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ΠΕΡΙΛΗΨΗ 
Πλήθος υπολογιστικών συστημάτων βρίσκονται ήδη γύρω μας, σε διάφορες μορφές – μία 
πραγματικότητα που επηρεάζει όλες τις πτυχές της σύγχρονης ζωής και μία τάση που αναμένεται να 
ενταθεί τα επόμενα χρόνια. Ερευνητές και μηχανικοί εργάζονται προκειμένου να παρουσιαστούν νέοι 
τύποι συσκευών και υπηρεσιών, με σκοπό να αντιμετωπιστούν αποτελεσματικότερα τα υφιστάμενα 
και αναδυόμενα προβλήματα της καθημερινότητας και να βελτιωθεί η ποιότητα της ζωής μας. Αυτή η 
διαδικασία θα οδηγήσει στην εποχή του Internet of Things (IoT), όπου όλα τα αντικείμενα που 
κατέχουμε και αλληλοεπιδρούμε θα αποτελούνται από υπολογιστικές συσκευές συνδεδεμένες στο 
διαδίκτυο. 

Ωστόσο, οι μεγάλες αυτές αλλαγές δεν πρόκειται να πραγματωθούν χωρίς την υπέρβαση κάποιων 
σημαντικών εμποδίων. Οι έξυπνες συσκευές έχουν, συχνά, άμεση επαφή με τον φυσικό κόσμο και, 
επιπλέον, επεξεργάζονται, αποθηκεύουν και μεταφέρουν δεδομένα ευαίσθητου προσωπικού 
χαρακτήρα, φέρνοντας έτσι στο προσκήνιο σημαντικά θέματα ασφάλειας και ιδιωτικότητας. Τόσο οι 
ερευνητές, όσο και οι επιχειρήσεις, αλλά και οι τελικοί χρήστες, αναγνωρίζουν ως ένα τέτοιο 
σημαντικό πρόβλημα την έλλειψη ασφαλούς, επεκτάσιμου και λεπτομερούς (fine-grained) ελέγχου 
πρόσβασης στα ενσωματωμένα αυτά συστήματα και τους πόρους/υπηρεσίες τους, με επίγνωση 
πλαισίου (context-awareness). Οι περιορισμοί των διαθέσιμων πόρων των συσκευών που 
ενσωματώνονται σε έξυπνα περιβάλλοντα και η ετερογένειά τους (σε υλικό, δικτύωση, εφαρμογές 
κλπ.), επιδεινώνουν τα προβλήματα αυτά και δυσχεραίνουν την αντιμετώπισή τους. Έτσι, συχνά 
συνυφασμένο με τα θέματα ασφάλειας, είναι ένα άλλο σημαντικό εμπόδιο: η έλλειψη 
διαλειτουργικότητας που θα διευκόλυνε τη χρήση, παρακολούθηση και διαχείριση της πληθώρας των 
έξυπνων συσκευών και των υπηρεσιών τους. Παρόλο που οι απρόσκοπτες αλληλεπιδράσεις μηχανής-
προς-μηχανή (M2M) και ανθρώπου-προς-μηχανή (H2M) είναι αναγκαίες για ένα πραγματικό και 
ασφαλές περιβάλλον διάχυτης νοημοσύνης, σήμερα υπάρχει μια κατακερματισμένη αγοράς με 
ποικιλία ασύμβατων μεταξύ τους συσκευών. 

Τα παραπάνω προβλήματα αποτέλεσαν το κίνητρο για τη διατριβή αυτή, που παρουσιάζει το uSPBM, 
ένα ασφαλές πλαίσιο διαχείρισης και προστασίας έξυπνων συσκευών, μέσω πολιτικών ασφάλειας, με 
έμφαση στη χρήση τυποποιημένων τεχνολογιών, λαμβάνοντας υπόψιν και τους περιορισμούς πόρων 
των συσκευών αυτών. Με το συνδυασμό του λεπτομερούς ελέγχου πρόσβασης που παρέχεται από 
την eXtensible Access Control Markup Language (XACML) με τα οφέλη των Service Oriented 
Αρχιτεκτονικών, μέσω του Devices Profile for Web Services (DPWS), επιτρέπει την απρόσκοπτη 
αλληλεπίδραση και τη διαχείριση, σε πραγματικό χρόνο, ετερογενών έξυπνων συσκευών, μέσω 
πολιτικών ασφάλειας με επίγνωση πλαισίου. Επιπλέον, το uSPBM περιλαμβάνει αρθρωτά στοιχεία 
που επιτρέπουν την αυθεντικοποίηση (authentication) των χρηστών και των συσκευών, επικοινωνία 
μεταξύ διαφορετικών, κατανεμημένων δικτύων, καθώς και αυτοματοποιημένη, πραγματικού χρόνου 
παρακολούθηση και διαχείριση των συσκευών, των παραμέτρων λειτουργίας τους, και των υπηρεσιών 
τους, μέσω διεπαφών ενδιάμεσου λογισμικού. 

Το παρουσιαζόμενο έργο περιλαμβάνει proof of concept υλοποιήσεις όλων των οντοτήτων του 
πλαισίου σε μία ποικιλία από πλατφόρμες υλικού, συμπεριλαμβανομένων καινοτόμων εργαλείων 
ανάπτυξης τα οποία ξεπερνούν σε απόδοση τις προϋπάρχουσες λύσεις. Οι υλοποιήσεις αξιολογούνται 
λεπτομερώς σε μια σειρά από περιπτώσεις χρήσης, όπου η εφαρμογή του uSPBM ξεπερνάει την 
τρέχουσα τεχνολογία αιχμής από άποψη διαλειτουργικότητας, ελέγχου πρόσβασης, και 
παρακολούθησης και διαχείρισης σε πραγματικό χρόνο των έξυπνων συσκευών. Τα αποτελέσματα 
επικυρώνουν την εφαρμοσιμότητα του uSPBM και τη σημασία του στην ευρύτερη υιοθέτηση του IoT, 
επιτρέποντας έτσι στους χρήστες να αποκομίσουν όλα τα οφέλη της νέας αυτής πραγματικότητας.  
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ABSTRACT 
Computing devices already permeate working and living environments, a trend affecting all aspects of 
modern everyday lives, and one that is expected to intensify in the coming years. As computing 
becomes ubiquitous, researchers and engineers aim to exploit the potential of pervasive systems in 
order to introduce new types of services and address inveterate and emerging problems. This process 
will lead us eventually to the era of urban computing and the Internet of Things (IoT), where all objects 
we own and interact with will be computerized and connected to the Internet.  

However, these long-promised improvements cannot be realized without overcoming some significant 
obstacles introduced by these technological advancements. The direct interaction smart devices often 
have with the physical world, along with the processing, storage and communication of data pertaining 
to users’ lives, i.e. private sensitive in nature, bring security and privacy concerns into the limelight. 
Researchers, business stakeholders and end-users alike, recognize that one such important security-
related barrier is the lack of fine-grained and context-aware control of access to the resources of these 
pervasive embedded systems, in a secure and scalable manner.  

The resource-constraints of the platforms integrated into smart environments, and their heterogeneity 
in hardware, network and overlaying technologies, only exacerbate the above security issues. Thus, 
often intertwined with the security issues, is another important barrier: the lack of interoperable 
solutions, to facilitate the use, monitoring and management of the plethora of devices and their 
services. Therefore, while seamless machine-to-machine (M2M) and human-to-machine (H2M) 
interactions are a necessity for secure and truly ubiquitous computing, the current status quo is that of 
a segregated and incompatible assortment of devices. 

Motivated by the above, this thesis presents uSPBM, a secure policy-based management framework, 
focusing on the use of well-established, standardized technologies, while considering the potential 
resource-constraints of the target heterogeneous embedded devices. By combining the well-studied 
fine-grained access control provided by the eXtensible Access Control Markup Language (XACML) with 
the benefits of Service Oriented Architectures, via the Devices Profile for Web Services (DPWS), it 
enables seamless interactions and fine-grained, context-aware policy-based management of 
heterogeneous smart devices. Moreover, the framework includes modular elements that allow the 
authentication of users and devices, communication between different domains, as well as automated, 
real-time monitoring and management of the devices’, their operating parameters and their services, 
via the appropriate middleware interfaces.  

The work includes proof-of-concept implementations of all of the framework’s entities, on a variety of 
hardware platforms, including purpose-built novel development tools, which outperform existing 
solutions. All implementations are evaluated in detail on a number of use cases where applying the 
proposed framework enhances the current state of the art in terms of the interoperability, security, 
real-time monitoring and management of smart devices. The results validate the feasibility of uSPBM’s 
approach and its applicability in enabling the wider adoption of the IoT, thus allowing users to reap the 
associated benefits. 
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1. INTRODUCTION 
Advances in computing and communication technologies have enabled a new reality where 
interconnected computing systems, in various forms, are constantly gaining popularity, 
permeating our environments and aiming to enhance all aspects of our everyday lives. The IP-
based connectivity of devices, systems and services, which goes beyond the traditional 
human-to-machine (H2M) and machine to machine (M2M) interactions, is nowadays labeled 
the Internet of Things (IoT). Ubiquitous computing devices, featuring sensors and actuators, 
are already deployed in a variety of domains (residential/home automation, industrial 
systems, military, e-textiles, healthcare and automobiles, among others; see Figure 1). 

 

FIGURE 1. INTERNET OF THINGS. VERTICAL & HORIZONTAL MARKETS [1] 

These devices come in many different forms, small or large, visible or invisible, attached or 
embedded, simple or complex, wired or wireless, in coordinated or ad hoc networks etc. Some 
examples of devices already available in the market include smart thermostats, smart fridges, 
doors, locks, switches and power outlets, motion & environmental sensors, smart vehicles, 
wireless defibrillators & insulin pumps, internet-connected MRI scanners and critical 
infrastructures such as power grids and nuclear centrifuges.  
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It is estimated that up to 200 billion devices will be connected to the IoT by 2020 (i.e. 26 
connected objects per person [2]), while 5.5 million new things will be connected every day in 
2016 alone1. This plethora of devices is expected to cause a surge in IP traffic, reaching 1.6 
zettabytes in 2018, 57% of which will originate from devices other than personal computers 
[3]. These significant changes did not leave the industrial and enterprise environments 
unaffected, with ubiquitous computing acting as an enabler for new business opportunities 
and services, but also providing more sophisticated tools for monitoring and managing the 
existing business functions and infrastructure. Thus, the market potential is equivalently 
promising, with estimates of a value (net profit) of $14.4 trillion being available to enterprises 
globally by IoT applications and services [3]. 

The research community spearheads the IoT developments in various fronts, from the 
hardware and sensing elements to the communication interfaces and protocols and the value 
added (e.g. knowledge extraction) from the data generated by the devices. The research 
interest in the IoT is evident from Figure 2, which presents the search results in the IEEE Xplore 
online library, when searching with the term “Internet of Things”. 

 

FIGURE 2. NUMBER OF IOT –RELATED ARTICLES ON THE IEEE XPLORE LIBRARY. 

1.1 MOTIVATION 
While existing networking and security mechanisms are updated and adapted to handle the 
vast population of IoT devices, higher level, seamless M2M and H2M interactions, are a 
requirement in order to effectively monitor and manage the infrastructure, allowing the use 
of its full potential. However, at its current state, the ubiquitous computing landscape is 
segregated, consisting of numerous proprietary solutions, which are typically incompatible 

1 Gartner, 2015, https://www.gartner.com/newsroom/id/3165317 
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with each other. This makes setting up, managing and, by extension, securing a smart device 
ecosystem, significantly challenging. 

Moreover, end-users typically do not possess the skills to configure and setup the devices that 
may be found in smart environments; in large-scale deployments, individually setting up 
devices is not even feasible. From the perspective of implementers, there is a need for rapid 
development and deployment, while simultaneously tackling issues of scaling and inherent 
limitations in terms of resources (CPU, memory, power etc.). 

Furthermore, managing a large number of heterogeneous nodes in a network of embedded 
systems is a challenging task, mainly due to differences in requirements and resources. Nano 
nodes with very limited capabilities, such as the nodes of a Wireless Sensor Network (WSN), 
may not be suitable for adopting solutions designed for power nodes that have no such 
constraints. Using these devices in dynamic, ad-hoc infrastructures that feature a plethora of 
characteristics, has brought up the need for appropriate management of participating nodes 
to satisfy the corresponding policy restrictions.  

This heterogeneity in large-scale deployments combined with the dynamic nature of these 
systems requires utilization of specialized techniques in order to manage their resources and 
corresponding services. 

The above developments also introduce significant challenges in terms of the security and 
privacy of the data processed, stored and communicated by these systems [4]. The IoT 
applications typically handle private sensitive data (such as health readings or the users’ exact 
location) and include direct interaction with the physical world (cyber-physical systems).  

Some key ES security research challenges, such as physical layer issues, access 
control/authorization, authentication & denial of service attacks, lightweight cryptographic 
and key exchange mechanisms, secure (e.g. reputation-based) routing, communications 
security, secure service discovery and anonymity and location privacy issues, are identified 
and analyzed in Annex A – Embedded Systems Security. Moreover, a survey or EU-funded 
research efforts in addressing these issues can be found in Annex B – Pertinent EU-funded 
Research.  

These overviews of security challenges and research efforts highlight the importance of ESs 
security is important. There can be dire consequences from a successful security attack in the 
case of critical systems but also these attacks are bound to become more common as ESs 
become an even more integral part of our lives, with the widespread adoption of smart 
devices in our homes, cars, clothes etc. The particular characteristics of such resource-
constrained devices and the varied requirements of their applications not only introduce new 
vulnerabilities but also intensify existing ones. Moreover, mechanisms and techniques (e.g. 
for access control, cryptography, network routing etc.) that would typically be deployed to 
secure other types of computing devices are not always applicable or have limited efficacy in 
the context of embedded systems. Thus, research should establish secure mechanisms 
tailored for ES, consider ES security a non-functional requirement and avoid building insecure 
solutions that “just work” and then try to correct flaws with patches. Security performance is 
going to be one of the next product differentiators in embedded products and services. 
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It may be irritating and costly to have a teenage neighbor control our smart thermostat, but a 
total blackout caused by a hack of the centralized power monitoring and distribution 
infrastructure can have significant consequences in terms of asset damage or panic to the 
public. In extreme cases, where a malicious entity might control a self-driving vehicle, an 
implantable smart medical device or even a critical infrastructure (such as a nuclear 
centrifuge), the security incident may directly lead to injuries or even deaths of one or more 
individuals. 

According to a Cisco survey [5] on 7.501 business and IT decision makers, the biggest downside 
to the increased pervasiveness of computing devices are the associated new threats to data 
& physical security. A survey [6] from Accenture on 28.000 respondents from 28 countries, 
security is now a top barrier to IoT expansion, as early adopters are choosing to abandon IoT 
applications because of security concerns. 

These concerns are not baseless, as there are already numerous successful attacks in a variety 
of smart domains. A critical vulnerability in smart heating and power systems of a German 
company, Vaillant, which allowed attackers to gain unauthorized access and turn them off or 
damage them at will 2 3. A similar case [7] involved smart meters deployed in millions of 
households in Spain that allow attackers to take full control of the device, remotely shut down 
power and tamper with consumption readings, among others. Focusing on modern vehicles, 
Koscher et al. [8] have demonstrated that it is feasible to manipulate all critical sub-systems 
in modern automobiles, disabling or activating brakes, stopping the engine, injecting malicious 
code and completely ignoring driver input. More recently, a security bug enabled a remote 
attack of Fiat/Chrysler’s Uconnect system4, letting hackers apply the brakes, kill the engine 
and take control of steering over the internet, forcing the company to issue an update5 to the 
affected vehicles’ software. Medical devices are also affected. Security researchers [9] have 
successfully hijacked a tele-operated surgical robot during surgery and made it impossible for 
a surgeon to remotely operate. A security researcher remotely disabled his own insulin pump 
live on stage during the 2011 BlackHat Conference [10]. More recently, researchers [11] 
identified 68,000 vulnerable medical systems, accessible online, belonging to an unnamed U.S. 
health organization. The equipment included 488 cardiology machines, 323 picture archiving 
and communication gear, 133 infusion systems, and 97 MRI scanners. The latter security 
analysis was a results of a 3-year research project on the security of medical devices, which 
also revealed [12] drug infusion pumps (for delivering morphine drips, chemotherapy and 
antibiotics) that can be remotely manipulated to change the dosage doled out to patients. 
Moreover, Bluetooth-enabled defibrillators were identified that can be manipulated to deliver 
random shocks to a patient’s heart or prevent a medically needed shock from occurring. 
Successful attacks also included accessing x-rays from the hospital’s network, resetting 
temperature settings on refrigerators storing blood and drugs (thus causing causing spoilage) 

2  http://www.bhkw-infothek.de/nachrichten/18555/2013-04-15-kritische-sicherheitslucke-ermoglicht-
fremdzugriff-auf-systemregler-des-vaillant-ecopower-1-0/ 
3  http://www.hotforsecurity.com/blog/vulnerability-in-vaillant-heating-systems-allows-unauthorized-
access-5926.html 
4 http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/ 
5  http://www.theguardian.com/technology/2015/jul/21/jeep-owners-urged-update-car-software-
hackers-remote-control 
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and digital medical records that could be altered (to cause physicians to misdiagnose, 
prescribe the wrong drugs or administer unwarranted care). One of the main problems 
identified by the researchers lay with embedded web services that allow devices to 
communicate with one another and feed digital data directly to patient medical records, as 
many of the web services allow unauthenticated or unencrypted communication between the 
devices. 

Studies [13] and published reports [14] reveal that current smart device deployments have 
not adequately considered the threats that these nodes face when connected to the Internet, 
hence the lack of the security measures.  

The Open Web Application Security Project (OWASP) organization includes “Insufficient 
Authentication/Authorization” in the second place of its list of top ten security problems 
identified on IoT devices [15], preceded only by the use of “Insecure Web Interfaces”. A recent 
Hewlett-Packard study [16] on smart home security appliances revealed that all devices 
contained significant authentication & authorization vulnerabilities. A risk analysis [17] 
applied on a smart home automation system (as part of a research project involving leading 
industrial actors), revealed that the highest ranked risk (i.e. the most probable and the one 
with the highest potential impact) affecting smart homes is derived from inadequate or absent 
access control configuration and policies. 

Such negligence in terms of proper authentication and authorization are bound to inhibit any 
efforts made towards using these pervasive devices to handle our personal sensitive data. The 
expanded attack surface that results from the integration of the numerous smart devices 
around us with the Internet needs new or adapted mechanisms to mitigate these new threats. 

Still, the intricacies of IoT applications should dictate the features of the adopted access 
control mechanisms. A survey [18] on smart home users revealed people need fine-grained, 
context-aware, dynamic access control. The required features included fine-grained division 
of people & resources, type of access (e.g. read/write), adapting to presence, location 
(local/remote), time of day etc., as well as reactive policy creation. The need for adaptability 
and context-awareness is commonly cited among users and other stakeholders for the 
industry and the research community.  

The European Network and Information Security Agency (ENISA) recently concluded [19] that 
security services, such as authentication and access control, have to be non-intrusive and to 
be able adapt to the constantly changing contexts of smart spaces. This touches another 
important barrier to IoT expansion, and one that is intertwined with the inadequate security: 
the lack of interoperability. Indeed, a Microsoft survey [20] on smart home users highlighted 
inflexibility (vendor “lock-in”), poor manageability and difficulties in achieving security as 
significant barriers to the broader adoption of pertinent technologies and devices.  

These concerns are not restricted to consumer audiences; an ENISA report [21] on security 
and resilience of e-health infrastructures and services (involving cyber security experts, 
academics and operators within the field of cyber security) identifies that access control is a 
very significant priority in securing e-health applications. Moreover, it was noted that a key 
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requirement in achieving effective and secure e-health services is having a high level of 
interoperability. 

1.2 THE FRAMEWORK 
Motivated by the above, uSPBM combines novel and standardized technologies to provide a 
lightweight and usable framework for policy-based management of ubiquitous smart devices.  

The eXtensible Access control Markup Language (XACML [22]) is used to convey policy 
requirements in a unified and unambiguous manner. Thus, XACML defines the structure and 
content of access requests and responses exchanged among the framework’s access control 
entities. In terms of mechanism(s) used to transfer these messages, Service Oriented 
Architectures (SOAs) provide an attractive option that can be chosen to convey policy 
information. Embedded devices and SOAs are becoming convergent technologies with several 
standards emerging from these efforts. This approach has already been successful in business 
environments, as web services allow stakeholders to focus on the services themselves, rather 
than the underlying hardware and network technologies. When deploying a SOA there are 
quite a few effective options to provide these services, but the Devices Profile for Web 
Services (DPWS [23]) specification stands out. It enables the adoption of a SOA approach on 
embedded and sensor devices with limited resources, allowing system owners to leverage the 
SOA benefits across heterogeneous systems that may be found in smart environments. In this 
work, the typical policy based access control architecture is mapped to a SOA network of 
nodes, enabled by the compact web service implementation provided by DPWS, to provide 
protected access to their distributed resources. 

The layout of uSPBM architecture, along with its main entities, can be seen in Figure 3. 
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FIGURE 3. THE USPBM FRAMEWORK 

At the core of the framework lay the main authorization-related entities, namely the Policy 
Decision Point (PDP) and the Policy Information Point (PIP) and Policy Administration Point 
(PAP), along with the various Policy Enforcement Points (PEPs) residing on each of the 
managed smart devices under uSPBM’s control. The basic authorization functionality is 
augmented by other entities, responsible for further tasks which are equally important in 
having a usable framework that can be applied in real use cases across a variety of IoT 
domains. More specifically, the Service Orchestrator is interfaced with one or more identity 
providers to offer authentication services. The Device Operator acts as an interface between 
uSPBM and other middleware that may run at the backend to monitor, coordinate or even 
automate the management of the smart devices. When necessary, a DPWS Provider is 
deployed to allow for the integration of extremely resource constrained sensor devices under 
the framework’s supervision. Finally, the Broker is responsible for coordinating the MQTT-
based [24] communications among the uSPBM proxies residing in all domains that uSPBM 
manages. This association of entities to their specific services/tasks is better depicted in Figure 
4. 
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FIGURE 4. USPBM ENTITIES, AGGREGATED BY ROLE/SERVICE THEY PROVIDE 

By combining the above technologies, the proposed scheme allows for fine-grained, policy-
based management of all smart resources (e.g. DPWS-enabled cameras, sensors, or control 
stations) from remote locations, via any compatible app developed for the purpose, typical 
browsers, off the shelf mobile phones, or even in an automated AI-enhanced manner. Said 
access may be used to access the resources provided (e.g. sensor data or video stream), 
update settings or even receive alerts (e.g. in case of emergencies), all based on what the 
active policy dictates. Moreover, interoperability concerns are also addressed using 
standardized, platform-agnostic technologies, thus simultaneously tackling another important 
IoT barrier. The presented work also features novel, high performance and scalable libraries 
for the web services’ implementation. The resulting framework is lightweight but also flexible 
and modular in nature, thus adaptable to a variety of use cases, as will be evident from the 
various implementations deployed on a variety of heterogeneous devices presented in later 
chapters. 

1.3 USE CASES 
Below we list some potential applications of uSPBM architecture in a variety of domains. 
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Smart meters are typically used to record consumption of power and/or water and/or natural 
gas for monitoring and billing purposes. Such devices involve two-way communication 
between the device itself and vested party (or parties, e.g. utility companies, service providers, 
suppliers etc.) and feature real-time or near-real-time sensors. 

The inherent security issues of the transmissions typically used in such deployments, the 
accompanying privacy issues and certain sensitive functionality present in such devices (e.g. 
remote “kill switch”), necessitate the deployment of strong security mechanisms. 

The presented scheme can be used to allow for a fine-grained policy-defined access control 
to all the functional (e.g. “kill-switch”) and non-functional (e.g. monitoring) elements of the 
devices and among all interested parties/stakeholders. Moreover, the underlying 
technologies (i.e. XACML and DPWS) are fitting for the large-scale deployments of this 
application area. 

1.3.2 SMART VEHICLES 
The intelligence being built into various vehicle types, will not only improve their safety and 
comfort but also enable new modes of transportation and new types of services, creating the 
corresponding markets. Nevertheless, the existing attack surfaces are expanded by said 
intelligence; researchers have demonstrated that it is feasible to manipulate all critical sub-
systems in modern automobiles by using a wireless-enabled MP3 player connected to the 
vehicle’s embedded control network [8]. The presented attacks include accessing the brake 
controller, thus disabling or forcibly activating the brakes and consequently compromising the 
safety of the driver and passengers, as well as injecting malicious code to erase any evidence 
of tampering after a crash. 

In all cases, it will be important to be able to monitor, preferably in real-time, various 
parameters of the smart vehicles’ condition. A smart vehicle may feature various hosted 
services (e.g. a temperature service, a location service, a fuel consumption service, an engine-
failure report service etc.), access to which can be controlled via the proposed uSPBM 
framework. As an example, consider the scenario where the emergency services need to gain 
access to certain vehicle functionality provided as a service by a node deployed in the vehicle’s 
network, such as the vehicle’s engine control unit, in order to directly issue a command to this 
unit to turn off the engine after pro-per authentication. Access to such a service might be 
decided by the car owner or the applicable law, in which case the corresponding policy has to 
be defined. Moreover, by constantly monitoring various operational parameters, uSPBM can 
enable real-time monitoring and interaction with a smart vehicle or a smart vehicle fleet. 

1.3.3 E-HEALTH 
Healthcare stands out as a key sector where these novel technologies and associated 
enhanced services can have a significant impact by improving the quality of life of patients, 
elderly people, but also the general population through real-time monitoring and intervention 
which enables proactive and more effective health management, justifying the intensive 
research efforts in the field [25]–[27].  

The sophisticated sensor nodes can be deployed as standalone devices serving a single 
purpose, or as part of an infrastructure that consists of nodes with similar characteristics 
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comprising a so called low power and lossy network (LLN). Moreover, they can be used simply 
for monitoring various variables or for acting upon command issuance, be part of a closed 
system or provide advanced services to remote parties over public networks. The current 
trend for all these nodes is to adopt existing networking technologies and be reachable over 
the Internet, abandoning proprietary closed solutions. 

In the context of healthcare applications, the security issues are exacerbated by the direct 
interaction with the human body and the associated safety and privacy concerns. In typical 
nodes used for eHealth purposes, environmental and physiological sensors are deployed for 
gathering all the required information depending on medical staff’s prescribed needs, such as 
blood pressure and body and room temperature. On top of that, actuators controlled by 
authorized medical staff can also be deployed, such as an automatic insulin injection device 
used for remote treatment. Such sensitive actions, i.e. reading and issuing commands, need 
strict access control decisions before being authorized so that user’s privacy and even safety 
are not jeopardized by unauthorized actions.  Thus, this is another area where uSPBM 
perfectly fits. Consider the scenario where the patient has multiple physiological sensors and 
actuators deployed to monitor his/her condition and react based on patient’s reported 
medical condition. One of the critical security requirements in this scenario is providing 
authorized-only access to these resources. Only medical staff is supposed to read this 
information and only authorized doctors shall be able to modify actuator’s (e.g. insulin pump) 
status. In this model uSPBM provides the necessary fine-grained access control to resources.  

1.3.4 TRANSPORT INFRASTRUCTURE 
In a smart transit infrastructure, such as a railway facility, the deployment of uSPBM 
framework would enable fine-grained, policy-based control of all smart devices that may be 
present in a railway deployment (e.g. DPWS-enabled cameras or sensors monitoring access to 
carriages or control stations) from remote locations. The infrastructure could be monitored 
via any compatible application developed for the purpose or even typical browsers and off the 
shelf mobile phones. Said access may be used to access the resources provided (e.g. sensor 
data or video stream), update settings or even receive alerts (e.g. in case of emergencies), all 
based on what the active policy dictates. 

1.3.5 SMART HOME  
Manufacturers would like to have secure access to their deployed appliance controller (node) 
to get necessary readings for appliance’s maintenance or service. The manufacturer wants to 
have this communication protected to avoid any unnecessary disclosure of information to 
nearby devices and their manufacturers. Moreover, from an end-user perspective, it would 
be desirable to be able to control access to the various functional and non-functional elements 
of smart appliances. So, for example, all members of a family may be able to get room 
temperature readings using their smart devices (phones, tablets, watches etc.), but only the 
parents will be authorized to set desired temperatures, denying access to unauthorized 
entities (kids, visitors or entities intruding the smart home network).  

The uSPBM scheme proposed here can be deployed to facilitate said functionality, via the 
appropriate policy definitions. While typical access control deployments require the setup of 
complex infrastructures to enable entities' interaction and policy retrieval (e.g. via the 
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Lightweight Directory Access Protocol, LDAP [28]); such an approach may be acceptable for 
corporate environments but is not suitable in the context of consumer applications and the 
average home user. To this end, the proposed framework leverages the benefits of DPWS, 
which allows the deployment of devices aligned with the Web Services technologies, thus 
facilitating interoperability among services provided by resource-constrained devices. The 
adoption of DPWS facilitates seamless Machine-to-Machine (M2M) discovery and 
interactions, allowing the deployment of the framework's entities to any platform, anywhere 
on the home network, with minimal involvement on behalf of the user. 

1.3.6 AMBIENT ASSISTED LIVING 
Ambient assisted living is one of the market niches with a highest growth in developed 
countries where revenues come from 195 million Euros in 2009 to a prevision of 525 million 
in 20156 . On the other hand, it’s important to take into account that more than 25% of the 
European population will be over 65 years by 2035, giving this area a great growth potential 
[29]. These figures make private home-care companies and the public administration need to 
look for solutions to provide their users a good service level but without neglecting safety 
because personal, biomedical, location or presence data are used. 

AAL systems include safety functions, like automatic shutdown of a stove the case of long 
absence of a user or informing emergency security or medical services in the case of burglary 
or a medical incident respectively. Other features are designed to enhance the everyday lives 
of individuals, e.g. room temperature or lightning controls that adapt to the needs and 
everyday routines of the inhabitants. Moreover, various eHealth-related devices may be 
present in an AAL environment. 

Tenants can rely on these secure smart platforms for their security. A window left open during 
night or when not at home can trigger a series of actions that cannot be bypassed by an 
intruder due to the robust security features of uSPBM. A tenant can remotely control his/her 
home living conditions through smart appliances (air conditioning, alarm, water warming 
device), through customized applications in order to provide comfort without endangering 
user’s privacy. Smart devices will be able to sense user’s presence at home (e.g. through 
mobile phone presence) and act accordingly. The policy of all these can be set by the tenant 
or by the local authorities in case of emergency, such as environmental hazards. The desired 
security level and corresponding functionality can be adapted dynamically or during 
deployment to meet the tenant’s specific requirements or mitigate unforeseen risks during 
operation phase.  Such smart platforms can also enhance the tenants’ safety by alerting the 
individuals about potentially dangerous situations, such as a heater, a kettle or a cooker that 
has been left on. What is more, in case of an accident, an appropriate operator could be 
automatically alerted by the system who in turn could authorize the immediate deployment 
of a team able to handle this particular emergency, so as to check upon the given individual 
and act accordingly. In an AAL deployment, uSPBM agents can monitor and manage the 
ambient environment of a home. In cases of emergency, the agent can inform the home-
agents of the inhabitant’s relatives and neighbors based on policies and user preferences. 
Moreover, the deployment of uSPBM, which is by design deployable on heterogeneous 

6  http://www.slideshare.net/FrostandSullivan/assisted-living-in-europe-technology-and-market-trends-
2010 

25 
 

                                                                 



systems, will also facilitate the Integration of AAL technologies with smart home and smart 
grid infrastructures which are expected to be used concurrently. 

1.3.7 SMART FACTORY (INDUSTRY 4.0) 
The computerization of traditional industries (e.g. manufacturing) will lead to the introduction 
of Smart Factory environments and, consequently, the fourth industrial revolution (i.e. 
“Industry 4.0”). Such examples include machines that predict failures and trigger maintenance 
processes autonomously or self-organized logistics that are able to react to unexpected 
changes in the production chain. 

As with the previous cited scenarios, uSPBM can be deployed to guarantee that the pre-
defined access control policies are followed enforced on all smart devices present on the 
production floor or elsewhere. The above can be significant enablers, as machine and, most 
importantly, worker safety are key areas of concern in such deployment scenarios. 

This thesis is organized as follows: Background material and related research efforts are 
presented in section 2. Section 3 presents the core technologies used in uSPBM, focusing on 
authorization and communication mechanisms, the benefits of their combination and the 
advantages of the purpose-developed libraries. Details on the framework’s implementation 
are presented in Section 4, also focusing on the important aspects of the protection of the 
framework’s messaging. The rest of uSPBM’s functionality is presented in more detail in 
Section 5, in the context of different use cases. The work concludes in Section 6, where the 
highlights of the framework are presented, along with directions to future research that could 
further enhance the presented approach. 
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2. BACKGROUND & RELATED WORK 
In recent years, we have experienced a lot of innovation in the Internet of Things (IoT) space. 
Collections of embedded and wearable nodes, typically bearing sensors and actuators, are 
becoming part of a networking infrastructure and gain connectivity to the Internet. The 
corresponding technologies are becoming mature enough to allow us to start looking into 
more advanced and comprehensive solutions that can enable these nodes to integrate 
smoothly with existing infrastructures, expanding, however, existing attack surfaces. As 
computing becomes ubiquitous, researchers and engineers aim to update and adapt existing 
technologies to efficiently handle the vast population of resource-constrained devices 
expected to co-exist in the IoT.  

On the communication level, all efforts are towards the integration of low power and lossy 
networks (LLNs) with existing networking technologies to provide internet connectivity and 
realize the IoT. Several solutions have emerged through this process with their particular 
advantages, disadvantages and properties. Most of them have provided their own standards 
and specifications and have helped formulate antagonistic technologies. They might differ on 
various layers of the TCP/IP stack, such as the physical and the network layer or on the upper 
layers, i.e. presentation and application layers. Regarding the former we have technologies 
like open standards 6LoWPAN [30] and ZigBee [31] (which is free for non-commercial 
purposes), proprietary provided under a license like Z-Wave [32], and alternatives like 
Bluetooth [33] and Wi-Fi [34] usually met in other environments. It is beyond the scope of this 
work to name all these technologies and provide a comparative analysis. The proposed 
solution focuses on the architecture level and on the upper layers of the TCP/IP stack, thus 
making this solution underlying protocol independent. 6LoWPAN seems to outweigh other 
technologies given its Internet connectivity orientation which provides many benefits to 
adopting solutions. 

On upper layers of the TCP/IP stack, protocols provide methods to exchange structured or 
unstructured messages that facilitate (secure) service access. Data are typically encapsulated 
in standardized protocols that allow the seamless exchange of messages between nodes and 
remote entities, outside the LLN boundaries, even if this is accomplished through the use of a 
bridge and/or router. Among the technologies being used are the service-oriented ones with 
several schemes being used for the way these services are provided and how a service 
consumer can access them. Standardization and research efforts in the area of Service 
Oriented Architectures (SOAs) have been taking place for more than a decade and schemes 
have been proposed and standardized regarding service discovery, registration, access and 
protection, and the corresponding communication protocols that enable the interoperable 
exchange of messages among remote participating entities. While in some cases efforts focus 
on adapting existing technologies to the constrained environment provided by such devices, 
other initiatives target for the introduction of new mechanisms specifically designed for such 
environments, without however neglecting interoperability with existing Internet 
technologies. 

SOAs evolved from the need to have interoperable, cross-platform, cross-domain and 
network-agnostic access to devices and their services. This approach has already been 
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successful in business environments, as web services allow stakeholders to focus on the 
services themselves, rather than the underlying hardware and network technologies. 

The deployment and orchestration of web services on heterogeneous embedded devices is a 
very active research area, following the success of some early research efforts. These include 
the “Service Infrastructure for Real time Embedded Networked Applications” (SIRENA, ITEA2 
[35]) project which proved the feasibility and advantages of integrating web services, via 
DPWS, across business segments, including critical sections (e.g. the production floor [36]). Its 
follow-up projects, "Service-Oriented Device & Delivery Architecture" (SODA, ITEA2 [37]) and 
"Service-Oriented Cross-layer Infrastructure for Distributed Smart Embedded Devices" 
(SOCRADES, FP6 [38]), built upon the work of SIRENA and focused on providing a secure 
scalable ecosystem and adding more sophisticated features into the SOA-enabled devices to 
serve the requirements of future manufacturing [39], respectively. Some pervasive 
applications often require remote management and monitoring while maintaining 
interoperability, and the Web Services standard offers a solid basis for that. It is therefore 
justifiable that the runtime of the middleware developed for the MORE project [40] was based 
on the aforementioned DPWS specifications, as detailed in [41]. More recent research efforts 
include the “ArchitecturE for Service-Oriented Process” (IMC-AESOP, FP7 [42]) and “Web of 
Objects” (WoO, ITEA2 [43]) research projects. Researchers in AESOP proposed a system-of-
systems approach for monitoring and control, based on a SOA for very large scale (i.e. up to 
tens of thousands of devices) distributed systems in process control applications. WoO 
promoted the use of DPWS to build a secure, context-aware network and services 
infrastructure for smart objects, focusing on the interoperability of devices & services through 
the use of semantics. 

As mentioned, the DPWS specification defines a minimal set of implementation constraints to 
enable secure Web Service messaging on resource-constrained devices. It employs similar 
messaging mechanisms as the Web Services Architecture (WSA), with restrictions on 
complexity and message size, allowing the provision of totally platform- and language-neutral 
services, similar to those offered by traditional web services, allowing system owners to 
leverage the SOA benefits across heterogeneous systems that may be found in the various 
smart environments (residential, enterprise etc.). 

The SOA-based approach of DPWS acts as an enabler, with added potential stemming from 
the enhanced real-time monitoring and control features usable over the whole smart 
infrastructure. By facilitating the migration of low level data (e.g. sensing data) into higher 
level contexts (e.g. business operations or knowledge extraction from aggregated data), new 
types of services are made possible. These new types of enhanced features and services are 
expected to be vital for future end-users as well as enterprise deployments, in a number of 
industry domains [44], [45]. 

In this context, the work of Leong et al [46] presents a rule-based framework for 
heterogeneous smart-home systems management. Their work focuses on the use of SOAP for 
interoperability and uses an Event-Condition-Action (ECA) mechanism for machine-2-machine 
interactions and orchestration of the devices. The SOAP-based interoperability framework has 
been further extended by Perumal et al [47] with the addition of a service stub to facilitate 
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the addition of new devices and a database module to handle the queries of the SOAP 
messages (including home service functions, operation logic and access to other local or 
remote databases).  

SOA-DOS [48] is a SOA-based distributed operating system proposed in the relevant literature, 
aiming to manage all embedded devices in a home network and facilitating interoperability 
between the various systems. The work manages to provide a SOA-based solution that is also 
applicable to very resource-constrained platforms (like sensor nodes), but deviates from 
standardized mechanisms, e.g. resorting to the use of the JSON [49] format instead of XML for 
data exchange.  

The use of SOA concepts to tackle the dynamic and heterogeneous nature of home-control 
applications has also been proposed by Bourcier et al [50]. The authors introduce an 
implementation of their approach based on open source, standardized platforms, providing 
bridges to seamlessly integrate disparate devices (including DPWS devices) and their services 
into their home control infrastructure.  

