
Technical University of Crete
Electronic and Computer Engineering Department

Microprocessor & Hardware Laboratory

ANALYSIS AND COMPOSITION OF SECURITY
PRIMITIVES TOWARDS A FRAMEWORK THAT

SAFEGUARDS THE CONFIDENTIALITY, INTEGRITY
AND AVAILABILITY OF EMBEDDED SYSTEMS:

USPBM – Α SECURE POLICY-BASED
MANAGEMENT FRAMEWORK FOR

UBIQUITOUS SMART DEVICES

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRONIC AND COMPUTER ENGINEERING

OF THE TECHNICAL UNIVERSITY OF CRETE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Konstantinos Fysarakis

Supervisor: Ioannis Papaefstathiou

Chania 2016

This page intentionally left blank.

2

ΠΕΡΙΛΗΨΗ
Πλήθος υπολογιστικών συστημάτων βρίσκονται ήδη γύρω μας, σε διάφορες μορφές – μία
πραγματικότητα που επηρεάζει όλες τις πτυχές της σύγχρονης ζωής και μία τάση που αναμένεται να
ενταθεί τα επόμενα χρόνια. Ερευνητές και μηχανικοί εργάζονται προκειμένου να παρουσιαστούν νέοι
τύποι συσκευών και υπηρεσιών, με σκοπό να αντιμετωπιστούν αποτελεσματικότερα τα υφιστάμενα
και αναδυόμενα προβλήματα της καθημερινότητας και να βελτιωθεί η ποιότητα της ζωής μας. Αυτή η
διαδικασία θα οδηγήσει στην εποχή του Internet of Things (IoT), όπου όλα τα αντικείμενα που
κατέχουμε και αλληλοεπιδρούμε θα αποτελούνται από υπολογιστικές συσκευές συνδεδεμένες στο
διαδίκτυο.

Ωστόσο, οι μεγάλες αυτές αλλαγές δεν πρόκειται να πραγματωθούν χωρίς την υπέρβαση κάποιων
σημαντικών εμποδίων. Οι έξυπνες συσκευές έχουν, συχνά, άμεση επαφή με τον φυσικό κόσμο και,
επιπλέον, επεξεργάζονται, αποθηκεύουν και μεταφέρουν δεδομένα ευαίσθητου προσωπικού
χαρακτήρα, φέρνοντας έτσι στο προσκήνιο σημαντικά θέματα ασφάλειας και ιδιωτικότητας. Τόσο οι
ερευνητές, όσο και οι επιχειρήσεις, αλλά και οι τελικοί χρήστες, αναγνωρίζουν ως ένα τέτοιο
σημαντικό πρόβλημα την έλλειψη ασφαλούς, επεκτάσιμου και λεπτομερούς (fine-grained) ελέγχου
πρόσβασης στα ενσωματωμένα αυτά συστήματα και τους πόρους/υπηρεσίες τους, με επίγνωση
πλαισίου (context-awareness). Οι περιορισμοί των διαθέσιμων πόρων των συσκευών που
ενσωματώνονται σε έξυπνα περιβάλλοντα και η ετερογένειά τους (σε υλικό, δικτύωση, εφαρμογές
κλπ.), επιδεινώνουν τα προβλήματα αυτά και δυσχεραίνουν την αντιμετώπισή τους. Έτσι, συχνά
συνυφασμένο με τα θέματα ασφάλειας, είναι ένα άλλο σημαντικό εμπόδιο: η έλλειψη
διαλειτουργικότητας που θα διευκόλυνε τη χρήση, παρακολούθηση και διαχείριση της πληθώρας των
έξυπνων συσκευών και των υπηρεσιών τους. Παρόλο που οι απρόσκοπτες αλληλεπιδράσεις μηχανής-
προς-μηχανή (M2M) και ανθρώπου-προς-μηχανή (H2M) είναι αναγκαίες για ένα πραγματικό και
ασφαλές περιβάλλον διάχυτης νοημοσύνης, σήμερα υπάρχει μια κατακερματισμένη αγοράς με
ποικιλία ασύμβατων μεταξύ τους συσκευών.

Τα παραπάνω προβλήματα αποτέλεσαν το κίνητρο για τη διατριβή αυτή, που παρουσιάζει το uSPBM,
ένα ασφαλές πλαίσιο διαχείρισης και προστασίας έξυπνων συσκευών, μέσω πολιτικών ασφάλειας, με
έμφαση στη χρήση τυποποιημένων τεχνολογιών, λαμβάνοντας υπόψιν και τους περιορισμούς πόρων
των συσκευών αυτών. Με το συνδυασμό του λεπτομερούς ελέγχου πρόσβασης που παρέχεται από
την eXtensible Access Control Markup Language (XACML) με τα οφέλη των Service Oriented
Αρχιτεκτονικών, μέσω του Devices Profile for Web Services (DPWS), επιτρέπει την απρόσκοπτη
αλληλεπίδραση και τη διαχείριση, σε πραγματικό χρόνο, ετερογενών έξυπνων συσκευών, μέσω
πολιτικών ασφάλειας με επίγνωση πλαισίου. Επιπλέον, το uSPBM περιλαμβάνει αρθρωτά στοιχεία
που επιτρέπουν την αυθεντικοποίηση (authentication) των χρηστών και των συσκευών, επικοινωνία
μεταξύ διαφορετικών, κατανεμημένων δικτύων, καθώς και αυτοματοποιημένη, πραγματικού χρόνου
παρακολούθηση και διαχείριση των συσκευών, των παραμέτρων λειτουργίας τους, και των υπηρεσιών
τους, μέσω διεπαφών ενδιάμεσου λογισμικού.

Το παρουσιαζόμενο έργο περιλαμβάνει proof of concept υλοποιήσεις όλων των οντοτήτων του
πλαισίου σε μία ποικιλία από πλατφόρμες υλικού, συμπεριλαμβανομένων καινοτόμων εργαλείων
ανάπτυξης τα οποία ξεπερνούν σε απόδοση τις προϋπάρχουσες λύσεις. Οι υλοποιήσεις αξιολογούνται
λεπτομερώς σε μια σειρά από περιπτώσεις χρήσης, όπου η εφαρμογή του uSPBM ξεπερνάει την
τρέχουσα τεχνολογία αιχμής από άποψη διαλειτουργικότητας, ελέγχου πρόσβασης, και
παρακολούθησης και διαχείρισης σε πραγματικό χρόνο των έξυπνων συσκευών. Τα αποτελέσματα
επικυρώνουν την εφαρμοσιμότητα του uSPBM και τη σημασία του στην ευρύτερη υιοθέτηση του IoT,
επιτρέποντας έτσι στους χρήστες να αποκομίσουν όλα τα οφέλη της νέας αυτής πραγματικότητας.

3

ABSTRACT
Computing devices already permeate working and living environments, a trend affecting all aspects of
modern everyday lives, and one that is expected to intensify in the coming years. As computing
becomes ubiquitous, researchers and engineers aim to exploit the potential of pervasive systems in
order to introduce new types of services and address inveterate and emerging problems. This process
will lead us eventually to the era of urban computing and the Internet of Things (IoT), where all objects
we own and interact with will be computerized and connected to the Internet.

However, these long-promised improvements cannot be realized without overcoming some significant
obstacles introduced by these technological advancements. The direct interaction smart devices often
have with the physical world, along with the processing, storage and communication of data pertaining
to users’ lives, i.e. private sensitive in nature, bring security and privacy concerns into the limelight.
Researchers, business stakeholders and end-users alike, recognize that one such important security-
related barrier is the lack of fine-grained and context-aware control of access to the resources of these
pervasive embedded systems, in a secure and scalable manner.

The resource-constraints of the platforms integrated into smart environments, and their heterogeneity
in hardware, network and overlaying technologies, only exacerbate the above security issues. Thus,
often intertwined with the security issues, is another important barrier: the lack of interoperable
solutions, to facilitate the use, monitoring and management of the plethora of devices and their
services. Therefore, while seamless machine-to-machine (M2M) and human-to-machine (H2M)
interactions are a necessity for secure and truly ubiquitous computing, the current status quo is that of
a segregated and incompatible assortment of devices.

Motivated by the above, this thesis presents uSPBM, a secure policy-based management framework,
focusing on the use of well-established, standardized technologies, while considering the potential
resource-constraints of the target heterogeneous embedded devices. By combining the well-studied
fine-grained access control provided by the eXtensible Access Control Markup Language (XACML) with
the benefits of Service Oriented Architectures, via the Devices Profile for Web Services (DPWS), it
enables seamless interactions and fine-grained, context-aware policy-based management of
heterogeneous smart devices. Moreover, the framework includes modular elements that allow the
authentication of users and devices, communication between different domains, as well as automated,
real-time monitoring and management of the devices’, their operating parameters and their services,
via the appropriate middleware interfaces.

