, polynomial and Gaussian kernel that given by: 

2

2

:  ( , )

:  ( , ) (1 )

| x |
:  ( , ) exp(

2

j i j

P
j i j

i j
j

linear K

polynomial K

x
Gaussian K

σ

= ⋅

= + ⋅

− −
= −

⋅

i

i

i

x x x x

x x x x

x x

   

We also assume that the data has been centered, thus 
1

( ) 0,
N

i
i

x
=

Φ =∑  the covariance 

matrix in DR  is 

1

1 ( ) ( )
N

T
i i

i
C x x

N =

= ⋅ Φ ⋅Φ∑  (Equation 2.4) and the eigenvalue problem becomes 

C λ⋅ = ⋅V V   

All solutions V lie in the span of 1 ( ),...,  ( )Nx xΦ Φ , 

1
( )

N

j j
j

V a x
=

= ⋅Φ∑  (Equation 2.5) and 

( ( ) ) ) ,  1,..., .k kx C ( (x k k NλΦ ⋅ ⋅ ⋅ Φ ⋅ ∀ =V = V  (Equation 2.6) 

Combining equations (2.4), (2.5) and (2.6), we take 

1 1 1

1 ( ( ) ( )) ( ( ) ( )) ( ( ) ( ))  1,..., .
N N N

j k i i j j k j
j i j

a x x x x a x x k N
N

λ
= = =

⋅ ⋅ Φ ⋅ Φ ⋅ Φ ⋅Φ = ⋅ ⋅ Φ ⋅Φ ∀ =∑ ∑ ∑  

(Equation 2.7) 

At this point if we define an N x N matrix K by 

(  ( )  ( )).ij i jK x x= Φ ⋅Φ   , the 2.7 equation can be written in matrix form 

2K N Kα λ α⋅ = ⋅ ⋅ ⋅  (Equation 2.8), where α  is a column vector of 1,..., .Nα α   

Thus we solve the following eigenvalue problem to obtain solution for (2.8) 
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K Nα λ α⋅ = ⋅ ⋅   

The next step is to let 1 2 ... Nλ λ λ≤ ≤ ≤  denote the eigenvalues of K, and 1,..., Nα α  

be the corresponding set of eigenvectors with pλ  be the first nonzero eigenvalue. 

We can normalize ,...,p Nα α  by requiring the following relationship: 

1,  ,..., .k k k p N⋅ = ∀ =V V   

Finally, we compute the projection onto   ( ,..., ).k DR k p N∈ =V  Let x be a test 

sample with an image  ( ) .Dx RΦ ∈   

1
( ) ( ( ) ( ))

N
k k

j j
j

V x x xα
=

⋅Φ = ⋅ Φ ⋅Φ∑   

 

2.4 Unsupervised Clustering 
Clustering is the technique of organizing a set of data into groups. This organization 
is based on the fact that observations that are within a group are more similar to 
each other than the observations belonging to different clusters. We can assume 
that the data represent features that allow the investigator to distinguish or 
separate group from the others. A fundamental point in the process is to choose a 
way for representation of the objects to be clustered.  

Many methods are available in order to group or cluster data and many 
representation schemes could be used. In the literature the clustering is also known 
as unsupervised learning. In order to understand clustering, we will compare it to 
the discriminant analysis or supervised learning. In supervised learning the set of 
observations has a class label associated with it. Thus for data the true and real 
number of groups is known, as well as the number of members that belongs to every 
actual group of data. The next step is to use the data with the class labels in order to 
create a classifier. Therefore a new, unlabeled observation; may be classified using 
this function. 

In contrast, in clustering (or unsupervised learning), we do not have class labels for 
the observations. Furthermore there is no a priori knowledge about how many 
groups exist within the dataset. 

The basic steps of clustering are the following: 

1. Pattern representation: This initial step includes the preparation and initial work 
in our dataset, such as making a decision of the number of clusters to look for and 
picking what measurements to use in the analysis. This process is known as feature 
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selection. After this we must determine how many observations we use for the 
process, and choose the appropriate scaling or other transformations of the data. 
This step is known as feature extraction.  

2. Pattern proximity measure: The majority of clustering methods require a measure 
of distance or proximity between observations and between clusters. As it is 
expected, different measure of distances result in different partitions of the data. 

3. Grouping: The definition of the grouping process is the partitioning of the data 
into clusters. The grouping can be hard, which means that an observation only 
belongs to a group or not. On the other hand can be fuzzy, in where each data point 
has a degree of membership in each of the clusters. It can also be hierarchical in 
which we have nested sequence of partitions. 

4. Data abstraction: This step represents an optional process in order to obtain a 
simple and compact representation of the partitions. One possible solution for this 
process could be a description of each cluster in words (e.g., one cluster represents 
oils, while another corresponds to gases). It can also be a quantitative description 
such as a representative pattern, e.g., the centroid of the cluster. 

5. Cluster Assessment: This process involves the examination whether the data 
contains any clusters. However, in the majority of cases it means an examination of 
the algorithm result in order to determine whether or not the clusters possess a 
physical meaning. 

 

2.4.1 Hierarchical Clustering 
The hierarchical method is one of the most common approaches in clustering data. 
This method is very important in the areas of data mining and gene expression 
analysis. In hierarchical clustering, the investigator does not have to know a priory 
the number of groups and the data do not need to be divided into a predetermined 
number of partitions.  

The process consists of a sequence of steps, where two groups can either be merged 
(in the agglomerative clustering) or divided (in the divisive clustering) with the use 
of some optimum criterion.  

In the simplest and most commonly used form, the hierarchical methods have n 
observations in their own group (i.e., n total groups) at one end of the process and 
one group with all n data points at the other end. The difference between these two 
types of clustering is the point of the grouping process.  

In agglomerative clustering, we have n single clusters and end up with one group in 
which all points belong to. In divisive methods we take just the opposite output; we 
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start with all observations in one group and keep splitting the initial group until we 
have n single clusters. 

The agglomerative clustering requires several selections, such as, how to measure 
the proximity (distance) between data points and how to define the distance 
between two clusters. The choice of the type of distance depends mainly on the type 
of data (continuous, categorical or a mixture of the two). A major role plays the kind 
of the features the analyst wants to emphasize. 

In this selection the main aim of hierarchical methods and clustering algorithms is to 
find “good” clusters in the data using an appropriate computationally efficient 
technique. A dataset of n items can be partitioning with the number of ways into g 
clusters. It is given by the relationship:  

1

1( , ) ( 1)
!

g
g k n

k

g
N n g k

kg
−

=

 
= ⋅ ⋅ − ⋅ 

 
∑   where N (n,g) is the number of ways of partitioning 

a given dataset. Thus if the numbers of g and k are high is not feasible to examine all 
clustering possibilities for a given dataset as mentioned in [Rencher 2009].  

In agglomerative hierarchical approach of clustering at each step, an observation or 
a cluster of observations is merged into another cluster. With the evolution of this 
process, the number of clusters shrinks and the clusters themselves become larger. 
We start with n clusters and end with one single cluster that contains the whole 
dataset. 

At each step, an agglomerative hierarchical procedure combines the two closest 
clusters; we must take seriously into account how to measure the similarity or 
dissimilarity of two clusters. There are different approaches to measure the distance 
between clusters. At this point, it is very important to describe the following 
different distance metrics, the Euclidean, City Block and Pearson correlation. 

1) Euclidean Distance 

In a Euclidean n-space the position of a point is a Euclidean vector. 

In Cartesian coordinates, if 1 2 1 2( , ,..., )  ( , ,..., )n np p p and q q q= =p q  are two points in 
an Euclidean n-space, then the definition of distance (d) from p point to q point or 
vice versa is given by the Pythagorean formula: 

2 2 2
1 1 2 2

2

1

( , ) ( , ) ( ) ( ) ... ( )

( )

n n

n

i i
i

d d q p q p q p

q p
=

= = − + − + + − =

= −∑

p q q p
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2) City Block Distance 

The City Block distance between two points, assume a and b, with k dimensions is 

calculated as: 
1
| |

k

j j
j

a b
=

−∑   

The City block distance is always greater than or equal to zero. For identical points 
the value of distance would be zero and it is high for points that have little similarity. 
With City block distance, the effect of a large difference in a single dimension is 
weakening because the distances are not squared like as in Euclidean distance. The 
City block distance very often referred to as Manhattan distance is defined as 
follows: In the xy-plane, the hypotenuse is the shortest distance between two points, 
which is the Euclidean distance. But the City block distance is calculated as the 
distance in x coordinate plus the distance in y coordinate, which is identical to the 
way that someone is moving in a city where someone must move around the 
buildings instead of going straight through. 

3) Pearson correlation distance 

Pearson Correlation measures the similarity between the shapes of two profiles. The 
mathematic formula for the Pearson Correlation distance is the following: 1d r= −  
where 

( ) ( )Z x Z yr
n
⋅

= , is the dot product of the vectors x and y that are contained the z-

scores of these vectors. Z-score of x is calculated by subtracting from x its mean and 
dividing by its standard deviation. 

Continuing, the main methods for linkage of clusters are the following as referred in 
[Martinez 2011]. 

 
1) Single Linkage 
 
Single linkage is maybe the most common used method in agglomerative clustering, 
and it is the default method in the MATLAB linkage function. Single linkage is also 
known as nearest neighbor, because the distance between two clusters is given by 
the smallest distance between objects, where each distance is measured from one 
of the two groups. Thus, we have the following distance between clusters 

( , ) min{ ( , )}      1,..., ;    1,..., ,c ri sj r sd r s d x x i n j n= = =  (Equation 2.9) 

where ( , )ri sjd x x  is the distance between observation i from group r and 

observation j from group s. This is the interpoint distance (e.g. an Euclidean), which 
is the input to the clustering procedure. In the single linkage method at each step, 
the distance in equation (2.9) is found for every pair of clusters, and the two clusters 
are merged. The previous action has the consequence that the number of clusters is 
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reduced by one. After two clusters are merged, the procedure is repeated in the next 
step: the distances between all pairs of the new formed clusters are calculated again, 
and the pair that has the minimum distance is merged into a single cluster. 

The problem of chaining is the major drawback of the single linkage clustering. This 
problem exists when clusters are not well separated, and snake-like chains can form. 
Thus observations at opposite ends of the chain can be very dissimilar, but yet they 
end up in the same cluster. Furthermore the single linkage does not take into 
account the cluster’ structure. 

 

2) Complete Linkage 

Complete linkage is also known as the furthest neighbor method, because it uses the 
largest distance between the observations, one in each group, as the distance 
between the clusters. The distance between clusters is given by 

( , ) max{ ( , )}      1,..., ;    1,..., ,c ri sj r sd r s d x x i n j n= = =  (Equation 2.10) 

At each step, the distance in equation (2.10) is found for every pair of clusters, and 
the two clusters that have the smallest distance are merged. 

Complete linkage is not sensitive to the problem of chaining. Additionally, the 
created clusters have the tendency to be spherical, and for complete linkage are 
difficult to recover no-spherical groups. The same as single linkage, complete linkage 
does not account for cluster structure. 

 

3) Average Linkage 

The distance in average linkage method between clusters is the average distance 
from all observations in one cluster to all of the samples in another cluster. Thus, we 
have the following distance 

1 1

1( , ) ( , ),
sr nn

c ri sj
i jr s

d r s d x x
n n = =

= ⋅
⋅ ∑∑  (Equation 2.11), where the sum is over all ix  in r 

and all jx  in s. At each step, we join the two clusters with the smallest distance, as 

measured in equation (2.11).   

This method has the tendency to combine clusters that have small variances, and 
also tends to produce clusters with approximately equal variance. It is relatively 
robust method and does take the cluster structure into account.  
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4) Centroid Linkage 

In the centroid linkage method, the distance between the two clusters r and s is 
defined as the Euclidean distance between the mean vectors of the two clusters. 
Thus: 

( , ) ( , ),c r sd r s d x x=  where rx  and sx are the mean vectors for the observation 

vectors in r and the observation vectors in s, and ( , )r sd x x  defined in the below 
equation: 

( , ) ( ) ( )T
r s r s r sd x x x x x x= − ⋅ −   

The definitions of rx  and sx are the following: 1

1

r

s

n

r i r
i
n

s i s
i

x x n

x x n

=

=

=

=

∑

∑
  

Further the two clusters with the smallest distance between centroids are merged at 
each step. When two clusters r and s are joined, the centroid of the new cluster rs is 
given by the weighted average 

r r s s
rs

r s

n x n xx
n n
⋅ + ⋅

=
+

  

5) Median linkage 

If two clusters r and s are combined using the centroid method, and if r contains a 

larger number of items than s, then the new centroid r r s s
rs

r s

n x n xx
n n
⋅ + ⋅

=
+

with high 

probability be much closer to rx  than to sx . In order to avoid weighting the mean 

vectors according to cluster size, we can use the median or the midpoint of the line 
that joins r and s as the point for computing new distances to other clusters: 

1 ( ).
2rs r sm x x= ⋅ +   

The two clusters that has the smallest distance between medians are merged in 
every step. 

A weakness for both centroid and median linkage methods is the possibility of 
reversals. This is possible to happen if the distance between one pair of cluster 
centroids is less than the distance between the centroid of the other pair that was 
merged earlier. In other words, if the distances between clusters are not 
monotonically increasing, reversals can be created. The consequence of this is that 
the results making very confusing and difficult to interpret. 
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6) Ward’s Method 

In the Ward’s method, the merging of two clusters is determined by the size of the 
incremental sum of squares during the agglomerative hierarchical clustering. It 
examines the increase in the total within-group sum of squares when clusters r and s 
are joined. In the Ward’s method the distance between two clusters is given by the 
relationship: 

2

( , ) ,r s rs

r s

n n dd r s
n n
⋅ ⋅

=
+

 where 2
rsd  is the distance between the r-th and s-th cluster as 

defined previous in the centroid linkage definition.  

