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EXECUTIVE SUMMARY 

Due to rapidly rising energy prices in the global market and increased concerns about 

development sustainability, more and more countries have eagerly been looking into 

improving energy efficiency. Energy efficiency is considered an essential component of 

sustainable development policies, which seeks to achieve a well-balanced trade-off between 

economic growth and competitiveness, energy security, and environmental sustainability. 

Therefore, many governments all over the world have put energy efficiency on their policy 

agenda as a top priority issue. Thus, it is not surprising that, in recent years, the assessment of 

energy efficiency has attracted great interest among researchers. Many approaches and 

performance indicators have been proposed in literature to this end.  

Finding ways to evaluate and explain energy efficiency performance can contribute 

significantly to its improvement and thus move the world towards a more sustainable energy 

future. In pursuing this goal, this thesis performs econometric/statistical approaches, 

multicriteria decision aiding methods, multilevel models as well as efficiency analysis 

techniques for the energy efficiency analysis. In particular, the aim of this research is the 

evaluation of energy efficiency in 26 EU countries and ten industrial sectors in 23 EU 

countries over the period 2000-10 and 2000-09, respectively.  

In the first stage of analysis in which the energy efficiency in 26 EU countries is evaluated, 

we follow a two-stage approach based on Data Envelopment Analysis (DEA) and 

Multicriteria Decision Aiding approach (MCDA). The proposed approach considers energy 

efficiency in a multidimensional context, combining multiple energy consumption data, 

economic outputs and structural indicators. Firstly, DEA is employed under different 

modeling settings over the period 2000–10 to measure the relative efficiency of the countries 

and facilitate the identification of the sources of inefficiencies. Then, the DEA efficiency 

classifications are used as inputs to a MCDA approach constructing an operational model that 

combines energy efficiency with economic and environmental indicators. The proposed two-

stage DEA/MCDA approach can be easily used for benchmarking purposes, allowing for the 

formulation of a complete ranking of all countries under consideration, as well as the 

monitoring of the performance of a country over time using data solely at the country level, 

without having to resort to relative assessments in comparison to data from a set of peer 

countries.  

The results of the empirical analysis indicate that despite the considerable improvements 

achieved in terms of energy intensity, a more refined view of energy consumption and 

economic activity data shows that there is still much to be done to improve the actual energy 

efficiency of European countries. Additionally, the economic crisis of the past few years has 

had negative effects on energy efficiency. Furthermore, it is has been found that for European 

countries, the effect due to the consideration of the structure of their economic activity is 
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stronger than the effect due to the introduction of a breakdown by their energy mix. Taking 

into account the results of this study, policy makers could identify the main steps that should 

be implemented to improve the country’s energy efficiency. For example, the finding that 

service-oriented economies are more efficient than industry-oriented ones or the fact that 

renewable energy sources should gradually displace fossil fuels could help regulators design 

policies to support certain sectors of the economy or certain energy sources with the aim to 

improving energy efficiency.  

Next, we extend our research to evaluating the energy efficiency trends of ten energy-

intensive industries in 23 EU countries over the period 2000–09. Specifically, the 

performance of the construction, electricity, mining and quarrying, transport, food and 

tobacco, textiles and leather, pulp and paper, coke and chemicals, other non-metallic mineral 

and fabricated metal, machinery and equipment is examined. In the first stage, the DEA 

combined with the Malmquist Productivity Index (MPI) is performed to identify the energy 

efficiency trends and distinguish between the effects of efficiency and technology changes. In 

the second stage of our analysis, a two-level cross-classified multilevel modeling is applied to 

analyse the main drivers behind efficiency performance using a number of sector- and 

country- characteristics. In particular, the country-level factors include the market share of 

the largest generator in the electricity market, the energy taxes and electricity prices. For 

cross-sector differences the examined variables include the contribution of a sector’s gross 

value added to the total gross value of a country, the energy mix, the share of fossil fuels in 

total gross energy consumption, the real fixed capital stock to gross value added, the real 

fixed capital stock to number of employees and the productivity defined as the gross value 

added divided by the total hours worked by employees. The DEA results show that the pulp 

and coke are the most inefficient sectors, on average. Regarding the decomposition of the 

MPI, technology change is mainly responsible for the improvements achieved in most of the 

sectors. The two-level cross-classified model shows that the combination of sector and 

country levels is the most relevant in explaining the energy efficiency variance. It also shows 

that energy efficiency is higher for sectors that contribute more to the overall economic 

activity of a country (high contribution of sector value added to the total of the economy), as 

well as in a country with a diversified energy mix, and open and competitive energy 

production market.  

Overall, the evaluation models that are developed through this research are of major practical 

usefulness for monitoring, benchmarking and policy planning purposes. This thesis 

contributes to the available literature by providing not only energy efficiency estimates but 

also identifying the drivers behind the observed performance in EU countries and industries. 

Thus, the conclusions of this research can help policy makers take effective policy decisions 

for energy efficiency improvement at both the country and industry level. 
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CHAPTER 1  

Energy Efficiency - Definitions, Measurement  

and Policy Issues  

This chapter presents the theoretical framework of energy efficiency. The definition and 

benefits of energy efficiency are firstly discussed. Attention is then drawn to energy 

indicators as well as to the techniques of Index Decomposition Analysis (IDA) and Structural 

Decomposition Analysis (SDA) that are commonly used for energy efficiency measurement. 

A discussion about the barriers to energy efficiency, rebound effect and energy efficiency gap 

is also developed. Last but not least, the energy policies and measures needing adoption for 

promoting energy efficiency are presented.  

 

 

 

1.1 Definition of Energy Efficiency  

Undoubtedly, energy is of outstanding importance for satisfying the interrelated goals of 

modern societies providing directly or indirectly the fundamental source for almost all daily 

activities.  

As energy plays a vital role in many aspects of human life, it is considered a prime agent in 

the economic development and improvement of standards of living and overall social well-

being. Therefore, the meeting of energy demand is a pre-requisite for the satisfaction of 

societal needs as well as the maintenance of a certain level of human welfare.  However, 

energy use is dramatically increasing mainly due to the fact that the global population and 

energy needs are increasing hand-in-hand. Furthermore, after the second half of the twentieth 

century, the industrial revolution also contributed to more energy use. According to the U.S. 

Energy Information Administration - EIA (2014), energy consumption is expected to increase 

by 56% and worldwide carbon dioxide (CO2) emissions by 46% between 2010 and 2040. 

Thus, it comes as no surprise that increasing energy use is directly linked to the challenges of 

energy security and climate change facing the world today. Governments are increasingly 

aware of the urgent need to mitigate these challenges. To this end, their major policy interest 

is riveted on energy efficiency as it is considered a keystone to addressing these issues. The 

1973 Arab oil embargo and later the Iranian Revolution of 1979 played a decisive role in 

boosting energy efficiency (Sioshansi, 2013). Since then, many countries all over the world 
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have put energy efficiency on their policy agenda as a top priority. But, what is energy 

efficiency really?  

Energy efficiency came onto the world agenda because of its crucial effects toward attaining 

a sustainable energy future along with environmental sustainability. However, surprisingly, 

little attention has been given to defining and measuring energy efficiency (Patterson, 1996). 

There does not seem to be a single commonly-accepted definition.  

Energy efficiency is described in past research as maintaining or increasing the level of useful 

output or outcome delivered, while reducing energy consumption. According to EIA (1995) 

of US Department of Energy “increases in energy efficiency take place when either energy 

inputs are reduced for a given level of service or there are increased or enhanced services for 

a given amount of energy inputs”. Energy efficiency is “using less energy to provide the same 

service” or is “doing more with less” as described by the European Commission (EC) in its 

Green Paper on Energy Efficiency.  

In the Directive on energy end use efficiency and energy services (Directive 2006/32/EC), 

energy efficiency is defined as a “ratio between an output of performance, service, goods or 

energy, and an input of energy”. The report of World Energy Council - WEC (2010) implies 

that energy efficiency improvements refer to a reduction in the energy used for a given 

service or level of activity. The reduction in energy consumption is usually associated with 

technological changes, but not always since it can also result from better organization and 

management or improved economic conditions in the sector (non-technical factors). Also, 

efficiency can refer to how much useful energy we can get from an energy source and the 

efficiency coefficient is given by the ratio of the output energy to the input energy. 

Huntington (1994), Lovins (2004) and Boyd (2005) are some other relevant references that 

deal with the various definitions of energy efficiency.  

Energy efficiency is defined differently in international and national literatures. Even in 

specific scientific fields (e.g. engineering, economics, sociology, etc.) energy efficiency is 

interpreted in different ways. For engineers, energy efficiency is given by the ratio of the 

desired output (useful effect) to the required input (used resources) of any system. In 

economics (WEC, 2010), energy efficiency has a broader meaning: it encompasses all 

changes that result in decreasing the amount of energy used to produce one unit of economic 

activity (e.g. the energy used per unit of gross domestic product (GDP) or value added). In 

that case, energy efficiency is associated with economic efficiency and includes all kinds of 

technological, behavioral and economic changes that reduce the amount of energy consumed 

per unit of GDP. For energy efficiency experts, improving energy efficiency reflects the 
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results of actions that aim at reducing the amount of energy used for a given level of services 

(WEC, 2010). Consequently, different perspectives and ratios can be distinguished 

concerning energy efficiency. In particular, the ratio between the output of performance 

(service or goods) and the energy input as well as the ratio between the amount of energy 

consumption per unit of product (or output/feedstock) are the most commonly used notions 

for energy efficiency definition. The former ratio is the one that is usually used for defining 

industrial energy efficiency. In that case, the ratio is known as energy intensity if output is 

measured in economic units or as specific energy consumption (SEC) if measured in physical 

units.   

Energy efficiency is often confused with other terms such as productivity, conservation, 

savings, efficacy and effectiveness. Efficiency improvement does not guarantee productivity 

improvement. Efficiency is a necessary but not sufficient condition for productivity. More 

often, energy efficiency and energy conservation are used interchangeably in energy policy 

planning. Although both are referred to as the cheapest and cleanest sources of energy, there 

are some main differences. The most significant difference is that energy conservation means 

using less energy and is usually a behavioral change whereas energy efficiency implies 

meeting a given demand with a lower use of resources and is often a technological change.  

Energy savings and energy efficiency should also be differentiated. Energy efficiency refers 

to the technical ratio between the quantity of primary or final energy consumed and the 

maximum quantity of energy services obtainable (heating, lighting, cooling, mobility, and 

others), whereas energy savings addresses the reduction of final energy consumption, through 

energy efficiency improvement or behavioral change (Oikonomou et al., 2009).  

 

 

1.2 Benefits of Energy Efficiency  

Energy efficiency improvement has become a vital part of energy management and a shared 

policy goal of many governments. Government, industry, businesses and households can be 

influenced by energy efficiency at the financial, social and environmental level. Energy 

efficiency reduces energy costs, increases competitiveness, supports innovation and promotes 

welfare. Indeed, energy efficiency is widely recognized as the most cost-effective and readily 

available way of addressing numerous energy-related issues. Among others, ensuring 

sustainability in all aspects of economic, environmental and social development and reducing 

the detrimental impacts of CO2 emissions on the environment. It is also regarded as an 
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effective way for the reduction in greenhouse gas (GHG) emissions from fossil fuels to 

mitigate climate change as well. In particular, energy efficiency helps to reduce carbon 

emissions at the lowest cost. According to the Energy Efficiency Market Report 

(International Energy Agency - IEA, 2014a) a 40% reduction in GHG emissions can come 

from energy efficiency. Thus, energy efficiency is said to be along with renewable energy 

one of the “twin pillars” of any sustainable energy policy by decreasing overall energy 

demand and dependence on imported fossil fuels. In particular, energy efficiency has saved 

more energy than the total final consumption of any fuel in IEA countries. Based on IEA 

(2014a) estimates, the energy efficiency market amounts to more than USD 310 billion 

annually and is increasing over time.  

Figure 1 shows a list of the most prominent multiple benefits of energy efficiency (IEA, 

2014a). Although the list is not exhaustive, it describes the main socioeconomic outcomes 

that can arise from energy efficiency improvement. The myriad benefits from energy 

efficiency could also be categorized according to the nature or character of their impact, their 

temporal scale and the types of beneficiaries. 

 

 

 Figure 1.1: The multiple benefits of energy efficiency (IEA, 2014a). 

 

It is obvious that energy efficiency has the potential of influencing beneficially all aspects of 

society (at the individual, sectoral, national and international level). In particular, the 
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individual benefits include, among others, improved health and wellbeing, energy 

affordability and access, as well as increased disposable income. The job creation, lower 

energy-related public expenditures, energy security and macroeconomic effects refer to 

energy efficiency benefits on a national level. The industrial productivity, competitiveness 

and increased asset values are some of the sectoral benefits whereas the reduction of GHG 

emissions, moderation of energy prices and natural resource management are among the most 

important international benefits. Furthermore, the majority of these benefits can have 

immediate effect with long‐lasting results and operate in both developed and developing 

countries.  

 

 

 

1.3 Measuring Energy Efficiency  

1.3.1 Energy Efficiency Indicators 

Following the oil crisis of 1973 and due to the multiple benefits of energy efficiency at the 

national and global level, its evaluation and monitoring became an important part of energy 

strategy. On top of energy efficiency definition, measuring energy efficiency is also a high 

priority in energy policy. However, its measurement is an even more difficult task than 

defining it. Great efforts have been carried out and a number of energy efficiency indicators 

have been proposed for energy efficiency evaluation. The growing interest in addressing 

some of the most significant energy related issues on a national and global level, such as the 

energy security and global warming, also reinforced the development of energy efficiency 

and environmental indicators.  

 

 

 

1.3.1.1 Characteristics of Energy Efficiency Indicators 

Due to the fact that there is no single meaningful measure for efficiency performance across 

all countries and industries, many approaches and performance indicators have been proposed 

in the literature (Ang, 2004; 2006; Zhou and Ang, 2008a). Energy efficiency indicators are 

commonly used for a quantitative measurement of any efficiency change that takes place at 

the cross-country level as well as for international benchmarking.  
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Whenever an indicator is developed for measuring energy efficiency performance, the first 

question that should be addressed is the purpose that the indicator is supposed to serve. In 

particular, a different indicator is used for evaluating environmental, social, economic, or 

other aspects of energy efficiency because of the different characteristics and objectives that 

characterize each aspect. Furthermore, a decision regarding the formulation of an aggregate 

indicator or a more detailed indicator is required. Usually, the aggregated data are very rarely 

meaningful in monitoring energy efficiency trends, since they can give only a broad 

overview. Therefore, to build energy efficiency indicators, it is necessary to disaggregate data 

further, and to understand which sub-sectors or end uses drive energy consumption within 

each of the sectors. 

There are a number of difficulties when proposing and using an appropriate energy efficiency 

indicator. Firstly, there is often a limitation on the availability of data that are required for its 

development. Additionally, when international comparisons are desired, differences such as 

structural, behavioral, and economic characteristics of countries make it more difficult for 

developing comparative indicators. Some countries have different measures of energy, 

currencies, inflation, purchasing power parities and income accounting. Thus, even a simple 

indicator such as energy per GDP for cross-country evaluation is a tough assignment. 

Therefore, it is not easy to develop an indicator or a set of indicators that will truly represent 

only the changes in energy efficiency.  

Many researchers have analysed the criteria for the selection of appropriate efficiency 

performance indicators focusing on whether these are measurable, comparable and consistent 

(Jamasb et al., 2006; 2008; Vaninsky, 2006). It should be noted that a useful indicator, 

whether it is physical, monetary or qualitative, should be clear in definition as it can then be 

easily measured and compared over time. However, comparability may be problematic in 

practice, especially when the data is collected from different countries which are in different 

stages of economic development, institutional environment and regulatory system (Fang et 

al., 2009). It is better to express the indicators both in final and primary energy and use 

physical units rather than economic because by using physical units monetary fluctuations 

can be avoided from the energy efficiency analysis. It is also worth mentioning that indicators 

are only estimates. Therefore supporting information on factors affecting the changes needs 

to be examined in as much detail as possible for a meaningful understanding of energy 

efficiency performance. The development of energy efficiency indicators is only the first step 

in evaluating energy efficiency trends. They can also help in drawing conclusions regarding 

past and future trends in energy efficiency. However, a set of several indicators are needed 

http://www.thesaurus.com/browse/tough%20assignment
http://www.thesaurus.com/browse/tough%20assignment
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for an accurate energy efficiency evaluation as each indicator has its own characteristics, 

purpose and limitations.  

 

 

 

1.3.1.2 A Pyramidal Approach for Energy Efficiency Indicators 

Indicators built to understand trends in the consumption of a sub-sector or an end use could 

be more or less aggregated and sophisticated based on data availability. The indicators can be 

presented for each sector and then for each sub-sector or end use following a “pyramidal 

approach”. The energy indicator pyramid is portrayed as a hierarchy of energy indicators and 

it is often used for conceptualizing the energy efficiency level (Shipper, 1997; Asia Pacific 

Energy Research Centre - APERC, 2001; IEA, 2014b).  

The “pyramidal approach” (Figure 1.2) refers to the identification of sub-sectors or end uses 

that consume energy and the recognition of factors (e.g. economic, structural, etc.) resulting 

in possible changes on the way energy is consumed. It includes energy indicators from most 

detailed (the most disaggregated level) at the bottom of the pyramid, to least detailed at the 

top (the most aggregated level). Its main characteristic is that in each level the indicators are 

disaggregated and so a deeper analysis regarding the factors that affect energy efficiency is 

assessed. At a macro level (top of pyramid), economic ratios are used for measuring energy 

efficiency at a high level of aggregation (e.g. whole economy or sector). In particular, the 

ratio of energy consumption to GDP or to another macro-economic variable such as 

population is usually used for providing a general idea of the reasons behind energy 

consumption trends. However, this ratio is often affected by structural and activity effects and 

therefore leads to misleading conclusions. Therefore, more disaggregated indicators from 

sub-sectoral levels (lower levels in pyramid) are used for a safer evaluation of energy 

efficiency trends and a policy-relevant analysis on how to influence these trends. These 

indicators are based on calculations of techno-economic ratios such as energy consumption to 

activity measured in physical or consumption terms. The lower rows in the pyramid represent 

the sub-sectors or end uses of each sector and give detailed information about these. 

Although the bottom up approach gives a deeper understanding of the true energy efficiency 

trends it requires more data and more complex analysis to re-aggregate back up to a higher 

level.  
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Figure 1.2: Schematic representation of the IEA  

                          energy indicators pyramid (IEA, 2014b). 

 

 

 

1.3.1.3 Categories of Energy Efficiency Indicators 

Energy Efficiency Indicators (EEI) can be expressed in energy units (consumption of a sector 

or of an end use), in ratio terms (litres per 100 kilometres), as well as in percentage (share of 

the industry sector in total energy consumption). According to Patterson (1996), they are 

grouped into four categories: thermodynamic indicators, physical-thermodynamic indicators, 

economic thermo-dynamic indicators and economic indicators. Their main difference is 

based on the consideration of inputs and outputs and more specifically on the units used for 

their measurement. Nevertheless, all types of indicators can be used for measuring true 

energy efficiency.  

The WEC (2010) categorized the energy efficiency indicators into three types namely, 

techno-economic ratios, indicators of diffusion and economic ratios. Techno-economic ratios 

are used for energy efficiency evaluation at a disaggregated level (sub-sector or end-uses). In 

particular, energy consumption is related to an indicator of activity measured in physical 

terms or to a consumption unit. Indicators of diffusion are used for estimating the effect of 

energy efficient technology on a market whereas the economic ratios are the most commonly 

used indicators. The economic ratio, commonly known as energy intensity, is often used in 
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macro-level analysis for measuring energy efficiency at the level of the whole economy or of 

a sector (high level of aggregation). Energy intensity is defined as the ratio between energy 

consumption (measured in energy units) and indicator of economic activity (measured in 

monetary units at constant prices). Thus, it can be used to assess the effect of economic and 

technical driving factors such as energy prices, GDP and new technologies on energy 

consumption and CO2 emissions (de la Rue du Can et al., 2010). Energy intensity indicators 

can be also used to analyse historical trends, for benchmarking, examination of policy 

progress over time, and as input to economic and technological models. It is also known as an 

efficiency indicator because it is considered to be the reciprocal of energy efficiency. This 

means that a reduction in energy intensity may lead to energy efficiency improvement. 

However, due to the fact that energy intensity is influenced by factors that are not directly 

linked to “true” energy efficiency (e.g. economic structure, behavioral changes, energy mix, 

climate, etc.), energy intensity is more an indicator of “energy productivity” than a true 

indicator of efficiency (WEC, 2010). Moreover, although easily calculated, its interpretation 

is sometimes misleading. This is more obvious when it is used for cross-country comparisons 

mainly because of the possible informality in some countries‟ economic performance. 

There are two main categories of EEIs that have been widely used for evaluating energy 

efficiency at the sector and national level. These involve economic and physical indicators. 

Economic indicators, often referred to as Economic Energy Intensity (ECI) indicators, are 

based on monetary values and thus are defined as the energy demand per unit of sectoral 

value added or GDP. On the other hand, physical indicators (or Specific Energy Consumption 

(SEC) indicators) are calculated by the ratio of energy use (expressed in energetic units) to 

the amount of output expressed in physical units (e.g. ton of product). Of both, the former has 

gained more popularity mainly because economic data are more readily available than 

physical production data for energy efficiency comparisons. Nevertheless, ECI indicators 

present a difficulty in their interpretation as their value is affected by many factors (e.g. 

structural change, energy price change) other than energy efficiency. On the other hand, SEC 

indicators are characterised by higher reliability in energy efficiency evaluation and are most 

appropriate for measuring energy efficiency trends in energy intensive industries. SEC are 

widely used in industry for measuring the energy efficiency of different processes (Phylipsen 

et al., 2002; Siitonen et al., 2010). 

Energy efficiency indicators can also be categorized into two groups: macro-indicators used 

for measuring energy efficiency performance of an economy as a whole or in main sectors or 

sub-sectors and the micro-indicators used for energy efficiency evaluation at a micro-

economic level (e.g. firms or households). Furthermore, indicators that are used for analyzing 
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the energy efficiency performance and evolution are known as descriptive indicators whereas 

those that explain the factors affecting energy efficiency performance are called explanatory 

indicators.  

The development of EEIs for national energy efficiency monitoring has been attracting 

growing interest internationally (Ang, 2006). Many EEIs have been developed for measuring 

the impacts of various energy efficiency policies and making meaningful cross-sector and 

cross-economy comparisons. More specifically, many national energy agencies and 

international organizations such as IEA (1997; 2004; 2007; 2014b), APERC (2001), Energy 

Efficiency and Conservation Authority of New Zealand – EECA (2006), Natural Resources 

Canada – NRC (2006), and ODYSSEE (2009) have proposed a number of energy efficiency 

indicators and monitoring systems. In particular, the IEA has played a pioneering role in the 

development of EEIs for providing and analyzing information regarding energy consumption 

trends, assessing energy efficiency at a quantitative level and developing effective energy 

policies, among others. ODYSSEE is another database that contains more than 600 

comparable EEIs based on economic and physical variables. The ODYSSEE-MURE project 

has proposed the ODEX indicator that is most useful for measuring energy efficiency at an 

aggregate level as it is not affected by factors not related to energy efficiency (ODYSSEE, 

2009). ODEX is defined as a weighted average of sub-sectoral indices (e.g. industrial or 

service sector branches or end-uses for households or transport modes) of energy efficiency 

progress. A number of energy efficiency indicators have also been developed by the U.S. 

Department of Energy‟s Office of Energy Efficiency and Renewable Energy (DOE/EERE). 

In particular, the DOE/EERE has established a new system of indicators for assessing energy 

intensity trends over time at the national level. Enerdata also proposed around 50 indicators 

for reviewing energy efficiency trends and helping decision makers and analysts monitor 

these trends in the main world regions and WEC member countries
1
.  

EEIs can be used not only for cross-country comparisons but for cross-sector measurements 

as well. Appropriate indicators have been developed and applied in numerous studies for 

estimating the energy efficiency of energy-intensive sectors such as the iron and steel sector 

(IEA, 2009a, Siitonen et al., 2010), chemical and petrochemical sector (Saygin et al., 2011), 

manufacturing sector (Neelis et al., 2007) and others (Oda et al., 2012). 

The IEA (2007) has also developed a number of indicators for measuring energy efficiency in 

the manufacturing, household, service and transport sectors of 20 IEA countries over the 

period 1990-2004. The IEA indicator approach grouped the indicators into three main 

                                                           
1
 The World Energy Council has Member Committees in nearly 100 countries, including the largest energy-

producing and energy consuming nations.  
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categories namely sectoral activity levels, structure (the mix of activities within a sector) and 

energy intensities (energy use per unit of sub-sectoral activity). IEA performed a factorial 

decomposition method based on the Laspeyres Index to separate the effect of each 

component by using the following relation:  

 

 * *E A S I   (1.1) 

 

where E  represents total energy use in a sector, A  the overall sectoral activity, S  the 

sectoral structure or mix of activities within a sub-sector and I  the energy intensity of each 

sub-sector (or end-use). 

 

 

 

1.3.1.4 Decomposition Methods  

Decomposition analysis has gained popularity in energy and environmental analysis as well 

as in industrial energy demand analysis over the last decades. It has been widely used to 

study the driving forces of changes of an aggregate indicator over time. Index Decomposition 

Analysis (IDA) and Structural Decomposition Analysis (SDA) are the two widely applied 

decomposition techniques for policymaking on energy and environmental issues.  

There are both similarities and differences between IDA and SDA in terms of study scope, 

method formulation, data requirements and the results given (Hoekstra and van den Bergh, 

2003; Su and Ang, 2012). IDA is often adopted for a better understanding of the drivers of 

energy use and energy-related emissions in a specific energy consumption sector. However, 

SDA is used primarily by those who are familiar with input–output (I–O) analysis in order to 

study changes in energy consumption or emissions in the economy (Su and Ang, 2012). 