The work includes proof-of-concept implementations of all of the framework’s entities, on a variety of
hardware platforms, including purpose-built novel development tools, which outperform existing
solutions. All implementations are evaluated in detail on a number of use cases where applying the
proposed framework enhances the current state of the art in terms of the interoperability, security,
real-time monitoring and management of smart devices. The results validate the feasibility of uSPBM’s
approach and its applicability in enabling the wider adoption of the IoT, thus allowing users to reap the
associated benefits.

4

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ
Έλεγχος πρόσβασης μέσω πολιτικών; Εξουσιοδότηση; Αυθεντικοποίηση; Υπηρεσίες Διαδικτύου;
Αρχιτεκτονικές Υπηρεσιών; Διάχυτη Υπολογιστική; Διαδίκτυο των Αντικειμένων; Ίντερνετ των
Πραγμάτων; Devices Profile for Web Services (DPWS); eXtensible Access Control Markup Language
(XACML); MQ Telemetry Transport (MQTT); Ασφάλεια; Έξυπνο σπίτι; Έξυπνα οχήματα; Δίκτυα
αισθητήρων σώματος; Δίκτυα χαμηλής ισχύος και απωλειών; Ενσωματωμένα συστήματα; Έξυπνες
συσκευές; Αισθητήρες;

KEYWORDS
Policy-based Access Control; Authorisation; Authentication; Web Services; Service Architectures;
Ubiquitous Computing; Pervasive Computing; Internet of Things (IoT); Devices Profile for Web Services
(DPWS); eXtensible Access Control Markup Language (XACML); MQ Telemetry Transport (MQTT);
Security; Smart Home; Smart Vehicles; Body Sensor Networks; Low power and lossy networks (LLNs);
Embedded systems; Smart devices; Sensors;

5

ACKNOWLEDGEMENTS
I would like to thank Dr. Charalampos Manifavas for the excellent collaboration throughout the years,
and my advisor Dr. Ioannis Papaefstathiou for allowing me to conduct my research and providing
remarkable support. I also wish to thank my colleagues and co-authors who helped design and
implement the work presented herein, as well as the committee members for their valuable expertise
and precious time.

Finally, I would like to extend my deepest gratitude to my family and friends; they stood by me
throughout these years, each helping me in their own way, and for that, I will always be grateful.

6

PUBLICATIONS
Below follow the journal and conference publications stemming from the research work
presented in this dissertation, listed in reverse chronological order.

JOURNAL PUBLICATIONS
5. “XSACd: Cross-domain Resource Sharing & Access Control for Smart Environments”, K.

Fysarakis, O. Sultatos, C. Manifavas, I. Papaefstathiou, I. Askoxylakis, Future Generation
Computer Systems, Elsevier, 2015. (minor revision submitted) [IF: 2.786]

4. “RtVMF : A Secure Real-time Vehicle Management Framework”, K. Fysarakis, G.
Hatzivasilis, C. Manifavas and I. Papaefstathiou, IEEE Pervasive Computing, Special Issue -
Smart Vehicle Spaces, vol.15, no.1, pp.22-30, Jan.-Mar. 20162015. (DOI:
10.1109/MPRV.2016.15) [IF: 2.103]

3. “Node.DPWS: Efficient Web Services for the IoT”, K.Fysarakis, D. Mylonakis, C. Manifavas
and I. Papaefstathiou, IEEE Software, vol.PP, no.99, pp.1-1, 2015.
(DOI:10.1109/MS.2015.155). [IF: 1. 23]

2. “Policy-controlled authenticated access to LLN-connected healthcare resources”, K.
Rantos, K.Fysarakis, C. Manifavas and I. Askoxylakis, IEEE Systems Journal, vol.PP, no.99,
pp.1,11, 2015. (DOI: 0.1109/JSYST.2015.2450313) [IF: 1.98]

1. “Embedded Systems Security: A Survey of EU Research Efforts”, C. Manifavas, K. Fysarakis,
A. Papanikolaou and I. Papaefstathiou, Security and Communication Networks, Wiley,
2014. (DOI: 10.1002/sec.1151) [IF: 0.72]

7

CONFERENCE PUBLICATIONS
9. WSACd - A Usable Access Control Framework for Smart Home Devices, K. Fysarakis, C.

Konstantourakis, K. Rantos, C. Manifavas and I. Papaefstathiou, 9th WISTP International
Conference on Information Security Theory and Practice (WISTP 2015), Heraklion, Crete,
Greece, August 24-25, 2015. (DOI: 10.1007/978-3-319-24018-3_8)

8. Secure and Authenticated Access to LLN Resources Through Policy Constraints, K. Rantos,
K. Fysarakis, O. Soultatos and I. Askoxylakis, 9th WISTP International Conference on
Information Security Theory and Practice (WISTP 2015), Heraklion, Crete, Greece, August
24-25, 2015. (DOI: 10.1007/978-3-319-24018-3_18)

7. “RT-SPDM: Real-time Security Privacy & Dependability Management of Heterogeneous
Systems”, K. Fysarakis, G. Hatzivasilis, I. Askoxylakis and C. Manifavas, 3nd Int. Conference
on Human Aspects of Information Security, Privacy and Trust (HAS 2015), within the 17th
Int. Conference on Human-Computer Interaction (HCII 2015), Los Angeles, USA, 2-7 Aug.
2015. (DOI: 10.1007/978-3-319-20376-8_55)

6. “Policy-based Access Control for DPWS-enabled Ubiquitous Devices”, K. Fysarakis, K.
Rantos, O. Sultatos, C. Manifavas and I. Papaefstathiou, 19th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA 2014), Barcelona,
Spain, Sept. 16-19, 2014. (DOI: 10.1109/ETFA.2014.7005233)

5. “Policy-based Access Control for Body Sensor Networks”, C. Manifavas, K. Fysarakis, K.
Rantos, K. Kagiambakis and I. Papaefstathiou, 8th Workshop in Information Security
Theory & Practice (WISTP 2014), Heraklion, Crete, Greece, Jun. 30 - Jul. 02, 2014. (DOI:
10.1007/978-3-662-43826-8_11)

4. "Embedded Systems Security Challenges", K. Fysarakis, K. Rantos, A. Papanikolaou, G.
Hatzivasilis and C. Manifavas, Measurable security for Embedded Computing and
Communication Systems (MeSeCCS 2014), within the International Conference on
Pervasive and Embedded Computing and Communication Systems (PECCS 2014), Lisbon,
Portugal, Jan. 7-9, 2014. (DOI: 10.5220/0004901602550266)

3. "A Lightweight Anonymity & Location Privacy Service", K. Fysarakis, A. Adamopoulos, C.
Manifavas, I. Papaefstathiou, 13th IEEE Symposium on Signal Processing and Information
Technology (ISSPIT), Athens, Greece, Dec. 12-15, 2013. (DOI:
10.1109/ISSPIT.2013.6781866)

2. "Lightweight Cryptography for Embedded Systems – A Comparative Analysis", G.
Hatzivasilis, K. Fysarakis, C. Manifavas and K. Rantos. Accepted.6th International
Workshop on Autonomous and Spontaneous Security (SETOP 2013), Egham, UK, Sep. 12-
13, 2013. (DOI: 10.1007/978-3-642-54568-9_21)

1. “Secure Policy-Based Management Solutions in Heterogeneous Embedded Systems
Networks”, K. Rantos, A. Papanikolaou, K. Fysarakis and C. Manifavas, IEEE International
Conference on Telecommunications & Multimedia (TEMU 2012), Heraklion, Greece, Jul.
30 – Aug. 1, 2012. (DOI: 10.1109/TEMU.2012.6294723)