The DPWS stack also forms the basis of iVision [51], a purpose-built hardware platform used 
to add context-awareness to a service architecture for controlling home appliances, and its 
accompanying architecture. In the above work, the context information extracted by the 
iVision camera and all the necessary smart home appliance communications are exposed as 
web services using DPWS. 

As many industry leaders from a variety of sectors (electronics, power, automation, 
enterprise, home etc.) have been involved in the above research efforts, it is evident that, in 
addition to the researchers’ interest, there is also significant industry backing of DPWS and its 
use in future applications and products. Moreover, the use and benefits of DPWS have been 
studied extensively in the context of various applications areas, which, other than the ones 
already mentioned, include automotive and railway systems [52], industrial automation [53], 
eHealth [54], [55], smart cities [56], smart homes [57] and wireless sensor networks [58]. All 
of the above are positive indicators for the future of the technology chosen as the underlying 
implementation and communication mechanism for the presented framework, and its 
potential for ubiquitous adoption 

Many access control schemes have been proposed for resource constrained devices, such as 
wireless sensor networks, yet most of them focus on authentication and authorization 
schemes and on enhancing basic access control models, such as providing additional features 
to address privacy matters. Such schemes can be found in [59]–[65]. Some of the proposed 
mechanisms are based on the use of public-key cryptography, a choice that is very expensive 
for nano nodes found in a BSN. The EU-project “Internet-of-Things Architecture” (IoT-A) 
worked on the adoption of XACML in the Internet of Things [66]. The proposed architecture is 
a generic model whose functional components are mapped to a set of well-defined 
components that comprise the IoT-A. The authors use a logistics scenario for demonstration 
purposes. Such an environment, however, has different requirements than the use cases 
examined in this thesis.  
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Policy-based management has successfully been implemented in various types of sensor 
networks, even though none of the identified efforts focus on the use of standardized, 
platform-agnostic technologies. One such instance is presented in [67] and involves the use of 
policy-based management in body-area networks (BAN), where autonomous adaptation to 
changing conditions (failures, user activity, patients’ clinical condition) is a requirement. The 
toolkit that was developed and deployed, Ponder2, allows the specification of rules in the form 
of event-condition-action, which enforce a given policy. Additional functionality of this toolkit 
includes the logical grouping of components in domains, as well as the dynamic loading of new 
functionality and communication protocols. 

Another application of policy-based management was the SNOWMAN framework presented 
in [68] that allowed nodes of a WSN to autonomously organise themselves. A lightweight 
policy distribution protocol was developed, TinyCOPS-PR, as well as a policy information base 
(PIB). For facilitating scalable and localised management of WSNs, nodes are organised into 
three logical groups: regions, clusters and sensor nodes. The simulation results revealed that 
the scheme features lower power consumption compared to other schemes. The work in [69] 
proposes the use of an extra middleware layer that introduces a level of abstraction, thus 
making it easier to describe and enforce both functional and non-functional business 
requirements of different end-users. 

An architecture for policy-based WSN management was proposed in [70]. It distributes the 
management functionality across the sensor network and employs clustering for improved 
management. The scheme also includes functionality for hierarchy maintenance management 
and cluster maintenance. 

In [71] a framework for implementing policy-based management in WSN is proposed that 
makes use of the Finger2 policy system which, although derived from the Ponder2 policy 
system, it is considerably simplified so as to run on motes. Furthermore, examples of policies 
are given that deal with the self-healing aspects of sensor networks. Policy-based 
reconfiguration is thus able to deal with various network faults. 

In [72] the authors also utilize XACML but focus on the privacy of eHealth data within the 
mobile environment. In contrast to the work presented here, a complete framework is not 
included and the authors choose computationally intensive security mechanisms such as XML 
encryption digital signatures. In [73] the authors propose a lightweight policy system for body 
sensors but they do so by presenting a custom API and policy definitions, thus sacrificing 
interoperability with existing standards and infrastructures. 

Santos-Pereira et al [74] focus on enforceable security policies for systems interoperability 
and data exchange between healthcare entities. The authors present a Role-based Access 
Control mobile agent model, using public key infrastructure for authentication and access 
control, but the proposed scheme is presented at design-level, lacking implementation details 
and a performance evaluation. 

Researchers have studied the use of access control mechanisms to safeguard the users’ 
privacy, a key concern in the context of smart environments. Faravelon et al [75] outline such 
an architecture in the context of SOA-enabled pervasive environments, using a medical 
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scenario as a test case. The interoperability with DPWS is considered, among other SOA 
technologies, but a non-standardized approach is adopted for the access control functionality. 

Privacy issues have also been considered by Jung et al [76], who have presented a generic 
concept of access control for home automation gateways, aiming to safeguard the privacy and 
security of users and their data. The scheme is based on a customized SOAP message structure 
that integrates XACML attributes within SAML-based access token. However, the initial, 
theoretical evaluation of the proposed scheme indicates that this approach is quite costly 
(especially in terms of packet size), which questions its applicability in the context of 
embedded smart home devices. The authors acknowledge this drawback and indicate it will 
be investigated, as future work, on actual platforms. 

In uSPBM the typical policy based access control architecture of XACML is mapped to a DPWS-
enabled network of nodes to provide protected access to their distributed resources. A survey 
of the literature reveals a wealth of related work, including various diverse approaches and 
attesting to the applicability of XACML in the context of ubiquitous environments. 

Kim et al [77] have proposed the use of an OSGi (Open Services Gateway initiative [78]) -based 
framework to integrate heterogeneous smart-home devices and services. The proposed 
framework also includes an access control model, combining the XACML mechanisms with 
OSGi services to appropriately create the queries that will be forwarded to the entity 
responsible for access control decisions (i.e. the Policy Decision Point, PDP). While the 
proposed approach theoretically supports a variety of protocols (including DPWS devices), the 
presented analysis and proof of concept implementation are mainly based on UPnP, a 
protocol lacking in many respects, already noted above (e.g. security & scalability). 
Furthermore, the performance of the proposed mechanisms – an important aspect 
considering the resource-constraints of many smart devices – is not evaluated. 

Another approach found in the literature is the use of a "Reference Monitor" entity [79], i.e. 
a home gateway, whose goal is to provide and enforce a collection of access control policies, 
aiming to help satisfy a user’s access, convenience, and privacy requirements. The access 
control policies are de-fined using XML, but deviate from the standard XACML syntax and 
architecture. 

Busnel et al [80] present a case study for remote healthcare assistance in smart homes. Most 
of the smart home security & dependability requirements are discussed extensively, 
identifying the use of SOAs along with XACML as the most applicable technologies to fulfill 
these requirements. An XACML-based authorization solution is applied using the security 
pattern approach to satisfy security requirements typically existing in such environments. This 
work presents the outline of such a framework, but not an actual implementation of the SOA 
and XACML mechanisms, nor a performance evaluation. The resource-constrained nature of 
the target devices and the use of appropriate security mechanisms do not appear to have 
been considered during the design phase. 

Seitz et al. [81] have presented an authorization framework for the Internet of Things. The 
authors use XACML to offer fine-grained access control on resources and propose the use of 
CoAP as a lightweight transport protocol. Still, the adaptations proposed break compatibility 
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with standard XACML/SAML infrastructures and there is limited implementation and 
performance evaluation, while, no specific authentication or device management 
mechanisms considered. 

Fremantle et al. [82] propose the combination of OAuth for identity and access management 
on IoT devices using MQTT for information distribution. MQTT is lightweight but only offers 
synchronous communication. On the other hand, OAuth is gaining traction of authorization of 
resources at the Internet scale. Still, it lacks the granularity of XACML for access control. 
Nevertheless, the proposed authentication mechanism is compatible with uSPBM, replacing 
the SAML-based solution adopted in our framework (something trivial to accomplish due to 
the modularity of uSPBM). 

Müller et al [57] have also proposed the combined use of DPWS with XACML, but focusing on 
end-user content (e.g. the distribution of multimedia files). They also use proxies to establish 
trust relationships across smart home domains but the authors did not exploit DPWS in the 
implementation and deployment of the XACML architecture. The proposed model is based on 
X.509 certificates and tailored to the needs of a “smart home” environment but can easily be 
adopted to other scenarios (e.g. in our proposed scenarios, power nodes could adopt the CA 
roles described in the above work). It is demonstrated that processing time overhead 
(especially in the XACML lookup phase) is affected by the number of policies maintained at 
the PDP. It is, therefore, imperative to fine-tune the amount of queries the PDP needs to 
lookup or even the number of PDPs available on the network (e.g. segregating service 
discovery and application PDP duties), depending on application requirements. 

Table 1 aggregates recent work identified in the literature that is related to uSPBM, 
categorizing and comparing their features. As the survey of the related work reveals, the 
problem of authentication & authorization for the Internet of Things is not conclusively solved 
yet. Current approaches typically concentrate on a number of very specific problems and/or 
are not implemented fully. Thus, our approach was to design and implement a complete 
authentication, authorization & management framework, based on established and emerging 
standards.  

TABLE 1. USPBM COMPARED TO RECENT RELATED WORK 

  

uSPBM 

Muller 
et al. 
[57] 

Kim 
et 
al. 

[77]  

Busnel 
et al. 
[80] 

Jung 
et 
al.  

[76] 

Serbanati 
et al.  
[66] 

Seitz 
et 
al.  

[81] 

Sleman 
et al. 
[48] 

Bourdenas 
et al. [71] 

Leong 
et al. & 

Perumal 
et al. 
[46], 
[47], 
[83] 

Fremantle 
et al. [82] 

Authorization √ √ √ √ √ √ √ √ √ √ √ 

Authentication √    √ √     √ 

Management √       √ √ √  
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Standardized 
Technologies 

√ √ √ √ √ √ √    √ 

Lightweight √     √ √ √ √  √ 

Cross-domain 
communication √ √ √ 

√ 

 
 √     √ 

Proof-of-
concept 
implementation 

√ √ √  √  √ √ √ √ √ 

Performance 
evaluation 

√ √   √  √ √ √ √  

Applied to 
various use 
cases & 
heterogeneous 
devices 

√           
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3. CORE TECHNOLOGIES & ENTITIES 
This section details the core technological building blocks and key components of the uSPBM 
framework, focusing mostly on the components directly related to the framework’s 
authorization mechanisms.  

As uSPBM was designed and developed following a modular approach, the mechanisms not 
directly related directly to the authorization process (and the associated entities) are 
presented separately, in later chapters, in the context of specific use cases. 

3.1 POLICY-BASED ACCESS CONTROL 
Among the studied schemes proposed for systems with different requirements and 
properties, a cross-platform solution that meets the requirements of all types of embedded 
systems and provides interoperability, crucial for next-generation pervasive computing 
devices, is based on eXtensible Access control Markup Language (XACML [22]) policies. XACML 
is an XML-based general-purpose access control policy language used for representing 
authorisation and entitlement policies for managing access to resources. However, it is also 
an access control decision request/response language. As such, it can be used to convey policy 
requirements in a unified and unambiguous manner, hence interoperable and secure, if 
appropriately deployed. 

The above fit well into the model of a network of heterogeneous embedded systems where 
access to resources is provided by nodes as a service, and into the management architecture 
developed by IETF Policy Framework. This typical policy based management architecture 
combined with XACML, is mapped to a Service Oriented Architecture (SOA) network of nodes 
to provide protected access to their distributed resources. It consists of several components 
that run on different nodes of the architecture. These components are [22][84]:  

• Policy Enforcement Point (PEP): The system entity that performs access control, by 
making decision requests and enforcing authorisation decisions. 

• Policy Administration Point (PAP): The system entity that creates a policy or policy 
set. 

• Policy Decision Point (PDP): The system entity that evaluates applicable policy and 
renders an authorization decision. 

• Policy Information Point (PIP): The system entity that acts as a source of attribute 
value 

Moreover, auxiliary entities may also co-exist with the above, depending on the specific 
application and deployment at hand. Some of these entities, which will be showcased in later 
chapters, may include the following:  

• Context Handler (CH): Orchestrates the communications among the stakeholders, 
converts, if necessary, messages between their native forms and the XACML canonical 
form, and collects all necessary information for the PDP. 
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• Obligation Handlers (OH): Provide additional restrictions that should be taken into 
account when enforcing a decision, like the requirement to log any permitted access 
or to inform for unauthorized attempts. 

• Environment: Provides additional information independent of a particular subject, 
resource or action. 

Considering that some smart platforms may not have the computing resources to 
accommodate expensive mechanisms, some of these roles (e.g. PDP) may only be under-taken 
by more powerful nodes expected to operate within the target node’s (i.e. the PEP’s) trusted 
environment. Thus, a node, depending on its capabilities and the available resources, might 
include one or more of these functional components. A basic deployment of uSPBM’s access 
control entities is depicted in Figure 5. 

PAP

PEP
OH

Mobile &
Embedde
d/Micro 
Devices

Sensors/
Nano Devices

OH OH

PDP

DPWS/SOAP/XML

Legend:
PAP: Policy Administration Point
PDP: Policy Decision Point
PEP: Policy Enforcement Point
PIP: Policy Information Point
OH: Obligation Handling

PIP

PEPPEP

PDP

PEP
OH

PDP

OH OH

Power 
Devices

 

FIGURE 5. BASIC USPBM ACCESS CONTROL ARCHITECTURE 

The XACML handling and decision-making engine can be adopted from any open source 
implementation. Such open-source resources include Sun’s XACML implementation [85], 
PicketBox XACML [86] (formerly JBossXACML), the Holistic Enterprise-Ready Application 
Security Architecture Framework (Heras AF) XACML [87] and the Enterprise Java XACML 
project [88]. Closed-source commercial alternatives exist as well, but these are not as 
modifiable and, thus, often have limited usability in custom implementations. Considering the 
above options, Sun’s XACML is the framework of choice for implementing uSPBM’s access 
control engine, as it remains popular among developers and is actually the basis of various 
current open source and commercial offerings. 

3.1.1 TYPICAL APPLICATION SCENARIO & DATA FLOW 
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As an example, consider the case of a person who owns a smart thermostat. The thermostat 
is a device that hosts a service which supports multiple operations such as setting the target 
temperature, selecting operation mode, enabling power save, getting the current status or 
even events such as notifications when the temperature in the room changes, or the target 
temperature has been reached. As soon as the available device and its service are discovered, 
a guest in the house can request access to the node that is of particular interest, e.g. in order 
to extract the latest values from the temperature sensor attached to it. The guest’s request is 
intercepted by the nodes PEP module which then forwards the request to the PDP, the latter 
running on the house owner’s trusted device. The PDP has to consider all applicable policies 
from the PAP, enriched by any relevant information residing on the PIP, while additional ones 
might be added in real time regarding the specific access. For instance, a question can be 
displayed on the house owner’s mobile phone regarding this access request giving the user 
the option to explicitly grant or deny access. Once all the required information has been 
collected, the PDP issues a decision which is sent back to the node’s PEP. Based on that 
decision the PEP may or may not allow the guest to access said nodes data of interest. It should 
be noted that, on top of the decision taken on the request, the PDP might set one or more 
obligations for the PEP. An obligation is additional restrictions that should be taken into 
account when enforcing a decision, like the requirement to log any permitted access or to 
inform for unauthorized attempts. Moreover, prior to this communication the PAP should 
have set all applicable policies and policy sets for all targets in the network. These policies are 
made available to PDP for subsequent request evaluations.  

In more detail, the data flow, as shown in Figure 6, consists of the following steps:  

1. A remote entity (requester) requests access to the node’s resources.  
2. The PEP, sends to the context handler a decision query about this particular access 

request, together with some details, like target’s and requester’s names, and type of 
requested access.  

3. Upon receiving the request the context handler requests additional information and 
attributes about the requester from a PIP. Note that this might be the result of PDP’s 
demand  

4. The PIP collects the requested attributes and returns them to the context handler 
which forwards them to the PDP together with the request. At this point the PDP 
might request additional attributes from the context handler which has to repeat the 
communication with the PIP. 

5. The PDP evaluates the request against the policies and sends the authorization 
decision to the PEP. 

6. The PEP fulfils optional obligations and enforces PDP’s decision. 
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FIGURE 6. DATA FLOW MODEL OF POLICY-BASED ACCESS CONTROL 

 

3.1.2 ACCESS CONTROL POLICIES 
The uSPDM components are complemented by a well-defined set of XACML policies which 
define the rules that should be taken into account when examining access requests.  

The main components of the XACML Policy are depicted in Figure 7. A policy set about a 
specific target consists of a number of applicable policies which in turn define a set of rules. 
Each rule contains information about the applicable Target, the effect, and additional 
Conditions. Note that the target does not only refer to resources. It might reference 
characteristics of a subject, resource, action or environment.  
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FIGURE 7: XACML POLICY COMPONENTS 

RULE IMPLEMENTATION 
A rule is the most elementary unit of policy, which is typically encapsulated within a policy. 
This also facilitates the exchange of rules among the stakeholders, i.e. PDP and PAP.  The main 
components of a rule are:  

• a target;  
• an effect, indicates the rule-writer's intended consequence of a "True" evaluation 

for the rule. Two values are allowed: "Permit" and "Deny". 
• a condition,  
• obligation expressions, and  
• advice expressions  

POLICY IMPLEMENTATION 
Rules are not exchanged amongst system entities. Therefore, a PAP combines rules in a policy. 
A policy comprises four main components: 

• a target;  
• a rule-combining algorithm-identifier;  
• a set of rules;  
• obligation expressions and  
• advice expressions  

POLICY INFORMATION TEMPLATE 
Table 2 defines the policy information template used to represent policies for controlling 
access to nSHIELD resources. This template is used to facilitate rules and policies defined by 
PAP (scenario owners in the context of the nSHIELD) to be imported into the system.  

TABLE 2. POLICY ATTRIBUTES TEMPLATE 

POLICY 
ATTRIBUTE 

VALUE 
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Policy ID A unique identifier that allows the policy to be referenced within a 
policy set. 

Rule Combining 
Algorithm 

The procedure for combining decisions from multiple rules. Valid values 
for this attribute are defined below.  

Description A textual description of the purpose of the policy. It typically provides 
information on most of the attributes found in this template.  

Policy Target The part of a policy that specifies matching criteria for figuring out 
whether a particular policy is applicable to an incoming service request. 
Contains three basic "matching" components: Subjects (An actor), 
Actions (An operation on a resource), and Resources (Data, service or 
system component). Attributes of the subjects, resource, action, 
environment and other categories are included in the request sent by 
the PEP to the PDP.  

Effect The intended consequence of a satisfied rule. It can take the values 
"Permit" and "Deny". Note that this is not necessarily the authorization 
decision returned by the PDP to the PEP which, besides the above, can 
also include the values “Indeterminate” or “NotApplicable", and 
(optionally) a set of obligations and advices 

Condition 
(optional) 

Represents a Boolean expression that refines the applicability of the 
rule  

Obligations 
expressions 
(optional) 

Operation that should be performed by the PEP in conjunction with the 
enforcement of an authorization decision.   

Advice 
expressions 
(optional) 

A supplementary piece of information in a policy or policy set which is 
provided to the PEP with the decision of the PDP. 

 

RULE- AND POLICY- COMBINING ALGORITHMS 
The following algorithms are used for combining rules of a policy as well as policies from a 
policy set. 

- Deny-overrides: It is intended for those cases where a deny decision should have 
priority over a permit decision 

- Ordered-deny-overrides: The behavior of this algorithm is identical to that of the 
“Deny-overrides” rule-(policy-) combining algorithm with one exception. The order in 
which the collection of rules (policies) is evaluated SHALL match the order as listed in 
the policy (set). 

- Permit-overrides: It is intended for those cases where a permit decision should have 
priority over a deny decision. 

- Ordered-permit-overrides: The behavior of this algorithm is identical to that of the 
“Permit-overrides” rule-(policy-) combining algorithm with one exception. The order 
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in which the collection of rules (policies) is evaluated SHALL match the order as listed 
in the policy (set). 

- Deny-unless-permit: It is intended for those cases where a permit decision should 
have priority over a deny decision, and an “Indeterminate” or “NotApplicable” must 
never be the result. It is particularly useful at the top level in a policy structure to 
ensure that a PDP will always return a definite “Permit” or “Deny” result. This 
algorithm has the following behavior.  

o 1. If any decision is "Permit", the result is "Permit".   
o 2. Otherwise, the result is "Deny".  

- Permit-unless-deny: It is intended for those cases where a deny decision should have 
priority over a permit decision, and an “Indeterminate” or “NotApplicable” must 
never be the result. It is particularly useful at the top level in a policy structure to 
ensure that a PDP will always return a definite “Permit” or “Deny” result. This 
algorithm has the following behavior.   

o 1. If any decision is "Deny", the result is "Deny".   
o 2. Otherwise, the result is "Permit".  

- First-applicable (rule): Each rule SHALL be evaluated in the order in which it is listed 
in the policy. For a particular rule, if the target matches and the condition evaluates 
to "True", then the evaluation of the policy SHALL halt and the corresponding effect 
of the rule SHALL be the result of the evaluation of the policy (i.e. "Permit" or "Deny"). 
For a particular rule selected in the evaluation, if the target evaluates to "False" or the 
condition evaluates to "False", then the next rule in the order SHALL be evaluated. If 
no further rule in the order exists, then the policy SHALL evaluate to "NotApplicable". 

- First-applicable (policy): Each policy is evaluated in the order that it appears in the 
policy set. For a particular policy, if the target evaluates to "True" and the policy 
evaluates to a determinate value of "Permit" or "Deny", then the evaluation SHALL 
halt and the policy set SHALL evaluate to the effect value of that policy. For a 
particular policy, if the target evaluate to "False", or the policy evaluates to 
"NotApplicable", then the next policy in the order SHALL be evaluated. If no further 
policy exists in the order, then the policy set SHALL evaluate to "NotApplicable". 

- Only-one-applicable (for policies only): In the entire set of policies in the policy set, if 
no policy is considered applicable by virtue of its target, then the result of the policy-
combination algorithm SHALL be "NotApplicable". If more than one policy is 
considered applicable by virtue of its target, then the result of the policy-combination 
algorithm SHALL be "Indeterminate". If only one policy is considered applicable by 
evaluation of its target, then the result of the policy-combining algorithm SHALL be 
the result of evaluating the policy. 

POLICY EXAMPLE 
In uSPBM the outcome of a request is “Permit”, “Deny” or “Not Applicable”. The evaluation of 
a request allows the PDP to make a decision based on a given policy or policy set, or combine 
all applicable rules and policies using a Rule-combining or Policy-combining algorithm 
respectively. Some of the standard combining algorithms used are “Deny-Overrides”, “Permit-
Overrides”, “First-Applicable” and “Only-One-Applicable”.   
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An uSPBM sample XACML policy is depicted in Figure 8. 

<?xml version="1.0" encoding="UTF-8"?> 
<Policy 
    xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os" 
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
    xsi:schemaLocation="urn:oasis:names:tc:xacml:2.0:policy:schema:os 
        access_control-xacml-2.0-policy-schema-os.xsd" 
    PolicyId="0" 
    RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-
algorithm:deny-overrides"> 
  <Target> 
      <Subjects> 
        <Subject> 
          <SubjectMatch 
              MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 
            <AttributeValue 
          
DataType="http://www.w3.org/2001/XMLSchema#string">Subject</AttributeValue> 
            <SubjectAttributeDesignator 
                AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id" 
                DataType="http://www.w3.org/2001/XMLSchema#string"/> 
          </SubjectMatch> 
        </Subject> 
      </Subjects> 
      <Resources> 
        <Resource> 
          <ResourceMatch 
              MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 
            <AttributeValue 
             
DataType="http://www.w3.org/2001/XMLSchema#string">Resource</AttributeValue> 
            <ResourceAttributeDesignator 
                AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id" 
                DataType="http://www.w3.org/2001/XMLSchema#string"/> 
          </ResourceMatch> 
        </Resource> 
      </Resources> 
      <Actions> 
        <Action> 
          <ActionMatch 
              MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 
            <AttributeValue 
                
DataType="http://www.w3.org/2001/XMLSchema#string">Action</AttributeValue> 
            <ActionAttributeDesignator 
                AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id" 
                DataType="http://www.w3.org/2001/XMLSchema#string"/> 
          </ActionMatch> 
        </Action> 
      </Actions> 
    </Target> 
  <Rule 
      RuleId="urn:oasis:names:tc:xacml:2.0:conformance-test:IIA1:rule" 
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      Effect="Permit"> 
    <Target> 
      <Subjects> 
        <Subject> 
          <SubjectMatch 
              MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 
            <AttributeValue 
                DataType="http://www.w3.org/2001/XMLSchema#string">Subject 
</AttributeValue> 
            <SubjectAttributeDesignator 
                AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id" 
                DataType="http://www.w3.org/2001/XMLSchema#string"/> 
          </SubjectMatch> 
        </Subject> 
      </Subjects> 
      <Resources> 
        <Resource> 
          <ResourceMatch 
              MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 
            <AttributeValue 
             
DataType="http://www.w3.org/2001/XMLSchema#string">Resource</AttributeValue> 
            <ResourceAttributeDesignator 
                AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id" 
                DataType="http://www.w3.org/2001/XMLSchema#string"/> 
          </ResourceMatch> 
        </Resource> 
      </Resources> 
      <Actions> 
        <Action> 
          <ActionMatch 
              MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 
            <AttributeValue 
             
DataType="http://www.w3.org/2001/XMLSchema#string">Action</AttributeValue> 
            <ActionAttributeDesignator 
                AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id" 
                DataType="http://www.w3.org/2001/XMLSchema#string"/> 
          </ActionMatch> 
        </Action> 
      </Actions> 
    </Target> 
  </Rule> 
</Policy> 

FIGURE 8. USPDM POLICY EXAMPLE 
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3.2 SERVICE-ORIENTED ARCHITECTURES 
While XACML defines the structure and content of access requests and responses exchanged 
among PEPs and PDPs, it does not provide any details regarding mechanism(s) used to transfer 
these messages, thus providing the necessary flexibility to adapt to diversified environments. 
Protocols that have been proposed for the communications among PEPs and PDPs are COPS 
[89], SNMP [90] and LDAP [28], which matches the requirements for accessing the policy 
repository and PIP. 

Given the dynamic nature and the need for self-configurability, there will be situations where 
there is no coordination or central control over the network of nodes. Therefore, nodes that 
just joined the network have to discover which entity is responsible for making access 
decisions. In this case, the corresponding systems, such as power nodes or base stations, have 
to advertise their capabilities regarding PDP functionality while PEPs have to be able to 
discover PDPs and their corresponding provided services. Therefore, the communication 
mechanisms typically used alongside XACML were not appropriate for the ubiquitous 
computing deployments uSPBM is intended for. 

In the context of the IoT, existing networking mechanisms are updated to efficiently handle 
the vast population of ubiquitous resource-constrained devices (e.g. IETF’s 6LoWPAN [30] for 
IPv6 over 802.15.4), higher level, machine to machine interactions, are often required to make 
use of the devices’ full potential. The above have shifted researchers’ and developers’ focus 
on mechanisms that guarantee interoperability, providing seamless access to the various 
devices and their functional elements. Service Oriented Architectures (SOAs) have evolved 
from this need, providing interoperable, cross-platform, cross-domain and network-agnostic 
access to devices and their services. This approach has already been successful in business 
environments (e.g. [91]), as SOAs allow stakeholders to focus on the services themselves, 
rather than the underlying hardware, network technologies and architectures [92]. As SOAs 
are widely used, there is now an effort to apply this technology on embedded systems as well. 
To enable these services, various industry stakeholders introduced DPWS, a profile of Web 
Services protocols that enables Web Service messaging, discovery, description, and eventing 
on resource-constrained devices. DPWS messages are typically encapsulated in SOAP (Simple 
Object Access Protocol) envelopes and transported over any transport protocol, including 
HTTP and UDP using the SOAP-over-HTTP and SOAP-over-UDP bindings respectively [93], or 
even an SMTP binding which targets resource-constrained embedded devices and enables 
secure web service messaging, discovery, description, and eventing. More details on the 
specification follow below. 

3.2.1 THE DEVICES PROFILE FOR WEB SERVICES (DPWS) 
DPWS was introduced in 2004 by a consortium led by Microsoft and is now an OASIS open 
standard (at version 1.1 since July 2009). The DPWS specification defines a minimal set of 
implementation constraints to enable secure Web Service messaging, including discovery [94], 
description, interactions and event-driven changes [95] on resource-constrained devices.  It 
employs similar messaging mechanisms as the Web Services Architecture (WSA, [96]), with 
restrictions to complexity and message size, allowing the provision of totally platform- and 
language-neutral services, similar to those offered by traditional web services. 
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The profile’s architecture includes hosting and hosted services. A single hosting service is 
associated with each device while the same device may accommodate various hosted 
services. The latter represent the device’s various functional elements and rely on the hosting 
service for discovery. Thus, a multifunctional sensor integrated into e.g. a smart home or 
enterprise environment, will have a single hosting service but may feature various hosted 
services (e.g. a temperature service, a light intensity service, a movement-sensing service 
etc.).  

Furthermore, as discovery services are included, the device can advertise its presence on the 
network and search for other devices. Metadata exchange mechanisms provide dynamic 
access to service hosted on a device. Additionally, publish and subscribe eventing mechanisms 
allow clients to subscribe to services provided by devices. The DPWS protocol stack can be 
seen in Figure 9. 

 

FIGURE 9. THE DPWS PROTOCOL STACK [23]  

The DPWS specification enables the adoption of web services on embedded devices with 
limited resources, allowing system owners to enjoy these benefits across the heterogeneous 
systems of the IoT, and allowing us to overcome the important of interoperability barrier of 
current IoT deployments, by moving to what is often referred to as the “Web of Things” (see 
Figure 10).  
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FIGURE 10. FROM THE INTERNET OF THINGS (LEFT) TO THE WEB OF THINGS (RIGHT) 

Thus, DPWS can enable user-to-machine and machine-to-machine interactions in a unified 
manner, moving on from the current state of the field, where manufacturers offer a variety of 
proprietary protocols which are not interoperable and essentially lock-in users, forcing them 
to use a specific vendor/ecosystem. It is, therefore, the mechanism of choice for the 
underlying uSPBM communications and device interactions. 

3.2.1.1 ALTERNATIVES TO DPWS 
There is a variety of Service Discovery Protocols (SDPs) that can be used to provide seamless 
discovery and access to smart devices and their functional elements, each with its own set of 
features and intricacies. Other than DPWS, prominent solutions include the Service Location 
Protocol (SLP [97]) and the Universal Plug and Play (UPnP [98]).  

These protocols provide mechanisms to search for devices and their services, select 
appropriate services and use them. In more detail, the devices typically rely on these protocols 
to perform the following tasks: 

• Discovery: Discover pertinent devices on the network 
• Description: Retrieval of descriptions of discovered devices, including hosted services 

and their descriptions (e.g. using WSDL [99], as is the case in DPWS). 
• Control: Invocation of identified operations on selected devices 
• Eventing: Subscription to and notification via service event sources 
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An analysis of the above protocols based on their key features and supported tasks can be 
found in Table 3. 

TABLE 3. COMPARISON OF SDPS 

 DPWS UPnP SLP 
Current Version 1.1 1.1 2.0 
License Open Open7 Open 
Initial developer Microsoft Microsoft IETF 
Security √  √ 
Discovery √ √ √ 
Description √ √ √ 
Control √ √  
Eventing √ √  

 

The comparison reveals that DPWS and UPnP offer a full set of features, including control and 
eventing mechanisms, but SLP only focuses on discovery and description of services and not 
their utilization, so it can be of limited use in the context of ubiquitous devices. 

Moreover, while DPWS and UPnP appear to be similar in features, there are substantial 
differences between the two. The former is built around the OASIS Web Services (WS-) stack, 
offering significant benefits in terms of operational and development aspects, as well as of 
device-to-device and user-to-device communication. Deploying Web Services on devices 
allows the use of a single stack for local network and Internet interactions with devices and 
other Web Services, taking advantage of pre-existing tools and development know-how and 
leveraging the extensive work already carried out in defining the various WS-* family of 
protocols (e.g. for security, an important aspect for which UPnP is lacking provisions). Thus, 
DPWS-enabled devices feature superior scaling and seamless integration capabilities, both in 
the context of enterprise environments (e.g. plant floors or enterprise-wide information 
systems) and the Internet (e.g. regular W3C-specified Web Services). Scalability is a key area 
where UPnP and SLP are found wanting. The former is suitable for small local networks, while 
the latter features some basic provisions (with the use of a Discovery Agent) which are limited 
to a local network or networks under common administration. Comparatively, the main 
disadvantage of DPWS is the existence of numerous specifications (protocols, bindings etc.), 
as is evident from Figure 9, which have not been consolidated yet. 

It should be noted that DPWS was originally conceived and introduced as a successor to UPnP, 
but the lack of backward compatibility meant that such a transition has not taken place yet. 
Instead, nowadays DPWS is actively pushed by industry stakeholders as the solution of choice 
for large-scale enterprise (e.g. industrial) deployments, while UPnP is mostly targeted to the 
home environment (printers, home entertainment etc. [100]). Also, like UPnP, DPWS is 
natively integrated into the various versions of the Windows operating system, from Windows 
Vista onwards. 

3.2.2 NODE.DPWS 

7 Membership to the UPnP Forum needed for certain features. Includes some proprietary protocols. 
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This section presents Node.DPWS, a novel implementation of the DPWS specification that 
focuses on the Node.js platform (http://nodejs.org/), also referred to as Node, a JavaScript-
based runtime environment designed to maximize throughput and efficiency. The associated 
Node.DPWS libraries are the first to leverage the benefits of both DPWS and Node, allowing 
the creation of high performance, scalable and lightweight DPWS devices for the 
heterogeneous, often resource-constrained, platforms typically found in smart environments. 
Moreover, the libraries are easy to use and the devices can be defined with a minimum of 
code, reducing the development effort. 

3.2.2.1 ALTERNATIVE DPWS LIBRARIES 
A survey on alternative to Node.DPWS APIs for DPWS development reveals a plethora of 
available solutions with diverse characteristics. These include the libraries contained within 
Microsoft’s .NET Micro Framework (http://www.netmf.com), the Web Services for Devices 
(WS4D, http://ws4d.e-technik.uni-rostock.de) toolkits which include WS4D-uDPWS, WS4D-
JMEDS, WS4D-Axis2 and WS4D-gSOAP, and, finally, the Service-Oriented Architecture for 
Devices (SOA4D, https://forge.soa4d.org) solutions which include DPWS-Core and DPWS4J. 
Information for the identified DPWS implementations is aggregated in Table 4. 

TABLE 4. OVERVIEW OF DPWS TOOLKITS 

 .NET Micro 
Framework 

WS4D-
uDPWS 

WS4D-
JMEDS 

WS4D-
Axis2 

WS4D-
gSOAP 

DPWS-
Core DPWS4J 

Language C# C Java 
Java 

(Apache 
Axis2) 

C C Java 

CPU/OS ARM 

PC 
(VM), 

TelosB, 
AVR 

Raven 

Java SE, 
Java 

CDC/CLDC, 
Android 

Java SE 
Linux, 

Windows, 
ARM 

Linux, 
Windows 

Java SE, 
Java 
CDC 

DPWS 1.0 √ - √ √ √ √ √ 
DPWS 1.1 √ √ √ - Partial Partial - 

IPv4 √ √ √ √ √ √ √ 
IPv6 - √ √ - Partial √ - 

License Apache 2.0 FreeBSD EPL Apache 
2.0 GPL/LGPL LGPL LGPL 

Active Yes No Yes No No Yes No 
 

Nevertheless, when focusing on key features such as code portability, deployment on 
heterogeneous platforms, support for IPv6 (necessary for IoT applications) and active 
development and support of the tools, the valid options are actually fewer, with WS4D-JMEDS 
standing out as the most attractive choice. It is the most mature work of the WS4D initiative, 
providing a feature-rich platform which is being constantly updated and improved. It is, 
therefore, used as a benchmark to assess the potential benefits of Node.DPWS. 

3.2.2.2 ABOUT NODE.JS 
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Node.js is a relatively new platform, introduced in May 2009 (in version v5.0.0, as of October 
2015). It is an evented server-side implementation based on Google’s V8 JavaScript engine. 
Both Node and the V8 engine are mostly implemented in C and C++, but Node’s wrapper 
enhances the engine’s basic features by allowing server-side deployment of JavaScript 
programs and the use of various C libraries, system calls, binary data manipulation and request 
handling. The core development concept was to create the building block for lightweight and 
scalable servers, providing an evented, non-blocking infrastructure for highly concurrent 
applications.  

Node handles network input/output (I/O) operations in an evented, non-blocking fashion, 
while file I/O operations are handled asynchronously. This differentiates Node from typical 
implementations which follow the threaded model where for each new connection a thread 
is created, having inherent scaling issues. In Node, each new connection requires only a small 
heap allocation. Moreover, Node’s executing thread cannot be blocked; in situations where 
this would normally happen (e.g. waiting for data from a remote database), the thread’s 
runtime is utilized to serve other requests. The above result in very fast applications, which 
also scale well, even in the case of the resource-constrained devices (i.e. with no multi-core 
processors or large amounts of memory) typically embedded in smart environments. More 
details on Node’s characteristics and code samples can be found in [101]. 

Research indicates that while Node.js offers significant benefits in terms of I/O performance 
and resource utilization, it is not as good at serving large static files [102]. This does not harm 
its applicability in developing fast, scalable network applications, and is expected to improve 
as the platform matures. Moreover, it is not an issue in the context of typical IoT applications, 
where end devices typically transmit low level information (e.g. sensing data) and receive 
commands on their functional elements (e.g. turn ON/OFF). Finally, some concerns regarding 
the security of Node.js applications can be attributed to the lack of a stable version and can 
be avoided by following security-conscious programming practices [103]. The platform is not 
inherently insecure and can safely be used in production-grade deployments.   

As Node.js addresses many of the issues with real-time and lightweight application 
communications, it has quickly gained the support of the developers’ community (there is a 
variety of libraries already available) and of major stakeholders in the industry [104], including 
companies such as Google, Microsoft and Yahoo!. Popular websites such as Wikipedia, 
LinkedIn, eBay and Microsoft’s Azure cloud platform already make use of Node.js, even 
though it has not reached a stable version yet; an indicator that there is a strong demand for 
Node’s features and that its user base will continue to grow over time. 

3.2.2.3 THE NODE.DPWS LIBRARIES 
Node’s characteristics are a good match for event-driven web services deployable on the 
embedded devices expected to be present in smart enterprise, industrial, domestic and other 
ubiquitous-computing-enhanced environments. Thus, it is an attractive solution for 
implementing the DPWS specification, to potentially deliver highly scalable DPWS devices, 
able to handle many clients concurrently, while having very low resource consumption.  
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Node.DPWS provides such an implementation of DPWS using Node.js, supporting both 
versions 1.0 (2006) and 1.1 (2009) of the specification. The developer is responsible for 
describing the device’s attributes (e.g. manufacturer or device name), its supported services 
(e.g. Temperature service), operations (e.g. get current temperature) and events (e.g. 
overheating alerts), and the libraries will properly advertise them and match them to requests. 
More complex operations are also supported by the library; e.g. allowing clients to subscribe 
to temperature readings at set intervals or when certain events occur, adopting the WS-
Eventing specification [95]. Node.DPWS also supports auto-discovery, by implementing WS-
Discovery [94], a multicast discovery protocol to locate services (the main mode of discovery 
being a client looking for target services). Apart from discovering devices, the developed 
library facilitates replies to discovery requests, forwarding the developer-defined device 
details to requesting nodes whose queries match the device. 

