
A Lower Bound Theorem for Indexing Schemes and its Application to 
Multidimensional Range Queries * 

Vasilii Samoladas Daniel P. Miranker 
The University of Texas at Austin The University of Texas at Austin 

vsamQcs.utexes.edu miranker&s.utexas.edu 

Abstract 

Indexing schemes were proposed by Hellerstein, Koutsoupias 
and Fapadlmitriou [7] to model data indexing on external 
memory, Using indexing schemes, the complexity of index- 
ing is qunntified by two parameters: storage redundancy 
and access overhead, There is a tradeoff between these two 
parameters, in the sense that for some problems it is not 
poseiblc for both of these to be low. 

In this paper we derive a lower-bounds theorem for ar- 
bitrary indexing schemes. We apply our theorem to the 
particular problem of d-dimensional range queries. We first 
resolve the open problem of [7] for a tight lower bound for 
2-dimensional range queries and extend our lower bound to 
&dimensional range queries. We then show, how, the con- 
struction in our lower-bounds proof may be exploited to de- 
rive indexing schemes for d-dimensional range queries, whose 
asymptotic complexity matches our lower bounds. 

1 Introduction 

In the last decade, the relational database paradigm has 
been extended in numerous ways. Here we are concerned 
with the introduction of new data models and query lan- 
guages and the implications on indexing methods. We selec- 
tivcly mention geographical information systems, abstract 
data types and object data models, constraint databases, 
temporal databases, and on-line analytical processing. In 
these new contexts, the typical indexing methods of rela- 
tionnl dotabases, B-trees and hashing, are generally con- 
sidered inadequate [18]. Thus, there is a renewed need to 
dcvclop a deeper understanding of data structures and al- 
gorithms to speed operations on external memory. 

Batabase extensibility necessarily includes extensible de- 
vclopment of index mechanisms. Engineering approaches 
comprising parameterized components and/or libraries of 
composablc components are demonstrating successes [S, 31. 
In rclatcd work, at least one effort is underway to gener- 
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ate such a system from formal specifications [2]. This ef- 
fort, though it started in the database domain, has focused 
on main-memory data structures and admits, relative to 
databases, simple cost models. The database problem is 
more challenging, because it involves a tradeoff between two 
antagonistic aspects; storage redundancy, and access over- 
head. 

In this paper, we adopt the model of inclezing schemes, 
proposed in [7]. Indexing schemes are not data structures, 
as they do not model the problem of searching for the data. 
They only model the (spatial) locality issues that arise. It is 
assumed that for any given query we can determine, with- 
out additional I/O, the particular disk pages that we have 
to access in order to answer it. Keeping this abstraction 
in mind, consider the problem of indexing N elements on a 
hard disk, where each disk page can hold B elements. Ide- 
ally, we would like our index to consume $$ disk pages, and 
be able to answer any query Q by reading only [$$I disk 
pages where ]QI is th e number of objects returned by the 
query. In reality, for some types of queries this is not pos- 
sible. Assume that some particular index occupies rQ disk 
bIocks, and can answer queries by reading at most A [$$I 
disk pages. We identify r as the storage redundancy, and A 
as the access overhead for this index. 

Our main theorem, the Redundancy Theorem, provides 
lower bounds for the storage redundancy P , given a desired 
access overhead A and the block size B, for any indexing 
ProfJem. Our approach is combinatorial in nature. The re- 
sults are reminiscent of the A’l”-complexity results in VLSI 
theory [ll]. The main argument in A5”e-complexity, con- 
sists of two parts: a geometric separation theorem, and a 
concept of communication complexity, or “information con- 
tent” of a digital circuit, modeled as a boolean function. In 
the domain of indexing schemes, geometric separation cor- 
responds to properties of disk pages, viewed as sets of fixed 
size. Communication complexity characterizes the particu- 
lar type of indexing workload we study (multi-dimensional 
range queries, set inclusion queries etc.). 