Decomposition in IDA is equivalent to the one-stage decomposition model, while SDA can 

have a one-stage or two-stage model because of the inverse matrix involved. SDA as relies on 

the I–O model framework can account for the indirect effect while IDA can only deal with 

direct effect. Indirect effects emerge when a direct demand increase in one sector leads to 

increases in the demand for inputs from other sectors. The indicator forms (absolute and 

intensity) as well as the decomposition forms of additive and multiplicative are in IDA, while 

only absolute indicator and additive decomposition form are often used in SDA literature. 

The simplicity of IDA allows considerable flexibility in problem formulation whereas the fact 

http://www.sciencedirect.com/science/article/pii/S0140988311002374#bb0225
http://www.sciencedirect.com/science/article/pii/S0140988311002374#bb0225
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that SDA is linked to the I–O tables reduces its flexibility but helps to introduce some special 

features that are not applicable to IDA. SDA can distinguish between a range of technological 

effects and final demand effects that are not possible in the IDA framework (Hoekstra and 

van den Bergh, 2003). IDA requires only data at the sub-sector level thus the data 

requirements depend to a very large extent on the level of sector disaggregation. IDA 

approach is used to decompose a change in energy consumption over time in a sector into 

several predefined effects that contribute to the change. One of them can be the intensity 

effect which is estimated based on changes in the energy intensities of the sub-sectors (Ang et 

al., 2010). However, SDA is generally more data intensive and decomposition is often 

conducted for a specific timeframe (Casler and Rose, 1998; Munksgaard et al., 2000; Zhou 

and Ang, 2008b).  

Rose and Casler (1996) as well as Miller and Blair (2009) conducted a detailed review of 

SDA and its features. Several ideal SDA decomposition methods have been adopted by 

researchers such as the four ideal decomposition methods, namely D&L, LMDI-I, LMDI-II 

and MRCI (Su and Ang, 2012). Among these, D&L and MRCI belong to the Laspeyres 

family while the logarithmic index methods of LMDI-I and LMDI-II belong to the Divisia 

family (Ang, 2004).  

A large number of studies have applied the IDA method for CO2 emission decomposition 

(Ang and Zhang, 1999; Wang et al., 2005; Wu et al., 2005; Lin et al., 2006; Diakoulaki and 

Mandaraka, 2007). Ang (2004) reported a number of publications that use IDA in areas such 

as energy demand and supply, energy-related gas emissions, material flows and 

dematerialization, national energy efficiency trend, and cross-country comparisons.  IDA-

based energy efficiency studies mainly focus on measuring the energy efficiency changes of a 

specific country or sector over time. However, there are only a few studies that use IDA 

method for benchmarking the energy efficiency performance across different entities (Zhou 

and Ang, 2008a). Data envelopment analysis (DEA) and Stochastic Frontier Analysis (SFA) 

are the methodologies that have been widely used for analyzing the energy efficiency 

performance across different entities.  

IDA has also been used for the construction of a composite energy efficiency index based on 

the bottom-up approach. In particular, this index considers the decomposition of changes in 

energy use or aggregation of energy intensity into different factors and then the aggregation 

of the impacts of energy intensity changes on energy end-use or sub-sector level (Ang, 2006). 

The two most widely used IDA methods include those based on the Laspeyres and the 

logarithmic mean Divisia index methods (LMDI-I and LMDI-II). The former index is linked 

to the concept of percentage change whereas the latter to the concept of log change. In the 

http://www.sciencedirect.com/science/article/pii/S0140988307001363#bib29
http://www.sciencedirect.com/science/article/pii/S0140988307001363#bib32
http://www.sciencedirect.com/science/article/pii/S0140988311002374#bb0295
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last 20 years both approaches have gained ground in energy management and environmental 

planning. For example, the Divisia index has been used by many organizations such as the 

US Department of Energy (Wade, 2002) and ODYSSEE (2009) for the construction of 

aggregate energy efficiency indicators. On the other hand, the Office of Energy Efficiency 

(2002) and IEA (1997) have performed the Laspeyres index in their energy indicators 

formulation whereas the APERC (2001) has used both of them.  

Despite the differences between SDA and IDA in terms of the nature of decomposition, there 

has been convergence in the basic methods used in both techniques (Su and Ang, 2012). For 

example, LMDI, the most widely used decomposition method in IDA, has lately been 

adopted in SDA as well. The above as well as more similarities and differences between IDA 

and SDA have been analyzed in detail. In particular, the review by Hoekstra and van den 

Bergh (2003) includes SDA and IDA methods up to 2001, whereas the literature survey 

conducted by Su and Ang (2012) is concentrated on studies published from 1999 onwards.  

 

 

 

1.4 Barriers and Gap to Energy Efficiency 

Due to many obstacles raised for energy efficiency improvement, energy efficiency is often 

underestimated. IEA (2013) estimated that more than half of the potential savings in industry 

and a whopping 80% of opportunities in the buildings sector worldwide remain untapped. 

This could be explained by the unwillingness of societies and countries to adopt energy 

efficiency or the energy efficiency barriers in general. 

But what is energy efficiency barrier? Although the concept of energy efficiency barrier is 

widely used, it is confused especially regarding its importance and the way it should be 

addressed. The term energy efficiency barrier refers to a mechanism that inhibits a decision 

or behaviour that appears both energy and economically efficient (Sorrell et al., 2004; Rohdin 

and Thollander, 2006). Thus, a barrier refers to factors that either hamper the adoption of 

cost-effective energy-efficient technologies or slow down their diffusion in the market 

(Fleiter et al., 2011).  

According to a number of studies, the major barriers to energy efficiency include, among 

others, high investment costs, lack of finance for energy efficiency investments, lack of 

awareness, cost of production and risk of production disruptions (WEC, 2010). The barriers 

are categorised into structural barriers and behavioural barriers (Hirst and Brown, 1990). The 

structural barriers include, among others, distortion in fuel prices, uncertainty about future 
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fuel prices, limited access to capital, government policies that encourage energy consumption 

rather than energy efficiency, codes and standards that lag behind the development of 

efficient technologies and supply infrastructure limitations. On the other hand, the 

behavioural barriers refer to attitudes toward energy efficiency, perceived risk of energy-

efficiency investments, lack of information on the performance of energy-efficient 

technologies and lack of life-cycle thinking on costs and savings. A different categorization 

of barriers is proposed by Jaffe and Stavins (1994). According to them, barriers are grouped 

into market failures (e.g. imperfect information) and non-market failures (heterogeneity and 

inertia of consumers, uncertainty about future energy prices and actual savings from energy 

efficiency investments).  

Furthermore, the International Chamber of Commerce – ICC (2014) noted that there are two 

main categories of barriers that hold back energy efficiency investments: the barriers to 

deployment of energy efficiency measures and to scaling up energy efficiency measures. The 

former category refers to the fact that the benefits of energy efficiency investments are 

perceived as marginal and to a perceived risk and uncertainty for investing time and resources 

in energy efficiency improvement (ICC, 2014). The second category includes the possible 

high upfront costs and transaction costs required for energy efficiency improvements, the 

structural problems due to divergent incentives between owners and occupants of buildings, 

the lack of knowledge regarding the available efficient technologies and the lack of capability 

of delivery. To overcome all these barriers, governments need to reward energy-efficient 

options and encourage investment and innovation (ICC, 2014).  

Many researchers have also grouped the barriers into economic, behavioural (psychological) 

and organisational types (Sorrell et al., 2004; Thollander and Palm, 2012). In particular, the 

economic-related barriers refer to the market barriers including the heterogeneity of the area 

of application, hidden costs, access to capital, risk regarding payback periods and market 

failures including imperfect information and competition, incomplete markets and, principal-

agent relationships (Jaffe and Stavins, 1994; Sorrell et al., 2004). 

The study of energy efficiency barriers is a multi-disciplinary field. There are many factors 

that vary widely from one country, sector and technology to another and this makes it more 

difficult to overcome barriers to energy efficiency. No single policy instrument could address 

all these and therefore a package of policy instruments is required. In particular, a targeted 

policy mix including best practices schemes, training initiatives, market-based instruments, 

energy audit programs, labelling schemes and minimum energy performance standards for 

the energy efficiency of equipment are of the most common means of overcoming barriers to 

energy efficiency. Subsidies, preferential loans, research and development (R&D) funds for 
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energy efficiency investment and awareness contribute to reduce barriers. Public-private 

financing instruments are also useful in overcoming market barriers to motivate people to 

invest in energy efficiency.  

 

 

 

1.5 The Rebound Effect 

Most governments are seeking ways to improve energy efficiency in pursuit of their energy 

policy goals. However, the potential energy savings from improved energy efficiency are 

sometimes undermined. What takes place is that additional services are employed due to the 

savings stemming from an existing service becoming increasingly energy-efficient. This is 

the so-called rebound effect (also called the take-back effect or Jevons‟ Paradox). In 

particular, the rebound effect expresses the difference between expected energy savings due 

to energy efficiency improvement and actual energy savings. This difference could be 

explained by the behavioral and economic response (saved incomes, reduced costs, more 

demand, etc.) to energy efficiency increases. In quantifiable terms, the rebound effect is 

defined as the ratio of energy savings after the installation of the energy-efficient 

appliances/energy savings without the new energy-efficient devices.  

The rebound effect is still an under-researched and controversial topic. It is mainly driven by 

an energy consumption price tag that is imposed on some of the energy efficiency benefits 

associated with it such as health improvements, consumer surplus and development goals, 

energy prices and industrial competitiveness being some of the many benefits that there are. 

It can be also attributed to the way energy is used and to increased spending and investment 

across the economy.  

The direct, indirect and macroeconomic or economy-wide rebounds are the three rebound 

effects related to energy efficiency. In the case of direct rebound the efficiency improvement 

in a certain type of service (or production) leads to increased consumption in the same type of 

service (or production). In particular, the consumer or producer invests in energy efficient 

equipment in order to reduce the energy cost and then increases production or consumption 

using the proceeds from the energy saved. However, in the indirect rebound the improvement 

increases the consumption in another type of service/production and thus the consumer 

invests the savings gained by energy efficiency improvements in other goods. In 

macroeconomic or economy-wide rebound the economic and technological improvement due 

to efficiency leads to increased energy productivity and economic growth.  

http://climateprogress.org/2011/02/15/the-breakthrough-institute-attack-energy-efficiency-clean-energy-backfire-rebound-effect/
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The rebound effect is a phenomenon based on economic theory and long-term historical 

studies, but as with all economic observations its magnitude is a matter of considerable 

dispute. Although a rebound effect‟s size is uncertain, its existence has been proven and 

analyzed by several authors (see among others, Brännlund et al., 2007; Holm and Englund, 

2009; Sorrel, 2009). The rebound effect should always be taken into account when energy 

efficiency is evaluated even when it is not strong enough to outweigh the savings of energy 

efficiency improvement. Failure to take account of rebound effect could also contribute to 

shortfalls in the achievement of energy and climate policy goals. 

 

 

 

1.6 The Energy Efficiency Gap 

A number of studies have pointed to a difference between the cost-minimizing level of 

energy efficiency and the level of energy efficiency actually realized (Painuly et al., 2003; 

Sardianou, 2008; Shi et al., 2008). This difference is known as the „energy efficiency gap‟ or 

„energy efficiency paradox‟ (DeCanio, 1998; Jaffe and Stavins, 1994; van Soest and Bulte, 

2001; Dyer et al., 2008) and was first originated by Eric Hirst and Marilyn Brown in 1990. Its 

definition can be more complex than it may seem at first glance. Linares and Labandeira 

(2010) tried to explain it in detail. According to the literature, the fact that we do not often act 

rationally in decision making, the lack of knowledge about energy saving measures, the 

capital constraints that make it difficult to acquire energy efficient equipment, the time 

preference and the uncertainty about the effectiveness of the measures are only some points 

that explain this gap. Some studies have also focused recently on estimating the existence and 

the magnitude of the principal-agent problem (Davis, 2012). This refers to the case where a 

renter decides about energy use and pays the bills but the decisions regarding the equipment 

installed are taken by the owner who opts for the cheapest alternative. Thus, in this case the 

most cost efficient combination may not be chosen. 

The existence of energy efficiency gap suggests that society has cut out cost-effective 

investments in energy efficiency (Painuly et al., 2003; Sardianou, 2008). It is attributed to 

barriers that exist in energy efficiency and mainly to market failures. More than 30 years of 

literature has tried to define the size of this gap but it remains unclear. It is noted that that the 

gap may be much smaller than estimated or there may be no gap at all (Metcalf and Hassett 

1999; Smith and Moore 2010). On the other hand, it is noted that the gap may be over-

estimated mainly due to hidden costs, consumer heterogeneity, uncertainty, over-estimated 
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savings and the rebound effect. Furthermore, there are also several market failures such as the 

imperfect information, principal-agent issues, credit constraints, and regulatory failures 

suggesting that the energy efficiency gap is real (Gillingham and Palmer, 2014).  

Energy efficiency gap exists in various sectors and therefore many policies and programmes 

have been developed towards closing this gap. Among others, subsidies and incentives for 

energy-efficient technologies, tax subsidies, loan guarantees, minimum building and 

equipment efficiency standards, information campaigns, the EU‟s labelling scheme and other 

voluntary labelling programs contribute to narrowing the gap. A summary of these energy 

efficiency policies can be found in a number of publications (Geller et al., 2006; IEA, 2008; 

2011).  

 

 

 

1.7 Energy Efficiency Policies 

The world population is expected to increase from 6.6 billion to 9 billion between now and 

2050 resulting in higher energy demand. Following the increase in energy use, various 

negative effects such as climate catastrophe, volatility of energy prices and energy resource 

depletion are also arising that seek urgent attention. Therefore, the adoption of an energy 

policy framework that could address all these challenges, that are becoming even more severe 

over time, is a necessity. Today, one by one and in ever increasing numbers, governments are 

embracing energy efficiency as a way to tackle these issues. Energy efficiency is widely 

considered as the “holy grail” of energy policymakers mainly due to its various benefits in 

many aspects. Improving energy efficiency is the most economic and readily available means 

of ensuring a better use of the world‟s energy resources. In the 1970s and early 1980s, energy 

efficiency was a growing policy priority in many EU countries mainly due to its importance 

in energy supply security and economic development. However, after the counter-oil shock of 

1986, the environmental degradation due to the high levels of GHG emissions caused by 

increasing energy use was the main reason for the energy efficiency promotion. A decline in 

energy efficiency interest was observed during the 1990s, but energy efficiency rapidly 

became an important component of global energy policy. Since then, many measures and 

programs have been developed for the adoption of energy efficiency on a national and global 

level. 

http://en.wikipedia.org/wiki/Incentive
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In the following, we focus on EU policies as the aim of this thesis is the evaluation of energy 

efficiency in EU countries and industries. This is mainly because of the data availability and 

also the importance of EU performance at the global level.  

 

 

 

1.7.1 Directives 

Over years, a number of EU directives have been developed dealing with energy efficiency. 

These include, among others, the following directives (Bleischwitz and Andersen, 2009): 

 Energy efficiency of hot-water boilers (1992/42/EEC)  

 Household appliances labeling directive (1992/75/EEC) 

 Energy efficiency of domestic refrigeration appliances directive (1996/57/EC) 

 Ballasts for fluorescent lighting directive (2000/55/EC) 

 Energy performance of buildings directive (2002/91/EC) 

 Cogeneration directive (2004/8/EC) 

 Ecodesign for energy-using appliances directive (2005/32/EC) 

 Energy end-use efficiency and energy services directive (2006/32/EC) 

 Promotion of Clean and Energy Efficient Road Transport Vehicles (2009/33/EC) 

In December 2008, the EU also adopted an integrated energy and climate change policy 

known as 20 20 20 - 2020 goals. Its aim is a 20% reduction in GHG emissions, a 20% share 

of energy from renewable sources and a 20% increase in energy efficiency by the year 2020 

(European Union - EU, 2009). These 2020 targets are the basis for a sustainable, secure and 

affordable energy system. The first two of these targets were implemented by a binding 

legislation known as the “climate and energy package” that became law in June 2009. 

Regarding the third target, the non-binding national target for energy efficiency 

improvement, the 2012 Energy Efficiency Directive (EED) came into force on 5 December 

2012. It repeals the Cogeneration Directive (2004/8/EC) and the energy end-use efficiency 

and energy services directive (2006/32/EC) whereas it amends the Ecodesign directive 

(2009/125/EC) and the Energy Labelling Directive (2010/30/EU). The 2012 EED firmly 

places energy efficiency at the heart of the EU 2020 energy strategy aiming for an EU 

primary consumption level (minus non-energy uses, e.g. for pharmaceuticals) of 1474 Mtoe 

or 1086 Mtoe of final energy consumption in 2020. The Commission, having this number in a 

directive, can monitor the progress towards it and propose further measures if necessary. All 

EU countries, under this directive, are required to use energy more efficiently at all stages of 
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the energy chain from transformation to distribution and final consumption. To this end, each 

EU country has set its own indicative national energy efficiency action plans (NEEAPs) for 

saving energy. Each Member State (MS) is required to develop energy efficiency obligation 

schemes and measures to reduce energy use in industry, transport and households. Based on 

the EED plan, a fifth of Europe‟s annual energy consumption can be saved by 2020 compared 

with conducting “business as usual” by improving the energy efficiency of energy-using 

products, services and buildings. 

In addition, to the aforementioned directives, the EC has established the voluntary energy 

labelling programs of “Energy Star” and “EU Ecolabel” for the promotion of energy 

efficiency2. The former is an international standard for energy efficient consumer products 

originated in the United States. It was created in 1992 by the Environmental Protection 

Agency and the Department of Energy and since then, Australia, Canada, Japan, New 

Zealand, Taiwan, and the European Union have adopted the program. Devices carrying the 

Energy Star service mark, such as computer products, kitchen appliances, buildings and other 

products, generally use 20–30% less energy than required by federal standards
3
. The “EU 

Ecolabel” scheme is used for identifying products and services that have a reduced 

environmental impact throughout their life cycle. There are over 37.000 products and services 

on the market that display the “EU Ecolabel” covering everything from detergents to shoes 

and paints to paper. The “EU Energy Label” is another labelling scheme that gives 

information about the energy efficiency performance, total energy consumption and other 

characteristics of a product (e.g. water consumption, noise levels etc.). Contrary to “Energy 

Star” and “EU Ecolabel”, the “EU Energy Label” is a mandatory scheme. All labelling 

schemes help consumers to buy energy-efficient and environmentally friendly products and 

services. Moreover, the labelling logos add value to manufacturers‟ products by increasing 

the product‟s reputation and giving their products a competitive advantage in the growing 

green marketplace.  

 

 

 

1.7.2 Measures  

The EC‟s action plan for energy efficiency proposes a number of measures aimed to put the 

EU on track towards saving 20% of its energy by 2020. Energy efficiency policy can be 

considered in a broader context including regulation for appliances, equipment and buildings 

                                                           
2
 http://ec.europa.eu/environment/gpp/eu_related_en.htm [Accessed 23 October 2015] 

3
 https://en.wikipedia.org/wiki/Energy_Star [Accessed 14 November 2015] 

https://en.wikipedia.org/wiki/Energy_conservation
https://en.wikipedia.org/wiki/Consumer
https://en.wikipedia.org/wiki/United_States_Environmental_Protection_Agency
https://en.wikipedia.org/wiki/United_States_Environmental_Protection_Agency
https://en.wikipedia.org/wiki/United_States_Department_of_Energy
https://en.wikipedia.org/wiki/European_Union
http://ec.europa.eu/environment/gpp/eu_related_en.htm
https://en.wikipedia.org/wiki/Energy_Star
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(performance standards and labelling), energy efficiency awareness for consumers and 

stakeholders, economic support though loans, subsidies or tax reduction, deployment of 

specific financing mechanisms, as well as R&D and dissemination of expertise in the field of 

energy efficiency (WEC, 2010).  

The energy efficiency measures could be organized into regulations, financial and fiscal 

measures. Regulations include mandatory policies that are usually applied to equipment. The 

Minimum Efficiency Performance Standards (MEPs) for new appliances, new cars and new 

buildings, efficiency labels, mandatory energy audits, energy saving obligations and 

mandatory training for professionals are some regulations. Regulations are widely used, 

partly because they have been proven effective in lowering energy consumption of specific 

appliances and equipment and speeding up the diffusion of energy-efficient equipment, 

energy-saving investments and practices. These measures can be set nationally, for a group of 

countries or at sub-national, regional level. The financial measures include subsidies for 

audits, soft loans and funds for energy efficiency investment and other economic incentives. 

For example, public–private partnerships, international cooperation and banks are called on 

by the EC for funding new energy-efficient technologies and eco-innovations. The fiscal 

measures refer to tax credit and tax reduction for products and/or services based on their 

efficiency performance. Taxes are mainly imposed on the CO2 emissions of vehicles, use of 

high energy-consuming products and fees/charges on fuels and energy utility charges. Fiscal 

incentives also include measures to reduce the annual income tax paid by consumers who 

invest in energy efficiency (WEC, 2010). Taxation is an effective way of reducing GHG 

emissions and promoting energy efficiency as many people choose tax-efficient products to 

avoid being taxed.  

The evidence of great potential for cost-effective efficiency-derived reductions in energy use 

and GHG emissions from industries has prompted governments to implement numerous 

policies and measures aimed at improving industrial energy efficiency. The energy efficiency 

measures applied in industry are divided into regulations/standards, fiscal policies and 

agreements/targets (Abdelaziz et al., 2011). Agreements are usually voluntary agreements 

between government and industry and are used for meeting specific energy use or energy 

efficiency targets. As the industrial sector accounts for a large share of total energy 

consumption, new business models have been developed as part of an integrated approach for 

energy efficiency improvement. The Energy Service Companies (ESCOs) are an example of 

the scope for greater energy efficiency through cost-effective projects. ESCOs perform an 

analysis of the property, provide a broad range of energy solutions and ensure energy savings 

during the payback period. The EU‟s Emission Trading Scheme (ETS), the first large GHG 

http://dx.doi.org/10.1016/j.rser.2010.09.003
http://en.wikipedia.org/wiki/Payback_period
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emissions trading scheme in the world, is also an overarching method for boosting energy 

efficiency performance on the electricity sector
4
. It was launched in 2005 to fight Global 

warming and is a major pillar of EU climate policy. Its main aim is the reduction of CO2 

emissions by allowing companies to buy or sell allowances in order to emit CO2. 

Since the 1970s, various energy efficiency measures have also been applied in buildings 

including, among others, regulatory (e.g. building codes, minimum energy performance 

standards, energy certificates, etc.), economic, informative and voluntary approaches (e.g. 

passive house standard, energy efficiency commitment schemes, etc.) (Buildings 

Performance Institute Europe – BPIE, 2011; Global Energy Assessment - GEA, 2012). 

Buildings are responsible for a high percentage (about 40%) of the EU‟s energy consumption. 

Nevertheless, there is a potential of reducing the energy use in buildings by around 11% by 

investing in energy efficiency. The Commission estimates that emissions from buildings 

could be reduced by around 90% in 2050
5

. Based on the first Energy Performance of 

Buildings Directive (2002/91/EC), all MSs are required to set minimum energy performance 

requirements of new and existing buildings whereas new buildings and major renovations 

shall be “nearly zero-energy buildings” on a cost-optimal level.  

Energy efficiency policies have also been developed for improving energy efficiency 

performance in transport and more specifically for promoting environmentally friendly and 

energy-saving forms of transportation. Transport is one of the fastest growing sectors 

accounting for almost one fifth of the EU‟s total energy consumption and a large rate of 

worldwide CO2 emissions. Therefore, various energy efficiency measures such as congestion 

charges, promotion of public transport, intelligent control of traffic lights, car-sharing and a 

higher tax rate for less-fuel-efficient vehicles are applied in the transport sector for meeting 

its increasing energy use and minimizing GHG emissions. The EU-wide car fuel efficiency 

labelling also helps consumers to choose more energy-efficient vehicles and incentivizes 

producers to manufacture cleaner and environmentally friendly vehicles. Furthermore, 

subsidies are given to the owners of the hybrid-electric vehicles (HEVs) as these can increase 

energy security, improve fuel economy, and reduce emissions.  

Over the last decades, the number of energy efficiency measures, applied in developed and 

developing countries has increased. According to the WEC survey (WEC, 2013) that 

identifies recent trends in energy efficiency performance in 85 countries and economies from 

all over the world, regulations are predominant representing around 70% of all measures in 

2013. This is due to the fact that regulations are more powerful compared to other measures 

                                                           
4
 http://ec.europa.eu/clima/policies/ets/index_en.htm [Accessed 23 October 2015]  

5
 http://ec.europa.eu/clima/policies/strategies/2050/index_en.htm [Accessed 23 October 2015] 

http://ec.europa.eu/clima/policies/ets/index_en.htm
http://ec.europa.eu/clima/policies/strategies/2050/index_en.htm
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as they do not leave any choice for consumers. Furthermore, regulations are used worldwide 

and have been proved effective in reducing energy use of equipment. Labelling and MEPs are 

the most important regulatory measures accounting for 42% and 40% of total regulations on 

average, respectively. Furthermore, regulations are dominant in the residential and service 

sectors. The survey also showed that fiscal or financial measures have been implemented in 

two thirds of the surveyed countries. Of them, financial measures are the most dominant 

measures, especially in industry.  

 

 

 

1.7.3 Effectiveness of Energy Efficiency Policies and Future Trends 

The WEC (2010) proposed a set of strategies and action plans for improving energy 

efficiency. Among others, sustainable institutional support, incentive prices, financing 

schemes, regulations, promotion of energy efficient equipment and services, consumer 

awareness, and international and regional cooperation are needed to make investments in 

energy efficiency attractive and cost effective.  