A key characteristic of Node.DPWS is its compact code, which is also easy to use. Operations 
can be defined through minimal code and the developer only has to add the device's 
information and its operations (along with their callback functions, adding the desired 
functionality to the device). To highlight this, the source code of a DPWS device compared to 
the same device implemented using WS4D-JMEDS is provided in Figure 11. 

 

FIGURE 11. CREATING A SIMPLE DPWS DEVICE USING NODE.DPWS (LEFT) AND THE SAME DEVICE IN WS4D-
JMEDS (RIGHT). 

In this example, the API’s are used to expose a simple service providing temperature readings. 
In the case of Node.DPWS, the temperature operation is defined in a few lines of code: 
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input/output types are specified and then a handler is provided (called whenever the 
operation is invoked). And while Node.js code is generally compact, this high level of 
abstraction would not be possible without Node.DPWS, as the developer would have to deal 
with the low level aspects of the specification’s implementation, such as the communications 
(sockets etc.) and all the XML parsing and processing, in her code. Choosing the most 
appropriate modules (e.g. server) where needed is a nontrivial task, especially for someone 
not familiar with the complexities of server-side JavaScript programming and the Node.js 
ecosystem. Further details on this can be gleaned by examining the freely available library 
sources, which also include samples to help familiarize developers with its functionality.  

3.2.2.4 PERFORMANCE EVALUATION 
In order to assess the performance of Node.DPWS, we examined the behavior of a simple 
DPWS device featuring a “GetTemperature” operation which, when invoked, returned an 
integer value. Three versions of the device were developed: the Node.DPWS one and two 
versions using WS4D-JMEDS, one compiled using Java Standard Edition (SE) and the other 
following the Java Connected Device Configuration (CDC), part of the Java Platform Micro 
Edition (Java ME) designed for handheld and embedded systems. 

The applications were deployed on Beaglebone (http://beagleboard.org/bone) embedded 
platforms (720MHz ARM Cortex-A8, 256MB RAM, Arch Linux ARM operating system), 
interconnected via wired Ethernet to minimize the network’s impact. The test-bed also 
featured a client application to discover and query the DPWS devices, recording response 
times.  

A total of 500 requests were issued from the benchmarking client (running on a desktop PC) 
to each of the three DPWS devices, while various aspects of their performance were being 
monitored. Figure 12 (left side) presents the recorded response time, i.e. the time that the 
client had to wait to get a response to its “GetTemperature” invocation. The Node.DPWS 
device responded faster than the WS4D-JMEDS-based implementations. Averaging the 
response times over the 500 requests reveals that the Node.DPWS device performed 
significantly better than both the WS4D-JMEDS devices, featuring an average response time 
of 24.44ms, i.e. 53% and 66.3% faster than the CDC and SE variants respectively. In an 
alternative representation of this performance gap, the Node.DPWS device was able to handle 
40.92 requests per second, compared to 19.3 and 13.8 requests for the CDC and SE devices 
respectively. 

Moving to the DPWS device itself, CPU and memory load were recorded during benchmarking. 
There were no significant differences in terms of CPU load: the average load while handling 
the test requests was recorded at 90.4%, 96.7% and 91.9% for Node.DPWS, CDC and SE 
respectively. The Node.DPWS device demonstrated better behavior in terms of the memory 
consumed during benchmarks. Its memory footprint was measured at 26440 bytes on 
average, which was 10% lower than its WS4D-JMEDS CDC counterpart (29387 bytes) and 18% 
lower than the SE one (32280 bytes).  

To examine the behavior of the APIs on complex applications, an implementation of uSPBM 
was also evaluated, as the framework involves complex communication mechanisms, 
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including automated discovery of devices, subscription and eventing. All of the framework’s 
entities were developed using the investigated APIs, including the policy enforcement points 
(deployed on the Beaglebones) and the policy decision points and policy repositories 
(deployed on a desktop PC). Figure 12 (right side) presents the average response times for 500 
requests to retrieve data via the pertinent (now access-control-protected) operation. The 
increased overhead of the access control mechanisms is evident, but the pattern formerly 
observed is maintained in this more demanding use case. The performance gap is not as 
evident as in the simpler scenario, as some of the delays are unrelated to the target device’s 
implementation. For example, the device has to wait for the policy decision point to retrieve 
the relevant policies and issue a decision on the access request before responding to the 
benchmark client), but Node.DPWS still outperforms the alternatives, followed by JMEDS CDC 
(response time increased by 22.51%) and JMEDS SE (increased by 32.63%). 

 

FIGURE 12. AVERAGE RESPONSE TIME (IN MS) FOR 500 REQUESTS ON BOTH THE SIMPLE (LEFT) AND THE 
POLICY-BASED ACCESS CONTROL IMPLEMENTATION (RIGHT) 

Another important aspect, especially considering battery-powered IoT devices, is energy 
consumption. To this end, voltage and current were monitored during benchmarks, using 
hardware interfaces on the Beaglebones. The monitored consumption excluded the USB Host 
port and expansion boards, but these were not actively used during testing, thus their 
overhead should be minimal compared to that of the other hardware components. The energy 
consumed to serve 500 requests, on each of the investigated scenarios and implementations, 
are presented in Figure 13. As with the other examined parameters, the energy consumption 
gains when developing the devices using Node.DPWS are significant. 
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FIGURE 13. ENERGY (IN MJ) REQUIRED TO HANDLE 500 REQUESTS. 

The advantages of adopting Node.DPWS are evident in the above results, but accurately 
quantifying the extent to which the noted differences can be attributed to the design of the 
investigated libraries or to the underlying environments (i.e. Node.js with its fast C/C++ -based 
engine and its event-driven, non-blocking design, set against the traditional Java environment) 
is nontrivial. Both libraries were designed with the intrinsic characteristics of the 
corresponding development environment in mind, so their behavior and features are, in great 
degree, interwoven with the platform they were built upon. Still, the scenarios were carefully 
chosen not to involve any unfair blocking requests (e.g. reading values from files), as this 
would exacerbate differences between the environments, simultaneously obfuscating 
differences between the libraries themselves. 

Nevertheless, some design choices further differentiate the performance of the two libraries. 
The Elementtree XML parser chosen for Node.DPWS is more efficient and has a smaller 
memory footprint than the SAX parser used in JMEDS. Moreover, the Restify module 
employed in the presented library is an extremely lightweight HTTP server. Node.DPWS only 
binds services to a single developer-defined IP, while JMEDS automatically binds services to 
all available interfaces, thus consuming extra resources. Another key difference is that 
Node.DPWS only allows one instance of DPWS per device (still, all the desired elements can 
be exposed as different hosted services on this single hosting service). In contrast, JMEDS 
allows the deployment of multiple DPWS devices, an approach that adds complexity, as the 
middleware is responsible for managing the discovery, invocation and eventing mechanisms 
of all concurrently deployed devices, imposing extra processing overhead and delays. 

3.2.2.5 SUMMARY 
The above analysis demonstrates the benefits of leveraging the relatively novel Node.js 
platform to implement the DPWS specification in the form of Node.DPWS; an easy to use and 
lightweight set of libraries for creating and deploying DPWS devices on systems with limited 
resources. The performance assessment revealed that Node.DPWS outperforms the most 
attractive alternative currently available, the WS4D-JMEDS toolkit. The enhanced 
performance, scaling and compact code characteristics of the library show that there is 
significant room for improvement in the DPWS-related tools currently available. In the context 
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of the IoT, It is, therefore, worthwhile to pursue further work on the Node.DPWS 
implementation, in order to enrich its libraries with more features, e.g. extending it to support 
other WS-* protocols (WS-Security being a good candidate). 

The advent of the IoT leads to the modernization of software engineering, bringing it closer to 
the requirements of the ubiquitous computing world, with its plethora of heterogeneous, 
resource-starved end devices that will typically handle “small” (sensing) data. This intensifies 
the ever-present need of software practitioners to keep up to date with new tools and design 
approaches. Node.js is one such innovative platform and Node.DPWS aims to motivate 
researchers and developers alike to further explore the platform and the benefits of efficient, 
lightweight and scalable web services in IoT applications. Nonetheless, in software 
development one size does not fit all: the proposed library may be excellent for ubiquitous 
sensing devices but will have inherent limitations when used for backend devices handling 
large datasets. Thus, it is essential to examine use case scenarios at all development stages, 
selecting the appropriate tools for each application; an even more compelling argument for 
software practitioners maintaining an up-to-date and diverse skillset. 

3.3 COMBINING THE TECHNOLOGIES 
The combination of XACML with DPWS benefits both technologies, resulting in a solution that 
exceeds the “sum” of its parts.  

In more detail, XACML helps DPWS by providing fine-grained access control at the operations 
level. This is important, as DPWS may have built-in security mechanisms, but offers no fine-
grained access control; access can either be allowed to a resource, or denied completely. For 
many scenarios it is important to restrict the access of a service at the action level instead of 
at the service level only. Moreover, XACML allows devices to dynamically adapt the 
operation/features available to users, based on the environment and other variables. While 
dynamic reconfiguration of devices is not supported by DPWS, this functionality can be 
emulated by adjusting the applicable policies. 

The XACML deployment also benefits by the adoption of DPWS. The most important gain 
pertains to the ease of deployment, as the adoption of DPWS facilitates seamless Machine-
to-Machine (M2M) discovery and interactions, allowing the deployment of the XACML entities 
to any platform, anywhere on the network, with minimal involvement on behalf of the user. 
Moreover, the synchronous & asynchronous interactions enabled by DPWS, allow for reactive 
access control, providing the necessary variables (operational or situational context, i.e. the 
“Environment”) in a real-time, automated manner to the XACML entities. This improves upon 
the typical Policy-based Access Control approach of XACML, enabling more sophisticated, 
dynamic schemes (e.g. Risk Adaptive Access Control, RAdAC [105], see Figure 14) 
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FIGURE 14. THE EVOLUTION OF ACCESS CONTROL MODELS [105] 

4. IMPLEMENTATION APPROACH 
The implementation of the framework’s core entities (i.e. those dedicated to the authorization 
mechanisms) and their communications are detailed in the sections below. 

4.1 NODE CLASSIFICATION 
At the lower level of the uSPBM architecture lie the various computing devices that the 
framework's components are expected to be deployed. There is a plethora of heterogeneous 
devices that are expected to be found in ubiquitous computing environments, each with its 
own intrinsic characteristics in terms of size, performance, power source, networking 
capabilities etc. Given these diverse characteristics and hardware limitations, not all of 
uSPBM’s mechanisms will be deployable on all types of devices. Therefore, it became 
apparent that it would help to classify the various platforms, depending on their intrinsic 
characteristics.  

To this end, four different categories of smart devices were identified: power devices, mobile 
devices, embedded/micro devices and sensors/nano devices. These four categories represent 
the basic hardware platforms which (or subsets of which) are expected to be found in a typical 
uSPBM deployment, and cover the possible requirements of several market areas: from field 
data acquisition, to transportation, to personal space, to home environment, to public 
infrastructures, etc. A description of these categories can be found below. 

4.1.1 POWER DEVICES 
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Devices with medium to high performance in terms of computing power and no particular 
resource restrictions. Although these nodes are typically used as sink nodes and/or gateways 
to other networks they can also have their own on-board sensors for collecting additional 
information. Example of a power node is a laptop or a mains-powered embedded platform. 

• Role 
o DPWS client and server (i.e. DPWS peers). 
o Responsible for interfacing with OSGi (Knopflerfish) framework. 
o Policy Administration Point, Policy Information Point/Attributes Repository 

and/or Policy Decision Point 
• Underlying technologies 

o Windows or Linux operating system (optionally with desktop environment)  
o WiFi or Wired Ethernet, IPv4/IPv6 network 

• Prototype platforms 
o Beagleboard/Beagleboard xM [106] 
o Typical PC/Laptop/Server 

 

FIGURE 15. BEAGLEBOARD XM 

4.1.2 MOBILE DEVICES  
Portable devices, often associated with a person. Their characteristics may vary from powerful 
devices with energy restrictions (e.g. smartphones) to devices with more resource constraints 
(e.g. devices attached onto smart clothing, smart watches etc.). 
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• Role 
o DPWS client and server (i.e. DPWS peer). 
o Policy Enforcement Point and/or Policy Decision Point 

• Underlying technologies 
o Android mobile operating system  
o WiFi, IPv4/IPv6. 

• Prototype platforms 
o Smartphone 
o Tablet 

 

FIGURE 16. SMARTPHONE AND TABLET DEVICES 

 

4.1.3 EMBEDDED/MICRO DEVICES  
Smaller devices, typically integrated into other entities (smart appliances, smart vehicles etc.) 
with limited capabilities and resources, such as computational power, memory, storage space 
and energy. 

• Role 
o DPWS client and server (i.e. DPWS peer). 
o Policy Enforcement Point and/or Policy Decision Point 
o Bridge between 802.15.4/6LoWPAN and IPv4/IPv6 networks (optional) 

• Underlying technologies 
o Angstrom or lightweight Ubuntu distribution operating system  
o WiFi or Wired Ethernet, IPv4/IPv6. Optionally 802.15.4/6LoWPAN. 

• Prototype platforms 
o Beaglebone [107] 
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FIGURE 17. BEAGLEBONE EMBEDDED PLATFORM 

4.1.4 SENSORS/NANO DEVICES  
Small battery-powered devices with very limited capabilities and resources; typically sensor 
motes. 

• Role 
o Devices running a DPWS service. 
o Policy Enforcement Point (optionally) 

• Underlying technologies 
o Contiki or Java ME Squawk operating system  
o 802.15.4/6LoWPAN network 

• Prototype platforms 
o SunSPOTs [108] 
o Crossbow Technology IRIS motes 8 

 

FIGURE 18. SUNSPOT SENSOR 

8 http://bullseye.xbow.com:81/Products/productdetails.aspx?sid=264 
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FIGURE 19. IRIS MOTE 

Some specification highlights of the abovementioned prototype platforms appear in Table 5. 

 

TABLE 5. PROTOTYPE PLATFORM SPECIFICATIONS 

 Sensor/Nano Embedde
d/Micro 

Power Devices Mobile Devices 

Memsic 
IRIS 

SunSP
OT 

Beaglebone BeagleBoard BeagleBoard-
XM 

Laptop Mobile Phone Tablet 

Operating 
System 

TinyOS / 
Contiki 
(port) 

Java 
J2ME 
CLDC 
1.1 

Linux  Linux / WinCE Linux / WinCE Linux / 
Windows 

Android Android 

Processor Atmel 
ATMega 
1281 @ 
16MHz 

ARMv4
T @ 
180 
MHz  

MPU @ 720 
MHz 

(OMAP) 

MPU @ 720 
MHz (OMAP) 

DSP @ 1 GHz 
(DM3730) 

Quad-core i5 
@ 2.6GHz 

Single-core 
Cortex-A5 @ 

600MHz 

Quad-
core @ 
1.9GHz 

Memory 8KB RAM, 
4KB 

EEPROM  

512KB 
RAM 

256MB RAM 256MB RAM 512MB RAM 8GB RAM 512MB RAM 2GB 
RAM 

Storage 128KB 
Program 

Flash 
Memory, 

512KB 
Measure

ment 
(Serial) 
Flash 

4MB 
Progra
m Flash 
Memor

y 

SD/MMC/SD
IO card slot 

SD/MMC/SDI
O card slot 

SD/MMC/SDI
O card slot 

512GB, 
SD/MMC/SD
IO card slot 

16GB, 
SD/MMC/SDI

O card slot 

32GB, 
SD/MMC

/SDIO 
card slot 

Power Batteries 
(2xAA) 

3.7V 
Battery 

USB / DC USB / DC USB / DC Built-in 
battery / DC 

Built-in 
battery / DC 

Built-in 
battery / 

DC 
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Networki
ng 

2.4 Ghz 
radio 

2.4 Ghz 
radio 

Wired 
Ethernet, No 

built-in 
wireless 

module (but 
has 

interface) 

Wired 
Ethernet, No 

built-in 
wireless 

module (but 
has interface) 

Wired 
Ethernet, No 

built-in 
wireless 

module (but 
has interface) 

Wired 
Ethernet, 

WiFI, 
Bluetooth 

WiFI, 
Bluetooth 

WiFI, 
Bluetoot

h 
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4.2 DPWS IMPLEMENTATION OF ACCESS CONTROL MECHANISMS 
The section below details the approach followed to implement the authorization entities’ 
interactions using web services and the APIs of choice. 

4.2.1 PEP-PDP COMMUNICATION 
The Policy Enforcement Point must reside on every device with resources that must be 
protected from unauthorized access. Other than the functional elements of the devices which 
the framework intends to protect (e.g. access to its sensors), two extra operations must be 
present on each DPWS device. These operations, in essence, constitute the PEP functionality 
and its communication with the PDP. The latter acts as a DPWS client that accesses these 
USPBM-specific operations. In more detail, these operations are: 

• SAREvent: Service Access Request Event. A WS-Eventing operation to which 
devices can subscribe. When fired, the operation outputs “SAROut”, a message 
which includes all the information the PDP needs to have in order to evaluate a 
request. 

• PDPResponse: Policy Decision Point Response. An operation invoked by the PDP 
with its answer to an access request. This response is a “PDPIn” message. 

The message types are defined as follows: 

• SAROut 
o RequestID: A counter of requests issued by the specific device 
o Subject: An actor whose attributes may be referenced to validate that a 

request is authorized 
o Action: An operation on a resource 
o Resource: Data/service or system component that the “Subject” attempts 

to access via the “Action”. 
• PDPIn 

o RequestID: A counter of requests issued by the specific device. This value 
is used to match SAROut messages sent by the PEP to PDP responses and to 
avoid replay attacks. 

o Response: The response issued by the PDP regarding the specific request, 
in the form of an integer (0: “Deny”, 1: “Permit”, 2: “Indeterminate” or 3: “Not 
Applicable”). 

The above, including a definition of the message types, can be seen in detail in Figure 20. 
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PDP

SAREvent

- SAROut

PDPResponse
 

1. Subscribes

2. Eventing

3. Invokes

- PDPIn

- RequestID
- Subject
- Action
- Resource

- RequestID
- Response

 

FIGURE 20. PEP-PDP IMPLEMENTATION 

4.2.2 PDP-PIP/PAP COMMUNICATION 
In terms of the discovery and information exchange that must take place between 
infrastructure entities (PDP, PIP, PAP), an extra operation must reside with the entity that 
stores the active policy set (namely the PIP/PAP). In specific, this extra operation is formed as 
follows: 

• PIPOperation: Policy Information Point Operation. Features an input in the form 
of a “PIPIn” message and an output in the form of a “PIPOut” message. The 
former is the request issued by the PDP (requesting all applicable policy rules), while 
the latter contains all the information, i.e. policies and rules pertinent to the specific 
request, the PIP has identified. 

The above message types, are detailed below: 

• PIPIn 
o RequestID: A counter of requests issued by the PDP to the PIP 
o Request: The request to be evaluated in the form of a string. On receipt, 

the PIP enriches the request (with current time and date etc.) and it passes 
the request to a “policyFinder” module to find the appropriate policies. 

• PIPOut 
o RequestID: A counter of requests issued by the PDP to the PIP. This value 

is used to match PIPIn messages sent by the PDP to PIP responses and to avoid 
replay attacks. 

o PolicyResponse: A field used to return pertinent policies 
o StatusResponse: In cases of errors, e.g. when no pertinent policies are 

identified, the exact issue is identified via this field (“Non-Applicable”, 
“Cannot determine” or “Other error”) 
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The above, including a definition of the message types, can be seen in detail in Figure 21. 

PDP

PIPOperation

1. Invokes
2. Response

- RequestID
- Request

- RequestID
- PolicyResponse
- StatusResponse

- PIPOut
- PIPIn

 

 

FIGURE 21. PDP-PIP/PAP IMPLEMENTATION 

4.2.3 INFORMATION FLOW 
The information flow that takes place whenever a request to an uSPBM-protected resource is 
issued is as follows: 

1. The PDP constantly monitors the network in order to listen to “Hello” messages 
that PEP-equipped Devices broadcast when initializing.  

2. As soon as the PDP catches such a “Hello” message, it subscribes to the SAREvent 
of that PEP. 

3. When a client tries to access an uSPBM-protected feature on the device (i.e. invokes 
the protected operation), the SAREvent is fired which contains the Request ID, the 
Client’s identifier, e.g. IP and/or username (Subject), the Invoked Operation (Action) 
and the Device’s UUID, i.e. its Universally Unique Identifier (Resource) 

4. The PDP generates an XACML request with the above data, in order to be handled and 
evaluated by the XACML modules of the infrastructure entities. 

5. The PDP invokes the PIPOperation present on the PIP/PAP, in order to retrieve 
applicable policies. 

6. The PIP replies with all applicable policies, otherwise it returns the error status. 
7. The PDP then decides, based on information retrieved by the PIP, and invokes the 

PDPResponse operation on the Device, transmitting the result of the query’s 
evaluation.  

It should be noted that, regarding policy look-ups, the authors chose to implement the system 
so that the PEP checks with the PDP for every single request. This is essential when considering 
scenarios where policies change dynamically (even in an automated fashion when certain 
conditions are triggered), and where it is desirable to have the access control system enforce 
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said changes in real-time. Conversely, in deployments where policy changes are expected to 
be infrequent or less dynamic in nature, access tokens with a predetermined validity period 
could be introduced to reduce the load on the PDP, e.g. as defined in [109]. 

4.3 MESSAGE PROTECTION 
The uSPBM’s mechanisms can be of limited efficacy if the actual associated messaging is not 
protected. Malicious entities can eavesdrop, replay or tamper with the framework’s 
messaging, potentially overriding the offered protection. The exchange of unprotected policy 
messages might reveal useful information to attackers who will try to easily identify policy 
restrictions. This would allow them to do a mapping of the security measures taken for the 
specific environments hence exploit potential vulnerabilities. Moreover, in a more active 
approach, an attacker might modify policy related messages, such as authorization requests 
and/or decisions, obligations or advices in an attempt to downgrade adopted measures and 
bypass access controls. Masquerading is another threat to the system’s integrity, where an 
attacker sends forged messages pretending to be a legitimate user. Lack of authorization 
requirements on requests might allow an attacker to make such message injections. 

To avoid the aforementioned problems, security measures have to be taken to protect 
message confidentiality, integrity and authentication. These measures can be deployed in 
various layers in the OSI protocol stack, such as the application layer, the network layer or 
even the link layer.  

At the lower layers, as existing networking mechanisms are updated and adapted to efficiently 
handle the vast population of the resource-constrained devices (e.g. work on the 6LoWPAN 
[30]), the pertinent cryptographic primitives are also adapted and improved accordingly. Such 
an example is the IPsec protocol and its variants that utilize header compression [110]–[112] 
which can provide similar levels of protection while preserving the valuable node resources. 
The security mechanisms inherent to the IEEE802.15.4 link-layer protocols [113] are also a 
viable option, though a comparative analysis made between IPsec and IEEE802.15.4 link-layer 
security [114], in some cases IPsec scales better while also offering end-to-end security.  

Some prominent alternative schemes protect messages at the application or network layer 
and can provide end-to-end message protection. Well-known security mechanisms for these 
layers are the TLS (Transport Layer Security) protocol [115] and its counterpart proposed for 
securing UDP messages, namely DTLS [116]. TLS is suitable for providing confidentiality, 
integrity and authentication of messages exchanged between a client and a service, running 
on a node. However, the inherent expensive computations of TLS or IPsec (such as the TLS 
handshake protocol) do not match the requirements of resource-constrained environments, 
for the protection of the communications that take place among the less powerful micro/nano 
nodes (PEPs), or between PEPs and power nodes (PDPs). A TLS implementation on the Sun 
SPOT (Small Programmable Object Technology) Java-enabled WSN platform, has shown that 
the network lifetime is reduced by 70% [117]. 

Several lightweight alternatives based on TLS/SSL have been proposed for resource-
constrained environments. One such approach was proposed in [118], which uses ECC for key 
exchange and authentication, RC4 for encryption and MD5 for integrity check. According to 
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the presented experimental results, it was able to complete a full SSL handshake within 2 
seconds. Tiny 3-TLS proposed in [119] is an extension and adaptation of the TLS handshake 
sub-protocol, tailored for securing communications between sensing nodes and remote 
monitoring terminals. This protocol relies on the existence of an intermediate node, the sink 
node, which in the proposed framework can be assigned to a power node. In [120]  an 
implementation of SSL was attempted through an enhanced version of Sizzle (a tiny-footprint 
HTTPS stack [121]). Measurements were performed on Telos motes and it was concluded that 
the exploitation of features such as session reuse and persistent HTTP(S) can spare multiple 
executions of the key exchange phase, which is the most energy-demanding part of the 
protocol. What is more, it was also shown that the extra cost for encrypting/authenticating 
application data with SSL is around 15%. Again, the key exchange phase is performed via ECC 
since it is significantly more efficient than the RSA alternative.  

Other schemes focus on efficiently providing authenticated encryption, like the Identity-based 
Cryptosystem (IBC) signcryption mechanisms presented by Fagen et al [122]. Related to the 
above is the relatively novel concept of security fusion, whereby weak point-to-point 
properties are combined in order to produce strong security properties in a resource-aware 
manner [123].  

The choice of security mechanisms is affected by many parameters, including the node 
capabilities. Communications between, e.g. a PDP running on a power node and the policy 
repository, can be protected using TLS as the power node can support the heavy computations 
required by this protocol. Given that there are no resources restrictions on power nodes there 
are no major obstacles, besides key management, to deploy TLS or even IPsec on these nodes. 
Nevertheless, considering the less powerful micro or nano nodes, deployed protection 
mechanisms have to be based on lightweight cryptographic protocols that satisfy the needs 
and match the capabilities of constrained environments.  

One may consider deployments of the framework’s entities over trusted and/or secure 
networks (e.g. a VPN), but an alternative mechanism has to be considered for deployments 
where this is not the case. Thus, in the case of uSPBM we make no assumptions about the 
existence of other security mechanisms and focus on solutions at the application layer instead. 

4.3.1 ASYMMETRIC VARIANT 
A solution that can be adopted for this purpose is the Web Services Security Specification (WS-
Security or WSS [124]) and the corresponding cryptographic mechanisms, i.e. XML encryption 
and signatures (enveloped, enveloping or detached) or a combination of those depending on 
the particular requirements to provide confidentiality and integrity of the exchanged 
messages. WS-Security is part of the WS-* family of specifications published by OASIS. The 
protocol specifies enhancements to existing SOAP messaging, integrating security features in 
the header of SOAP messages (working in the application layer), in order to provide message-
level confidentiality, integrity and authentication. The main mechanisms detail signing SOAP 
messages (integrity, non-repudiation), encrypting SOAP messages (confidentiality) and 
attaching security tokens to SOAP messages (authentication). There is a variety of supported 
encryption, signature and security token formats (e.g. SAML Assertions [125], Kerberos tickets 
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[126], X.509 Certificates [127], Rights Expression Language (REL) Tokens [128], as well as 
custom tokens). 

A structured exchange of secure XACML messages using XML encryption and signature is 
provided by SAML specifications (Security Assertion Markup Language [129]), thus offering 
the required protection at the application layer. SAML is a plaform-independent, XML-based 
standard for exchanging authentication and authorization information. SAML assertions are 
typically transferred embedded using HTTP or XML-encoded SOAP messages that are 
transferred over HTTP or UDP [93]. OASIS has defined a profile in [109] for the integration of 
SAML with XACML and, among the others, the use of SAML for the secure transmission of 
XACML requests and responses. 

Therefore, considering the networking requirements and the corresponding security 
mechanisms, the most appropriate options for securing XACML messages at the application 
layer, while providing interoperability, are the following:  

• SAML-integrated XACML messages transferred using the SOAP protocol 
• SOAP-encapsulated XACML messages protected with TLS. Such an approach requires 

using expensive TCP communications to transmit the resulting TLS messages. Another 
option is to use an adaptation of TLS over UDP, namely DTLS.  

Both of the above solutions are typically independent of the protocols used at the underlying 
layers, allowing them to adapt in many environments, hence satisfying the interoperability 
requirement. 

In either of the aforementioned approaches, one of the main problems related to the 
exchanged messages’ protection is key management, especially when considering the 
following:  

1. Communications might take place ad-hoc between nodes that do not have an 
established trust relationship, hence they do not (pre-)share any secrets. Dynamic 
structures and self-configuration capabilities demand for more flexible mechanisms. 

2. Some nodes might not support public-key technologies, which further complicates the 
processes of establishing trust relationships and keys.  

The inherent key management problems, especially in resource-constrained environments, 
have attracted a lot of attention in the research community and many schemes have been 
proposed within this context. A survey and taxonomy on proposed wireless sensor networks 
key management schemes is provided in [130].  

Web Services Secure Conversation (WS-SecureConversation, [131]) is a WS-Security add-on 
which introduces, similarly to TLS, a session key to secure communication across one or more 
messages. The aim of the specification is to establish security context, share, renew, amend 
or cancel said context as well as derive (potentially more efficient) session keys from the 
aforementioned context. When multiple message exchanges are involved WS-
SecureConversation has proven to be more efficient than a plain WS-Security implementation 
[132], but the former requires the presence of other WS-* protocols as well, like WS-Trust, so 
the added complexity should also be considered. 
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Unlike TLS, WS-Security can offer end-to-end (message-level) security and it is more flexible 
when application-level proxy servers are involved. Still, the performance overhead is 
significant with the standard WS-Security implementation (see Table 6) and further work is 
required to improve its usability in resource-constrained devices. 

TABLE 6. WS-SECURITY AND TLS BENCHMARK RESULTS FOR 25 CONCURRENT REQUESTORS [133] 

Security Mechanism Messages/sec CPU load Throughput 
(kB/s) 

 X.509 XML Signature & Encryption 352 99 2,403 

 WS Secure Conversation XML Signature & 
Encryption 

798 98 5,679 

 SSL with HTTP Basic 2,918 95 3,181 

 None (message routing only) 5,088 96 5,419 

 

Therefore, other than the baseline uSPBM entities communicating in plaintext, a variation of 
the proof-of-concept implementations was also developed which adopted mechanisms 
specified in WSS along with TLS (the latter being recommended in the DPWS specification).  

Moreover, a symmetric authenticated encryption mechanism was also developed in used in 
some uSPBM implementations, to provide for a more efficient and lightweight security 
mechanism. 

4.3.2 SYMMETRIC VARIANT 
Considering the resource-constrained nature of the devices where the uSPBM framework may 
be deployed as well as the need to minimize its performance impact in general, symmetric 
cryptographic primitives could be considered more appropriate. 

To this end, a security mechanism based on the AES/CCM [134] authenticated encryption 
algorithm was implemented and was deployed to protect both PEP-PDP as well as PDP-
PIP/PAP communications, using pre-shared 256-bit keys. The utilization of the AES/CCM 
algorithm guarantees that the uSPBM-related messages exchanged between the framework’s 
entities are fully protected in terms of confidentiality, integrity and authenticity with an 
acceptable performance overhead (CCM requires two block cipher encryption operations per 
each block of an encrypted & authenticated message).  

To implement this security mechanism, the message types detailed above (namely SAROut, 
PDPIn, PIPIn & PIPOut) are all replaced by a SecureMessage type. So, the 
operations are in this case defined as follows: 

• SecureMessage 
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o Payload: The actual message transmitted (i.e. information previously 
included in the replaced message type, e.g. RequestID, Subject, Action, 
Resource in the case of SAROut messages), in encrypted form. 

o MAC: The output of the CBC-MAC, i.e. the message authentication part of 
AES/CCM. 

o RandomData: Random data, necessary to guarantee the security of the 
authenticated encryption mechanisms [134]. 

Thus, for example, the SAREvent operation now takes the form appearing in Figure 22. All 
other operations, i.e. PDPResponse and PIPOperation, are also adjusted accordingly. 

SAREvent

- SecureMessage

- Payload
- MAC
- RandomData  

FIGURE 22. SECURE SAREVENT 

With regard to the symmetric keys, each node shares a pre-installed key with the PDP, which 
is installed to the nodes during installation. In more details, the PDP holds: 

• A master key for communication with devices: DMK 
• A master key for communication with infrastructure nodes (e.g. PAP/PIP): IMK 

Moreover, the PDP shares a Shared Master Key (SMK) with each of the PEP-equipped devices 
it needs to communicate with. Each of these SMKs is generated using the DMK and the 
corresponding device’s universally unique identifier (UUID), using the AES algorithm, as 
follows: 

SMK = AESDMK(Device_UUID) 

Equivalently, the PDP also shares a Shared Infrastructure Master Key (SIMK) with each of the 
infrastructure entities (e.g. PAP/PIP) that it needs to communicate with. This SIMK is derived 
using the IMK and the corresponding UUID of the infrastructure device, again using the AES 
algorithm, i.e.: 

SIMK = AESIMK(PAP_UUID) 

So, the PDP holds all the values needed to communicate with each device, namely the counter 
(i.e. RequestID) of the latest message exchanged and the key shared with the 
corresponding device.  

The RequestID is not only used to guarantee freshness, but also to create the Nonce needed 
by the AES/CCM algorithm (the Nonce is the RequestID concatenated with random bytes): 

Nonce = RequestID || Random_bytes 
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These random bytes must also be included in the message sent to the PDP (so that it can 
reproduce the Nonce from the shared/expected RequestID and those random bytes). 

Thus, the PDP-to-PEP implementation of Figure 20 now takes the form appearing in Figure 23, 
and the PDP-to-PIP/PAP implementation of Figure 21 now takes the form appearing in Figure 
24. 

 

FIGURE 23. IMPLEMENTATION OF AES/CCM-PROTECTED PEP-PDP COMMUNICATION 

. 
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FIGURE 24. IMPLEMENTATION OF AES/CCM-PROTECTED PDP-PIP/PAP COMMUNICATION 

4.3.3 SECURITY ANALYSIS 
We assume that legitimate clients possess valid credentials (pre-shared keys or certificates, 
where applicable) and that they do not cheat intentionally. Still, compromised nodes (e.g. by 
malware) from local or remote networks cannot be excluded. Moreover, the development of 
the devices’ provided services and the interactions with their clients should be judged in a 
case-by-case basis and are beyond the scope of this analysis. 

In terms of generic threats, attackers could retrieve keys from compromised nodes. Thus, 
private keys should be stored securely (e.g. on a TPM module). During the discovery phase, if 
discovery messages use signatures, the integrity and identity of the client can be verified. 
Otherwise, a malicious entity inside the home network can determine the presence of services 
(but not use them, if protected by HTTPS). For cross-domain communications, interactions 
between the MQTT broker and its clients (uSPBM Proxies) can be protected via TLS, while 
application-level payload encryption can allow for end-to-end protection of published 
messages (safeguarding communications from compromised brokers). 

We analyzed the core (i.e. the access-control related) interactions of uSPBM using Microsoft’s 
Threat Modeling Tool (2016 version 9 ), using STRIDE (Spoofing, Tampering, Repudiation, 
Information disclosure, Denial of service, Elevation of privilege) for threat risk modeling, as 
appearing in Figure 25. 

9 https://www.microsoft.com/en-us/download/details.aspx?id=49168 
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FIGURE 25. STRIDE ANALYSIS OF USPBM'S CORE ACCESS CONTROL INTERACTIONS 

Based on this analysis the following threats were identified: 

• Improper data protection of PDP/PIP can allow an attacker to read information not 
intended for disclosure. (Information Disclosure / Tampering). To this end, it is important 
for authorization settings (including the security policies) to be stored securely and be 
regularly reviewed. 

• Device/PEP may be able to impersonate the context of PDP in order to gain additional 
privilege. (Elevation of privilege). Thus, the devices must be protected from compromise 
(by malware etc.). 

• Device/PEP may be able to impersonate the context of User in order to gain additional 
privilege. (Elevation of privilege). Again, this highlights the importance of protecting 
devices from compromise. 

• An attacker can read or modify data transmitted over an authenticated flow from device  
to user. (Information Disclosure / Tampering). Thus, the provided services should feature 
mechanisms that protect the confidentiality and integrity of their interactions with the 
users.  
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4.4 INTERFACING WITH MIDDLEWARE & MANAGEMENT SYSTEMS 
The OSGi Alliance is an open source standards organization that specified the OSGi standard 
[78], a module system and service platform for Java that implements a complete and dynamic 
component model. Applications offered by components are formed as bundles for 
deployment and can be remotely installed, started, stopped and uninstalled without requiring 
a reboot. To this end, we use Knopflerfish [135], the leading universal open source OSGi 
implementation. 

In uSPBM’s backend nodes, DPWS is integrated into OSGi by implementing operators that are 
controlled by the relevant system components via an OSGi interface (see Figure 26. Embedded 
devices specify their type and the provided services in DPWS. Each system component 
implements a component operator bundle that handles its underlying DPWS devices and their 
services. Thus, uSPBM’s infrastructure entities can be deployed as OSGi bundles and can 
trivially be interfaced with other OSGi-based middleware entities and services, which are 
common in the literature (see “Background & Related Work” section). 

 

FIGURE 26. OSGI - DPWS INTERFACING 

Possible features that the DPWS-OSGi interface could accommodate include:  

• Allowing OSGi clients to use uSPBM device services and to deploy OSGi proxy services 
for DPWS services.  

• Allowing uSPBM clients to use OSGi services. 
• Event-based OSGi-uSPBM services communication (e.g. subscription to uSPBM events 

by OSGi bundles) 
• OSGi-based uSPBM service creation & management 

Moreover, other than the entities devoted to the uSPBM architecture itself, an extra entity 
was developed to act as a gateway to help interface uSPBM with various other middleware 
entities, such management agents (e.g. to monitor and manage the security status of the 
devices) or even more sophisticated AI management mechanisms, such as the one presented 
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in [136]. This entity is called Device Operator (DOp) and it is used to transmit and enforce the 
decisions of the management agent (e.g. a Security Agent) to the DPWS devices of uSPBM, 
and to allow the transmission of information (such as the current operating status) from said 
devices to the management agent. An uSPBM DPWS device deployed as an OSGi bundle and 
discovered via a DPWS client on the network can be seen in Figure 27. 

 

FIGURE 27. AN USPBM DEVICE DEPLOYED OVER OSGI AND DISCOVERED ON LOCAL NETWORK 

The communication of the DOp with the rest of the middleware services and the management 
agent can take place via OSGi, namely over Knopflerfish, in cases where they'll be deployed 
on the same system. In case of remote deployment, the communication can be realized via 
DPWS, as is the case with the rest of the uSPBM entities. The DOp features the following 
operations: 

• St_Event: A WS-Eventing operation. All of the uSPBM end devices, upon initialization, 
search for the Device Operator and subscribe to St_Event. As soon as a management 
agent issues a command that dictates a certain change in the state of uSPBM devices 
(e.g. to increase the length of their encryption keys, in order to raise the security 
level), the Device Operator fires an event, transmitting that information to the target 
end devices. 