Our results identify an analog of a geometric separa- 
tion theorem. To date we have only partially succeeded 
in characterizing workloads in a general manner, with re- 
spect to their intrinsic complexity. Thus, our Redundancy 
Theorem will sometimes only yield trivial lower bounds. 
However, it allows us to derive a number of interesting re- 
sults. First, we use it to prove the conjecture of Hellerstein, 
Koutsoupias and Papadimitriou for a worst-case trade-off of 
r = n(log B/log A) for Zdimensional range queries. Then, 
we extend this result to the d-dimensional case, where we 
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show a lower bound of r = s1 (( $$d-l). Also, we demon- 
strate that our technique for deriving lower bounds can of- 
ten be “reveracdn to derive optimaI indexing schemes, and 
for the cnsc of d-dimensional range queries we show r = 

0 (ck$Y)* Finally, we discuss some open issues, and 
relate our results to recent developments in the area of in- 
dcxing, 

2 Related Work 

Our work continues on the work of HelIerstein, Koutsou- 
piaa and Papadimitriou, presented in [7]. That work was 
In turn motivated by the work of Hellerstein, Naughton 
and Pfcffer on the Generalized Search ‘IYee [8] (also known 
as GIST). GiST is an extensible indexing structure, orga- 
nized as a balanced search tree. In their discussion of in- 
dcxing issues, the authors stated the need for a “theory of 
indcxability”, a formal framework that would ‘I... describe 
whcthcr or not trying to index a given data set is practi- 
cal for a given set of qUe&E.” Previous work on index- 
ing data structures concentrated on the study of specialized 
problems, The first problem-independent insight on exter- 
nal dnta structures was offered in [7]. Continuing on this 
work, Koutsoupias and Taylor [lo] investigate the indexa- 
bility of P-dimensional data sets, and derive asymptotically 
tight indexing schemes for these sets. In particular, they 
identify the Fibonacci workload as a worst-case workload 
for 2-dimensional indexing. 

The research into external data structures has IargeIy 
been cxpcrimcntal. Theoretical work on the B-tree and 
its variants, as well as on externaI hashing, concentrated 
mainly on probabilistic analysis of performance, under var- 
ious distributions of the indexed data. For these problems, 
the worst-case asymptotic performance has been known for 
a long time. 

In the area of multidimensional indexing, data structures 
arc classified into two categories: those that partition the 
data Bet, such as R-trees and their variants, and those that 
partition the search space, In both categories, most of the 
proposed algorithms are based on heuristics, and have rel- 
atively bad worst-case asymptotic performance. See [S] for 
an ovcrvicw. 

This situation has been changing in the past few years, 
mostly due to the work of Kanellakis, and that of Vitter, 
and their collaborators. We attribute the renewed inter- 
est in the fundamental results of [9], where it was shown 
thnt indexing in new database paradigms, such as constraint 
databases, and databases with class hierarchies, can be re- 
duced to special cases of multidimensional range searching. 
In subscqucnt publications, [14, 13, 16, 171 there are pre- 
scntcd asymptotically cfflcient dynamic algorithms for 2 
sided, 3-sided and interval management queries. An optimal 
Rolution for the interval management problem has recently 
been found [l], We also mention the work of [l2], who use 
cost metrics similar to ours, to characterize the locality in 
external graph searching. 

Finally, WC should mention the recent results of Faloutsos 
and Kamcl [6], on characterizing the performance of multi- 
dimensional range queries on R-trees, using the fractal di- 
mension of real-world datasets. Their work provides only 
intuitive and experimental evidence, in contrast to our the- 
orctical approach, but we feel that there is a strong correla- 
tion between their empirical observations and our theoretical 
models, and WC will discuss this issue further in this paper. 

3 Definitions and Notation 

We now define indexing schemes, departing slightly from the 
notation of [7], and present some additional notation of our 
OWIl. 

3.1 Indexing Schemes 

Deflnition 3.1 A workload W is a tuple W = (I, Q), where 
I is a non-emptyfinite set, and Q is a set of subsets of I. 

For a workload W = (I, Q), the elements of I are called 
objects, and I is the object set. Also, the elements of & are 
called queries, and 8 is the query set. We also define N to 
stand for 111, the cardinality of I, and q to stand for ISI. 

In the terminology of combinatorics, W is a simple hy- 
pergraph, where I is the vertex set, and & is the edge set. 
We choose not to use this terminology, but instead we adopt 
terminology that is more natural for databases. 