In other words, during the procedure of each merging, the within-cluster sum of 
squares is minimized over all possible partitions that could be obtained, if we are 
combing two clusters from the current set of groups. 

Ward’s method has the tendency in combining clusters that have a small number of 
observations. It also tends to locate clusters that are of the same size and spherical. 
This method is very sensitive to the presence of outliers in the dataset because it 
uses the criterion of sum of squares. 

 

2.4.2 Visualizing Hierarchical Clustering Using the Dendrogram 
A dendrogram is a simple tree diagram that shows the structure of the partitions 
and how the number of groups is linked at each stage. The dendrogram can be 
drawn horizontally or vertically. 

A dendrogram is a mathematical, as well as a visual representation of a hierarchical 
procedure that, as mentioned in the previous chapter, can be divisive or 
agglomerative. The root is the starting point of the tree, which can be either at the 
top for a vertical tree or on the left side for a horizontal tree. The clusters are 
represented with nodes in the dendrogram, and they can be internal or terminal. 
Based on the linkage type and distance metric that used, the internal nodes contain 
or represent all observations that are grouped. For the majority of dendrograms, the 
terminal nodes contain a single observation.  

The stem or edge shows “children” of internal nodes and the connection with the 
clusters below it. The distances at which clusters are joined are represented by the 
length of each edge. The dendrograms for hierarchical clustering are binary trees, so 
they have two edges emanating from each internal node. The arrangement of stems 
and nodes is referred to as the tree topology.  

To sum up, the dendrogram illustrates the process for constructing the hierarchy, 
and the internal nodes are describing particular partitions, if the dendrogram has 
been cut at a given level.  
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2.4.3 Optimization Methods – k-Means 
Another group of clustering methods uses techniques that optimize some criterion 
when partitioning the observations into a specified or predetermined number of 
groups. These methods are referred to as partition or optimization methods differ in 
the nature of the objective function, and in the optimization algorithm used to 
create the final clustering.  

One important issue that must be addressed when implementing these methods (as 
is also the case with the hierarchical methods) is the determination of the number of 
clusters in the dataset. On the other hand, one of the major advantages of the 
optimization-based methods is that they use only the data as input, not the 
interpoint distances, as in hierarchical methods. Thus, these methods are more 
suitable and highly recommended for large datasets. 

 

2.4.3.1 k-means 
The k-means clustering is one of the most commonly used optimization-based 
methods. The goal of k-means clustering is to partition the data into k groups such 
that the within-group sum-of-squares is minimized. The definition of within-class 
scatter matrix is given by the following equation 

1 1

1 ( ) ( ) ,
g n

T
W ij i j i j

j i
S I x x x x

n = =

= ⋅ ⋅ − ⋅ −∑∑  where ijI  is one (1) if ix  belongs to group j 

and zero (0) otherwise, and g is the number of groups.  

The criterion or objective function that is minimized in k-means is the sum of the 

diagonal elements of WS  , that it is the definition of the trace of the matrix, as 

follows 

 ( )
iiW W

i
Tr S S=∑   

When the trace is minimized, it is equivalent to minimization of the total within-
group sum of squares about the group means. But the minimization of the trace of 

WS  is equivalent to minimizing the sum of the squared Euclidean distances, which are 

calculated between each point (individuals) and their group mean.  

At this point we briefly describe the procedure for obtaining clusters via k-means. 
The basic algorithm for k-means clustering has two major steps in the whole 
procedure. In the first step, each observation is assigned to its closest group, with 
the use of the Euclidean distance between the observation and the cluster centroid. 
The second step of the procedure is to find the new centroids using the assigned 
observations. These steps are repeated until there are no changes in cluster 
membership or until the centroids do not change. 
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The k-means algorithm is implemented as follows: 

1. The number of clusters k must be specified. 

2. Determination of the initial cluster centroids. These can be randomly chosen or 
the analyst can specify them. 

3. Calculation of the distance between each observation and each cluster centroid. 

4. Every observation must be assigned to the closest cluster. 

5. Calculation of the centroid, (the d-dimensional mean) of every cluster using the 
observations that are assigned to him. 

6. Repeat the steps 3 through 5 until the centroid remain constant according to a 
specified criterion. 

By the k-means algorithm empty clusters may be created. 

 

2.4.3.2 Silhouette Plot 
A different way of estimating the group number in a dataset is the silhouette 
statistic. Given the observation i, we define the average dissimilarity to all other 

points in its own cluster as ia . 

For any other cluster c, we use ( , )d i c  that represents the average dissimilarity of i 

observation to all objects in cluster c. Finally, with ib  denote the minimum of these 

average dissimilarities ( , )d i c . 

The silhouette width for i-th observation is given by the following relationship: 

max( , )
i i

i
i i

b asw
a b
−

=   

At this point we can find the average silhouette width by averaging the isw  for all 

observations: 

1

1 n

i
i

sw sw
n =

= ⋅∑  . (Equation 2.12)  

A large silhouette width indicates efficient clustering, but the observations with 
small values have the tendency to be scattered between clusters. The silhouette 

width isw  in equation (2.12) ranges from -1 to 1.  

If an observation has a value of silhouette width close to one (1), then this data point 
is closer to its own cluster than to a neighboring one. If it has a silhouette width close 
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to -1, it means that it is not very well-clustered. A silhouette width close to zero is 
indicator that the observation could just belong to its current cluster or in one that is 
near to it. 

Furthermore, we can use the average silhouette width in order to estimate the 
number of clusters in the dataset. This is done, with the use of the partition with two 
or more clusters that gives the largest average silhouette width. If an average 
silhouette width is greater than 0.5, is a strong enough indicator for reasonable 
partition of the data, and a value of less than 0.2 may would indicate that the data 
do not have cluster structure.  
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3. Description of the Devonian oils composition data  
 

3.1 Oil Samples 
 

In this work compositional data from a sample set consisting of 146 oils from 
western Canada were used. These oils are considered to originate from sources 
located in Devonian formations.  In Table 3.1 the geographical location and the 
reservoir source formation of the oils are shown. 

Sample Lat Long Formation Sample Lat Long Formation 
L00794 54.51052 -115.498 Beaverhill Lake L02080 52.62858 -113.357 Leduc 
L00858 54.54708 -116.821 Beaverhill Lake L02081 52.64824 -113.337 Leduc 
L01143 52.0215 -112.769 Nisku L02082 52.63602 -113.346 Leduc 
L01144 51.69111 -111.296 Arcs L02084 52.51058 -113.188 Nisku 
L01277 53.94367 -117.594 Wabamun L02086 52.47948 -113.182 Nisku 
L01350 53.37903 -115.27 Nisku L02098 51.99341 -114.053 Leduc 
L01354 55.64275 -118.161 Wabamun L02099 52.38876 -113.343 Leduc/Nisku 
L01420 54.01195 -116.421 Nisku L02100 52.32724 -112.876 Leduc 
L01453 54.46445 -117.745 Leduc L02103 52.79822 -113.084 Nisku 
L01556 51.66458 -111.273 Arcs L02106 51.61418 -113.764 Crossfield 
L01557 52.11556 -112.99 Nisku L02108 51.48797 -112.746 Nisku 
L01558 52.14638 -112.773 Nisku L02109 52.25888 -114.588 Leduc/Nisku 
L01559 50.96459 -112.019 Arcs L02110 56.91252 -114.684 Keg River 
L01576 52.22727 -113.331 Nisku L02112 56.31595 -116.087 Slave Point 
L01598 50.71718 -111.591 Jefferson L02151 51.54145 -112.838 Nisku 
L01638 53.17386 -115.726 Nisku L02152 51.54145 -112.838 Leduc 
L01639 53.1208 -115.789 Nisku L02153 51.54145 -112.838 Leduc 
L01641 53.04243 -115.974 Nisku L02154 52.41677 -113.3 Nisku 
L01644 53.02228 -116.209 Nisku L02155 52.39959 -113.301 Nisku 
L01645 53.10956 -115.896 Nisku L02156 52.40738 -113.338 Nisku 
L01646 53.11573 -115.698 Nisku L02157 52.40819 -113.349 Leduc/Nisku 
L01647 53.02817 -115.964 Nisku L02158 52.32835 -113.368 Nisku 
L01648 53.14161 -115.782 Nisku L02159 51.58022 -113.278 Leduc/Nisku 
L01650 53.03202 -116.091 Nisku L02160 52.5109 -113.426 Leduc 
L01651 53.18903 -115.74 Nisku L02161 52.51126 -113.426 Nisku 
L01652 53.09129 -115.868 Nisku L02162 52.27013 -113.346 Nisku 
L01654 53.12568 -115.883 Nisku L02163 52.28353 -113.335 Nisku 
L01655 53.15396 -115.87 Nisku L02164 52.27629 -113.347 Nisku 
L01656 53.15396 -115.87 Nisku L02165 52.26258 -113.33 Nisku 
L01658 53.09544 -116.067 Nisku L02166 52.2702 -113.323 Nisku 
L01664 51.50473 -112.673 Arcs L02167 52.2914 -113.342 Nisku 
L01667 51.50136 -112.668 Nisku L02168 52.07925 -112.746 Nisku 
L01676 56.71672 -114.451 Keg River L02169 52.55221 -113.145 Leduc 
L01677 56.73744 -114.383 Keg River L02170 52.58097 -113.151 Leduc/Nisku 
L01679 56.72312 -114.52 Keg River L02171 52.54484 -113.133 Leduc 
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L01680 56.75265 -114.537 Keg River L02177 51.61497 -113.764 Leduc 
L01684 56.71129 -114.447 Keg River L02178 51.62427 -113.791 Leduc 
L01686 56.73082 -114.395 Keg River L02182 52.59544 -113.169 Leduc 
L01687 56.73672 -114.46 Keg River L02183 52.75407 -113.127 Leduc 
L01688 56.69365 -114.379 Keg River L02184 52.8009 -113.086 Nisku 
L01690 56.69621 -114.597 Keg River L02190 52.83786 -113.066 Nisku 
L01691 56.84899 -114.767 Keg River L02191 52.83815 -113.062 Leduc 
L01692 56.82601 -114.724 Keg River L02192 52.33846 -112.849 Leduc 
L01693 56.70099 -114.601 Keg River L02196 51.81394 -113.586 Leduc 
L01810 53.21439 -115.656 Nisku L02197 51.83151 -113.577 Nisku 
L01816 51.98092 -112.787 Leduc/Nisku L02198 51.81826 -113.588 Leduc 
L01819 51.99535 -112.788 Leduc/Nisku L02199 51.99535 -112.788 Nisku 
L01820 52.10105 -112.752 Leduc/Nisku L02200 52.59156 -113.295 Nisku 
L01821 52.19548 -112.77 Leduc/Nisku L02201 52.61111 -113.265 Nisku 
L01822 52.2029 -112.776 Leduc L02202 52.62592 -113.265 Nisku 
L01823 51.98398 -112.783 Nisku L02203 52.64631 -113.253 Nisku 
L01824 52.60546 -114.196 Leduc L02205 52.33768 -112.864 Leduc 
L01825 52.19268 -112.772 Leduc L02206 52.33048 -112.91 Leduc 
L01827 52.62012 -114.184 Leduc L02207 53.52126 -113.723 Nisku 
L01828 52.05289 -112.745 Leduc L02208 53.54302 -113.73 Nisku 
L01831 53.18291 -115.637 Nisku L02209 53.56794 -113.729 Leduc 
L01832 52.75428 -114.108 Leduc L02210 53.56116 -113.724 Leduc 
L01833 52.02095 -112.758 Nisku L02211 53.51028 -113.741 Leduc 
L01834 51.99059 -112.761 Leduc L02212 53.5357 -113.735 Nisku 
L02032 53.26003 -113.797 Nisku L02213 53.60476 -113.704 Leduc 
L02034 53.26687 -113.668 Leduc L02215 53.48118 -113.766 Leduc 
L02035 53.27047 -113.687 Leduc L02219 52.15582 -112.77 Leduc/Nisku 
L02038 53.27063 -113.765 Leduc L02220 52.13719 -112.758 Nisku 
L02039 53.27097 -113.753 Leduc L02221 52.10469 -112.752 Leduc/Nisku 
L02040 53.27406 -113.747 Leduc L02223 52.24668 -112.794 Bearspaw 
L02041 53.27409 -113.705 Leduc L02224 52.28313 -112.835 Leduc 
L02042 53.27408 -113.722 Leduc L02225 52.28664 -112.776 Nisku 
L02043 53.82364 -113.481 Nisku L02226 52.25394 -112.788 Nisku 

L02044 53.82008 -113.493 Nisku L02254 56.81703 -115.453 
Granite 
Wash 

L02045 53.81636 -113.475 Nisku L02255 56.8946 -115.513 Keg River 
L02077 52.51099 -113.26 Nisku L02257 52.4624 -112.167 Camrose 
L02078 52.51794 -113.261 Nisku L02290 54.77219 -116.68 Swan Hills 
L02079 52.5206 -113.267 Nisku L02291 55.10916 -117.661 Leduc 
 

Table 3.1: The geographical location and the source formation of sampled oils 

 In the map of figure 3.1 the sampled oils are presented:  
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Figure 3.1: The geographical location of oil samples 

The following notation of the symbol markers for oil samples is presented: 

      Keg River samples                                                 Arcs samples 

 

    Nisku_Leduc samples                                            Nisku samples 

 

      Leduc samples                                                        Remaining samples 
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In order to differentiate the oil samples a letter was added to their names as it is 
shown. 