• Update_Operation: As soon as each device performs a change in its operating 
(because of a management agent decision or otherwise), it invokes the 
Update_Operation to let the DOp know of this change. The DOp can then inform the 
management agent of the new status of uSPBM’s devices. 
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The "Device Operator" (DOp) is, therefore, responsible for setting and updating the 
operational status (e.g. the use of encryption or not) throughout the uSPBM framework. This 
functionality is depicted in Figure 28. 
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FIGURE 28. IMPLEMENTATION OF THE USPBM DEVICE OPERATOR 

 

To briefly describe a simplified scenario: 

• An uSPBM node (let's assume it's a smart camera) will feature the necessary Policy 
Enforcement Point (PEP) to make sure only authorized entities (i.e. those allowed by 
the current policy set) will be able to access its resources (rotate camera, turn it on/off 
etc.). 

• In order to check said access requests, it communicates, when necessary, with the 
Policy Decision Point, which in turn communicates with the Policy Information Point 
to retrieve pertinent policies.  

• Let us assume that the security of the policy messages exchanged between the uSPBM 
entities support 3 different security levels (e.g. no encryption, 256-bit AES encryption 
and 512-bit AES encryption). 

• These mechanisms are enforced/controlled by the Device Operator bundle, which is 
running along with the rest of the middleware services (the backend PC running the 
Management Agent etc.). 
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• The uSPBM framework initializes with a pre-set security level. When the Management 
Agent (or any other control entity) decides that a higher/lower security level is 
needed, it relays this request to the "Device Operator" which in turns makes sure it's 
implemented on all of the uSPBM entities. 

This simplified scenario can be seen in Figure 29. 
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FIGURE 29. SIMPLE SCENARIO DEMONSTRATING DEVICE OPERATOR'S FUNCTIONALITY 

4.5 PERFORMANCE EVALUATION OF CORE ENTITIES 
A performance evaluation was carried out in order to assess the performance overhead 
incurred by the proposed mechanisms on typical embedded systems that may be found in 
smart environments. This evaluation focuses on the main entities (i.e. the core authorization 
mechanisms) of the uSPBM framework. A more detailed evaluation, including other features 
such as management, authentication and cross-domain communications, can be found in later 
chapters, pertaining to specific use cases. 

74 
 



To evaluate the core components, the PEP-equipped DPWS devices were deployed on 
Beaglebone embedded platforms, equipped with a 720MHz ARM Cortex-A8 processor, 
256MB of RAM, running on a minimal Linux-based operating system. The test-bed for the PDP 
and PIP devices was a Beagleboard-xM power platform, featuring a 1GHz ARM Cortex-A8 
processor (throttled to run at 600MHz during testing), 512MB of RAM and a minimal Linux-
based operating. The test-bed also featured a client application developed to query the 
uSPBM-protected DPWS devices for benchmarking purposes, which run on a PC attached to 
the same network via a wired LAN connection. The PDP and PIP/PAP applications are deployed 
as Knopflerfish bundles, which is an open source service platform following the OSGi 
specification. The uSPBM service is expected to be deployed alongside other services on the 
main infrastructure systems. In view of that, the authors consider that the modular and 
dynamic service deployment as well as the service orchestration features provided by the 
OSGi framework will be advantageous in actual deployments. The test setup appears in Figure 
30. 

Service Consumer / 
Client

 

 

FIGURE 30. PROOF-OF-CONCEPT TESTBED SETUP 

For the evaluation process, two functional operations were added to the test DPWS device 
deployed on the Beaglebone. So, a GetStatusuSPBM operation and a GetStatus 
operation were also implemented on the device, in addition to the PEP-related operations 
appearing in Figure 20. Both these extra operations, when invoked, returned a static integer 
value, but the latter did so immediately while the former was PEP-protected, i.e. the test client 
was only allowed to invoke it if the PDP allowed so. This facilitated the evaluation of the 
response time overhead imposed by the uSPBM framework, as any extra delay when invoking 
the GetStatusuSPBM operation can be attributed to the access control mechanisms. 
Aiming to also weigh the impact of the security mechanisms, the assessment included tests 
with and without encryption on both the PEP-to-PDP link and the PDP-to-PIP link (plaintext vs. 
AES/CCM-protected message exchange). 

A total of 100 consecutive requests were issued from the client application to the DPWS device 
residing on the Beaglebone. The response time recorded by the test client trying to access the 
device’s resources appear in Figure 31. “No uSPBM” refers to the invocation of the 
GetStatus operation, while the “Plaintext uSPBM” & “AES-CCM uSPBM” columns refer to 
the invocation of the GetStatusuSPBM operation, without and with AES/CCM encryption 
of the uSPBM message exchanges, respectively. It must be reiterated that the AES/CCM 

75 
 



response time includes the overhead introduced by the encryption mechanisms on both the 
PEP-to-PDP and the PDP-to-PIP/PAP communications. Random spikes on the response time 
can be attributed to the triggering of “housekeeping” operations of the Java-based 
applications running on the target platforms.  

 

FIGURE 31. CLIENT-SIDE RESPONSE TIME (MS) 

A breakdown of the response times (averaged over 100 requests) can be seen in Figure 32, 
where it is evident that the bulk of the delay can be attributed to the Client-Device (i.e. PEP-
PDP) communication and to a lesser extent to the PDP-PIP link. As the DPWS devices featuring 
the PEP functionality are bound to be deployed on resource-constrained devices, the 
resources on the target devices themselves were monitored during testing; the results appear 
in Table 7. 
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FIGURE 32. RESPONSE TIME (MS) BREAKDOWN, AVERAGED OVER 100 REQUESTS 

TABLE 7. RESOURCE CONSUMPTION ON USPBM-PROTECTED DPWS DEVICES DURING BENCHMARKS 

 

 

 

Review of related work indicated that the number of stored policies can significantly affect 
the performance of the access control system, to the point where the response time overhead 
can become prohibitive in certain application scenarios [57]. This was taken under 
consideration during development and, thus, the PIP stores policies in memory in the form of 
a hash table. The effectiveness of this approach was validated during the performance 
evaluation. Figure 33 depicts the PDP-PIP communication, focusing on the time the PDP has 
to wait before it receives pertinent policies from the PIP, in scenarios were the number of 
stored policies varies from 1 to 200. As is obvious from said figure, the impact of the number 
of policies stored on the PIP is negligible. The improvement over the approach of Muller et al. 
can be seen in Figure 34. 
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FIGURE 33. PDP PROCESSING TIME. AVERAGE RESPONSE TIME (MS) DEPENDING ON NUMBER OF STORED 
POLICIES. 

 

FIGURE 34. PDP PROCESSING TIME VS. NUMBER OF STORED POLICIES (IN MS). COMPARISON TO RELATED 
WORK. 

Tests were also conducted to determine the difference between the supported security 
mechanisms, namely the WS-Security mechanisms and the symmetric ones of AES/CCM. To 
this end, 50 policies were stored on the PIP and then 50 requests were sent from the client to 
the PDP. For this test, the PDP and PIP/PAP were all deployed on a common Beagleboard xM 
platform, with a client application on desktop PC. The requests were sent in two different 
forms, to test different use cases: consecutively (as in the previous tests) and once every 30 
seconds. During these tests, the client-side response time was monitored. The results appear 
in Figure 35. 
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FIGURE 35. THE EFFECT OF THE DIFFERENT SECURITY MECHANISMS UNDER TWO USE CASES (TIMES IN MS, 
AVERAGED OVER 50 REQUESTS).  

As is evident from these results, and as expected, there is a significant difference between 
WS-Security and AES/CCM modes. The differences are exacerbated in the non-consecutive 
requests, as there is no caching and, moreover, the socket between the two entities is closed. 
This is especially burdensome for the WS-Security asymmetric mechanisms, as the 
computationally intensive processes (handshake etc.) have to be repeated; thus the very 
significant performance degradation. 

 

  

95

113,2

153,6

176

198

894

0 100 200 300 400 500 600 700 800 900 1000

Plaintext

AES/CCM

WS-Security

Plaintext

AES/CCM

WS-Security
Co

ns
ec

ut
iv

e 
Re

qu
es

ts
Re

qu
es

t /
 3

0s
ec

79 
 



5. APPLICATIONS & EXTENSIONS 
Smart device adoption is taking off in various domains, leading to the improvement of existing 
and introduction of new business sectors, all of which constitute key pieces of the puzzle that 
is the Internet of Things (IoT). This chapter presents such use cases of uSPBM, including its 
deployment over heterogeneous platforms and introducing subsets of the framework’s 
entities that significantly enhance its capabilities and applicability to the various domains 
examined. 

5.1 BODY SENSOR NETWORKS 
Sensor nodes and actuators are becoming ubiquitous and research efforts focus on addressing 
the various issues stemming from resources constraints and other intrinsic characteristics 
typically associated with such devices and their applications. In the case of wearable nodes, 
and especially in the context of e-Health applications, the security issues are exacerbated by 
the direct interaction with the human body and the associated safety and privacy concerns.  

The SOA approach of uSPBM constitutes an attractive solution for many types of networks, 
including those that consist of nodes with limited capabilities. Such a network is a body sensor 
network (BSN [137]) which comprises of a number of low-power implanted, wearable (on-
body) or in close distance wireless sensors and actuators. The environmental and physiological 
sensors of a BSN provide vital information to medical staff, who can remotely monitor and 
possibly control user’s medical treatment. For such an application there are many security 
requirements that need to be satisfied [138], including secure transmission of sensitive 
medical data to (remote) medical staff, unaltered instructions that reach patient’s actuators, 
robust entity authentication and access control mechanisms. 

The architecture presented in this section is a variation of the uSPBM mechanisms, simplified 
and adapted to the environment of a BSN, so that it can run on resource-constrained devices, 
thus facilitating secure and authorized access to BSN resources and services. The proposed 
scheme specifically considers the very limited resources of so-called nano nodes that are 
anticipated to be used in such an environment. A proof-of-concept implementation is 
developed and a preliminary performance evaluation is presented. 

The proposed scenario facilitates the separate and scalable deployment of nodes based on 
the patient’s needs. For example, a patient might initially have only a temperature sensor 
deployed and controlled, for instance, by his/her mobile phone, while subsequently a blood 
pressure sensor is also added where access to its resources and data is controlled by a 
proprietary device. Both these devices need to be accessible by authorized third parties, e.g. 
doctors, hospitals, national health system representatives, and therefore should adopt a 
unified set of policy rules, defined by the aforementioned stakeholders, including the patient,  
and maintained on a third system. 

5.1.1 MOTIVATION 
In a typical BSN used for e-Health purposes, environmental and physiological sensors are 
deployed for gathering all the required information depending on medical staff’s prescribed 
needs, such as blood pressure and body and room temperature. On top of that, actuators 
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controlled by authorized medical staff can also be deployed, such as an automatic insulin 
injection device used for remote treatment. Such sensitive actions, i.e. reading and issuing 
commands, need strict access control decisions before being authorized so that user’s privacy 
and even safety are not jeopardized by unauthorized actions. 

Consider the scenario where the patient has multiple let’s say physiological sensors and 
actuators deployed, to monitor patient’s condition and react based on patient’s reported 
medical condition. One of the critical security requirements in this scenario is providing 
authorized-only access to these resources. Only medical staff is supposed to read this 
information and only authorized doctors shall be able to modify actuator’s (e.g. insulin pump) 
status. 

In this model uSPBM fits perfectly as it provides the necessary fine-grained access control to 
resources. A doctor might deploy a new sensor on the patient’s network without worrying 
about the current status of this network. The newly deployed sensor, let’s say temperature, 
registers with patient’s controlling device, e.g. mobile phone, and an access policy is defined 
for this sensor. The doctor or personnel in an emergency room, directly query the sensor for 
its readings, instead of having to find out which patient’s device handles these requests and 
authorizes them (as it would be in a centralized scenario where the patient’s mobile would 
handle all these requests on all sensors’ behalf). The sensor, i.e. the Policy Enforcement Point 
in access control language, queries the Policy Decision Point, whether access should be 
granted or not. The PDP authenticates the requestor and contacts the Policy Information Point 
to get all applicable policies which it uses to decide upon granting or denying access to the 
requested resource. 

The types of nodes, in terms of computing capabilities, which can be found in a BSN include 
the following: 

• Power Devices: nodes with medium to high performance in terms of computing 
power and no particular resources restrictions. Although these nodes are typically 
used as sink nodes and/or gateways to other networks they can also have their own 
on-board sensors for collecting additional information. Example of a power node is a 
mobile phone, a laptop or a dedicated sink node.  

• Sensor/Nano Devices: small devices with limited capabilities and resources, such as 
computational power, memory, storage space and energy, which in the case of nano 
nodes might be very restricted. These are typically the on-body or implanted nodes 
found in a BSN. 

Access control is very important for protecting the sensitive resources of a BSN, which can 
affect human lives. Among the requirements that have to be satisfied are the following [138], 
[139]: 

• Data confidentiality: Access to medical data should only be allowed to authorized 
parties, such as medical staff. Note that unauthorized disclosure of medical data while 
in transit is also a protection requirement.  

• Message authentication: Commands issued to actuators must be authenticated to 
avoid unauthorized execution.  
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• Availability: Data must remain available to authorized entities, such as medical staff, 
while access to them must not be denied due to wrong decisions. 

A central device may have the responsibility to collect data, manipulate, and add some logic 
during their processing can control the deployed sensors. Such a device can be a mobile phone 
or a dedicated sink node. If a value exceeds a threshold an alert can be sent to the user or the 
medical staff. In this case the central device can do all access control decisions on the nodes’ 
behalf. The information is routed through a user’s gateway, such as a mobile phone or a laptop 
and reaches the authorized medical staff.  

In another scenario, access to these medical data is offered directly by the nodes as a service, 
assuming that the corresponding nodes have the capacity to accommodate such functionality. 
In such a scenario, the service requester, which can typically be any entity that can reach this 
node, interacts with the service provider, i.e. the node, to get the required medical data. Upon 
the request reaching user’s environment, through a user’s gateway, a question arises on 
whether access to the resource should be granted or not. Although this scenario provides 
more flexibility in terms of functionality, the deployed sensors are integrated on a low-power, 
resource-constrained devices which do not have the computational power to handle such 
requests. Moreover, these sensing devices are often expendable in e-Health applications, 
prohibiting the permanent deployment of complex (and thus expensive) platforms. Therefore, 
a solution has to be provided regarding the way that the node controls access to its resources. 
The framework provided in this thesis addresses this issue. 

5.1.2 PROPOSED ARCHITECTURE 
The framework’s adaptation in this use case is based on the standardised XACML architecture 
[22], [84] to provide a cross-platform solution that can typically be deployed in various types 
of embedded systems while satisfying interoperability, an important requirement for next-
generation pervasive computing devices. Thus, the main entities include:  

• Policy Enforcement Point (PEP): It performs access control, by making decision 
requests and enforcing authorization decisions. 

• Policy Administration Point (PAP): Creates and manages policies or policy sets. 
• Policy Decision Point (PDP): It evaluates requests against applicable policies and 

renders an authorization decision. 
• Policy Information Point (PIP): It acts as a source of attribute values.  
• Context Handler: It orchestrates the communications among the stakeholders, 

converts, if necessary, messages between their native forms and the XACML 
canonical form, and collects all necessary information for the PDP.  

• Environment: Provides additional information independent of a particular 
subject, resource or action. Refers to features related to the environment and can 
affect a PDP’s decision, e.g. accident scene or hospital emergencies. 

In the proposed architecture the sensor nodes and actuators, which have direct access to 
resources, expose their functional elements to the PEP. These nodes are micro/nano nodes 
and are not expected to have the capacity to accommodate additional functionality. The 
context handler and the PDP are likely to run on power nodes together with PEP functionality, 
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only if the node has resources to share through corresponding services. Note that there can 
be more than one power nodes in the user’s network, e.g. a mobile phone, tablet and/or a 
dedicated device deployed with specific sensors. In this case only one of them will act as a 
PDP. The functional model of the proposed framework is depicted in Figure 36. 

 

FIGURE 36. FUNCTIONAL MODEL OF POLICY-BASED ACCESS CONTROL FOR HEALTHCARE ENVIRONMENTS 

All the above XACML components can run on a single system or, in a more distributed 
approach, on different systems based on their distinctive capabilities. The latter is the model 
that fits the scenario described above, i.e. that of a BSN comprising of a number of nodes. 

5.1.2.1 TYPICAL APPLICATION 
As an example, consider the case of a patient who visits a doctor. A number of micro/nano 
nodes are present on or near the patient’s body and each of these nodes hosts one or more 
services exposing the various features of their sensors and actuators. As soon as the available 
devices and their corresponding services (e.g. temperature or heart-rate service) are 
discovered, the doctor can request access to the node that is of particular interest, e.g. in 
order to extract the latest values from the temperature sensor attached to it. The doctor’s 
request is intercepted by the node’s PEP module which then forwards the request to the PDP, 
the latter running on a user’s trusted device. The PDP has to consider all applicable policies 
from the PAP, enriched by any relevant information residing on the PIP, while additional ones 
might be added in real time regarding the specific access. For instance, a question can be 
displayed on the user’s mobile phone regarding this access request giving the user the option 
to explicitly grant or deny access. Once all the required information has been collected, the 
PDP issues a decision which is sent back to the node’s PEP. Based on that decision the PEP 
may or may not allow the doctor to access said node’s data of interest. It should be noted 
that, on top of the decision taken on the request, the PDP might set one or more obligations 
for the PEP. An obligation is additional restrictions that should be taken into account when 
enforcing a decision, like the requirement to log any permitted access or to inform for 
unauthorized attempts.  Moreover, prior to this communication the PAP should have set all 
applicable policies and policy sets for all targets in the network. These policies are made 
available to PDP for subsequent requests evaluations. 
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5.1.2.2 POLICY CONSIDERATIONS 
While in most situations full control on the policy administration should be granted to the 
patient there are many situations where this should be overridden, such as immediately after 
an accident, or if the patients suffers from a mental illness, where additional entities must 
gain access to the medical data. Therefore, among the healthcare access control requirements 
is the need for both medical staff and patients to be able to define their own policy 
requirements and restrictions [138] based on the need for treatment and their right to have 
full control over their health data and records respectively. On top of that, additional entities 
may request access to these resources, such as an insurance company which might want to 
verify the patient’s medical condition upon request for expenses. All these stakeholders have 
the right and need to define their own rules and policies regarding access to medical data. In 
this case a Rule and/or Policy – Combining Algorithm has to be used to come to a conclusion 
regarding granting or denying access to the requester.  The involvement of multiple 
stakeholders who want to define their own policies raises the need for maintaining multiple 
repositories (note that these are not necessarily under user’s administration).  

The delegation mechanism defined in XACML 3.0 can be a useful tool to a BSN. Delegation 
allows the system owner or administrator to delegate some rights regarding the 
administration of policies, such as to create additional policies. To support this functionality, 
policies that will be used to control policies also have to be set by the system owner and/or 
administrator which in our case might be the patient herself. 

5.1.3 IMPLEMENTATION APPROACH 
For the proposed scheme to be operational each device’s functional elements must be 
represented by an appropriate DPWS entity and its corresponding operations. Assuming a 
simple temperature sensor, for instance, a node is programmed as a DPWS device which hosts 
a temperature service featuring various operations:  

− A “GetTemperature” operation which, when invoked, will return the patient’s 
current temperature.  

− A more complex “TemperatureEvent” operation which, by exploiting the WS-
Eventing mechanism [95], allows a client device (e.g. doctor’s device) to subscribe to the 
service and get temperature updates at set intervals as well as event notification 
messages when the temperature exceeds a certain threshold.  

− An additional “SetTemperatureThreshold” operation which, when invoked, 
allows setting/updating the abovementioned warning threshold.  

Similarly, the XACML-related elements of each node must be represented as DPWS devices, 
clients or peers (i.e. devices that function both as clients and servers). The approach adopted 
includes a DPWS client on the temperature sensor node described above. This client is then 
used to discover and use the PDP service implemented on a control/gateway node. The 
process followed when a user tries to access a sensor’s functional elements (e.g. the 
temperature reading) is depicted in Figure 37.  
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FIGURE 37. USPBM BSN IMPLEMENTATION USING DPWS 

In more detail, assuming a doctor tries to access the temperature sensor’s features (Step 1), 
the request is automatically forwarded to the device’s PEP (Step 2). The PEP can then invoke 
the “AccessRequest” operation on the control node’s PDP service (Step3), sending a 
properly formulated access request to the PDP. When the PDP is done evaluating (Step 4) the 
request based on subject’s  attributes and policy rules, it can, in turn, trigger its 
“PDPResponseEvent” (to which the sensor’s PEP client subscribes during initialization), 
returning the authorization decision. This decision is then conveyed to the functional 
operation of the device, thus granting or denying access to the “GetTemperature” 
operation the doctor tried to invoke. 

The PDP to PAP and PIP entities’ functionality can, equivalently, be developed as DPWS 
devices and clients, exploiting the integrated discovery and subscription mechanisms, thus 
bypassing the need to use other protocols (e.g. LDAP). 

5.1.4 PROOF OF CONCEPT 
A proof of concept implementation of the USPBM scheme presented in this work was 
developed using Sun’s XACML as a basis for the policy and access control mechanisms. The 
WS4D-JMEDS API was used for the creation of the necessary DPWS devices. The application 
developed for the BSN included the functional operations of the BSN as well as the Policy 
Enforcement Point that had to be deployed on each node. The implementation consists of the 
following modules: 

− An application that runs on the sensors and which implements the access to the functional 
elements of the sensor (e.g. temperature reading) as well as the communication with the 
sink node. A security mechanism was also developed, based on the AES algorithm in CBC 
mode [140] and pre-shared secret keys, to guarantee that only the legitimate sink 
node/bridge can access the sensors. When connected to the bridge, sensors ignore all 
other connection requests. Moreover the security mechanism protects the messages 
from eavesdropping on the sensors’-sink node communications. 
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− A sink node application that bridges the BSN (Figure 38), which in this case operates over 
802.15.4, to the standard network infrastructure. This application has to be deployed on 
a device equipped with dual 802.15.4 & Ethernet/wireless Ethernet functionality. 

− The DPWS Provider module (Figure 39) which discovers available sensors (via the sink 
node), probes said sensors to discover their functionality and then maps this functionality 
to a corresponding DPWS device. As a result of this procedure, a DPWS device is created 
for each of the discovered sensors. This device also includes the necessary operations to 
realize the PEP functionality, as well as the conversion of all low level messages 
transmitted to and from the sensors to a DPWS compatible form. This procedure is 
transparent from the perspective of the client (BSN user). Therefore, a client can use 
DPWS discovery (Figure 40) to identify available sensors and their operations (functional 
elements), invoke the desired operation or the chosen sensor and, if allowed by the PEP 
(which will first check if the request is authorized), get the result of said invocation. The 
communication of the PEP(s) deployed by the invoker to the infrastructure entity which 
authorizes the requests (i.e. the PDP) must also be protected, as malicious tampering of 
the policy messages exchanged by the USPBM entities can compromise the access control 
efforts. To this end, a security mechanism based on the AES/CCM [134] authenticated 
encryption algorithm was implemented, using 128bit keys. Deployment of this mechanism 
guarantees that the USPBM-related messages exchanged between PEP and PDP (when 
the former seeks the authorization status of a specific client’s request), are fully protected 
in terms of confidentiality, integrity and authenticity. 

 

FIGURE 38. THE BSN BRIDGE 
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FIGURE 39. THE BSN DPWS PROVIDER 
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FIGURE 40. DISCOVERING THE SENSORS AND THEIR HOSTED SERVICES ON THE NETWORK 

5.1.4.1 PERFORMANCE EVALUATION 
The performance of the proof of concept implementation was evaluated on a test-bed 
featuring a SunSPOT mote [108] running the sensing application. Another SunSPOT mote was 
connected to a personal computer acting as a sink node. The DPWS Provider application was 
deployed on the same computer system. In a real-world application the bridge/DPWS Provider 
functionality could be deployed on any smart device with dual 802.15.4 & Ethernet/wireless 
Ethernet connectivity, even a small embedded or wearable device, as depicted in Figure 41. 
The PDP/PIP/PAP application was running on a separate computer system which also stored 
the policy files. This system also featured a client application developed to query the sensors 
for benchmarking purposes. SunSPOTs communicate via the 802.15.4 radio, while the 
personal computers communicated via wired Ethernet. 
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FIGURE 41. PROPOSED DEPLOYMENT OF THE PROOF-OF-CONCEPT USPBM BSN APPLICATION 

A total of 50 consecutive requests were issued from the client application to the sensor. In 
order to evaluate the delay imposed by the proposed scheme, the sensor featured both a PEP-
protected operation (GetTemperature) that the test client was allowed to invoke by the 
current policy set and an unprotected operation (GetTemperatureUnprotected) which 
could be invoked immediately (without going through the policy enforcement point for 
authorization). Aiming to also weigh the impact of the security mechanisms, the assessment 
included scenarios with and without encryption on both the SunSPOT-Provider link (plaintext 
vs. AES-CBC) and the PEP-to-PDP link (plaintext vs. AES/CCM).  

The average response time for 50 requests, including the overhead when considering a totally 
unprotected (access control- and security-wise) operation as baseline, can be seen in Figure 
42.  

89 
 



 

FIGURE 42. AVERAGE RESPONSE TIME (IN MS) FOR 50 REQUESTS. COLUMNS IN BLUE DEPICT THE SCENARIO 
WHERE THERE IS NO SECURITY BETWEEN THE SENSOR AND THE PROVIDER, WHILE COLUMNS IN GREEN 

CORRESPOND TO THE SCENARIOS WHERE AES-CBC ENCRYPTION WAS USED TO PROTECT SAID LINK 

It should be noted that the bulk of the delay can be attributed to the communication between 
the SunSPOT and the Provider, as was evident from timing tests run concurrently on the client 
side and the Provider side. E.g. the results of such a test, run with AES-CBC protection on the 
SunSPOT messages and no protection on the PEP-PDP communication, indicated that out of 
the 527,3ms client-side delay (on average, for 50 requests) when invoking an unprotected (i.e. 
no uSPBM involved) operation, 449,45ms was the average time that the Provider had to wait 
until it got a reply from the SunSPOT. Therefore, the overhead of the DPWS communication 
between client and the Provider (i.e. the DPWS device that “mirrors” the sensor’s 
functionality) was 77,85ms. 

Another interesting fact is that when changing the policy so that the invocation of the 
protected operation by our test client is denied, the response time is negligible, as the request 
is rejected by the PEP and is never forwarded to the sensor. In a test run of 50 such 
unauthorized requests, the average response time of the DPWS device was just 8,39ms. 

5.1.5 SUMMARY 
In this section we proposed an adaptation to uSPBM framework for controlling access in BSNs 
comprising of nodes with limited resources. In the proposed scheme emphasis was given on 
the limited resources of some nodes found in such networks. This assumption and the relevant 
provisions allow for a more flexible scheme and one which can be deployed in heterogeneous 
systems, assisting in its integration with the Internet of Things. The results of these efforts 
included a proof-of-concept implementation, which is presented in this work along with an 
initial performance assessment. 

5.2 AUTHENTICATED ACCESS TO LLN-CONNECTED RESOURCES 
This section presents the uSPBM extension that allows authorized entities to access the 
services provided by resource-limited nodes. The scheme provides flexibility in terms of the 
authentication mechanism used, that is to say that the service requester can be authenticated 
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using e.g. username/password, certificate, or other authentication methods. Among the main 
concerns of the proposed architecture are the nodes’ protection from unjustifiable use of their 
resources and the need to be able to control access through a well-established set of policy 
rules that can change and adapt to new environmental parameters.  

The work builds upon the XACML model for policy based access control infrastructures, 
proposing certain modifications to satisfy requirements stemming from the limited resources 
of nodes, and the adoption of lightweight SOA mechanisms, through the use of the DPWS, for 
entity interactions. Although mainly a framework, the main components of the proposed 
architecture have been implemented and results are provided here as a proof of concept. 

The proposed approach allows leveraging work already carried out on XACML policy 
definitions, but also Web Services. With regard to the former, the “Cross-Enterprise Security 
and Privacy Authorization Profile of XACML v2.0 for Healthcare” [141] constitutes important 
background work, compatible and in-line with the scheme proposed in this thesis. This OASIS 
profile specifies the use of XACML to promote interoperability within the healthcare 
community by providing common semantics and vocabularies for interoperable policy 
request/response, policy lifecycle, and policy enforcement.  

The benefits of adopting a SOA-based approach come in the form of increased usability and 
interoperability. While typical XACML deployments require the setup of complex 
infrastructures to enable entities’ interaction and policy retrieval (e.g. via the Lightweight 
Directory Access Protocol, LDAP [28]), the proposed framework leverages the benefits of 
DPWS. This allows the deployment of devices aligned with the Web Services technologies, 
thus facilitating interoperability among services provided by resource-constrained devices, 
facilitating seamless discovery and interactions among entities, and allowing the deployment 
of the framework’s entities to any platform, anywhere on the hospital or home network, with 
minimal involvement on behalf of the user. 

5.2.1 MOTIVATION 
Before moving into the presentation of the proposed architecture, it would be good to 
demonstrate through specific scenarios, the incentives behind this work that have also 
formulated the requirements defined below. The proposed scheme addresses the main need 
to be able to remotely access data collected by sensors and control actuators deployed in a 
LLN. The architecture utilizes service oriented technology to be able to provide services to 
remote authorized parties where access restrictions are imposed through policy rules. This 
typically means that access is not necessarily restricted to entities of a closed system. Such an 
architecture fits perfectly to a Body Sensor Network (BSN) deployment [137], [142], which 
actually inspired this work, and which we use here to demonstrate the architecture’s 
applicability and the way that policy based access control SOAs are envisaged.  

Let’s assume that a patient has multiple medical sensors and/or actuators deployed to 
monitor and/or control his/her medical condition. Sensors and actuators typically reside on 
nodes with very limited processing power and capabilities, namely nano nodes. These can 
communicate and register with a mobile device that the user has in possession, such as a 
mobile phone or tablet. An application running on this mobile device actively monitors 
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sensor’s readings and, if necessary or appropriately instructed, forwards these data to 
authorized medical staff. Alternatively, the data could be given to medical staff not as a result 
of an alert, but as a response to a request issued by this staff.  

Now consider the case where in the context of telemedicine or in case of an accident as well 
as for many other medical reasons, other people not previously registered with the user’s 
application, need to gain access to those readings and actuators. For example, a patient is 
involved in an accident, which is reported to the emergency services, and some readings have 
to be taken to validate his medical conditions while emergency services are on their way to 
the accident scene.  

In this case, the requester, i.e. doctor, emergency services staff, will request remote access to 
the readings of these sensors or even issue commands to the actuators. Without loss of 
generality, we can claim that in the eHealth environment, as with any other environments, 
services might need to be accessed occasionally, depending on the patient’s health condition, 
and on a need to know basis. Therefore, several questions arise that have to be addressed in 
the proposed architecture, mostly related to patient’s privacy and life protection.  

• Who is eligible to access this information?  
• How do we authenticate a user that has not been registered with the specific service 

in the past?  
• How is the legitimacy of his/her request evaluated?  
• Who and how is going to decide about this requester’s privileges?  

In our scenario we consider that the medical staff can look in a central repository for the types 
of services provided by the patient and can request access to them. This is checked against 
applicable policies that the user in conjunction with medical staff and/or national insurance 
and/or insurance company and/or applicable law have defined. If access is granted the 
request is forwarded to the patient’s device and the requested information is disclosed or 
access to the actuator is permitted. As a result, the requester will be able to have sensor 
readings, e.g. patient’s heart rate, and/or act remotely, e.g. inject an altered dose of insulin.  

Access control is very important for protecting the sensitive resources of a BSN, which can 
affect human lives. Among the requirements that have to be satisfied are the following [138], 
[139]:  

• Data confidentiality: Access to medical data should only be allowed for authorized 
parties, such as medical staff. Note that unauthorized disclosure of medical data while 
in transit is also a protection requirement.  

• Message authentication: Commands issued to actuators must be authenticated to 
avoid unauthorized execution.  

• Availability: Data must remain available to authorized entities, such as medical staff, 
while access to them must not be denied due to wrong decisions. 

IP based networking in LLNs changes the way that participating nodes can be accessed and 
their respective services can be consumed. For instance, there is no need for a dedicated 
application server that will intervene between a node and a remote party that wants to access 

92 
 



the node’s resources [143]. However, one of the problems that these nodes face in such a 
deployment, is that they have limited resources which do not suffice for the deployment of 
strong protection mechanisms. Without those mechanisms however, nodes are exposed to 
direct access from the Internet without having the capacity to handle unlimited requests. 
Therefore, several issues arise regarding the protection of nodes resources, which have to be 
addressed. The main aim is to protect the limited resources of a node that implements a 
service oriented architecture, to provide access to data and mechanisms that the node has 
under control.  

Within this context, the proposed architecture is designed to satisfy the following 
requirements:  

• Provide services using of Service Oriented Architecture technologies;  
• Provide fine-grained access control to nodes’ resources;  
• Authenticate remote entities wishing to access protected nodes resources;  
• Control access to nodes’ resources through well-defined policies;  
• Protect sensitive nodes from unauthorized access and unnecessary consumption 

of valuable resources including network and energy;  
• Secure the channel between the participating nodes to provide message 

confidentiality, integrity and authentication;  
• Comply with existing standards to satisfy interoperability among the participating 

entities, such as between the identity provider chosen by the requester and the 
service orchestrator, regarding the exchange of authentication messages, 
assertions or user metadata and attributes.  

In the following section we describe the proposed architecture that satisfies the above.  

5.2.2 PROPOSED ARCHITECTURE 
The architecture proposed in this work is an enhanced policy based access control scheme 
that seeks to provide flexibility regarding the chosen authentication mechanism while 
satisfying the aforementioned requirements, typically imposed by nodes’ resource limitations. 
For this purpose, certain modifications to the OASIS standardized policy-based access control 
scheme are proposed to accommodate these needs.  

The scheme utilizes and seeks compliance with the following technologies: 

• An XACML-based architecture consisting of the main components already 
mentioned (i.e. PEP, PDP, PAP & PIP). 

• SAML 2.0 specification to protect, transport, and request XACML schema 
instances and other information needed by an XACML implementation [109]. 
Note that although SAML can be used to convey authorization decision 
statements, this functionality in SAML is intentionally restricted compared to the 
more flexible XACML solution, hence the adoption of XACML and the use of SAML 
for encapsulating XACML messages. 

In the XACML data-flow model defined in the OASIS standard the PEP, via the context handler, 
is considered as the device that orchestrates the exchange of messages among the requester, 
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the PDP, the Attribute Authority and the Attribute Repository. According to the XACML 
specifications the PEP is considered as “part of a remote-access gateway, part of a Web server 
or part of an email user-agent, etc”. Therefore all initial requests, valid or not, are sent to the 
PEP which will act as a routing device between the requester and the back-end key entities 
that examine the requests and make decision based on policy rules and other parameters, 
such as the requester’s and/or resource’s attributes.  

While this model is appropriate for typical application gateways, it cannot be considered as 
such for resource-constrained nodes that only have the capacity to accept requests from a 
limited number of clients. Beyond this threshold, valuable node resource consumption is not 
acceptable as it leads to battery drainage and service unavailability. In this context, resource-
constrained devices have to participate in the decision making process only if absolutely 
necessary and only to authorized entities to save valuable resources. As such, they cannot 
assume the role of a PEP as this is defined in the XACML standard.  

Moreover, the flow model currently defined by XACML, considers that the PIP has all the 
required attributes for the requester, and that the PDP gets all the information from the PIP, 
which might be queried twice for the required attributes, once from the PEP and once from 
the PDP. Use of specific PIP implies that services will only be provided to entities subscribed 
to the specific scheme, thus narrowing down flexibility. This is in contrast to a more flexible 
approach where services are offered to a broader group of users, subject to policy restrictions. 

The proposed architecture is depicted in Figure 43. In this proposal we assume that nodes 
bearing sensor and actuators, expose their functionality as web services. This can either be 
done through the device that the node is attached to, e.g. a mobile device, or directly by the 
node, assuming that it is powerful enough to accommodate such functionality. All these nodes 
are part of a dispersed environment where there is not necessarily a single gateway or web 
server to assume the role of PEP as this is defined in the XACML standard. Besides that, the 
service owner might want to register these services with multiple servers. As a result, the PEP 
functionality cannot be assigned to a gateway but it should be on the device that exposes this 
functionality, e.g. the mobile device, a wearable node, etc. For a given PEP, one of these web 
servers is assumed to play the role of the orchestrator as described below.  
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FIGURE 43. AUTHENTICATED ACCESS CONTROL. 

The core component of the proposed scheme is the Service Orchestrator (SO) which acts as a 
proxy for certain operations, such as relaying queries and messages exchanged among 
participating entities, yet not for handling the information the PEP exchanges with the 
requester.  

Initially, the node, which assumes the role of a PEP, registers its services, defines the 
connection point to be the SO and sets the policy rules for its resources. This is accomplished 
once during the set-up phase. Following that, the data flow of the proposed architecture 
includes the following steps:  

• A requester, who wants to access the service, formulates an appropriate request 
based on the advertised service rules, and sends it to the SO (step 1a). Note that 
this is in contrast to the XACML specifications which opted for sending the request 
directly to the PEP, introducing significant overhead that a limited-resources 
device cannot handle.  

• The SO forwards the request to the PDP (step 1b) which, based on the requested 
target, fetches all applicable policies from the PAP (step 2) and informs the SO 
about the needed user attributes (step 3). As a result, the SO presents a list of 
approved Identity Providers (IdP) for the requester to authenticate (step 4).  

• The requester chooses the appropriate IdP and the SO issues a (signed) 
authentication request (<AuthnRequest>) together with an attribute query 
(<AttributeQuery>) to the chosen IdP [109]. Upon successful authentication 
(step 5) the requester consents for the disclosure of certain attributes that the SO 
requires. Note that the IdP might be an entity that operates within the same 
environment as the SO. The actual authentication method used by the IdP is 
outside the scope of this work.  

• The IdP formulates a proper assertion for the necessary attributes and sends it to 
the SO via the Requester (step 6a). As a result, the SO forwards the received 
assertion to the PDP (Step 6b [144]).  
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• The forwarded assertion allows the PDP to establish a security context by 
combining the supplied attributes with the applicable policy rules which the PDP 
obtained from the PAP (step 2). Note that additional policy rules, might be 
obtained at this point (step 7), based on the requester’s attributes. The typical 
XACML decision making process can take place during this step.  

• The access decision is sent to the SO (step 8). If the decision is to grant access, a 
signed or MAC-protected ticket is forwarded to the PEP together with details 
about the request (step 9). This is the first time that the node is contacted, and is 
only performed by an authorized party, hence not exposed to the outside world. 
If access is denied the decision is simply forwarded to the Requester. The Service 
Provider might also be informed on that based on appropriate pre-configurations.  

• Now the PEP can respond to the service request through the SO (step 10). The SO 
can in turn send to the requester the Access Decision and the response to the 
Access Request. The Access Decision can be used as a token for re-accessing the 
same service without undergoing the authentication process.  

The framework can trivially be expanded to cater for the joint operation of two or more access 
control infrastructures (i.e. PDPs and corresponding PIPs/PAPs). This can be used as a means 
to consolidate the requirements of different stakeholders and their active policy sets. In such 
a case, the SO can query all the different PDPs and provide or deny access based on pre-
defined simple rules (e.g. only in cases where all PDPs explicitly allow such access). So, for 
example, someone’s request to access the patient’s blood sugar levels will only be forwarded 
to the pertinent medical device if both the patient and the attending doctor have authorized 
the specific individual to perform such an action.  