Definition 3.2 An incleting scheme S for block size B, B 
an integer greater than 1, is a pair S = (IV, B), where W = 
(I, 9) is a workload, and B is a set of B-subsets of I, such 
that B covers I. 

We refer to the elements of B as blocks, and to B as the 
set of blocks. We refer to B as the block size, and IC stands 
for ISI. Again, notice that an indexing scheme is a simple, 
B-regular hypergraph with vertex set I. 

We use some standard notation throughout this paper. 
We wiIl use lower-case letters from the end of the alpha- 
bet, t, y,z to represent objects, letter 9, possibly with sub- 
scripts, to denote queries, and letter b, possibly with sub- 
scripts, to denote blocks. Also, we typically use U to repre- 
sent sets of blocks. 

3.2 Performance measures 

We now define the two performance me-es that we use, 
departing slightly from the notation of [7]. In the following 
definitions, let S = (W, B) be an indexing scheme of block 
size B on workload W = (I, Q). 

3.2.1 Redundancy 

Definition 3.3 The redundancy r(x) of object x is defined 
as the number of blocks that contain x: 

r(x) = I{b E B : 2 E b}I 

The redundancy r of S is then defined as the average of 
r(x) over all objects: 

r=$Cr(x) 
NI 

It is easy to see that IC = G. We also define the maximum 
redundancy i in S, as i = maxtEr r(x) 

3.2.2 Access Overhead 

Definition 3.4 A set of blocks U covers a query Q, i#Q C 
W 
Defhition 3.5 A cover set CQ for query Q is a minimum- 
size set of blocks that covers Q. 

Notice that a query may have multiple cover sets. 
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Doflnition 3.0 The access overhead A(Q) of query Q is 
dcjined as 

A(Q) = # 
B 

where Cq is a couer set for Q. 

Notice that 1s A(Q) < B. 
Informally, A(Q) models the normalized cost, of the query 

Q, in terms of block accesses. For a given query Q, [lQl/Bl 
is the minimum number of blocka required. A(Q) is the 
multiplicative overhead associated with Q for a particular 
indexing scheme. 

We now define the access overhead A of indexing scheme 
S, to be the maximum of A(Q) over all queries. 

f;Mtion 3.7 The access overheadA for indexing scheme 

A = gt; A(Q) 

3.3 Some Trivial Bounds and Trade-offs 

WC assume that the number of objects N is always much 
greater than the block size J3, although B can grow arbi- 
trarily large. 

For some indexing scheme S, the minimum possible re- 
dundancy is 1, when f3 is a partition of I, and the maximum 
is #($), when a = (i). For S having maximum redun- 
dancy, A is exactly 1, which is minimum. Also, for r = 1 it 
is easy to devise a problem where A = B, which is maximum 
(c45 & = (L),. 

We will not comment, further on the proposed framework, 
since it is thoroughly discussed in [7], 

4 The Redundancy Theorem 

WC now turn our attention to an analysis of the above model, 
that will lead us to the Redundancy Theorem. We first state 
and prove a set-theoretic result that is of central importance 
to our work. Note that this theorem is not specific to index- 
ing schemes, but is really a theorem in extremal set theory. 
The reader is warned that the notation does not, correspond 
to indexing schemes. 

Thoorom 4.1 Let S1, &, . . . , S, (a > 1) be non-empty fi- 
nite sets, Q = Sl U S2 U . . . US, be th& union, and L < 191 
be a positive integer. Let k denote the maximum integer 
such that there exist k pair-wise disjoint sets PI, Pz,. . . , Pk, 
ao that for all i, 1 < i < k, 

1, IPi] = L, and 

i?, Pi C Sj for some j, 15 j 5 a. 