The implementation of energy efficiency measures is expected to reduce global energy 

intensity by 1.8% per year through to 2035 (IEA, 2013). IEA (2009b) recommended a 

number of policy measures that could be applied to 25 fields in areas such as the cross-

sectoral activity, buildings, appliances, lighting, transport, industry and power utilities. Based 

on the IEA (2013) estimates, if these recommendations were implemented fully by all 28 IEA 

Members they could save USD 1 trillion in annual energy costs as well as deliver 

incalculable security benefits. According to the annual report of the IEA (2014a), the global 

energy efficiency market is worth at least USD 310 billion a year and growing. This confirms 

the position of energy efficiency as the world‟s “first fuel”. It also reports that energy 

efficiency finance is becoming an established market segment, with innovative new products 

and standards helping to overcome risks and bringing stability and confidence to the market. 

Over the past years energy efficiency improvements have led to a reduction in global energy 

use and CO2 emissions. Without energy efficiency improvements, the OECD nations would 

have used approximately 49% more energy than was actually consumed as of 1998 (Geller et 

al., 2006). Minimum efficiency standards, voluntary agreements, financial incentives, and 

eliminating subsidies for fossil fuels have been proved to be a very effective strategy for 

stimulating energy efficiency improvements on a large scale, for reducing industrial energy 
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use and CO2 emissions in a number of countries. Government-funded R&D also contributed 

to the development and commercialization of a number of new energy efficiency 

technologies in some countries and sectors. Moreover, labelling, information dissemination, 

and training have also increase awareness of energy efficiency measures and improved know-

how with respect to energy management. 

Efficiency pessimists believe that there is little potential for further energy efficiency 

improvements as we have been harvesting the low-hanging fruit. Thus, the only solution to 

meet the future energy needs is through the power plants, transmission lines and distribution 

systems. On the other hand, efficiency optimists contend that energy efficiency is an endless 

energy source. Most probably the truth is somewhere in between. Therefore, more policy 

instruments should be applied including among others information, standards, technological 

change and financing.  

Despite the progress made in energy efficiency until today, IEA assessments show that under 

existing policies as much as two-thirds of the economically viable energy efficiency potential 

will remain unrealized between now and 2035 (IEA, 2013). That so much energy is simply 

wasted should be deemed unacceptable. The Energy Efficiency Communication of July 2014 

noted that the 20% target will be missed by 1% - 2% if EU countries do not implement all 

existing energy efficiency measures. Therefore, the efficiency button needs to be pushed and 

governments are often in the best position to make this happen. They need to overcome any 

barrier to the implementation of energy efficiency. To do that, governments have to help 

people to understand the costs and benefits of energy efficiency and make energy efficiency 

more visible and affordable to everyone. To this end, governments need to provide financing 

instruments and incentives. Information and communication campaigns are needed to change 

people‟s behavior towards more sustainable energy consumption. Furthermore, energy 

efficiency measures can play an important role in energy efficiency improvement. The sooner 

measures are put in place, the more effective they will be. It has been proven that the cost of 

taking action is less than the price of failing to act which amounts to 1% of world GDP. Thus, 

the EU needs to develop an overarching context with mandatory and voluntary policies and 

strategies for energy efficiency adaption. It is also important the EU countries‟ 

implementation of energy efficiency measures be monitored and energy efficient activities of 

all MSs to be supported through funding mechanisms. Greater coordination and information-

sharing between MSs should also be promoted through strategy support actions. Furthermore, 

the EU should encourage the transition to a low-carbon economy through investing in energy 

efficiency and renewable energy. A low-carbon economy is helping to enhance job creation, 

strengthen Europe‟s energy security and reduce its dependence on imports. Businesses should 
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also develop innovative and energy efficient financing incentives. They need to set standards 

and benchmarks and improve industry professionalism for promoting energy efficiency. In 

addition to these, governments need to raise their level of ambition, and commit to investing 

in energy efficiency without delay even if there are in fact “hidden costs” towards achieving 

energy efficiency.  

The year 2030 is the next crucial milestone in energy policy. The EC has launched a public 

debate on what energy policies and measures the EU should apply in 2030. In particular, in 

October 2014, EU countries agreed to cut GHG emissions by at least 40% (from 1990 levels), 

to boost the share of renewables to at least 27% of EU energy consumption and to a 27% or 

greater energy efficiency improvement by 2030
6
. The EU expects a reduction in EU energy 

use by 30% in 2050 due to energy efficiency. The EU has also committed to keeping global 

warming below 2 °C by cutting its emissions by 80-95% of 1990 levels by 2050.  

 

                                                           
6
 http://ec.europa.eu/clima/policies/strategies/2030/index_en.htm [Accessed 23 October 2015] 

http://ec.europa.eu/energy/renewables/index_en.htm
http://ec.europa.eu/clima/policies/strategies/2030/index_en.htm
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CHAPTER 2 

Energy Efficiency Evaluation Models 

This chapter presents the main methodological tools, which are relevant for the energy 

efficiency assessment framework considered in this thesis. These include input-output models 

such as Data Envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA), as well 

the multidimensional evaluation framework of Multiple Criteria Decision Aid (MCDA). The 

basic characteristics of these methodologies are described as they are the most popular 

techniques used for efficiency analysis with many applications in energy management and 

environmental planning. In the context of this thesis, DEA is used for obtaining efficiency 

estimates, whereas MCDA approach is used to build an operational model that combines 

energy efficiency with economic and environmental indicators. An extended literature review 

regarding the fields in which these models are applicable is also presented.  

 

 

 

2.1 Parametric and Non-parametric Approaches 

During the past several decades, in addition to energy efficiency indicators, many methods 

have been developed to monitor and measure energy efficiency trends. These methods can be 

classified into two broad categories, namely parametric and non-parametric approaches 

(Fried et al., 1993; Sadjadi and Omrani, 2008). The measurement of efficiency and 

productivity in the case of multiple inputs and outputs can only be performed by using these 

techniques. Thus, both approaches are mainly used for aggregating inputs and outputs in a 

single “index of inputs” and “index of outputs”, respectively (Coelli et al., 2005).  

Each approach has its own characteristics, strengths, and weaknesses. Parametric models are 

based on econometric estimation techniques whereas non-parametric ones use operations 

research and management science (OR/MS) models. The main difference between these two 

aforementioned approaches lies in their fundamental assumptions. Although, both use a 

measure of distance between the observed data and the “best practice” efficient frontier 

(which serves as a norm for the productivity efficiency evaluation), they differ in whether 

they estimate a cost or production function (parametric models) or not (non-parametric 

models). In particular, the specification of a production function (most commonly a cost 

function) is a necessity only for parametric models. Non-parametric approaches are more 
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flexible compared to parametric ones. However, parametric models can distinguish the 

various sources of randomness such as the measurement and specification of error from 

inefficiency (Bauer et al., 1998). Furthermore, parametric models are characterized by higher 

scores as they consider statistical noise and exhibit less variability.  

The Stochastic Frontier Analysis (SFA) and Data Envelopment Analysis (DEA) are the most 

popular parametric and non-parametric methods, respectively. DEA is widely recognized 

having certain advantages over SFA. In particular, DEA, contrary to SFA, provides 

simultaneously both an efficiency score and benchmarking information through efficient 

targets. It does not require any prior assumptions on the relationships between input and 

output data (Seiford and Thrall, 1990; Zhou et al., 2008) but only physical quantities for 

evaluating technical and scale efficiency indicators. This is especially useful when the 

relationship is not known or specified by theory (Fang et al., 2009). Also, DEA can be used 

as a multi-factor analysis model without formulating any functional form on the relationship 

between variables (Thakur et al., 2006; Fang et al., 2009). Its preference over SFA is also 

well-known when dealing with very small samples since DEA performs better in these 

situations (van Biesebroeck, 2007; Krüger, 2012). A literature review to a sample of energy 

production papers that adopted these models can be found in Barros (2008). 

  

 

 

2.2 Stochastic Frontier Analysis  

SFA is used in a large body of literature related to production, cost, revenue, and profit 

efficiency. It is a method of economic modelling that was first introduced by Aigner et al. 

(1977) and Meeusen and van den Broeck (1977). A Stochastic Frontier Model (SFM) is often 

known as “composed error model” since the error term comprises two components. The one 

component captures the effects of inefficiency as regards the stochastic frontier and the other 

captures the effects of external factors that are beyond the producers’ control such as 

statistical noise and measurement error. The SFM can be represented as: 

 

 ( ; )i i iy f  x β  (2.1)  
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where 
iy  is the single output of the producer ( 1,..., )i i N , 

ix  is a vector of M  inputs used 

by producer i , ( ; )if x β  is the deterministic component of the production function that is 

common to all producers, β  is a vector of technology parameters to be estimated, and
i is the 

composite error term that can be defined as follows: 

 

 
i i iu    (2.2) 

 

The economic logic behind this specification is that the production process is subject to 

statistical noise (randomness) represented by 
i  and technical inefficiency represented by 

iu . 

Thus, contrary to general regression analysis that estimates an average function with a normal 

error distribution, SFA calculates the best practice technology of production (e.g. cost 

function, or distance function) with a two-part error term.  

Under the assumption that f(xi; β) is of Cobb-Douglas type, the stochastic frontier model in 

(2.1) can be written in logs as (Kumbhakar and Lovell, 2000): 

 

 0ln lni n ni i iy x u       (2.3) 

 

Many studies have used SFA for energy efficiency measurement. For instance, Feijoo et al. 

(2002) as well as Buck and Young (2007) applied SFA to evaluate the energy efficiency 

performance of Spanish industrial and Canadian commercial buildings respectively. Managi 

et al. (2006) used SFA to examine the impact of technological change on the exploration of 

oil and gas, whereas Farsi et al. (2007) used it to investigate the cost efficiency of Swiss gas 

distribution companies. Boyd et al. (2008) also employed SFA to develop a statistical 

benchmarking tool (energy performance index), which is used in the Energy Star program of 

the US Environmental Protection Agency. Growitsch et al. (2009) and See and Coelli (2013) 

applied SFA to examine the efficiency of electricity distribution networks. SFA was also 

applied for estimating the energy efficiency performance in 47 Japanese regions (Honma and 

Hu, 2014a) and 117 agricultural and 43 manufacturing enterprises in Hungary (Piesse and 

Thirtle, 2000). Finally, Zhou et al. (2012) used SFA to estimate the economy-wide energy 

efficiency performance of 21 OECD countries at a macro-level.  
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2.3 Data Envelopment Analysis  

2.3.1 Basic DEA Model  

DEA, first introduced by Charnes, Cooper and Rhodes (1978), is a well-established 

methodology for evaluating the relative efficiencies of a set of comparable entities known as 

decision making units (DMUs, i.e., countries, sectors, firms). The DMUs transform multiple 

inputs (energy and non-energy inputs) into multiple outputs (desirable and undesirable). 

Relying on linear programming techniques, and without having to introduce any subjective or 

economic prices (weights, costs, etc.), DEA provides a non-parametric estimate of the 

efficiency of each DMU compared to the best practice frontier constructed by the best-

performing DMUs (Zhou and Ang, 2008a). The multidimensional efficiency frontier provides 

a reference for benchmarking the efficiency of all DMUs.  

DEA produces relative, rather than absolute, measures of technical efficiency for each DMU 

under consideration due to the fact that the technical efficiency score of each DMU depends 

on the performance of the sample of which it is a part (Pardo Martínez and Silveira, 2012). A 

DMU is technically efficient if it has the best ratio of any output to any input or according to 

Cooper et al. (2006) if and only if it is not possible to improve any input or output without 

worsening some other input or output.  

The assessment of energy efficiency in the context of DEA can be derived from a production 

theory point of view. In particular, in accordance with Zhou et al. (2012), assume that energy 

( )E  and non-energy inputs ( )NE  are used to produce outputs ( )Y  in an economy wide 

context and let {( , , ) / ( , )can produce )}T N NE Y N NE Y  be the production technology set, 

which describes the feasible transformations of the inputs to outputs. From an energy 

efficiency point of view, the goal is to minimize energy use while keeping all inputs and 

outputs within the production technology set. Thus, the Shephard distance function can be 

described as follows: 

 

( , , ) sup{ : ( / , , ) }D E NE Y a NE TE Y   (2.4) 

 

Using the above function, an energy efficiency index can be defined as 1/ ( , , , )D K L E Y  , 

which ranges in [0, 1]. If the energy efficiency index is less than 1, then the country/sector is 

inefficient as its energy use could have been decreased within their production technology 

set. Furthermore, the higher the value of the index, the better the energy efficiency 
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performance with a value equal to 1 indicating that the unit under consideration (country, 

sector, firm) is located on the best performance frontier.  

To implement this framework in the context of DEA, assume that there are data on 
EK  

energy inputs, 
NEK  non-energy inputs, and M  outputs for N (DMUs (countries, sectors, 

firms). For the 
thi  unit, the corresponding data are denoted by the vectors , , and E NE

i i ix x y , 

respectively. The 
EK N  matrix 

EX  for the energy inputs, together with the 
NEK N  matrix 

NEX  for the non-energy inputs, and the M N  output matrix Y  represent the data for all 

available units. Then, the energy efficiency of unit i  is estimated through the solution of the 

following linear program which is known as the CCR model from the initials of the authors 

Charnes, Cooper and Rhodes (Charnes, Cooper and Rhodes, 1978):  

 

 

     

min                  = ( )

Subject to:      
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λ s s 0

 (2.5) 

 

where 1 denotes a vector of ones. The solution of this linear program provides the energy 

efficiency estimate 1/ ( , , )i D E NE Y   for each unit i  relative to other unit in the data, from 

the perspective of reducing the energy inputs, in accordance with the production framework 

discussed above. E

is and 
O

is  are vectors of slack variables for the energy inputs, non-energy 

inputs and outputs, respectively, indicating the improvements that an inefficient unit should 

achieve to become efficient. In the objective function 0  is a small, positive constant that 

allows the solution procedure to give first priority to the optimization of i . Denoting by F   

the value of the objective function of problem (2.5) at its optimal solution, unit i  is classified 

as efficient if and only if 1F   (i.e. if the efficiency score is 1i   and the slacks are zero).  

The above model (2.5) assumes constant returns to scale (CRS). Variable returns to scale 

(VRS) can be introduced by simply adding the convexity constraint 11λ  which ensures that 

each DMU is compared only to DMUs of similar size. The resulting model is known as the 

BCC model (Banker, Charnes and Cooper, 1984). 
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Within the DEA framework, the technical efficiency can be measured by an input or output 

oriented model. In general, the technical efficiency in input and output oriented models can 

be measured as the ratio of the efficient level of input and output divided by the actual input 

and output, respectively. The main difference between these types of models is that an input-

oriented approach considers the technical inefficiency by assessing the reduction of all inputs 

that would set a unit technically efficient while keeping all outputs fixed. On the other hand, 

an output orientation focuses on the expansion of all outputs while keeping inputs fixed. This 

model is the most appropriate in case there is a priori assumption that energy input has a 

strong complementarity with other inputs. Although the CCR model is invariant to the 

orientation of the modelling approach (i.e., input/output oriented), in the BCC model the 

orientation plays an important role. Most studies dealing with applications of DEA models in 

energy efficiency and other related areas have adopted an input-oriented approach. This is 

line with the nature of energy efficiency management, as a country or organization has more 

control over its available resources (energy, labour, capital, etc.), rather than the level of 

outputs (e.g., GDP). Cook and Seiford (2009) surveyed several DEA applications focusing on 

the various models for measuring efficiency, while covering issues related to the selection of 

input/output variables, and the modeling of various data settings.  

DEA is also one of the most widely used methodologies in surveys of energy and 

environment. Regarding the energy sector efficiency evaluation, it should be noted that 

papers which are based on this methodology are steadily increasing from 2000 and afterwards 

(Vlontzos et al., 2014). The literature of DEA studies dealing with environmental aspects of 

production is even larger than the that dealing with energy issues (Ang and Zhang, 2000; Färe 

et al., 2004; Ramanathan, 2005; Hu and Kao, 2007; Zhou and Ang, 2008a; Fang et al., 2009; 

Vlontzos et al., 2014). A literature survey by Zhou et al. (2008) listed a total of 100 studies 

published from 1983 to 2006 using DEA in energy and environmental analysis. According to 

the survey, 72 of these studies were published between 1999 and 2006, which shows a rapid 

increase in the number of studies using DEA. Sueyoshi and Goto (2012) also presented a 

number of DEA studies published in Energy Economics from 2006 to 2010. 

DEA has also been widely applied to assess the energy efficiency performance of different 

countries/regions from the viewpoint of production efficiency (Wei et al., 2007; Honma and 

Hu, 2008; Zhou and Ang, 2008a; Chang and Hu, 2010; Mukherjee, 2010; Zhou et al., 2012). 

Ramanathan (2005) used DEA to analyse the performance of 17 countries in the Middle East 

and North Africa for the period 1992–1996, whereas Lozano and Gutiérrez (2008) used the 

DEA method to measure energy efficiency in 21 OECD countries from 1990 to 2004.  

http://www.sciencedirect.com/science/article/pii/S1364032114006054
http://www.sciencedirect.com/science/article/pii/S1364032114006054
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DEA has also been used for evaluating energy efficiency trends in energy intensive industrial 

sectors (Jamasb et al., 2008; Mukherjee, 2008a). For example, it has been used for evaluating 

the performance of industrial sectors such as pulp and paper (Blomberg et al., 2012), cement 

(Mandal, 2010; Oggioni et al., 2011; Riccardi et al., 2012), chemicals (Saygin et al., 2011, 

Broeren et al., 2014), power (Vaninsky, 2006; Wang et al., 2007) and transport (Ramanathan, 

2005; Cui and Li, 2014; Zhou et al., 2014). 

Most of DEA-related energy efficiency studies do not take into account undesirable outputs 

such as CO2 and GHG emissions (Wu et al., 2012). However, this omission may lead to 

biased energy efficiency values (Zhou and Ang, 2008a; Mandal, 2010). Firstly, Zhou and 

Ang (2008a) incorporated undesirable outputs in the production process for evaluating energy 

efficiency. Since then, more and more studies consider both desirable and undesirable outputs 

for energy efficiency analysis (Bian and Yang, 2010; Mandal, 2010; Shi et al., 2010; Yeh et 

al., 2010; Sueyoshi and Goto, 2011; Wu et al., 2012). It is found that the results can be biased 

if undesirable outputs are excluded from the analysis (Watanabe and Tanaka, 2007; Zhou and 

Ang, 2008a; Mandal and Madheswaran, 2011; Sueyoshi and Goto, 2011; Riccardi et al., 

2012; Wu et al., 2012; He et al., 2013; Ramli and Munisamy, 2013). 

Table 2.1 presents a brief overview of other studies using DEA for measuring energy 

efficiency at the country and sectoral level. From Table 2.1, it can be concluded that labour, 

capital and energy are defined as the inputs in most papers. For outputs, most papers’ energy 

efficiencies contain GDP and CO2 emissions. 

 

Table 2.1: Studies that use DEA to measure energy efficiency  

at the country and industry level. 

Authors Period Sample Inputs Outputs 

Azadeh et al. 

(2007) 

 

1991-1998 manufacturing 

sectors of Iran 

and some OECD 

countries 

final fuel 

consumption, 

electricity 

consumption 

gross output,  

value added 

Chien and Hu 

(2007) 

2001–2002 45 countries labor, capital stock, 

energy consumption 

GDP 

 

Mukherjee 

(2008b) 

1970-2001 U.S. 

manufacturing 

sector 

labour, capital, 

energy, materials, 

services 

gross output  

Wang and Zhou 

(2008) 

1993-2005 28 Chinese 

regions 

labour, capital, 

energy, 

gross product value 

of industrial 

enterprises 

Fang et al. 2001–2005 coal mining operating cost, total earnings per share, 

http://www.sciencedirect.com/science/article/pii/S036054421301030X
http://www.sciencedirect.com/science/article/pii/S0301421512004478#bib16
http://www.sciencedirect.com/science/article/pii/S0301421512004478#bib30
http://www.sciencedirect.com/science/article/pii/S0301421512004478#bib30
http://www.sciencedirect.com/science/article/pii/S0301421512004478#bib5
http://www.sciencedirect.com/science/article/pii/S0301421512004478#bib26
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(2009) companies in 

China and the US 

assets, number of 

employees 

operating revenue, 

net profit before tax 

Ramos-Real et 

al. (2009) 

1998–2005 18 Brazilian 

electricity 

distribution firms  

length of electricity 

grid, number of 

employees, losses  

sales, number of 

customers 

Shi et al. (2010) 2000-2006 28 Chinese 

regions  

labour, fixed assets, 

energy consumption  

industrial added 

value, industrial 

waste gas  

Pardo Martínez 

(2011) 

1998-2005 non-energy 

intensive sectors 

in Germany and 

Colombia 

labour, energy, 

capital, materials 

gross value of 

manufacturing 

deflated by the 

wholesale price 

index 

Wei et al. (2011) 1980-2007 156 countries labor, capital, energy 

consumption 

GDP 

Zhang et al. 

(2011) 

1980–2005 23 developing 

countries 

labor force, energy 

consumption, capital 

stock 

GDP 

Pardo Martínez 

and Silveira 

(2012) 

1993–2007 19 sub-sectors in 

the Swedish 

service sectors 

labour, capital, 

materials, energy 

production value, 

CO2 emissions  

Sueyoshi and 

Goto (2012) 

 

2005-2009 9 Japanese 

electric power 

firms 

generation asset, 

transmission asset, 

distribution asset, 

operation cost 

without labor cost, 

number of employees 

amount of electricity 

sold, number or 

customers 

Tao et al. (2012) 1999-2009 China's industry number of 

employees, energy 

consumption, capital 

stock 

gross industry 

output, CO2 

emissions 

Vlahinić-

Dizdarević and 

Šegota (2012) 

2000-2010 26 EU countries labor, capital stock, 

energy 

GDP 

Wu et al. (2012) 1997-2008 industrial sectors 

in 28 Chinese 

regions  

labor force, capital 

stock, energy  

industrial value 

added, CO2 

emissions  

Bampatsou et al. 

(2013) 

1980-2008 EU-15 countries energy consumption 

of fossil, non fossil 

fuels, nuclear energy  

GDP  

Lu et al. (2013) 2005-2007 

 

32 OECD value-added industry, 

population 

GDP, fossil-fuel, 

CO2 emissions 

Honma and Hu 

(2014b) 

1995–2005 14 developed 

countries 

labour, capital stock, 

energy, non-energy 

intermediate inputs 

value added 

Vlontzos et al. 

(2014) 

2001–2008 primary sectors 

in 25 EU 

countries 

labor, capital, energy 

consumption 

output (millions of 

euro), CO2 

emissions, gross 

nutrient balance 

http://www.sciencedirect.com/science/article/pii/S0301421509005424#bib49
http://www.sciencedirect.com/science/article/pii/S0301421509005424#bib49
http://www.sciencedirect.com/science/article/pii/S1361920914000236#b0165
http://www.sciencedirect.com/science/article/pii/S1364032114006054
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Zhou et al. 

(2014) 

2003-2009 transport sector 

of China’s 30 

regions 

labour, energy inputs 

(coal, gasoline, 

kerosene, diesel oil, 

electricity, other 

energy) 

passenger 

kilometres and 

tonne-kilometers for 

passenger and 

freight services, 

CO2 emissions  

 

 

 

2.3.2 Malmquist Productivity Index  

Index number approaches such as the Malmquist Productivity Index (MPI) have been 

developed to measure changes in productivity and its components. Productivity is an 

important component for monitoring and analysing performance. It evaluates the 

performance of economic entities that convert inputs (e.g. labour, capital, materials, energy) 

into outputs (e.g. products and services). Productivity changes over time due to changes in 

technical efficiency, technology, and scale of operations. Measuring the changes in 

productivity is of great importance at all levels of economic activity. The most commonly 

used categories of productivity ratios are the partial productivity, total factor productivity, 

and total productivity (Christopher, 1993; Sumanth, 1998). The classic measure of 

productivity is the ratio of output produced per unit of input expended. Therefore, the 

productivity ratios are measured by the ratio of output to a single input, the ratio of output to 

capital and labour services and the ratio of output to all combined inputs including labour, 

materials, capital, energy and other inputs respectively. However, the ratios that measure 

productivity trends –changes in productivity over time - are commonly converted into an 

index. The first two sources of productivity change are known as efficiency change and scale 

efficiency change, whereas the last one is known as technical change and it is associated with 

shifts of the frontier (technical progress or regress). Contrary to other index approaches, MPI 

can distinguish between two sources of productivity growth: efficiency change and technical 

change but it does not adequately account for scale change. MPI uses input or output oriented 

distance functions. However, input- and output-oriented MPIs coincide if the technology 

exhibits constant returns to scale.  

The concept of the MPI was originally introduced by Malmquist (1953) whereas Färe et al. 

(1992) constructed a MPI directly from input and output data using DEA. It is an efficient-

frontier based (mostly DEA) measure of total factor productivity used for analysing the effect 

of efficiency and technology change on energy efficiency performance (Pombo and Taborda, 

2006; Perez-Reyes and Tovar, 2009; Zhou et al., 2010). In the non-parametric framework of 
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DEA, MPI is measured as the product of catch-up (or recovery) and frontier-shift (or 

innovation) terms. Thus, the DEA-based MPI firstly constructs an efficiency frontier over the 

whole sample realized by DEA and then computes the distance of individual observations 

from the frontier. It can be defined as follows (Färe et al., 1992): 
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  (2.6) 

 

where ( , )t t

i

t

i i 
x y  is the efficiency score obtained by benchmarking the unit’s data for period 

t  against the sample data for period 1t  . ( , 1) 1i t tMPI    indicates an increase or 

improvement in the total factor productivity of the DMU from the period t  to 1t  , while 

( , 1) 1i t tMPI    and ( , 1) 1i t tMPI    indicate the status quo (no change) and decline in 

productivity, respectively. 