   Formation First letter in 
sample name 

Nisku N 
Leduc L 
Keg River K 
Leduc_Nisku E 
Arcs A 
Remains G 

Table 3.2: The connection of the first letter in sample names with source formation of sampled oils 

Thus the KL01677 sample name means that the source formation of this sample is 
Keg River and in addition is the 1677 sample in our dataset. 

 

3.2 Compositional data 
The data was provided by the Geological Survey of Canada. In this work two 
compositional data sets were employed, namely the composition of the main 
hydrocarbons of the gasoline range and the composition of n-alkanes in the 
saturated fraction of the oils. 

Petroleum hydrocarbons with number of carbon atoms less than twelve (<C12) are 
usually referred to as light hydrocarbons or gasoline range hydrocarbons. They 
constitute a significant amount of oils. In highly thermal mature oils, these 
hydrocarbons constitute almost the 100% of the oil composition and therefore 
geochemical characterization of mature oils is carried our based on these 
compounds, since they lack intermediate and heavy compounds. 

The available identified components in the gasoline range are shown in Table 3.3 
together with their abbreviations. 

iC5 i-Pentane MCYC5 Methylcy
clopenta
ne 

3MC6 3-
Methylhexa
ne 

24D
MC
6 

2,4- 
Dimethylhexan
e 

nC5 n-Pentane 24DMC
5 

2,4- 
Dimethyl
pentane 

1c3DM
CYC5 

1,cis-3- 
Dimethylcyc
lopentane 

223
TMC
5 

2,2,3-
Trimethylpenta
ne 

22DM
C4 

2,2-
Dimethylbu
tane 

223TM
C4 

2,2,3-
Trimethyl
butane 

1t3DM
CYC5 

1,trans-3- 
Dimethylcyc
lopentane  

234
TMC
5 

2,3,4-
Trimethylpenta
ne 

CYC5 Cyclopenta
ne 

BEN Benzene 1t2DM
CYC5 

1-trans-2- 
Dimethylcyc
lopentane  

TOL Toluene 

23DM
C4 

2,3- 
Dimethylbu

33DMC
5 

3,3- 
Dimethyl

nC7 n-Heptane 2M
C7 

2-
Methylheptane 
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tane pentane 
2MC5 2-

Methylpen
tane 

CYC6 Cyclohex
ane 

MCYC6 Methylcyclo
hexane 

3M
C7 

3-
Methylheptane 

3MC5 3-
Methylpen
tane 

2MC6 2-
Methylhe
xane 

22DMC
6 

2,2-
Dimethylhex
ane 

1c4
DM
CYC
6 

1,cis-4-
Dimethylcycloh
exane 

nC6 n-Hexane 23DMC
5 

2,3- 
Dimethyl
pentane 

ECYC5 Ethylcyclope
ntane 

nC8 n-Octane 

22DM
C5 

2,2-
Dimethylpe
ntane 

11DMC
YC5 

1,1- 
Dimethyl
cyclopen
tane 

25DMC
6 

2,5-
Dimethylhex
ane 

  

 
Table 3.3: The commonly identified hydrocarbons in the gasoline range fraction of oil 

In figures 3.2, 3.3 and 3.4 characteristic normalized histograms of the 
chromatographic peak areas from the usual gasoline range components are 
presented. 

 

Figure 3.2: Normalized histogram of the chromatographic peak areas from gasoline range of sample 
L01677 
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Figure 3.3: Normalized histogram of the chromatographic peak areas from gasoline range of sample 
L01822 

 

Figure 3.4: Normalized histogram of the chromatographic peak areas from gasoline range of sample 
L02045 
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The above three normalized histograms for gasoline ranges have significant 
differences. In Keg River oil sample the component with the highest peak area is the 
normal octane and follows the cyclohexane and the normal heptane. In Leduc oil 
sample the component with the highest peak area is the cyclohexane and follows the 
1-trans-2- Dimethylcyclopentane and the normal hexane. Finally in Nisku sample oil the 
component with the highest peak area is the cyclohexane with the normal heptane 
and follows the normal octane. 

Saturated hydrocarbons are found in petroleum with linear, branched or cyclic 
structure. The n-alkanes are the simplest structural group. They are formed entirely 
of single bonds in linear chains between carbon atoms, which are saturated with 
hydrogen. The n-alkanes have the general formula: . The usually measured 

n-alkanes in the saturated fraction of oils are those with carbon atoms between 12 
and 35. These components are shown in Table 3.4 together with their abbreviations 
used in this text. Two more compounds, pristane (Pr) and phytane (Ph) are included 
in this list. They are isoprenoids compounds, which are measured in geochemical 
studies together with n-alkanes, due to their geochemical significance. 

 

C10 n-Decane C18 n-Octadecane C26 n-Hexacosane 
C11 n-Undecane Ph Phytane C27 n-Heptacosane 
C12 n-Dodecane C19 n-Nonadecane C28 n-Octacosane 
C13 n-Tridecane C20 n-Eicosane C29 n-Nonacosane 
C14 n-Tetradecane C21 n-Heneicosane C30 n-Triacontane 
C15 n-Pentadecane C22 n-Docosane C31 n-Hentriacontane 
C16 n-Hexadecane C23 n-Tritosane C32 n-Dotriacontane 
C17 n-Heptadecane C24 n-Tetracosane   
Pr Pristane C25 n-Pentacosane   

Table 3.4: The commonly identified hydrocarbons in the saturated fraction of oils 
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In figures 3.5, 3.6 and 3.7 characteristic normalized histograms of the 
chromatographic peak areas from the saturated range components are presented: 

 

Figure 3.5: Normalized histogram of the chromatographic peak areas from saturated range of sample 
L01677 

 

Figure 3.6: Normalized histogram of the chromatographic peak areas from saturated range of sample 
L01822 
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Figure 3.7: Normalized histogram of the chromatographic peak areas from saturated range of sample 
L02045 

The above three normalized histograms of the chromatographic peak areas have the 
normal-pentadecane as the component with the maximum peak area. Furthermore 
some variations in others components are existing but in general terms, they carry 
almost the same geochemical information. 

Often in petroleum geochemistry studies instead of pure compositional data, ratios 
calculated based on the concentrations of selected compounds are used. These 
ratios, referred to as geochemical indices. They provide significant combined 
information about the oils. Based on the gasoline and saturated fraction 
compositional data presented above, a series of such indices were calculated and 
used in the family affiliation models that described below.  
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3.3 Gasoline and saturated range geochemical indices 
Based on the available compositional data a series of geochemical indices have been 
introduced. Each one of them carries specific geochemical information [Thompson, 
1983], which is briefly summarized below. 

For the gasoline range compositional data the most commonly used indices are the 
following: 

K1, A, B, C, I, F, R, U, H 

 

The definitions of these indexes are: 

1
2 - methylheptane + 2,3 - dimethylpentaneK =
3 - methylheptane + 2,4 - dimethylpentane
benzeneA =

n - hexane
tolueneB =

n - heptane
n - hexane + n - heptaneC =

cyclohexane + methyl - cyclohexane
2 + 3 - methylhexanesI =

1c3 +1t3 +1t2 - dimethylcyc

∑

lopentanes
n - heptaneF =

methylcyclohexane
n - heptaneR =

2 - methylcyclohexane
cyclohexaneU =

methylcyclohexane
100 × n - heptaneH =

( cyclohexanes + C7HCs)
  

The K1 index is for confirmation if exists a common creation mechanism of light 
hydrocarbons from the heavier ones. The following eight indexes are known as 
Thompson indexes. To be more specific, the A and B indexes indicated the 
aromaticity property. The C, I and F indexes are indicators for the paraffinicity of 
each sample. The U index indicated the extent of napthene branching and the R 
index is an indicator for paraffin branching property. 

For the saturated range compositional data the most commonly used indices are the 
following:  

Pr/Ph, Pr/nC17, Ph/nC18, CPI25-33, nC24+/nC24-, nC19/nC31, R22 
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The definitions of these indexes are: 

25_ 33
( 25 27 29 31) ( 25 27 29 31) 1[ ]
( 24 26 28 30) ( 26 28 30 32) 2

25 26 27 28 29 30 31 3224
24 17 18 19 20 21 22 23 24

2 2222
21 23

C C C C C C C CCPI
C C C C C C C C

C C C C C C C CnC
nC C C C C C C C C

CR
C C

+ + + + + +
= + ⋅

+ + + + + +
+ + + + + + ++ =− + + + + + + +

⋅
=

+

  

The pristane/phytane ratio is used as an indicator of how much oxidized is an 
environment. The ratio pristane/nC17 is very useful for differentiated organic matter 
from swamp environment from those that formed under marine environment. The 
phytane/nC18 index refers to marine organic input. The CPI_25_33 index is a Carbon 
Preference Index which is defined as the ratio of sum of concentration areas of odd 
to even carbon number of n-alkanes. This index is specific for maturity, but also 
affected by other processes such as biodegradation. The index nC24+/nC24- alkanes 
is the ratio of heavy hydrocarbons above nC24 to the light hydrocarbons below 
nC24. Carbon number of C31 is used as an indication of terrestrial biogenic 
hydrocarbon while C19 presents the marine biogenic sources. Thus the ratio of 
C31/C19 is used to identify the predominance of hydrocarbon input from land or 
marine environments. 
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4. Chemometric models for families’ affiliation of Devonian oils 
In this chapter we use MATLAB code that is created in the Hydrocarbons Chemistry 
and Technology Research lab. The mentioned MATLAB code is used with the 
necessary additional ads and adjustments in order to taking the functionality and the 
results in an efficient way. 

A brief presentation of the graphical environment of the chemometric software 
package is shown below. In this example chromatographic data from the gasoline 
range or saturated fraction compound of the analyzed oils are used.  

The interface of the chemometric software package is the following: 

 
Figure 4.1: The interface of the chemometric software package 

To be more specific, in figure 4.1 the first section with title “Main Function” is for the 
initialization of the MATLAB environment and for importing the dataset from the 
appropriate Excel file. The second choice with the title “Selection of specific variables 
(from other data)”, gives to us the opportunity to exclude original variables from the 
loaded dataset.  
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Furthermore, with the three following choices in the section of Pre-Treatments, we 
have the ability to enforce some pretreatments in the dataset. The pre_scaling_0_1 
() scales each sample data in the range of 0 to 1. The norm_variables_0_1 () scale 
each variable data in the range of 0 to 1 and finally the pre_normalizedArea () divide 
the component area of each sample with the area summation of all variables for this 
sample, thus it gives the % percentage of each variable in the sample.  

Continuing in the analysis section we have two options, as first to run kernel 
Principal Component Analysis (KPCA) and secondly to run the conventional Principal 
Component Analysis (PCA). Finally, in classification section we have the ability to run 
hierarchical clustering with the choice of clustering () and k-means with the 
silhouette plots if we select the choice of Silhouete (). The MATLAB code for kernel 
principal component analysis is based on dimensionality reduction toolbox of 
Laurens van der Maaten from Tilburg University. 

In MATLAB environment and especially in Editor Menu if someone push the button 
Run section has the ability to run each possible choice separately as it is shown in 
figure 4.2.    

  

Figure 4.2: The Editor menu in MATLAB program 

4.1 Model 1 Gasoline range with all compositional variables 
The process of running the model 1 is the following:  

First of all, you must load the values of chromatographic peak areas for the gasoline 
range from the Excel file. The name of Excel file that used in order to load the 
appropriate data in the MATLAB environment is All_Devonian_data.xlsx. 

As we mention in page 43 we need to initialize the MATLAB program with the 
gasoline range chemical data. 

We have the dialog menu that is presented in figure 5, with three possible options 
for samples import: 

1) Excel without spectral data 

2) Excel with spectral data 

3) Excel with other data 

For the needs of this diploma thesis, we select in Sample Import menu the option 
three which is: Excel with Other Data. This selection has the consequence of 
importing the necessary data from Excel file in the MATLAB environment. 
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Figure 4.3: The dialog menu with the available options of samples’ import 

A further step is to decide how many samples someone wants to import in the 
MATLAB program. The default choice is loading all samples that are presented in the 
first sheet of the Excel file that used as input. But there is also the option to load the 
samples manually by picking them. The sample loading are become with the press of 
Import Sample button as illustrated in figure 4.4. 

 

Figure 4.4: The dialog menu for sample selection 
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Now in MATLAB environment and especially in the workspace section we have 
created the following variables: Labels cell array that contains the sample names. 
The Wl that is a cell array containing the variable names and finally the dataset X is a 
35 X 146 matrix that has the values of chromatographic peak areas for the gasoline 
range for each variable and sample as illustrated in figure 4.5. 

 
Figure 4.5: The workspace section with the variables for model 1 

The next step is with the use of the available option pre_scaling_0_1 () to normalize 
the 146 samples in the range of 0 to 1. The result of this pretreatment is that we take 
for chromatographic peak area values between 0 and 1 for all samples. 

The final step in pretreatments is the normalization of the 35 variables that contains 
the gasoline range with the MATLAB function norm_variables_0_1 () in the range of 
0 to 1 for all samples. 

4.1.1 PCA analysis for model 1 
In order to perform Principal Component Analysis, we run the option PCA_analysis () 
in the section Analysis at the interface of the chemometric program and we take the 
following results. 