8

CONTENTS

Περίληψη .. 3

Abstract .. 4

Λέξεις Κλειδιά ... 5

Keywords .. 5

Acknowledgements .. 6

Publications .. 7

Journal Publications ... 7

Conference Publications .. 8

Contents ... 9

List of Tables ... 12

List of Figures .. 13

1. Introduction .. 15

1.1 Motivation ... 16

1.2 The Framework ... 20

1.3 Use Cases .. 22

1.3.1 Energy / Smart Metering .. 22

1.3.2 Smart Vehicles .. 23

1.3.3 e-Health .. 23

1.3.4 Transport Infrastructure ... 24

1.3.5 Smart Home .. 24

1.3.6 Ambient Assisted Living .. 25

1.3.7 Smart Factory (Industry 4.0) ... 26

2. Background & Related Work .. 27

3. Core Technologies & Entities .. 34

3.1 Policy-Based Access Control .. 34

3.1.1 Typical Application Scenario & Data Flow .. 35

3.1.2 Access Control Policies ... 37

3.2 Service-Oriented Architectures ... 43

3.2.1 The Devices Profile for Web Services (DPWS) .. 43

3.2.2 Node.DPWS .. 46

3.3 Combining the Technologies ... 53

4. Implementation Approach ... 54

4.1 Node Classification .. 54

9

4.1.1 Power Devices .. 54

4.1.2 Mobile Devices ... 55

4.1.3 Embedded/Micro Devices .. 56

4.1.4 Sensors/Nano Devices .. 57

4.2 DPWS Implementation of Access Control Mechanisms .. 60

4.2.1 PEP-PDP Communication .. 60

4.2.2 PDP-PIP/PAP Communication ... 61

4.2.3 Information Flow .. 62

4.3 Message Protection .. 63

4.3.1 Asymmetric Variant .. 64

4.3.2 Symmetric Variant .. 66

4.3.3 Security Analysis ... 69

4.4 Interfacing with Middleware & Management Systems .. 71

4.5 Performance Evaluation of Core Entities .. 74

5. Applications & Extensions .. 80

5.1 Body Sensor Networks .. 80

5.1.1 Motivation .. 80

5.1.2 Proposed Architecture .. 82

5.1.3 Implementation Approach ... 84

5.1.4 Proof of Concept ... 85

5.1.5 Summary ... 90

5.2 Authenticated Access to LLN-Connected Resources ... 90

5.2.1 Motivation .. 91

5.2.2 Proposed Architecture .. 93

5.2.3 Implementation Approach ... 96

5.2.4 Performance Evaluation ... 97

5.2.5 Security Considerations .. 101

5.2.6 Summary ... 102

5.3 Cross-Domain Smart Environments –The XSACd Variant ... 103

5.3.1 Motivation .. 104

5.3.2 Proposed Architecture .. 105

5.3.3 Implementation Approach ... 106

5.3.4 Event sequence ... 107

5.3.5 uSPBM/XSACd Cross-domain Proxy .. 108

5.3.6 Security considerations .. 112

5.3.7 Performance Evaluation ... 112

5.3.8 Summary ... 117

10

5.4 Smart Vehicles – The RtVMF Framework .. 117

5.4.1 Motivation .. 118

5.4.2 The RtVMF Architecture ... 119

5.4.3 Proof of Concept ... 123

5.4.4 Summary ... 128

6. Conclusions & Future Work .. 129

7. References .. 133

Annex A – Embedded Systems Security ... 158

Physical Security Issues ... 158

Access Control .. 160

Cryptographic Mechanisms .. 162

Network Protocol and Management Issues ... 166

Annex B – Pertinent EU-funded Research .. 171

Node Technologies ... 175

Hardware-Related Security Modules .. 176

Virtualisation .. 178

Lightweight Cryptography .. 179

Miscellaneous Node Topics .. 180

Network Technologies ... 180

Node Attestation and Authentication .. 182

Privacy and Anonymity ... 182

Secure Routing .. 184

Intrusion and Malicious Node Detection .. 185

Secure Aggregation ... 186

Miscellaneous Network Topics ... 187

Middleware and Overlay Technologies .. 187

Trusted Middleware ... 189

Service-Oriented Middleware .. 189

Context-Aware Middleware ... 190

Reconfigurable and Fault-Tolerant Middleware... 190

Overlay Applications ... 191

Architectures and Formalisation .. 192

Identified Open Issues .. 194

11

LIST OF TABLES
Table 1. uSPBM Compared to Recent Related Work .. 32
Table 2. Policy Attributes Template ... 38
Table 3. Comparison of SDPs .. 46
Table 4. Overview of DPWS Toolkits .. 47
Table 5. Prototype Platform Specifications .. 58
Table 6. WS-Security and TLS Benchmark Results for 25 Concurrent Requestors [133] 66
Table 7. Resource Consumption on uSPBM-Protected DPWS Devices During Benchmarks 77
Table 8. Performance & Reliability Comparison of MQTT and HTTP on Typical Mobile Application ... 111
Table 9. Scenario steps ... 125
Table 10. Selected EU-funded projects related to embedded systems security. 171
Table 11. Application areas overview. .. 173
Table 12. Node technologies overview (projects that did not focus on these aspects have been left
unchecked). .. 175
Table 13. Network technologies overview (projects that did not focus on these aspects have been left
unchecked). .. 181
Table 14. Middleware and overlay technologies overview (projects that did not focus on these aspects
have been left unchecked). .. 188
Table 15. Architecture and formalisation efforts overview (projects that did not focus on these aspects
have been left unchecked). .. 192

12

LIST OF FIGURES
Figure 1. Internet of Things. Vertical & Horizontal Markets [1] ... 15
Figure 2. Number of IoT –related Articles on the IEEE Xplore Library. ... 16
Figure 3. The uSPBM Framework ... 21
Figure 4. uSPBM Entities, Aggregated by Role/Service they Provide ... 22
Figure 5. Basic uSPBM Access Control Architecture ... 35
Figure 6. Data flow model of policy-based access control ... 37
Figure 7: XACML Policy components .. 38
Figure 8. uSPDM Policy example .. 42
Figure 9. The DPWS protocol stack [23] ... 44
Figure 10. From the Internet of Things (left) to the Web of Things (right) .. 45
Figure 11. Creating a simple DPWS device using Node.DPWS (left) and the same device in WS4D-JMEDS
(right). ... 49
Figure 12. Average response time (in ms) for 500 requests on both the simple (left) and the policy-based
access control implementation (right) ... 51
Figure 13. Energy (in mJ) required to handle 500 requests. ... 52
Figure 14. The Evolution of Access Control Models [105] .. 54
Figure 15. Beagleboard xM ... 55
Figure 16. Smartphone and Tablet Devices .. 56
Figure 17. Beaglebone Embedded Platform ... 57
Figure 18. SunSPOT Sensor ... 57
Figure 19. IRIS Mote ... 58
Figure 20. PEP-PDP Implementation .. 61
Figure 21. PDP-PIP/PAP Implementation ... 62
Figure 22. Secure SAREvent .. 67
Figure 23. Implementation of AES/CCM-protected PEP-PDP Communication 68
Figure 24. Implementation of AES/CCM-protected PDP-PIP/PAP Communication 69
Figure 25. STRIDE Analysis of uSPBM's Core Access Control Interactions .. 70
Figure 26. OSGi - DPWS Interfacing .. 71
Figure 27. An uSPBM Device Deployed over OSGi and Discovered on Local Network........................... 72
Figure 28. Implementation of the uSPBM Device Operator ... 73
Figure 29. Simple Scenario Demonstrating Device Operator's Functionality ... 74
Figure 30. Proof-of-Concept Testbed Setup ... 75
Figure 31. Client-Side Response Time (ms) .. 76
Figure 32. Response Time (ms) Breakdown, Averaged Over 100 Requests ... 77
Figure 33. PDP Processing Time. Average Response Time (ms) Depending on Number of Stored Policies.
 .. 78
Figure 34. PDP Processing Time vs. Number of Stored Policies (in ms). Comparison to Related Work. 78
Figure 35. The Effect of the Different Security Mechanisms Under Two Use Cases (times in ms, averaged
over 50 requests). ... 79
Figure 36. Functional Model of Policy-based Access Control for Healthcare Environments 83
Figure 37. uSPBM BSN implementation using DPWS ... 85
Figure 38. The BSN Bridge .. 86
Figure 39. The BSN DPWS Provider .. 87
Figure 40. Discovering the Sensors and Their Hosted Services on the Network 88
Figure 41. Proposed deployment of the proof-of-concept uSPBM BSN application 89
Figure 42. Average response time (in ms) for 50 requests. Columns in blue depict the scenario where
there is no security between the sensor and the Provider, while columns in green correspond to the
scenarios where AES-CBC encryption was used to protect said link .. 90

13

Figure 43. Authenticated Access Control. .. 95
Figure 44. DPWS-based implementation of the authentication scheme. .. 97
Figure 45. The test-bed setup, featuring embedded devices and desktop PCs. Orange lines indicate
communication where WS-Security is optionally enabled. Also depicts the extra PDP & PIP/PAP
introduced in the second test scenario. ... 98
Figure 46. Client-side response time for 100 requests to the Service Orchestrator. 99
Figure 47. Service Orchestrator’s average CPU load (%). ... 100
Figure 48. Service Orchestrator's and Target device’s memory utilization (in bytes) for Scenario 1. .. 101
Figure 49. Target device's CPU load (%) for Scenario 1. ... 101
Figure 50. Smart Home Access Control Architecture & Cross-domain Communication. Main Entities.
 .. 106
Figure 51. DPWS implementation of the XACML mechanisms .. 107
Figure 52. XSACd Cross-Domain Proxy Implementation and Main Steps. Simplified View. 110
Figure 53. XSACd Cross-domain Proxy. Command Line Remote Connection to the Embedded Test
Platform .. 111
Figure 54. Screen Capture of the (PEP-protected) DPWS Test Device Deployed on the Touch-enabled
Smart Platform. .. 113
Figure 55. The "Smart Home Browser"; an Application Developed to Facilitate the Discovery of DPWS
Devices and Provide Access to Their Hosted Services. ... 114
Figure 56. Client-side Response Time for 100 Concurrent Requests (in ms).. 114
Figure 57. Average Client-side Response Time (in ms) for the Investigated Deployments and Usage
Scenario. ... 115
Figure 58. Memory Footprint (in KB, Logarithmic Scale) on the PEP-protected Device, including the
overhead compared to the simple DPWS device with no access control protection. 116
Figure 59. Network Throughput on Target Device During Tests. ... 116
Figure 60. RtVMF architecture and demonstrator deployment ... 120
Figure 61. Test-bed used for demonstration & performance evaluation. Proof of concept RtVMF
retrofitting (insert) ... 124
Figure 62. Response time (in ms) per request, for both test platforms ... 127