The first term in (2.6) indicates the catch-up (or recovery) effect and relates to the degree that 

a DMU attains for improving its efficiency. Thus, it identifies the change in the distance of 

observed production from best-practice production (i.e., between periods t  and 1t  ). This 

ratio is greater than, equal to, or less than unity as the relative performance of a DMU is 

improving, unchanging, or declining. Conversely, the square root term represents the 

technological change that indicates the frontier-shift (innovation) effect between consecutive 

periods. It shows whether the best-practice frontier relative to the DMU in question is 

improving, stagnant, or deteriorating. This second term is greater than, equal to, or less than 

unity as technical change is positive, zero, or negative, on average.  

The DEA-based MPI has proven to be a useful tool for measuring the productivity change of 

DMUs over time and has been successfully applied in many sectors (Yörük and Zaim, 2005; 

Wei et al., 2007; Xue et al., 2008; Greer, 2008; Perez-Reyes and Tovar, 2009; Zhou et al., 

2010; He et al., 2013). For example, DEA-based MPI has been employed for evaluating the 

performance of electricity distribution utilities (Giannakis et al., 2005; Abbott, 2006; Barros 

and Peypoch, 2008; Sueyoshi and Goto, 2012), iron and steel industry (Wei et al., 2007; He 

et al., 2013). A number of studies that used MPI in energy efficiency measurement are listed 

in Table 2.2.  

 

 

 

http://ascelibrary.org/action/doSearch?ContribStored=Xue%2C+X


35 
 

Table 2.2: Studies that use MPI to measure energy efficiency. 

Authors Period Sample Inputs Outputs 

Hattori et al. 

(2003) 

 

1985- 1998 electricity 

distribution 

systems in the 

UK and Japan  

operating expenses, 

capital 

expenditures 

units of energy delivered, 

number of customers, length 

of network, maximum 

demand 

Estache et al. 

(2004) 

1996-1999 Mexico’s 11 

main ports 

capital, labour volume (in tons) of 

merchandise handled in each 

port 

Abbott 

(2006) 

 

1969-1999 Australia's 

electricity 

supply 

industry 

capital stock, 

energy used, labour 

employed 

amount of electricity 

consumed  

Estache et al. 

(2007) 

 

1998-2005 12 countries 

around the 

Southern 

African Power  

installed capacity, 

labour  

generation, number of 

customers, sales  

Wang et al. 

(2007) 

1978–2003 Hong Kong 

electricity 

supply 

industry  

labour, capital 

expenditure 

sales of electricity delivered, 

customer density 

Barros 

(2008) 

2001–2004 Portugal 

hydroelectric 

energy 

generating 

plants  

capital, number of 

workers, 

operational costs, 

investment 

production, capacity 

utilization  

Perez-Reyes 

and Tovar 

(2009) 

1996-2006 14 electricity 

distribution 

companies in 

Peru 

number of workers, 

distribution power 

losses, medium-

voltage and low-

voltage network 

kilometres, number 

of substations, 

monetary value of 

the active capita 

sales, number of customers 

 Cui et al. 

(2014) 

2008–2012 9 countries number of 

employees, energy 

consumption, 

energy services 

amount  

CO2 emissions per capita, 

industrial profit amount 

 

 

 

2.3.3 Statistical Inference - Bootstrap Methodology 

Many efficiency and productivity analysis studies based DEA have suffered from lack of 

appropriate tests for analysing the sensitivity of the results as the estimates from conventional 

http://www.sciencedirect.com/science/article/pii/S0957178704000670
http://www.sciencedirect.com/science/article/pii/S0140988305001040?np=y
http://www.sciencedirect.com/science/article/pii/S036054421301030X
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DEA analyses offer no information on the variability of the obtained estimates. Statistical 

resampling techniques provide a possible remedy to this problem (Odeck, 2009). Bootstrap, 

first introduced by Efron (1979) and further explored by Efron and Tibshirani (1993), is such 

an approach which is widely used as an alternative to classical inference and hypothesis 

testing. 

The combination of the bootstrap techniques with DEA was first proposed by Simar and 

Wilson (1998) who used bootstrap to extract the sensitivity of DEA efficiency scores towards 

sampling variations. In DEA the distribution of (in)efficiency scores is the source of 

variability while the estimated parameters are the efficiency scores of the DMUs in the 

sample. In particular, the idea in bootstrapping DEA scores is to evaluate the sensitivity of a 

DMU towards changes of the reference set against which its efficiency score is assessed. The 

efficiency score of a DMU obtained by DEA is deemed as a sample estimate of the 

population value. DEA is applied repeatedly and its efficiency scores are resampled by 

keeping the outputs fixed (assuming input orientation). The random resampling of efficiency 

scores suggests that any DMU in the sample could achieve any of the observed efficiency 

scores. Ultimately, the bootstrapping process involves using the original sample to construct 

an empirical distribution of the variables of interest by repeated sampling of the original data 

set and then applying the estimation process to the re-sampled data and then calculating 

relevant statistics such as means and standard deviations (Odeck, 2009). 

Among the main characteristics of bootstrap DEA is that it is asymptotically consistent. The 

most commonly used assumption in bootstrap DEA is that the bootstrap bias is 

asymptotically equal to the DEA bias (or model bias). The bootstrap bias refers to the 

difference between the bootstrap mean and the model’s estimated parameters and occurs 

mainly due to the randomness in the resampling process. On the other hand, the model bias is 

the difference between the estimated parameters and their “true” value or population value 

and occurs due to sampling variations but it can also be caused by model misspecification or 

measurement errors. Thus, bootstrap DEA can be used to uncover the population or “true” 

efficiency score of any DMU by correcting twice for bootstrap bias or to construct low-

variance confidence intervals that centre this “true” efficiency score (Simar and Wilson, 

1998; 2000). Further developments and extensions of bootstrap DEA have also been applied. 

Among others, the bootstrap Malmquist index, the introduction of bootstrap tests on returns 

to scale and the implementation of two-stage bootstrap DEA to account for environmental 

variables (Simar and Wilson, 2007). 

 

 

http://www.sciencedirect.com/science/article/pii/S0305048308001357
http://www.sciencedirect.com/science/article/pii/S0305048308001357
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2.4 Multiple Criteria Decision Analysis  

The field of multiple criteria decision aid (MCDA) has developed rapidly over the past 

decades. The rapid development in the field of multicriteria modelling resulted in an 

exponential increase in the number of real-world applications that use MCDA approaches for 

problem structuring, problem solving and decision making (Greening and Bernow, 2004).  

MCDA combines quantitative and qualitative techniques. It is involved with decision 

problems under the presence of multiple (conflicting) decision criteria, which require the 

selection of the best alternatives, the ranking of the alternatives according to their overall 

performance, or their classification into predefined performance groups. At its core, MCDA 

is useful for dividing the decision into smaller parts, analysing each part and integrating the 

parts to produce a meaningful solution. MCDA models enable decision makers to grasp the 

inherent conflicts and trade-offs among the distinct aspects of evaluation and to rationalize 

the comparison among different alternative solutions. Thus, MCDA methods are useful when 

problems involve multiple, conflicting and incommensurate axes of evaluation (Diakoulaki et 

al., 2005). 

The first historical applications of MCDA proved the strengths of the methodology and its 

capacity to be adapted in many different decision problems (Kavrakoglu and Kiziltan, 1983; 

Siskos and Hubert, 1983; Schulz and Stehfest, 1984; Diakoulaki et al., 2005). The 

applications of MCDA are numerous and cover a wide range of different fields. Among 

others, the energy sector is one of the most active and areas in applied MCDA research. 

MCDA has been extensively used for energy planning and efficiency evaluation (Diakoulaki 

et al., 1999; 2005; Mavrotas and Trifillis, 2006; Zhou et al., 2006; Qin et al., 2008; Neves et 

al., 2009; Streimikiene and Balezentis, 2013; Haydt et al., 2014; Javid et al., 2014) as these 

are characterized by uncertainty, long time frames, capital-intensive investments and many 

conflicting criteria. During the 1970s, little effort was made in the formal planning of energy 

systems aiming at exploring the energy–economy relationships established in the energy 

sector. However, after the oil crisis of 1973, more emphasis was placed on identifying 

efficient supply options, energy conservation and energy substitution. During the 1980s, 

growing awareness and the apparent conflict between economic and environmental objectives 

pushed energy planners towards the use of MCDA methods. Energy planning and selection 

(Begic and Afgan, 2007; Buchholz et al., 2009; Jovanovic et al., 2009), energy resource 

allocation (Chedid et al., 1999; Afgan et al., 2007), energy exploitation (Goumas and 

Lygerou, 2000), energy policy (Greening and Bernow, 2004; Kablan, 2004), building energy 

management (Wright et al., 2002; Wang et al., 2008), and transportation energy systems 

http://dl.acm.org/author_page.cfm?id=81350574793&coll=DL&dl=ACM&trk=0&cfid=89750901&cftoken=77520298
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(Yedla and Shrestha, 2003) are some of the applications areas of MCDA. Multi-objective 

programming and fuzzy MCDA methods are usually adopted for considering the alternative 

plans and uncertainties in energy planning (Pohekar and Ramachandran, 2004).  

MCDA methods have now been widely applied to social, economic, agricultural, industrial, 

ecological and biological systems in addition to energy systems (Wang et al., 2009). The field 

is so large and comprises developments so heterogeneous that it is almost impossible to make 

an exhaustive review of the research and practice of MCDA in the energy sector. Zhou et al. 

(2006) attributed the increased popularity of MCDA, especially in decision-making for 

sustainable energy, to the multi-dimensional nature of the sustainability goal and the 

complexity of the socio-economic and biophysical systems. Loken (2007) conducted a 

literature review on the most important MCDA methods that have been proposed over the 

years for energy planning purposes. He argued that MCDA can be a very useful tool for the 

planning of local energy systems with multiple energy carriers and multiple energy resources. 

Wang et al. (2009) reviewed the corresponding methods in different stages of multi-criteria 

decision-making for sustainable energy, i.e., criteria selection, criteria weighting, evaluation, 

and final aggregation. Greening and Bernow (2004) presented a survey of the use of 

multicriteria decision making in the design of coordinated energy and environmental policies 

recommending the implementation of several MCDA methods in an integrated assessment 

framework. MCDA can also be used for constructing composite indicators that evaluate the 

energy performance and efficiency of a country and the impact of energy efficiency programs 

(Munda and Saisana, 2007; Emerson et al., 2012). 
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CHAPTER 3 

Energy Efficiency Analysis at the Country Level 

This chapter presents an analysis of energy efficiency performance in EU countries. It begins 

with an introduction which places the work in context. A literature section that reviews 

previous studies that use similar methodologies is then presented, followed by the aims and 

objectives of the analysis, the main methodological tools, as well as the data and variables. 

Finally, the results are presented and the chapter ends with some concluding remarks. 

 

 

 

3.1 Introduction 

The last decades have seen radical changes in the world’s energy scene. The most dramatic 

occurrence was the energy crisis of the ’70s. At almost the same time, the sharp increase of 

energy prices and environmental considerations reflecting either the concern for the depletion 

of energy resources or the need to cope with the ongoing environmental degradation imposed 

a shift towards energy efficiency.  

In the 1970s and early 1980s, energy efficiency emerged as a major issue for sustainable 

economic growth. Even after the 1986 counter oil shock and the decline in oil prices, 

environmental concerns continued to rise, especially in the context of the growing debates on 

global warming and climate change, which gave energy efficiency improvement a new 

perspective. The latter, along with the world energy crisis in the beginning of 1990s, and in 

combination with the sharp increase in oil prices during the 2000s, today have put energy 

efficiency on the policy agenda of many countries as a top priority issue. This can be 

explained by the fact that governments are increasingly aware of the urgent need to make 

better use of energy due to the various benefits of more efficient energy use. These include 

among others, reduced investments in energy infrastructure, lower fossil fuel dependency, 

increased competitiveness, improved consumer welfare and reduced GHG emissions and air 

pollution. Thus, energy efficiency has now been recognized as an essential component of 

sustainable development policies, which seek to achieve a well-balanced trade-off between 

economic growth and competitiveness, energy security, and environmental sustainability. 

Therefore, it is not surprising that tracking economy-wide energy efficiency trends is being 

undertaken in many countries on a regular basis (Ang et al., 2010). 
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Many studies show that the evaluation of energy efficiency in a global context is extremely 

difficult because of the different economic, environmental and social conditions of each 

country. Data used for cross-country comparisons are often heterogeneous and the 

interpretations even of similar ratios or indicators used for assessing energy efficiency may 

diverge considerably. Therefore, a structure for the purpose of assessing energy efficiency 

across countries should be set up that uses harmonized data and a common methodology of 

energy efficiency assessment for all participating countries.  

This thesis suggests the evaluation of energy efficiency based on a multidimensional context 

that considers a disaggregated view of energy consumption and economic outputs. It also 

considers the introduction of an evaluation model that enables policy makers and analysts to 

consider the trade-offs between the different benefits of energy efficiency. This is in line with 

the framework proposed by Ryan and Campbell (2012) who adopted a broader 

socioeconomic perspective which enables policy makers to generate accurate impact 

assessments considering a comprehensive range of benefits and costs that result from energy 

efficiency programs. 

On the methodological side, at the first stage, DEA is performed to assess the relative 

efficiency of the countries under different modeling settings. At the second stage, the 

efficiency estimates obtained from DEA are used to build a MCDA evaluation model, which 

is used to build an operational model that combines energy efficiency with economic and 

environmental indicators. Two-stage approaches are often employed in an explanatory setting 

to identify relationships between efficiency estimates and external factors using parametric 

regression methods (e.g., ordinary least squares (OLS), truncated or tobit regression), based 

mainly on linear models. Instead, in this study we follow a decision-making approach based 

on a non-parametric multicriteria additive model. The additive model retains the simplicity 

and transparency of linear models, but it provides the flexibility needed to consider possible 

nonlinear relationships between energy efficiency and a set of multiple factors that describe 

its drivers and benefits. The construction of the additive MCDA model is based on a non-

parametric approach using linear programming, thus being in accordance with the non-

parametric framework of DEA. The resulting multicriteria model complements and enhances 

the technical efficiency estimates of DEA through the introduction of a transparent composite 

indicator that enables the evaluation of all countries in a common setting. Thus, the proposed 

two-stage DEA/MCDA approach provides a framework that policy makers can use to 

construct a standardized and comprehensible composite energy efficiency and performance 

evaluation indicator, which can be easily used for benchmarking purposes, allowing the 

formulation of a complete ranking of all countries under consideration, as well as the 

http://www.wordhippo.com/what-is/the-opposite-of/heterogeneous.html
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monitoring of the performance of any country over time, without having to resort to relative 

efficiency analyses every time an evaluation is sought. The introduction of the multicriteria 

approach also enables policy makers to evaluate different types of benefits that result from 

energy efficiency programs, without restricting the analysis solely to an input/output energy-

economic context. 

Overall, through the proposed methodologies, this analysis contributes to the existing 

literature by introducing a unified and integrated approach considering the multidimensional 

character of energy performance evaluation at an aggregated level such as countries. Thus, all 

the evaluation models developed through this research are expected to be of major practical 

usefulness for monitoring, benchmarking and policy planning purposes.  

 

 

 

3.2 Literature Review 

A rich body of research has emerged that measures energy efficiency changes over time at 

the economy-wide level and permits the cross-country comparisons. On one hand, various 

efficiency-related indicators have been developed, with the ratio of total national primary 

energy consumption to GDP (energy intensity) among the most popular ones. On the other 

hand, most researchers focus on developing methods to decompose accurately the aggregate 

energy intensity into the true change in intensities at the disaggregated sectorial levels, and to 

understand the effects of structural changes in the economy. Another line of research 

examines energy efficiency within a framework where energy is one of the many inputs of 

production, with the most widely used technique being DEA.  

Bampatsou and Hadjiconstantinou (2009) used DEA to develop an efficiency index, which 

combines economic activity, CO2 emissions, and energy consumption of the production 

process in 31 European countries for 2004. The study also provides estimates for the 

capability of the countries to achieve sustainable economic development through the 

reduction of their reliance on fossil fuels. Lanfang and Jingwan (2009) proposed a non-

parametric method based on DEA to measure energy efficiency, taking into account 

undesirable factors such as water, gas, and solid wastes. Ceylan and Gunay (2010) analyzed 

Turkey’s economy-wide energy efficiency and its energy-saving potential with cross-country 

comparisons and benchmarking with EU countries, for the period 1995–2007, using a non-

parametric frontier approach. Wei et al. (2011) applied DEA by using the labor, capital stock 
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and energy as inputs and the GDP as output for measuring the energy efficiency performance 

of 26 and 156 countries during the period 2000–10 and 1980–2007, respectively. Table 2.1 

presents a brief overview of studies that used DEA for measuring energy efficiency at the 

country level. 

In addition to DEA models, multicriteria decision-analysis has been used extensively to 

evaluate energy management and efficiency. For example, Diakoulaki et al. (1999) used a 

multicriteria methodology to determine the relative contribution of different factors such as 

socio-economic indices, structural characteristics, and energy mix of countries in reaching a 

desired level of energy efficiency. The authors’ analysis focused on 13 EU countries and the 

United States in three points in time, namely, 1983, 1988, and 1993, using data on economic 

growth, energy consumption, and its breakdown into energy forms and sectors. Appropriate 

pricing policies (mainly on electricity) and long-term structural changes in the energy system 

were the main effective means used to achieve efficient energy use in the late 1980s and early 

1990s. These remarks agree with existing qualitative estimates about the relative importance 

of various factors related to energy efficiency at the national level, proving the capability of 

the proposed methodology to emphasize the examined problem through a detailed 

quantitative analysis. Moreover, Mavrotas and Trifillis (2006) used basic principles from 

DEA to facilitate the evaluation of the environmental performance of 14 EU countries 

through a MCDA approach. The analysis was based on energy intensity, emission intensity, 

acidifying gases intensity, and other indicators related to the composition of the countries’ 

energy mix, use of land, and recycling. The results show that the overall evaluation of 

countries with dispersed performances along the criteria is more sensitive to modifications in 

the relative importance of the evaluation criteria. Furthermore, Zhou et al. (2006) attributed 

the increased popularity of MCDA, especially in decision-making for sustainable energy, to 

the multi-dimensional nature of the sustainability goal and the complexity of the socio-

economic and biophysical systems. For example, Qin et al. (2008) developed an MCDA-

based expert system to tackle the interrelationships between climate change and adaptation 

policies in Canada, and to facilitate the assessment of climate-change impacts on socio-

economic and environmental sectors, as well as the formulation of relevant adaptation 

policies in terms of water resources management and other watersheds.  

Adler et al. (2002) provided a comprehensive review of different DEA-based ranking 

techniques, but according to Bouyssou (1999) many of these approaches (e.g., cross-

efficiency and super-efficiency models) have significant methodological shortcomings. 

MCDA techniques, on the other hand, are particularly useful for evaluation problems under 

multiple criteria. MCDA models enable the consideration of a wider set of additional socio-
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economic issues related to the benefits and impacts of policy decisions. However, in the 

MCDA framework the construction of evaluation models requires preferential information 

from the decision/policy makers (e.g., trade-offs and value judgments), which is often not 

available due to cognitive or time limitations. Thus, DEA (and other frontier analysis 

techniques) and MCDA constitute useful tools for quantifying and measuring energy 

efficiency, each adopting a different perspective. Nevertheless, despite the differences, the 

combination of these approaches provides the advantages of both while addressing their 

limitations. Possible ways of combining the two paradigms have already been explored 

(Doyle, 1995; Sinuany-Stern et al., 2000; Lahdelma and Salminen, 2006). These approaches 

have focused either on introducing new multicriteria evaluation procedures inspired from 

ideas in DEA or on enhancing DEA with ideas from MCDA.  

This overview indicates that despite the rich literature on the use of DEA and MCDA for 

energy efficiency analysis and planning, there has been almost no attempt to combine, in a 

unified context, the capabilities that the two approaches provide. Thus, this study contributes 

to the literature by adopting a two-stage DEA/MCDA approach. On the one side, the DEA 

model results provide efficiency classification estimates and facilitate the identification of the 

sources of inefficiencies. On the technical side, however, efficiency scores often have limited 

discriminating power when used for evaluation and do not allow a full ranking of the 

countries, which is important for benchmarking and comparative analyses purposes. 

 

 

 

3.3 Data and Methods  

At the first stage, DEA is performed to measure the efficiency performance of the countries. 

The DEA methodology was described in detail in chapter 2. An input-orientation for the 

constant returns-to-scale (CCR) and variable returns-to scale (BCC) model is applied as a 

country has more control over its available resources (energy, labor, capital, etc.), rather than 

the level of outputs (e.g., GDP).  

In this study, an up-to-date panel data set is used, consisting of 286 country-year observations 

for 26 EU countries
1
 over 11 years (2000-10). Based on a common frontier that characterizes 

the efficiency of the countries over all years, this approach takes into account the correlation 

between the observations from a same country over whole period of the analysis. The 

                                                           
1
 Malta is excluded due to unavailability of some data. 
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adopted approach allows the comparison of the efficiency results over time and the 

identification of the observed efficiency trends. 

During the period under consideration, the EU formulated an energy policy based on the 

Kyoto Protocol, through numerous directives and actions plans focused on improving energy 

efficiency. At the same time, the introduction of the Euro has changed the economic 

environment and the global financial crisis that started at the end of 2007 had a strong 

negative effect, mainly in eastern and southern European countries that experienced 

recession, significant budget deficits, and high sovereign debt. In light of these events, it is 

particularly interesting to examine energy efficiency in European countries over the selected 

period. 

All data were obtained from Eurostat, except for labor force data, which were collected from 

the World Bank, and capital stock, which was obtained from the AMECO database of the 

European Commission. Choosing an appropriate set of indicators and evaluation criteria was 

clearly an important issue. The multidimensional character of energy efficiency and its 

multiple aspects (environmental, socio-economic, and technical) make it very difficult to 

specify a comprehensive set of relevant measurement indicators universally applicable under 

all contexts. In this study, the input and output variables, presented in Table 3.1, were 

selected based on data availability and the existing literature. All the economic variables are 

measured in constant prices, thus allowing comparisons over time eliminating the effect of 

inflation. 

Table 3.1: Input and output variables. 

Type Variable Unit M1 M2 M3 M4 

Outputs Gross domestic product  Million euros*     

 Industry, value added Million euros*     

 Services, value added Million euros*     

Inputs 
Total energy consumption 

Thousand tons of 

oil equivalent 
    

 Fossil fuels energy 

consumption 

Thousand tons of 

oil equivalent 
    

 Other fuels energy 

consumption 

Thousand tons of 

oil equivalent 
    

 
Labor force 

Economically 

active population 
    

 Domestic material 

consumption 
Thousand tons     

 Capital stock Billion euros*     

Note: * Constant prices 
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In the analysis, we consider two different settings for the input variables and two different 

settings for the output variables, thus leading to four DEA models (henceforth denoted as M1, 

M2, M3, and M4).  

The first setting for the output variables uses only GDP, whereas in the second setting GDP is 

replaced by the value added from the industry and the services sectors, thus providing more 

detailed insight into the economic output of each country. Generally, the industry sector is 

more energy intensive than the service sector. Therefore, a structural shift from high-energy-

consumption secondary industry to low-energy-consumption tertiary industry may lead to an 

improvement in overall energy efficiency, solely due to structural changes in the economic 

activity of a country. Yu (2010), using the variations in the share of value-added from the 

industry and services sectors, in terms of GDP, showed that the service share has a significant 

positive impact on energy efficiency. However, he also showed that the industry share has an 

insignificant, small positive effect (less than 0.25%) and, as a result, may not affect energy 

efficiency at the country level substantially. Wei et al. (2009) as well as Zhao et al. (2010) 

examined energy efficiency in China and found that it is negatively associated with the 

secondary industry share in GDP, and that the simultaneous improvement of energy 

efficiency in energy-intensive sectors is mainly due to industrial policies. Furthermore, Zhao 

et al. (2010) found that low energy prices have directly contributed to high industrial energy 

consumption, and indirectly to the heavy industrial structure. Arcelus and Arocena (2000) 

compared the multifactor productivity levels and the changes across countries and across 

time, using a nonparametric model. The evidence obtained from a sample of 14 OECD 

countries indicates a high degree of catching-up among the various countries for the total 

industry, manufacturing, and services sectors. Hu and Kao (2007) claimed that a newly 

industrialized economy will have lower total-factor energy efficiency than agriculture-

dominant and service-dominant economies. Hence, the industrial structure of an economy is a 

crucial factor for energy efficiency, and thus the energy-saving ratio; an industry-dominant 

economy can improve its energy efficiency and save energy more efficiently and effectively 

by shifting the economy structure toward services. Therefore, it is important to decompose 

the influence of the value added to GDP by the industry and services sectors. 

Similar to the outputs, two settings are also used for modeling the inputs. In particular, the 

first setting has four inputs, involving total energy consumption, capital stock, labor force, 

and materials consumption. Capital, labor, and material force are used as the non-energy 

(non-discretionary) inputs, in accordance with the KLEM production function framework. 