 

Figure 4.6: Plot of the two major principal components for model 1 
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In figure 4.6 the plot of the first two major principal components is shown. We do 
not see a clear separation for samples in distinguish clusters because the behavior of 
the majority of samples is the almost the same. But samples LL02224, NL02162 and 
LL02177 have significant differences with the samples EL01820, NL02086, LL01828 
and AL01556 according to figure 4.6. 

 

Figure 4.7: The subplot of five principal components of model 1 

The figure 4.7 illustrates in four subplots, the first principal component versus the 
second, third, fourth and fifth principal component for all samples in our data. 

 
Figure 4.8: The subplot for five principal components with different color for each formation of model 

1 
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The figure 4.8 illustrates in four subplots, the first principal component versus the 
second, third, fourth and fifth principal component for all our data but in this figure 
each color depict different formations. The mapping between reservoir rock 
formation and color is shown in the Table 4.1. 

Formation Color 
Nisku Red 
Leduc Yellow 
Keg River Green 
Leduc_Nisku Blue 
Arcs Dense Blue 
Remains Pink 

Table 4.1: Color representation of oils with respect to their reservoir formation origin. 

The plot of the first principal component in the space of longitude and latitude 
coordinates of our samples is presented in figure 4.9. 

 

 

Figure 4.9: Plot of the first principal component of PCA analysis vs the geographical location of the 
samples. 
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Continuing, figure 4.10 presents the plot of the second principal component 
according to the latitude and longitude coordinates of our samples. 

 

Figure 4.10: Plot of the second principal component of PCA analysis vs the geographical location of 
the samples. 

 

Figure 4.11: Original variable loadings for the first five principal components for the model 1. 
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The original variable loadings are presented in figure 4.10. In this subplot we have 
four instances that depict the original variable loadings for the first principal 
component versus the original variable loadings for the second, third, fourth and 
fifth principal component. 

 

Figure 4.12: Percentage of variance explained by each principal component 

Figure 4.12 reveals the contribution of each principal component in the total 
variance that is explained from the PCA model. As it is shown the first PC explains 
85% of variation and the second PC explains 6% of the remaining variation.  
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4.1.2 Kernel PCA for model 1 

 

Figure 4.13: The subplot of five kernel principal components of model 1 

The figure 4.13 illustrates in four instances, the first kernel principal component 
versus the second, third, fourth and fifth kernel principal component for all our data. 

 
Figure 4.14: The subplot of kernel principal components with different color for each formation of 

model 1 
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The figure 4.14 illustrates in four instances, the first kernel principal component 
versus the second, third, fourth and fifth kernel principal component for all our data. 
In addition to, in this figure each color depict different formations (For mapping see 
table 4.1). 

The plot of the values of first kernel principal component in the space of longitude 
and latitude coordinates of our samples are presented in figure 4.15. 

 

Figure 4.15: Plot of the first kernel principal component of KPCA analysis in relationship vs the 
geographic location of the samples. 
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Continuing, figure 4.16 illustrates the plot of the second kernel principal component 
according to the latitude and longitude coordinates of our samples. 

 

 

Figure 4.16: Plot of the second kernel principal component of KPCA analysis in relationship vs the 
geographical location of the samples. 
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4.1.3 Silhouette with k-means for model 1 
With the use of the available option Silhouete () at the interface of the chemometric 
program in the section of clustering, we get a k-means clustering using two, three, 
four and five clusters. The k-means clustering is repeating five times for each case. 
This is achieved with the use of replicates as an argument in kmeans MATLAB 
function. 

In table 4.2 we summarize the results that are taken: 

k-means clustering Best Total sum of 
distances 

Average silhouette value 

K=2 140.814 0.3864 
K=3 122.207 0.3680 
K=4 105.674 0.3075 
K=5 99.5886 0.2677 

Table 4.2: Summary of k-means clustering for model 1 

The silhouette plots for K=2, K=3, K=4 and K=5 clusters are shown in figure 4.16. 

 

Figure 4.17: Silhouette plots for k=2, k=3, k=4 and k=5 clusters for model 1 

We see that in the case of two clusters we have the mostly large silhouette values 
and very few negative values in cluster one. A one-number summary in order to 
describe the performance of each clustering is the average of the silhouette values. 
The two cluster solution has an average silhouette value of 0.3864 and this value is 
the maximum among the others cases. Thus it is an indicator that the grouping into 
two clusters using k-means is better than the one with three or four or five groups. 
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In figure 4.18 the plot of the first two Principal Components (PCs) that were taken 
from running the option PCA_analysis in the section Analysis at the interface of the 
chemometric program combined with k-means clustering, for the case of k =2 for our 
dataset of 146 oils are presented with different color for samples members that 
belongs to a different cluster: 

 
Figure 4.18: The plot of the first two PCs of k-means clustering for k=2 of model 1 

4.1.4 Clustering for model 1 
In order to perform clustering, we use the option clustering () at the interface of the 
chemometric program in the section of Clustering. After running the previous option 
a new dialog menu query us with which response scale we want to find clusters. The 
first choice is clustering based on samplers and the second choice is based on 
variables as it is shown in figure 4.19: 

 

Figure 4.19: The dialog menu with the available choices for clustering 

For the needs of our models we choose to push the Samples button because we 
want our clustering to be based on samples. 
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In the new dialog window that opens: we have the choice to find the best clustering 
method in terms of Distance and Linkage. This is done if we press the Find Best 
button as it is depicted in figure 4.20. 

 

Figure 4.20: The dialog menu with the available choices for distance and linkage methods. 

The result for the Find Best choice, in command window of MATLAB program is the 
following: 

c = 

    0.6868    0.7671    0.7444    0.5382    0.7468    0.4895    0.5018 

    0.6541    0.7587    0.7623    0.5095    0.4701    0.5774    0.4201 

    0.5656    0.7104    0.7261    0.5264    0.5741    0.4956    0.5775 

bestLinkage =  2 

 bestDistance = 1 

 

The explanation of which is that the best metric for distance is the Euclidean and the 
best linkage method is the Average. Thus we select the above options in the dialog 
window as it is shown in figure 4.21: 
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Figure 4.21: The best choices for distance and linkage method are marked for model 1. 

The result for hierarchical clustering is presented in figure 4.22 in which the 
verification is 76.0449 %. This figure illustrates four major clusters for the oil 
samples. 

 

Figure 4.22: The hierarchical clustering dedrogram for model 1 
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4.2 Model 2 Saturate range with all variables 
The process that is followed in order to run the model 2 is very similar with the 
procedure steps that was followed in model 1. To be more specific, the next steps 
are followed in order to load the data for saturate range:  

First of all, we must load the values of chromatographic peak areas for the saturated 
fraction from the Excel file that are existed in the spreadsheet with name 
Complete_Saturate in Excel file All_Devonian_data.xlsx.  

In MATLAB environment and especially in the workspace section we have created 
the following variables: Labels cell array that contains the sample names. The Wl 
that is a cell array containing the variable names and finally the dataset X is a 25 X 
146 matrix that has the values of chromatographic peak areas for the saturated 
fraction for each variable and sample as illustrated in figure 4.23. 

 
Figure 4.23: The workspace section with the selected variables for model 2 

 

The next step is with the use of the available option pre_scaling_0_1 () to normalize 
the 146 samples in the range of 0 to 1. The result of this pretreatment is that we take 
for chromatographic peak area values between 0 and 1 for all samples. 

The final step in pretreatments is the normalization of the 25 variables that contains 
the saturated fraction with the MATLAB function norm_variables_0_1 () in the range 
of 0 to 1 for all samples. 

 

4.2.1 PCA analysis for model 2 
In order to perform Principal Component Analysis, we run the option PCA_analysis () 
in the section Analysis at the interface of the chemometric program and we take the 
following results. 
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Figure 4.24: Plot of the two major principal components of model 2 

In figure 4.24 the plot of the first two major principal components for the case of 
saturate range is illustrated. We also do not see a clear separation for samples in 
distinguish clusters because the behavior of the majority of samples is the almost the 
same. But the samples that are marked in figure have different behavior in 
comparison with the samples’ majority. These samples are the following: NL01641, 
NL01645, NL01644, NL01647, NL01655, NL02043, AL01556, AL01144, LL02224, 
KL01677, NL02077, NL02220, NL02103, NL01143 and KL01680. 
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Figure 4.25: The subplot of five principal components of model 2 

The figure 4.25 illustrates in four subplots, the first principal component versus the 
second, third, fourth and fifth principal component for all samples in our data. 

 
Figure 4.26: The subplot for five principal components of model 2 with different color for each 

formation 
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The figure 4.26 illustrates in four instances, the first principal component versus the 
second, third, fourth and fifth principal component for all our data but in this figure 
each color depict different formations (For mapping see table 4.1).  

At this point I would quote the plot of the first principal component in the space of 
longitude and latitude coordinates of our samples in figure 4.27. 

 

Figure 4.27: Plot of the first principal component of PCA analysis vs the geographical location of the 
samples. 
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Continuing, figure 4.28 presents the plot of the second principal component 
according to the latitude and longitude coordinates of our samples. 

 

Figure 4.28: Plot of the second principal component of PCA analysis vs the geographical location of 
the samples. 

The location plots of the first Principal Component and the second Principal 
component of the group of Nisku oils that are placed with longitude from -115.50 to 
-116.50 and latitude from 52.70 to 53.20 carries important information. The values 
for this group of oils for the first principal component (PC1) are low and high for the 
second principal component (PC2) as it is shown in figures 4.27 and 4.28. 

 

62 
 



 

Figure 4.29: Original variable loadings for the first five principal components from the model 2. 

The original variable loadings are presented in figure 4.29. In this subplot we have 
four instances that depict the original variable loadings for the first principal 
component versus the original variable loadings for the second, third, fourth and 
fifth principal component. 
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Figure 4.30: Percentage of variance explained for each principal component 

Figure 4.30 reveals the contribution of each principal component in the total 
variance that is explained from the PCA model. As it is shown the first PC explains 
91% of variation and the second PC explains 6% of the remaining variation.  

 

 

 

 

 

 

 

 

 

 

64 
 



4.2.2 Kernel PCA for model 2 

 

Figure 4.31: The subplot of five kernel principal components of model 2 

The figure 4.31 illustrates in four subplots, the first kernel principal component 
versus the second, third, fourth and fifth kernel principal component for all our data. 

 
Figure 4.32: The subplot for five kernel principal components of model 2 with different color for each 

formation 
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The figure 4.32 illustrates in four instances, the first kernel principal component 
versus the second, third, fourth and fifth kernel principal component for all our data. 
In addition to, in this figure each color depict different formations (For mapping see 
table 4.1). 

The plot of the values of first kernel principal component in the space of longitude 
and latitude coordinates of our samples are presented in figure 4.33. 

 

Figure 4.33: Plot the values of the first kernel principal component of KPCA analysis in relationship 
with the location of the samples. 

Continuing, figure 4.34 illustrates the plot of the second kernel principal component 
according to the latitude and longitude coordinates of our samples. 

 

Figure 4.34: Plot the values of the second kernel principal component of KPCA analysis in relationship 
with the location of the samples. 
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4.2.3 Silhouette – k-means for model 2 
With the use of the available option Silhouete () at the interface of the chemometric 
program in the section of clustering, we get a k-means clustering using two, three, 
four and five clusters. The k-means clustering is repeating five times for each case. 
This is achieved with the use of replicates as an argument in kmeans MATLAB 
function. 

In table 4.3 we summarize the results that are taken: 

k-means clustering Best Total sum of 
distances 

Average silhouette value 

K=2 81.6495 0.5191 
K=3 60.5961 0.4868 
K=4 51.2501 0.3812 
K=5 45.1028 0.3911 

Table 4.3: Summary of k-means clustering for model 2 

The silhouette plots for K=2, K=3, K=4 and K=5 are shown in following figure. 

 

Figure 4.35: Silhouette plots for k=2, k=3, k=4 and k=5 clusters for model 2 

 

We see that in the case of two clusters we have the mostly large silhouette values 
and very few negative values in cluster two. A one-number summary in order to 
describe the performance of each clustering, is the average of the silhouette values. 
The two cluster solution has an average silhouette value of 0.5191 and this value is 
the maximum among the others cases. Thus it is an indicator that the grouping into 
two clusters using k-means is better than the one with three or four or five groups. 
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In figure 4.36 the plot of the first two Principal Components (PCs) of k-means 
clustering, for the case of k =2 for our dataset of 146 oils are presented with 
different color for samples members that belong to a different cluster: 

 
Figure 4.36: The plot of the first two PCs of k-means clustering for k=2 of model 2 

4.2.4 Clustering for model 2 
In order to perform clustering, we use the option clustering () at the interface of the 
chemometric program in the section of Clustering. If we follow the same steps as 
that in model 1, thus firstly select clustering based on samples and secondly use the 
Find Best choice in window dialog the following results are obtained: 

c = 

    0.6868    0.7671    0.7444    0.5382    0.7468    0.4895    0.5018 

    0.6541    0.7587    0.7623    0.5095    0.4701    0.5774    0.4201 

    0.5656    0.7104    0.7261    0.5264    0.5741    0.4956    0.5775 

 

bestLinkage = 2 

bestDistance = 1 

The explanation of which is that the best metric for distance is the Euclidean and the 
best linkage method is the Average. If we choose the above options in the dialog 
window that is opened the following dedrogram obtained as it is shown in figure. 
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Figure 4.37: The hierarchical clustering dedrogram for model 2 

The result for hierarchical clustering is presented in figure 4.37 in which the 
verification is 76.706 %. To be more specific, two major clusters of oil samples are 
illustrated with a small third one that is contained from the more dissimilar samples 
in this model. 