14

1. INTRODUCTION
Advances in computing and communication technologies have enabled a new reality where
interconnected computing systems, in various forms, are constantly gaining popularity,
permeating our environments and aiming to enhance all aspects of our everyday lives. The IP-
based connectivity of devices, systems and services, which goes beyond the traditional
human-to-machine (H2M) and machine to machine (M2M) interactions, is nowadays labeled
the Internet of Things (IoT). Ubiquitous computing devices, featuring sensors and actuators,
are already deployed in a variety of domains (residential/home automation, industrial
systems, military, e-textiles, healthcare and automobiles, among others; see Figure 1).

FIGURE 1. INTERNET OF THINGS. VERTICAL & HORIZONTAL MARKETS [1]

These devices come in many different forms, small or large, visible or invisible, attached or
embedded, simple or complex, wired or wireless, in coordinated or ad hoc networks etc. Some
examples of devices already available in the market include smart thermostats, smart fridges,
doors, locks, switches and power outlets, motion & environmental sensors, smart vehicles,
wireless defibrillators & insulin pumps, internet-connected MRI scanners and critical
infrastructures such as power grids and nuclear centrifuges.

15

It is estimated that up to 200 billion devices will be connected to the IoT by 2020 (i.e. 26
connected objects per person [2]), while 5.5 million new things will be connected every day in
2016 alone1. This plethora of devices is expected to cause a surge in IP traffic, reaching 1.6
zettabytes in 2018, 57% of which will originate from devices other than personal computers
[3]. These significant changes did not leave the industrial and enterprise environments
unaffected, with ubiquitous computing acting as an enabler for new business opportunities
and services, but also providing more sophisticated tools for monitoring and managing the
existing business functions and infrastructure. Thus, the market potential is equivalently
promising, with estimates of a value (net profit) of $14.4 trillion being available to enterprises
globally by IoT applications and services [3].

The research community spearheads the IoT developments in various fronts, from the
hardware and sensing elements to the communication interfaces and protocols and the value
added (e.g. knowledge extraction) from the data generated by the devices. The research
interest in the IoT is evident from Figure 2, which presents the search results in the IEEE Xplore
online library, when searching with the term “Internet of Things”.

FIGURE 2. NUMBER OF IOT –RELATED ARTICLES ON THE IEEE XPLORE LIBRARY.

1.1 MOTIVATION
While existing networking and security mechanisms are updated and adapted to handle the
vast population of IoT devices, higher level, seamless M2M and H2M interactions, are a
requirement in order to effectively monitor and manage the infrastructure, allowing the use
of its full potential. However, at its current state, the ubiquitous computing landscape is
segregated, consisting of numerous proprietary solutions, which are typically incompatible

1 Gartner, 2015, https://www.gartner.com/newsroom/id/3165317

1 5 6 20 34
246

601 663

1151

1858

2599

0

500

1000

1500

2000

2500

3000

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

of

 a
rt

ic
le

s

Publication Year

16

with each other. This makes setting up, managing and, by extension, securing a smart device
ecosystem, significantly challenging.

Moreover, end-users typically do not possess the skills to configure and setup the devices that
may be found in smart environments; in large-scale deployments, individually setting up
devices is not even feasible. From the perspective of implementers, there is a need for rapid
development and deployment, while simultaneously tackling issues of scaling and inherent
limitations in terms of resources (CPU, memory, power etc.).

Furthermore, managing a large number of heterogeneous nodes in a network of embedded
systems is a challenging task, mainly due to differences in requirements and resources. Nano
nodes with very limited capabilities, such as the nodes of a Wireless Sensor Network (WSN),
may not be suitable for adopting solutions designed for power nodes that have no such
constraints. Using these devices in dynamic, ad-hoc infrastructures that feature a plethora of
characteristics, has brought up the need for appropriate management of participating nodes
to satisfy the corresponding policy restrictions.

This heterogeneity in large-scale deployments combined with the dynamic nature of these
systems requires utilization of specialized techniques in order to manage their resources and
corresponding services.

The above developments also introduce significant challenges in terms of the security and
privacy of the data processed, stored and communicated by these systems [4]. The IoT
applications typically handle private sensitive data (such as health readings or the users’ exact
location) and include direct interaction with the physical world (cyber-physical systems).

Some key ES security research challenges, such as physical layer issues, access
control/authorization, authentication & denial of service attacks, lightweight cryptographic
and key exchange mechanisms, secure (e.g. reputation-based) routing, communications
security, secure service discovery and anonymity and location privacy issues, are identified
and analyzed in Annex A – Embedded Systems Security. Moreover, a survey or EU-funded
research efforts in addressing these issues can be found in Annex B – Pertinent EU-funded
Research.

These overviews of security challenges and research efforts highlight the importance of ESs
security is important. There can be dire consequences from a successful security attack in the
case of critical systems but also these attacks are bound to become more common as ESs
become an even more integral part of our lives, with the widespread adoption of smart
devices in our homes, cars, clothes etc. The particular characteristics of such resource-
constrained devices and the varied requirements of their applications not only introduce new
vulnerabilities but also intensify existing ones. Moreover, mechanisms and techniques (e.g.
for access control, cryptography, network routing etc.) that would typically be deployed to
secure other types of computing devices are not always applicable or have limited efficacy in
the context of embedded systems. Thus, research should establish secure mechanisms
tailored for ES, consider ES security a non-functional requirement and avoid building insecure
solutions that “just work” and then try to correct flaws with patches. Security performance is
going to be one of the next product differentiators in embedded products and services.

17

It may be irritating and costly to have a teenage neighbor control our smart thermostat, but a
total blackout caused by a hack of the centralized power monitoring and distribution
infrastructure can have significant consequences in terms of asset damage or panic to the
public. In extreme cases, where a malicious entity might control a self-driving vehicle, an
implantable smart medical device or even a critical infrastructure (such as a nuclear
centrifuge), the security incident may directly lead to injuries or even deaths of one or more
individuals.

According to a Cisco survey [5] on 7.501 business and IT decision makers, the biggest downside
to the increased pervasiveness of computing devices are the associated new threats to data
& physical security. A survey [6] from Accenture on 28.000 respondents from 28 countries,
security is now a top barrier to IoT expansion, as early adopters are choosing to abandon IoT
applications because of security concerns.

These concerns are not baseless, as there are already numerous successful attacks in a variety
of smart domains. A critical vulnerability in smart heating and power systems of a German
company, Vaillant, which allowed attackers to gain unauthorized access and turn them off or
damage them at will 2 3. A similar case [7] involved smart meters deployed in millions of
households in Spain that allow attackers to take full control of the device, remotely shut down
power and tamper with consumption readings, among others. Focusing on modern vehicles,
Koscher et al. [8] have demonstrated that it is feasible to manipulate all critical sub-systems
in modern automobiles, disabling or activating brakes, stopping the engine, injecting malicious
code and completely ignoring driver input. More recently, a security bug enabled a remote
attack of Fiat/Chrysler’s Uconnect system4, letting hackers apply the brakes, kill the engine
and take control of steering over the internet, forcing the company to issue an update5 to the
affected vehicles’ software. Medical devices are also affected. Security researchers [9] have
successfully hijacked a tele-operated surgical robot during surgery and made it impossible for
a surgeon to remotely operate. A security researcher remotely disabled his own insulin pump
live on stage during the 2011 BlackHat Conference [10]. More recently, researchers [11]
identified 68,000 vulnerable medical systems, accessible online, belonging to an unnamed U.S.
health organization. The equipment included 488 cardiology machines, 323 picture archiving
and communication gear, 133 infusion systems, and 97 MRI scanners. The latter security
analysis was a results of a 3-year research project on the security of medical devices, which
also revealed [12] drug infusion pumps (for delivering morphine drips, chemotherapy and
antibiotics) that can be remotely manipulated to change the dosage doled out to patients.
Moreover, Bluetooth-enabled defibrillators were identified that can be manipulated to deliver
random shocks to a patient’s heart or prevent a medically needed shock from occurring.
Successful attacks also included accessing x-rays from the hospital’s network, resetting
temperature settings on refrigerators storing blood and drugs (thus causing causing spoilage)

2 http://www.bhkw-infothek.de/nachrichten/18555/2013-04-15-kritische-sicherheitslucke-ermoglicht-
fremdzugriff-auf-systemregler-des-vaillant-ecopower-1-0/
3 http://www.hotforsecurity.com/blog/vulnerability-in-vaillant-heating-systems-allows-unauthorized-
access-5926.html
4 http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
5 http://www.theguardian.com/technology/2015/jul/21/jeep-owners-urged-update-car-software-
hackers-remote-control

18

and digital medical records that could be altered (to cause physicians to misdiagnose,
prescribe the wrong drugs or administer unwarranted care). One of the main problems
identified by the researchers lay with embedded web services that allow devices to
communicate with one another and feed digital data directly to patient medical records, as
many of the web services allow unauthenticated or unencrypted communication between the
devices.