The specification of these variables as non-discretionary inputs assumes that even though a 

country’s outputs are produced through the utilization of such resources, the obtained energy 
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efficiency estimates are obtained solely from the perspective of minimizing energy 

consumption. In the second setting, total energy consumption is replaced by fossil fuel 

consumption and the consumption of other energy sources (renewables and nuclear), thus 

providing a more refined view of the energy mix that each country uses. The majority of 

studies that measure energy efficiency using the DEA framework choose inputs such as 

energy consumption, capital, and labor (see the studies listed in Table 2.1). Ramanathan 

(2005) also used fossil fuel energy consumption as a minimization indicator, in the sense that 

countries with lower values in this indicator are more preferred. Mandal (2010) used data 

related to capital, energy, labor, and raw materials as inputs, and claims that environmental 

regulation has the potential to positively affect energy use. Zhou and Ang (2008a) presented 

several DEA-type linear programming methods for measuring economy-wide energy 

efficiency performance using labor, capital stock, and energy consumption as inputs, and 

GDP as the desirable output. Moreover, Hu and Wang (2006) observed a high correlation 

among the inputs (labor, capital stock, energy consumption, and total sown area of farm 

crops) and the single output (real GDP). In the same vein, Hu and Kao (2007) showed that 

labor employment, capital stock, and energy consumption actually do correlate with GDP 

performance. They also found that energy efficiency can be over-estimated or under-

estimated if energy consumption is taken as a single input with a certain portion of GDP 

output produced not only by energy input but also by labor and capital. Hence, using a 

multiple-inputs framework is important to evaluate energy efficiency correctly (Hu and 

Wang, 2006). 

Figure 3.1 presents the evolution of the selected variables aggregated over all countries over 

the period of the analysis. As far as the energy-related variables are concerned, the 

consumption of other fuels shows a steady increase throughout the examined period, mainly 

due to the increased use of renewable sources. However, the total energy consumption and 

the consumption of fossil fuels increased slightly up to 2005–2006, followed by a decrease in 

the subsequent years. Regarding the economic variables, the GDP and the services value 

added increased considerably up to 2008, before falling in 2009 due to the global economic 

crisis. On the other hand, the capital stock increased considerably over the examined period 

(about 25% increase overall). 
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Figure 3.1: Evolution of the selected variables over the period 2000–10 

 (year 2000=100). 

 

Figure 3.2 illustrates the time trends for the relative shares of the two energy inputs to the 

total energy consumption (fossil and other fuels – decomposed into nuclear and renewables). 

It is clear that the share of renewables in the energy mix has followed an increasing trend, 

starting from 2003. During the same period (2003–2010), the share of fossil fuels has 

declined, but it still ranges in levels that exceed 76%. The share of nuclear energy has also 

followed a slightly declining trend. 

 

 

Figure 3.2: Evolution of the shares of fossil fuels, nuclear, and renewables to total energy 

consumption over the period 2000–10. 
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As described earlier, in this study the results from the input/output frontier framework of 

DEA are combined with an MCDA modeling approach. The scope of the latter is to build an 

overall energy efficiency and composite performance indicator that will enable the evaluation 

of all countries in a common and standardized setting. Furthermore, such an indicator will 

have enough discriminatory power to allow the complete ranking of all countries (both DEA-

efficient and inefficient). DEA efficiency scores often lack discriminatory power, as they do 

not differentiate among efficient cases (they all receive the same efficiency score). This 

difficulty also applies to inefficient cases, as making direct comparisons among such DMUs 

are generally meaningful only for those belonging to the same facet of the efficient frontier 

(Kao and Hung, 2005). Furthermore, increasing the number of input and output variables 

inflates the efficiency scores (thus yielding upward biased efficiency estimates) and leads to 

efficiency results with diminishing discriminating power (as more DMUs appear fully 

efficient). On the other hand, the multicriteria model is appropriate for benchmarking 

purposes, allowing the consideration of all pertinent factors that describe (direct or indirectly) 

energy efficiency and its multiple benefits, and enabling comparisons to be performed over 

time (for a single or multiple countries) based on a well-defined functional model without 

having to resort to relative estimates such the ones used in DEA. Of course, the linear 

programming formulations of DEA do not pose any computational issues as they are easy to 

solve. Nevertheless, the sample-dependent character of the relative efficiency estimates 

obtained with DEA is not an appealing feature in a benchmarking and evaluation context, as 

it makes it difficult to perform direct comparisons whenever the set of data observations is 

altered or the available data are updated. In contrast to DEA, the multicriteria model enables 

analysts and policy makers to perform evaluations and monitor the performance of a country 

over time using data solely at the country level, without having to resort to relative 

assessments in comparison to data from a set of peer countries. 

The second stage of the analysis is implemented using a multicriteria classification technique. 

In particular, the efficiency classifications, as defined from the DEA results, are used to build 

the multicriteria evaluation model. The countries are classified as efficient or inefficient 

according to their DEA efficiency scores and a multicriteria model is then constructed, which 

combines n  criteria, so that the model’s classifications are as close as possible to DEA’s 

efficiency classification. The UTADIS multicriteria method is used for this purpose 

(Doumpos and Zopounidis, 2002). The UTADIS method leads to the development of an 

additive value function of the following form: 
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where jw  is a non-negative trade-off constant for evaluation criterion j  and ( )j jv x  is the 

corresponding marginal value function normalized between 0 and 1. The marginal value 

functions provide a decomposition of the aggregate result (global value) in terms of 

individual assessments at the criteria level. According to its global value, a country i  is 

classified as efficient if and only if ( )iV x t , where t  is a cut-off point that distinguishes 

efficient countries from inefficient ones. The additive value function and the optimal cut-off 

point are estimated through linear programming techniques (a brief description is given in the 

Appendix). In contrast to parametric regression techniques, the use of linear programming 

provides flexibility to analysts and policy makers in building models that are not only based 

on historical trends and statistical relationships, but also take into account their expert 

judgments and policy objectives with respect to the properties of the final evaluation model 

(e.g., the trade-offs between energy, socio-economic, and environmental factors). 

Although the selected input and output variables are meaningful in the context of DEA, they 

are not useful in a multicriteria setting, as they do not allow for direct comparisons among the 

countries. In particular, in DEA the countries are compared based on a ratio defined by each 

country’s aggregate outputs to its aggregate inputs. However, the multicriteria evaluation 

context relies on the use of a set of indicators on which the countries are directly comparable. 

The multicriteria modeling framework provides flexibility in the specification of these 

indicators. In this study, their selection is based on the framework introduced by Ryan and 

Campbell (2012), who emphasized the need to analyze energy efficiency in a context much 

broader than the usual input/output energy-economic production model. Based on this 

framework, we use indicators that are relevant to the input/output modeling context discussed 

earlier for the DEA models, but also cover additional issues that policy makers may consider 

relevant for evaluating the impacts of energy efficiency programs as pointed out by Ryan and 

Campbell (2012). In particular, the second stage of the analysis is based on a set of ten 

evaluation criteria. Similar to the modeling approach used in DEA, the selected criteria 

(Table 3.2) combine energy efficiency indicators, economic growth and competitiveness 

indicators, environmental indicators, and two original indicators related to the primary energy 

source and the focus of the economy in each country. Furthermore, the selected indicators 

cover the top three levels (international, national, sectoral) in the hierarchical structure of 

energy efficiency benefits presented in Ryan and Campbell’s work (2012). In particular, 
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energy intensity is used as the main proxy for energy efficiency as it is widely adopted by 

policy makers for assessing energy efficiency. GDP growth is used as the main indicator for 

measuring economic development, thus enabling the evaluation of the economy-wide impact 

of energy efficiency. However, economic output and growth are affected by many factors 

beyond energy use, and as explained, energy efficiency has multifaceted benefits. To 

consider these issues, we use additional variables, including resource productivity (for the 

effect of materials’ use)
2
, gross fixed capital formation/GDP (the effect of investments), and 

current account balance/GDP (competitiveness)
3
. In addition, we control for the effect of 

environmental taxes, which affect energy costs and consumption, as well as the labor 

dimension (unemployment rate). Furthermore, following the existing literature, we consider 

the environmental effects of energy use and economic activity, by considering the level of 

GHG emissions in relation to GDP. Ryan and Campbell (2012) also noted similar dimensions 

(GHG emissions, job creation, macroeconomic effects, competitiveness, among others) as 

important impacts of energy policies that must be introduced in a comprehensive evaluation 

framework. Finally, to control for the energy and economic mix, two additional indicators are 

introduced. The primary energy source indicator is used to consider the energy mix of a 

country in a particular year, indicating whether renewables, nuclear, natural gas, solid fuels, 

or petroleum consumption was the main energy source for the country. Economy focus is 

modeled as a binary indicator, designating whether the value added by the industrial sector of 

a country (as a percentage of GDP) in a given year is above or below the overall average of 

all countries. Introducing this indicator in the analysis enables the consideration of the 

differences among the various countries in terms of their level of industrial development (as 

industry is generally more energy intensive than services). The combination of the selected 

indicators in an additive evaluation model not only provides policy makers and analysts with 

a comprehensive efficiency evaluation model, but also enables them to explore the trade-offs 

among the multiple aspects of energy efficiency (i.e., energy, economic, and environmental 

indicators). 

 

 

 

 

 

                                                           
2 Resource productivity is measured by Eurostat as the ratio of GDP to domestic material consumption and is reported in euros per kg. The 

same definition is also employed by OECD (2008). According to OECD this is a type of economic physical measure which is suitable when 

the focus is on the decoupling of value added and resource consumption. Alternatively, physical or economic approaches can also be used to 

measure resource productivity (using physical or money values, respectively, for both the nominator and the denominator). The economic 
approach is more suitable when the focus is on the minimization of input costs, whereas the physical approach focuses on the maximization 

of outputs for a given level of inputs and a given technology. Dahlstrӧm and Ekins (2005) however, argue that such a physical measure is a 

resource efficiency indicator, rather than a measure of productivity. 
3 Policies for improving energy efficiency can have a positive effect on current account balance through reducing energy dependency and 

energy imports. 
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Table 3.2: Evaluation criteria for building the second stage multicriteria model. 

Energy intensity (Kgoe / €1000) Current account balance / GDP 

Gross fixed capital formation / GDP Unemployment rate 

Environmental taxes / GDP Greenhouse gas emissions / GDP 

GDP growth Primary energy source indicator 

Economy focus indicator  

Resource productivity (GDP/domestic material consumption, €/kg) 

 

 

 

3.4 Results  

3.4.1 DEA Results 

Figure 3.3 illustrates the average CCR and BCC efficiency scores of the four models over the 

entire period of the analysis. The differences between the CCR and BCC scores are generally 

limited in most countries, thus indicating that overall the scale effect is weak (the scale 

efficiency defined by the ratio of CCR to BCC efficiency is on average more than 80% for 

the vast majority of the countries). However, some smaller countries such as Estonia, 

Bulgaria, and Cyprus, exhibit scale efficiency consistently below 65%, thus indicating that 

their scale size is a limiting factor.  

 

 

Figure 3.3: Average efficiency scores for the four models (CCR left, BCC right). 

 

As far as the differences between the four models are concerned, it is evident that the models 

with more inputs and outputs lead to higher efficiency estimates, but this is fairly common in 
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DEA (i.e., the DEA efficiency scores generally increase with the number of inputs and 

outputs). Generally, there are high correlations among the results of the four models. The 

correlations are stronger for the pairs M1-M2 (about 97% correlation for the CCR models and 

94% for the BCC models) and M3-M4 (about 95–96% correlation coefficient under the CCR 

and BCC models). However, the similarities between each model M1 and M2 to M3-M4 are 

lower (correlation coefficient 84–92%). The pair of models M1-M2 differs from M3-M4 in 

the way that the outputs are defined, with the latter providing a more detailed breakdown of 

the economic output (M1-M2 consider only GDP, whereas M3-M4 consider the value added 

by services and industry as separate outputs). Thus, for European countries, the effect due to 

the consideration of the structure of their economic activity appears to be stronger than the 

effect due to the introduction of a breakdown by their energy mix.  

When the efficiency estimates under the four modeling settings are compared with the energy 

intensity of the countries in the panel data set (Table 3.3), strong negative correlations are 

observed in all cases (all correlations are significant at the 1% level). The correlations are 

stronger for models M1 and M2, which use GDP to measure economic output (similarly to 

energy intensity). The same negative relationship between energy intensity and the obtained 

efficiency estimates was also observed (at different magnitudes) for each of the countries 

particularly under the CCR models, whereas for the BCC models the discrepancies were 

higher. However, in accordance with the suggestions of Filippini and Hunt (2011), the 

relationship between energy efficiency estimates obtained by frontier techniques and energy 

intensity needs further analysis, possible over extended time periods to derive conclusive 

evidence on the characteristics of the countries for which energy intensity might be a poor 

proxy for energy efficiency.  

 

Table 3.3: Correlations between the DEA efficiency scores and energy intensity. 

 

CCR BCC 

 

M1 M2 M3 M4 M1 M2 M3 M4 

Pearson correlation -0.79 -0.80 -0.74 -0.75 -0.69 -0.72 -0.64 -0.68 

Kendall’s   -0.83 -0.74 -0.64 -0.57 -0.62 -0.54 -0.46 -0.45 

 

When the efficiency trends are examined over time, the period 2000–07 is characterized by 

increasing global (CCR) efficiency scores according to models M1 and M2. A similar trend is 

also observed for models M3 and M4, particularly after 2003. The BCC efficiency scores 

obtained with the assumption of variable returns to scale also follow an increasing trend for 



53 
 

the period 2003–07. However, both during 2000–03 and 2007–09 an efficiency decline is 

evident. In both the CCR and BCC results the effect of the global economic crisis is clearly 

shown by the significant decrease of the efficiency scores during 2008–09 (under all 

modeling settings), whereas signs of minor recovery are evident in 2010. The 2008–09 

decline is larger under the models M3-M4. 

Overall, the results indicate that when the structure of the economy is explicitly considered 

(i.e., separation of GDP into the value added by the industry and services in models M3 and 

M4), then the efficiency improvements appear to be more conservative. Based on these 

findings, the subsequent analysis focuses on model M4, which provides the most 

comprehensive consideration of the economic outputs of the countries and their energy mix. 

Table 3.4 presents the countries’ global CCR efficiency scores averaged over all 11 years of 

the analysis, as well as the percentage changes over the entire period of the analysis and 

during the recent economic crisis (2008–2010).  

 

Table 3.4: Overall CCR efficiency scores (averaged over 2000–10)  

and percentage changes (model m4). 

  Average 2000–10 2008–10 
 

Average 2000–10 2008–10 

Luxembourg 0.998 0.0 0.0 Finland 0.749 -29.2 -44.4 

Ireland 0.993 -4.4 -4.4 Poland 0.738 8.1 -19.8 

Netherlands 0.978 0.0 1.7 Greece 0.591 26.4 2.1 

Denmark 0.969 0.0 0.0 Cyprus 0.582 12.5 0.1 

UK 0.967 0.0 0.0 Spain 0.561 10.8 5.2 

Sweden 0.908 16.1 0.0 Portugal 0.523 12.0 10.5 

Germany 0.859 13.3 -8.5 Belgium 0.505 6.9 -6.5 

Latvia 0.850 -26.6 -47.5 Romania 0.296 24.0 -59.0 

Austria 0.847 1.9 -0.9 Slovakia 0.287 107.3 -28.2 

Slovenia 0.843 -49.8 -49.6 Hungary 0.252 16.8 3.5 

Italy 0.832 1.2 -8.9 Czech Rep. 0.226 36.0 4.8 

Lithuania 0.758 2.8 -48.3 Estonia 0.147 16.4 -16.3 

France 0.751 30.0 10.8 Bulgaria 0.107 81.3 -5.5 

 

Luxembourg, Ireland, the Netherlands, Denmark, and the United Kingdom (UK), achieved 

the highest efficiency scores overall, whereas Bulgaria, Estonia, the Czech Republic, and 

Hungary have the lowest scores. Similar efficiency estimates are reported for European 
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countries in the recent study by Halkos and Tzeremes (2013), who applied DEA to 25 

European countries using data from 2010. Similar to our results, the authors found countries 

such as Sweden and the UK had high efficiency scores, whereas countries such as Greece, 

Hungary, the Czech Republic, and Spain performed poorly (the correlation of our results with 

those reported in Halkos and Tzeremes (2013) for the CCR model M4 is 0.35). In another 

study, Vlahinić-Dizdarević and Sĕgota (2012) examined a set of 26 European countries (not 

identical to those in our study). Similar to our results, they found countries such as the UK, 

Luxembourg, Ireland, and Denmark performed consistently well over the period 2000–10, 

whereas Bulgaria, the Czech Republic, Greece, and Hungary performed poorly. Chien and 

Hu (2007) reported similar results using DEA in a sample of OECD countries for 2001–2002 

(e.g., Luxembourg, the UK, Denmark, Ireland had high efficiency). In contrast to these DEA-

based studies, Filippini and Hunt (2011) used stochastic frontier analysis for a panel data set 

of 29 OECD countries over the period 1978–2006, using set of explanatory variables related 

among others to energy consumption, climatic conditions, GDP, energy prices, and country 

size. Their results differ from the ones reported in the present study and other DEA-based 

studies. Except for the longer time period used by Filippini and Hunt, the discrepancies could 

be due to the differences in the variables used, the different sample of countries and of course 

the method used for the analysis. 

Table 3.5 summarizes the estimated energy inputs and economic outputs improvements 

(averaged by year) that inefficient countries should seek to achieve to improve their 

efficiency status (under the BCC model). The figures reported for the input variables involve 

the percentage reductions required for a country in a particular year to become efficient, 

whereas for the output variables the reported improvements involve the target percentage 

increase in the level of economic activity (industry/services value added). In terms of energy 

conservation, the results indicate that inefficient countries should implement policies that 

focus on energy consumption from non-fossil fuels (i.e., renewables and nuclear). A closer 

examination further indicates some time trends, which highlight the increasing importance of 

the consumption of non-fossil fuels, particularly after 2007 (the most recent time trends are 

clearly more relevant for policy making purposes). On the other hand, the inefficiencies of 

the countries with respect to the consumption of fossil fuels have followed a declining trend, 

and at the same time the suggested improvements with respect to other fuels increased. Thus, 

even though there has been an improvement of the energy mix from an environmental 

perspective (i.e., promotion of renewables), energy conservation still remains a challenge, 

with the relative importance of renewables increasing over fossil fuels. On the output side, 

the improvement targets for the services sector are consistently higher compared to the 
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industry sector. This is in accordance with the increasing importance of services for the 

economic activity in EU countries, as evident by the time trends illustrated in Figure 3.1. 

Nevertheless, it should be noted that the design and implementation of policies for improving 

energy efficiency should also consider the interactions and synergies among different actions, 

the economic and environmental trade-offs, as well as complementarity and substitutability 

effects (Frondel and Schmidt, 2002; Neumayer, 2003), which may differ from country to 

country. 

 

Table 3.5: Suggested average changes in inputs and outputs (% changes). 

        Industry 

value added 

Services 

value added Fossil fuels 

Other 

fuels 

2000 0.80 6.01 -0.70 -2.22 

2001 0.92 5.21 -0.60 -1.03 

2002 1.61 5.60 -0.45 -1.49 

2003 1.62 3.75 -0.51 -1.29 

2004 1.78 4.91 -0.23 -0.32 

2005 1.52 3.86 -0.15 -0.43 

2006 1.15 3.25 -0.16 -1.05 

2007 1.56 3.17 0.00 -0.44 

2008 2.10 4.26 0.00 -0.68 

2009 1.96 6.47 0.00 -3.70 

2010 0.34 6.33 0.00 -2.08 

Average 1.40 4.80 -0.26 -1.34 

 

 

 

3.4.2 The Multicriteria Model 

For the reasons explained in the previous subsection, the development of the multicriteria 

evaluation model in the second stage of the analysis is based on model M4. Given the CCR 

efficiency scores obtained with model M4, all countries are classified as efficient (efficiency 

score equal to 1) or inefficient (efficiency score lower than 1). The UTADIS multicriteria 

method is used to fit a model on the efficiency classifications of DEA, combining the selected 

set of criteria presented in Table 3.2. 

Overall, the sample includes 49 efficient country-year observations and 237 inefficient cases. 

Table 3.6 presents the means of the selected indicators for each group. Most differences are 
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statistically significant at the 5% level according to the non-parametric Mann-Whitney test, 

with the exception of the environmental taxes to GDP ratio. These comparative results 

indicate that energy-efficient countries have lower energy intensity, employ material 

resources in a more productive manner, experience higher GDP growth, are more competitive 

(lower current account deficits), have lower unemployment rates, lower GHG emissions, 

emphasize the use of renewables, and are more services-oriented. 

 

Table 3.6: The mean of the selected indicators for efficient and inefficient countries. 

 Efficient Inefficient 

Energy intensity (Kgoe/€1000) 188.08  356.95 

Gross fixed capital formation/GDP 3.32 3.12 

Environmental taxes/GDP 3.08 2.63 

Resource productivity (€/kg) 1.61 1.14 

GDP growth (%) 4.00 2.42 

Current account balance/GDP 0.88 -3.05 

Unemployment rate (%) 5.41 8.80 

Greenhouse gas emissions/GDP 0.48 0.92 

Primary energy source indicator 2.06 1.84 

Economy focus indicator 1.65 1.43 

 

Table 3.7: Criteria Trade-offs (weights in %). 

Criteria Weight Criteria Weight 

GDP growth 21.46 Primary energy source indicator 9.28 

Energy intensity 17.83 Environmental taxes/GDP 7.42 

Resource productivity 11.84 Gross fixed capital formation/GDP 6.92 

Unemployment rate  9.80 Greenhouse gas emissions/GDP 4.97 

Current account balance/GDP 9.79 Economy focus indicator 0.69 

 

Table 3.7 presents the estimated criteria trade-offs in the multicriteria additive model fitted to 

the above data. These trade-offs are proxies of the relative importance of the criteria. The 

indicators’ trade-offs indicate that GDP growth and energy intensity are the two most 

important factors, followed by resource productivity, unemployment, current account 

balance/GDP, and the indicator involving the energy mix of the countries. These results are in 
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accordance with the wider socioeconomic impacts of energy efficiency that Ryan and 

Campbell (2012) noted, as they imply that except for increasing the value of economic 

activity and reducing energy intensity, additional factors such as strengthening the 

competitiveness of the economy, improving resources productivity, and promoting 

employment and the use of renewable energy, could also be part of the policy/decision 

making process when it comes to analyzing energy efficiency and assessing its benefits and 

impacts. Figure 3.4 provides further details on the sensitivity of the multicriteria energy 

efficiency score regarding the three selected criteria, namely GDP growth, energy intensity, 

and the indicator of the primary energy source in each country. In accordance with the 

indicators’ trade-offs, the sensitivity of the global (multicriteria) efficiency score is larger for 

the GDP growth ratio, with countries that achieve positive GDP growth rates receiving much 

higher scores compared to countries in recession. Furthermore, the multicriteria score 

improves at the highest rate when energy intensity falls below 400 Kgoe/€1000, and 

renewables are used as the main energy source. Such results and these levels on the selected 

indicators can support policy makers in setting target goals for the benefits that energy-

efficiency programs should achieve. 
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Figure 3.4: Multicriteria energy efficiency scores for three selected indicators. 

 

The overall agreement between the efficiency classifications obtained with the DEA model 

(M4, CCR) and the ones of the MCDA model is 94%. In particular, 87.8% of the country-

year observations classified by DEA as efficient are classified in the same group by the 

MCDA model, whereas the agreement level for the DEA inefficient cases is 95.4%.  

 

Table 3.8: Extreme Average Differences between the Annual Rankings of DEA 

 and the Multicriteria Model. 

MCDA upgrades  MCDA downgrades 

Cyprus 7 

 

Poland -10 

France 5 

 

Slovenia  -6 

Estonia 5 

 

Germany -5 

Greece 3 

 

Lithuania -3 

 

Table 3.8 provides a more detailed list of the countries with the largest differences in their 

annual rankings according to the DEA and MCDA models. In particular, Cyprus, France, 

Estonia, and Greece are better by the MCDA model compared to their rankings with the DEA 

model. For instance, Cyprus’s position in the annual rankings obtained with the MCDA 

model improved by 7 grades (on average) compared to its ranking with the DEA model. On 

the other hand, the MCDA model significantly downgraded countries, such as Poland, 

Slovenia, Germany, and Lithuania. The downgrade for Poland is 10 grades (on average) in 

the annual rankings of countries. Interestingly, the group of countries significantly upgraded 

by the MCDA model have lower energy intensity compared to downgraded ones (310 

Kgoe/€1000 vs. 344 Kgoe/€1000, on average; p-value=1.8% according to the Mann-Whitney 

test), lower unemployment (8.3% vs. 10.2%, p-value=1%), lower GHG emissions/GDP (0.89 

vs. 0.96, p-value=4.9%), and their economy is more services-oriented. These qualities 

compensate for the lower GDP growth rates that the upgraded countries have achieved (2.8% 

on average) as opposed to the downgraded ones (3.4% on average; difference insignificant at 

the 10% level). Thus, the MCDA model’s results introduce some refinements in the estimates 

obtained with DEA based solely on a frontier-based input-output framework. 
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3.5 Conclusions  

At the first stage of this research, DEA was performed under four different modeling settings 

for the evaluation of energy efficiency in 26 EU countries over the period 2000–10. The CCR 

and BCC efficiency scores obtained by DEA showed that the scale effect is weak for the 

majority of the countries. The estimates of DEA also showed that the global economic crisis 

had a negative effect on energy efficiency. Furthermore, it was found that the effect due to 

the structure of the countries’ economic activity appears to be stronger than the effect due to 

the introduction of a breakdown by their energy mix. However, the interactions and synergies 

among different actions, the economic and environmental trade-offs, as well as 

complementarity and substitutability effects which may differ from country to country should 

also be taken into account in policy /decision-making process. 