 

4.3 Model 3 Calculation of nine geochemical indexes from Gasoline range 
The process that is followed in order to run the model 3 is very similar with the 
procedure steps that was followed in model 1 and 2. To be more specific, the next 
steps are followed for loading the data for gasoline range:  

First of all, we must load the values of chromatographic peak areas for the gasoline 
fraction from the Excel file that are existed in the spreadsheet with name 
Complete_Gasoline_out in Excel file All_Devonian_data.xlsx.  

Continuing, the next step is the calculation of nine geochemical indices that were 
described in chapter 3.3. This obtained with the run of Calc_gasoline_ratios.m 
MATLAB file.  

In MATLAB environment and especially in the workspace section we have created 
the following variables: Labels cell array that contains the sample names. The Wl 
that is a cell array containing the variable names and finally the dataset X is a 9 X 146 
matrix that has the values of nine geochemical indices that were created from the 
chromatographic peak areas for the gasoline fraction for each variable and sample as 
illustrated in figure 4.38. These indexes are: K1, A, B, C, I, F, R, U, H. 
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Figure 4.38: The workspace section with the importing variables for model 3 

The next step in pretreatments is the normalization of the 9 variables that contains 
the gasoline range indices with the MATLAB function norm_variables_0_1 () in the 
range of 0 to 1 for all samples. 

In the final step, with the use of the available option pre_scaling_0_1 () to normalize 
the 146 samples in the range of 0 to 1. The result of this pretreatment is that we take 
for the nine indices variables, values between 0 and 1 for all samples. 

 

4.3.1 PCA analysis for model 3 
In order to perform Principal Component Analysis, we run the option PCA_analysis () 
in the section Analysis at the interface of the chemometric program and we take the 
following results. 

 

Figure 4.39: Plot of the two major principal components for model 3 

In figure 4.39 is shown the plot of the first two major principal components. In this 
picture illustrated a clear enough separation for our samples in two distinguish 
clusters with some samples that have a little extreme values. These samples are the 
following: NL01823, LL02080, DL01821, LL01827, GL01277, NL01658 and NL01420. 
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Figure 4.40: The subplot of five principal components of model 3 

The figure 4.40 depicts in four subplots, the first principal component versus the 
second, third, fourth and fifth principal component for all samples in our data. As is 
mentioned in previous figure we have a clear enough separation in subplot PC#1 
versus PC#2 and in subplot PC#1 versus PC#3. The above clear separation is not 
continuing in subplots PC#1 versus PC#4 and PC#1 versus PC#5.  

 

Figure 4.41: The subplot for five principal components with different color for each formation of 
model 3 
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The figure 4.41 illustrates in four instances, the first principal component versus the 
second, third, fourth and fifth principal component for all our data but in this figure 
each color depict different formations (For mapping see table 4.1).  

The plot of the first principal component in the space of longitude and latitude 
coordinates of our samples is shown in figure 4.42. 

 

Figure 4.42: Plot of the first principal component of PCA analysis vs the geographical location of the 
samples. 

Continuing, figure 4.43 presents the plot of the second principal component 
according to the latitude and longitude coordinates of our samples. 

 

Figure 4.43: Plot of the second principal component of PCA analysis vs the geographic location of the 
samples. 
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Figure 4.44: Original variable loadings for the first five principal components from the model 3 

The original variable loadings are presented in figure 4.44. In this subplot we have 
four instances that depict the original variable loadings for the first principal 
component versus the original variable loadings for the second, third, fourth and 
fifth principal component. As it is shown the R index is very significant for the scores 
of first principal component and U and H indexes for the scores of second principal 
component. 

 

Figure 4.45: Percentage of variance explained of each principal component 
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Figure 4.45 reveals the contribution of each principal component in the total 
variance that are explained from the PCA model. As it is shown the first PC explains 
87% of variation and the second PC explains 5% of the remaining variation.  

 

4.3.2 Kernel PCA for model 3 
In order to perform Kernel Principal Component Analysis, we run the option 
Kernel_pca_final () in the section Analysis at the interface of the chemometric 
program and we take the following results. 

 

Figure 4.46: Plot of the two major kernel principal components for model 3 

The figure 4.46 depicts clearly two different trends in our dataset. With the label 
names are the samples which are represented the first trend. The samples that are 
constructed the first trend have the following range in values for PC1: -0.5 to 0.6 and 
-0.8 to 0.1 for the second principal component. In second trend the samples have 
the same values in first principal component and in second PC: -0.4 to 0.1. 
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Figure 4.47: The subplot of five kernel principal components of model 3 

The figure 4.47 illustrates in four subplots, the first kernel principal component 
versus the second, third, fourth and fifth kernel principal component for all our data. 
Two distinguish trends in kernel principal components are existed especially in 
subplot Kernel PC1 versus kernel PC2. 

 
Figure 4.48: The subplot for five kernel principal components with different color for each formation 

of model 2 
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The figure 4.48 depicts in four instances, the first kernel principal component versus 
the second, third, fourth and fifth kernel principal component for all our data. In 
addition to, in this figure each color depict different formations (For mapping see 
table 4.1). 

The plot of the values of first kernel principal component in the space of longitude 
and latitude coordinates of our samples are presented in figure 4.49. 

 

Figure 4.49: Plot of the first principal component of PCA analysis vs the location of the samples. 

Continuing, figure 4.50 illustrates the plot of the second kernel principal component 
according to the latitude and longitude coordinates of our samples. 

 

Figure 4.50: Plot of the second kernel principal component of KPCA analysis vs the location of the 
samples 
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4.3.3 Silhouette – k-means for model 3 
With the use of the available option Silhouete () at the interface of the chemometric 
program in the section of clustering, we get a k-means clustering using two, three, 
four and five clusters. The k-means clustering is repeating five times for each case. 
This is achieved with the use of replicates as an argument in kmeans MATLAB 
function. 

In table 4.5 we summarize the results that are taken: 

k-means clustering Best Total sum of 
distances 

Average silhouette value 

K=2 35.0922 0.3953 
K=3 26.2149 0.4612 
K=4 21.5088 0.4423 
K=5 18.4307 0.4741 

Table 4.3: Summary of k-means clustering for model 3 

The silhouette plots for K=2, K=3, K=4 and K=5 are shown in following figure. 

 

Figure 4.51: Silhouette plots for k=2, k=3, k=4 and k=5 clusters for model 3 

We see that in the case of five clusters we have the mostly large silhouette values 
and few negative values in clusters one, three, four and five. A one-number 
summary in order to describe the performance of each clustering, is the average of 
the silhouette values. The five cluster solution has an average silhouette value of 
0.4741 and this value is the maximum among the others cases. Thus it is an indicator 
that the grouping into five clusters using k-means is better than the one with two or 
three or four groups. 
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In figure 4.52 the plot of the first two Principal Components (PCs) of k-means 
clustering, for the case of k =5 for our dataset of 146 oils are presented with 
different color for samples members that belong to a different cluster: 

 
Figure 4.52: The plot of the first two PCs of k-means clustering for k=5 of model 3 

 

4.3.4 Clustering for model 3 
In order to perform clustering, we use the option clustering () at the interface of the 
chemometric program in the section of Clustering. If we follow the same procedure 
as this in model 1 and 2. Thus firstly select clustering based on samples and secondly 
use the Find Best choice in window dialog the following results are obtained: 

c = 

    0.6895    0.8198    0.8251    0.6905    0.7883    0.5061    0.6959 

    0.7394    0.8331    0.8282    0.5510    0.8161    0.6180    0.6558 

    0.6278    0.7520    0.7609    0.6770    0.7251    0.4515    0.7221 

bestLinkage = 2 

bestDistance = 2 

The explanation of which is that the best metric for distance is the City Block and the 
best linkage method is the Average. If we choose the above options in the dialog 
window that is opened the following dedrogram obtained as it is shown in figure 
4.53. 
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Figure 4.53: The hierarchical clustering dedrogram for model 3 

The result for hierarchical clustering is presented in figure 4.50 in which the 
verification is 83.308 %. Clearly the result of clustering is a very big group of sample 
oils and secondly a big enough cluster of oil samples. It is important to mention a 
very small group of five oil samples that we could consider as outliers. 

 

4.4 Model 4 Calculation of seven indexes from saturated fraction  
The process that is followed in order to run the model 4 is very similar with the 
procedure steps that were followed in model 3. To be more specific, the next steps 
are followed for loading the data from the saturated fraction:  

First of all, we must load the values of chromatographic peak areas for the saturated  
fraction from the Excel file that are existed in the spreadsheet with name 
Complete_Saturate in Excel file All_Devonian_data.xlsx.  

Continuing, the next step is the calculation of seven geochemical indices that were 
described in chapter 3.3. This obtained with the run of Calc_sat_ratios.m MATLAB 
file.  

In MATLAB environment and especially in the workspace section we have created 
the following variables: Labels cell array that contains the sample names. The Wl 
that is a cell array containing the variable names and finally the dataset X is a 7 X 146 
matrix that has the values of seven geochemical indices that were created from the 
chromatographic peak areas for the saturated fraction for each variable and sample 
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as illustrated in figure 4.54. These indexes are: Pr/Ph, Pr/nC17, Ph/nC18, CPI25-33, 
nC24+/nC24-, nC19/nC31, R22. 

 
Figure 4.54: The workspace section with the selected variables for model 4 

The next step in pretreatments is the normalization of the 7 variables that contains 
the saturated range indices with the MATLAB function norm_variables_0_1 () in the 
range of 0 to 1 for all samples. 

In the final step, with the use of the available option pre_scaling_0_1 () to normalize 
the 146 samples in the range of 0 to 1. The result of this pretreatment is that we take 
for the seven indices variables, values between 0 and 1 for all samples. 

4.4.1 PCA analysis for model 4 
In order to perform Principal Component Analysis, we run the option PCA_analysis () 
in the section Analysis at the interface of the chemometric program and we take the 
following results. 

 

Figure 4.55: Plot of the two major principal components for model 4 
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In figure 4.55 is shown the plot of the first two major principal components. In this 
picture illustrated a clear separation for our samples in three distinguish clusters. 
The first cluster contains the labeled samples with values in first principal 
component in range of 0.5 to 1.3 and values in second principal component in range 
of -1 to 0.2. The second cluster contains the unlabeled samples and the third that is 
the final cluster consisted of the labeled samples with values in first principal 
component in range of 1.5 to 2 and values in second principal component in range of 
-0.2 to 1. 

 

Figure 4.56: The subplot of five principal components of model 4 

The figure 4.56 depicts in four instances, the first principal component versus the 
second, third, fourth and fifth principal component for all samples in our data. As we 
mention in previous figure we have a clear separation in subplot PC#1 versus PC#2 
and in subplot PC#1 versus PC#3. The above clear separation is not continuing in 
subplots PC#1 versus PC#4 and PC#1 versus PC#5. 
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Figure 4.57: The subplot for five principal components of model 4 with different color for each 
formation  

The figure 4.57 illustrates in four instances, the first principal component versus the 
second, third, fourth and fifth principal component for all our data but in this figure 
each color depict different formations (For mapping see table 4.1).  

The plot of the first principal component in the space of longitude and latitude 
coordinates of our samples is shown in figure 4.58. 

 

Figure 4.58: Plot of the first principal component of PCA analysis vs the geographical location of the 
samples. 
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Continuing, figure 4.59 presents the plot of the second principal component 
according to the latitude and longitude coordinates of our samples.  

 

Figure 4.59: Plot of the second principal component of PCA analysis vs the location of the samples. 

The Keg River samples in location coordinates of longitude and latitude have values 
greater than 1.4 in first principal component and below zero for the second principal 
component as illustrated in figures 4.58 and 4.59. 

 

Figure 4.60: Original variable loadings for the first five principal components from the model 4 
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The original variable loadings are presented in figure 4.60. In this subplot we have 
four instances that depict the original variable loadings for the first principal 
component versus the original variable loadings for the second, third, fourth and 
fifth principal component. As it is shown the R22 index is very significant for the 
scores of first principal component and Ph/nC18, Pr/nC17 and CPI_25_33 indexes for 
the scores of second principal component. 

 

Figure 4.61: Percentage of variance explained of each principal component 

Figure 4.61 reveals the contribution of each principal component in the total 
variance that is explained from the PCA model. As it is shown the first PC explains 
88% of variation and the second PC explains 5% of the remaining variation. 
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4.4.2 Kernel PCA for model 4 
In order to perform Kernel Principal Component Analysis, we run the option 
Kernel_pca_final () in the section Analysis at the interface of the chemometric 
program and we take the following results. 

 

Figure 4.62: Plot of the two major kernel principal components for model 4 

The figure 4.62 depicts clearly enough three different families in our dataset. For the 
first group the values for KPC1 are in the range of -0.6 to -0.2, and for the KPC2 are in 
the range of -0.8 to -0.3. For the second group the values for KPC1 are in the range of 
-0.3 to 0.1, and for the KPC2 are in the range of -0.4 to 0.4. For the final third group 
the values for KPC1 are in the range of 0.1 to 0.6, and for the KPC2 are in the range 
of -0.5 to 025. 
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Figure 4.63: The subplot of five kernel principal components of model 4 

The figure 4.63 illustrates in four instances, the first kernel principal component 
versus the second, third, fourth and fifth kernel principal component for all our data. 
Three distinguish clusters in kernel principal components are presented especially in 
subplot Kernel PC1 versus kernel PC2. 