5.2.3 IMPLEMENTATION APPROACH 
Sun’s XACML [85] was used for this implementation as well. All of the framework’s entities 
were implemented and their interfaces exposed using DPWS. This facilitates the discovery and 
description of the devices involved, also offering control and eventing mechanisms which 
assist in the communication of the necessary information among the entities. The DPWS API 
of choice is again the WS4D-JMEDS (Java-based) stack [145], as it is the most advanced and 
active work of the WS4D initiative [146], supporting almost all of the existing DPWS features 
and providing portability to a wide range of platforms. The approach adopted to protect the 
messaging of the proof of concept implementation is the use of WS-Security [124]. 

The exact implementation of the framework’s entities and their communication interfaces 
depicted in Figure 44 are detailed below. 
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FIGURE 44. DPWS-BASED IMPLEMENTATION OF THE AUTHENTICATION SCHEME. 

5.2.3.1 SERVICE ORCHESTRATOR TO POLICY DECISION POINT 
The SO is implemented as a DPWS peer (i.e. both a client and a server). Other than the 
necessary mechanisms needed to interface with the approved identity providers (which will 
vary depending on the specific scenario/deployment examined), it also features an 
“Attribute_Requirements” operation. Similarly, the PDP has an 
“Access_Request_Operation”. The latter is invoked by the SO as soon as an access 
request arrives from a service consumer, relaying the request for evaluation. As soon as the 
XACML decision-making process is completed, the PDP replies to the invocation with its access 
decision. As detailed in the information flow above, prior to providing a decision, it may need 
to invoke the “Attribute_Requirements” operation on the SO, in order to inform it of 
the needed user attributes, getting the proper assertion as an answer. 

5.2.3.2 SERVICE ORCHESTRATOR TO POLICY ENFORCEMENT POINT 
The Policy Enforcement Point must reside on every device with resources that must be 
protected from unauthorized access. Other than the functional elements of the devices which 
the framework intends to protect (e.g. access to its sensors), one extra operation must be 
present on each DPWS device, namely the “PEP_Operation”. The SO, acting as a client, 
invokes this operation providing the service consumer’s access request along with the decision 
(pre-issued by the PDP) as input. If the decision accompanying the invocation is positive, the 
PEP replies to the SO with the resource (e.g. temperature reading) that the service consumer 
originally tried to access. This information is then relayed to the service consumer/requester. 
The above DPWS-based communication mechanisms are depicted Figure 44.  

5.2.4 PERFORMANCE EVALUATION 
5.2.4.1 TEST-BED SETUP 
The platform-agnostic nature of SOAs enables the proposed framework to be deployed, by 
design, on a variety of platforms and operating systems. However, in order to realistically 
assess the performance of the proposed framework, the developed entities had to be 
deployed on devices expected to be present in healthcare deployments. Therefore, the 
proposed framework was implemented and its performance was evaluated on a 
heterogeneous environment, featuring relatively resource-constrained embedded platforms 
as well as desktop computers.  
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The PEP-equipped target device (i.e. the device providing the actual service to be accessed) 
was on a Beaglebone [107], a low-cost credit-card-sized embedded device that runs a compact 
Linux-based operating system. It uses an ARM Cortex-A8 single core CPU running at 720MHz 
(throttled at 500MHz during testing) with 256MB DDR2 RAM. The test-bed for the Service 
Orchestrator was a similar but slightly more powerful and versatile Beagleboard-xM 
embedded platform [106], featuring an 1GHz ARM Cortex-A8 processor (throttled to run at 
600MHz during testing) and 512MB DDR2 RAM, also running a minimal Linux-based operating 
system. The access control infrastructure entities, i.e. the PDP and PIP/PAP, were deployed on 
a desktop system (Core i5 CPU at 3.3GHz, 8GB DDR3 RAM). An identical desktop system was 
used to run the service consumer, a client application programmed to automatically invoke 
the resources exposed by the SO and record response times, for benchmarking purposes. 

Tests also included a second scenario where an extra PDP and PIP/PAP were deployed on a 
more resource-constrained platform, namely a Beaglebone embedded device, like the one 
used for the target device (i.e. the PEP). The latter was used to investigate the performance 
impact when the SO has to query two different PDPs, each with its own policy set, to emulate 
the use case where e.g. a patient and a hospital each have their own access control 
infrastructure and policy requirements. In this scenario, the SO had to evaluate both 
responses and only allow the user to access the resources if both PDPs allowed such access.  

The test-bed setup described above is depicted in Figure 45. Note that this setup is by no 
means the only option for the proposed framework’s deployment. For instance, a Beaglebone 
was chosen for the SO to simply demonstrate the ability of the SO to be deployed even in a 
constrained environment of an embedded system. In a large-scale deployment one would 
expect the functionality of the SO to be deployed at an application server to ensure the system 
is able to serve a sufficient number of users.  

 
FIGURE 45. THE TEST-BED SETUP, FEATURING EMBEDDED DEVICES AND DESKTOP PCS. ORANGE LINES 

INDICATE COMMUNICATION WHERE WS-SECURITY IS OPTIONALLY ENABLED. ALSO DEPICTS THE EXTRA PDP & 
PIP/PAP INTRODUCED IN THE SECOND TEST SCENARIO. 
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Aiming to also assess the performance impact in situations where the messages exchanged 
would have to be secured, an alternative proof-of-concept implementation was developed 
adopting the security mechanisms specified in WS-Security. These mechanisms safeguard the 
integrity and confidentiality of the policy messaging exchanged by the framework’s entities. 

The application profiling (i.e. CPU and memory utilization) was focused on the Service 
Orchestrator, which is the main entity of the proposed approach, and on devices which are 
expected to have resource limitations, i.e. the PEP-equipped target device. Moreover, the 
impact on user experience was also assessed, by recording client-side response times in all 
usage scenarios. 

The steps related to the Identity Provider were omitted during testing, as these will vary 
depending on the Identity Provider that the user will choose and are deployment-specific, thus 
out of the scope of the framework presented in this work.  

5.2.4.2 RESULTS 
A total of 100 consecutive requests were issued from the service consumer application to the 
SO residing on the Beagleboard-xM. The response time recorded by the test client trying to 
access the target device’s resources appear in Figure 46. The WS-Security mechanisms impose 
a significant overhead to the response times, which is expected given the use of asymmetric 
cryptographic mechanisms. In contrast, the response times for the second scenario indicate 
that the introduction of a second instance of the PDP and PIP/PAP is not prohibitive, while 
allowing to consolidate the policy requirements of different stakeholders. 

 
FIGURE 46. CLIENT-SIDE RESPONSE TIME FOR 100 REQUESTS TO THE SERVICE ORCHESTRATOR. 
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FIGURE 47. SERVICE ORCHESTRATOR’S AVERAGE CPU LOAD (%). 

Profiling of the SO revealed a lightweight application, even under the load of consequent 
requests, or in the presence of two PDP and PIP/PAP instances. The average CPU load and 
memory consumption appear in Figure 47 and Figure 48 respectively. As the occupied memory 
remains constant irrespectively of the presence of one or two PDPs, the numbers for the 
second scenario are omitted. The use of WSS imposes a relatively small memory overhead, 
while the average CPU load drops, as the device has to wait more between requests, due to 
the network and processing overhead on other framework entities.  

The same behaviour with regard to CPU load was also recorded on the target device (i.e. the 
device featuring the PEP), as is depicted in Figure 49. As in the case of the SO, introducing the 
WSS mechanisms increases the memory footprint (appearing along with SO values in Figure 
48), but the latter, along with CPU load, are not significantly affected by the presence of 
multiple PDPs and the corresponding PIP/PAPs, thus the numbers of the second scenario are 
omitted from the corresponding figures. 
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FIGURE 48. SERVICE ORCHESTRATOR'S AND TARGET DEVICE’S MEMORY UTILIZATION (IN BYTES) FOR SCENARIO 

1. 

  

 
FIGURE 49. TARGET DEVICE'S CPU LOAD (%) FOR SCENARIO 1. 

5.2.5 SECURITY CONSIDERATIONS 
One of the main concerns in accessing services and issuing commands, is the protection of the 
data being exchanged among the participating entities. In the proposed scheme the service 
provider has a pre-established relationship with the SO, PDP and PAP. Note that all these three 
entities are only functional components and therefore the exact needs in secure channel 
establishment depend on the actual deployment choice and cannot be specified. In a 
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simplified approach, the SO, PDP and PAP can be part of the same entity and therefore a 
secure channel establishment using pre-shared keys is a viable and efficient option. 

Regarding the underlying message security mechanisms, there are a number of proposed or 
standardized schemes that handle the protection of messages at various layers of the network 
stack. The WS-Security mechanisms adopted for the proof of concept implementation is 
typically used alongside DPWS, but its public-key security primitives can impose a significant 
performance overhead, as is evident from the performance evaluation presented in the 
previous section. Therefore, considering the resource-constrained nature of some devices, 
and the need to minimize performance impact in general, alternative cryptographic primitives 
can also be investigated for production environments. 

It is expected that some of the framework’s entities will be deployed on normal, relatively 
powerful nodes (personal computers or even servers). Thus, e.g. the link between the 
Requester and the SO could alternatively be protected using common methods, like TLS, the 
same way that the communication channel between the Requester and the IdP is anticipated 
to be protected, although the latter is outside the scope of this work. The cost of using TLS, 
however, between the Requester and the SO is that the secure channel breaks at the SO and 
the SO has to re-encrypt the communication using the security parameters set for the link 
between the SO and the service provider. 

The actual authentication scenario could be further elaborated during deployment to match 
system owner’s specific requirements and trust relationships with identity providers. Several 
options in such a deployment exist as they have been demonstrated in [147].  

The proposed scheme provides the Service Provider the flexibility to change the 
orchestrator(s) it uses based on its needs. This also applies to applicable policy rules which the 
service provider can modify to match his/her requirements. As an example, consider the 
situation where the owner of the mobile device being used to offer these services, changes 
mobile operator. He/she simply has to change SO, to a platform operated by the new mobile 
operator, and register his/her policies with it. Use of the SO provides additional benefits which 
are related to the node’s connectivity. The node can wake up occasionally to fetch any 
requests sent to the SO. This approach also helps save node’s resources, as no requests are 
sent to the node unless the latter asks for it. If the service request was sent directly to the PEP, 
the corresponding device would have to always be online, otherwise the service would be 
unavailable.  

5.2.6 SUMMARY 
As computing becomes ubiquitous, adopters aim to exploit the potential of pervasive systems, 
including LLN nodes bearing sensors and actuators, in order to introduce new types of services 
and address inveterate and emerging problems, healthcare being one of the most prominent 
application. Nevertheless, a key factor in the wide adoption and success of these new 
technologies is the effectiveness with which the various security and privacy concerns are 
tackled within the resource-constrained environment.  
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To this end, this section proposed an architecture for providing robust authenticated access 
control to heterogeneous resource-constrained devices. The scheme builds upon the 
standardized technologies, namely access control mechanisms based on XACML and SOA-
based interfacing of its key entities. In contrast to typical XACML deployments, the core PEP 
functionality and the hosting resource-constrained device are efficiently relieved from the 
expensive computations that the XACML standard defines, without sacrificing any of the 
policy-based decision making process. The device is sheltered from direct user interaction, 
helping alleviate concerns that are typical to resource-constrained devices, like DoS attacks. 
Emphasis was given on the scheme’s ability to serve users authorized by, typically, any 
authentication scheme, thus enabling the large-scale deployment of the solution to many 
environments. 

As a proof of concept, the components of the proposed scheme were developed and deployed 
on a heterogeneous test-bed featuring desktop systems and typical embedded devices. The 
performance overhead imposed on the three most important endpoints, i.e. the client 
attempting to access the protected resources, the Service Orchestrator and the PEP, was 
analyzed and presented to demonstrate the feasibility of the suggested solution. 

5.3 CROSS-DOMAIN SMART ENVIRONMENTS –THE XSACD VARIANT 
In recent years, massive advancements in computing and communication technologies have 
led to what can only be described as a revolution in terms of how people perform the various 
tasks comprising their everyday lives; a revolution enabled by the ubiquitous presence of 
computing devices in all aspects of modern life. These major changes could not leave the 
residential environment unaffected, with smart homes gradually becoming a reality. In these 
cases, homes may feature sophisticated lighting (e.g. smart light bulbs), ambient environment 
controls (e.g. heating, ventilation and air conditioning via smart thermostats), appliances 
(smart -fridge, -oven, -washing machine, -coffee makers etc.), communication systems 
(including smart phones), entertainment (e.g. smart TVs), and home security (smart cameras, 
door and window controls etc.) devices. Moreover, the residential environment borders with 
other ubiquitous computing applications, like smart metering and e-health, as these will have 
to be integrated into the smart home ecosystem. Nevertheless, as said devices typically 
handle personal sensitive data and often feature direct interaction with the physical world, a 
key factor in the wider adoption and success of these new technologies will be the 
effectiveness with which the various security and privacy concerns are tackled. A necessary 
instrument in successfully addressing these issues is the presence of robust access control 
mechanisms and seamless management of devices. 

To this end, we adopt uSPBM to the smart home / consumer environment, in the form of the 
Cross-domain Service Access Control for devices (XSACd) framework. By leveraging uSPBM’s 
mechanisms, new devices can easily join existing networks and offer services protected by a 
predefined or dynamic policy set. Based on the policy rules set by the system owner, the 
proposed architecture provides fine-grained AC over the plethora of devices and services that 
may be found in smart home environments. Thus, XSACd assists in the use of the various smart 
devices aiming to enhance consumers’ lives, while addressing their security concerns. 
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A key limitation to the use of DPWS across different domains, is that its device discovery is 
limited to local networks (as it is based on UDP multicast messages). To address this, XSACd 
also introduces proxies that, based on an external, Internet-based, broker, can enable the 
discovery and interaction with DPWS devices residing in other networks, in an automated 
manner (i.e. in a seamless way from the user’s perspective). 

5.3.1 MOTIVATION 
In a typical ubiquitous-computing-enhanced residential setting, various smart devices are 
expected to be present on appliances (e.g. smart fridge) and automation-enabled structures 
(e.g. smart doors), also including environmental sensors and actuators.  Moreover, these are 
typically complemented by purpose-built devices intended to organize, manage and enhance 
the functionality of the rest of the smart infrastructure, like energy monitors and control 
nodes (e.g. a computing system with touch-based input to allow seamless monitoring and 
interaction with the devices). 

 This heterogeneous assortment of devices will feature a variety of services, each with its own 
intrinsic characteristics (some being critical in terms of the residents’ safety, others dealing 
with private sensitive data etc.), thus requiring a different protection profile. For example, all 
residents should be able to control the smart doors and windows of a house, but, perhaps, 
children should not be able to tamper with a subset of those (e.g. front door) at certain 
timeframes (e.g. during the night). In another scenario, visitors may have the rights to monitor 
the environmental sensors of the residence, but not to set the climate control at their will. 
Moreover, the residence owners may decide they feel alright with visitors checking the 
contents of their smart fridge, but they, expectedly, should not be able to add goods to the 
shopping lists. Assuming the presence of e-health devices in the smart home ecosystem, it is 
anticipated that the patient, her spouse and medical staff should be able to monitor the 
various readings and control the actuators that deliver the prescribed medicine, but only the 
latter group should have access to the service that controls the drug dosage. Moreover, it 
would be desirable to allow medical staff to operate on the devices remotely, to avoid 
unnecessary visits to the hospital. In cases where the residence is equipped with smart-
metering devices, authorized power company staff should be the only ones able to adjust 
and/or reset the meters remotely (for billing purposes), but, nevertheless, the owners should 
be able to access the consumption readings as well.  

Furthermore, a survey [20] on smart home users revealed that inflexibility (often forcing users 
to adopt solutions offered by a single manufacturer) and difficulties in achieving security 
constitute significant barriers to the broader adoption of pertinent technologies and devices. 

From the above, and considering that, typically, the only pervasive protection mechanism 
present in home environments is the access to the wireless network, it is evident that strong 
and interoperable access control mechanisms are required to safeguard a variety of aspects 
pertaining to the operation of a smart home environment. Additionally, this should be 
achieved in a flexible, platform-agnostic manner, acting as an enabler instead of introducing 
new (or further exacerbate existing) obstacles to the adoption of “smart” devices and services. 
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To this end, the presented framework is based on standardized mechanisms, which also allows 
leveraging work already carried out both in terms of Web Services as well as XACML policy 
definitions. DPWS can enable user-to-machine and M2M interactions in a unified manner, 
moving on from the current state of the field, where consumer electronics manufacturers 
offer a variety of proprietary protocols which are not interoperable and essentially lock-in 
consumers, forcing them to use a specific vendor/ecosystem. With regard to XACML, the 
scheme can trivially be expanded to cater for additional specific concerns, such as privacy 
issues and/or the handling of sensitive data (e.g. healthcare, as covered by the relevant OASIS 
Cross-Enterprise Security and Privacy Authorization profile for XACML v2.0 [141]). 

5.3.2 PROPOSED ARCHITECTURE 
In the proposed framework, the following key entities are present and can be deployed on 
different smart home nodes, depending on their role and resources:  

• Policy Enforcement Point (PEP): Makes decision requests and enforces 
authorization decisions. This is expected to be present in every smart device 
(appliances, sensors, e-health de-vices, energy monitoring or smart metering 
devices etc.) which provides its resources to the end users, and which need to be 
protected by the active policy set. 

• Policy Decision Point (PDP): Evaluates requests against applicable policies and 
renders an authorization decision. It is expected to be deployed on more feature-
rich nodes, typically a personal computer or an embedded system that acts as a 
controlling node for the whole smart home infrastructure 

• Policy Administration Point (PAP) & Policy Information Point (PIP): The former 
creates and manages policies or policy sets, while the latter acts as a source of 
attribute values. These two entities will typically be deployed on the same 
feature-rich node, facilitating direct interaction with end-users (e.g. home 
owners). A desktop computer or a laptop are good candidates for this role. 

• Cross-domain Proxy: This entity is responsible for catching all discovery messages 
of the network, processing their contents and transmitting them to other 
networks, also transmitting to the local network all messages received from other 
domains. 

• Broker: This is the main entity through which all cross-domain traffic is routed. 
The broker is responsible for distributing messages to all interested clients (i.e. 
the proxies) based on a message’s topic. To this end, all proxies have to subscribe 
to the Broker. 

As is evident from the above, and considering that nodes embedded in a smart home may not 
have the computing resources to accommodate expensive mechanisms, the core decision 
process is under-taken by more powerful nodes expected to operate within the node’s trusted 
environment. Such an approach allows requests to be directly addressed to the node in 
question, while maintaining the capability to centrally manage and control access to these 
nodes. An overview of the architecture can be seen in Figure 50. 
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FIGURE 50. SMART HOME ACCESS CONTROL ARCHITECTURE & CROSS-DOMAIN COMMUNICATION. MAIN 
ENTITIES. 

5.3.3 IMPLEMENTATION APPROACH 
As with all uSPBM implementations, Sun’s XACML engine [85] was the basis of the access 
control mechanisms, while WS4D-JMEDS [145] was used to expose the framework’s entities 
via DPWS. Using the above API and exploiting the features of DPWS, the XACML functionality 
can be exposed to the home network (and the Internet, if needed), allowing the seamless 
discovery and communication of the framework’s entities, regardless of the device where they 
may be deployed. In more detail, the XACML features are exposed as follows. 

5.3.3.1 PEP TO PDP IMPLEMENTATION 
The Policy Enforcement Point must reside on every device with resources that must be 
protected from unauthorized access. Other than the functional elements of the devices which 
the framework intends to protect (e.g. access to its sensors), two extra operations must be 
present on each DPWS device. These operations, in essence, constitute the PEP functionality 
and its communication with the PDP. The latter acts as a DPWS client which accesses these 
USPBM-specific operations.  

More specifically, the first operation is the "SAREvent" (Service Access Request Event), 
referring to an operation following the WS-Eventing [95] specification to which devices can 
subscribe. When fired, the operation outputs “SAROut” (Service Access Request Output), 
a message which includes all the information the PDP needs to have in order to evaluate a 

106 
 



request (i.e. Subject, Action and Resource). The second operation is "PDPResponse" (Policy 
Decision Point Response), which is invoked by the PDP to relay an answer to a pending access 
request. 

5.3.3.2 PDP TO PIP/PAP IMPLEMENTATION 
In terms of the discovery and information exchange that must take place between 
infrastructure entities (PDP, PIP, PAP), an extra operation must reside with the entity that 
stores the active policy set (namely the PIP/PAP). This extra operation is named 
"PIPOperation" (Policy Information Point Operation). It features an input for the request 
issued by the PDP (requesting all applicable policy rules), and an output containing all the 
pertinent information (i.e. policies and rules) that the PIP has identified. 

5.3.4 EVENT SEQUENCE 
The above DPWS operations and the sequence of events that take place when an access 
request is received for a protected resource are depicted in Figure 51. 

 

FIGURE 51. DPWS IMPLEMENTATION OF THE XACML MECHANISMS 

In more detail, the PDP is implemented as a DPWS client, constantly monitoring the network 
for “Hello” messages transmitted by DPWS devices as they initialize. Whenever it discovers a 
PEP-equipped device, it automatically subscribes to its “SAREvent” operation.  

Each time a user tries to access a resource on one of these AC-protected devices, the 
“SAREvent” is fired, notifying the PDP that a request has to be evaluated, and transmitting 
all the information required for XACML to make such a decision. This information includes the 
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Request ID (a counter of policy decision requests issued by the specific device), the Client’s 
identifier, e.g. IP and/or username (Subject), the Invoked Operation (Action) and the Device’s 
UUID, i.e. its Universally Unique Identifier (Resource).  

The above data is used by the PDP to generate an XACML request, i.e. a request in a form that 
can be evaluated by the XACML decision engine. This process also involves the PDP invoking 
the “PIPOperation” of the PIP/PAP, in order to retrieve the applicable policies.  

Based on the information included in the PEP request and the pertinent policies retrieved from 
the PIP/PAP, the PDP can then decide if the user’s pending request is authorized or not. This 
decision is conveyed to the PEP by invoking its “PDPResponse” operation.  

Finally, based on the decision received, the PEP either grants or denies access to the device’s 
re-source that the user initially tried to access. 

5.3.5 USPBM/XSACD CROSS-DOMAIN PROXY 
On its own, DPWS does not support cross-domain communications, since device discovery is 
based on a UDP multicast protocol, WS-Discovery [94]. So, without the use of a purpose-built 
proxy, all the above entities must be on the same network in order to operate. Our proxy 
implementation is not based on a central server that catches all “hello” and “bye” 
messages as is typical for such proxies; this presumes that at every discovery proxy has a list 
of known devices and that proxies communicate each other to “share” devices, which is not 
really usable. 

XSACd’s proxy uses MQ Telemetry Transport (MQTT [24]), a publish-subscribe OASIS standard 
protocol, as the backbone of communication between networks. An MQTT Broker, deployed 
somewhere on the Internet, is responsible for handling and organizing all communications 
between the various domains and their corresponding proxies. In every local network a MQTT 
client is deployed which has two roles:  

• catch all discovery messages of the network, handle the info and transmit 
them at the other DPWS networks and  

• transmit to the current network all messages that are published from other 
networks.  

Catching all messages from the network is done by adding a membership to a predefined 
address, namely 239.255.255.250:3702, which is the UDP broadcast and default port 
of DPWS discovery default settings. Then every SOAP xml message is parsed; if it is a “hello” 
message the IP of the message is changed from the 192.168.*.* ,which is normally used 
in a local network, to the external IP, also using NAT-PMP (if the network’s router supports it) 
the local port is forwarded, so that external communication is achieved. Then the changed 
“hello” message is transmitted to all the other DPWS proxy subscribers. When a client from 
a local network searches (sends a probe) for a device, the proxy saves the ID of the message 
and also the information of the sender. That way, if a device is found that meets the search 
criteria (i.e. a probe match is received), it will only transmit the response to the local network 
that made the search. Moreover, the sender information is kept because, when a client sends 
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a probe message, it waits for the probe response at the same port. Moreover, as every 
message ID is saved, duplicate transmissions are eliminated.    

It must also be mentioned that for multi-home communication to be fully supported, after the 
device discovery (facilitated by the DPWS proxy), the client asks the target device of its 
metadata, provided in the form of a WSDL [99] file. In order to have a successful 
communication, the WSDL file must contain the external IP of the device. This was not 
supported in any available DPWS implementation, so we modified our custom DPWS 
implementation in the Node.js programming environment [148], allowing us to track the 
GetMetadata message: if it originates from the local network, it uses the local IP 
(192.168.*.*) at the WSDL, otherwise it uses the router’s external IP. Any standard MQTT 
Broker could be used to interact with the XSACd proxies. For the proof-of-concept 
implementation, we opted for the Mosquitto open source message broker [149].  

Figure 52 depicts a simplified view of the above, along with the steps that take place during 
normal operation; in this example, when a device from the local network issues a probe match 
and gets a reply from a device deployed in another domain. All external traffic is routed 
through the local router in a typical home deployment; to this end, the proof-of-concept 
implementation automates port forwarding.  
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FIGURE 52. XSACD CROSS-DOMAIN PROXY IMPLEMENTATION AND MAIN STEPS. SIMPLIFIED VIEW. 

A screenshot of a command line remote connection to the proxy appears in Figure 53. 
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FIGURE 53. XSACD CROSS-DOMAIN PROXY. COMMAND LINE REMOTE CONNECTION TO THE EMBEDDED TEST 
PLATFORM 

Compared to the proxy presented by Müller et al [57], the XSACd approach has various 
benefits. Scaling is an issue with the previous work, as in the case of N networks, each proxy 
must communicate with N-1 other proxies. So, for example, a proxy must send its probe match 
request to N-1 other networks, initiating an equal number of connections. In our approach, 
each proxy only needs to communicate with the MQTT Broker, which is responsible for 
disseminating all DPWS messages to the other registered proxies. Moreover, there is added 
complexity in that the proxy has to tamper with the metadata files, whereas in XSACd all 
devices properly formulate their metadata files by themselves. An additional complication is 
that they propose different types of proxies (client proxy & server proxy), depending on the 
network's role, whereas an XSACd proxy can accomplish both roles simultaneously.  Finally, 
there is a significant gap in the performance and reliability in favor of the MQTT approach 
adopted in this work compared to the HTTP-based communications of the previous work, as 
is evident from the comparison benchmarks appearing in Table 8. 

TABLE 8. PERFORMANCE & RELIABILITY COMPARISON OF MQTT AND HTTP ON TYPICAL MOBILE APPLICATION10 

 3G WiFi 

HTTPS MQTT w. SSL HTTPS MQTT w. SSL 

Receive 

msg/hour 1,708 160,278 3,628 263,314 

%battery/msg 0.01709 0.00010 0.00095 0.00002 

msg delivery 240 / 1024 1024 / 1024 524 / 1024 1024 / 1024 

Send msg/hour 1,926 21,685 5,229 23,184 

10 http://stephendnicholas.com/archives/1217 

111 
 

                                                                 



%battery/msg 0.00975 0.00082 0.00104 0.00016 

 

5.3.6 SECURITY CONSIDERATIONS 
The effectiveness of any access control mechanism can easily be compromised unless 
appropriate security mechanisms are deployed to protect policy messaging. A malicious entity 
would otherwise be able to eavesdrop, replay or tamper with the access control messaging, 
overriding the offered protection to provide access to unauthorized entities or denying access 
to authorized ones. When feasible, deployments over trusted and/or secure networks (e.g. 
over a Virtual Private Network, VPN) can address most of these concerns, but an alternative 
mechanism has to be considered for deployments where these provisions are not realistic. 

A detailed analysis of the protection of the access control –related communications can be 
found in chapter 4.3. In terms of protecting the communication of the proxies with the MQTT 
broker, there are various options that could be explored. As of version 3.1, MQTT supports 
the use of a username and password to secure the communication with the broker. There is 
also the option of using web sockets and secure web sockets .Moreover, since MQTT is based 
on TCP, one could always opt for the use of more typical socket security mechanisms, such as 
SSL/TLS, but this would add a notable amount of processing overhead. In this proof-of-concept 
we used a symmetric mechanism based on AES/CCM [134] to encrypt every payload sent from 
the publisher to the subscribers. Thus, a username and password is used to secure access to 
the MQTT broker and, moreover, the messages exchanged are encrypted, to protect them 
from eavesdropping and tampering (using the authenticated encryption mechanisms of 
AES/CCM). 

5.3.7 PERFORMANCE EVALUATION 
The use of platform-agnostic technologies (i.e. DPWS and Java) enables the proposed 
framework to be deployed, by design, on a variety of platforms and operating systems. 
However, in order to realistically assess the performance of the proposed framework and its 
impact on the target devices, the developed entities have to be deployed on devices expected 
to be present in smart home environments.  

Therefore, the infrastructure entities, namely the PDP and PIP/PAP, were deployed on a 
laptop (quad core CPU at 2.6GHz, 4GB RAM), as a personal computer is typically available in 
home environments and is expected to act as a management hub through which the residents 
monitor and control their smart residence. A total of 50 policies were stored in the policy 
repository, which the authors considered a realistic approximation of the number of policies 
needed, considering the relatively limited number of devices expected to reside in a smart 
home. Tests were also carried out with 500 policies, to assess the impact more policies would 
have on the framework’s performance 

Regarding the target platforms – i.e. the platforms featuring the services that need to be 
protected – we chose to use relatively resource-constrained smart embedded devices 
(600MHz low power single core CPU, 512MB RAM) running the Android open source operating 
system for mobile devices. Such operating systems are already found in many smart 
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commercial appliances (e.g. smart fridges) offered by the various consumer vendors. 
Moreover, their adoption is expected to spread as more sophisticated home devices become 
available to end users; thus, the above platform can be considered a realistic choice for 
evaluating the performance of the proposed mechanisms.  

The DPWS device deployed on the smart platform not only featured the access control related 
operations (as depicted in Figure 51) but also featured three simple operations, emulating 
part of the functionality of a smart appliance (e.g. smart fridge). Via the above operations, the 
user can get the current temperature, subscribe to a service that periodically informs of said 
temperature and also set the desired temperature when needed. A basic touch GUI was 
developed for this device, which can be seen in Figure 54.  

 

FIGURE 54. SCREEN CAPTURE OF THE (PEP-PROTECTED) DPWS TEST DEVICE DEPLOYED ON THE TOUCH-
ENABLED SMART PLATFORM. 

A client application was also developed for testing purposes; the “Smart Home Browser”. This 
application is deployable on various end devices (personal computers, smart phones or 
tablets) and allows users to discover and control the various DPWS-enabled smart appliances 
(to get the current contents of the smart fridge, to subscribe to the power consumption 
readings provided by the smart metering device etc.). A screenshot of the Smart Home 
Browser prototype implementation appears in Figure 55. 
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FIGURE 55. THE "SMART HOME BROWSER"; AN APPLICATION DEVELOPED TO FACILITATE THE DISCOVERY OF 
DPWS DEVICES AND PROVIDE ACCESS TO THEIR HOSTED SERVICES. 

A command line-only variation of this client, programmed to automatically invoke operations 
and record response times, was developed for benchmarking purposes. This benchmark client 
was used to evaluate the performance of three setups: a simple DPWS device with no PEP 
implemented (i.e. with direct access to its services), a DPWS device protected by the 
presented access control entities communicating in plaintext, and a third setup with the 
entities’ communications being protected via WS-Security. This allows us to separately assess 
the impact of the access control functionality and the impact of the security mechanisms that 
may be needed to protect the policy messaging in some deployments.  

In addition to the client-side measurements, the CPU and memory utilization was also 
monitored on both the personal computer that hosted the PDP and PIP/PAP as well as on the 
PEP-equipped smart device. Furthermore, two different usage scenarios were investigated: In 
the first scenario, the client issued 100 concurrent requests to invoke the services, allowing 
the investigation of the performance under heavy load conditions. The results appear in Figure 
56. 

 

FIGURE 56. CLIENT-SIDE RESPONSE TIME FOR 100 CONCURRENT REQUESTS (IN MS) 
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Investigating a second use case scenario, we set the benchmark client to issue 20 requests, 
one every 3 minutes, emulating more realistic usage conditions in the context of a smart home 
environment. The results of the above assessments in terms of the average response time (i.e. 
the time the user has to wait before she receives the data she intended to access) are depicted 
in Figure 57. In both usage scenarios, the overhead of the access control mechanism are 
considered acceptable. The impact of the WSS protection is significant in cases of infrequent 
requests (as in the second scenario, where the connections close between the request 
timeouts and, thus, have to be reinitiated). 

 

FIGURE 57. AVERAGE CLIENT-SIDE RESPONSE TIME (IN MS) FOR THE INVESTIGATED DEPLOYMENTS AND USAGE 
SCENARIO. 

In terms of the resources consumed on the target, PEP-protected device, and focusing on the 
most demanding scenario (i.e. concurrent requests), profiling indicated a mild footprint during 
tests, even in the case of the relatively resource-constrained smart platform used in this setup. 
Average memory consumption is presented in Figure 58, where the overhead of the access 
control mechanisms appears trivial compared to the simpler DPWS device. 
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FIGURE 58. MEMORY FOOTPRINT (IN KB, LOGARITHMIC SCALE) ON THE PEP-PROTECTED DEVICE, INCLUDING 
THE OVERHEAD COMPARED TO THE SIMPLE DPWS DEVICE WITH NO ACCESS CONTROL PROTECTION. 

The average CPU load was inversely proportional to the client response times (depicted in 
Figure 57); when the device has to wait for a reply from the framework (i.e. the PDP) before 
serving the client, its CPU load is expectedly lower. The recorded values were 11.6%, 9.3% and 
8.4% for no access con-trol, XSACd and XSACd with WSS respectively. The same ranking was 
also documented when moni-toring average transmission (TX) and reception (RX) rates on the 
target device – see Figure 59. The most taxing scenario network-wise was that of the device 
with no access control, but in all cases the data rates were relatively low, with the lowest 
recorded value being 16.13kB (average TX of XSACd, WSS device) and the highest being 
26.5kB/sec (average RX of DPWS device without access control). 

 

FIGURE 59. NETWORK THROUGHPUT ON TARGET DEVICE DURING TESTS. 

The number of stored policies may significantly affect the performance of the access control 
system, to the point where the response time overhead becomes prohibitive [57]. This was 
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taken under consideration during development and, thus, XSACd's PIP stores policies in the 
form of a hash table residing in memory. The effectiveness of this approach was validated 
during benchmarks: increasing the number of stored policies from 50 to 500 increased the 
response time by 7,37% in the first scenario (i.e. consecutive requests) and by just 1,7% in the 
more realistic second scenario (i.e. a request every 3 minutes). 

Finally, to assess the load that the DPWS proxy might impose on the device it will be deployed 
on, the proof-of-concept implementations of the proxies were deployed on two Beagleboard-
xM embedded devices (1GHz ARM Cortex-A8 processor, throttled at 600MHz during testing, 
512MB DDR2 RAM, a minimal Linux-based operating system). Each of the platforms resided 
on a different geographical area and they communicated via the Internet. Even though these 
test-bed platforms were relatively resource-constrained, their CPU load during testing was 
minimal (below 10% when handling messages, otherwise idle). The memory footprint of the 
application is relatively stable at around 16MB, of which around 6,6MB are occupied by the 
various libraries used in its implementation. 

The MQTT Broker used was just a standard implementation of Mosquitto [149], thus assessing 
its performance is beyond the scope of this work 

5.3.8 SUMMARY 
This section presented XSACd, an adaptation of uSPBM for smart homes and other smart 
environments, often residing across different networks. The intrinsic requirements of the 
smart home environment, its users and the often resource-constrained nature of its devices 
fundamentally affected the choice and implementation of the mechanism that form the basis 
of this work. Thus, XSACd’s entities are platform-agnostic, lightweight and interact seamlessly, 
minimizing the home users’ involvement in deploying, setting up and maintaining the system. 
The proxies responsible for the communication across different domains, require no 
interaction on behalf of the users, offering automated discovery and interactions with the 
target devices across the Internet. 

5.4 SMART VEHICLES – THE RTVMF FRAMEWORK 
Smart vehicles will be an important segment of the imminent Internet of Things (IoT) –enabled 
world, where computing devices will permeate our lives and will even be easy to design and 
create at home [150]. Modern vehicles already feature a number of embedded electronics 
that monitor and control their subsystems, to enhance passenger comfort and safety, achieve 
energy-efficient operation and maximize vehicle lifetime. Superior safety features can help 
avoid many accidents, and they are the focus of various governmental initiatives worldwide, 
which define stricter regulations (such as the COMMISSION DIRECTIVE 2008/89/EC enforcing 
daytime running lights in new vehicles). This push is expected to intensify, to benefit from 
Intelligent Transportation Systems (ITS), prompt emergency response and advanced features 
like early braking and road lane departure warnings, e.g. as indicated by the “Policy 
orientations on road safety 2011-20” European Union (EU) program [151]. Automotive 
legislation also necessitates the production of more eco-friendly vehicles, a target partly 
achieved by subsystems monitoring the vehicles’ operation in real-time, triggering 
adjustments to engine parameters. Based on the above stimuli, the integrated electronics 
increase with every vehicle generation, and are expected to rise steeply with the introduction 
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of smart and, eventually, self-driving vehicles. This “intelligence” will also enable a variety of 
novel services that everyone will enjoy, from end-users (e.g. parents lending the family vehicle 
to their teenager) to private and public entities operating vehicle fleets (logistics, car-rental, 
governments, rescue services etc.). 

To facilitate the deployment and operation of these services in a secure and interoperable 
manner, we merge uSPBM with an agent-based reasoning system that allows us to monitor 
various operational parameters, which are assessed using security, privacy and dependability 
–related metrics, enabling real-time monitoring and interaction with a smart vehicle or a 
smart vehicle fleet. This combination of technological building blocks, produces RtVMF, a 
smart vehicle management framework based on the integration of novel primitives with 
standardized technologies. The proposed approach can provide real-time management of 
vehicles, aggregating and quantifying various operating parameters (e.g. engine health) using 
a set of security, privacy and dependability metrics. The owner and other stakeholders can set 
policies of fair use (e.g. maximum speed), tracking the driver’s behavior, and informing 
emergency services when an accident occurs. Thus, it allows individuals and companies or 
public entities relying on vehicle fleets for day-to-day operations to minimize the risks 
associated with passenger safety, protect vehicle investments, enhance productivity, and 
reduce transportation and staff costs. 

To validate the feasibility of our approach, a working prototype of the framework was 
developed and deployed on real vehicles. Moreover, we carried out a performance evaluation 
on a test-bed consisting of devices expected to be found on smart vehicles and a typical 
backend infrastructure (i.e. a command and control center), to investigate the performance 
overhead of RtVMF. 

5.4.1 MOTIVATION 
A typical car may currently utilize over 80 built-in microprocessors, providing advanced safety 
systems, emission monitoring and in-car commodities [152] which aim to enhance passenger 
comfort and safety, also protecting the vehicle’s subsystems by providing early warning of 
failures and/or adjusting their operation accordingly. Typically, electronic control units (ECU) 
manage and interconnect the distinct systems [153], and the infotainment infrastructure 
provides enhanced facilities, like navigation, to passengers [154]. Newer vehicle generations 
will take this further, supporting communication with other vehicles, the city infrastructure 
and backend systems. Such prototype deployments are already under assessment in the EU 
and the United States (USA); e.g. the UMTRI Safety Pilot [155].  