The efficiency estimates were evaluated in a second stage through the UTADIS multicriteria 

method. In particular, the model estimated the energy efficiency performance considering a 

set of ten evaluation criteria related to energy efficiency indicators, economic growth and 

competitiveness indicators, environmental indicators, and two original indicators related to 

the primary energy source and the focus of the economy in each country. According to the 

results of the two-stage DEA/MCDA approach, the GDP growth and energy intensity were 

the two most important factors for energy efficiency improvement followed by resource 

productivity, unemployment, current account balance/GDP, and the indicator involving the 

energy mix of the countries. The results also showed that despite the considerable 

improvements achieved in energy intensity, there is still much to be done to improve the 

actual energy efficiency of EU countries.  

Overall, the proposed methodology enabled the construction of an operational model that 

provides analysts and policy makers with evaluations of the countries’ energy efficiency in a 

common setting for all countries. Thus, whenever a new evaluation must be performed there 

is no need to resort to relative sample-dependent assessments. Therefore, this approach could 

be also used for benchmarking purposes using country-level data. Furthermore, this modeling 

approach enables analysts and policy makers to consider a rich list of the impacts of energy-

efficiency programs and actions, explore the underlying trade-offs, and ultimately reach more 

informed decisions. Of course, such a multicriteria evaluation model, which is built based on 

the results of a frontier technique such as DEA, needs to be periodically updated in 

accordance with the changes in the economic environment and the energy markets. 
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Taking into account the results of this study, policy makers could identify the main steps that 

should be followed to improve each country’s energy efficiency. Furthermore, the 

significance of each step can be measured, leading to more informed decisions in terms of 

priorities given. Weighing different policy measures is a challenging task; however, the 

results of this study could significantly help policy makers in their decision process. For 

example, the observation that a services-oriented economy is more efficient than an industry-

oriented one or the fact that renewable energy sources should gradually displace fossil fuels 

could help regulators design policies to support certain sectors of the economy or certain 

energy sources. Furthermore, combining MCDA with frontier techniques, as suggested in this 

study, enables policy makers to consider a much wider range of impacts of energy efficiency 

programs, instead of focusing solely on an input-output energy-economic production 

framework. 

Future research could examine a wide range of issues. Among others, these may involve 

more detailed data on structural factors, the analysis of specific energy-intensive business 

sectors, the enrichment of the data set with countries outside the EU, and a more extensive 

time period, as well as the evaluation of the actions and policies implemented to improve 

energy efficiency at the country level. 
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Appendix 

The multicriteria evaluation model developed with the UTADIS method is based on a sample 

of m  observations (e.g., countries) each described over a set of n  evaluation indicators. The 

observations are pre-classified intro classes/categories defined in an ordinal manner. For 

simplicity, here it will be assumed that there are only two classes, involving 
Em  energy-

efficient countries (denoted by E) and 
Im  inefficient countries (denoted by I). The UTADIS 

method fits an additive (nonlinear) model on the given classification of the observations in 

the sample.  

The model optimization process is simplified by setting ( ) ( )j ij j j ijv x w v x   in (3.1), which 

leads to the following equivalent alternative form of the additive evaluation model: 

 

 
1

( ) ( )
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i j ij

j

V v x


x  (3.2) 

 

In this form, the marginal value functions 
1 2, , , nv v v    are scaled between zero and the 

trade-off constants of the criteria 
1 2, , , nw w w . No restrictions are imposed on the 

functional form of the marginal value functions, other than that they are piecewise linear 

functions, non-decreasing for maximization indicators (e.g., GDP growth) and non-increasing 

for minimization criteria (e.g., energy intensity).  

The estimation of the additive model that best fits the given classification of the observations 

is performed through the solution of the following mathematical programming problem: 
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The objective of this formulation is to minimize the overall weighted classification error 

(controlling for the number of observations from each class). The non-negative variables   

define the classification error as max{ ( ), 0}i it V    x  for the efficient cases and 

max{ ( ) , 0}i iV t   x  for the inefficient ones, where t  is the cut-off point that 

distinguishes the two classes (to be estimated) and   is a small positive constant. The first 

two constraints are used to define the error variables. The third set of constraints ensures that 

that marginal value functions are non-decreasing (assuming that all criteria are expressed in 

maximization form), whereas the next two equality constraints normalize the global scores in 

[0, 1]. The highest possible score is assigned to an ideal country defined by the best available 

data on all criteria (
* *

1 , , nx x ), whereas an anti-ideal country that comprises of the least 

preferred available data on all criteria (
*1 *, , nx x ) is assigned score equal to zero.  

Introducing a piecewise linear form for modeling the marginal value functions allows 

expressing the above optimization model in linear form, which is easy to solve even for large 

data sets. Detailed descriptions of the resulting linear programming formulation can be found 

in the work of Zopounidis and Doumpos (1999) and Doumpos and Zopounidis (2002). 



63 
 

CHAPTER 4 

Energy Efficiency Analysis at the Industry Level  

This chapter extends the analysis of energy efficiency at a much more disaggregated level 

such as EU industries. Firstly, the scope and aim of this research are outlined followed by a 

literature review about energy efficiency evaluation at the sectoral level. Then, a detailed 

presentation of the empirical setting is given, including a description of the data, the analysis 

techniques, and the obtained results. The chapter ends with the conclusions and suggestions 

for future research.  

 

 

 

4.1 Introduction 

Following the first stage of our analysis (chapter 3), which focused on the evaluation of 

energy efficiency at the country level, we extend the analysis towards adopting a more 

disaggregated perspective that takes into account the sectoral decomposition of the countries’ 

economic activity. Thus, we seek to obtain energy efficiency estimates over time, while 

controlling for the structure of a country’s economy, focusing on the main industrial sectors. 

Such a disaggregated approach enables not only to test the robustness of the obtained results, 

but most importantly to identify particular effects that specific characteristics of countries and 

sectors have on the efficiency performance. 

The International Energy Outlook – IEO (2014) reports that global energy consumption is 

expected to grow by 56% between 2010 and 2040, and this growth will be due to increasing 

energy use in industry. This is not surprising, as the industrial sector uses more energy than 

any other end-use sector. In 2011, it consumed about 37% of total delivered energy at the 

global level, whereas the IEO (2014) predicts that industry will consume more than 50% of 

total delivered energy in 2040. The IEO (2014) further reports that industrial activities are 

also responsible for almost 40% of worldwide CO2 emissions and are expected to increase by 

46% by 2040.  

As industry is generally the largest consumer of energy and the highest in energy-related CO2 

emissions, it has attracted much attention in recent years. The challenge of climate change in 

combination with security of supply concerns have spurred an increased interest in how 

different industrial sectors can reduce their energy consumption while at the same time 
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remaining competitive in the international market place. Improving energy efficiency is 

considered the best way to this end. Energy efficiency contributes to improving industrial 

competitiveness and decoupling economic growth from resource and energy use. Therefore, 

finding ways to enhance industrial energy efficiency can contribute significantly to moving 

the world towards a more sustainable energy future. 

In this context, the objective of the analysis presented in this chapter is to assess the energy 

efficiency performance of 10 industrial sectors across 23 EU countries. At the first stage, 

DEA is employed to evaluate the relative efficiency of these sectors using a comprehensive 

set of variables related to socioeconomic and environmental factors, including capital stock, 

employment, gross energy use, gross value added, and GHG emissions. Then, the Malmquist 

Productivity Index (MPI) is employed to assess the dynamics of the efficiency estimates over 

the examined period and distinguish between the effects of efficiency and technology 

changes. At a next stage, a cross-classified multilevel modeling is performed for the analysis 

of the main drivers behind the observed efficiency performance considering a number of 

sector and country characteristics. 

Given the importance of determining the underlying drivers and causes of contemporary 

efficiency trends in formulating coherent and effective energy policies for the future, this 

work certainly contributes to the understanding of this complex interplay. In general, the 

results of this study could offer useful information and insight into the potential and critical 

policies that should be taken to promote industrial energy efficiency.  

 

 

 

4.2 Literature Review 

According to most studies, energy efficiency is considered as the best way to meet the 

increasing industrial energy consumption requirements and minimise environmental 

degradation. Many energy efficiency indicators and energy benchmarking approaches have 

been performed worldwide to analyse industrial energy use and energy efficiency potential 

(Saygin et al., 2011). In numerous studies, appropriate energy efficiency indicators have been 

applied to estimate energy efficiency performance in different sectors (Neelis et al., 2007; 

Siitonen et al., 2010; Saygin et al., 2011; Oda et al., 2012). Efficiency indicators are also used 

to monitor economy-wide efficiency trends and compare the efficiency performance within 

and outside the sector in different countries (Zhou and Ang, 2008a). Such indicators can also 
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be used by industries to draw lessons on how to improve their reliability and flexibility. 

Energy benchmarking is also an important tool that has been used by many researchers to 

estimate the potential for sectoral energy efficiency improvement (Boyd et al., 2008; 

Hasanbeigi et al., 2010). 

Due to its simplicity and the relatively abundant data that are required, IDA is another 

popular tool that is used in the analysis and modeling of industrial energy consumption. Most 

decomposition studies focus on a single country (Mairet and Decellas, 2009; Huntington, 

2010), while those that adopt a cross-country perspective focus primarily on the 

manufacturing sector and heavy industries (Cahill and Gallachoir, 2012; Kim and Kim, 

2012). Furthermore, IDA is now being employed to analyse how structural and sectoral 

energy intensity changes affect industrial energy consumption (Pardo Martínez, 2011; Cahill 

and Gallachoir, 2012). 

Nevertheless, the most popular models for energy efficiency measurement are the parametric 

and non-parametric ones: more specifically, DEA and SFA, respectively. Several studies 

have used DEA to assess the efficiency in energy-intensive sectors (Azadeh et al., 2007; 

Mukherjee, 2008b; Perez-Reyes and Tovar, 2009; Oggioni et al., 2011; Blomberg et al., 

2012; Riccardi et al., 2012; Sueyoshi and Goto, 2012; Broeren et al., 2014; Zhou et al., 2014). 

SFA has also been used in energy efficiency evaluation on industrial level (Managi et al., 

2006; Farsi et al., 2007; Growitsch et al., 2009; See and Coelli, 2013; Honma and Hu, 

2014a). Many studies use both SFA and DEA to estimate efficiency performance (Kashani, 

2005; Azadeh et al., 2009). As discussed in chapter 2, DEA is more beneficial than SFA. 

Therefore, it is the DEA model that is used in this research for measuring the energy 

efficiency performance of industrial sectors. 

 

 

 

4.3 Data and Methodology 

4.3.1 Data 

In this chapter the energy efficiency of 10 energy-intensive industries in 23 EU countries over 

the period 2000–09 is examined
1

. In particular, the analysis covers the sectors of 

construction, electricity, mining and quarrying, transport, and six sub-sectors of 

                                                           
1
 Cyprus, Estonia, Malta and Luxembourg are excluded due to their small size and unavailability of some data. 

The period of study is restricted to 2000 to 2009 because data were obtained from the World Input Output 

Database (WIOD) that provides environmental data for industries by 2009. 



66 
 

manufacturing (food and tobacco, textiles and leather, pulp and paper, coke and chemicals, 

non-metallic mineral and fabricated metal, as well as machinery). A description of the 

sectors’ codes according to World Input–Output Database
2
 (WIOD) is given in Table 4.1. 

Although, these sectors reflect different development patterns, quantities of energy use, and 

environmental emissions, they are among the largest and fastest-growing sectors globally. 

Furthermore, they are considered major contributors to countries’ economic growth. It has 

been proved that any improvement in industrial performance can have a positive effect on a 

country’s economy. After the Industrial Revolution, a third of the world’s economic output 

was derived from the manufacturing industries. Therefore, the selection of the sectors that are 

examined was not based only on the available data related to energy consumption and 

environmental issues but also and mainly on their significant impact on countries’ economic 

performance and growing power. 

 

Table 4.1: The examined industrial sectors and their WIOD codes.  

Industrial sector WIOD Code 

Mining and Quarrying C 

Food, Beverages and Tobacco 15t16 

Textiles and Textile Products, Leather, Leather and Footwear 17-19 

Pulp, Paper, Printing and Publishing 21t22 

Coke, Refined Petroleum and Nuclear Fuel, Chemicals and Chemical Products, 

Rubber and Plastics 
23-25 

Other Non-Metallic Mineral, Basic Metals and Fabricated Metal 26-28 

Machinery, Electrical and Optical Equipment, Transport Equipment 29-35 

Electricity, Gas and Water Supply E 

Construction F 

Transport (Other Inland Transport, Other Water Transport, Other Air Transport, 

Other Supporting and Auxiliary Transport Activities; Activities of Travel Agencies) 
60-63 

 

The majority of studies that measure industrial energy efficiency using the DEA framework 

choose inputs such as energy consumption, capital, and labour (Mukherjee, 2008a; Honma 

and Hu, 2011; Pardo Martínez, 2011; Wu et al., 2012; see also Table 2.1). Zhou et al. (2010) 

used capital stock, labour force, energy consumption, GDP and CO2 emissions to measure the 

carbon emissions of 18 countries for the period 1997–2004. Shi et al. (2010) considered the 

investment in fixed assets, energy consumption, and labour as inputs and the added value and 

                                                           
2
 The WIOD database is available at http://www.wiod.org. This paper uses data released in July 2014. However, 

not all data used in this thesis were updated until then. 

file:///C:/Users/KerriA.M/Desktop/www.wiod.org
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volume of industrial waste gas as outputs of DEA for evaluating industrial energy efficiency 

in 28 Chinese regions. Furthermore, Honma and Hu (2011) measured the energy efficiency of 

11 industries using labour, capital stock, and energy, among other variables as inputs, 

whereas gross value added as the only output. Wang et al. (2012) followed a similar approach 

for analysing industrial energy efficiency in 30 Chinese regions. Azadeh et al. (2007) and Wu 

at al. (2012), among others, used the value added to assess and optimise energy efficiency 

performance in energy-intensive sectors. 

Some of the variables used at this stage were also used for the energy efficiency evaluation at 

country level. Specifically, the labor (number of employees), capital stock and energy 

consumption were used as inputs to DEA model in both aggregated and disaggregated 

analysis. However, some energy-related variables including the consumption of fossil fuels, 

other fuels and domestic materials were only used in energy efficiency evaluation at country 

level. Similar to the common inputs, the economic variable of gross value added was the 

common output of DEA applied at both stages of analysis. As at the first stage we adopted 

the traditional approach for energy efficiency evaluation focusing on economic outputs, we 

eliminated from the set of output variables the GHG emissions. However, the variable of 

GHG emissions was the undesirable output of DEA in industrial energy efficiency analysis. 

This is due to the fact that the industry is responsible for almost all of the increase in GHG 

emissions in the atmosphere. Furthermore, the variable of value added from the industry and 

the services sectors that provide a more detailed insight into the economic output of each 

country were examined as outputs of DEA only at country level analysis. 

Based on the above literature and the availability of data, the gross value added and GHG 

emissions were the outputs, whereas the employment, real fixed capital stock, and gross 

energy use were the inputs in our DEA analysis (Table 4.2). Furthermore, we considered the 

GHG emissions as an undesirable output for obtaining unbiased results. All inputs and 

outputs of DEA were obtained from the WIOD, a consistent data set that enables the 

calculation of a consistent year-to-year time series. The strengths and weaknesses of WIOD, 

as well as the main guidance for its use have been analysed in detail by Timmer et al. (2015).  
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Table 4.2: Input and output variables. 

Type Variable Unit 

Outputs GHG emissions Tonnes 

 Gross value added Millions of euros 

Inputs Number of employees Thousands 

 Real fixed capital stock Euro 

 Gross energy use  Terajoules 

Note: All inputs and outputs of DEA were obtained from the World Input-Output 

Database (WIOD).  

 

Figure 4.1 presents the evolution of gross value added and gross energy use over the period 

of the analysis for all industrial sectors. Between 2003 and 2007, gross value added increased 

in all sectors, with electricity, construction and mining accounting for the highest increases 

within sectors. Conversely, all sectors, and especially mining, show a downward trend after 

2008, and this is mainly due to the economic crisis. The period between 2000 and 2003 is 

relatively stable for all sectors, except mining, which experienced a noticeable decrease in 

gross value added. As far as the performance of sub-sectors of manufacturing is concerned, 

the non-metallic mineral and basic metals presented the highest gross value added values 

whereas the textiles the lowest ones. Furthermore, the sub-sector of non-metallic metals also 

experienced the sharpest decrease after 2008 compared to other manufacturing sectors. In 

regard to gross energy use, almost all sectors show a downward trend after 2008 with the 

non-metallic metals presenting again the sharpest decrease. The sector of transport exhibits 

the highest values whereas the textiles and leather sector the lowest ones over the 10 years of 

the analysis with a sharp decrease presenting after 2005. Furthermore, the sub-sector of 

textiles is the sector that experiences the lowest values both in gross value added and gross 

energy use of all sectors especially during the economic crisis.  
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Gross Value Added (Millions of euros) 

 

 

Gross Energy Use (Terajoules) 

 

Figure 4.1: Evolution of gross value added and gross energy use over the period 2000–09 

 (year 2000=100) in all examined sectors. 

 

Following the evaluation of energy efficiency performance and trends over time, a relevant 

question could be addressed: Which are the main drivers behind these trends? To give a clear 

reply, and in a way that helps policymakers to be cautious in drawing conclusions regarding 

policy decisions, at the second stage, the cross-classified data structure that represents a 

special type of hierarchical linear multilevel model (HLM) is applied. HLMs are statistical 

models of parameters that are used when data are organised into multiple levels. In particular, 

a two-level cross-classified model is performed in STATA to analyse the influence of time, 

sector, and country determinants on energy efficiency performance. To this end, the 
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bootstrapped BCC efficiency scores obtained by DEA are defined as the dependent variables, 

whereas nine explanatory variables related to sector and country characteristics are used as 

inputs to the model.  

Energy efficiency can be affected by, among other factors, energy prices and carbon-energy 

taxation (Johansson 2006). Pardo Martínez (2009) also claimed that industrial energy 

efficiency is mainly dependent on economic factors, such as energy prices. Most of the 

literature claims that energy efficiency improves as energy prices increase (Birol and 

Keppler, 2000; Cornillie and Fankhauser, 2004; Fisher-Vanden et al., 2006; Alyousef and 

Stevens, 2011; Broeren et al., 2014; Xiaoli et al., 2014). Metcalf (2008) concluded that per 

capita income and energy prices have a positive effect on energy efficiency performance. 

Walton (1981) noted that labour quality, cost of energy, and capital could also be important 

factors in determining energy efficiency. According to Birol and Keppler (2000) and Fisher-

Vanden et al. (2006), technology development activity is another crucial factor that drives 

energy efficiency. Geller et al. (2006) claimed that energy efficiency improvement can be 

achieved through technological progress, as well as by increasing energy prices and 

eliminating subsidies for fossil fuels. Mukherjee (2008b) concluded that quality of labour has 

a positive impact on efficiency performance, whereas capital, electricity share in total energy, 

and reforms have no significant coefficient. By measuring energy efficiency in 85 countries 

over the 1971–2007 period, Stern (2012) concluded that high total factor productivity, 

undervalued currency, and low fossil fuels can have a positive influence on energy efficiency. 

He et al. (2013) claimed that low investment in R&D and labour productivity have a negative 

impact on the performance of the Chinese steel industry. Huang et al. (2014) indicated that an 

increase in per capita GDP, percentage of output value of industry, energy price, and 

investment of scientific and technological activities in industry could lead to industrial energy 

efficiency improvement. Furthermore, it has been proven that many countries impose energy 

and environmental taxes to encourage energy efficiency and fuel switching (Davidsdottir and 

Ruth, 2004; Mahmood and Marpaung, 2014). Bampatsou and Hadjiconstantinou (2009) 

concluded that countries can improve their efficiency index by using cleaner forms of energy, 

such as renewable energy resources.  

Based on the above literature, the variables of the market share of the largest generator in the 

electricity market, the energy taxes, and electricity prices are used to assess the cross-country 

differences. For cross-sector differences, the contribution of a sector’s gross value added to 

the total gross value of a country, the energy mix, the share of fossil fuels in total gross 

energy consumption, the real fixed capital stock to gross value added, the real fixed capital 

stock to number of employees, and the productivity — defined as the gross value added 
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divided by the total hours worked by employees — are examined. A detailed description and 

the source of these data are provided in Table 4.3.  

 

Table 4.3: Description of variables used at cross-classified modeling. 

Variable Description Unit Source 

Market share of the 

largest generator in 

the electricity 

market (MS) 

The indicator shows the market share 

of the largest electricity generator in 

each country. It is defined as the ratio 

of the annual net electricity production 

of the largest electricity generator over 

the total net electricity generation of 

the country. Net electricity production 

excludes the electricity used by 

generators for their own consumption.  

Percentage of 

the total 

generation 

EUROSTAT 

Energy taxes (TAX) This category includes taxes on energy 

production and on energy products 

used for both transport and stationary 

purposes. The most important energy 

products for transport purposes are 

petrol and diesel. Energy products for 

stationary use include fuel oils, natural 

gas, coal and electricity. Taxes on 

biofuels and on any other form of 

energy from renewable sources are 

included. Taxes on stocks of energy 

products and on Carbon dioxide (CO2) 

are also included. 

Percentage of 

GDP 

EUROSTAT 

Electricity prices for 

industrial consumers 

(ELECPR) 

This indicator presents electricity 

prices charged to final consumers. 

Electricity prices for industrial 

consumers are defined as follows: 

Average national price in Euro per 

kWh without taxes applicable for the 

first semester of each year for medium 

size industrial consumers 

(Consumption Band Ic with annual 

consumption between 500 and 2000 

MWh). Until 2007 the prices are 

referring to the status on 1st January of 

each year for medium size consumers 

(Standard Consumer le with annual 

consumption of 2 000 MWh). 

EUR per kWh EUROSTAT 

Energy Mix given 

by the Simpson 

Index (EM) 

This variable is given by the Simpson 

Index. This Index is equal to the sum of 

the squared of the arguments per 

sector. The arguments are the Coals 

(sum of HCOAL, BCOAL and COKE), 

Petroleum Products (sum of DIESEL, 

GASOLINE, JETFUEL, LFO, HFO, 

NAPHTA and OTHPETRO), Gases 

(sum of NATGAS and OTHGAS), 

Renewables and Wastes (sum of 

- WIOD 
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WASTE, BIOGASOL, BIODIESEL, 

BIOGAS and OTHRENEW), 

Electricity and Heat (sum of ELECTR, 

HEATPROD, NUCLEAR, HYDRO, 

GEOTHERM, SOLAR, WIND and 

OTHSOURC) each one divided by the 

total energy mix (the summation of all 

these). 

 VA/VA of Total 

Industries (VAIND) 

Gross Value added of a specific sector/ 

Gross Value added of Total Industries 

Percentage WIOD 

Share of fossil fuels 

in total gross energy 

consumption (FF) 

Share of fossil fuels (sum of coal, 

petroleum and gases products) in total 

energy mix. 

Percentage WIOD 

K_GFCF/VA 

(CVA) 

Real fixed capital stock / Gross Value 

added 

Euro/Millions 

of euro 

WIOD 

K_GFCF/EMPE 

(CEMP) 

Real fixed capital stock / Number of 

employees  

Euro/ 

Thousands of 

employees 

WIOD 

VA/H_EMPE 

(PROD)  

Gross Value added/ Total hours 

worked by employees  

Millions of 

euro/ Millions 

of hours 

WIOD 

 

 

 

4.3.2 Non-parametric Methodology  

On the methodological side, an input-oriented approach is performed following a perspective 

that emphasises the reduction of energy consumption. This is in accordance with the 

philosophy that underlies all global policies established over the years, which have focused 

on setting targets for reductions in energy consumption at the country, sector, and firm levels. 

Based on this approach, the efficiency score 
i  in linear program (Eq. 2.2) represents the 

reduction that country i  should achieve in its energy inputs to become efficient compared to 

other countries that use the same or less non-energy inputs (second constraint) and produce at 

least the same level of outputs as country i  (third constraint).  

In contrast to the standard setting that was employed in the previous chapter for the 

application of DEA, the analysis in this chapter is based on bootstrapped DEA estimates. It is 

well-known in the DEA literature that the two-stage analyses that use DEA efficiency scores 

as an input to statistical explanatory (regression) models lead to biased inferences and results. 

The MCDA model performed in the previous chapter is not subject to such limitations and 

consequently it can use the standard DEA efficiency estimates. However, such a multicriteria 

model cannot cope with the hierarchical structure of the data (time/sectors/countries) in the 
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current analysis. Therefore, a multilevel regression model is developed for measuring 

industrial energy efficiency. In order to get unbiased results from such a model, we first 

obtain proper DEA efficiency estimates through the bootstrap approach proposed by Simar 

and Wilson (1998). 

Taking into account that the efficiency measured by DEA is static, the use of DEA that 

incorporates the MPI (Malmquist, 1953) is proposed. Such an approach has been considered 

a useful tool for energy efficiency decision-making and has, therefore, been widely employed 

to evaluate the performance of a number of industrial sectors (Wei et al., 2007; Xue et al., 

2008; He et al., 2013). As explained in section 2.3.2, the DEA-based MPI enables the 

quantification of changes in total factor productivity over time (Perez-Reyes and Tovar, 

2009; Zhou et al., 2010). 

 

 

 

4.3.3 Econometric Model 

Given that each industrial sector and country has unique characteristics, the identification of 

the factors affecting energy performance is required. Therefore, at the second stage, a two-

level cross-classified model that combines a number of sector and country characteristics is 

performed. The proposed model aims to detect the contribution and effect of country and 

sector characteristics in the total variation of energy efficiency as well as to identify which of 

these characteristics are mainly responsible for the observed energy efficiency performance. 