 

Figure 4.64: The subplot for five kernel principal components of model 4 with different color for each 
formation  
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The figure 4.64 depicts in four instances, the first kernel principal component versus 
the second, third, fourth and fifth kernel principal component for all our data. In 
addition to, in this figure each color depict different formations (For mapping see 
table 4.1). 

The plot of the values of first kernel principal component in the space of longitude 
and latitude coordinates of our samples are presented in figure 4.65. 

 

Figure 4.65: Plot of the first principal component of PCA analysis vs the geographical location of the 
samples. 

Continuing, figure 4.66 illustrates the plot of the second kernel principal component 
according to the latitude and longitude coordinates of our samples. 
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Figure 4.66: Plot of the second kernel principal component of KPCA analysis vs the geographic 
location of the samples 

The Keg River samples in location coordinates of longitude and latitude have near 
zero values in first and second principal components according to figures 4.65 and 
4.66. 
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4.4.3 Silhouette – k-means for model 4 
With the use of the available option Silhouete () at the interface of the chemometric 
program in the section of clustering, we get a k-means clustering using two, three, 
four and five clusters. The k-means clustering is repeating five times for each case. 
This is achieved with the use of replicates as an argument in kmeans MATLAB 
function. 

In table 4.4 we summarize the results that are taken: 

k-means clustering Best Total sum of 
distances 

Average silhouette value 

K=2 36.9291 0.3903 
K=3 26.7421 0.4915 
K=4 20.9558 0.4851 
K=5 18.2235 0.4190 

Table 4.4: Summary of k-means clustering for model 4 

The silhouette plots for K=2, K=3, K=4 and K=5 are shown in following figure. 

 

Figure 4.67: Silhouette plots for k=2, k=3, k=4 and k=5 clusters for model 4 

We see that in the case of three clusters we have the mostly large silhouette values 
and few negative values in clusters one and three. A one-number summary in order 
to describe the performance of each clustering, is the average of the silhouette 
values. The three cluster solution has an average silhouette value of 0.4915 and this 
value is the maximum among the others cases. Thus it is an indicator that the 
grouping into three clusters using k-means is better than the one with two or four or 
five groups. 
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In figure 4.68 the plot of the first two Principal Components (PCs) for k-means 
clustering, for the case of k =3 for our dataset of 146 oils are presented with 
different color for samples members that belongs to a different cluster: 

 
Figure 4.68: The plot of the first two PCs of k-means clustering for k=3 of model 4 

4.4.4 Clustering for model 4 
In order to perform clustering, we use the option clustering () at the interface of the 
chemometric program in the section of Clustering. If we follow the same procedure 
as this in model 3. Thus firstly select clustering based on samples and secondly use 
the Find Best choice in window dialog the following results are obtained: 

c = 

    0.6880    0.8101    0.8103    0.7088    0.7855    0.6457    0.7724 

    0.7085    0.7992    0.8101    0.6916    0.7872    0.6847    0.7393 

    0.6149    0.7907    0.7899    0.6607    0.7981    0.7687    0.7091 

 

bestLinkage = 3 

bestDistance = 1 

The explanation of which is that the best metric for distance is the Euclidean and the 
best linkage method is the Centroid. If we choose the above options in the dialog 
window that is opened the following dedrogram obtained as it is shown in figure 
4.69. 
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Figure 4.69: The hierarchical clustering dedrogram for model 4 

The result for hierarchical clustering is presented in figure 4.69 in which the 
verification is 81.03 %. Three separate groups of sample oils are illustrated. The first 
group contains the majority of samples with the second one taking almost the 
remaining samples. But fifteen samples have significant different behavior and are 
cluster in a new third group.  
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4.5 Summary of the results 
Model 1 uses the peak areas of the gasoline range chromatograms. Principal 
Component Analysis does not show a clear separation between the oil samples. 
Some samples have a very different behavior in contrast to the majority of the 
remaining. These samples are the following: LL02224, NL02162, LL02177, EL01820, 
NL02080, LL01828 and AL01556.  The results of kernel principal component analysis 
are very close to the results of the linear principal component analysis. The k-means 
clustering reveals with higher possibility the existence of two clusters. Finally 
hierarchical clustering dedrogram indicates the existence of four major clusters. 

Model 2 uses the peak areas of the saturated fraction chromatograms. As in model 1 
PCA does not provide a clear separation between oil samples, except for the major 
deviations in the following Nisku samples: NL01641, NL01645, NL01644, NL1647 and 
NL01655. Kernel PCA technique reveals a significant different behavior for the 
following ten samples: AL01556, EL02219, AL01144, NL01143, NL02224, KL01680, 
NL01641, NL01645, NL01644 and NL01420. K-means show two separate groups of 
oils. Similarly the hierarchical clustering depicts two major clusters of oil samples.. 

Model 3 is based on nine geochemical indices from gasoline range components. The 
Principal Component Analysis provides sufficient separation between the samples 
into two clusters. The following samples are characterized as ‘extremes’ according to 
PCA model: NL01823, LL02080, LL01821, LL01827, GL01277, NL01658 and NL01420. 
The R index mainly distinguishes the samples along the first principal component 
(PC1) while U and H indices are important for the second principal component (PC2). 
Hierarchical clustering depicts clearly a big group of oils, while a second group is also 
shown together with several outliers. 

Finally, model 4 is based on seven geochemical indices from the saturated fraction 
components. The Principal Component Analysis technique gives three distinct 
clusters. The R22 index mainly distinguish the samples along  the first principal 
component (PC1) while the ratios Ph/nC18, Pr/nC17 and CPI_25_33 index are 
important for the second principal component (PC2). The kernel PCA identifies three 
different groups of oils. This result is compatible with the result of hierarchical 
clustering. 
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4.6 Conclusion 
The models 1 and 2 did not provide a clear classification of oils. Principal Component 
Analysis in model 3 reveals two groups of oils. Hierarchical clustering gives a 
compatible result with PCA. The combination of silhouette statistic with k-means and 
the first two principal components of PCA from models 3 and 4 reveal clearly 
different behavior of the oil samples. This is a strong indicator of the existence of 
different oil families. The above combination of methods is a very promising and 
powerful tool for affiliation of oil’s families. The kernel PCA did not provide a 
different classification pattern compared to the conventional linear PCA.  

The gasoline range and the saturated fraction hydrocarbons carry significant 
geochemical information. The process of decoding it in our case found to be a 
difficult task possibly due to the significant compositional similarity of the oils. 
Further work should be carried out, including a more detailed analysis of 
compositional variations within each subgroup of the studied data set. Additionally 
the findings of this work have to be reevaluated taking into account the geochemical 
meaning of the compositional variables, used in the models. 
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        “Before you begin a thing, remind yourself that difficulties 

            and delays quite impossible to foresee are ahead. If you 

               could see them clearly, naturally you could do a 

                 great deal to get rid of them but you can’t. 

                    You can only see one thing clearly and 

                         that is your goal. Form a mental 

                             vision of that and cling to it 

                                 through thick and thin.” 

                                     Kathleen Norris 
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APPENDIX 
The calculated ratios that based on the concentrations of selected compounds from 
gasoline range hydrocarbons are presented in the next table. These indices are used 
in the analysis of the model 3. 