Real-time monitoring of the vehicle’s state and the driver’s behavior will allow public entities, 
logistics organizations and other businesses to minimize the vehicle investment risks and 
promote strategies for increasing productivity and safety while reducing transportation and 
staff costs. Government regulations are decisive motivators of pertinent research efforts. The 
United Kingdom aims to minimize road deaths in business-owned vehicles; starting in 2008, 
road death is considered an unlawful killing, enabling seizing of the company’s records and 
bringing prosecutions against directors who fail to enforce safe driving policies. Therefore, 
fleet management is now imperative for organizations owning a significant amount of 
vehicles. 
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The European Commission also defines new regulations for vehicle safety, such as the eCall 
system [156], which will become mandatory for every vehicle moving in the European Union 
by 2018.  This emergency service dictates that, when an accident occurs, the vehicle should 
automatically relay essential information (its location, its direction and speed before the 
crash, number of passengers etc.) to appropriate Public Safety Answering Points (PSAP). By 
providing early notification and allowing efficient coordination of the emergency services, it is 
expected to decrease the response time to such incidents by 50% in rural and 40% in urban 
areas, drastically reducing the number of deaths and the severity of injuries for the thousands 
of people involved in road accidents every year [151]. 

However, security-related incidents are a tangible threat, as exploiting vulnerabilities in the 
infotainment infrastructure can allow the remote control of vehicle components; an attacker 
can control turn off the lights or even control the brakes while on the move [8]. As more 
vehicles feature seamless connection to Internet, urges engineers to consider security at the 
design phase. To this end, there is a need for systematic methodologies for developing secure 
and efficient vehicular embedded systems.  

Researchers of the Ford motor company have presented a methodology for modeling 
automotive systems in terms of Security, Privacy, Usability and Reliability (SPUR [157]). 
Evaluated components are analyzed based on the offered SPUR functionality, assigning a 
qualitative value (low, medium or high) to each parameter. They apply this method on real 
system attributes, such as the valet key and the anti-lock braking system. 

The EU-funded project nSHIELD [158] proposed two quantitative methodologies for building 
secure embedded systems in terms of Security, Privacy and Dependability (SPD): the attack 
surface metric and the multi-metric methodologies. The latter, a key RtVMF component, was 
demonstrated in social mobility applications, while the former was demonstrated in avionics 
and railway applications. 

Finally, any novel components should be compatible with existing vehicles; it is estimated that 
there are over 500 million vehicles already roaming US and EU roads alone [159], [160], 
indicating a huge market for anyone involved in retrofitting such modules. 

RtVMF aims to address the above issues. The principal concern is the enhancement of 
passenger safety and the framework can enable this in various ways: Mechanisms are included 
to allow the vehicle owner (e.g. a logistics company or a father lending his car to his son) to 
specify driving rules, such as maximum speed and/or the operating area (through geo-
fencing). Furthermore, sensors can monitor vehicle health, informing stakeholders about 
engine malfunctions or emergencies in real-time. Thus, the adoption of RtVMF can allow any 
public or private organization with vehicle fleets to reduce the risks to their personnel and 
their vehicle investment, advancing productivity while reducing transportation and staff costs. 
Moreover, it can help achieve compliance with upcoming regulations, both for vehicle safety 
and green infrastructure management. 

5.4.2 THE RTVMF ARCHITECTURE 
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RtVMF consists of various components, comprising a low-cost multi-agent system for smart 
vehicles, also allowing the integration of smart city infrastructures into the monitoring and 
decision-making process, as depicted in Figure 60.  

 

FIGURE 60. RTVMF ARCHITECTURE AND DEMONSTRATOR DEPLOYMENT 

The following sections describe the main building blocks of RtVMF, which adopts a SOA 
approach for the underlying communications, providing seamless interaction between the 
framework’s entities. All entities specify semantic information (e.g. their type and provided 
services) using DPWS, supporting device and service description, discovery, messaging and 
eventing. This allows the deployment of devices aligned with Web Services technologies, 
facilitating interoperability among services provided by resource-constrained device and 
providing seamless Machine-to-Machine (M2M) interactions.  

5.4.2.1 THE RTVMF AGENTS 
The multi-agent system is implemented using the Java Agent DEvelopment framework (JADE), 
which supports all agent deployment standards defined by the Foundation for Intelligent 
Physical Agents (FIPA), including the Agent Communication Language (ACL). Event Calculus 
(EC) forms the basis of the reasoning process, using the Jess (Jess-EC) rule engine for the 
implementation. We model the ambient context in Jess-EC and develop reasoning services 
based on a formal theory that reasons about the composability and integration of the 
underling devices and technologies, verifying the system’s current SPD level. An ambient 
environment management theory is responsible for administrating the system in real time. 
The Common Alerting Protocol (CAP), also an OASIS standard, models the semantic 

120 
 



information exchanged between agents. Agents transform the CAP alerts into Jess-EC events 
(and vice-versa), triggering the reasoning process. The external communications rely on GSM. 
The RT-SPDM system [136] is a preliminary version of the above. 

At the smart vehicle end, an RtVMF agent monitors the vehicle and is responsible for a minimal 
set of decisions (regarding security, privacy, dependability and safety), to avoid unnecessary 
backend communications, to safeguard continuity of operations when network connectivity 
is not available and to avoid unnecessarily transmitting sensitive information. The agent runs 
on the Infotainment system, communicating internally with the ECU and externally with other 
agents, acting as an intermediate layer between the vehicle and external entities. 

The Command & Control (C&C) center is responsible for smart vehicle management. A master 
RtVMF agent, deployed at the backend, collects information from smart vehicles and 
infrastructure agents. The master agent has global knowledge of the system and carries out 
all computationally intensive tasks, implementing the fleet management strategy. An 
extension of the backend could use databases or cloud services to store vehicle and driver 
history records, maintaining log files and execution reports. Moreover, the positioning 
information of the smart vehicles can be display on a geographic information system (GIS) to 
provide location-based services (e.g. geo-fencing).  

To implement the above functionality, we integrated DPWS along with the JADE agents into 
the Open Service Gateway initiative (OSGi) – a standardized middleware that constitutes a 
module system and service platform. ECU and supplementary vehicle devices model the 
provided functionality in DPWS and exchange information with the vehicle’s agent through 
OSGi. 

5.4.2.2 SPD METRICS 
At the smart city infrastructure or service provider end, the master RtVMF agent monitors the 
vehicles, and communicates information to enforce SPD and safety plans, based on an 
ambient intelligence-based, decision making mechanism. We adopt the nSHIELD [158] multi-
metric methodology for modelling and measuring the SPD features of each entity and the 
system as a whole.  

The multi-metric methodology is based on an analysis of a system’s individual components 
and determines triple vectors representing the <S,P,D> features, based on the evaluation 
of corresponding metrics. Each measurable parameter takes a value from a set, mapped in a 
range from 0 to 100. These values represent no protection to optimum protection 
respectively, based on a preceding security analysis. The individual SPDs are also composed 
to form the overall system SPD (SPDSystem). The system is configured at runtime to achieve a 
targeted SPD level (SPDGoal). The above enable the SPD analysis of individual elements and of 
their combination, allowing stakeholders to inspect each component and the composed 
system as a whole, evaluating the effectiveness of different configurations and associated 
mechanisms in terms of achieving the desired SPDGoal. This approach eases human 
monitoring and operation of the system, provided the backend application development 
considers human-computer interaction principles. 
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More details on the multi-metric methodology appear in Garitano et al. [161], along with a 
smart vehicle use case. Its assessment includes three scenarios with nine different 
configurations. Metrics evaluate features like encryption and GPRS/SMS communication, 
enhancing security and inspecting driving behavior. The use case demonstrates the simplicity 
of the solution and its scalability, with an equally effective evaluation of simple and complex 
systems. 

With regard to the dynamic SPD levels, ideal security, privacy and dependability settings may 
not always be possible, as congestion may hamper operation by congestion, missing mobile 
network coverage or other variables. So, for example, in situations where low latency is 
essential (e.g. V2V communications), a vehicle may resort to simpler cryptographic 
mechanisms, resulting in a lower Security level. In another case, the driver may decide not to 
report his exact location, but a larger area, to obstruct tracking of her movement and protect 
her privacy. This will have a positive effect on the Privacy level of the specific vehicle, as 
reported at the backend system. Variations in the Dependability level will be more common. 
The vehicle’s health is monitored in real time (tire pressure, ECU warning messages etc.), 
directly affecting its Dependability level. E.g., when the car exceeds the planned travel mileage 
between services, the reported Dependability value will be lower. 

5.4.2.3 SECURITY 
The protection of messages exchanged between RtVMF entities is of critical concern, as a 
violation of the framework's security could give an erroneous view with regard to the actual 
vehicle (or vehicle fleet) situation, cause unnecessary trouble for emergency response services 
or even endanger the safety of vehicle occupants.  

To this end, the framework protects the communications of the various entities (managed 
vehicles, the backend, and users, such as vehicle owners) with the WS-Security standard. The 
latter, typically used alongside DPWS, provides end-to-end security, with message encryption 
to provide confidentiality, but also digital signatures to assure integrity and provide non-
repudiation. Security tokens can also be attached to establish the sender's identity and, as 
various security token are supported (e.g. SAML, Kerberos, X.509), it can trivially be integrated 
into existing Vehicular PKI (VPKI) infrastructures. An added benefit is that entities without 
proper credentials cannot discover the services hosted by a smart vehicle agent, even if they 
have access to the same network. 

While WS-Security safeguards all exchanged messages, to protect the ACL messages 
exchanged by agents, the implementation also includes the JADE-S add-on, which extends 
JADE with the Java Authentication and Authorization Service (JAAS), Java Cryptography 
Extension (JCE) and Java Secure Socket Extension (JSSE) mechanisms. This allows us to 
authorize agent actions against agent permissions residing in policy files containing 
information regarding the agent types and the valid actions that they can perform. Moreover, 
it is used to verify the integrity of the received reasoning data (e.g. when a vehicle informs of 
its updated SPD state), which is one of the most critical aspects in the framework’s operation. 

Moreover, the security features built into OSGi offer inner-platform security on both agents 
and managed devices. This allows us to control which bundles can be started/stopped, when, 
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by whom etc., based on pre-defined rules, thus limiting bundle functionality and providing an 
extra layer of protection, even in cases where a malicious entity manages to gain access to the 
software platform itself, aiming to disrupt the service. 

RtVMF also integrates the strong access control provided by uSPBM, allowing its operators to 
manage access to the resources of smart vehicles in a centralized manner. The policy-based 
access control mechanisms of uSPBM exploit and extend the DPWS functionality of the 
framework’s devices, to implement the necessary communications and entities (e.g. policy 
enforcement points on vehicles). Thus, a multifunctional RtVMF-enabled vehicle may feature 
various hosted services (a location service, a fuel consumption service etc.), access to which 
will be controlled based on the active policy set. Such an example could be a logistics company 
that allows drivers to track their designated vehicles’ locations through their mobile phone: 
the company can simply modify the active policies to give a specific individual access to a 
vehicle’s location service; after returning the vehicle, a policy reset can withdraw the driver’s 
access privileges. 

5.4.3 PROOF OF CONCEPT 
As a proof of concept, we retrofitted RtVMF onto an existing vehicle, using off-the-shelf 
components. The setup relies on the infotainment system – or the user’s smart phone, if a 
smart infotainment system is not available, as was the case with the vehicle we used – for 
communication with the backend system. An Android-based application runs on the smart 
device, performing the vehicle’s basic reasoning process, also communicating and receiving 
commands from the C&C. The application collects information regarding the car’s sensors (e.g. 
fuel consumption) from the ECU via a widely available and affordable Bluetooth-enabled OBD 
scan tool (model ELM327 Bluetooth OBD-II, cost of ~10 Euros). The application collects 
additional data from sensors integrated into infotainment, namely acceleration and GPS 
position. The insert in Figure 61 depicts the above car setup. 
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FIGURE 61. TEST-BED USED FOR DEMONSTRATION & PERFORMANCE EVALUATION. PROOF OF CONCEPT 
RTVMF RETROFITTING (INSERT) 

 

RtVMF can also incorporate a smart city’s infrastructure and, as proof of this, we include a 
wireless sensor network (WSN) in the test setup, emulating e.g. environmental or traffic 
sensors spread across a smart road. The sensors communicate via a reputation-based secure 
routing protocol (presented in Hatzivasilis et al. [162]), enabling them to detect several types 
of sensor malfunctions and malicious attacks, guaranteeing network service continuation and 
resilience. The backend collects and processes information from the WSN’s gateway, including 
it into the reasoning process. 

5.4.3.1 DEMONSTRATION SCENARIO 
We demonstrate RtVMF using a smart city scenario that includes the WSN-equipped smart 
city infrastructure described above, a backend C&C and two smart vehicles with various 
sensing capabilities. The scenario architecture appears in Figure 60. 

The use case scenario aims to demonstrate that the RtVMF backend is automatically informed 
of all changes in the various entities and their subcomponents, composing a new SPD state 
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based on these updated metrics. The set of countermeasures are able to mutually support 
each other when the system has to react to a particular incident (attack, emergency etc.), 
maintaining acceptable SPD levels, while conserving resources (if needed), also informing and 
aiding the response of the various stakeholders (vehicle owner, emergency services etc.). The 
scenario steps appear in detail in Table 9. 

TABLE 9. SCENARIO STEPS 

STEP Events Effect Overall 
(S,P,D) 

State 
Visualization 

1 Power-on of all systems and 
discovery/registration 

 Initial 
State 80,70,65 

 

2 

The WSN detects a Black Hole attack, which 
causes the Security level to decrease, 
indicating malicious activity.  
 
MA is informed through WSN that an attack 
occurs and it sends a command to the vehicles 
to increase security.  

Security 
level 

decreases 
60, 70, 65 

 

3 

Security level is increased on both Car 1 & Car 
2, as they now use stronger encryption to 
better safeguard V2V and V2Backend 
communications in the context of a potentially 
compromised infrastructure. 
 
MA is informed. 

Security 
level 

increases 
85,70,65 

 

4 

The WSN has counteracted the Black Hole 
attack, reporting the change to the MA. The 
Security level is now higher, as the malicious 
activity has been countered. 
 
The MA asks Cars 1 & 2 to return to normal 
state (to conserve resources) 

Security 
level 

returns to 
initial state 

80, 70, 65 

 

5 

ECU of Vehicle 1 reports increased engine 
temperature, affecting its Dependability level. 
 
MA is informed. 

Dependabil
ity level 

decreases 
80, 70, 50 
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6 

Car 1 crashes (lowering SA1 Dependability); 
eCall message transmission. 
C&C now has access to exact vehicle location, 
as dictated by access control policies (lowering 
SA1 Privacy). 
Encryption is disabled to facilitate emergency 
response (lowering SA1 Security). 
 
The MA is informed and sends email to C&C 
operators/administrators. 

S & P & D 
levels 

decrease 
50, 50, 40 

 

7 

Car 1 is repaired, returning to normal SPD 
state.  
 
SA1 reports new state to MA. 

S & P & D 
levels 

increase 
80,70,65 

 

 

5.4.3.2 PERFORMANCE EVALUATION 
As a full-scale deployment was not feasible, an experimental test-bed was used to evaluate 
RtVMF. We deployed a Linux-based device, emulating the ECU, on a BeagleBone embedded 
device (720MHz ARM Cortex-A8 processor, 256MB RAM, Linux OS). The Android-based 
version of the agent was deployed on a tablet (1.9GHz quad-core processor, 2GB RAM, 
Android OS), emulating the vehicle’s infotainment. The backend system run on a laptop PC, 
while a separate laptop was used as a gateway for the “smart city infrastructure” WSN which 
was based on IRIS motes (Atmel ATmega1281 16MHz CPU, 8kB RAM, 128Kb flash) running the 
reputation-based secure routing. Finally, a desktop PC was used as a client to the services 
provided by the vehicle (e.g. to access its location), for benchmarking purposes. This setup, 
also used to carry out all of the demonstration steps, appears in Figure 61. 

We evaluated the performance of RtVMF focusing on the resource-constrained devices, as 
documenting all performance aspects of all entities involved in such complex framework 
would not be practical. The benchmark client issued consecutive requests to access the smart 
vehicle’s location (from the infotainment device) and its engine temperature (from the ECU). 
Access control mechanisms protected both operations, thus, before replying, the devices 
communicated with the backend to verify that the client was authorized to access this data. 
Furthermore, at random intervals, the benchmark client would communicate with the master 
agent to trigger changes in the SPD state of the prototypes (e.g. to increase the key length 
used for encryption), thus evaluating the impact such changes can have on the responsiveness 
of the devices and the system as a whole. 

The master agent is the most computationally demanding entity of RtVMF; its code size is 
1.87MB, occupies 45MB RAM and needs 1.6 seconds, on average, to perform the reasoning 
process.  Moving to other entities, we focused on the infotainment device (i.e. the android 
application) and the corresponding Linux-based application developed emulating the ECU. 
Their CPU load during tests was not that significant, with an average of 4.8% recorded on the 
Beaglebone and of 4.1% on the Android platform. Memory consumption was also acceptable, 
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averaging 33.46MB on the Beaglebone and 26MB on the Android device. The most interesting 
performance parameter is the delay experienced by the backend operator attempting to 
retrieve the smart vehicle’s status and the latency of the system when changing between SPD 
states; also confirmed by relevant pilot programs, where stakeholders highlighted the need to 
have real-time or near real-time access to vehicles’ operating parameters [155]. These results 
appear in Figure 62, which shows the response time (recorded client-side) for each of the 
requests issued concurrently to both the vehicle’s infotainment (tablet) and its ECU 
(Beaglebone). The Linux-based embedded device is more responsive, with an average 
response time of 93.16ms compared to 198.7ms for the infotainment. This is reasonable, as 
there are more processes running at the background on the Android tablet, including the 
vehicle agent (which also features a GUI, further affecting its responsiveness). Nevertheless, 
both devices demonstrated acceptable response times. Also evident in the graph are the 
spikes recorded when the devices had to change SPD states (i.e. had to process the incoming 
master agent request, change their operating parameters accordingly and inform the master 
agent once the changes were in place). These SPD state changes do introduce significant 
delays, but they are not a concern, as they should be rare during normal operation (when the 
framework needs to react to some attack, when a vehicle crashes etc.). 

 

FIGURE 62. RESPONSE TIME (IN MS) PER REQUEST, FOR BOTH TEST PLATFORMS 

While the above results validate the proof-of-concept, realistic, larger-scale deployments 
should not be problematic either: the only potential bottleneck is at the backend, and 
especially the reasoning process at the master agent. Nevertheless, Jess-EC provides an 
efficient method for pattern matching. The computational complexity is linear in the working 
memory size and is of the order of O(RFP), where R is the number of rules, P is the average 
number of patterns per rule left-hand-side, and F is the number of facts on the working 
memory. In our case, the implemented management theory consists of around 50 rules. P is 
kept small (in order of one to three) as each entity is assigned a unique identifier and the 
scenario events affect specifically declared components. Thus, only F affects the scalability of 
the reasoning process. Every new vehicle requires about 10 facts to be modelled, resulting in 
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low overhead (in the nanosecond range) to integrate its status to the system’s total and less 
than 40 extra bytes of memory for the master agent. 

5.4.4 SUMMARY 
This section presented RtVMF, a smart vehicle management framework based on uSPBM 
which provides real-time monitoring of vehicle fleets, including secure, dependable and 
privacy-aware monitoring of vehicles’ operating parameters. The framework can maintain 
vehicle fleets in good condition by constant monitoring of vehicle health and drivers’ 
compliance to good-driving practices, allowing prompt reporting to various events (e.g. an 
emergency), adapting accordingly, and also informing and aiding the response of emergency 
services. 

Government and emergency services could monitor their fleet improving everyday workflow 
and vehicle assignments, fully exploiting vehicle investments. Private sector entities operating 
in transportation could also benefit by adopting the proposed framework. Bus and taxi 
companies could reduce the transportation time, designing and adopting better strategies to 
satisfy their passengers’ expectations, e.g. by better scheduling trips, thus providing quick and 
timely service. 

Moreover, it can help achieve compliance with governmental regulations but also helps build 
solid business cases. These involve retrofitting the large number of existing vehicles, but also 
enabling novel services. Such services may include enhanced road insurance services, 
adjusting fees based on user driving behavior, mileage, vehicle condition etc., while 
safeguarding users’ privacy by, e.g., ensuring their preferences are not violated through strong 
policy enforcement mechanisms. 
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6. CONCLUSIONS & FUTURE WORK 
Ubiquitous devices in the form of resource-constrained interconnected embedded systems 
are constantly gaining popularity. Such devices nowadays offer real-time accessibility and 
have the capability to provide various services to remote parties. Although such connectivity 
has paved the road to many new applications boosted from technological advances in 
processors, memory and communication technologies, it has raised many privacy and security 
concerns.  

In many environments, networks of devices manage well-defined services and process 
information that require protection from malicious entities attempting to perform 
unauthorized access and modifications. The information they manage might be safety critical, 
sensitive, or confidential, and therefore constitute an attractive target. Their protection 
necessitates the deployment of robust mechanisms that will, among others, control access to 
participating nodes’ resources and prevent data breaches. This is not a trivial task, considering 
the resource limitations of some of the nodes that prohibit the deployment of 
computationally demanding mechanisms. Moreover, parameters related to the environment 
that these nodes operate also have to be considered. Unattended nodes operating in hostile 
environments should not be left with the responsibility to make critical decisions on requests 
issued by remote third parties regarding access permission to their resources. These nodes 
are subject to physical compromise. In this case it is essential not to expose any unnecessary 
functionality to unauthorized entities to protect the whole system. Besides that, these nodes 
might not even have the capacity to handle such requests and make appropriate decisions. In 
others, it might not be appropriate to consume valuable energy resources on the decision 
making process. Such requests should therefore be off-loaded to more powerful, protected 
and authorized nodes that have the capability and functionality to handle them and make 
decisions based on robust access control mechanisms.  

The scheme proposed in this thesis addresses the above requirements and defines a policy-
based management mechanism based on eXtensible Access control Markup Language 
(XACML, [22]) policies. It provides serving nodes the ability to control access to their resources 
based on policy constraints set by the system owner. Considering that managed nodes might 
not have the computing resources to accommodate expensive mechanisms the core decision 
process is undertaken by more powerful nodes expected to operate within node’s trusted 
environment. Such an approach allows requests to be directly addressed to the node in 
question, while maintaining the capability to centrally control access to said nodes.  

The service oriented nature of the proposed scheme is accomplished by the use of the Devices 
Profile for Web Services (DPWS, [23]), an OASIS standard which allows the deployment of 
devices aligned with the Web Services technologies, thus facilitating interoperability among 
services provided by resource-constrained devices. The implementations of these compact 
web services are based on a novel set of libraries, Node.DPWS, which outperform the existing 
platform-agnostic tools available to developers. 

The proposed architecture can be considered a generic policy-based management model that 
can be easily adapted to meet certain requirements of various ubiquitous computing -related 
scenarios. It is based on standardized mechanisms, thus allowing new devices to easily join 
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existing networks and offer services protected by a predefined or dynamic policy set. It 
facilitates use of smart devices for enhancing citizens’ lives while preserving their privacy and 
addressing their security concerns. Based on the policy rules set by the system owner, the 
proposed architecture provides fine-grained access control in ubiquitous computing and the 
Internet of Things (IoT).  

Combining XACML with DPWS, we aim to tackle two of the most important IoT barriers, as 
recognized by end-users, researchers and business stakeholders alike: lack of interoperability 
and the associated difficulty of device management, along with the lack of fine-grained, 
context-aware access control. With regard to the latter, uSPBM does indeed offer fine-
grained, context-aware authentication & authorization for users, devices & services, while the 
former (i.e. interoperability) is guaranteed through the standardized communication 
technologies adopted. This also allows us to exploit pre-existing work on these technologies 
(e.g. specifications to adapt XACML policies to different domains and the successful use of 
SOAs in a variety of areas). Facilitated by the underlying design choices, uSPBM’s entities are 
platform-agnostic and interact seamlessly, minimizing involvement in deploying, setting up 
and maintaining the system. 

The framework is also extremely flexible and modular, operating with a different subset of 
modules needed for each scenario (e.g. some management or authentication features may be 
needed in one scenario, but not in another). The flexibility in terms of deployment options is 
enhanced by the presence of cross-domain proxies, which allow us to overcome the 
limitations of DPWS and provide seamless interactions between different domains and 
networks. Moreover, each entity type may be assigned more than one role, in scenarios where 
this is feasible, thus allowing the system to offload computationally demanding tasks to other 
infrastructure components.  

Emphasis is also given on the security of the communicated request/response and service 
provision messages, as a critical issue is the protection of policy messages exchanged among 
the framework’s entities. The mechanisms deployed for this task are closely dependent on the 
application requirements (e.g. the need for point-to-point or message-level confidentiality), 
as well as the potential support for more advanced security characteristics, such as node trust-
sharing schemes and security context awareness. From a cryptographic point of view a 
scheme may seem far more efficient but the overall overhead may actually be quite significant 
and render the scheme impractical for large-sized networks. To this end, different security 
mechanisms have been analyzed and implemented, both symmetric and asymmetric in 
nature, each with its intrinsic characteristics. In any case, before making a decision, several 
parameters need to be considered in order to adapt the proposed framework to a specific 
application and its requirements. 

Finally, efforts were made to produce proof-of-concept implementations of each of the 
framework’s entities, to validate the feasibility of the proposed approach in various 
application domains (smart homes, e-health, smart vehicles) and on a number of 
heterogeneous hardware platforms (PCs/laptops, embedded devices, smartphones/tablets 
and wireless sensor devices) 
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There are a variety of aspects to explore in order to improve the framework’s features and its 
applicability to a variety of domains. Focusing on the authorization language, additional work 
should be carried out on adapting the utilized standards to better facilitate smart city and IoT 
deployments in general. More specifically, XACML policies could be tailored to the needs of 
specific ubiquitous computing deployments and their intrinsic requirements. While there are 
already specifications for adapting XACML to various areas (e.g. healthcare [141]) and specific 
requirements (e.g. privacy [163]), there are a variety of application areas brought forward by 
the IoT (agriculture, industry, smart homes etc.) that could also be explored. In this context, 
semantics are often utilized to provide context-awareness [164] and spatio-temporal factors 
have to be considered, due to the constant mobility of users and their devices [165], [166] 
with application-specific requirements (e.g. healthcare [74]). These efforts could lead to the 
definition of corresponding XACML specifications, potentially extending XACML policies to 
consolidate the requirements introduced in the new IoT reality. 

In terms of the framework’s communications, more lightweight DPWS implementations could 
be developed. This would be especially useful for scenarios involving extremely resource-
constrained devices (e.g. sensors, as in [167]). Moreover, this would help further evaluate the 
proposed framework on alternative sensor platforms, to include devices less capable than the 
SunSPOTs. This work will have to be carried out concurrently with the investigation of 
lightweight cryptographic primitives appropriate for said devices and the communication 
mediums they typically use. 

Some of the newer IoT-oriented protocols could also be investigated for the framework’s 
underlying communications, comparing them to DPWS. Potential alternative standardized 
protocols include CoAP [168], MQTT [24] (already used for uSPBM’s proxy communications) 
and XMPP [169], among others, also considering the alternative security mechanisms 
available to each protocol. The results of these efforts could also lead to the adoption of a 
hybrid, custom protocol, combining the advantages of the various already existing 
standardized solutions; even though such an approach would inevitably compromise the 
interoperability with existing standards.  

Regardless of the application area where uSPBM will be deployed, stakeholders (e.g. business 
or homeowners) using the framework will be responsible for defining some parameters of the 
active policy set, depending on their requirements and preferences. Thus, an important aspect 
to be investigated is the provision of user-friendly interfaces for specifying access control 
policies, e.g. using a GUI with easy to use drop-down menus and tick boxes or having the user 
answer simple questions, automatically translating the user input to policies. 

Finally, uSPBM will have to be tested on a larger scale, to confirm its effectiveness in actual 
IoT-scale deployments. This will be necessary in order to collect valuable feedback to improve 
key areas of uSPBM’s operation, such as its scalability, and, most importantly, its ease of 
deployment, use and maintenance. 

Along with the above, further research is required for establishing secure mechanisms tailored 
for ESs, in order to address potential threats to their secure operation, including those 
exacerbated by the intrinsic characteristics of the devices and their application fields, 
especially in the case of critical systems’ applications. What is more, given the widespread 
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adoption of smart devices in our everyday lives (e.g. smart vehicles, smart houses, smart 
clothing), it is important to deal effectively with the inherent security concerns. The challenge 
lies with the researchers to put more effort in the above matters and come up with 
appropriate solutions, thus helping realize the promise of pervasive computing and the 
Internet of Things (IoT). 
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ANNEX A – EMBEDDED SYSTEMS SECURITY 
Embedded systems (ESs) permeate our lives in various forms, ranging from avionics to e-
textiles, automobiles, home automation and wireless sensor nodes. In terms of their physical 
size, they range from miniature wearable or sensor nodes (i.e. motes) to large industrial 
deployments of programmable logic controllers (PLCs).  

The various intrinsic and application-specific characteristics of ESs complicate the task of 
guaranteeing the security, namely handling the confidentiality, integrity and availability 
aspects of their applications and the data they handle. Their characteristics habitually include 
resource constraints (namely computational capabilities, storage capacity, memory and 
power), dynamically formulated, remotely-managed networking and even unattended 
operation in hostile environment and time-critical applications. Therefore, while securing 
networked computer systems is not a novel concern, the techniques developed for personal 
and enterprise systems are often unsatisfactory or even inapplicable to embedded devices. 

In addition to the above, ES applications often feature direct interaction with the physical 
world, being responsible for vital, time-critical applications, where a delay or a speed-up of 
even a fraction of a second in system’s response or reaction could have dire consequences. 
This further differentiates ES security, as a security incident in a critical application may lead 
to asset damage or even personal injury and death.  

Moreover, next-generation ES services, like the ones pertaining to the Internet of Things (IoT), 
may require the integration of multiple administrative domains (e.g. one domain may host the 
devices and enable access to devices and information, whereas another domain may make 
use of the information for designing innovative services). Each domain will typically have its 
own security requirements and constraints, therefore ensuring their security [170], while 
maintaining interoperability [171], is a challenging task.  

This section aims to provide an overview of the challenges in designing secure embedded 
systems, covering both node hardware and software issues, as well as relevant network 
protocols and cryptographic algorithms. In the next subsections we present physical security 
issues that are evident in embedded systems, the various access control mechanisms used for 
controlling access to resources. Indicative examples of cryptographic mechanisms specially-
crafted for embedded systems and various protocol and management issues.  Moreover, 
through a survey of pertinent EU-funded research efforts, recent advances in the field are 
identified, highlighting opportunities for future research. 

PHYSICAL SECURITY ISSUES 
Regarding the physical layer and given the often unattended nature of deployed ESs, 
sometimes within hostile environments, the risk of device tampering should not be ignored. 
In the remainder of this section, some aspects of physical security in ESs are presented. 

SIDE CHANNEL ATTACKS 
A malicious entity’s physical access to a non-tamper-resistant device, apart from providing 
physical access to the system components, would also enable the launch of various attacks. 
These include micro-probing and reverse engineering or sophisticated side-channel attacks 
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(SCA), timing attacks, simple power analysis (SPA), differential power analysis (DPA), as well 
as their electro-magnetic counterparts, SEMA and DEMA respectively, and also differential 
fault attacks (DFA). The aforementioned methods can potentially expose critical information 
concerning the operation of the device (algorithms used, length of keys etc.) which could 
prove critical to the security both of the device itself and the network as a whole.  

In the case of ESs utilizing field-programmable gate arrays (FPGAs), the concept of run-time 
reconfiguration [172] can be explored to reduce component count and/or power 
consumption, increase fault tolerance etc. as needed. Self-reconfigurability can, for example, 
make a node more secure against side-channel attacks through the measurement of 
electromagnetic radiation and also implement self-healing properties. Self-recovery 
mechanisms could reallocate functional blocks to mark and replace faulty resources, through 
device reprogramming in the case of self-reconfigurable nodes or through controlled 
degradation of service techniques in less “intelligent” devices. Furthermore, the above-
mentioned side channels could also have a positive aspect, as research has shown they can be 
exploited to verify the integrity of embedded software and to control the execution flow [173], 
[174]. 

TRUSTED PLATFORM MODULE 
A Trusted Platform Module (TPM, [175]), is a microcontroller that can securely store a 
relatively small amount of information on it, which can then be used either for authenticating 
the platform (e.g. passwords, certificates, encryption keys) or for ensuring that the platform 
has not been breached (e.g. platform measurements, configuration data). Still, the 
microcontroller does not control the software that is running on the platform itself. Instead, 
through the tamper-resistant security functions it provides, the platform’s operating system 
or any running applications access the necessary information, to determine and implement 
their security policies accordingly. The software embedded on such a TPM component is 
directly related to the component’s physical size (the higher the memory requirements, the 
larger the module’s surface) and consequently cost. Any optimization of the module’s 
software will have a direct impact on the overall execution speed, as well as to the power 
consumption (faster execution allows the module to return to a more power sparring 
idle/sleep state). 

PROTECTION OF POWER SUPPLY 
Several types of embedded systems devices are mostly battery-powered, something that 
creates issues of energy constraints. Especially in cases where e.g. small sensor nodes are 
meant to be used in unattended environments, they are expected to operate for certain time 
intervals (sometimes spanning over a few months) until they have their power source replaced 
or recharged. An attacker could therefore launch a Denial-of-Service (DoS) attack, aiming at 
draining the battery power by forcing extensive use of the device’s wireless connection or 
CPU. 

In order for the electronic parts of the embedded device to function properly, continuous 
power is required, with both voltage and current levels lying within specific limits. The power 
source should also be able to monitor its own state and react accordingly in cases where an 
issue is detected that could affect the normal operation of the system. Moreover, suitable fail-
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safe mechanisms should exist, implemented in software and/or hardware that would protect 
the device and prevent any potential damage from spreading across the rest of its 
components.  

Most of the requirements mentioned above are satisfied in modern uninterruptible power 
supply (UPS) systems; nevertheless, they cannot easily be applied to the operating 
environments of some embedded systems, due to strict size and cost constraints. Instead, 
alternative solutions are implemented, such as energy scavenging, super-capacitors, micro-
solar cells and remote/wireless power transferring schemes [176], [177], to name a few. Still, 
such solutions must carefully be adopted to each specific scenario (e.g. a micro-solar cell is 
useless if the device cannot be reached by enough direct sunlight), also taking into 
consideration fail-safe options with respect to the criticality of the possible failures and the 
probability for them to occur, so as to protect the device effectively. 

ACCESS CONTROL 
Access control mechanisms are essential to prevent unauthorized/malicious entities to access 
the resources, physical or otherwise, available to the ESs as well as the hosting devices. The 
way access control is implemented varies depending on the hardware capabilities of the 
nodes, the type of network and the application under consideration. Some common methods 
include:  

1. Profile authentication: If a node has some specific characteristics (e.g. hardware 
specifications, operating system), it can join an existing network. 

2. Access code: Demonstrating knowledge of the code grants access to the network 
and its resources. This code can either be programmable or configurable. This 
category includes typical password access, based on memory data, switch 
configuration or any other procedure. 

3. Predefined topology: Only pre-established nodes can join the network (e.g. MAC 
filtering).  

There is ongoing research on ES-specific access control protocols since the commonly-used 
authentication schemes, typically password-based, can be impractical or even insecure when 
considering the heterogeneous nature of ES networks can demonstrate and the scalable 
remote manageability often required [178]. Moreover, even in wired embedded networks and 
in industries such as automotive and aviation, most control networks utilized (e.g. Controller 
Area Network, Time-Triggered Protocol, FlexRay) are designed with safety and reliability in 
mind and do not feature any built-in security mechanisms like node authentication, data 
encryption or prevention of DoS attacks [179], [180], leading to critical vulnerabilities [8]. 

ESs are often deployed in applications bound by strict security requirements (e.g. e-Health 
applications are a prime example), including secure transmission of sensitive data to remote 
entities, instructions that need to reach actuators in an unaltered form, robust entity 
authentication and access control mechanisms [138]. 

Regarding the latter, among the proposed schemes that have gained popularity are those 
where decisions are made based on policy restrictions. Such a scheme is the standardized by 
OASIS eXtensible Access Control Markup Language (XACML), an XML-based general-purpose 
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policy decision language. Besides being used for representing authorization and entitlement 
policies for managing access to resources, it provides a processing model for evaluating 
requests and making decisions based on the defined set of policies [181]. Policy-based access 
control allows dynamic decision making on controlled nodes’ resources based on policy 
restrictions set by the system owner.  

Still, unprotected policy messages would expose the system’s security, revealing private 
information to attackers who might also try to identify policy restrictions and do a mapping of 
the security measures taken for the specific environments, hence exploiting potential 
vulnerabilities. Moreover, in a more active approach, an attacker might masquerade as a 
legitimate entity or modify policy-related messages, such as authorization requests and/or 
decisions, obligations or advices in an attempt to downgrade adopted measures and bypass 
access controls. To avoid the aforementioned problems, appropriate security measures, like 
the ones detailed in later subsections, have to be deployed to safeguard message 
confidentiality, integrity and authentication. 

DENIAL OF SERVICE (DOS) 
The aim of a DoS or a Distributed DoS (DDoS) attack is to harm the availability of a specific 
node or a network of nodes, thus preventing or delaying legitimate entities from accessing the 
services or resources they wish to [182]. DoS attacks on ES nodes can take multiple forms, 
such as exploiting the vulnerabilities in their software/firmware, or attacking the network they 
belong to by jamming, misrouting, flooding and so on. DoS attacks can be mounted more or 
less on every layer, by exploiting the particular characteristics or mechanisms found in them. 
Their aim is to cause the nodes to constantly process or send dummy data, thus draining their 
power source via unnecessary use of their wireless connection and prolonged demand for 
memory and CPU cycles. The effects of such attacks are particularly critical in the case of nano 
and micro/personal nodes, where the power reserve is usually rather limited. In addition, 
flooding types of DoS attacks consume part of the network’s bandwidth, which may also 
indirectly affect the normal operation of the network or a significant part of it, depending on 
the overall network’s capacity. 

Another type of DoS attack involves the case where an attacker gains physical access to the 
device and modifies or destroys it as a physical entity. Depending on the role of this particular 
node for the rest of the network or cluster of nodes it belongs to, its unavailability could have 
a significant impact on these entities. For instance, it could lead to partial or total loss of the 
data sink, selection of non-optimal routes, or even the loss of a control node that is vital for 
the normal operation of the system. 