Studies [13] and published reports [14] reveal that current smart device deployments have
not adequately considered the threats that these nodes face when connected to the Internet,
hence the lack of the security measures.

The Open Web Application Security Project (OWASP) organization includes “Insufficient
Authentication/Authorization” in the second place of its list of top ten security problems
identified on IoT devices [15], preceded only by the use of “Insecure Web Interfaces”. A recent
Hewlett-Packard study [16] on smart home security appliances revealed that all devices
contained significant authentication & authorization vulnerabilities. A risk analysis [17]
applied on a smart home automation system (as part of a research project involving leading
industrial actors), revealed that the highest ranked risk (i.e. the most probable and the one
with the highest potential impact) affecting smart homes is derived from inadequate or absent
access control configuration and policies.

Such negligence in terms of proper authentication and authorization are bound to inhibit any
efforts made towards using these pervasive devices to handle our personal sensitive data. The
expanded attack surface that results from the integration of the numerous smart devices
around us with the Internet needs new or adapted mechanisms to mitigate these new threats.

Still, the intricacies of IoT applications should dictate the features of the adopted access
control mechanisms. A survey [18] on smart home users revealed people need fine-grained,
context-aware, dynamic access control. The required features included fine-grained division
of people & resources, type of access (e.g. read/write), adapting to presence, location
(local/remote), time of day etc., as well as reactive policy creation. The need for adaptability
and context-awareness is commonly cited among users and other stakeholders for the
industry and the research community.

The European Network and Information Security Agency (ENISA) recently concluded [19] that
security services, such as authentication and access control, have to be non-intrusive and to
be able adapt to the constantly changing contexts of smart spaces. This touches another
important barrier to IoT expansion, and one that is intertwined with the inadequate security:
the lack of interoperability. Indeed, a Microsoft survey [20] on smart home users highlighted
inflexibility (vendor “lock-in”), poor manageability and difficulties in achieving security as
significant barriers to the broader adoption of pertinent technologies and devices.

These concerns are not restricted to consumer audiences; an ENISA report [21] on security
and resilience of e-health infrastructures and services (involving cyber security experts,
academics and operators within the field of cyber security) identifies that access control is a
very significant priority in securing e-health applications. Moreover, it was noted that a key

19

requirement in achieving effective and secure e-health services is having a high level of
interoperability.

1.2 THE FRAMEWORK
Motivated by the above, uSPBM combines novel and standardized technologies to provide a
lightweight and usable framework for policy-based management of ubiquitous smart devices.

The eXtensible Access control Markup Language (XACML [22]) is used to convey policy
requirements in a unified and unambiguous manner. Thus, XACML defines the structure and
content of access requests and responses exchanged among the framework’s access control
entities. In terms of mechanism(s) used to transfer these messages, Service Oriented
Architectures (SOAs) provide an attractive option that can be chosen to convey policy
information. Embedded devices and SOAs are becoming convergent technologies with several
standards emerging from these efforts. This approach has already been successful in business
environments, as web services allow stakeholders to focus on the services themselves, rather
than the underlying hardware and network technologies. When deploying a SOA there are
quite a few effective options to provide these services, but the Devices Profile for Web
Services (DPWS [23]) specification stands out. It enables the adoption of a SOA approach on
embedded and sensor devices with limited resources, allowing system owners to leverage the
SOA benefits across heterogeneous systems that may be found in smart environments. In this
work, the typical policy based access control architecture is mapped to a SOA network of
nodes, enabled by the compact web service implementation provided by DPWS, to provide
protected access to their distributed resources.

The layout of uSPBM architecture, along with its main entities, can be seen in Figure 3.

20

FIGURE 3. THE USPBM FRAMEWORK

At the core of the framework lay the main authorization-related entities, namely the Policy
Decision Point (PDP) and the Policy Information Point (PIP) and Policy Administration Point
(PAP), along with the various Policy Enforcement Points (PEPs) residing on each of the
managed smart devices under uSPBM’s control. The basic authorization functionality is
augmented by other entities, responsible for further tasks which are equally important in
having a usable framework that can be applied in real use cases across a variety of IoT
domains. More specifically, the Service Orchestrator is interfaced with one or more identity
providers to offer authentication services. The Device Operator acts as an interface between
uSPBM and other middleware that may run at the backend to monitor, coordinate or even
automate the management of the smart devices. When necessary, a DPWS Provider is
deployed to allow for the integration of extremely resource constrained sensor devices under
the framework’s supervision. Finally, the Broker is responsible for coordinating the MQTT-
based [24] communications among the uSPBM proxies residing in all domains that uSPBM
manages. This association of entities to their specific services/tasks is better depicted in Figure
4.

Internet

PIP/PAP

Proxy

Broker

PDP Device
OperatorService Orchestrator

Sensor
DPWS

Provider

PEP PEP

Proxy

Proxy

Domain #2

Domain #3

PEP

Identity Provider
(Enterprise/Social)

SAML

PEP

Other
Middleware
(e.g. Security

Agent)

OSGi

PEP

DPWS
MQTT

21

FIGURE 4. USPBM ENTITIES, AGGREGATED BY ROLE/SERVICE THEY PROVIDE

By combining the above technologies, the proposed scheme allows for fine-grained, policy-
based management of all smart resources (e.g. DPWS-enabled cameras, sensors, or control
stations) from remote locations, via any compatible app developed for the purpose, typical
browsers, off the shelf mobile phones, or even in an automated AI-enhanced manner. Said
access may be used to access the resources provided (e.g. sensor data or video stream),
update settings or even receive alerts (e.g. in case of emergencies), all based on what the
active policy dictates. Moreover, interoperability concerns are also addressed using
standardized, platform-agnostic technologies, thus simultaneously tackling another important
IoT barrier. The presented work also features novel, high performance and scalable libraries
for the web services’ implementation. The resulting framework is lightweight but also flexible
and modular in nature, thus adaptable to a variety of use cases, as will be evident from the
various implementations deployed on a variety of heterogeneous devices presented in later
chapters.

1.3 USE CASES
Below we list some potential applications of uSPBM architecture in a variety of domains.

1.3.1 ENERGY / SMART METERING

Internet

PIP/PAP

Proxy

Broker

PDP Device
OperatorService Orchestrator

Sensor
DPWS

Provider

PEP PEP

Proxy

Proxy

Domain #2

Domain #3

PEP

Identity Provider
(Enterprise/Social)

SAML

PEP

Other
Middleware
(e.g. Security

Agent)

OSGi

PEP

DPWS
MQTT

22

Smart meters are typically used to record consumption of power and/or water and/or natural
gas for monitoring and billing purposes. Such devices involve two-way communication
between the device itself and vested party (or parties, e.g. utility companies, service providers,
suppliers etc.) and feature real-time or near-real-time sensors.

The inherent security issues of the transmissions typically used in such deployments, the
accompanying privacy issues and certain sensitive functionality present in such devices (e.g.
remote “kill switch”), necessitate the deployment of strong security mechanisms.

The presented scheme can be used to allow for a fine-grained policy-defined access control
to all the functional (e.g. “kill-switch”) and non-functional (e.g. monitoring) elements of the
devices and among all interested parties/stakeholders. Moreover, the underlying
technologies (i.e. XACML and DPWS) are fitting for the large-scale deployments of this
application area.

1.3.2 SMART VEHICLES
The intelligence being built into various vehicle types, will not only improve their safety and
comfort but also enable new modes of transportation and new types of services, creating the
corresponding markets. Nevertheless, the existing attack surfaces are expanded by said
intelligence; researchers have demonstrated that it is feasible to manipulate all critical sub-
systems in modern automobiles by using a wireless-enabled MP3 player connected to the
vehicle’s embedded control network [8]. The presented attacks include accessing the brake
controller, thus disabling or forcibly activating the brakes and consequently compromising the
safety of the driver and passengers, as well as injecting malicious code to erase any evidence
of tampering after a crash.