 
Ratios for model 3  

      Sample K1 A B C I F R U H 
GL00794 0.9277 0.1873 0.1888 1.1415 0.4385 0.9824 4.6655 0.2247 24.5151 
GL00858 0.9618 0.1248 0.2967 1.5964 0.5639 1.5015 4.5238 0.6139 27.3379 
NL01143 0.8166 0.8495 0.8917 0.9986 0.4015 1.0043 4.1135 0.3143 21.1871 
AL01144 0.9346 0.0000 0.0617 0.9886 0.6732 0.7150 2.1203 0.2947 16.8838 
GL01277 1.0467 0.0353 0.0937 0.5990 1.9616 0.5081 2.0336 0.1724 20.5261 
NL01350 0.8808 0.0653 0.0737 0.1997 0.3102 0.1962 1.9811 0.1446 7.1890 
GL01354 0.8748 0.2928 0.1283 0.5104 0.6499 0.4561 2.1296 0.2421 14.4956 
NL01420 1.3926 0.2030 0.0082 19.2136 2.0109 17.0156 2.5558 0.0619 46.9568 
LL01453 0.9951 0.2447 0.5266 2.2165 0.8231 1.7918 4.2334 0.2106 35.4217 
AL01556 0.8936 0.0006 0.0333 1.6551 0.7571 0.9190 1.9669 0.4237 18.3902 
NL01557 0.7802 0.0717 0.0754 1.9335 0.3001 1.3142 3.4773 0.3413 18.7973 
NL01558 0.7942 0.5710 0.6999 1.5694 0.4992 1.4492 3.8659 0.4786 24.9728 
AL01559 0.9434 0.0176 0.1883 1.6875 0.6771 1.1579 2.6456 0.4216 22.6051 
NL01576 0.9935 0.1619 0.0891 1.7742 0.8269 1.4496 3.4794 0.3263 29.9297 
GL01598 0.9251 0.1829 0.5180 2.8888 1.2184 2.5240 4.2237 0.3049 40.4153 
NL01638 0.8893 0.0828 0.0385 0.9341 0.4717 0.6494 2.4292 0.2569 16.3913 
NL01639 1.0944 0.0950 0.0806 1.3575 1.4110 0.9381 2.2129 0.2155 25.7441 
NL01641 1.2903 0.1189 0.1798 3.0002 1.2671 2.2105 3.0652 0.2629 37.6798 
NL01644 2.5784 0.0553 0.6343 0.9678 1.6166 0.6323 2.6573 0.1715 26.2942 
NL01645 1.0242 0.1991 0.2851 1.8949 1.3383 1.5138 4.0593 0.1815 37.2240 
NL01646 1.1419 0.1142 0.1326 2.0427 1.2749 1.4642 2.7581 0.2705 31.6895 
NL01647 1.1426 0.2026 0.3760 2.1830 1.4107 1.8363 3.4410 0.1835 37.7313 
NL01648 1.0311 0.2369 0.0855 1.5003 1.5705 0.9995 2.1824 0.2677 25.5599 
NL01650 1.0307 0.1552 0.3054 1.9386 1.0877 1.5228 3.7227 0.1907 34.9181 
NL01651 0.8626 0.1599 0.2092 1.8657 0.6227 1.4836 4.3717 0.2322 30.9095 
NL01652 1.0486 0.1032 0.1008 1.2139 1.1388 0.8903 2.5116 0.1932 25.5423 
NL01655 0.9098 0.1288 0.1229 0.6827 0.5168 0.5954 3.1266 0.1710 18.6641 
NL01656 1.0183 0.1020 0.0806 0.9482 1.1823 0.7240 2.3858 0.1476 23.4057 
NL01658 1.1290 0.1422 0.2294 0.5583 2.3333 0.4741 1.8909 0.1373 20.0562 
AL01664 0.9973 0.2866 0.1016 1.7112 0.9503 1.6383 5.1102 0.3780 36.3595 
NL01667 1.0195 0.1418 0.0731 1.4855 0.8856 1.2786 4.0275 0.4476 30.1105 
KL01676 0.9130 0.0697 0.0925 1.1878 0.4676 0.9626 3.8920 0.1980 23.0483 
KL01677 0.9206 0.0836 0.0833 1.1830 0.4933 0.9576 3.5923 0.1752 22.7223 
KL01679 0.9175 0.0621 0.0669 1.2639 0.4972 1.0042 3.6839 0.1848 23.3728 
KL01680 0.9236 0.0724 0.0648 1.2816 0.5147 0.9973 3.4562 0.1890 22.9452 
KL01684 0.9155 0.0485 0.0505 1.2756 0.4838 0.9879 3.6347 0.2088 22.7619 
KL01686 0.9253 0.0787 0.0827 1.1329 0.4935 0.9443 3.5844 0.1656 22.6501 
KL01687 0.9473 0.1211 0.2322 1.0868 0.5631 0.8933 3.4813 0.1727 23.2499 
KL01688 0.9267 0.0652 0.0682 1.1800 0.4979 0.9436 3.4592 0.1775 22.3311 
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KL01690 0.9175 0.0933 0.1005 1.1504 0.5023 0.9783 3.8449 0.1526 23.9104 
KL01691 0.9233 0.1440 0.1035 1.0805 0.4890 0.9090 3.5884 0.1716 22.3160 
KL01692 0.9117 0.1331 0.0969 1.1186 0.4595 0.9002 3.5926 0.1810 21.6907 
KL01693 0.9179 0.1611 0.1106 1.1062 0.5140 0.9829 3.8796 0.1217 24.4104 
NL01810 0.8859 0.0375 0.0223 0.5534 0.3992 0.3450 1.4883 0.2197 9.1400 
EL01816 0.8556 0.4031 0.3221 1.2678 0.4042 1.0542 3.5712 0.3076 20.5812 
EL01819 0.8370 0.3528 0.2512 1.5537 0.3472 1.2238 3.5480 0.2990 19.8980 
EL01820 0.8345 0.3579 0.2695 1.2565 0.4306 0.9646 2.9628 0.4544 18.0999 
EL01821 0.8342 0.6041 0.4168 1.2553 0.5032 1.0946 3.1691 0.3069 21.2610 
LL01822 0.9173 0.1138 0.0488 0.6416 0.6549 0.4382 1.5056 0.3894 11.7847 
NL01823 0.8931 0.0716 0.0507 0.4380 0.3267 0.3016 1.0713 0.3127 6.1917 
LL01824 0.9753 0.1209 0.1659 1.3534 0.6049 0.9825 3.4840 0.3104 24.1326 
LL01825 0.9001 0.3376 0.2526 1.1907 0.6681 0.9206 2.8366 0.3949 21.0841 
LL01827 0.9652 0.0390 0.0485 0.6365 0.6454 0.4714 2.1852 0.1732 15.8352 
LL01828 0.8636 0.1755 0.0837 1.3961 0.5476 0.9379 2.1471 0.3554 17.2983 
NL01831 0.9053 0.2186 0.1558 0.9212 0.4618 0.7051 2.9167 0.2595 17.9687 
LL01832 0.9736 0.0346 0.0215 0.9577 0.5415 0.5581 1.8451 0.3246 14.0378 
NL01833 0.8819 0.3914 0.2939 1.3837 0.5059 1.1737 3.6003 0.2806 23.7788 
LL01834 0.8322 0.3396 0.2445 1.3544 0.3355 0.9684 2.9650 0.3769 16.3648 
NL02032 0.9823 0.2832 0.3266 0.9820 0.6098 0.8525 4.1238 0.1995 25.4050 
LL02034 0.9281 0.3874 0.3719 0.9200 0.4925 0.8631 4.8087 0.1499 25.5189 
LL02035 0.9706 0.4235 0.3511 1.1818 0.5707 1.0431 4.4071 0.1374 27.7110 
LL02038 0.9540 0.3103 0.3682 1.1674 0.5172 1.0062 4.1904 0.2172 25.4704 
LL02039 0.9478 0.3306 0.3691 1.1647 0.4964 0.9630 4.0188 0.2199 24.2291 
LL02040 0.9440 0.0755 0.0557 1.0294 0.4559 0.7036 2.6601 0.3778 16.8972 
LL02041 0.9385 0.2710 0.4030 1.1807 0.4967 0.9769 3.8578 0.3041 23.5760 
LL02042 0.9536 0.3644 0.5666 1.0544 0.5024 0.9283 4.5727 0.2044 25.5186 
NL02043 0.9105 0.0443 0.1909 1.1253 0.4543 0.8553 3.5651 0.2779 20.7915 
NL02044 0.9150 0.0230 0.0936 1.0851 0.5035 0.8484 3.6040 0.2602 21.7083 
NL02045 0.9376 0.0357 0.0890 1.2885 0.5968 1.0000 2.9898 0.3435 22.1000 
NL02077 0.9729 0.2545 0.1872 1.5388 0.5339 1.1622 3.7203 0.4220 24.2481 
NL02078 0.9624 0.2419 0.1429 1.2926 0.5060 1.0356 3.8353 0.3767 23.4572 
NL02079 0.9676 0.2167 0.1459 1.3419 0.5173 1.0281 3.5924 0.3978 22.8150 
LL02080 0.8295 0.3440 0.1204 0.3885 0.4012 0.3595 1.6077 0.3423 8.8982 
LL02081 0.8444 0.2826 0.1949 1.0206 0.4367 0.7818 3.0334 0.3508 17.4250 
LL02082 0.8521 0.2873 0.1082 0.9810 0.5102 0.7743 2.8064 0.2393 18.1940 
LL02084 1.0004 0.4538 0.3537 1.5778 0.7287 1.3221 3.3589 0.3713 27.0558 
NL02086 1.0105 0.3806 0.2816 1.7375 0.7024 1.2964 3.0980 0.4854 25.1188 
LL02098 1.0080 0.1169 0.0859 1.5643 0.7211 1.1485 3.4974 0.3584 26.2177 
EL02099 0.9821 0.1030 0.0507 0.8642 0.4810 0.6060 2.4081 0.3472 15.3781 
LL02100 0.8402 0.3850 0.2660 1.4481 0.6909 1.2893 3.8091 0.3650 26.4915 
NL02103 0.9621 0.2875 0.1890 1.3816 0.5615 1.1549 3.9848 0.3389 25.6598 
GL02106 1.0918 0.2463 0.2436 1.2432 1.1146 1.1426 4.5529 0.4499 30.9909 
NL02108 1.0337 0.1454 0.3739 1.2521 0.8397 1.1797 4.8243 0.4115 30.4813 
EL02109 1.0015 0.1904 0.1233 1.1218 0.6582 0.7485 2.9183 0.4423 19.9378 
KL02110 0.9259 0.0564 0.0367 0.9502 0.4360 0.6806 2.6553 0.2938 16.2643 
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GL02112 0.9134 0.0667 0.0597 0.8122 0.5339 0.5558 2.2081 0.2428 15.3336 
NL02151 1.0098 0.2571 0.1903 1.2042 0.8116 1.0743 4.2865 0.2535 29.2643 
LL02152 0.8611 0.3171 0.2003 0.9131 0.3893 0.8401 4.1054 0.2746 20.3008 
LL02153 0.8721 0.3216 0.2489 0.9804 0.4156 0.8795 3.9370 0.2543 20.8577 
NL02154 0.9825 0.2065 0.1573 1.3650 0.5798 1.0997 3.9103 0.3262 25.5029 
NL02155 0.9862 0.2376 0.1685 1.3302 0.6376 1.1453 4.1377 0.2571 27.6334 
NL02156 0.9624 0.1624 0.0817 0.9170 0.5457 0.7757 3.4982 0.2309 21.5622 
EL02157 0.9576 0.2636 0.1927 1.2205 0.5158 1.0521 4.3084 0.2826 25.3259 
NL02158 0.9618 0.2790 0.2203 1.1796 0.5338 1.0402 4.6407 0.2330 26.6091 
EL02159 0.9450 0.3140 0.1900 1.1234 0.5168 1.0084 4.6151 0.2079 26.1436 
LL02160 0.9501 0.1878 0.1165 0.9374 0.5112 0.8005 3.6890 0.2446 21.6332 
NL02161 0.9581 0.2412 0.1597 1.1858 0.5384 1.0206 4.0826 0.2290 25.2343 
NL02162 0.9784 0.2879 0.1929 1.3404 0.8200 1.2548 4.1406 0.1245 31.5836 
NL02163 0.9721 0.1652 0.0886 1.1776 0.6723 0.9741 3.5719 0.2940 24.7763 
NL02164 0.9850 0.1802 0.1245 1.2333 0.7268 1.0826 3.6602 0.2368 26.9491 
NL02165 0.9842 0.2376 0.4437 1.2238 0.7303 1.0880 3.8570 0.2063 27.7400 
NL02166 0.9965 0.2008 0.1495 1.2026 0.7539 1.0306 3.2641 0.2193 25.7218 
NL02167 0.9895 0.1880 0.0984 1.1692 0.7257 1.0083 3.3902 0.2506 25.4651 
NL02168 0.8175 0.4817 0.2825 0.8891 0.4264 0.7971 3.1122 0.2531 17.9548 
LL02169 0.9627 0.3259 0.1627 1.4057 0.6368 1.2517 4.2186 0.2014 28.8723 
EL02170 0.9740 0.2076 0.1147 1.3453 0.6109 1.0923 3.4208 0.3144 24.5017 
LL02171 0.9463 0.2597 0.1568 1.1835 0.6086 1.0942 4.1470 0.2238 26.9824 
LL02177 1.0676 0.3353 0.4205 1.2086 1.1152 1.1829 5.7370 0.2940 34.9503 
LL02178 1.0599 0.1733 0.1995 1.3214 1.4239 1.2372 3.8160 0.1846 33.8402 
LL02182 0.9494 0.2873 0.1317 1.1732 0.5413 1.0113 3.8992 0.2184 24.7493 
LL02183 0.9650 0.2358 0.1864 1.5618 0.6521 1.3165 3.8710 0.2712 28.0666 
NL02184 0.9391 0.2363 0.0080 0.9724 0.5654 0.8145 3.0409 0.2384 20.7530 
NL02190 0.9555 0.4127 0.2315 1.2801 0.6231 1.1578 4.0041 0.1977 27.4210 
LL02191 0.9732 0.2380 0.1660 0.9135 0.5998 0.7732 2.7124 0.2208 19.9010 
LL02192 0.8233 0.5750 0.4080 1.3540 0.6825 1.2446 4.0379 0.3154 26.8311 
LL02196 1.1469 0.3859 0.3289 1.1541 1.3434 1.0837 3.0201 0.2313 29.7509 
NL02197 1.1359 0.3782 0.3344 1.4476 1.3383 1.3938 3.7229 0.2281 34.5698 
LL02198 1.0638 0.2012 0.1243 1.5880 1.1053 1.3882 3.3928 0.2355 31.5787 
NL02199 0.8487 0.4876 0.3222 1.1330 0.4061 0.9317 2.9297 0.2971 17.8185 
NL02200 0.9378 0.4410 0.3325 1.3261 0.5284 1.1758 4.3470 0.2829 26.4465 
NL02201 0.9492 0.3279 0.1892 1.3347 0.5331 1.0987 3.7295 0.3452 24.0028 
NL02202 0.9214 0.3874 0.2443 1.2289 0.5109 1.0869 4.4097 0.2597 25.7331 
NL02203 0.9214 0.4216 0.1696 1.0544 0.5318 0.9523 3.9441 0.1689 24.3273 
LL02205 0.7787 0.9918 0.3322 0.9175 0.6305 0.9480 4.5908 0.1659 25.9012 
LL02206 0.8223 0.4849 0.2763 1.1366 0.6576 1.0157 3.4478 0.3110 23.2509 
NL02207 0.9435 0.0834 0.0539 0.6721 0.4026 0.5144 2.7679 0.2893 14.7768 
NL02208 0.9079 0.1042 0.0777 0.6251 0.4507 0.5689 3.6066 0.1308 18.8382 
LL02209 0.9365 0.0543 0.0511 0.6972 0.4613 0.5621 2.7774 0.2244 16.4697 
LL02210 0.8950 0.1393 0.1622 0.7907 0.3387 0.6381 3.5909 0.2981 16.4990 
LL02211 0.8898 0.3734 0.1771 0.6526 0.3913 0.6224 3.9992 0.0762 19.3326 
NL02212 0.8671 0.2413 0.1793 0.6207 0.3491 0.5707 4.1786 0.1165 18.0290 
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LL02213 0.8288 0.2407 0.2100 0.6746 0.2979 0.5585 2.7675 0.2026 12.8964 
LL02215 0.8384 0.2565 0.2068 0.7565 0.3785 0.7006 4.1143 0.1145 19.5528 
EL02219 0.8879 0.4650 0.5139 1.2001 0.6668 0.9020 2.5738 0.4091 19.8267 
NL02220 0.8428 0.4473 0.4634 1.2509 0.4445 1.0432 3.4021 0.4110 20.1745 
EL02221 0.8835 0.4349 0.3442 1.2373 0.5015 0.9668 2.7760 0.3571 19.1378 
GL02223 0.8323 0.3967 0.2564 1.0801 0.6188 0.8820 2.6309 0.3699 18.8353 
LL02224 0.7900 5.0582 1.0104 0.7017 0.5615 0.7372 5.3396 0.1011 24.8135 
NL02225 0.8339 0.5008 0.3828 1.1855 0.4578 0.9762 3.0135 0.4452 18.6703 
NL02226 0.8346 0.4228 0.2729 1.0015 0.4445 0.8415 2.9145 0.4522 17.2177 
GL02254 0.8946 0.1134 0.0959 1.0065 0.4616 0.8332 3.6581 0.1876 21.2346 
KL02255 0.8914 0.0807 0.0969 1.0610 0.4904 0.9207 3.9062 0.1589 23.2246 
GL02257 0.8948 0.0115 0.0231 1.2059 0.7371 1.0695 2.6293 0.3254 21.7858 
GL02290 0.8833 0.0984 0.2076 0.7693 0.4364 0.6739 3.7875 0.2321 19.1561 
LL02291 0.8754 0.2491 0.1750 0.6331 0.3590 0.5401 3.0593 0.2178 14.7658 
 

The calculated ratios that based on the concentrations of selected compounds from 
saturate fraction hydrocarbons are presented in the next table. These indices are 
used in the analysis of the model 4. 