The proposed cross-classified multilevel model contains two levels. The first level is time, 

and the second is a combination of country and sector characteristics. Time is not uniquely 

nested to either a country-level or sector-level grouping of the data. Thus, a cross-

classification scheme, such as the one used in this study, allows the analysis of the effects due 

to two different factors/contexts: (i) at the country level and (ii) at the sector level (Zaccarin 

and Rivellini, 2002).  

Following this specification, the empty (null) model is firstly constructed to assess the 

relative importance of each level in the variance of energy efficiency scores. Thus, the empty 

model examines whether there is significant intra-class correlation (ICC) between the level 

and the mean of energy efficiency scores. It focuses on random effects, ignoring fixed effects. 

Therefore, the specification of the first level is expressed by a function of the mean value of 

http://ascelibrary.org/action/doSearch?ContribStored=Xue%2C+X
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BCC bootstrapped efficiency scores of year t  within the cross-classification of sector j  and 

country k  

 

 0100 tjk jk tjkBCC e    (4.1) 

 

where 0 jk  is the intercept (overall mean value of BCC efficiency scores) expressing the 

efficiency score of sector j  in country k  over all years, and tjke  follows a distribution with 

mean zero and variance 2 . The random error ( )tjke  represents the variance across time.  

At the second level of analysis, the intercept 0 jk  is defined as a function of the grand mean 

of BCC efficiency scores 
000( )  for all years and the residual random effects for sector j

0 0( )ju , country k  
00( )k , and the sector-by-country cell 0( )jk . The level 2 model is defined 

as follows:  

 

 0 000 0 0 00 0jk j k jku        (4.2) 

 

By taking into account equations (4.1) and (4.2), we obtain the mixed-effect empty model 

(Model 1):  

 

 000 0 0 00 0100 tjk j k jk tjkBCC u          (4.3) 

 

where BCC efficiency scores are modelled with an overall intercept 
000  and an error term 

each for sector j  and country k  and the residual error term tjke  for year t  in the cross-

classification of sector j  and country k . Therefore, (4.3) implies one fixed effect 
000( ) , two 

random effects 0 0 00( , )j ku  , the within-cell residual 0( )jk , and the random error tjke , 

representing the variance across time. The sector, country, and interaction effects and the 

year-level residual error are each assumed to follow normal distributions with zero means and 

constant variances. 
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The above empty model can be extended with the inclusion of the explanatory variables 

related to sector (VAIND, EM, FF, CVA, CEMP, and PROD) and country characteristics 

(MS, TAX, and ELECPR):  

 

 

000 0 1 0 2 0 3

01 02 03 0

0 0

4

0 0 0 05 6 0
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k t
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C u

   

   

    

   

   

     

 (4.4) 

 

This model shows that the efficiency scores obtained by the BCC model are a function of 

sector- and country-level covariates and their respective random errors. 

 

 

 

4.4 Results 

4.4.1 DEA and MPI Results 

As explained in section 4.3.2, DEA was applied combined with the bootstrap approach of 

Simar and Wilson (1998) to obtain unbiased efficiency estimates, which are suitable to be 

used as inputs to the econometric model at the second stage of the analysis. Similarly to the 

analysis presented in the previous chapter, both CCR and BCC were considered. However, 

the energy efficiency evaluation under CCR model can be rather misleading and incorrect 

since there are observed differences in variables between examined countries. Thus, our 

analysis is focused only on BCC efficiency scores. Table 4.4 shows the countries’ BCC 

(bootstrapped) efficiency scores averaged over all the years of our analysis for each industrial 

sector.  
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Table 4.4: Overall BCC efficiency scores (averaged over 2000–09)  

by country and industrial sector. 

Country Constr. Electr. Mining Transp. Food Textile Pulp Coke 
Non-

metal. 
Mach.  AVG 

AT 0.832 0.787 0.261 0.776 0.841 0.809 0.206 0.433 0.809 0.812 0.657 

BE 0.840 0.428 0.268 0.487 0.802 0.693 0.674 0.480 0.476 0.696 0.584 

BG 0.835 0.394 0.728 0.623 0.463 0.735 0.493 0.376 0.469 0.873 0.599 

CZ 0.484 0.392 0.285 0.774 0.462 0.357 0.353 0.765 0.680 0.655 0.521 

DK 0.540 0.669 0.630 0.207 0.640 0.828 0.696 0.652 0.798 0.712 0.637 

FI 0.365 0.293 0.298 0.672 0.828 0.780 0.085 0.176 0.403 0.835 0.474 

FR 0.650 0.787 0.323 0.722 0.850 0.823 0.577 0.517 0.822 0.875 0.695 

DE 0.732 0.787 0.275 0.773 0.828 0.626 0.699 0.680 0.799 0.836 0.703 

GR 0.571 0.458 0.493 0.514 0.668 0.813 0.595 0.128 0.581 0.535 0.536 

HU 0.874 0.631 0.597 0.672 0.467 0.814 0.699 0.708 0.818 0.835 0.712 

IE 0.835 0.816 0.721 0.565 0.844 0.827 0.697 0.677 0.389 0.808 0.718 

IT 0.831 0.787 0.722 0.776 0.842 0.813 0.758 0.732 0.798 0.805 0.786 

LV 0.835 0.787 0.733 0.779 0.730 0.814 0.706 0.679 0.776 0.837 0.768 

LT 0.722 0.787 0.729 0.709 0.772 0.656 0.594 0.026 0.803 0.585 0.638 

NL 0.855 0.709 0.724 0.402 0.601 0.618 0.534 0.253 0.798 0.469 0.596 

PL 0.753 0.791 0.722 0.729 0.569 0.730 0.532 0.761 0.792 0.782 0.716 

PT 0.830 0.658 0.762 0.463 0.699 0.367 0.111 0.244 0.827 0.870 0.583 

RO 0.739 0.786 0.720 0.781 0.827 0.813 0.570 0.679 0.798 0.867 0.758 

SK 0.831 0.651 0.337 0.776 0.728 0.770 0.135 0.264 0.277 0.787 0.556 

SI 0.764 0.572 0.546 0.680 0.827 0.619 0.124 0.679 0.798 0.669 0.628 

ES 0.830 0.596 0.736 0.464 0.758 0.620 0.529 0.562 0.728 0.583 0.641 

SW 0.606 0.787 0.318 0.574 0.827 0.779 0.316 0.311 0.666 0.835 0.602 

UK 0.826 0.724 0.721 0.774 0.834 0.525 0.697 0.687 0.741 0.537 0.707 

AVG 0.738 0.656 0.550 0.639 0.726 0.706 0.495 0.499 0.689 0.743 0.644 

 

Based on the BCC obtained results the average BCC efficiency scores ranged between 49% 

and 74% across all sectors. It is evident that BCC efficiency is higher in construction, food, 

textiles, as well as machinery. Conversely, the highest inefficiencies (more than 45%) are 

present in mining, pulp and coke.  

The most trivial way to aggregate the sectoral results for each country is to formulate an 

overall country efficiency estimate as the average of the corresponding sectoral results. The 

corresponding results are reported in the last column of Table 4.4. To examine the 

relationship between the aggregate BCC efficiency scores obtained through this approach 

with the efficiency scores of the sectors, we used a nonparametric measure of statistical 
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dependence. Specifically, we calculated the Spearman’s rank correlation coefficient ( )sr . The 

obtained results revealed that the efficiency results for electricity as well as pulp and coke 

have the highest level of correlation (above 0.6) with the averaged efficiency scores. On the 

other hand, the sector of machinery has the lowest correlation (0.26) whereas all the other 

sectors have correlations ranging between 0.3 and 0.6.  

We also used the Spearman’s rank correlation coefficient to measure the strength of the 

relationship between sectors in a country. The results showed that the efficiency of the 

electricity sector has a strong and positive correlation with all other sectors. This observation 

is not surprising, as the efficient performance of electricity market affects the efficiency of 

other industrial sectors. Furthermore, most of the industries (except construction and mining) 

were also found to be positively associated to each other (the correlations were positive in the 

vast majority of the cases). This is reasonable as sectors in the same country have similar 

behaviour regarding financing and other policy making decisions, although such patterns 

differ across industries. 

Regarding the efficiency results at the country level, Germany, Hungary, Ireland, Italy, 

Latvia, Poland, Romania and United Kingdom achieved the highest BCC efficiency scores 

(above 70%) on average across all sectors. On the other hand, Belgium, Bulgaria, Czech 

Republic, Finland, Greece, Netherlands, Portugal and Slovakia presented the lowest BCC 

efficiency scores (below 60%). Finland is the most inefficient country (47.4%) over all years 

and sectors.  

Comparing the BCC efficiency scores obtained from this stage (disaggregated analysis) with 

those from the aggregated analysis (chapter 3), it is evident that all countries except Belgium, 

Bulgaria, Czech Republic, Hungary, Portugal, Romania and Slovakia present lower scores 

under the analysis at the sectoral level. This means that almost all countries show a better 

energy efficiency performance when this is evaluated in a global and aggregated context. 

Under both evaluations (the aggregate one analysed in chapter 3 and the disaggregated 

assessment analysed here), Italy, Ireland, Latvia, Germany, UK, and France appear to be the 

most energy efficient countries whereas Czech Republic, Slovakia, Belgium, Portugal, and 

Greece are the most inefficient ones. On the other hand, countries such as Netherlands, 

Denmark, Slovenia, Sweden, Lithuania and Finland, which achieved high efficiency scores 

according to the country level analysis, they performed poorly at the industrial level. 

Furthermore, the aggregated analysis showed that Romania and Hungary are two of the most 

inefficient countries, whereas according to their sectors’ performance they are highly 

efficient.  
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Such differences between the analysis at the country and industry levels, could be attributed 

to the structure of the industrial activity of the countries, which may lead to different results 

when it is taken into consideration. This effect is clearly stronger for some countries such as 

Romania and Hungary.  

The relation between the BCC efficiency scores obtained by DEA under the two analysis 

settings (aggregated versus disaggregated), was further examined through the Spearman’s 

rank correlation coefficient, which was found to be equal to 0.434 (p-value 0.0398). This 

result suggests that there is a strong correlation (significant at the 5% level) between the 

performance of countries as estimated through a unified (country level) and a more detailed 

context (industry level).  

Despite the high correlation between the results, it is evident that the proposed disaggregation 

analysis conducted at this stage of the research can provide a more detailed view of the 

performance of the countries. Furthermore, as the industrial sector is one that is mainly 

responsible for the high level of energy consumption and GHG emissions, it would be 

misleading if analysis focuses solely at aggregate country data, without considering a 

decomposition of the industrial activity and its characteristics. The differences between the 

energy efficiency performance of each sector inside the same country also make clear the 

necessity of evaluating energy efficiency at a more disaggregated level.  

Further insights can be obtained by considering scale efficiency which is defined as the ratio 

of the CCR to BCC efficiency scores. The scale efficiency is a measure of the extent to which 

a DMU (country/sector) deviates from the optimal scale. A scale efficiency score of 1 implies 

that the sector is operating at optimal scale or size, whereas a score below 1 indicates that the 

sector is either too small or too big relative to its optimal size. 

Figure 4.2 reveals that scale efficiency ranges between 29% and 96%, on average, under all 

countries. The average scale efficiency of the sectors across all countries has been 

consistently higher than 70% in all sectors except pulp and coke. In particular, the sectors of 

construction, transport, food, textiles and machinery present a scale effect above 90% on 

average under all countries. Thus, these sectors were almost at the optimal size for their 

particular input–output mix. The remaining sectors had scale efficiency scores of less than 

90% and were thus deemed as more scale inefficient. The detailed results are as follows: coke 

had a scale efficiency score of 29%, pulp a scale efficiency of 55% and the remaining sectors 

a scale efficiency between 71-90%. 
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Figure 4.2: The Scale Efficiency (averaged over 2000–09 and countries) by sector. 

 

As far as the country’s scale efficiency is considered, it is evident (Figure 4.3) that Denmark, 

Latvia, and Ireland are the most scale efficient countries on average in all sectors (show an 

average scale efficiency above 90%). On the other hand, Romania, Bulgaria, Germany, 

France, and Poland show an average scale efficiency below 70% under all sectors, whereas 

Poland achieved the lowest scale efficiency (55%). Furthermore, the high scale efficiency of 

countries like Denmark, Finland, Slovenia, and Belgium, as opposed to their low BCC 

efficiency, implies that internal issues in the industrial sector and the energy markets of these 

countries should be carefully considered.  

 

0.00 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 

1.00 

Food 

Textile 

Pulp 

Coke 

Non-metallic 

Machinery 

Construction 

Electricity 

Mining 

Transport 



80 
 

 

Figure 4.3: The Scale Efficiency (averaged over 2000–09 and sectors) by country. 

 

Given the panel nature of the available data, changes in productivity growth can be calculated 

using the Malmquist productivity change index. This index is composed of distance 

functions, and is therefore superior to alternative indexes of productivity growth (such as the 

Törnqvist index and the Fisher Ideal index) as it is based only on quantity data. Rather than 

looking at the annual average over the period, we compare the sectors’ performance in each 

year with a base year (2000 in this case) to examine the cumulative productivity change over 

time. Table 4.5 reports the cumulative MPI estimates (CMPI) calculated as 

1 2t tMPI MPICMP MPII     . Values greater than one indicate productivity 

improvements, while values less than one imply deterioration compared to the base year 

2000. Thus, if a sector has a cumulative MPI greater than one in year t this means that the 

sector’s productivity in year t exceeded the 2000 productivity level, otherwise its productivity 

has decreased.  



81 
 

According to the CMPI estimates (Table 4.5), construction, mining, food, and coke improved 

their productivity throughout the period 2001-09 compared to the base year 2000. 

Furthermore, it is evident that the CMPI has been consistently higher than 1, from 2006 

onwards, in all sectors except transport, thus indicating productivity improvements over the 

years. Prior to 2006 the improvements were moderate in most cases, with fluctuations from 

year to year. However, after 2006 most sectors present a consistent upward efficiency trend. 

In some sectors, this improvement was even higher than 50%. For example, the textiles sector 

improved its performance by 58.4% in 2009 compared to 2000. The textiles sector has been 

subject to a series of radical transformations over recent decades, due to a combination of 

technological changes, the evolution of production costs, the emergence of important 

international competitors, and the elimination of imports quotas after 2004
3
. Companies 

across the whole textile and apparel value chain place sustainable production and higher 

resource efficiency at the centre of their growth strategy
4
. It is worth noting that even during 

the economic crisis (2008-09) all sectors (except transport) improved their productivity by at 

least 10%. The highest improvements were achieved in mining, food, textiles, and non-

metallic products (productivity increase above 30% from 2000 to 2009). 

 

Table 4.5: Cumulative MPI for each industrial sector (averaged over all countries). 

 
Constr. Electr. Mining Transp. Food Textile Pulp Coke 

Non-

metal. 
Mach.  

2001 1.077 0.965 1.007 0.964 1.050 1.009 1.014 1.052 1.032 0.982 

2002 1.054 0.972 1.064 0.969 1.037 1.013 0.987 1.112 1.043 1.028 

2003 1.113 0.950 1.005 0.940 1.026 0.975 0.952 1.085 1.002 0.966 

2004 1.097 0.966 1.024 0.894 1.064 0.998 0.992 1.015 0.974 1.039 

2005 1.061 1.001 1.062 0.911 1.112 1.170 0.999 1.001 1.000 1.045 

2006 1.055 1.037 1.109 0.917 1.166 1.207 1.006 1.089 1.002 1.068 

2007 1.169 1.075 1.164 0.895 1.234 1.312 1.049 1.142 1.046 1.134 

2008 1.120 1.090 1.245 0.908 1.266 1.451 1.098 1.129 1.112 1.156 

2009 1.204 1.104 1.306 0.862 1.310 1.584 1.160 1.193 1.312 1.182 

 

As explained in section 2.3.2, the MPI can provide additional insights since it can be 

decomposed into two additional components, one measuring changes in technical efficiency 

(i.e., whether sectors are getting closer to the production frontier over time), and one 

                                                           
3
 http://ec.europa.eu/growth/sectors/fashion/textiles-clothing/eu/index_en.htm [Accessed 5 November 2015] 

4
 http://www.innovationintextiles.com/energy-efficiency-for-european-textile-and-clothing-industry-discussed-

in-brussels/ [Accessed 5 November 2015] 

http://ec.europa.eu/growth/sectors/fashion/textiles-clothing/eu/index_en.htm
http://www.innovationintextiles.com/energy-efficiency-for-european-textile-and-clothing-industry-discussed-in-brussels/
http://www.innovationintextiles.com/energy-efficiency-for-european-textile-and-clothing-industry-discussed-in-brussels/
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indicating changes in technology (i.e., whether the production frontier progresses over time). 

Tables 4.6 and 4.7 illustrate the evolution of the two corresponding main components (in 

cumulative terms) for all sectors over the period 2001–09 compared to their 2000 levels 

(which are equal to 1).  

Table 4.6 presents the cumulative efficiency trends that reflect the capability of a sector in 

catching up with the efficient ones from 2001 to 2009. Construction, food, pulp and 

machinery present an improvement, at least 2%, in their efficiency over all period under 

examination. Furthermore, all sectors except mining, transport, coke, and non-metallic 

minerals, show an improving trend after 2004. However, this trend is not stable as there are 

fluctuations (at least ±5%). At the end of the examined period (in 2009) all sectors, with the 

exception of mining, improved their efficiency performance. Pulp had the highest 

improvement (24%), whereas the other sectors had at least a 1% increase in their efficiency 

performance compared to that in 2000.  

 

Table 4.6: Cumulative efficiency change over the period 2000–09 

 (year 2000=1). 

 

Constr. Electr. Mining Transp. Food Textile Pulp Coke 
Non-

metal. 
Mach.  

2001 1.045 0.998 0.992 0.998 1.018 1.031 1.100 0.925 1.079 1.020 

2002 1.087 0.992 0.922 0.980 1.021 1.018 1.068 0.889 0.981 1.019 

2003 1.072 1.003 0.921 0.993 1.028 0.994 1.107 0.985 1.018 1.027 

2004 1.062 1.015 0.973 0.962 1.023 0.983 1.160 1.102 0.995 1.049 

2005 1.093 1.048 1.012 0.986 1.102 1.048 1.105 1.064 1.016 1.055 

2006 1.087 1.065 1.093 1.007 1.116 1.047 1.162 0.956 1.063 1.039 

2007 1.120 1.052 1.069 0.997 1.120 1.028 1.043 0.956 1.096 1.039 

2008 1.085 1.080 1.097 1.022 1.153 1.043 1.054 1.028 0.965 1.036 

2009 1.094 1.080 0.936 1.013 1.139 1.106 1.241 1.062 1.026 1.065 

 

According to the technology change results (Table 4.7), the best-practice frontiers in mining, 

food, and coke improved by more than 2% over the period 2001–09. All sectors, except 

transport, had an upward trend (improvement) in technology change after 2005. In particular, 

all sectors except construction, electricity, and transport had a consistent upward trend in 

technology improvement (above 4%), whereas mining, textiles, coke, and non-metallic 

minerals achieved at least a 10% improvement. It is also observed that even during the 

economic crisis (in 2009), the best-practice frontier improved by more than 7% in all sectors 



83 
 

except transport, with the improvement being much stronger in mining, textiles, and coke 

(more than 50%). Of all sectors, coke achieved the highest improvement in 2009. Actually, 

this sector had the most consistent improvement throughout the examined time period. 

 

Table 4.7: Cumulative technology change over the period 2000–09  

(year 2000=1).  

 

Constr. Electr. Mining Transp. Food Textile Pulp Coke 
Non-

metal. 
Mach.  

2001 1.037 0.970 1.045 0.976 1.037 0.984 0.964 1.372 0.968 0.968 

2002 0.979 0.988 1.225 1.004 1.029 1.006 0.995 1.577 1.089 1.020 

2003 1.055 0.961 1.181 0.972 1.020 0.998 0.972 1.581 1.018 0.959 

2004 1.055 0.971 1.153 0.970 1.067 1.041 0.994 1.481 1.025 1.018 

2005 0.999 0.980 1.167 0.973 1.040 1.158 1.091 1.543 1.042 1.022 

2006 1.004 1.006 1.159 0.968 1.080 1.211 1.106 2.020 1.004 1.065 

2007 1.086 1.059 1.262 0.961 1.145 1.352 1.325 2.390 1.023 1.133 

2008 1.081 1.053 1.351 0.961 1.146 1.486 1.426 2.659 1.255 1.164 

2009 1.161 1.077 1.703 0.946 1.207 1.552 1.432 3.125 1.421 1.162 

 

Taking into account the above results trends regarding the changes in the efficiency and 

technology components of the MPI, it is evident that the effects due to efficiency and 

technology change differ among sectors and periods. It is evident that the technology (best-

practice frontier) improvements have been stronger than the efficiency change component, 

during the period under examination. Therefore, we conclude that technology is mainly 

responsible for the improvement in performance of almost all sectors. This effect is stronger 

in mining, transport, pulp, coke, and machinery. Conversely, textile appears to have been 

driven primarily by efficiency change (in almost all years). Construction, electricity, food, 

and non-metallic minerals showed a mixed behaviour, with the efficiency and technology 

change factors contributing differently in separate periods.  

 

 

 

4.4.2 Multilevel Regression Results 

At the second stage of our analysis, we used the two-level cross-classified model to analyse 

the factors behind the observed energy efficiency trends. The bootstrapped BCC efficiency 

scores obtained by DEA were used as the dependent variable whereas the country and sector 
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characteristics as the independent variables. Table 4.8 reports the descriptive statistics for all 

variables, as well as their pairwise Pearson correlation coefficients. The sample consists of 

2.300 observations from ten industrial sectors in 23 EU countries over the period 2000–09.  

 

Table 4.8: Descriptive statistics and Pearson correlation coefficients. 

 Variable Mean St.dev. 1 2 3 4 5 6 7 8 9 

1 BCC 0.644 0.205          

2 MS 53.874 24.428 -0.093         

3 TAX 1.939 0.393  0.009*   -0.339        

4 ELECPR 0.068 0.020  0.035* -0.041* -0.289       

5 VAIND 0.033 0.024   0.201 -0.024*  0.048 -0.017*      

6 EM 0.471 0.206 -0.004*   0.045 -0.024* 0.005* 0.448     

7 FF 0.709 0.202  0.049  -0.014*  -0.042    0.054 0.354 0.484    

8 CVA 2.014 1.626 -0.096  0.075 -0.061    0.045 -0.221 0.059 -0.105   

9 CEMP 178.563 362.472 0.004*  -0.046 -0.038*    0.073 -0.136 0.079 -0.005* 0.523  

10 PROD 44.006 108.388 0.000*  -0.065 -0.022*    0.096  -0.026* 0.152 0.086 0.083 0.728 

Note: * insignificant correlation at the 5% level. 

 

It is obvious that the variables are not highly correlated either positively or negatively. There 

is only a strong positive relationship between PROD and CEMP. Moreover, the relationships 

between FF and EM, between CEMP and CVA are also positive but moderate. Furthermore, 

the dependent variable is correlated positively with all independent variables, except the MS, 

EM and CVA. VAIND presents the highest correlation with BCC efficiency scores (0.201), 

followed by the variables of the MS (|-0.093|) and CVA (|-0.096|) in absolute terms.  

Table 4.9 shows the variance decomposition estimates at the sector 0 0( )ju  and country levels 

00( )k , the interaction between sector and country levels 0( )jk  and the time effect ( )tjke , for 

both the empty (Model 1) and the random intercept model (Model 2). It also illustrates the 

ICC, which is the percentage of each level’s variance to total variance. 
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Table 4.9: Variance decomposition and fixed effects estimates for the empty  

and the random intercept model. 

  
Model 1: 

Empty Model 

Model 2: 

Random Intercept Model 

Variance decomposition  
  

Sector-level, u0j0 74.461 63.774 

Country-level, υ00k 43.021                  48.069 

Sector x Country-level, δ0jk               243.360                236.002 

Time-level, etjk                 60.750                  58.505 

Percentage of total variance 
  

Between sectors 17.66% 15.69% 

Between countries 10.20% 11.83% 

Between sectors & countries 57.72% 58.08% 

Across time 14.41% 14.40% 

Fixed effects 
  

Intercept 64.404 (0.000) 76.981 (0.000) 

Sector variables 
  

VAIND 
 

159.280 (0.000) 

EM 
 

            -1.705 (0.680) 

FF 
 

-12.377 (0.000) 

CVA 
 

  -0.881 (0.018) 

CEMP 
 

   0.005 (0.113) 

PROD 
 

   0.009 (0.097) 

Country variables 
  

MS 
 

  -0.053 (0.036) 

TAX 
 

 -1.405 (0.126) 

ELECPR             -31.646 (0.009) 

Note: p-values in parentheses. A positive coefficient corresponds to variables that contribute in 

increasing energy efficiency.  

 

Model 1 provides a view of the relative importance of each level for the variance of 

efficiency scores. From the variance decomposition estimates, it is obvious that the 

sector/country interaction effect is the most stronger one, accounting for 57.72% of the total 

variance in energy efficiency. This significant effect justifies the application of the two-level 

cross-classified model at this stage. The sector level, which accounts for 17.66% of the 

observed variance in energy efficiency scores, seems to also play an important role. The 
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effects of the country and time levels, which account for 10.20% and 14.41%, respectively, 

also influence efficiency performance but to a much lesser extent.  

As far as the variance decomposition estimates of the random intercept model (Model 2) are 

concerned, the conclusions are similar to those under Model 1. Thus, the combination of 

country and sector levels accounts for the highest variance and almost to the same proportion 

as in case of Model 1 (58.08%). The explanatory power of the time level in Model 2 

(14.40%) is also similar to its effect in Model 1 (14.41%). On the other hand, the sector 

characteristics are now responsible for a smaller proportion (15.69%), whereas the country 

level now accounts for a slightly higher proportion (11.83%) on energy efficiency variance. 