or k = 0 if no such sets exist. Then, 

1 
Proof: We proceed by induction on a. For a = 1, the proof 
is trivial, Assume that the theorem is true for some a. Let, 
sl,&,“*, S,, S.+l be non-empty, finite sets. Let Q denote 
their union, and Q’ denote the union of the first a of them, 
Q’=&U&u , . . U S,. Finally, let k be defmed as in the 
theorem, for all a + 1 sets. 
We apply the induction hypothesis on Sl, &, . . . , So. Let 

k’ = JQ’I-O(L1) 1 L - If k’ > 0, there etist (at least) k’ dis- 

joint sets PI,. . . , Pk’, with IPil = L, each contained entirely 
in some set Sj, for j < a. Let P stand for their union, 
P=PlU...uPk/. IfkT=O,let P=0. 
Now, take U = Z&.1 n P, and V = So+l - U. Write 
IV1 = Ln f I, for n > 0 and 0 5 2 < L. We conclude 
that 

k>k’+n 

which implies 
Lk>Lk’+Ln 

Replacing Lk’, we have 

Lk>jQ’I-a(L-l)+-Ln 

But IQ1 = [Q’I + IS,+,1 - IQ’ n .%+I I. Replacing, we get 

Replack ISi. by PI f IVI, 
Lk 2 IQ1 - IUI - IV1 -I- IQ’ n Sat11 - a(L - 1) + Ln 

Replacing Ln by IV1 - 1 we get 

Lk 2 lQl-IUI-lvl+IQ’n&ll-a(L-1) 
-tlV( -l 

= IQI-IUl+IQ’nS,,+ll-a(L-1)-Z 

Finally, note that IV1 5 IQ’ n So+1 I, which gives us 

Lk>jQI-a(L-l)-Z>JQI-(a+l)(L-1) 

from which the theorem follows.0 
Although not necessarily obvious from the above induc- 

tive proof, there is a simple way of constructing sets PI,. . . , Pk 
given sets Sl , . . . , So. We proceed in a steps, processing set 
Sj in step j. In step j, we use elements of Sj to create 
as many disjoint sets P< as possible, taking care not, to use 
again any elements of Sj used by previous steps. At every 
step, we “ignore” at most L - 1 elements of Sj, where “ig- 
nore” means that we do not use these elements to construct 
Pi sets. At the end, we will have “ignored” a total of at 
most a(L-1) elements of Q, thus the result of the theorem. 

The inequality in the theorem is tight. For example, the 
equality applies in the case where sets Sj are disjoint, and 
ISjl mod L = L- 1 

We now apply the above theorem to the domain of in- 
dexing schemes. First, we define a new concept, flakes. 

Definition 4.2 Let S = (W,B) be an indexing scheme on 
workload W = (I, Q). A j?ake is any set of objects F C I 
such that for some query Q and some block b, F E Q n b. 

We now have the following lemma on flakes: 

Lemma 4.1 (Flaking Lemma) Let S be an indexing scheme, 
A be the access overhead, and 2 < E < 2 be a real num- 
ber. Then, any query Q with IQ1 > I3 ulifi contain at least 
(E - 2)Ay pair-wise disjoint flakes of size LSJ. 

Proof: Choose a cover set, for Q, say CQ = {bl,. . . , b,}, of 
sizea. Let&,..., S,bedeiinedasS;=Qnb;forl<i<a. 
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WC have a = A(Q) [yl < A [J#l. from Theorem 4.1 we 
know that the number k of flakes of size [SiJ is at least 

k > 

- 1 
IQ1 -'<lf$iJ -1) 

12% 1 > IQ1 -4lifd -1) IBI 
LcAJ 

> IQI-A(%+1)(&l) 
s 

> eAlQl -- 
B 

&, 
B 

= A(s-2)F 

The last inequality follows from 191 > B. 0 

Before WC proceed to prove our main theorem, we need a 
technical tool from extremal set theory, known as Johnson’s 
lemma: 
Lomma 4.2 (Johnson% lemma) LetA be afiniteset, and 
G,Sa, , , , , Sk be s&et8 of A, each of size at least alAl, such 
that the intersection of any two of them is of size at most 

PI4 VP < &, tile number of subsets k is at most of@. 

Proof: See [7] for a proof. 0 

WC arc now ready to state and prove our main theorem. 
Thoorom 4.3 (Redundancy Theorem) Let S be an in- 
dexing scheme, and QI, 92,. . , , QM be queries, such that for 
eucr~ i, 15 i ,< M: 

1, IQrl 2 B, and 

2, lQ1nQil<~for”IIj#irlljlM. 