Given that large-scale networks are most probably heterogeneous in their nature, they 
contain different capabilities and vulnerabilities, which need to be addressed independently 
for achieving effective protection against DoS attacks. What is more, in cases where there is 
provision for dynamic network size variation, shielding against DoS attacks can become a very 
challenging task [183]. In addition, the problem becomes even more complex and difficult to 
solve for cases where the available resources and capabilities exhibit strict limitations. 
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In cases where the ES network is of an unattended nature, the use of a remote management 
system is vital. Nevertheless, such systems offer additional attack surface and their 
compromise can allow an adversary to upload malicious firmware. In this way, the attacker is 
able to corrupt memory and data sent/received or even lead to permanent damage of 
hardware sub-components by intended misconfiguration (Permanent DoS – PDoS, or 
bricking). The success of such attacks is based on the fact that the various firmware upgrade 
mechanisms are usually insecure and do not employ complex security mechanisms for 
verifying authenticity and integrity, such as the ones used in digital certificates. This process 
of rendering a device unbootable or non-reflashable is also known as phlashing [184].  

One of the main reasons for the DoS attacks being relatively easy to successfully launch is the 
use of old protocols that suffer from lack of security requirements. For instance, the IP 
protocol takes for granted various assumptions regarding the trust of network nodes and 
consequently does not dispute the related information found in the packet headers and/or 
payload. Any integrity-checking mechanisms are rather primitive and simple in nature (e.g. 
checksums), as their aim is to detect accidental data corruption and not deliberate 
modification of information. Therefore, continuing to use such protocols as the base for 
building custom network communication protocols on it makes it particularly hard to design 
(D)DoS-resilient systems and services. An additional obstacle is the fact that basic software 
methodologies do not take into consideration security requirements, able to deal with such 
kinds of attacks [185]. 

The majority of the aforementioned attacks can be avoided by employing suitable 
authentication, access control and integrity-checking mechanisms. It is also equally important 
to provide secure mechanisms for node firmware deployment and software updates, able to 
verify both the authenticity and integrity of the firmware/software to be uploaded and reject 
it if it does not pass the required checks. Furthermore, more recent network protocols should 
be used, able to provide means and metrics for quantifying (D)DoS attack resilience [186]. The 
use of intrinsically secure ES firmware offering various fail-safe mechanisms or even hardware 
redundancy could be employed in cases where dependability is highly critical (e.g. avionics 
[187] and the military), as they are expected to increase the cost of the end-product. 

CRYPTOGRAPHIC MECHANISMS 
As has already been mentioned, embedded devices often have inherent limitations in terms 
of processing power, memory, storage and energy. Efficient algorithm designs and 
implementations that adhere to these constraints, while satisfying application demands, can 
significantly impact battery lifetime and allow the implementation of many applications. 

Key management is an equally important issue, both from a security and a management point 
of view. The rather simple pre-shared key (PSK) scheme, where every embedded device has 
the necessary cryptographic keys pre-installed, is difficult to manage in distributed and 
dynamic environments (physical access to the device is required) or in cases where there is a 
large number of such devices. Moreover, the disclosure of the master key leads to the instant 
compromise of all the system/network. Having an appropriate scheme that triggers periodic 
re-keying limits the amount of ciphertext that has been encrypted with the same key, thus 
increasing the system’s security level. 
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This section presents several lightweight cryptographic and key management schemes, 
suitable for resource-constrained devices. 

LIGHTWEIGHT CRYPTOGRAPHY 
Embedded devices often have inherent limitations in terms of processing power, memory, 
storage and energy. The cryptographic functionality that ESs utilize to provide tamper 
resistant hardware and software security functions has direct impact on the systems: 

• Size: Memory elements constitute a significant part of the module’s surface.  
• Cost: Directly linked to the surface of the component.  
• Speed: Optimized code provides results faster.  
• Power Consumption: The quicker a set of instructions is executed, the quicker the 

module can return to an idle state or be put in sleep mode where power 
consumption is minimal.  

Traditional cryptography solutions focus in providing high levels of security, ignoring the 
requirements of constrained devices. Lightweight cryptography (LWC) is a research field that 
has developed in recent years and focuses in designing schemes for devices with constrained 
capabilities in power supply, connectivity, hardware and software (e.g. RFIDs, sensor nodes, 
contactless smartcards, and mobile devices). There has already been significant effort on the 
subject of crypto optimization, aiming to maintain the security level that “traditional” 
algorithms and implementations offer while narrowing what is often referred to as “battery 
gap” [188], i.e. the very high energy consumption overheads for supporting security on 
battery-constrained systems. A number of surveys [189]–[193] provide an overview of this 
subject. 

Schemes proposed include hardware designs, which are typically considered more suitable for 
ultra-constrained devices, as well as software and hybrid implementations for lightweight 
devices.  

• Hardware designs implement the exact functionality without redundant components. 
The main design goal is the reduction of the logic gates that are required to materialize 
the cipher. This metric is called Gate Equivalent (GE [194]). A small GE predisposes 
that the circuit is cheap and consumes little power. For constrained de-vices an 
implementation including up to 3000 GE can be considered acceptable while for even 
smaller devices, like 4-bit microcontrollers, implementations of 1000 GE are being 
studied. Energy consumption and power constraints are other significant factors. 
Energy consumption is important when a device is running on batteries while power 
constraints affect passive devices, like passive RFID tags, that must be connected to a 
host device to operate. Security attacks and relevant countermeasures that are 
correlated to power analysis are also considered in hardware designs.  

• Software implementations typically only require a microprocessor to operate. The 
main design goals are the reduction of memory and processing requirements of the 
cipher. Implementations are optimized for throughput and power savings. Portability 
is their main advantage over hardware implementations.  
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Hybrid schemes combine the two approaches exploiting the best features from both. 
Hardware implements the basic cipher functionality and software performs the data and 
communication manipulation. A common practice is the design of cryptographic co-
processors. The throughput is mostly affected by the communication bandwidth between 
hardware and software components. Hybrid implementations target on specific 
communication applications, like RFID tags, portable devices and Internet servers. 

ISO/IEC 29192 includes ciphers and cryptographic mechanisms for LWC. The standards are 
PRESENT [194] and CLEFIA [195] for block ciphers, and TRIVIUM [196] and Enocoro  [197] for 
stream ciphers. 

Compact implementations of “traditional” ciphers, like AES [198], are also applied to 
embedded devices. Newer lightweight block ciphers are Humminbird-2 [199], Piccolo [195], 
SIMON and SPECK [200], ITUbee [201]. For stream ciphers, the finalists of the eSTREAM 
project [202], Grain, Salsa20, Rabbit and HC128 are suitable for LWC. 

Hash functions design is another area where further research is required. For LWC, compact 
implementations of the standardised functions SHA-2 [203], SHA-3 [204] are examined. Newer 
functions that are suitable in this domain are Blake [204], Photon [205], SPONGENT [206] and 
other hash functions based on lightweight block ciphers, like DM-PRESENT [203]. 

Asymmetric algorithms and protocols must also be adapted to operate on devices with the 
afore-mentioned resource limitations. This is an elaborate task, since asymmetric ciphers are 
computationally far more demanding than their symmetric counterparts and are usually 
executed on powerful hardware. The performance gap is exacerbated on constrained devices, 
such as 8-bit microcontrollers. Even an optimized asymmetric algorithm (e.g. elliptic-curve 
cryptography – ECC), performs 100 to 1000 times more slowly than a standard symmetric 
algorithm (e.g. AES), which correlates to a proportionally higher power consumption. 

In terms of practical relevance, two families of established public-key algorithms stand out: 
ECC and NTRU [207]. ECC in particular is considered the most attractive option in ESs, due to 
its small operand length and its relatively low processing requirements. NTRU is the most 
popular lattice-based cryptosystem. Its security is based on the shortest vector problem and 
it can efficiently be deployed on embedded systems. Compared to ECC in hardware, NTRU is 
1.5 times faster with only the 1/7 of the memory footprint. Compared to RSA in software, it is 
200 times faster in key generation, almost 3 times faster in encryption and 30 times faster in 
decryption. 

The need for lightweight cryptography introduces major multi-dimensional challenges in 
cryptographic algorithms design, from the ES operating system (OS) to the hardware and 
software cryptographic provisions embedded on the device itself. Hardware and software co-
design seems to offer the best results in terms of speed/size ratio for many ubiquitous 
computing applications [190]. Regarding primitives that cannot yet be effectively 
implemented (e.g. hashes in the case of crypto and public key crypto in the case of 
asymmetric), alternatives could be investigated so that the protocols which are based upon 
them can be researched further and perhaps put into practice. Special care should be taken 
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during the development of optimized implementations so that they do not introduce new 
leakage channels which could be exploited by Side-Channel Attacks (SCA). 

A comparative analysis of lightweight ciphers on embedded systems was performed recently, 
where the authors evaluate the proposed schemes based on performance metrics and classify 
them for various types of embedded devices [208]. Various cryptographic libraries exist that 
offer key establishment mechanisms and communication protocols, like for example ULCL 
[209], wolfSSL11 and OpenSSL12. 

KEY DISTRIBUTION MECHANISMS 
Key distribution, either for initialization or re-keying [210] has been a challenging topic 
especially for dynamic, heterogeneous and resource-limited environments. The majority of 
these schemes is based on symmetric mechanisms, thus requiring pre-distribution of the 
shared secret with all the disadvantages already discussed. Other schemes [211] are being 
proposed as well, some of which feature location-aware and identity-based mechanisms. 
Although some of the proposed schemes are indeed energy efficient [212], key management 
based on shared secrets has proven ineffective, especially in dynamically-formulated 
infrastructures. There have been attempts to correlate key establishment techniques to 
applications but these were based solely on the use of symmetric keys and on a framework 
level [213]. 

This has led part of the research community to focus its attention on public-key schemes (e.g. 
ECC). This enables the distribution of authentic public keys via insecure channels, as the 
verifying party does not need to have a copy of the secret key. Therefore, a mobile node’s key 
database may, for example, be updated with all valid public keys once, according to a pre-
defined schedule or ad hoc, and from that point onwards the device will be able to 
authenticate other entities in off-line mode.  

Identity-based cryptography – IBC [214] provides an alternative solution to the very expensive, 
for many nodes, public-key cryptography. IBC allows publicly-available information that can 
uniquely identify participating nodes to be utilized for the secure exchange of keys. Thus, 
nodes do not have to depend on a public key infrastructure and digital certificates for the 
exchange of authenticated public keys. The advent of identity-based schemes and pairing-
based cryptography has shown that such schemes offer a promising solution for managing 
keys in resource-constrained nodes [215]. 

Even with a public-key scheme, we still need to implement symmetric cryptography. Thus, 
alternative schemes that are based only in symmetric cryptography are also proposed [216], 
[217]. Some of them are location-aware and identity-based mechanisms and are energy-
efficient. Their disadvantage is the pre-distribution phase that is required prior to first usage. 
The schemes are inefficient in dynamic environments but are proposed in applications where 
public-key schemes cannot be used.  

11 https://www.wolfssl.com/wolfSSL/Home.html 

12 https://www.openssl.org 

165 
 

                                                                 



NETWORK PROTOCOL AND MANAGEMENT ISSUES 
Certain applications of embedded systems, like Wireless Sensor Networks, rely on the integrity 
of the platform for providing trustworthy services (e.g. measurements taken by a sensor). It is 
therefore essential to have a method for validating this integrity and assuring that system 
components have not been compromised. The integrity of the service-requester platform, i.e. 
control node, must also be validated before allowing it to allocate resources to the nodes it 
controls or receive the data these nodes have collected. In addition, it should be established 
that these secure resource management mechanisms will not act as a bottleneck in service 
performance. Examples of current research on the subject are the WS-Attestation mechanism 
[218], which enables Trusted Platform Module (TPM) remote platform attestation using web 
services. 

SECURE RESOURCE MANAGEMENT 
Inspecting the problem from a higher level, middleware resources should be managed by 
monitoring their availability, enforcing a policy based on which of these resources are 
assigned, implementing a secure model for the identification and authorization of requests, 
as well as an accounting system to track resource usage. Most of the above can be found in 
protocol Diameter [219], successor to RADIUS, which offers strong authentication, 
authorization, accounting and resource management mechanisms. Diameter is already 
adopted by many IP systems like in the 3rd Generation Partnership Project (3GPP). 

REPUTATION-BASED SCHEMES 
Reputation-based schemes are a novel paradigm for enhancing security in various 
applications, including secure routing and intrusion detection systems for Mobile Ad Hoc 
Networks – MANETS [220]. These systems are easy to implement, lightweight and can protect 
a MANET from a wide variety of attacks. 

The basic concept is inspired from social behavior and relies on the cooperation of the nodes. 
Much like human interaction, each entity decides to trust or ignore a new, unknown entity 
based on the opinion of its peers about the individual in question. Consequently, much like in 
social networks, trustworthy behavior is encouraged. The three main goals identified [221] for 
reputation systems are:  

• To provide the required information in order to distinguish between a trustworthy 
principal and an untrustworthy one. 

• To encourage principals to act in a trustworthy manner. 
• To discourage untrustworthy principals from participating in the service.  

Reputation-based mechanisms are used in Intrusion Detection Systems (IDSs) and provide two 
main functionalities: Secure routing and resource management. Watchdog and Path-rater 
[222] are the building blocks of such systems. Watchdog is a monitoring component and based 
on its observations Path-rater ranks the available routing paths. The main steps in the 
reasoning process of a reputation-based scheme are as follows:  

1. Gather information.  
2. Score and rank.  
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3. Select entity.  
4. Transaction.  
5. Reward and punish.  

Misbehavior detection and intrusion detection can either be distributed, where information 
about entities’ reputation changes are immediately broadcast to the whole network (or local), 
in which case each entity decides, based solely on its own data about the reputation of other 
nodes. It should be noted, however, that the latter is not as effective in terms of speed in 
detecting and isolating of malicious nodes. Known reputation-based systems for secure 
routing are IRmIDS [223], Reputated-ARAN [224] and CSRAN [225]. 

While secure routing provides P2P protection, reputation-based systems for secure resource 
management provide end-to-end protection. Such systems rank resources, providers and 
consumers. Based on these values, network entities are able to recognize legitimate providers 
and resources of good quality while keeping out selfish and malicious users. Several 
reputation-based schemes have been proposed for resource management in P2P and Grid 
networks [226]. 

ANONYMITY AND LOCATION PRIVACY 
Location-based applications constitute a rapidly expanding market, owing to the widespread 
use and advances in mobile devices and positioning systems alike. Enhanced reality 
applications and other similar services are starting to emerge and are expected to spread in 
the coming years. Other examples of such smart services include location-aware emergency 
response, enhanced entertainment and/or advertisement services, or even location 
monitoring of personnel and fleets of vehicles. 

The location of individual users is necessary in order to enable the abovementioned services 
but, even though its disclosure may not pose a security risk for the embedded device itself, 
said information constitutes sensitive personal data of the user or users associated with each 
device and should be handled accordingly. Disclosure of such information can enable a 
malicious user to harass, blackmail or even enter the individual’s residence (e.g. when he/she 
is away). There is on-going research on the subject, including mechanisms for safeguarding 
location privacy [227], [228] as well as reports on the weaknesses of current “sanitization” 
mechanisms [229].  

Literature on this topic includes variations and enhancements of a few recurring methods. 
Anonymization methods aiming to remove identifying information using generalizations and 
suppressions are the most popular in the literature, with k-anonymity being the basic 
mechanism used, as described in [228]. The principle of k-anonymity involves the use of a 
cloaking area, where there are at least k users in it, and blurs their identities in order to make 
each user’s identity indistinguishable from the rest k−1 users. In general, there are two 
important and mostly unavoidable trade-offs when choosing this k-value: A trade-off between 
privacy and quality of service and a trade-off between privacy and personalization [230]. K-
anonymity-based schemes have typically being deployed for privacy-preserving location 
monitoring and to allow mobile users to take advantage of location-based personalized 
services without compromising their privacy [231], [232]. 
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Elementary anonymity schemes (e.g. a pure k-anonymity scheme) are inadequate if used 
independently and hence they are often combined with auxiliary mechanisms, in order to 
achieve better privacy safeguards [229], [233]. Attempting to further enhance these basic 
schemes, the use of personalized k values is proposed, for systems with context-sensitive 
privacy requirements [227]. Moreover, if combined with l-diversity [234], another dimension 
can be added to k-anonymity, where l is a set of distinct locations. Other than the above 
suggested improvements, the use of dummy locations [235] and semantic information [236] 
are also proposed in the literature, in order to address issues that are not solved by plain k-
anonymity mechanisms.  

Pseudonym-based methods are another common anonymisation theme, involving disposable 
pseudonyms for each node in the location service [237]. As the pseudonyms change over time, 
they are being used as temporal identifiers, making it hard for potential attackers to track the 
users. Silence periods can be introduced to further enhance this concept, as detailed in [238]. 
Other literature schemes rely on path perturbation, i.e. trying to cross paths in areas where 
at least two users meet [239]. 

SECURE SERVICE DISCOVERY, COMPOSITION AND DELIVERY PROTOCOLS 
Services in distributed networks must be discovered, composed and delivered in a secure way. 
The Organisation for the Advancement of Structured Information Standards (OASIS) has 
released related standards including WS-Security [124], WS-Policy [240], WS-Trust [241] and 
WS-Secure Conversation [131] which have already been approved and the current trend is to 
bring web services into ESs and it is thus imperative to adopt the aforementioned 
specifications.  

For this purpose, OASIS developed two standards: Devices Profile for Web Services (DPWS 
[23]) and Web Services Dynamic Discovery (WS-Discovery [94]), which specify the use of web-
services-based communications in resource-constrained and ad hoc environments. The 
profile’s architecture includes hosting and hosted services. A single hosting service is 
associated with each device while the same device may accommodate various hosted 
services. The latter represent the device’s various functional elements and rely on the hosting 
service for discovery. Discovery services are included as well, enabling devices to “advertise” 
their presence on the network and search for other devices. Metadata exchange services 
provide dynamic access to services hosted on a device and their meta-data. Furthermore, 
publish/subscribe eventing services allow other devices to subscribe to messages provided by 
a certain service. 

Additional research on this area has been conducted by the Service-Oriented Architecture for 
Devices (SOA4D[242]) open-source initiative which facilitates the development of service-
oriented software components adapted to the requirements of embedded devices. Web 
Services for Devices (WS4D) is another open source initiative, providing a number of toolkits 
aimed at developing DPWS-compliant applications for resource-constrained devices in ad-hoc 
networks, maintaining interoperability with regular W3C-specified Web Services. A detailed 
overview of the WS4D initiative can be found in [146]. 

COMMUNICATIONS SECURITY 
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Embedded nodes have quite a few choices regarding the protocols they adopt in their 
communication stack, depending on their computation capabilities and needs. One of the 
predominant solutions is the 6LoWPAN [243] stack, i.e. IPv6 over 802.15.4 [244]. Such an 
approach benefits from the adoption of well-known and standardized solutions for providing 
security at the network layer. This is IPsec which, however, has to utilize compressed header 
format [111], [112] to fit into the limited message space provided by IEEE802.15.4, i.e. for low-
power, low data rate wireless communication standard for small devices. 

The network layer, however, is not the only layer in the TCP/IP stack where messages can be 
protected. The others are application and data link layer. The corresponding security 
mechanisms for these two layers are the Datagram Transport Layer Security – DTLS protocol 
[245], which is based on the well-known TLS (Transport Layer Security [115]) but uses 
datagram protocols and the inherent security mechanism of IEEE802.15.4 which is defined in 
the same standard. All these mechanisms were designed to provide at least confidentiality, 
integrity and message authentication, yet they have slightly different properties.  

Security mechanisms found at the bottom layers of the communication stack relieve 
applications from deploying their own distinct security mechanisms. However, this comes at 
a cost. With regards to the IEEE 802.15.4 security protocol which protects messages at the 
data link layer, protection takes place on a node-by-node basis. This introduces significant 
computational overhead to the nodes which have to decrypt incoming messages, verify their 
integrity, and re-encrypt them, typically using a different set of keys, prior to forwarding them 
to the next node. This process consumes valuable node resources on routing nodes.  

As opposed to 802.15.4, IPsec offers end to end protection of messages. Therefore, 
intermediate routing nodes’ resources are only used for routing packets and not for message 
protection. In this sense, security provided at the network layer can be considered as a 
valuable mechanism for low power and lossy networks.  

IPsec can be either used within such a network to secure communications among participating 
nodes in cases where these are deployed in a hostile environment to secure communications 
among participating nodes, or between a node and remote party. This second choice requires 
utilizing a gateway, e.g. sink node, which can simply forward messages or set up a tunnel to 
further protect messages and also provide communicating node details and traffic flow 
confidentiality. As an example, consider the secure remote access to an aircraft’s device to 
control it in case of an emergency. The aircraft’s gateway can be used to further protect the 
message and hide the addresses of communicating entities, while padding can conceal 
communication patterns and characteristics.  

Compared to IPsec, DTLS demonstrates similar characteristics, in terms of end-to-end 
message protection, but it suffers from an expensive handshake mechanism and the inability 
to cope with applications that utilize the TCP protocol.  

One of the problems one should consider when deploying one of these three solutions, is the 
use of robust key management mechanisms designed for resource-constrained devices. 
Traditional public key cryptography solutions are considered inappropriate in some 
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environments and alternatives, including those that utilize lightweight cryptography, elliptic 
curves and identity based cryptography should be considered. 
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ANNEX B – PERTINENT EU-FUNDED RESEARCH 
This section gives an overview of the research efforts in some recent EU-funded projects 
related to embedded systems security, following a layered approach. In particular, the first 
subsection presents the various technologies related to embedded systems’ nodes. The 
second subsection deals with the network-related technologies, while the third subsection 
presents the approaches followed for the middleware and overlay layers. The final subsection 
focuses on architectures and frameworks, as well as on the formal validation of the security 
of embedded systems. 

Embedded systems security is a recurring theme in current research efforts, brought in the 
limelight by the wide adoption of ubiquitous devices. Significant funding has been allocated 
to various European projects on the subject of embedded systems security, in order to 
investigate and overcome the various security challenges. A survey was conducted to provide 
an overview of recent EU research efforts pertaining to embedded systems security, where 
several prominent security issues and the respective proposed approaches are presented. 
Twenty such projects that focus on embedded systems security aspects were identified and 
the investigated technologies were categorized using a layered approach, to facilitate the 
presentation of the results; the categories comprise the node, network and middleware & 
overlay layers, as well as architectures, frameworks and formal validation of the security of 
embedded systems. 

The survey presented here aims at providing an overview of said past and running projects in 
order to identify emerging trends, state-of-the-art technologies being used or developed, 
opportunities for composing or expanding past work and, generally, highlight open issues that 
need to be addressed in the future. In addition, this survey partly demonstrates the broader 
areas of embedded systems security that researchers chose to focus on, given the latest 
technological advancements (nationally-funded projects have not been taken into account).  

Out of a large number of projects initially gathered, a smaller subset of the most recent ones 
was selected to be included in this work, based on their relevance to security and 
dependability aspects of embedded systems design, as well as their availability of public 
deliverables and publications lists. Research in these projects has been conducted using EU 
resources, hence they have a budget within the funding limits imposed by the EU itself and 
have undergone a similar review process in terms of novelty, application and quality 
requirements. In addition, they all try to achieve the common goal of attaining a uniform 
technological level among all EU state-members. Details on the EU-funded projects related to 
embedded systems security that were selected for the purposes of this survey are presented 
in Table 10. 

TABLE 10. SELECTED EU-FUNDED PROJECTS RELATED TO EMBEDDED SYSTEMS SECURITY. 

# Acronym Project Title Start Date 
End Date 

Cost 
(EUR) Call 

1 AETHER 
Self-adaptive embedded 

technologies for pervasive 
computing architectures 

01/01/200
6 5.92M FP6 
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31/12/200
8 

2 AWISSENET Ad-hoc PAN and wireless sensor 
secure network 

01/01/200
8 

28/02/201
0 

3.10M FP7 

3 CESAR 
Cost-efficient methods and 

processes for safety relevant 
embedded systems 

01/03/200
9 

01/03/201
2 

33.5M ARTEMIS 
JU 

4 CHAT 

Control of heterogeneous 
automation systems: Technologies 

for scalability, reconfigurability 
and security 

01/09/200
8 

31/08/201
1 

3.58M FP7 

5 EVITA E-safety vehicle intrusion 
protected applications 

01/07/200
8 

31/12/201
1 

5.89M FP7 

6 GINSENG Performance control in wireless 
sensor networks 

01/09/200
8 

29/02/201
2 

4.66M FP7 

7 HYDRA 

Networked Embedded System 
middleware for heterogeneous 
physical devices in a distributed 

architecture 

01/07/200
6 

30/06/201
0 

12.75
M FP6 

8 MADNESS 

Methods for predictAble Design of 
heterogeNeous Embedded System 

with adaptivity and reliability 
Support 

01/01/201
0 

31/12/201
2 

2.92M FP7 

9 MORE 

Network-centric Middleware for 
group communications and 

resource sharing across 
heterogeneous embedded 

systems 

01/06/200
6 

31/05/200
9 

2.75M FP6 

10 OVERSEE Open VEhiculaR SEcurE platform 

01/01/201
0 

30/06/201
2 

3.91M FP7 

11 PRESERVE Preparing Secure Vehicle-to-X 
Communication Systems 

01/01/201
1 

31/12/201
4 

5.44M FP7 

12 pSHIELD 
Pilot Embedded Systems 

Architecture for Multi-layer 
Dependable Solutions 

01/06/201
0 

31/12/201
1 

5.40M ARTEMIS 
JU 

13 SecFutur 
Design of Secure and energy-

efficient embedded systems for 
Future internet applications 

01/05/201
0 

30/04/201
3 

4.20M FP7 
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14 SEPIA 
Secure, Embedded Platform with 
advanced Process Isolation and 

Anonymity Capabilities 

01/06/201
0 

31/05/201
3 

3.26M FP7 

15 SMEPP Secure Middleware for embedded 
peer to Peer Systems 

15/09/200
6 

14/09/200
9 

4.46M FP6 

16 TECOM Trusted Embedded Computing 

01/01/200
8 

31/03/201
1 

9.02M FP7 

17 TERESA 
Trusted computing Engineering for 
Resource constrained Embedded 

Systems Applications 

01/11/200
9 

31/10/201
2 

3.79M FP7 

18 UbiSec&Sens Ubiquitous sensing and security in 
the European homeland 

01/01/200
6 

31/12/200
8 

2.91M FP6 

19 UNIQUE Foundations for Forgery-Resistant 
Security Hardware 

01/09/200
9 

29/02/201
2 

4.22M FP7 

20 WSAN4CIP 
Wireless sensor networks for the 

protection of critical 
infrastructures 

01/01/200
9 

31/12/201
1 

4.02M FP7 

 

The ubiquitous nature of embedded systems is evident in Table 9, which features the various 
application areas pertaining to each project. It should be noted that the application table was 
produced based on how the researchers themselves identify the application areas of the 
technologies they present, as this emerges from the project deliverables and publications. It 
goes without saying that many of the identified technologies could belong to other application 
areas as well, either with or without additional modifications. 

TABLE 11. APPLICATION AREAS OVERVIEW. 

Acronym Aerospace Automotive Railway 

 

Smart 
home 
and 

smart 
buildings 

 

Smart 
metering 

e-Health 

 

Industry 
4.0 and 

agricultur
e 

 

Mobile 
devices 

Critical 
infrastructur

e and 
environment
al monitoring 

AETHER  X  X  X X  X 
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AWISSENET  X       X 

CESAR X X X    X   

CHAT X         

EVITA  X        

GINSENG       X   

HYDRA    X X X X   

MADNESS       X   

MORE      X   X 

OVERSEE  X X       

PRESERVE  X      X  

pSHIELD   X       

SecFutur    X X    X 

SEPIA        X  

SMEPP    X    X X 

TECOM  X    X X X  

TERESA  X X X X  X   

UbiSec&Sens  X     X  X 

UNIQUE     X    X 

WSAN4CIP       X  X 

 

In terms of the layers that were used to classify identified literature work, the lowest one is 
the node which involves the hardware and firmware technologies. The network layer includes 
various protocols, authentication schemes and other security-related mechanisms. 
Middleware layer mainly refers to low-level software that operates on top of the device’s 
operating system but, in most cases, below any other applications (namely, overlay). Finally, 
the architectures and formalization classification comprises various frameworks and other 
holistic approaches to the security of embedded systems, including solutions that consider 
their formal validation.  
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NODE TECHNOLOGIES 
The heterogeneous nature of the field is evident from the literature review. In terms of 
hardware used, it was confirmed that there is a variety of platforms being utilised, with equally 
varied capabilities, such as the low-power TelosB, IRIS and MICAz platforms from Crossbow 
Technology,13 the more capable Verdex Pro XL6P COM from Gumstix [246] and the FOX LX 
board from Acme Systems [247]. In some cases, even more powerful devices are being used, 
such as the Freescale i.MX51 [248] and the Xilinx Spartan-6 FPGA family [249]. The latter, 
along with low power x86-based platforms are also typically used in the development of future 
vehicular applications. Equally varied are the software security solutions being utilised and 
developed, featuring different operating environments, protocols and cryptographic 
primitives. 

Given the often unattended nature of deployed embedded systems, sometimes within hostile 
environments, the aspect of physical security cannot be ignored. Gaining physical access to a 
device enables the launch of various side-channel attacks, such as simple/differential power 
analysis and differential fault attacks, which could potentially expose security-related 
information (cryptographic algorithms used, length of keys, etc.), thus jeopardising the 
security of both the device itself and the network it belongs to as a whole. What is more, the 
inherent limitations of embedded systems devices in terms of processing power, memory, 
storage and energy, require suitable cryptographic techniques that take those constraints into 
consideration. Such lightweight cryptographic mechanisms can facilitate secure 
communication without becoming a burden, resource-wise, on the device itself. Alternatively, 
virtualisation techniques can be used to fortify ESs security and specialised hardware modules 
can be employed to speed up various cryptographic functions. 

This section is dedicated to presenting technologies aiming at protecting the embedded 
system’s physical security, a variety of lightweight cryptography schemes and other 
techniques for enhancing a node’s physical security that take into consideration the various 
resource constraints. An overview of the node-related technologies identified, can be found 
in Table 12. 

TABLE 12. NODE TECHNOLOGIES OVERVIEW (PROJECTS THAT DID NOT FOCUS ON THESE ASPECTS HAVE BEEN 
LEFT UNCHECKED). 

Acronym 
Purpose-built 
hardware and 

features 
Virtualisation 

 

Lightweight 
crypto 

 

Side-channel 
security issues 

 

Trusted 
Platform 
Modules 

AETHER X X    

AWISSENET X  X   

CESAR      

13 http://www.moog-crossbow.com 
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CHAT      

EVITA      

GINSENG      

HYDRA      

MADNESS      

MORE      

OVERSEE      

PRESERVE      

pSHIELD      

SecFutur     X 

SEPIA X X  X X 

SMEPP   X   

TECOM  X   X 

TERESA      

UbiSec&Sens   X X  

UNIQUE X     

WSAN4CIP    X  

   

HARDWARE-RELATED SECURITY MODULES 
TAMPER-RESISTANT MODULES 
A significant area of security research related to Wireless Sensor Networks (WSN) aims at 
utilising Trusted Platform Module (TPM) hardware and adapting it to the specific needs of 
resource-constrained applications. Such a TPM-related subject is that of the implementation 
of the Direct Anonymous Attestation (DAA) scheme specified by the Trusted Computing Group 
(TCG). In [250] a detailed report on the implementation of the aforementioned functionality 
is provided, as well as suggestions for improvements. The presented experimental results 
indicate that especially the rogue detection part of the DAA protocol can be very time 
consuming and the overhead is very evident on resource-constrained devices, increasing 
linearly with the size of the black lists of rogue TPMs. Moreover, problems with the 
mechanisms and protocols used to report compromised TPMs are identified. On the subject 
of TPMs, research has also focused on the security extensions of mobile platforms for hosting 
Mobile Trusted Module (MTM) functionality. Two different reconfigurable MTM architectures 
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are presented in [251]; the first one is based on a software implementation of the MTM 
running on the same physical processor as the applications using that MTM and the second is 
based on JavaCards providing the MTM functionality via the Java runtime environment, each 
with its own set of isolation mechanisms between the MTM and its users. The techniques 
utilise security features commonly found on mobile devices, i.e. Secure Elements and ARM 
TrustZone [252], proposing respective techniques for dynamic loading of TPM commands, 
aiming to alleviate the performance and memory issues arising from the security facilities of 
mobile platforms. In [253] the server side of Trusted Computing functionality is examined, 
presenting a design based on the Nizza Architecture [254] but minimising the trusted 
computing base and aiming to provide anonymous and trustworthy service for users, even 
counteracting certain insider attacks which, with the proposed scheme cannot go undetected. 

An approach for protecting agents by utilising tamper-resistant cryptographic hardware is 
presented in [255]. The proposed agent migration protocol (Secure Migration Library – 
SecMiLiA) is based on the use of Trusted Computing technology that attempts to protect the 
agent from malicious hosts. A weakness of this system is the key management system that 
requires further improvement. In particular, due to the fact that the available key storage in 
the TPM is very limited, the key to be used is loaded into memory when required and is 
offloaded as soon as it is no longer useful, thus triggering many key transactions. Issues such 
as the use of key caching and the best possible management of cached keys remain topics that 
future research could deal with. 

It should be evident from the above that TPMs are an important tool for building secure 
embedded system platforms; still, it must be noted that they should not be considered fail-
proof. In [256] an active hardware attack on TPMs is detailed, which may not allow access to 
protected data (e.g. cryptographic keys), but circumvents the chain of trust assumed to be 
provided by the trusted platform. So, the module itself might be tamper resistant but the 
communication channels are often vulnerable and this is something that must be taken into 
consideration at the design phase. 

Regarding defence against more invasive attacks, a clock frequency watch dog, implemented 
using a digital standard CMOS library, is presented in [257]. The proposed scheme is able to 
prevent clock speed manipulations, thus preventing side channel attacks on cryptographic 
hardware devices. The cost in terms of both additional area and energy requirements is low 
and is therefore suitable for being applied to low-cost devices, such as wireless sensor nodes. 

HARDWARE ACCELERATION 
Another approach to WSN node security is based on the use of low cost, low energy 
consumption Complex Programmable Logic Devices (CPLDs), which are programmable logic 
devices having a complexity between that of Programmable Logic Arrays (PLAs) and that of 
Field Programmable Gate Arrays (FPGAs), sharing architectural features with both. A WSN 
platform which embeds a CPLD in a standard WSN node is presented in [258]. As real-world 
experiments show, this CPLD-equipped platform can increase the performance of a standard 
WSN node by a factor of 1220 to 3000 when executing certain algorithms and also reduce 
power consumption, with a reported reduction of up to 98%. This concept is further expanded 
in [259], where various networking and security protocols are implemented on the 
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aforementioned platform and real-world performance is compared to existing schemes. In 
[260] RESENSE is presented, a complete node platform integrating this technique on popular 
WSN nodes (MICAz and IRIS from Crossbow Technology) running the TinyOS operating system. 

PHYSICALLY UNCLONABLE FUNCTIONS (PUFS) 
The use of Physically Unclonable Functions (PUFs) is a method for protecting devices against 
attacks on their keys [261]. These functions extract secrets from physical characteristics of 
integrated circuits (ICs), which can be used, amongst others, for storing keys securely. The 
keys are therefore “hidden” into the various hardware parts, instead of being stored into the 
device’s memory. In this way, even by using very advanced tools for attacking hardware, any 
such attempts for side-channel attacks will be unsuccessful in retrieving any useful 
information. For an additional layer of security, Logically Reconfigurable PUFs (LR-PUFs) can 
be used that have the ability of changing their challenge/response behaviour in a random 
manner [262]. Hence, a potential attacker will also have to deal with a continually-changing 
behaviour. PUFs can be used in any embedded system comprising ICs, even in the very 
resource-constrained RFID tags, especially when the latter are used for high-security 
applications, such as passports. 

Combining PUFs and Public PUFs (PPUFs) with Fuzzy Extractors, it is possible to substitute 
dedicated hardware security modules, as demonstrated in [263], [264], where these 
technologies are investigated in the context of pseudonymous communication in vehicular 
networks. There are various open issues in said field, as these anonymisation techniques are 
not really effective when every vehicle knows the PPUF characteristics and alternatives should 
be investigated (e.g. using lists of the PPUF characteristics themselves as pseudonyms). 
Moreover, using PPUFs in challenge-response and authentication mechanisms in general 
could be further investigated. 

CHANNEL CHARACTERISTICS EXPLOITATION 
A similar concept of exploiting physical characteristics in order to derive cryptographic keys, 
is the method presented in [265]. No dedicated hardware is being used in this case; instead, 
an adaptive quantisation algorithm is proposed, able to generate sufficiently long keys by 
exploiting the radio channel randomness between two communicating parties. In multipath 
radio environments, due to the scatters effects, the waveforms travel differently from one 
location to another. Hence, a potential eavesdropper is incapable of obtaining similar channel 
measurements and therefore cannot extract the secret key from the communicated data. 

VIRTUALISATION 
Virtualisation is a feature that, as research has shown, adds to the overall security of the 
system, in various ways. Firstly, it seems to be a remedy for facing the severe security 
challenges that mobile devices have, given that they are usually targeting a completely open 
setup [266]. In addition, efficient virtual machines have successfully been implemented in 
micro-kernel based systems, thus enabling the reuse of arbitrary operating systems [267]. The 
overhead imposed on the kernel growth was rather marginal and the overall performance was 
found to be similar to other virtual machine implementations. An analysis on how and to 
which degree recent x86 virtualisation extensions can influence the response times of a real-
time operating system that hosts virtual machines was performed in [268]. In [269] it was 
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shown that a thin and rather simple virtualisation layer can add to the overall system’s 
security, as it provides fewer options for attack to a potential adversary. What is more, this 
approach was found to exhibit significantly better performance, compared to contemporary 
full virtualisation environments. Finally, regarding the way virtual machines should be 
implemented, it is claimed in [270] that their construction should follow the principle of 
incremental complexity growth. Namely, additional functionality should not be included in the 
trusted computing base of a component if the benefits it offers are less than the drawbacks 
(e.g. due to larger risk for introduced bugs and errors). Such an approach can be efficiently 
implemented and it was possible to achieve high throughput and good real-time performance. 

The utilisation of Trusted Platform Modules and virtualisation techniques is an emerging 
pattern in relevant EU projects. A combination of said technologies is presented in [251], 
intending to provide a reference design for a Trusted Computing-based, lightweight, 
virtualisation framework specifically aimed at cloud computing scenarios, an increasingly 
important area of applications. An overview of the proposed architecture, which exploits both 
the ARM TrustZone and TPM DAA technologies. Lightweight containers are supervised by a 
relevant supervisor application. In the proposed scheme lightweight containers 
(μcompartments) are built on top of the Linux kernel, with each isolation container enclosing 
the code and data required for the compartment to operate. Each compartment is monitored 
and managed by a per-compartment supervisor application, responsible for constructing the 
security policies, enforcing them and finally destructing its compartment. 

LIGHTWEIGHT CRYPTOGRAPHY 
An overview of the literature pertaining to time and energy overhead various cryptographic 
primitives impose on popular types of wireless sensor nodes is presented in [271]. A number 
of symmetric and public-key algorithms, hash functions and cryptographic primitives in 
general are mentioned as well as their lightweight counterparts, where available. It is worth 
pointing out that the node lifetime data presented in the literature usually refers to the 
overhead imposed by the security-related functionality alone and, in a real-life scenario, 
values would be significantly lower due to additional functions running on the same node. 