Table 4.9 also shows the fixed-effects estimates for all explanatory variables (country and 

sector characteristics). Specifically, VAIND, FF, and ELECPR are statistically significant at 

the 1% level, CVA and MS significant at 5%, and PROD at 10% level. However, the EM, 

and to a lesser extent, the CEMP and TAX are not significant.  

Looking more closely the results for the above variables, it is evident that the sector 

characteristics related to VAIND, CEMP, and PROD have a positive impact on energy 

efficiency performance. Pardo Martínez (2011) and He et al. (2013) also concluded that a 

higher value of VAIND is associated positively with energy efficiency. Our finding that 

labour quality (as described by CEMP) has a positive effect on the efficient use of energy is 

in accordance with similar results reported by Subrahmanya (2006), Mukherjee (2008a), and 

Pardo Martínez (2011). However, according to our results this effect is not statistically 

significant. Furthermore, the result regarding the positive impact of PROD on energy 

efficiency is in accordance with similar conclusions reported in other studies. For example, 

Subrahmanya (2006) and He et al. (2013) observed that the sectors or countries that exhibit 

higher labour productivity have higher energy efficiency performance. Conversely, Pardo 

Martínez (2009) noted that changes in labour intensity should not necessarily mean higher or 

lower energy efficiency.  

The remaining sector variables (EM, FF, and CVA) have a negative effect on energy 

efficiency. In particular, the negative coefficient of EM implies that using a diversified set of 

energy sources tends to improve energy efficiency. However, its effect does not seem to be 

significant. FF, on the other hand, has a significant negative impact on efficiency. This is well 

in line with a number of studies (Geller et al., 2006; Pardo Martínez, 2011; Stern, 2012; 

Bampatsou et al., 2013), in which a shift from lower-end use to higher-end use efficiency 

fuels has been proven to have a positive influence on energy efficiency. Furthermore, we 

observe that CVA has a negative contribution to energy efficiency. This variable expresses 
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the capital output ratio and more specifically the productivity of capital inputs. Based on the 

Harrod-Domar model, the rate of growth in an economy can be increased by reducing this 

ratio. If the value of CVA is high, this means that an economy needs a lot of capital for 

production and it does not get as much value of output for the same amount of capital. Thus, 

its energy efficiency performance is poor. This is in line with the observation that energy 

efficiency is negatively affected by increases in CVA. Yuan et al. (2009) concluded that the 

larger is the growth rate of output per capital (the opposite rate of CVA), the larger is that of 

energy intensity. This also proves that a decrease in CVA results to energy efficiency 

improvements.  

Regarding the country variables, they all have a negative coefficient. In particular, ELECPR 

and MS are statistically significant, whereas TAX does not have a significant effect on 

energy efficiency. These results imply that the higher the price of electricity, the lower the 

energy efficiency. Undoubtedly, energy efficiency depends on the price of energy. Although 

most literature claims that higher energy prices are the principal determinant of gains in 

energy efficiency (Birol and Keppler, 2000; Cornillie and Fankhauser, 2004; Metcalf, 2008; 

Alyousef and Stevens, 2011; Broeren et al., 2014; Xiaoli et al., 2014), our results contrast 

with the above findings, as we observed that a higher energy price has a negative impact on 

energy efficiency. This is somewhat surprising, but it possibly reflects the negative effect that 

high electricity prices have on economic development. Without a strong economy, the 

demand for energy decreases, thereby leading to lower investment and slower energy 

efficiency development.  

The above argument is supported by a number of policy studies and reports. For instance, a 

recent study by ECOFYS
5
 analysed the effect of an electricity price increase on the prices 

and production of the most relevant upstream and down-stream sectors such as the steel, 

aluminium, copper, paper, chemical and textile industry. The analysis showed that if 

electricity price increases are passed on to product prices, this would lead to a significant 

decline in demand and production in most sectors, thus leading to losses and therefore 

business failures and shut-downs. For instance, in sectors such as the paper industry and non-

ferrous metal industry, the study estimates an average product price increase of 5% due to 

electricity prices increasing, which in turn is expected to lead to production decrease by 11-

18%.  

Such results are in accordance with current experiences and opinions from industry experts. 

For instance, Rolf Kuby, the chief of the Brussels bureau of WirtschaftsVereinigung Metalle 

                                                           
5
http://www.ecofys.com/files/files/ecofys-fraunhoferisi-2015-electricity-costs-of-energy-intensive-industries.pdf 

http://www.ecofys.com/files/files/ecofys-fraunhoferisi-2015-electricity-costs-of-energy-intensive-industries.pdf
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federation, noted that the EU's energy efficiency bill would push electricity prices up and 

could bring their businesses close to closure
6
. The unilateral energy and climate costs would 

make investment in metals impossible leading to lower competitiveness of European 

companies. Therefore, he proposed that all should strive for lower energy prices by fostering 

innovation, lower market entrance barriers for new technologies and financing facilities. 

The European Competitiveness Report (2014) has also highlighted the potential negative 

impacts of high energy prices for the competitive performance of the EU economy. The 

report shows that between 2008 and 2012, industrial electricity prices increased in most EU 

Member States. However, a wide variation in electricity prices was observed for industry 

between different EU countries. The report notes the importance of the generation mix of 

countries in explaining the different absolute levels and dynamics of electricity prices (thus 

supporting the analysis setting in this analysis which considers variables related to energy 

mix production). For example, Cyprus and Malta present high electricity prices because their 

electricity generation is largely based on petroleum products that are characterized by high 

energy and supply costs. On the other hand, the low electricity prices in Denmark can be 

explained by the renewables boom that imposes a negligible cost in electricity generation. On 

the basis of the reports’ results it is emphasized that “Caution is needed in using prices as a 

policy instrument to induce energy savings: the increase of energy prices created a real 

burden that most European firms were not able to fully compensate for” (factsheet of Chapter 

6). 

Other studies have examined the connections between energy prices with parallel 

mechanisms and policy actions that have been implemented during the past decade in Europe. 

For instance, Robinson (2015) focuses on the EU ETS, which has affected several 

components of electricity prices. The author argues that by introducing mandatory targets for 

renewable energy and policies to encourage energy efficiency, the EU reduced the demand 

for emission allowances in the ETS, thus discouraging innovation and investment in 

technologies that were not receiving government support outside the energy market. Second, 

by allocating too many permits, the EU created an excess supply of them, which contributed 

to lower prices both for CO2 allowances and for electricity. Furthermore, the EU ETS 

mechanism was not designed to deal with an economic recession. The crisis that started in 

2008 has lowered even further the demand for energy and emission allowances. Robinson 

notes that “in the longer term there is little, if any, confidence that future emission allowance 

prices will be high enough, or stable enough, to drive low-carbon investment”.  

                                                           
6
 http://www.euractiv.com/specialreport-energy-efficient-b/industry-eus-energy-efficiency-b-interview-513184 

http://www.euractiv.com/specialreport-energy-efficient-b/industry-eus-energy-efficiency-b-interview-513184
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Except for policy and industry reports, our results on the role of electricity prices share 

similarities with results reported in a number of past research publications. For instance, 

Jaraite and Di Maria (2012) concluded that carbon price has a negative effect on the 

efficiency performance of public power plants. Lindmark et al. (2011) and Geller at al. 

(2006) also noted that energy efficiency improvements result from cutting all types of costs, 

including energy costs. Wu (2012) found that energy price has a positive effect on the 

reduction of energy intensity but this effect is not statistically significant. Furthermore, it has 

been shown that efficiency improvement lags behind price increases because it takes time to 

replace technology. Thus, if prices remain high for only a short period, or if prices are 

expected to decrease again, the motivation to invest in energy efficiency will probably 

decrease. Conversely, Abeelen et al. (2013) argued that there is no clear relationship between 

energy prices and energy efficiency. They noted that, despite the high prices, no increase in 

energy savings was observed, while in a later period that was characterised by relative 

constant prices, the savings increased. According to them, the large time gap between the 

increase in energy prices and investments in energy saving projects, the large fluctuations in 

prices over years and the uncertainty concerning future prices as well as the low share of 

energy costs in most sectors may explain why the energy price should not be considered a 

key driver for energy efficiency.  

The negative and significant coefficient of MS shows that competition in the electricity 

production market can have a positive effect on a country’s energy efficiency. This effect is 

also well in line with the reported negative influence of high electricity prices. Carbon/energy 

taxes and energy efficiency improvement have been studied in depth in recent years in regard 

to their potential adverse impacts on the economy. Based on our analysis, although energy 

taxes contribute negatively on energy efficiency, they are not a key variable for improving 

energy efficiency. Davidsdottir and Ruth (2004) claimed that an increase in energy taxes can 

gradually improve energy efficiency but not on a permanent basis. Contrary to the usual 

assumption that higher energy taxes can promote more energy-efficient technologies, we find 

that higher taxes lead to lower energy efficiency performance. Possibly, as in the case of the 

price of electricity, an increase in energy taxes has a negative effect on the economy of a 

country and, as a result, on energy-efficient technologies as well. Mahmood and Marpaung 

(2014) found that the imposed energy taxes indeed contribute to GDP decline and thus energy 

efficiency cannot be promoted due to economic restrictions.  
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4.5 Conclusions  

In this chapter, the energy efficiency performance of 10 industrial sectors across 23 EU 

countries over the 2000–09 period was evaluated. At the first stage, DEA was performed for 

the estimation of the relative energy efficiency. A number of economic and environmental 

factors were employed to this end. According to the obtained results, construction, transport, 

food, textiles, and machinery are almost at the optimal size for their particular input–output 

mix as the scale effect is weaker (higher scale efficiency on average across all countries) in 

these sectors. Conversely, pulp and coke are the most inefficient sectors. Thus, energy 

efficiency strategies applied to pulp and coke could be more effective as there is more room 

for considerable improvement in these sectors. Energy efficiency measures, such as subsidies 

and incentives for energy-efficient technologies, loan guarantees, minimum building and 

equipment efficiency standards could be applied for improving energy efficiency. Regarding 

the countries’ energy efficiency performance, it is worth mentioning that although Denmark, 

Finland, Slovenia and Belgium present low efficiency scores, they present high scale 

efficiency as well. In this regard, their low efficiency scores can be attributed not to scale size 

effect but to internal energy-related policies at the country level in connection to their 

economic outputs.  

At a next stage, the DEA-based MPI approach was used to examine the efficiency trends over 

time and distinguish between efficiency change and technology change. The evaluation and 

decomposition of MPI reveal that the improvements due to efficiency change have been 

modest at best, whereas improvements due to changes in the best practices (the technology 

factor) have been significant in most sectors. The growth rates (improvements) in technology 

exceed those in efficiency change in all sectors and periods. Based on the corresponding 

results, transport is the only sector that has not improved its productivity performance from 

2000 to 2009. This observation is in line with that reported by IEA (2010), according to 

which transport was the sector that received the least energy efficiency policy action across 

all countries. The inefficiency of the transport sector in comparison with its increasing energy 

consumption is the main contributor to the sector’s decline in productivity (MPI) over the 

period 2000–09. However, since mid-2009, numerous measures have been developed to 

improve energy efficiency in transport and, more specifically, to promote environmentally 

friendly forms of transportation. To this end, the Directive on the Promotion of Clean and 

Energy Efficient Road Transport Vehicles has also been developed.  

Understanding the determinants that have the highest explanatory power in efficiency 

performance is also essential for the development of the appropriate policy-making initiatives 

http://en.wikipedia.org/wiki/Incentive
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and actions. The results from the two-level cross-classified model could be helpful towards 

this direction. Many studies have also analysed the reasons for the changes in industrial 

energy efficiency (e.g. Birol and Keppler, 2000; Cornillie and Fankhauser, 2004; Metcalf, 

2008; Alyousef and Stevens, 2011; Stern, 2012; Broeren et al., 2014; Xiaoli et al., 2014). Not 

surprisingly, we found that the combination of sector and country levels is the most relevant 

in explaining the energy efficiency variance. Moreover, we concluded that a large proportion 

of energy efficiency variance is due to the sector characteristics. This suggests that 

policymakers should take into account the intrinsic sector characteristics when formulating 

energy efficiency measures. However, they should not ignore the importance of country 

characteristics in energy efficiency performance. This was evident by the results of the empty 

model, which indeed showed that the country level effect is strong. According to the results 

of the econometric analysis, policymakers should turn their attention to strengthening the 

private sector’s contribution to the overall economy, and at a lesser extent, promoting 

productivity gains. Measures such as promoting the gradual displacement of fossil fuels 

should also be part of the policy-/decision-making when it comes to improving industrial 

energy efficiency. The results also show that opening up the electricity market by creating a 

more competitive environment might contribute to energy efficiency improvement. A more 

competitive market provides more choices to consumers, promotes fairer prices, as well as a 

cleaner energy supply and energy. It is worth noting that in September 2007, the European 

Commission launched its third legislative package to liberalise energy markets, and since 

March 2011, it has been transposed into national law. During the period 2000–09, Latvia and 

Greece were both characterised by a complete monopoly, with more than 90% of their 

electricity being generated by the largest (sole) generator. Although, all EU countries have 

gradually opened energy production over the examined period, four EU Member States 

(Belgium, Ireland, France, and Slovakia) have remained mostly oligopolistic as the shares of 

the largest producers were above 80%. In accordance with the electricity market opening, the 

policies designed to reduce electricity prices could also have a significant impact on energy 

efficiency improvement.  

The information gained through this study could support policy formulation and provide a 

sound basis for informed decisions related to energy efficiency in industry. However, there is 

a wide range of issues that could be explored in future research. Among others, these may 

involve the enrichment of the data set with a more comprehensive categorization of the 

industrial sectors, a more extensive time period (up-to-date data), and the examination of 

more country and sector characteristics that could explain the industrial energy efficiency. 

http://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:European_Commission_%28EC%29
http://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:European_Commission_%28EC%29
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CHAPTER 5 

Conclusions and Recommendations 

This chapter concludes the thesis, first summarizing the main findings and contributions of 

the obtained results, discussing their policy implications, analyzing the limitations of the 

analysis, and finally suggesting future research directions. 

 

 

 

5.1 Summary of the Main Findings and Contributions 

Today, the major policy interest is riveted on the end-use energy-efficiency improvements as 

an effective approach for the reduction of GHG emissions and other pollutants as well as 

energy use. In pursuing these goals, governments and the energy sector have undergone 

several major changes during the last decades. They continue to face new challenges and 

opportunities including, among others, the increase in oil and gas prices, the extending use of 

renewable energy sources, the introduction and development of emissions markets, the 

increasing customer awareness on pollution related issues and energy efficiency.  

This rapidly evolving framework affects the operation, performance and efficiency of all 

economic sectors as well as the countries’ policy choices. Therefore, the tools that facilitate 

the monitoring of the current status and trends in energy efficiency at the country and sectoral 

level are of major interest to all stakeholders (e.g., policy makers, governments, manager of 

firms). Although, the existing literature is indeed very rich and especially on the country level 

(e.g., analysis of energy consumption, production and efficiency), there is a lack on the 

development of an integrated methodology suitable for the evaluation of energy efficiency at 

both the country and sectoral level on the basis of up to date data.  

The goal of this thesis was the assessment of energy efficiency at both an aggregated and a 

more disaggregated base. In particular, its objective was twofold: to develop and implement a 

holistic methodology for energy efficiency measurement in EU countries and industries as 

well as to determine the factors that have the highest explanatory power in efficiency 

performance. The proposed approach considers energy efficiency in a multidimensional 

context, taking into account the multiple perspectives of the problem including, among 

others, financial and economic data, environmental factors, as well as country and sector 

characteristics. Specifically, at the first stage, an operations research approach based on DEA 
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tools was implemented to analyse the dynamics of the energy efficiency trends. The MPI was 

also performed to distinguish between the effects of efficiency and technology changes. At a 

next stage, given the importance of understanding the key drivers behind energy efficiency, 

the research was extended to specify the factors that affect energy efficiency performance 

using the MCDA and multilevel methodology. 

This work makes a significant contribution to energy related literature and especially to 

energy planning. MCDA and DEA have received considerable attention in the OR/MS 

literature. However, despite having much in common, the two fields have developed almost 

entirely independently to each other (Mavrotas and Trifillis, 2006). Furthermore, there has 

been almost no attempt to combine both methods in a unified context for energy efficiency 

measurement. It is only in the last decades that the formal analogies existing between DEA 

and MCDA have been considered in the area of performance evaluation. Specifically, the 

replacement of DMUs with alternatives, outputs with maximization criteria and inputs with 

minimization criteria have led some authors to use DEA as a tool for MCDA. Thus, this study 

contributes to the literature by adopting a two-stage approach, based on DEA and MCDA, for 

the evaluation of country’s energy efficiency performance. The combination of these 

approaches is considered to be a useful tool for quantifying and measuring energy efficiency 

as it provides the advantages of both methods while addressing their limitations. In particular, 

the adopted two-stage approach focused on building a multicriteria model that allows the 

evaluation of all alternatives (countries) on the grounds of their DEA efficiency classification 

(i.e., DEA and MCDA are used in combination instead of mixing ideas from both fields to 

introduce a new evaluation technique). Thus, this approach enables all policy makers and 

stakeholders involved in the policy-making process to consider a much wider range of 

impacts of energy efficiency programs, instead of focusing solely on an input-output energy-

economic production framework. According to the results of this stage of the analysis, policy 

makers should turn their attention on the GDP growth and energy intensity as these are the 

two most important factors for energy efficiency improvement. Furthermore, they should 

promote various initiatives to develop a more diversified and service oriented economy that 

would use more the renewable energy sources.  

At the second stage of the analysis, a multilevel model was applied to estimate the relative 

importance of time, country, and industry related factors on industrial energy efficiency. As 

the main target of all energy efficiency policy design and implementation is the identification 

of energy efficiency drivers, the obtained findings can help policymakers in formulating 

coherent and effective energy policies for energy intensive sectors. The empirical results 

showed that there is room for considerable improvement in sectors such as pulp and coke. It 



94 
 

was also found that technology changes were mainly responsible for the high energy 

efficiency performance in most sectors whereas some countries need to address internal 

issues for improving their energy efficiency. The strengthening of the private sector’s 

contribution to the overall economy and productivity as well as the gradual displacement of 

fossil fuels and opening up of the electricity market to more competition should be also 

carefully considered for promoting and strengthening energy efficiency. The identification of 

the factors behind energy efficiency at the sectoral level could also assist policy makers in 

evaluating the current energy efficiency policies towards these factors and creating a mix of 

strategies that will address the existing problems.  

Taking into account the challenges lying ahead for improving energy efficiency, the results 

and conclusions of this work led to a better understanding of issues which are of vital concern 

and importance to governments and energy intensive sectors. Specifically, this thesis delivers 

important inputs to the field of policy learning that can be used to improve future policies for 

energy efficiency as well as to support innovation and facilitate technology change for 

sustainable energy use.  

To sum up, the key research milestones of the thesis include: 

 The use of a unifying methodology for assessing energy efficiency in a 

multidimensional context. 

 The implementation of an input-oriented DEA setting for assessing the efficiency 

performance of EU countries and industries under different scenarios. 

 The development of a two-stage DEA/MCDA approach that could be used for 

benchmark comparisons across countries without requiring the use of DEA every time 

the energy efficiency performance of a single country needs to be assessed. This 

approach could provide analysts and policy makers with evaluations of energy 

efficiency in absolute terms and enable them to consider a rich list of the impacts of 

energy efficiency programs and actions as well as explore the underlying trade-offs.  

 The analysis of the dynamics of energy efficiency over time, identifying productivity 

differences and estimating the effect of efficiency and technology change on energy 

efficiency performance. 

 The development of a multilevel framework that considers a number of intrinsic 

sector and country characteristics for highlighting the drivers behind the energy 

efficiency performance of energy intensive sectors. 

Overall, the findings and conclusions of this thesis are of major importance as they can 

provide helpful guidance for regulators in designing policies for energy efficiency 
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improvement at the country and sectoral level. In particular, these can enable policy makers 

and other decision makers to: (1) measure energy efficiency performance, (2) gain an 

understanding of the main factors influencing energy efficiency, (3) evaluate current energy 

efficiency programs and policies towards the main explanatory factors, (4) compare the 

performance and benefit from lessons learned by other countries and industries.  

 

 

 

5.2 Limitations and Future Directions  

The findings from our theoretical and empirical analysis come along with some limitations 

that have been explained in the previous chapters (chapter 3 and 4). Accordingly, suggestions 

for future research have been also proposed to address these issues as well as to suggest 

alternative avenues that could be considered in the future. Here we discuss what we consider 

to be the most important ones.  

One of the main limitations of this study relates to data used in the analysis. Our dataset was 

limited to 26 EU countries over the period 2000-10 and 23 EU countries over the period 

2000-09 for energy efficiency evaluation on country and industry level, respectively. Future 

work should be enriched by including data for countries outside the EU, developing and 

developed ones. Many developing countries have experienced rapid growth in energy 

consumption in recent years. This growth has been stronger for non-OECD countries and 

especially in Asia with the highest total demand coming from China and India alone. Thus, 

the consideration of these countries should be high up on the energy efficiency research 

agenda. It would be interesting to analyse the energy efficiency in developing and transition 

economies as these are also characterised by rapid population expansion and a structural 

change toward more energy-intensive industries. The analysis could also include major 

economies, such as the G8 countries
1
 that comprise some two-thirds of the global economy 

and around 70% of global energy consumption. The performance of five key developing 

countries (China, Indian, Brazil, Mexico, and South Africa) should also be considered in 

energy efficiency analysis because of their high energy intensive character. The focus on 

countries, such as Japan, Canada and U.S.A, where major energy and environmental issues 

took place would allow the analysis to shed some light on the factors that have a significant 

effect on energy efficiency and how the country’s energy map changed because of these. For 

example, the 2011 earthquake and tsunami in Japan led the country to close all 50 of its 

                                                           
1 Canada, France, Germany, Italy, Japan, Russia, United Kingdom, United States. 
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nuclear plants and take initiatives to lower energy consumption and dependence on nuclear 

power through the promotion of energy efficiency and alternative energy sources, such as 

renewables.  

A more extensive time period that includes the most up to date data should also be examined. 

The framework developed in this doctoral thesis has wider applications than globally 

comparing energy efficiency across countries and industries. Local administrative regions 

(e.g., municipalities) and firms could also use it as a tool to compare their energy efficiency 

performance to that of other similar units. Thus, energy efficiency analysis at a much more 

disaggregated level should be conducted. For example, the performance of energy related 

fields should also be examined, as the performance of each field could affect the industrial 

energy efficiency as a whole.  

Another extension could be the consideration of more detailed data on socio-economic and 

environmental factors. In particular, the characteristics and prices of commodities (e.g. 

energy prices, fuel prices), the trade openness, the financial development and green 

investments could offer an in-depth investigation of the drivers and causes of energy 

efficiency. The EU emissions trading system (EU ETS), a cornerstone of the EU’s policy to 

combat climate change and reduce GHG emissions, should also be taken into consideration. 

EU ETS acts as a major driver of investment in clean technologies and low-carbon solutions 

and thus it could play a major towards improving energy efficiency. Therefore, it would be 

interesting to investigate how such systems contribute to energy efficiency performance of 

industries and countries as well.  

It would be also worthwhile to examine the relationship between energy efficiency and 

energy security. In particular, this relationship should be examined not only in terms of 

energy supply but in a broader base that includes economic, technological, environmental, 

social, cultural, and geopolitical perspectives. The significant of energy security is 

highlighted by the fact that nowadays energy security is higher in the agenda of energy firms 

and governments than ever before. Thus, the main characteristics of energy security including 

the diversification of supply, diversification of fuel types and industrial globalization, should 

be considered as possible energy efficiency drivers too.  

A further extension of this research would be the application of energy efficiency evaluation 

methods for estimating the performance of the implementation of new technologies for 

improved energy management systems. For instance, smart grid technologies, which are 

primarily linked to electricity generation, storage, transmission, and distribution, can promote 

end-use energy efficiency through mechanisms such as demand response, dynamic pricing, 
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and a multitude of energy-efficiency programs (Paget et al., 2011). However, a context 

should be set that could quantify the results obtained from the application of these 

technologies mainly in regards to energy efficiency. This framework could be used as a 

starting place for the engagement of all multiple stakeholders (including consumers, service 

providers, suppliers, and regulators) in shaping energy efficiency policies. Furthermore, the 

contribution of the smart grid capabilities to resolve energy-efficiency concerns should be 

examined so that countries can develop future directions or roadmaps for energy efficiency. 

This could also confirm the statement that national policy supporting energy efficiency 

should be considered along with national policy supporting smart grids. 

On the methodological point of view, the application of other evaluation methods such as 

SFA and IDA for energy efficiency assessment would be an important contribution. The 

construction of energy efficiency indicators or the comparison of our results with those 

obtained by using existing energy efficiency indicators could represent valuable tools for 

interesting further developments of the current work.  

Although there have been a considerable number of energy efficient technological 

improvements throughout the world since the late 1970s, the consumption of energy has not 

been reduced at anywhere near the same level. Thus, future research should investigate some 

of the market barriers that impede the diffusion of energy efficient technologies. Innovations 

such as smart grid systems as well as distribution and corporate investments in energy-

efficient technologies are factors that need to be addressed when energy efficiency is 

measured. The structure and role of industrial energy programs such as energy audit 

programs and long-term agreements are some of the most common drivers of energy 

efficiency in industry (Thollander and Dotzauer, 2010). More work for identifying and 

analyzing these drivers is required as this offers a more detailed insight into the actions and 

policies that should be implemented for energy efficiency improvement. To increase the 

efficacy of the proposed framework through this research and make it operational, a user-

friendly web based interface could be also developed in the future. 
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