Then, the redundancy ia bound by 

r>- E;2&lQil 
i-1 

uhm 2 < e < # is any real number such that 3 is integer. 

Proof: WC begin by discussing the role of parameter E. 
This pnrameter exists in the analysis for assuring that z 
1s integer, For the reader’s convenience, it may be assumes 
that e lies between 3 and 6 (provided that 3 > 6). There 
is no technical importance to parameter E, and our analysis 
would be better without it, but we were unable to remove 
it without seriously complicating the rest of our proof. 

WC will prove the lower bound in two steps. First, we 
compute the minimum number of flakes associated with 
queries Ql, Qz,, , , QM, Let this number be fr. Then we 
will compute the maximum number of fiakes associated with 
each block. Let this number be f2. Clearly, there will be at 
least fi/f2 blocks in t3. 

Step 1 Consider any query Qi. By the partitionin 
d lemma, this query is associated with at least (s - 2)A B 

distinct flakes of size 5. Let F be such a flake. F cannot 
be associated with some other query Qj, i # i, because if it 
were, then it would be a subset of Qj as well as of Q;, and 
thus IQ; n Qj[ 2 3 > &. We conchrde that 

fi =5-2,&++945Qil 

i=l i-1 

Step 2: Consider any bIock b, and Iet FI, F2,. . . , Fk be 
the flakes associated with this block. Since all these flakes 
are subsets of b, we upper bound the number of flakes I;, 
using Johnson’s lemma. Each flake Fi is of size &B. Also, 
for two distinct flakes Fi and Fj, i # j, IFi n Fjl < &B, 
by the following argument: If the flakes are associated with 
the same query, then they are disjoint. If the flakes are 
associated with different queries, then their intersection is 
bounded by the intersection of these queries. Thus, John- 
son’s lemma is applicable with o = A, and fl = h. 
It can easily be checked that fl < a*/(2 - a). Thus, we 
condude that 

f2 = - = 2eA 
; 

The proof is compIete, by the inequality IC = 3 1 k 
which simplifies to 

0. 

5 Lower bounds for d-dimensional range queries 

In this section we apply the Redundancy Theorem to d- 
dimensional range queries. First, we examine the case for 
24mensional range queries, and then we generalize to d 
dimensions. 

For any d 2 1, we define the d-dimensional range query 
workload, ‘R& whose object set is I = [l : t@ and whose 
query set is 

Q=([al :bl]x... X [ad : bd][l 5 Cl; 5 bi < fl} 

For this workload, N = nd. 

5.1 2-d range queries 

In order to apply the Redundancy Theorem, we must iden- 
tify queries Qr , 92, . . . , QM, each of size at least B, and with 
pairwise intersections at most B/~(EA)~. We consider only 
queries of size 2 x 3, for i = 0, 1, . . . ,log, B. For each 
aspect ratio, we will partition the n x n space, obtaining a 

zitp$y?he tf: 
= d(1-h log, B) queries of size B each. Before 

eorem, we compute parameter c. 
Let j and j’ be integers 0 5 j < j’ < log, B, and Qj and 

Qjl be queries of dimensions c’ x $ and $ x 5 respectively. 
Fig.1 depicts the setup. It is easy to see that for any j and 
j’, IQj n Qjtl,< $$5 s. TOILS, we take c = 2(eA)2. 



R&urc 1: Two rectangles of sizes 2 x $ and 2’ x 5, j < j’, 
intcrscctin~ at a maximum number of points -$$. 

We arc now ready to apply the Redundancy Theorem. 
From the theorem, 

E-2MB 
f 2 -- 

2e n2 

E e-2’ 
2~ n2 

B;(l flog, B) 
> 

= ~(l+I~g,B) 

1 y log, B 

e-2 106B =- 
2.5 log(2~~A~) 

and thus we have the C!(H) result conjectured by [7]. 