In all cases, it will be important to be able to monitor, preferably in real-time, various
parameters of the smart vehicles’ condition. A smart vehicle may feature various hosted
services (e.g. a temperature service, a location service, a fuel consumption service, an engine-
failure report service etc.), access to which can be controlled via the proposed uSPBM
framework. As an example, consider the scenario where the emergency services need to gain
access to certain vehicle functionality provided as a service by a node deployed in the vehicle’s
network, such as the vehicle’s engine control unit, in order to directly issue a command to this
unit to turn off the engine after pro-per authentication. Access to such a service might be
decided by the car owner or the applicable law, in which case the corresponding policy has to
be defined. Moreover, by constantly monitoring various operational parameters, uSPBM can
enable real-time monitoring and interaction with a smart vehicle or a smart vehicle fleet.

1.3.3 E-HEALTH
Healthcare stands out as a key sector where these novel technologies and associated
enhanced services can have a significant impact by improving the quality of life of patients,
elderly people, but also the general population through real-time monitoring and intervention
which enables proactive and more effective health management, justifying the intensive
research efforts in the field [25]–[27].

The sophisticated sensor nodes can be deployed as standalone devices serving a single
purpose, or as part of an infrastructure that consists of nodes with similar characteristics

23

comprising a so called low power and lossy network (LLN). Moreover, they can be used simply
for monitoring various variables or for acting upon command issuance, be part of a closed
system or provide advanced services to remote parties over public networks. The current
trend for all these nodes is to adopt existing networking technologies and be reachable over
the Internet, abandoning proprietary closed solutions.

In the context of healthcare applications, the security issues are exacerbated by the direct
interaction with the human body and the associated safety and privacy concerns. In typical
nodes used for eHealth purposes, environmental and physiological sensors are deployed for
gathering all the required information depending on medical staff’s prescribed needs, such as
blood pressure and body and room temperature. On top of that, actuators controlled by
authorized medical staff can also be deployed, such as an automatic insulin injection device
used for remote treatment. Such sensitive actions, i.e. reading and issuing commands, need
strict access control decisions before being authorized so that user’s privacy and even safety
are not jeopardized by unauthorized actions. Thus, this is another area where uSPBM
perfectly fits. Consider the scenario where the patient has multiple physiological sensors and
actuators deployed to monitor his/her condition and react based on patient’s reported
medical condition. One of the critical security requirements in this scenario is providing
authorized-only access to these resources. Only medical staff is supposed to read this
information and only authorized doctors shall be able to modify actuator’s (e.g. insulin pump)
status. In this model uSPBM provides the necessary fine-grained access control to resources.

1.3.4 TRANSPORT INFRASTRUCTURE
In a smart transit infrastructure, such as a railway facility, the deployment of uSPBM
framework would enable fine-grained, policy-based control of all smart devices that may be
present in a railway deployment (e.g. DPWS-enabled cameras or sensors monitoring access to
carriages or control stations) from remote locations. The infrastructure could be monitored
via any compatible application developed for the purpose or even typical browsers and off the
shelf mobile phones. Said access may be used to access the resources provided (e.g. sensor
data or video stream), update settings or even receive alerts (e.g. in case of emergencies), all
based on what the active policy dictates.

1.3.5 SMART HOME
Manufacturers would like to have secure access to their deployed appliance controller (node)
to get necessary readings for appliance’s maintenance or service. The manufacturer wants to
have this communication protected to avoid any unnecessary disclosure of information to
nearby devices and their manufacturers. Moreover, from an end-user perspective, it would
be desirable to be able to control access to the various functional and non-functional elements
of smart appliances. So, for example, all members of a family may be able to get room
temperature readings using their smart devices (phones, tablets, watches etc.), but only the
parents will be authorized to set desired temperatures, denying access to unauthorized
entities (kids, visitors or entities intruding the smart home network).

The uSPBM scheme proposed here can be deployed to facilitate said functionality, via the
appropriate policy definitions. While typical access control deployments require the setup of
complex infrastructures to enable entities' interaction and policy retrieval (e.g. via the

24

Lightweight Directory Access Protocol, LDAP [28]); such an approach may be acceptable for
corporate environments but is not suitable in the context of consumer applications and the
average home user. To this end, the proposed framework leverages the benefits of DPWS,
which allows the deployment of devices aligned with the Web Services technologies, thus
facilitating interoperability among services provided by resource-constrained devices. The
adoption of DPWS facilitates seamless Machine-to-Machine (M2M) discovery and
interactions, allowing the deployment of the framework's entities to any platform, anywhere
on the home network, with minimal involvement on behalf of the user.

1.3.6 AMBIENT ASSISTED LIVING
Ambient assisted living is one of the market niches with a highest growth in developed
countries where revenues come from 195 million Euros in 2009 to a prevision of 525 million
in 20156 . On the other hand, it’s important to take into account that more than 25% of the
European population will be over 65 years by 2035, giving this area a great growth potential
[29]. These figures make private home-care companies and the public administration need to
look for solutions to provide their users a good service level but without neglecting safety
because personal, biomedical, location or presence data are used.

AAL systems include safety functions, like automatic shutdown of a stove the case of long
absence of a user or informing emergency security or medical services in the case of burglary
or a medical incident respectively. Other features are designed to enhance the everyday lives
of individuals, e.g. room temperature or lightning controls that adapt to the needs and
everyday routines of the inhabitants. Moreover, various eHealth-related devices may be
present in an AAL environment.

Tenants can rely on these secure smart platforms for their security. A window left open during
night or when not at home can trigger a series of actions that cannot be bypassed by an
intruder due to the robust security features of uSPBM. A tenant can remotely control his/her
home living conditions through smart appliances (air conditioning, alarm, water warming
device), through customized applications in order to provide comfort without endangering
user’s privacy. Smart devices will be able to sense user’s presence at home (e.g. through
mobile phone presence) and act accordingly. The policy of all these can be set by the tenant
or by the local authorities in case of emergency, such as environmental hazards. The desired
security level and corresponding functionality can be adapted dynamically or during
deployment to meet the tenant’s specific requirements or mitigate unforeseen risks during
operation phase. Such smart platforms can also enhance the tenants’ safety by alerting the
individuals about potentially dangerous situations, such as a heater, a kettle or a cooker that
has been left on. What is more, in case of an accident, an appropriate operator could be
automatically alerted by the system who in turn could authorize the immediate deployment
of a team able to handle this particular emergency, so as to check upon the given individual
and act accordingly. In an AAL deployment, uSPBM agents can monitor and manage the
ambient environment of a home. In cases of emergency, the agent can inform the home-
agents of the inhabitant’s relatives and neighbors based on policies and user preferences.
Moreover, the deployment of uSPBM, which is by design deployable on heterogeneous

6 http://www.slideshare.net/FrostandSullivan/assisted-living-in-europe-technology-and-market-trends-
2010

25

systems, will also facilitate the Integration of AAL technologies with smart home and smart
grid infrastructures which are expected to be used concurrently.

1.3.7 SMART FACTORY (INDUSTRY 4.0)
The computerization of traditional industries (e.g. manufacturing) will lead to the introduction
of Smart Factory environments and, consequently, the fourth industrial revolution (i.e.
“Industry 4.0”). Such examples include machines that predict failures and trigger maintenance
processes autonomously or self-organized logistics that are able to react to unexpected
changes in the production chain.

As with the previous cited scenarios, uSPBM can be deployed to guarantee that the pre-
defined access control policies are followed enforced on all smart devices present on the
production floor or elsewhere. The above can be significant enablers, as machine and, most
importantly, worker safety are key areas of concern in such deployment scenarios.

This thesis is organized as follows: Background material and related research efforts are
presented in section 2. Section 3 presents the core technologies used in uSPBM, focusing on
authorization and communication mechanisms, the benefits of their combination and the
advantages of the purpose-developed libraries. Details on the framework’s implementation
are presented in Section 4, also focusing on the important aspects of the protection of the
framework’s messaging. The rest of uSPBM’s functionality is presented in more detail in
Section 5, in the context of different use cases. The work concludes in Section 6, where the
highlights of the framework are presented, along with directions to future research that could
further enhance the presented approach.

26

2. BACKGROUND & RELATED WORK
In recent years, we have experienced a lot of innovation in the Internet of Things (IoT) space.
Collections of embedded and wearable nodes, typically bearing sensors and actuators, are
becoming part of a networking infrastructure and gain connectivity to the Internet. The
corresponding technologies are becoming mature enough to allow us to start looking into
more advanced and comprehensive solutions that can enable these nodes to integrate
smoothly with existing infrastructures, expanding, however, existing attack surfaces. As
computing becomes ubiquitous, researchers and engineers aim to update and adapt existing
technologies to efficiently handle the vast population of resource-constrained devices
expected to co-exist in the IoT.