In the literature, whenever strong encryption is required on rather resource-constrained 
devices, elliptic-curve cryptography (ECC) is always a strong candidate. In [272] the finite fields 
Fp, F2d and Fpd are being investigated for suitability for performing ECC on the ATmega128 

microcontroller and it turns out that binary fields are most preferable when efficient 
implementations are required. 

An interesting security scheme for WSN that provides transparent security is proposed in 
[273]. This scheme is effectively a lightweight CBC-X mode cipher that is able to provide 
encryption/decryption and authentication, combined as a one-pass operation. Consequently, 
it exhibits significant energy gains of about 50-60%, compared to TinySec [274]. Furthermore, 
the proposed scheme has no ciphertext expansion for the transmitted data payload, thus 
significantly reducing the communication overhead. Although a block cipher is used, 
ciphertext expansion is avoided by having padding rules making use of a Data Stealing 
technique and a MAC Stealing technique, thus allowing for zero redundant padding bytes. 
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A strong, compact and efficient block cipher, DESL (DES Lightweight extension), based on the 
DES (Data Encryption Standard) cipher design is proposed in [275]. Instead of using 8 S-boxes 
as in DES, it uses a single S-box repeated eight times, thus considerably reducing chip size 
requirements. Furthermore, a lightweight implementation of DESL is also proposed, that 
requires almost half the chip size and 86% less clock cycles compared to the best AES 
implementations targeted for RFID applications, therefore rendering DESL a strong candidate 
for ultra low-cost encryption applications. 

An optimised implementation of a modular multiplication is presented in [276]. The proposed 
algorithm was tested on an 8-bit microcontroller (AVR), using an 160-bit standard compliant 
elliptic curve (namely, secp160r1). Given that the majority of the processing time for elliptic-
curve cryptography (ECC) is spent on modular multiplication, related schemes such as EC 
ElGamal or ECDSA would greatly benefit from it, as well as their applications in the field of 
resource-constrained devices (such as WSNs). 

Hardware-specific optimisations have also played an important role in lightweight 
cryptography research efforts. The authors in [277] present an area-efficient implementation 

of AES (requires 0.33mm2 in a 0.25μm technology), featuring good performance and low 
power consumption. These goals were achieved by both optimising individual functional 
blocks of AES, as well as the overall architecture. 

MISCELLANEOUS NODE TOPICS 
The authors in [278] propose a scheme for implementing security on extremely low-cost 
sensors that run with minimal resources regarding computational power, energy consumption 
and memory size. The sensors are initially loaded with firmware suitable for providing 
asymmetric cryptography during the one-time bootstrapping phase. Then, through a dynamic 
code update, it is replaced by other security protocols that are required for the operation of 
the WSN, effectively offering hybrid security functionality. Their proof-of-concept 
implementation makes use of the FlexCup plug-in for TinyOS. 

The practicality of group signature schemes on mobile devices is examined in [279], where the 
authors constructed a Java framework that allows for an in-depth evaluation of three such 
schemes (out of a total of seven defined in the upcoming ISO20008-2 standard). Performance 
evaluation took place on a laptop bearing an Intel i7 CPU, as well as on three recent Android-
based smartphones, so as to gather up-to-date results. The conducted tests were aiming at 
determining the required signing time, as this is considered very important in the investigated 
scenarios. Initial results ranged from 304.2 to 4752.7 ms, among the three smartphones, for 
various algorithms and key lengths. However, when pre-computation was employed, the 
times dropped significantly and fell within the range of 0.71 to 631.11 ms, respectively. 
Verification times were significantly longer for the mobile devices (245.6 to 9735.5 ms), 
nevertheless still within acceptable limits for real-world implementations. 

NETWORK TECHNOLOGIES 
The resource-constrained and often heterogeneous and distributed nature of embedded 
systems, imposes restrictions and introduces issues at the network layer as well. It is quite 
common that certain applications of embedded systems require the integrity of the provided 
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service. If web services are being used, it is important to be able to ensure the validity of each 
participating node, thus ensuring that the system has not been compromised and their 
communicated data (e.g. measurements) is trustworthy. This is the objective that the various 
attestation techniques try to achieve. One other issue that needs to be taken care of is the 
secure transmission of the obtained data to their destination. Examples for meeting this 
requirement are the implementation of secure routing or secure data aggregation techniques. 
Detection of potentially malicious nodes in a network is another important issue that may 
achieved with the deployment of a suitable intrusion detection system (IDS). Such systems 
usually look for abnormalities in the overall system behaviour and raise alerts accordingly. 
Once again, all these additional security mechanisms should not burden the overall system’s 
performance to an extent where the system is effectively rendered useless, therefore suitable 
lightweight techniques must be employed. 

This section is dedicated to presenting technologies related to node attestation and 
authentication techniques, secure routing and secure data aggregation and various intrusion 
detection schemes. Table 13 features an overview of the network technologies identified and 
their related projects. 

TABLE 13. NETWORK TECHNOLOGIES OVERVIEW (PROJECTS THAT DID NOT FOCUS ON THESE ASPECTS HAVE 
BEEN LEFT UNCHECKED). 

Acronym 
6LoWPAN 

and 
802.15.4 

 

Privacy 
and 

anonymit
y 

 

NFC and 
RFID 

 

Secure routing 
and secure 

services 
protocols 

 

Intrusion and 
malicious 

node 
detection 

 

Secure 
aggregation 

AETHER    X   

AWISSENET X  X X X  

CESAR       

CHAT     X  

EVITA       

GINSENG X      

HYDRA       

MADNESS       

MORE       

OVERSEE       

PRESERVE  X  X X X 
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pSHIELD     X  

SecFutur    X X  

SEPIA  X X    

SMEPP       

TECOM       

TERESA       

UbiSec&Sens   X   X 

UNIQUE  X X    

WSAN4CIP      X 

  

NODE ATTESTATION AND AUTHENTICATION 
The interoperability with existing infrastructures and the Internet is a major challenge which 
must be tackled in a definitive way if we are to realise what is often referred to as the Internet 
of Things (IoT). A very valuable tool in this area is the combination of the IEEE 802.15.4 
standard with 6LoWPAN (IPv6 over Low power Wireless Personal Area Networks, [280]) 
which, expectedly, introduces new security challenges and opportunities. An example of the 
security challenges introduced by using these new technologies can be found in  [281], where 
an off-the-shelf T-Mote Sky wireless sensor is transformed into an 802.15.4 packet sniffer. 
Analysis is then trivial using open source software like Wireshark. Of course, this technique is 
a valuable tool in the hands of researchers developing protocols but can also be exploited by 
malicious users to eavesdrop on a network or even launch active attacks (e.g. packet 
injection). The authors in [282] propose new compression mechanisms for 6LoWPAN security 
headers, along with cryptographic mechanisms typically used with the IP security architecture, 
allowing the establishment of end-to-end secure channels between internet hosts and sensor 
nodes. The proposed mechanisms also allow for fine-grained control over the energy 
consumed on security-related tasks on the nodes, while the proposed model was evaluated 
in [283], with AES/CCM and SHA1 as the cryptographic primitives of choice. 

The security and constraints stemming from the limited resources of sensor nodes have been 
investigated in EU projects extensively. Such an EU-funded attempt at trying to tackle these 
issues is presented in [284], giving an overview of the topic, including security and operational 
requirements, sensor and network constraints as well as the objectives of this specific project. 
Another overview, more focused on smart-home applications, can be found in [285], where, 
among others, key privacy and security issues are identified. 

PRIVACY AND ANONYMITY 
Anonymous Authentication and Anonymity schemes in general are another key area of 
current research, since privacy is essential in many applications (e.g. social, medical) and 
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anonymising access to resources and services is a common technique to safeguard users’ 
privacy. An analysis of how trusted computing technologies can be used for anonymous 
authentication and how they can be integrated into common security frameworks (e.g. Java 
Crypto Architecture) can be found in [286]. This work is based on the DAA scheme for 
providing anonymity over secure communications channels (i.e. anonymous TLS client 
authentication), but using alternative, more lightweight, schemes than those defined in the 
TPM v1.2 specification. Another interesting aspect of this work are the discrepancies reported 
between various TPM manufacturers (e.g. Infineon, Atmel, Winbond, Intel, ST Micro), TPM 
emulators and the original specification. 

Another anonymous authentication scheme based on an optimised version of DAA and aimed 
at resource-constrained mobile devices is presented in [287]. Functionality includes secure 
devices authentication, credential revocation as well as anonymity and untraceability of said 
devices against service providers. The proof-of-concept implementation was deployed on an 
ARM11-equipped development platform (exploiting the ARM TrustZone feature, using an 
elliptic curves and pairings scheme, while integration with the OpenSSL security framework 
was also demonstrated). 

Further work on Trusted Computing Group anonymity schemes (i.e. PrivacyCA and DAA) is 
attempted in [288]. The goal is to overcome the need for a trusted third party which is evident 
in the aforementioned standard schemes, while maintaining compatibility with the TPM v1.2 
specification. The proposed anonymisation scheme for trusted platforms overcomes the need 
for a trusted third party while, relying on the TPM’s DAA functionality so that no TPM 
modifications are required. 

Regarding anonymous authentication, a Direct Anonymous Attestation protocol utilising Near 
Field Communication-equipped (NFC, [289]) mobile devices and RFID is proposed in [290], 
expanding on the now relatively popular Secure Element (SE) scheme presented in [291]. 
Experimental results are also presented, using off-the-shelf mobile devices. 

The scheme proposed in [292] offers anonymous authentication for RFID, with the use of 
additional devices, the anonymisers. The latter interact with the RFID tags and any 
communication with external devices (e.g. RFID tag readers) is performed through the 
anonymisers that mask certain information, thus ensuring the tags’ anonymity and 
unlinkability. What is more, the anonymisers operate as some sort of proxies to the RFID tags, 
by undertaking the task of performing the required public-key cryptographic operations that 
the tags are unable to do so, due to their very resource-constrained nature. 

As smartphones are already ubiquitous, some researchers focus on taking advantage of the 
features of modern smartphones in smart vehicle applications, as this alleviates some of the 
requirements from the vehicle platform itself (in terms of processing power, presence of GPS 
functionality etc.). In [293] the privacy issues of such an application, namely the use of 
smartphones for data acquisition of Intelligent Transportation Systems (ITS). The authors 
propose the extension of an existing architecture with anonymous authentication, allowing 
for privacy-aware traffic and location sample collection and protecting users’ privacy even in 
cases of compromised ITS servers. 
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Wireless communication in Vehicular Ad hoc Networks (VANETs) is typically protected by 
digital certificates. As such certificates and related identifiers must not be usable to track 
vehicles, short-term pseudonymous certificates are applied and regularly changed in order to 
protect the driver’s privacy. The authors in [294], [295] introduce and implement a distributed 
PKI architecture for vehicular networks, utilising pseudonymous certificates for privacy-
preserving vehicular applications complying with related standards. Using tickets as 
cryptographic tokens, the proposed scheme offers authentication, authorisation and 
accountability, while maintaining the vehicle’s privacy (e.g. guaranteeing that consecutive 
pseudonym requests cannot be correlated). 

Nevertheless, there are certain incidents (e.g. traffic accidents) where it should be possible to 
identify the actual user via the certificate issuer. Hence, resolution of pseudonym identifiers 
is needed. The authors in [296] propose a generic pseudonym resolution protocol to be used 
by network infrastructure entities under such critical pre-defined conditions. The proposed 
protocol, CoPRA, does not increase pseudonym certificate size and imposes no additional 
overhead nor delay in the certificate acquisition phase. Moreover, it allows for validation of 
the situation that warrants the pseudonym resolution, prior to providing any information 
regarding the users’ identity. 

Privacy concerns pertaining to future smart vehicles are not restricted to VANET-related 
issues. The expected wide deployment of electric vehicles and charging infrastructures will 
require the use of protocols to control authentication, authorization and billing of vehicle 
owners. The ISO/IEC 15118 [297] standard defines the vehicle to charging station 
communication interface, also including the necessary security mechanisms. Still, it does not 
cater for the privacy protection of service users, making it trivial to, for example, let charging 
station operators track the location of a specific user. Therefore, authors in [298] propose 
POPCORN, a modular extension to the protocol defined in the abovementioned standard, 
which includes various privacy enhancing technologies like anonymous credentials. A proof-
of-concept implementation is also presented to demonstrate the feasibility and investigate 
the performance of the proposed scheme. 

SECURE ROUTING 
Secure routing protocols constitute another critical research area of networking technologies. 
In  [299] an overview of security issues and current trends in trusted routing for ad-hoc 
networks is provided, evaluating their applicability in WSNs. Various trust-management 
enhanced routing protocols and trusted routing frameworks are investigated, focusing on 
their applicability on resource constrained environments. A secure routing protocol better 
suited to such environments is proposed in [300], namely Ambient Trust Sensor Routing 
(ATSR) and its performance and effectiveness is evaluated. In ATSR the geographical location 
of nodes along with other parameters (e.g. their remaining energy; for better load balancing 
and lifetime extension) are considered. Moreover, the protocol features a distributed trust 
model, based both on direct and indirect trust data, to detect malicious nodes. 

The authors in [301], [302] also proposed a mobile ad-hoc network routing protocol based on 
the B.A.T.M.A.N. (Better Approach To Mobile Ad-hoc Networking) protocol [303] that utilises 
concepts from the domain of trusted computing. Device attestation is integrated on the 
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protocol itself, thus routing and data transmissions can be restricted to trustworthy devices 
only. A Trusted PlatfModule (TPM) serves as root-of-trust on each device and hence, any 
devices that have been identified as being malicious can automatically be recognised by all 
network nodes, thus leading to their exclusion from the trusted network. Additional issues 
need to be looked into, such as interoperability with other network standards, interaction 
with other networks (homogeneous or not) and the maintenance of a trustworthy connection 
over another layer-2 protocol. 

The interactions between secure routing protocols and the Service Discovery functionality on 
WSN networks where the nodes are used as service providers are investigated in [304]. 
Simulation results presented in the aforementioned work indicate that in some situations 
there is an efficiency gain if routing protocols allow the higher layers to override the routing 
decisions which might, for example, try to avoid using an untrusted node that the service 
discovery layer wants to use. 

INTRUSION AND MALICIOUS NODE DETECTION 
Intrusion Detections Systems (IDS) are a key tool in safeguarding distributed ES networks. A 
dynamic and distributed IDS scheme is presented in [305] and further expanded in [306], 
where nodes act as local monitors of their neighbours and, in combination with data received 
from other monitors, are able to detect malicious entities. Simulations are used to prove the 
effectiveness of the proposed methods, with applications focusing mostly on smart vehicles. 
Defensive techniques for sensor networks based on the nodes’ locations are surveyed in [307]; 
assuming every node is capable of detecting its own location. Furthermore, concepts of robust 
statistics (i.e. robust regression) are proposed, aiming to localise a node in the presence of 
malicious beacons. To facilitate the analysis and understanding of IDS data, various advanced 
methods have been investigated in EU funded products, including neural network-based 
techniques for the visualisation of said data, as presented in [308]. 

Awareness of nearby vehicles and their location is a basic foundation of electronic safety 
application in VANETs. However, the ad hoc nature of the vehicular networks makes them 
vulnerable to malicious nodes. Moreover, it is realistic to assume that in some cases there will 
be no pre-established trust relationships between vehicles. Researchers in [309] try to address 
these challenges by proposing a fully distributed cooperative solution, namely a lightweight 
protocol which relies only on information exchange among neighbouring entities, enabling 
the effective identification of adversarial nodes. 

A central evaluation scheme is proposed in [310], where malicious peers are detected and 
excluded from the VANET using misbehaviour detection systems. These systems use trust and 
reputation information provided in misbehaviour reports submitted by vehicles as well as 
roadside units. As simulations indicate, the presented system is significantly effective against 
ghost/malicious vehicles broadcasting faked position and other information, which is one of 
the most critical attacks on VANETs. It should be noted that the proposed scheme is not fully 
distributed and vehicles rely on a central authority, namely the Misbehaviour Evaluation 
Authority, to detect attackers. 
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Even in cases where a PKI scheme is established, insider attackers, i.e. malicious entities 
possessing legitimate key material, must be considered as well. Authors in [311] propose the 
exploitation of redundant information dissemination for consistency checks and evaluate 
dissemination protocols using three graph-based metrics they introduce. 

SECURE AGGREGATION 
Information aggregation techniques are a useful tool, especially in mobile ad-hoc networks 
(MANETs), to facilitate information dissemination and to reduce bandwidth requirements. In 
the context of VANETs, which are considered a sub-category of MANETs, the vehicles must 
communicate to exchange information for various enhanced services (safety, efficiency, 
traffic, entertainment etc.). Aggregation techniques can be used so that vehicles exchange 
high quality summaries of said information, instead of exchanging each individual message. 
Still, it is essential to utilise secure aggregation schemes, as the information exchanged 
between vehicles can be used of important decisions (e.g. traffic management, fleet control 
or road safety). Authors in [312] present such a dynamic and secure aggregation scheme for 
VANETs, which prevents insider attacks from influencing the aggregation results. 
Furthermore, its security mechanisms can be applied to existing aggregation schemes to 
produce dependable aggregates. 

When it comes to Wireless Sensor Networks (WSNs), maximising the sensors’ battery life is, 
naturally, of great importance. For this reason, in-network aggregation protocols have been 
proposed, where the required function(s) on the measurements is/are computed as data 
traverses the network [313]. One problem in such a scheme is that a corrupted sensor 
providing incorrect measurements cannot be distinguished from a sensor under attack, where 
the attacker has either modified the environmental conditions or has obtained the sensor’s 
cryptographic secrets, in order to inject false measurements into the data sink. A novel secure 
data aggregation protocol is presented in [314] that is able to provide security, privacy and 
integrity for sensor networks, using inexpensive cryptographic tools. The main idea of the 
proposed ABBA (A Balls and Bins Approach) protocol is to define several bins for different 
sensing intervals and to demand each sensor to provide its sensed value adding one ball in the 
appropriate bin. 

The aforementioned problem of deliberately-introduced corrupt data in an in-network 
aggregation protocol may be countered by exploiting the statistical properties found in the 
communicated data [315]. In particular, the naturally existing correlation between the 
readings produced by different sensors are taken into consideration to increase the resilience 
of data aggregation, without any special assumption on the distribution of the sensor 
readings, or the attacker’s strategy. 

Should the scheme involve the election of aggregator nodes, the authors in [316] discuss the 
requirements that need to be fulfilled, in order to have a non-manipulable aggregator node 
election protocol. Moreover, they provide a comparative review of three Secure Aggregator 
Node Election (SANE) protocols, based on a particular threat model. 

A similar private aggregator node election protocol, where the election is performed in an 
anonymous manner, was proposed in [317]. The objective of this protocol was to make it 
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difficult for an adversary to identify aggregator nodes in the network and then physically 
compromise them. The protocol was deployed alongside with a private data aggregation 
protocol and a private query protocol, that masked the data flows to and from the aggregator 
nodes, thus maintaining their privacy. An enhanced version of the protocol was also proposed 
that is able to detect any misbehaviour within the network, such as the one introduced by an 
attacker who injects false reports. Nevertheless, further research is required for the system 
to be able to identify the misbehaving node. 

MISCELLANEOUS NETWORK TOPICS 
Due to the very limited memory of certain types of devices (e.g. Harvard-based architecture 
devices, such as Mica motes), it was believed that these devices were immune to buffer 
overflow attacks that inject code into the stack and then execute it. Nevertheless, the authors 
in [318] demonstrated the feasibility of a remote code injection attack for Mica sensors, where 
the injected code is permanent, thus enabling the attacker to gain full control of the target 
sensor, persistently across reboots. What is more, they show how this attack can be 
transformed into a worm, namely how to make the injected code self-replicating and 
therefore able to propagate through the WSN, with the potential of eventually forming a 
sensor botnet. The employed techniques for this attack involve return-oriented programming 
and fake stack injection. It only suffices for the attacker to corrupt one network node and use 
its keys to propagate the malware to its neighbours. Packet authentication and cryptographic 
techniques in general can make such code injection attacks more difficult, nevertheless they 
cannot completely prevent them. 

A security service protocol for MANETs, able to negotiate the security settings for the 
communications is presented in [319], a feature which is particularly useful in heterogeneous 
networks, both in terms of hardware and of services provided. This negotiation protocol aims 
at selecting the cheapest services that consume the least possible amount of energy, while 
offering the highest possible security level among nodes with different security requirements. 
In addition, run-time negotiation of services is supported, thus making it suitable for cases 
where self-adaptivity is involved. Nevertheless, the protocol is not yet complete and 
additional work is required on the message exchange for key management and errors. 

The trustworthiness of messages received by peers is especially important in the context of e-
vehicle safety-related applications (e.g. local danger warnings), as critical decisions often need 
to be made on those messages; decisions directly affecting passenger safety. To increase the 
trustworthiness in said messages, a consensus mechanism can be used, i.e. the same warning 
needs to be received at least x times from peers before it is considered legitimate. Researchers 
in [320] investigate this threshold and its effect on the decision delay, including the possibility 
of malicious peers launching information forgery attacks. 

MIDDLEWARE AND OVERLAY TECHNOLOGIES 
Moving to higher layers, namely middleware and overlay, researchers have to tackle 
additional challenges as system complexity increases. On the other hand, operating from a 
higher level allows the utilisation of more advanced features, like the secure and efficient 
resource management (by aggregating information from the lower layers) and mechanisms to 
facilitate the interoperability and management of heterogeneous ES networks. It is, therefore, 
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of no surprise that middleware and overlay technologies are a common area of research and 
development efforts for many of the projects investigated, aiming to exploit the 
aforementioned tools in order to design secure embedded systems and related services. 

This section is dedicated to presenting various types of middleware, such as trusted, service-
oriented, context-aware, reconfigurable and fault-tolerant. Table 14 presents the middleware 
and overlay technologies as well as the attempts related to architecture and formalisation, 
which were identified in this work. 

TABLE 14. MIDDLEWARE AND OVERLAY TECHNOLOGIES OVERVIEW (PROJECTS THAT DID NOT FOCUS ON THESE 
ASPECTS HAVE BEEN LEFT UNCHECKED). 

Acronym Secure middleware 

 

Services and overlay 
applications 

 

Reconfigurability and 
fault tolerance 

AETHER   X 

AWISSENET    

CESAR    

CHAT   X 

EVITA    

GINSENG X  X 

HYDRA X   

MADNESS   X 

MORE X X  

OVERSEE    

PRESERVE    

pSHIELD X   

SecFutur    

SEPIA X X  

SMEPP X  X 

TECOM X   

TERESA   X 
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UbiSec&Sens X  X 

UNIQUE    

WSAN4CIP    

  

TRUSTED MIDDLEWARE 
Trusted Software is another important area of middleware layer research and [321] proposes 
a Trusted Software Stack (TSS – which acts as an interface between applications and a TPM) 
to be integrated into existing security framework, facilitating the adaptation to Trusted 
Computing technology. The prototype developed and proposed uses the .NET programming 
environment, taking advantage of the environment’s fault-detection functionality (e.g. 
regarding buffer overflows), portability and developer base. 

SERVICE-ORIENTED MIDDLEWARE 
The main features of a secure, service-oriented middleware for embedded peer-to-peer 
systems, in order to face the various security challenges of the Internet of Things (IoT) are 
presented in [322]. The notion of groups is used, as peers offer services inside groups and the 
discovery of these services is also performed within the group. Services can be state-less or 
state-full, and the latter ones may be session-less or session-full. The offered API allows for 
abstract peer and group management, as well as for events and message handling, features 
that facilitate application development within this environment. The presented service model 
and component-based middleware satisfies necessary principles such as security, 
heterogeneity, interoperability and scalability. The model was validated with two very 
different applications, including applications of WSN for monitoring radiation in nuclear power 
plants and for health-care in a mobile environment. 

The deployment and orchestration of web services on heterogeneous embedded systems is 
another emerging research area and a task often assigned to the middleware layer, following 
the standardisation of the Devices Profile for Web Services (DPWS, [23]) open framework and 
research already conducted in the SIRENA project 14  and its follow-ups, SODA 15  and 
SOCRADES16. Some pervasive applications often require remote management and monitoring 
while maintaining interoperability, and the Web Services standard offers a solid basis for that. 
It is therefore justifiable that the runtime of the middleware developed for the MORE project17 
was based on the aforementioned DPWS specifications, as detailed in [41]. The DPWS4J [323] 
Java-based stack was extended and, to further facilitate development, the middleware is 
managed via the OSGi [78] modular service platform environment running on a Java Virtual 
Machine. Further enhancements were also introduced, enabling small footprint service 
orchestration in a DPWS-compliant environment [324]. The whole concept was validated on 
Gumstix Verdex XL6P embedded platforms. 

14 http://www.sirena-itea.org 
15 http://www.soda-itea.org/ 
16 http://www.socrades.eu/ 
17 http://www.ist-more.org/ 
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CONTEXT-AWARE MIDDLEWARE 
An extensive overview of context-aware middleware, is presented in [325], categorising their 
properties and use. An ontology-based approach has been followed in [326], using the Web 
Ontology Language (OWL) and Semantic Web Rule Language (SWRL) in order to develop 
monitoring and diagnosis rules. In this way, any malfunctions can be detected and self-healing 
procedures can be invoked, in an effective, extensible and scalable way, as it was proved by 
the experimental results.  

Enriching the relations between the different systems’ parts with semantic information, as 
well as exploiting contextual process data, can yield useful information which can be fed into 
the various control and decision-making algorithms [327], [328]. Utilising the aforementioned 
concepts to enhance user profiling and trust sharing and to offer content and context-
awareness for cloud-based services is also examined in [329]. The proposed model is based 
on a representation of the cloud service through semantic integration and ontologies for user 
profiles, trust, context and content. OWL restrictions are specified to guarantee access to 
trust-based context data. 

RECONFIGURABLE AND FAULT-TOLERANT MIDDLEWARE 
The aspect of reconfigurability and its repercussions on security are considered from a higher-
level perspective in [330]. A security architecture is proposed which, based on a middleware 
layer, offers secure reconfiguration and communication (i.e. SecComm component 
framework) with fine-grained application-specific policy enforcement, authenticated 
downloading from a remote source (i.e. ALoader component framework) as well as a re-keying 
service for key distribution and revocation (i.e. Rekeying component framework). 

The scheme presented in [331] is a configurable and adaptive middleware, that aims at 
reducing the complexity of the realisation of an appropriate security level for a given WSN 
application. It consists of a modular middleware architecture which separates core 
functionality needed for adaptability support from pure security functionalities and also 
introduces the concept of a middleware compiler. A suitable configuration tool compiles a 
security architecture at development time and the architecture allows for dynamic exchange 
of security modules at run time. An initial set of security modules get configured before the 
deployment of the application; the application programmer then has to specify the security 
functionality that is required by the application, such as secrecy and authentication, as well as 
some additional information regarding the hardware platform of the sensors (processor type, 
memory size, etc.). Based on this information, the appropriate security modules are selected. 
In cases where either the application needs have changed or an update is required for facing 
a newly-detected vulnerability, security modules can be exchanged after deployment. Such 
functionality is particularly useful for long-living applications. 

Middleware can also be used in Kahn Process Networks (KPN) implemented on a Network on 
Chip (NoC). In [332], a methodology for identifying requirements and implementing fault 
tolerance and adaptivity is presented. The overhead in terms of computational time and total 
data traffic can be lower than 10%, depending on the chosen bound of the connectors and the 
tokens’ size being transferred at the application level. Since embedded systems exhibit a 
significant number of soft errors, their correction imposes equally significant hardware and 
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real-time overhead. For improving embedded systems’ dependability, the authors of [333] 
proposed an approach that exploits application knowledge to classify errors according to their 
relevance and the impact of their correction to the system. Avoiding to correct every single 
error (effectively delaying the error-correcting process) caused a reduction in the imposed 
correction overhead, thus making it easier to meet mandatory deadlines in cases where real-
time behaviour is an absolute requirement. 

Fault monitoring and fault tolerant control for constrained sensor nodes is also examined in 
the GINSENG project [334], [335], wherein a multi-layered, middleware-based architecture is 
proposed. The scheme involves multiple agents implementing distributed artificial intelligence 
techniques for robust control over the wireless sensor nodes and also details the 
communication and coordination mechanisms involved. 

In [336] a middleware called MWSAN is proposed that provides high-level services for 
Wireless Sensor and Actor Networks (WSANs), where the nodes are not only able to sense 
environmental data, but can also react by affecting the environment. It follows the 
component-oriented paradigm and it leaves it up to the developers to configure it according 
to the actor and sensor resources, by taking into consideration issues such as the network 
configuration, the quality of service and coordination among actors. Since actor nodes are 
usually more powerful than sensor nodes, the middleware features high configurability to 
match the diversity of requirements between these two types of nodes. For instance, the 
middleware for sensors does not include the various actor-related components, thus leading 
to a much smaller memory footprint. What is more, provision has been made for enabling the 
definition of real-time characteristics, in order to offer improved temporal behaviour, such as 
cases of priority schemas where the highest priority events are executed first. 

OVERLAY APPLICATIONS 
Facilitating seamless online payments is another key issue researchers try to address. Such 
services often raise privacy concerns, and location-based services even more so. Privacy-
preserving payment schemes are one of the main themes examined in the SEPIA project. 
Application scenarios involve end-users being equipped with mobile devices featuring ARM 
processors and TrustZone support [337], like NFC-equipped smartphones. An application of 
the aforementioned privacy-preserving mechanism on NFC-enabled smartphones is 
presented in [338]. The proposed method is based on selective disclosure protocols and 
experimental results on a standard JavaCard indicate a key of up to 1024 bits may be feasible. 
Utilisation of the ARM TrustZone features would be beneficial to the security and overall 
performance of the model, as would further support for lightweight cryptography (e.g. ECC) 
on the JavaCard. 

Cloud-related scenarios are an associated theme where, for instance, privacy issues arise from 
the application of the split processing mode on mobile transactions. In such schemes, 
lightweight tasks are executed on end-user devices (e.g. smartphones, tablets), whereas more 
demanding tasks are offloaded to the Cloud. The proposed payment scheme utilises ARM’s 
TrustZone and Intel’s Trusted Execution Technology (TXT), assuming said support is present 
on both the client and cloud provider platforms and allows the end-user to take advantage of 
the cloud resources while the cloud provider is unable to track users’ activity patterns [339]. 
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Moreover, the authors in [340], [341] propose a node join protocol which, via remote-
attestation, doesn’t allow nodes with unknown configurations to join the cloud network, thus 
alleviating concerns for control over data and code execution on such networks. Proof-of-
concept implementations are presented for the Android operating system, both on Intel and 
ARM-based platforms. Presented work assumes every node hosts a TPM which, in the case of 
the ARM platform, requires an add-on module to be installed. With the add-on module in 
place, the ARM prototype’s security qualities were similar to that of the x86-based platform. 

ARCHITECTURES AND FORMALISATION 
Embedded systems are usually the building blocks of a greater and more complex systems, 
created for a given purpose. A careful design of such architectures, as well as of their provided 
services would certainly have a positive effect on any security-related issues, by minimising 
unforeseen flaws and deficiencies. What is more, formalising the process of designing and 
building embedded systems would, in most cases, lead to an easier integration of the final 
system, while maintaining high levels of security and dependability. 

In this section, such proposed frameworks and architectures are presented for different 
application areas: safety-critical applications, security and dependability applications, and 
smart vehicle applications. The pertinent fforts identified are presented in Table 15. 

TABLE 15. ARCHITECTURE AND FORMALISATION EFFORTS OVERVIEW (PROJECTS THAT DID NOT FOCUS ON 
THESE ASPECTS HAVE BEEN LEFT UNCHECKED). 

Acronym Architectures Formalisation 

AETHER   

AWISSENET   

CESAR X X 

CHAT   

EVITA X X 

GINSENG   

HYDRA   

MADNESS   

MORE   

OVERSEE  X 

PRESERVE X  

pSHIELD   
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SecFutur X  

SEPIA   

SMEPP   

TECOM   

TERESA X  

UbiSec&Sens   

UNIQUE   

WSAN4CIP   

  

Some approaches in current research focus on providing fully-featured frameworks and/or 
formalising the process of designing and developing secure and dependable embedded 
systems, especially in applications where safety is critical. In [342], the two distinct domains 
of embedded systems and security are considered, and an appropriate view of a final system 
model is provided, aiming to support cooperation between the two domains, while leaving 
them independent from each other. The proposed scheme is intended for on-demand 
provision of communication services in crisis-related situations, where different actors could 
be involved, also bearing heterogeneous client devices. The model consists of two 
components: The System Security Interface (SSI) that abstracts the system design model for 
communicating security needs and resource availability and the Security Building Block (SBB) 
that abstracts the implementation for a security mechanism. 

In [343] a process metamodel is introduced which takes safety lifecycle requirements into 
consideration for secure software engineering (e.g. validation). This concept is explored 
further in [344], where a process metamodel, the Repository-Centric Process Metamodel 
(RCPM) is described. RCPM includes safety lifecycle concepts at its core and includes software 
tools for creating the required models, as well as a case study based on a railway application. 
Moreover, the authors in [345] present a model-based framework which focuses on 
formalising and managing fault-tolerance and redundancy concepts and which uses 
composable UML components to construct fault-tolerant infrastructures. A test case of a 
fault-tolerant GPS is evaluated using the aforementioned system. A similar model-based 
technique is used in [346] aiming to encode security and dependability patterns (S&D), while 
introducing artefacts for the formal validation of these patterns. Therefore, the fulfilment of 
S&D requirements identified at higher abstraction levels can be validated via the proposed 
process. The concept of S&D formalisation is further explored in [347], where the authors 
focus on the systematic reuse of S&D patterns in embedded systems where security and 
dependability are major concerns. To facilitate, automate and enforce fulfilment of S&D 
requirements, [348] defines a trust-aware platform-independent architecture, the TECOM 
architecture, as it was the outcome of the research project bearing the same name. An 
attempt to encode S&D patterns utilising meta-modelling techniques can also be found in 
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[349], while said work also includes an implementation of those patterns using a profiled UML 
and adapted to resource-constrained embedded systems. The goal is to help application 
developers integrate the application building blocks they typically use with security and 
dependability building blocks. Furthermore, the authors in [350] apply modelling techniques 
on reconfigurable systems; namely distributed real time embedded systems. The approach 
presented is called RCA4RTES and published work includes the case study of a Global 
Positioning System (GPS), where state machines describe the dynamic reconfigurations of the 
system. 

With the widespread use of embedded systems leading to the Internet of Things, smart 
vehicles are another emerging and significant application. The potential new features and 
services available to vehicle occupants are, of course, numerous. Still, security and 
dependability is essential in this scenario and any compromise to the safety of vehicle 
occupants and other road users would not be acceptable. For example, updates could be 
exploited by an attacker to install malicious firmware during an over-the-air diagnosis and 
firmware update. The authors in [351] introduce the Open VEhiculaR SEcurE platform 
(OVERSEE), which aims to provide a standardised vehicular infrastructure with a protected 
runtime environment and on-board access and communication points. The proposed platform 
allows the integration of multiple Engine Control Units (ECUs) into one hardware node. It 
offers temporal and spatial isolation, a secure interface for connecting to external networks 
(e.g. the Internet) and also the required interfaces and open APIs to allow the secure 
download and execution of OEM and third party applications, much like the functionality 
offered by smartphones and their application “markets” [352], [353]. Part of the research in 
the field is more engineering-oriented in nature. The authors in [354] presents such an 
approach, as developed on project CESAR. Functional safety and tool-chain integration are the 
main challenges which researchers try to address by developing a reference technology 
platform. The work presented in [355] extends the safety-oriented environment AVATAR (a 
SysML modelling language framework) [356] with security constructs and verification 
techniques, to formally secure safety-critical automotive applications. 

A capability-based, object-oriented software architecture is presented in [357]. Featuring a 
micro-kernel interface and enforceable security policies along with virtualisation provisions, it 
aims to improve security and provide isolation between multiple un-trusted software 
components. 

The authors in [358] propose Privacy-by-Design, i.e. a systematic approach of integrating 
privacy requirements onto the design and implementation of a system. Using ontologies, a 
formal method is introduced which allows the evaluation of the system in terms of the 
realization of those pre-defined privacy requirements. The application of this method on the 
development of Intelligent Transportation Systems (ITS) applications is demonstrated in [359]. 

IDENTIFIED OPEN ISSUES 
The increased complexity and interconnection of the current systems’ components, as well as 
the varying and often undefined security levels of the networks they consist of, demand 
different approaches in the way the requirements are stated, in addition to the way these 
systems are designed. An integrated approach is required, where the components’ security 
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level is properly and systematically assessed, thus enabling the correct evaluation of the 
architecture’s overall security level. In order for this to occur, reliable and useful metrics need 
to be defined, also applicable to legacy and therefore potentially insecure systems. 

Furthermore, lightweight alternatives or improvements to existing cryptographic primitives 
and key distribution mechanisms could be looked into. Even though plenty of mechanisms 
and techniques already exist that would typically be deployed to secure other types of 
computing devices (e.g. for access control, cryptography, network routing etc.), they are not 
always applicable or have limited efficacy in the context of embedded systems. 

The development of comprehensive cryptographic tools focused on embedded systems, 
featuring lightweight primitives, could be a very important development, including utilization 
of TPM functionality, and virtualization features, where available. Similarly, extending and 
improving the interoperability of existing, standardized, cryptographic mechanisms (e.g. 
IPsec) with new types of networks (e.g. 6LoWPAN deployments), would be desirable. 

Wearable systems introduce more challenges, like developing the means to securely and 
seamlessly collect, store and transmit various data, some of which might be private sensitive 
in nature (thus having to consider regulatory compliance issues that arise when dealing with 
such data). Access to location-based services is commonly required in such applications, as 
well as various vehicular and smartphone-related smart services, which again raises various 
privacy concerns. This mandates the development of efficient anonymizing schemes, which 
must allow the user to access said services, while prohibiting the service provider from 
uniquely identify the specific user and her location among the rest of the users. 

Future research is also expected to focus on revising the traditional role of middleware 
(namely, facilitating interaction and compositions via discovery and orchestration). By 
upgrading middleware technologies and transforming them into recommendation engines, 
able to dynamically and adaptively detect patterns and predict potential service interactions, 
embedded systems will better reflect the new crowdsourcing, social and generally human-
related applications. These changes though are bound to introduce novel security and privacy 
issues that will have to be addressed. 

The concepts of self-reconfiguration (e.g. in order to adapt to changes in the security levels, 
network, application/user requirements or location) and self-recovery (e.g. in fault conditions) 
could be investigated further. This can be achieved via on-the-fly hardware and/or software 
changes and can even be used to enhance the robustness of embedded systems against side-
channel attacks (by controlling electromagnetic emissions etc.). 

Moreover, there is room for improvement on the formalisation, definition and application of 
security and dependability (S&D) concepts. It is important to be able to formalise S&D 
requirements and product lifecycle in general, accurately modelling the processes from 
research and development until the end product. In this way, it will enable the validation of 
the end-product whether it meets all S&D and the other requirements defined at earlier 
stages. 
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As future work in the context of the survey presented in this section, it would be interesting 
to examine each of the sections (e.g. node) and their identified technologies separately and 
with respect to the current state of the art for each of the identified technologies of the 
section. Such a comparison would facilitate the evaluation of the results of EU-funded 
research efforts in a global context and help draw useful conclusions about the quality of the 
projects’ output and the return on European investments in said research topics. 
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