6.2 d-dimensional queries 

We can generalize the above technique to d-dimensional 
queries, We consider queries of size B, with dimensions c’l x 
da x , . , X Cid, for all nonnegative integer jr, jz, . . . , jd, such 
that Et,, h = log, B. For each sequence jr, jz, . . . , jd, we 
partition the d-dimensional cube into rid/B (hyper)rectangles, 
of dimensions & x & x , , . x c&. 

In order to select the appropriate value for c, we consider 
the size of pairwise intersections of rectangles with different 
dimensions. It is easy to see that c = am is applicable 
in this case also, guaranteeing that the intersection of any 
two rectangles will have size at most &. 

We also use the well-known fact that the number of dis- 
tinct sequences of d nonnegative integers, whose sum is n, 

is given by 

(cf. Bose-Einstein distribution). 
Thus, the total number of queries (each of size B) will 

be 

and for the redundancy we have 

For d a constant, the above quantity is a polynomial of de- 
gree d - 1. Thus, we have shown the following theorem: 

Theorem 5.1 For workload Rf, the storage redundancy is 
bound by 

I+= 
n(&+)+d-1 

d-l 
) =n ((g)d-l) 

6 Deriving Indexing Schemes 

We have seen that we can derive lower bounds for the stor- 
age redundancy by selecting as large a number as possible 
of queries with small pair-wise intersections. The process 
of selecting these queries depends on the “topology” of the 
workload in question (the term topology is used in an intu- 
itive manner). 

It is only natural to consider the merit of using a sim- 
ilar process for selecting blocks (instead of queries), in or- 
der to construct indexing schemes for a desired access over- 
head A. In this section we shall apply this idea to 7L& the 
d-dimensional range query workload. In the lower-bounds 
analysis of lz$, we considered queries of size B. In this 
analysis, we choose these queries to serve as the blocks. 

In order to facilitate our analysis, we provide the follow- 
ing simple fact: 

Proposition 1 Let n 2 1, and consider the intervals [0 : 
n - 11, [n : 2n - 11, [2n : 3n - 11,. . ., partitioning the natural 
numbers. Then, interval [a : b], 0 < a 5 b, of size s = 
b -a + 1, intersects at most [+I + 1 intervals. 

Proof: Left as an exercise to the reader.0 
We now consider workloads ?Z<, for some fixed d. For 

our analysis, we employ parameter c. For each sequence 
. , ~1~32,. . , , jd of integers, such that cl=, jk = log, B, we 

partition the d-dimensional mesh into blocks of dimensions 
cJlX&X... x &. Thus, we have a redundancy: 

r= 
log,B+d-1 

d-l > 
= 0 (log:” B) (2) 

We now have to compute the access overhead for this se- 
lection of blocks, and parameter c. Consider any query of 
dimensions X1 x X2 X . . . X Xd. Let 

Y=fIXi 
id 
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be the size of this query, Also, define a parameter X as 

A = (jyd 

Finally, WC define the scaled dimensions, kit 1 < i 5 d, as 

Notice that J&r 8i = B. 
WC will assume that a cover for our query consists only 

of blocks of fixed aspect, i.e. blocks of dimension 21 x & x 

e,e x & for llxcd jr, jz , . . . , jd. By applying Proposition 1, 
the number of blocks f will be at most 

But IXC~USC ny=, 8i = B, it is possible to choose j; so that 
WC have 

8i -&c foralli, l<i<d 

Thus, WC have 
f<(Xc+qd 

In the case where Xc 5 2, we have f 5 4d. Thus, we require 
that A 1 lid, Now, assume Xc > 2. In this case, 

Prom this we get that 

A = (2~)~ > 4d 

which glvcs, for c 12, 

Al/d 
c=- 

2 

By replacing this expression into Eq.2 we get the desired 
result, Thus, we have shown the following theorem: 

Thooram 0.1 For the Rd, workload, the redundancy of any 
optimal indexing scheme will be 

r= 
( 

@G%F3~d-po%E)d-1) 

for access overhead A 1 4d. 

Interestingly, this theorem imposes an absolute lower bound 
on the access overhead A > 4d. It is of course possible to 
achieve access overhead a&trarily close, or equal, to 1, and 
for these small values of A the lower bound on r still holds. 
However, it is not clear if the upper bound on r is achievable 
for small A. 
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7 Discussion and Future Work 

7.1 Multidimensional Range Queries 

Lower-bound results on indexing schemes imply lower bounds 
for the corresponding indexing problems. In general, this 
is not true for upper-bound results, because in indexing 
schemes we ignore the search problem that indexing data 
structures have to solve. 