 
Ratios for model 4 

     Sample Pr/Ph Pr/nC17 Ph/nC18 CPI25-33 nC24+/nC24- nC19/nC31 R22 
GL00794 1.6477 0.7245 0.5133 1.0793 0.4695 4.6056 1.0144 
GL00858 1.3586 0.6834 0.6273 1.1080 0.4363 6.3139 1.0394 
NL01143 1.1140 1.1254 1.1193 1.0892 0.5364 2.4613 0.9825 
AL01144 1.1701 1.4952 1.4915 0.9541 0.4496 3.5011 1.0501 
GL01277 1.6742 0.6456 0.4465 1.0143 0.2754 8.3020 1.0262 
NL01350 1.3845 1.1292 0.9341 1.2413 0.2943 10.9406 0.9827 
GL01354 1.2972 0.6333 0.5597 1.0898 0.2997 8.9641 1.0028 
NL01420 0.7204 0.0400 0.0775 1.0787 0.0287 16.0000 0.9673 
LL01453 1.3078 0.5577 0.4930 1.0919 0.2214 14.3138 0.9319 
AL01556 1.2242 1.9459 2.4674 1.1303 0.1666 16.0000 1.0659 
NL01557 1.4470 1.3298 1.0386 1.1329 0.3341 8.8325 0.9441 
NL01558 1.2005 1.2820 1.4099 1.1945 0.2715 10.9984 1.0162 
AL01559 0.9867 0.6820 0.7419 0.9867 0.2299 16.4164 0.9709 
NL01576 1.3565 0.5091 0.4790 0.9415 0.2341 13.6064 0.9813 
GL01598 1.1510 0.5066 0.5644 0.9602 0.2082 11.7938 1.0218 
NL01638 1.5153 1.0284 0.7633 1.0555 0.2630 13.2169 0.9764 
NL01639 1.5752 0.4847 0.3712 1.1057 0.1795 15.4156 0.9729 
NL01641 0.9312 0.0865 0.1076 0.9865 0.0934 16.0000 0.8823 
NL01644 3.3488 0.2052 0.0951 0.8499 0.0188 16.0000 0.9788 
NL01645 2.2880 0.6492 0.4744 1.2500 0.0089 16.0000 0.8873 
NL01646 1.6280 0.3177 0.2403 1.1164 0.1525 24.4153 0.9612 
NL01647 1.9264 0.0541 0.0353 1.1202 0.0988 40.1585 0.9420 
NL01648 1.7211 0.3797 0.2676 1.1169 0.1907 14.2481 0.9648 
NL01650 1.5685 0.3708 0.2774 1.1080 0.1698 16.4359 0.9555 
NL01651 1.4464 0.8606 0.6544 1.0845 0.2564 15.0345 0.9993 
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NL01652 1.5214 0.5557 0.4249 1.0581 0.2217 11.9785 0.9848 
NL01654 1.6794 0.5996 0.4415 1.1308 0.2166 11.3271 0.9759 
NL01655 1.5338 0.8765 0.6578 1.0356 0.2651 11.5703 0.9757 
NL01656 1.5759 0.5646 0.4248 1.0768 0.2269 11.4742 0.9904 
NL01658 1.7961 0.5103 0.3481 1.0784 0.1687 17.8718 0.9786 
AL01664 0.9749 0.4896 0.7170 1.0370 0.3335 6.8375 1.0218 
NL01667 1.0031 0.4963 0.7213 1.0227 0.3460 6.5735 1.0272 
KL01676 1.5413 0.8689 0.6591 1.0391 0.2609 9.7611 0.9682 
KL01677 1.4197 0.8729 0.6638 1.0440 0.4307 4.9291 0.9968 
KL01679 1.5368 0.8506 0.6527 1.0381 0.2963 8.6423 0.9862 
KL01680 1.1563 0.8562 0.6674 1.1697 0.5741 4.3915 1.0117 
KL01684 1.3636 0.8230 0.6730 1.0562 0.4584 4.3999 0.9960 
KL01686 1.4789 0.8515 0.6490 1.0561 0.4508 3.9134 0.9911 
KL01687 1.5076 0.8806 0.6751 1.0385 0.3531 6.4919 0.9882 
KL01688 1.5224 0.8457 0.6656 1.1447 0.3640 6.2763 0.9825 
KL01690 1.4138 0.7894 0.6457 1.0516 0.3864 5.5271 1.0194 
KL01691 1.5194 0.7970 0.6235 1.0769 0.2786 9.3176 0.9866 
KL01692 1.5216 0.8431 0.6850 1.0365 0.3001 8.2874 0.9875 
KL01693 1.4694 0.8424 0.6597 1.0421 0.4206 4.6062 1.0035 
NL01810 1.4855 1.0249 0.7012 1.1760 0.3316 7.7868 0.9986 
EL01816 1.1598 1.2194 1.1354 1.1572 0.4679 4.1442 0.9911 
EL01819 1.1952 1.4059 1.2805 1.1539 0.4743 3.8691 0.9774 
EL01820 1.0325 1.1170 1.1741 1.1177 0.4327 4.0042 0.9806 
EL01821 1.0875 1.0916 1.1536 1.1187 0.4119 4.4855 0.9992 
LL01822 0.7641 1.0142 1.4924 1.0104 0.3743 5.9417 1.0196 
NL01823 1.2015 1.3167 1.2547 1.1421 0.4911 3.2874 0.9735 
LL01824 1.3201 0.6323 0.5250 1.1338 0.3066 9.8376 0.9998 
LL01825 0.7223 1.1709 1.8102 1.0419 0.4374 4.1587 1.0192 
LL01827 1.2366 0.7155 0.6272 1.1151 0.3065 11.8256 0.9980 
LL01828 0.5317 0.8498 1.7434 0.9664 0.4338 4.5060 1.0541 
NL01831 1.5269 1.0435 0.8048 1.1671 0.2959 7.9939 0.9730 
LL01832 1.3669 0.7757 0.6529 1.1470 0.3160 6.8652 0.9828 
NL01833 1.0836 1.1386 1.1810 1.1583 0.4468 3.6429 0.9974 
LL01834 1.4157 1.4529 1.2479 1.0658 0.4033 4.9461 0.9765 
NL02032 1.4718 0.6709 0.5662 1.0333 0.3455 6.2654 0.9834 
LL02034 1.5256 0.6743 0.5483 1.0146 0.3482 7.1533 0.9827 
LL02035 1.4821 0.6147 0.5958 1.0617 0.3885 6.0975 1.0167 
LL02038 1.4738 0.7232 0.6204 1.0556 0.3374 7.4672 1.0082 
LL02039 1.4634 0.7035 0.5890 1.0454 0.3549 6.2440 0.9992 
LL02040 1.4583 0.6988 0.6007 1.0259 0.3636 6.8145 1.0189 
LL02041 1.4603 0.6863 0.5769 1.0670 0.3308 7.6655 1.0079 
LL02042 1.4829 0.6943 0.5946 1.0439 0.3289 8.3973 0.9741 
NL02043 1.4296 0.8435 0.7221 1.0879 0.3734 5.6240 1.0010 
NL02044 1.4594 0.8424 0.7286 0.9874 0.3411 6.6814 0.9663 
NL02045 1.4416 0.8381 0.7341 1.0007 0.3651 5.7804 0.9920 
NL02077 1.3791 0.6240 0.5345 1.0378 0.3918 6.3026 0.9837 
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NL02078 1.4330 0.6201 0.5326 1.0827 0.3268 10.5714 1.0101 
NL02079 1.4522 0.6193 0.5279 1.0497 0.3186 10.8950 1.0060 
LL02080 1.1281 0.8173 0.8523 0.9698 0.3688 6.1936 0.9838 
LL02081 1.2391 0.9753 0.8767 1.0273 0.3693 8.6803 1.0116 
LL02082 1.2988 0.9892 0.9189 1.0117 0.4099 5.2133 0.9956 
LL02084 1.1012 0.6612 0.7272 0.9926 0.3899 5.3607 1.0257 
NL02086 1.0963 0.6740 0.7087 1.0093 0.3549 9.3575 1.0151 
LL02098 1.2953 0.4790 0.4263 1.0495 0.3395 10.2446 1.0141 
EL02099 1.3885 0.5655 0.5019 1.0492 0.3315 13.1226 1.0032 
LL02100 0.7352 0.8899 1.4133 0.9434 0.4226 5.0665 1.0411 
NL02103 1.2117 0.5901 0.5140 1.0184 0.3967 6.8505 1.0202 
GL02106 1.5352 0.3282 0.2993 1.0262 0.3423 8.3233 1.0325 
NL02108 1.1813 0.5934 0.7803 0.9617 0.4018 7.5935 1.0459 
EL02109 1.5530 0.5846 0.4512 1.0787 0.3317 9.2553 0.9785 
KL02110 1.4507 0.8043 0.6852 1.0471 0.3855 5.9973 0.9869 
GL02112 1.3577 1.0063 0.8364 1.1248 0.3625 8.0242 0.9808 
NL02151 1.2519 0.4836 0.4964 0.9809 0.3385 9.5571 1.0065 
LL02152 1.0605 1.0552 1.3090 1.0206 0.4315 5.4546 1.0054 
LL02153 1.1213 1.0767 1.3393 0.9690 0.3878 6.2847 0.9739 
NL02154 1.4262 0.5632 0.4792 0.9973 0.3152 10.3310 1.0109 
NL02155 1.3182 0.4913 0.4610 0.9880 0.3520 8.2670 0.9822 
NL02156 1.5140 0.5569 0.4405 1.0124 0.3506 8.5202 1.0097 
EL02157 1.4682 0.5636 0.4695 1.0513 0.3748 7.8569 1.0164 
NL02158 1.4927 0.5426 0.4666 1.0276 0.3546 9.3498 1.0122 
EL02159 1.4316 0.5724 0.4987 1.0501 0.3646 7.4469 0.9838 
LL02160 1.3784 0.5668 0.5097 1.0050 0.3482 9.6630 0.9915 
NL02161 1.6366 0.6184 0.4599 1.0288 0.3254 10.5338 1.0138 
NL02162 1.2045 0.5025 0.4423 0.9890 0.4063 5.0392 1.0008 
NL02163 1.2574 0.5334 0.4820 1.0353 0.3180 8.0617 1.0032 
NL02164 1.2432 0.5205 0.4776 1.0074 0.3847 4.8145 0.9848 
NL02165 1.2160 0.5056 0.4792 1.0233 0.3663 4.9926 0.9839 
NL02166 1.2621 0.5206 0.4763 0.9969 0.3026 9.2813 0.9689 
NL02167 1.2297 0.5267 0.4923 1.0746 0.3152 7.9464 0.9920 
NL02168 1.0630 1.0636 1.0692 1.0391 0.4354 4.5723 1.0132 
LL02169 1.3559 0.5922 0.4894 1.1525 0.2265 32.3788 1.0006 
EL02170 1.2307 0.5746 0.5218 1.1023 0.3119 10.8569 0.9961 
LL02171 1.3264 0.5798 0.5198 1.0260 0.3074 7.8153 1.0068 
LL02177 1.2636 0.2706 0.2997 1.0041 0.3337 6.6454 1.0087 
LL02178 0.7717 0.2645 0.3710 1.0155 0.3220 6.0700 0.9912 
LL02182 1.2877 0.6325 0.5765 1.0505 0.3427 6.9965 0.9995 
LL02183 1.3561 0.6167 0.5438 1.0268 0.2990 10.6386 1.0063 
NL02184 1.3329 0.6444 0.5743 1.0003 0.2925 10.1979 1.0117 
NL02190 1.2345 0.6267 0.5730 1.1113 0.3816 6.3608 0.9791 
LL02191 1.2759 0.6123 0.5558 0.9964 0.3137 10.7992 1.0129 
LL02192 0.7903 0.8618 1.2864 1.0409 0.2980 5.4513 1.0234 
LL02196 1.0355 0.2462 0.2655 0.9880 0.3485 7.0510 1.0118 
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NL02197 1.0098 0.2628 0.2794 0.9903 0.3392 6.9023 1.0163 
LL02198 1.3458 0.3562 0.3704 0.9875 0.3476 6.7741 1.0195 
NL02199 1.4177 1.2479 1.0740 1.0984 0.4396 5.7197 0.9693 
NL02200 1.2410 0.6663 0.5922 1.0165 0.3221 7.8139 1.0062 
NL02201 1.3313 0.6508 0.5693 1.0706 0.3513 7.4580 0.9951 
NL02202 1.3159 0.6677 0.5917 1.0998 0.3565 7.6491 0.9922 
NL02203 1.2950 0.6959 0.6075 1.0032 0.3446 8.3007 0.9877 
LL02205 0.7447 0.8771 1.3228 0.9599 0.3614 6.1208 1.0136 
LL02206 0.7823 0.9127 1.3296 1.0015 0.3746 5.4360 1.0234 
NL02207 1.3973 0.7283 0.6063 1.1260 0.3280 7.6400 0.9933 
NL02208 1.4858 0.7551 0.6242 1.0386 0.3762 5.6598 0.9866 
LL02209 1.3990 0.7335 0.6164 1.0317 0.3353 6.9950 1.0033 
LL02210 1.4029 0.9007 0.9030 1.0166 0.3459 7.0018 0.9791 
LL02211 1.4460 0.8791 0.9042 1.0666 0.3409 7.1659 0.9955 
NL02212 1.5212 0.9021 0.8977 1.0127 0.3288 7.2520 0.9748 
LL02213 1.4266 1.5371 1.2442 1.0557 0.3941 5.2827 0.9804 
LL02215 1.4974 0.9428 0.8100 1.0366 0.3412 6.0648 0.9628 
EL02219 0.6206 1.2177 1.9950 0.9070 0.4566 4.5596 1.0433 
NL02220 1.0283 1.0787 1.1111 1.0762 0.4360 5.9022 1.0043 
EL02221 0.7875 0.9526 1.6293 0.8985 0.4000 5.5684 1.0086 
GL02223 0.8158 1.1018 1.5176 0.9249 0.3624 5.7050 1.0137 
LL02224 0.8244 1.1863 1.5215 0.9742 0.3517 7.1881 1.0540 
NL02225 0.9640 1.1175 1.2482 0.9483 0.3371 9.6595 1.0044 
NL02226 1.0159 1.1246 1.2297 1.0029 0.3533 6.0579 1.0079 
GL02254 1.5430 0.7839 0.6207 1.0290 0.3769 7.6352 1.0292 
KL02255 1.4489 0.7909 0.6973 1.0503 0.3494 9.1854 1.0138 
GL02257 0.9428 1.1472 1.4093 0.9927 0.4582 4.4864 0.9925 
GL02290 1.3463 0.8254 0.7396 1.0339 0.3284 7.0811 0.9846 
LL02291 1.3939 0.7335 0.6064 1.0182 0.2942 8.6451 0.9714 
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