On the communication level, all efforts are towards the integration of low power and lossy
networks (LLNs) with existing networking technologies to provide internet connectivity and
realize the IoT. Several solutions have emerged through this process with their particular
advantages, disadvantages and properties. Most of them have provided their own standards
and specifications and have helped formulate antagonistic technologies. They might differ on
various layers of the TCP/IP stack, such as the physical and the network layer or on the upper
layers, i.e. presentation and application layers. Regarding the former we have technologies
like open standards 6LoWPAN [30] and ZigBee [31] (which is free for non-commercial
purposes), proprietary provided under a license like Z-Wave [32], and alternatives like
Bluetooth [33] and Wi-Fi [34] usually met in other environments. It is beyond the scope of this
work to name all these technologies and provide a comparative analysis. The proposed
solution focuses on the architecture level and on the upper layers of the TCP/IP stack, thus
making this solution underlying protocol independent. 6LoWPAN seems to outweigh other
technologies given its Internet connectivity orientation which provides many benefits to
adopting solutions.

On upper layers of the TCP/IP stack, protocols provide methods to exchange structured or
unstructured messages that facilitate (secure) service access. Data are typically encapsulated
in standardized protocols that allow the seamless exchange of messages between nodes and
remote entities, outside the LLN boundaries, even if this is accomplished through the use of a
bridge and/or router. Among the technologies being used are the service-oriented ones with
several schemes being used for the way these services are provided and how a service
consumer can access them. Standardization and research efforts in the area of Service
Oriented Architectures (SOAs) have been taking place for more than a decade and schemes
have been proposed and standardized regarding service discovery, registration, access and
protection, and the corresponding communication protocols that enable the interoperable
exchange of messages among remote participating entities. While in some cases efforts focus
on adapting existing technologies to the constrained environment provided by such devices,
other initiatives target for the introduction of new mechanisms specifically designed for such
environments, without however neglecting interoperability with existing Internet
technologies.

SOAs evolved from the need to have interoperable, cross-platform, cross-domain and
network-agnostic access to devices and their services. This approach has already been

27

successful in business environments, as web services allow stakeholders to focus on the
services themselves, rather than the underlying hardware and network technologies.

The deployment and orchestration of web services on heterogeneous embedded devices is a
very active research area, following the success of some early research efforts. These include
the “Service Infrastructure for Real time Embedded Networked Applications” (SIRENA, ITEA2
[35]) project which proved the feasibility and advantages of integrating web services, via
DPWS, across business segments, including critical sections (e.g. the production floor [36]). Its
follow-up projects, "Service-Oriented Device & Delivery Architecture" (SODA, ITEA2 [37]) and
"Service-Oriented Cross-layer Infrastructure for Distributed Smart Embedded Devices"
(SOCRADES, FP6 [38]), built upon the work of SIRENA and focused on providing a secure
scalable ecosystem and adding more sophisticated features into the SOA-enabled devices to
serve the requirements of future manufacturing [39], respectively. Some pervasive
applications often require remote management and monitoring while maintaining
interoperability, and the Web Services standard offers a solid basis for that. It is therefore
justifiable that the runtime of the middleware developed for the MORE project [40] was based
on the aforementioned DPWS specifications, as detailed in [41]. More recent research efforts
include the “ArchitecturE for Service-Oriented Process” (IMC-AESOP, FP7 [42]) and “Web of
Objects” (WoO, ITEA2 [43]) research projects. Researchers in AESOP proposed a system-of-
systems approach for monitoring and control, based on a SOA for very large scale (i.e. up to
tens of thousands of devices) distributed systems in process control applications. WoO
promoted the use of DPWS to build a secure, context-aware network and services
infrastructure for smart objects, focusing on the interoperability of devices & services through
the use of semantics.

As mentioned, the DPWS specification defines a minimal set of implementation constraints to
enable secure Web Service messaging on resource-constrained devices. It employs similar
messaging mechanisms as the Web Services Architecture (WSA), with restrictions on
complexity and message size, allowing the provision of totally platform- and language-neutral
services, similar to those offered by traditional web services, allowing system owners to
leverage the SOA benefits across heterogeneous systems that may be found in the various
smart environments (residential, enterprise etc.).

The SOA-based approach of DPWS acts as an enabler, with added potential stemming from
the enhanced real-time monitoring and control features usable over the whole smart
infrastructure. By facilitating the migration of low level data (e.g. sensing data) into higher
level contexts (e.g. business operations or knowledge extraction from aggregated data), new
types of services are made possible. These new types of enhanced features and services are
expected to be vital for future end-users as well as enterprise deployments, in a number of
industry domains [44], [45].

In this context, the work of Leong et al [46] presents a rule-based framework for
heterogeneous smart-home systems management. Their work focuses on the use of SOAP for
interoperability and uses an Event-Condition-Action (ECA) mechanism for machine-2-machine
interactions and orchestration of the devices. The SOAP-based interoperability framework has
been further extended by Perumal et al [47] with the addition of a service stub to facilitate

28

the addition of new devices and a database module to handle the queries of the SOAP
messages (including home service functions, operation logic and access to other local or
remote databases).

SOA-DOS [48] is a SOA-based distributed operating system proposed in the relevant literature,
aiming to manage all embedded devices in a home network and facilitating interoperability
between the various systems. The work manages to provide a SOA-based solution that is also
applicable to very resource-constrained platforms (like sensor nodes), but deviates from
standardized mechanisms, e.g. resorting to the use of the JSON [49] format instead of XML for
data exchange.

The use of SOA concepts to tackle the dynamic and heterogeneous nature of home-control
applications has also been proposed by Bourcier et al [50]. The authors introduce an
implementation of their approach based on open source, standardized platforms, providing
bridges to seamlessly integrate disparate devices (including DPWS devices) and their services
into their home control infrastructure.

The DPWS stack also forms the basis of iVision [51], a purpose-built hardware platform used
to add context-awareness to a service architecture for controlling home appliances, and its
accompanying architecture. In the above work, the context information extracted by the
iVision camera and all the necessary smart home appliance communications are exposed as
web services using DPWS.

As many industry leaders from a variety of sectors (electronics, power, automation,
enterprise, home etc.) have been involved in the above research efforts, it is evident that, in
addition to the researchers’ interest, there is also significant industry backing of DPWS and its
use in future applications and products. Moreover, the use and benefits of DPWS have been
studied extensively in the context of various applications areas, which, other than the ones
already mentioned, include automotive and railway systems [52], industrial automation [53],
eHealth [54], [55], smart cities [56], smart homes [57] and wireless sensor networks [58]. All
of the above are positive indicators for the future of the technology chosen as the underlying
implementation and communication mechanism for the presented framework, and its
potential for ubiquitous adoption

Many access control schemes have been proposed for resource constrained devices, such as
wireless sensor networks, yet most of them focus on authentication and authorization
schemes and on enhancing basic access control models, such as providing additional features
to address privacy matters. Such schemes can be found in [59]–[65]. Some of the proposed
mechanisms are based on the use of public-key cryptography, a choice that is very expensive
for nano nodes found in a BSN. The EU-project “Internet-of-Things Architecture” (IoT-A)
worked on the adoption of XACML in the Internet of Things [66]. The proposed architecture is
a generic model whose functional components are mapped to a set of well-defined
components that comprise the IoT-A. The authors use a logistics scenario for demonstration
purposes. Such an environment, however, has different requirements than the use cases
examined in this thesis.

29

Policy-based management has successfully been implemented in various types of sensor
networks, even though none of the identified efforts focus on the use of standardized,
platform-agnostic technologies. One such instance is presented in [67] and involves the use of
policy-based management in body-area networks (BAN), where autonomous adaptation to
changing conditions (failures, user activity, patients’ clinical condition) is a requirement. The
toolkit that was developed and deployed, Ponder2, allows the specification of rules in the form
of event-condition-action, which enforce a given policy. Additional functionality of this toolkit
includes the logical grouping of components in domains, as well as the dynamic loading of new
functionality and communication protocols.

Another application of policy-based management was the SNOWMAN framework presented
in [68] that allowed nodes of a WSN to autonomously organise themselves. A lightweight
policy distribution protocol was developed, TinyCOPS-PR, as well as a policy information base
(PIB). For facilitating scalable and localised management of WSNs, nodes are organised into
three logical groups: regions, clusters and sensor nodes. The simulation results revealed that
the scheme features lower power consumption compared to other schemes. The work in [69]
proposes the use of an extra middleware layer that introduces a level of abstraction, thus
making it easier to describe and enforce both functional and non-functional business
requirements of different end-users.

An architecture for policy-based WSN management was proposed in [70]. It distributes the
management functionality across the sensor network and employs clustering for improved
management. The scheme also includes functionality for hierarchy maintenance management
and cluster maintenance.

In [71] a framework for implementing policy-based management in WSN is proposed that
makes use of the Finger2 policy system which, although derived from the Ponder2 policy
system, it is considerably simplified so as to run on motes. Furthermore, examples of policies
are given that deal with the self-healing aspects of sensor networks. Policy-based
reconfiguration is thus able to deal with various network faults.