For multidimensional range queries in particular, our re- 
suits provide the first lower bounds for indexing structures, 
for dimensions higher than 2. In particular, we have the 
following: 

Theorem 7.1 Any eztemal data structure that answers d- 
dimensional range queries in time 0 ([$$I) will consume 

q@% ) d4 B space. 
. . - ._ 

We believe this is the first lower bound on storage redun- 
dancy, for d > 2. However, this lower bound is probably 
very weak. 

For d = 2, there is a lower bound by Subramanian and 
Rameswamy 1161, of Sl ( $losr$~ N), for query I/O cost 

bounded by 0 (log5 N -I-$). Although stronger than that 
of theorem 7.1, even this is not tight. Elsewhere in these 
proceedings, Koutsoupias and Taylor [lo] show that loga- 
rithmic redundancy r = n(logN) is needed, if the access 
overhead is to be A < B. Also, slightly higher redundancy 
r = 4log(N/B) is suflicient for A 5 4, for any 2dimensional 
workload. Thus, the trade-off for Zdimensional workloads 
exhibits threshold behaviour. 

These results give rise to two fundamental open prob- 
lems. First, none of these results reveals the trade-off be- 
tween P and A, for given N and B. This is not a moot 
question, because the hidden constant in the r = sZ(log N) 
lower bound is extremely small, small enough to matter for 
reasonable values of N, and also it is not independent of 
B. Our Redundancy Theorem may be applicable to this 
problem, deriving interesting refinements to these complex- 
ities. The second open problem is that of extending these 
results to higher dimensions. In [lo] it is conjectured that 
redundancy r = O(logd-’ N) is required for d-dimensional 
workloads. 

Apart from the general problem of multidimensional range 
queries, our results on Rt are applicable in two other areas 
of recent interest: Multidimensional OLAP (MOLAP) [19] 
and external multidimensional arrays [15]. In MOLAP, the 
challenge is to materialize a datacube to disk, so that range 
queries can be answered efficiently. Usually, the datacube 
undergoes some compression, to improve space utilization. 
External multidimensional arrays are useful in scientific and 
engineering applications, when the (usually numeric) data 
does not fit into main memory. These types of data struc- 
tures are strongly relevant to indexing schemes, because they 
do not have a search component. Especially for arrays, work- 
load 77.: is a relatively accurate model for a d-dimensional 
(dense) array. It is not accidental that the ideas in [15] are 
similar to ours, and their experimental results are consistent 
with our theoretical predictions. 

7.2 Locality versus Search 

It has been said earlier that indexing schemes do not model 
the search problem of data indexing, but only the locality 
aspects that arise. However, the two issues are not unre- 
lated. Indeed, many indexing structures, such as a B-trees, 



R-trees etc, arc hierarchical. Consider such a hierarchical 
indexing structure. Each level in the hierarchical structure 
reflects the locality of the level under it. It seems quite likely 
that for such structures a recursive analysis may be carried 
out, where each recursive step of the analysis will employ 
locality arguments. 

In hierarchical structures for muItidimensional range queries, 
any particular level will employ Minimum Bounding Rect- 
an~lce (MBR) to aggregate the data in the level under it. 
The Russian Doll tree (RD-tree)[S] is a hierarchical structure 
for the indexing of arbitrary sets of integers. In correspon- 
dence with MBR, RD-trees employ rangesets, to aggregate 
the data from level to level. In both cases, the common fea- 
ture is a combination procedure: a set of MBRs combined, 
determine a minimal MBR subsuming them all. A set of 
rangesets can be combined to form a minimal rangeset sub- 
suming them, 

In our Redundancy Theorem, our basic combinatorial 
tool is flalces. Indeed, the Redundancy Theorem is a flake- 
counting theorem, It may be possible to refiue the definition 
of flakes, and devise a combinationprocedurefor (the refined) 
flakes, This approach may lead to results (and algorithms) 
on the performance of generalized hierarchical structures. 

