N

0
\W\”

N T
ame, 51220

Mgy gigu 1o

2XEATAZMOZX APXITEKTONIKHE
ZYNOAOY ENTOAQN KAI
YAOITOIHXZHX VHDL ENOX
EITEEEPTAXTH VLIW

Ao tov

I'ewpyio MNamaddmovio

Amhwpatinn epyaoia tpog HEQIXY TANOWON TwV
novmobecewy yo ™y andxton tou TTVYLOL TOL

Hiextpovixod Mnyavixod s Muyavixod
Ynoloyotow

[ToAvteyveio Konne

NXoavia, 2002

EmAenwv xabnynmg :

Awoviotog [vevpatiegtoc

E€etaotny emtponn :
Awoviorog [vevpatigtoc
Anoatorog AdIac

I'ewpyroc Stapoving




© Copynght by George Papadopoulos,

2002



Instruction Set Architecture and VHDL Implementation
Design of a VLIW Processor

~ ABSTRACT

Historically we can notice a continuous increasing demand for more computing power,
both for general and for special purpose applications. Improvements in processor
performance come from two main architectural features: faster semiconductor technology
coupled with higher integration of components, and exploiting parallelism. Parallelism 1s a
key element in achieving high performance in processors, where different parts of the
computation should be executed in parallel. Some methods for exploiting parallelism
include pipelining and multiple processors. However, recent high performance processors
have depended on Instruction Level Parallelism (ILP) to achieve high execution speed. ILP
processors achieve their high performance by causing multiple operations to execute n
parallel using a combination of hardware and software techniques. Two particular types of
such processor styles are Superscalar and VLIW processors. VLIW and superscalar
implementations have many similarities while the basic idea is the same for both. They
both require an instruction stream analysis to exploit the available ILP. Their difference lies
on the fact that in superscalars this analysis mostly occurs in the hardware during run-time,
while in VLIW designs this is explicitly a compiler’s role. Thus, a VLIW implementation
achieves the same effect as a superscalar one, but the VLIW design is freed from the most
complex parts of high-performance superscalar design.

This thesis goal is the study of both the Superscalar and VLIW architectures, focusing
mostly on VLIW hardware and compiler issues, to define the ISA of a 4-way integer VLIW
processor, and to implement it in the VHDL hardware description language. Defining the
Instruction Set Architecture, in this processor design I include the basic design issues and
organization techniques of the VLIW architecture. It is organized in a five-stage pipeline,
and a complex bypassing network to handle resulted data hazards. In order to venfy the
correctness of the design, I created an assembler that translates an assembly code into
bytecode, which is used as data for the instructions memory. Furthermore, I developed a
software simulator of the processor that executes the same program bytecode. The VHDL
code was verfied using functional simulation, comparing the results with those of the
software simulator.