7.3 Uniformity and Independence 

In a pioneering article, Faloutsos and Kamel [5] demon- 
strated experimentally that the performance of existing in- 
dcxing structures (R-trees) for multidimensional queries cau 
be accurately predicted from the fractal dimension of the 
indexed datasct. Their results strongly suggest the exis- 
tence of a theoretical average-case result, with the fractal 
dimension replacing the embedding dimension in the costs. 
A natural question is to examine whether there exists in 
fact a stronger, worst-case result of a similar nature. This 
approach will further allow us to model multidimensional 
queries better that R$ or the fibonacci workload does, ame- 
liorating the negative consequences of the results of [lo]. 

On this subject, the authors of [lo] state that a theoret- 
ical approach along these lines is not likely to succeed, and 
that in fact there is no relation between the fractal dimen- 
sion of a point set and its indexability. Based on their own 
results, they show that: 

1. Topological transformations that do not change the in- 
dexing properties of a set, such as stretching the em- 
bedding space selectively, can change the fractal di- 
mension of this set dramatically, and 

2. Topological transformations that do not change the 
fractal dimension of a set, such as rotation, change the 
indexing properties of the set quite dramatically. 

Although their arguments are irrefutable, we do not share 
the conclusions of [lo] that fractal dimension and indexabil- 
ity are unrelated, The arguments of [lo] are based in two 
implicit assumptions, an assumption on the definition and 
use of fractal dimension, and an assumption on the defini- 
tion of “indexability”. 

Agreeing on a definition of fractal dimension is crucial. In 
many occasions, implicit use of different definitions resulted 

, in contradictory results and caused much confusion [4]. The 
dcIlnition used in the experiments of Faloutsos and KameI 
is the box-counting fractal dimension, a standard approach 
for characterizing real, finite data sets. Although reasonable 
in an experimental setting, since it is easy to compute, it is 
probably not suitable for theoretical arguments. Indeed, the 

notion that by a single number we can characterize the com- 
binatorial properties of multidimensional indexing is rather 
far-fetched. But, going in the opposite direction could be 
very fruitful: determine a set of combinatorial conditions on 
problems, under which fractal dimension is relevant to in- 
dexiug. Then, evaluate these conditions experimentahy, for 
real datasets. We conjecture that such conditions, if found, 
will be applicable to the majority of real datasets. 

Our second point has to do with the definition of “in- 
dexability”. The results in [lo] suggest that the tradeoff be- 
tween redundancy and overhead changes dramatically when 
a It-dimensional data set is rotated. However, access over- 
head is a worst-case cost metric. Under au- average-case 
metric, such as the expected access overhead A, defined as 

i=l 

for appropriate weights wi, this may not be so. In fact, the 
experimental results of Falout_sos and Kamel can be seen as 
Monte_ Carlo estimations of A on real data sets. We argue 
that A is an equally interesting metric of ‘indexability”, as 
A is. Also, A is less biased than A in favor of small queries, 
in the sense that A is basically determined by queries of 
size close to the block size B, at least for multidimensional 
workloads. 

In conclusion, we believe that the arguments in [lo], al- 
though thought-provoking, do not support such a general 
claim, that the fractal dimension is unrelated to indexing. 
In fact, we conjecture that under appropriate assumptions 
and definitions, the fractal dimension can indeed determine 
indexing properties of datasets. This approach can be gen- 
eralized, by undertaking a study of topological properties of 
workloads that determine their indexability. The results of 
[12], which employ cost metrics similar to ours, are based 
on such topological properties for undirected graphs, and 
provide a good starting point for such an endeavor. 

8 Conclusions 

We have presented au analytical tool for indexing schemes, 
in the form of a lower-bound theorem for arbitrary indexing 
workloads, and we have demonstrated its utility by resolv- 
ing a number of open problems in multidimensional range 
queries. We have provided a theoretical analysis of locality 
in d-dimensional range queries, with matching upper and 
lower bounds on the redundancy vs. access overhead trade- 
off, and have provided useful insight into Iocality issues that 
arise in external data structures in general. 
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