In [72] the authors also utilize XACML but focus on the privacy of eHealth data within the
mobile environment. In contrast to the work presented here, a complete framework is not
included and the authors choose computationally intensive security mechanisms such as XML
encryption digital signatures. In [73] the authors propose a lightweight policy system for body
sensors but they do so by presenting a custom API and policy definitions, thus sacrificing
interoperability with existing standards and infrastructures.

Santos-Pereira et al [74] focus on enforceable security policies for systems interoperability
and data exchange between healthcare entities. The authors present a Role-based Access
Control mobile agent model, using public key infrastructure for authentication and access
control, but the proposed scheme is presented at design-level, lacking implementation details
and a performance evaluation.

Researchers have studied the use of access control mechanisms to safeguard the users’
privacy, a key concern in the context of smart environments. Faravelon et al [75] outline such
an architecture in the context of SOA-enabled pervasive environments, using a medical

30

scenario as a test case. The interoperability with DPWS is considered, among other SOA
technologies, but a non-standardized approach is adopted for the access control functionality.

Privacy issues have also been considered by Jung et al [76], who have presented a generic
concept of access control for home automation gateways, aiming to safeguard the privacy and
security of users and their data. The scheme is based on a customized SOAP message structure
that integrates XACML attributes within SAML-based access token. However, the initial,
theoretical evaluation of the proposed scheme indicates that this approach is quite costly
(especially in terms of packet size), which questions its applicability in the context of
embedded smart home devices. The authors acknowledge this drawback and indicate it will
be investigated, as future work, on actual platforms.

In uSPBM the typical policy based access control architecture of XACML is mapped to a DPWS-
enabled network of nodes to provide protected access to their distributed resources. A survey
of the literature reveals a wealth of related work, including various diverse approaches and
attesting to the applicability of XACML in the context of ubiquitous environments.

Kim et al [77] have proposed the use of an OSGi (Open Services Gateway initiative [78]) -based
framework to integrate heterogeneous smart-home devices and services. The proposed
framework also includes an access control model, combining the XACML mechanisms with
OSGi services to appropriately create the queries that will be forwarded to the entity
responsible for access control decisions (i.e. the Policy Decision Point, PDP). While the
proposed approach theoretically supports a variety of protocols (including DPWS devices), the
presented analysis and proof of concept implementation are mainly based on UPnP, a
protocol lacking in many respects, already noted above (e.g. security & scalability).
Furthermore, the performance of the proposed mechanisms – an important aspect
considering the resource-constraints of many smart devices – is not evaluated.

Another approach found in the literature is the use of a "Reference Monitor" entity [79], i.e.
a home gateway, whose goal is to provide and enforce a collection of access control policies,
aiming to help satisfy a user’s access, convenience, and privacy requirements. The access
control policies are de-fined using XML, but deviate from the standard XACML syntax and
architecture.

Busnel et al [80] present a case study for remote healthcare assistance in smart homes. Most
of the smart home security & dependability requirements are discussed extensively,
identifying the use of SOAs along with XACML as the most applicable technologies to fulfill
these requirements. An XACML-based authorization solution is applied using the security
pattern approach to satisfy security requirements typically existing in such environments. This
work presents the outline of such a framework, but not an actual implementation of the SOA
and XACML mechanisms, nor a performance evaluation. The resource-constrained nature of
the target devices and the use of appropriate security mechanisms do not appear to have
been considered during the design phase.

Seitz et al. [81] have presented an authorization framework for the Internet of Things. The
authors use XACML to offer fine-grained access control on resources and propose the use of
CoAP as a lightweight transport protocol. Still, the adaptations proposed break compatibility

31

with standard XACML/SAML infrastructures and there is limited implementation and
performance evaluation, while, no specific authentication or device management
mechanisms considered.

Fremantle et al. [82] propose the combination of OAuth for identity and access management
on IoT devices using MQTT for information distribution. MQTT is lightweight but only offers
synchronous communication. On the other hand, OAuth is gaining traction of authorization of
resources at the Internet scale. Still, it lacks the granularity of XACML for access control.
Nevertheless, the proposed authentication mechanism is compatible with uSPBM, replacing
the SAML-based solution adopted in our framework (something trivial to accomplish due to
the modularity of uSPBM).

Müller et al [57] have also proposed the combined use of DPWS with XACML, but focusing on
end-user content (e.g. the distribution of multimedia files). They also use proxies to establish
trust relationships across smart home domains but the authors did not exploit DPWS in the
implementation and deployment of the XACML architecture. The proposed model is based on
X.509 certificates and tailored to the needs of a “smart home” environment but can easily be
adopted to other scenarios (e.g. in our proposed scenarios, power nodes could adopt the CA
roles described in the above work). It is demonstrated that processing time overhead
(especially in the XACML lookup phase) is affected by the number of policies maintained at
the PDP. It is, therefore, imperative to fine-tune the amount of queries the PDP needs to
lookup or even the number of PDPs available on the network (e.g. segregating service
discovery and application PDP duties), depending on application requirements.

Table 1 aggregates recent work identified in the literature that is related to uSPBM,
categorizing and comparing their features. As the survey of the related work reveals, the
problem of authentication & authorization for the Internet of Things is not conclusively solved
yet. Current approaches typically concentrate on a number of very specific problems and/or
are not implemented fully. Thus, our approach was to design and implement a complete
authentication, authorization & management framework, based on established and emerging
standards.

TABLE 1. USPBM COMPARED TO RECENT RELATED WORK

uSPBM

Muller
et al.
[57]

Kim
et
al.

[77]

Busnel
et al.
[80]

Jung
et
al.

[76]

Serbanati
et al.
[66]

Seitz
et
al.

[81]

Sleman
et al.
[48]

Bourdenas
et al. [71]

Leong
et al. &

Perumal
et al.
[46],
[47],
[83]

Fremantle
et al. [82]

Authorization √ √ √ √ √ √ √ √ √ √ √

Authentication √ √ √ √

Management √ √ √ √

32

Standardized
Technologies

√ √ √ √ √ √ √ √

Lightweight √ √ √ √ √ √

Cross-domain
communication √ √ √

√

 √ √

Proof-of-
concept
implementation

√ √ √ √ √ √ √ √ √

Performance
evaluation

√ √ √ √ √ √ √

Applied to
various use
cases &
heterogeneous
devices

√

33

3. CORE TECHNOLOGIES & ENTITIES
This section details the core technological building blocks and key components of the uSPBM
framework, focusing mostly on the components directly related to the framework’s
authorization mechanisms.

As uSPBM was designed and developed following a modular approach, the mechanisms not
directly related directly to the authorization process (and the associated entities) are
presented separately, in later chapters, in the context of specific use cases.

3.1 POLICY-BASED ACCESS CONTROL
Among the studied schemes proposed for systems with different requirements and
properties, a cross-platform solution that meets the requirements of all types of embedded
systems and provides interoperability, crucial for next-generation pervasive computing
devices, is based on eXtensible Access control Markup Language (XACML [22]) policies. XACML
is an XML-based general-purpose access control policy language used for representing
authorisation and entitlement policies for managing access to resources. However, it is also
an access control decision request/response language. As such, it can be used to convey policy
requirements in a unified and unambiguous manner, hence interoperable and secure, if
appropriately deployed.

The above fit well into the model of a network of heterogeneous embedded systems where
access to resources is provided by nodes as a service, and into the management architecture
developed by IETF Policy Framework. This typical policy based management architecture
combined with XACML, is mapped to a Service Oriented Architecture (SOA) network of nodes
to provide protected access to their distributed resources. It consists of several components
that run on different nodes of the architecture. These components are [22][84]:

• Policy Enforcement Point (PEP): The system entity that performs access control, by
making decision requests and enforcing authorisation decisions.

• Policy Administration Point (PAP): The system entity that creates a policy or policy
set.

• Policy Decision Point (PDP): The system entity that evaluates applicable policy and
renders an authorization decision.

• Policy Information Point (PIP): The system entity that acts as a source of attribute
value

Moreover, auxiliary entities may also co-exist with the above, depending on the specific
application and deployment at hand. Some of these entities, which will be showcased in later
chapters, may include the following:

• Context Handler (CH): Orchestrates the communications among the stakeholders,
converts, if necessary, messages between their native forms and the XACML canonical
form, and collects all necessary information for the PDP.

34

• Obligation Handlers (OH): Provide additional restrictions that should be taken into
account when enforcing a decision, like the requirement to log any permitted access
or to inform for unauthorized attempts.

• Environment: Provides additional information independent of a particular subject,
resource or action.

Considering that some smart platforms may not have the computing resources to
accommodate expensive mechanisms, some of these roles (e.g. PDP) may only be under-taken
by more powerful nodes expected to operate within the target node’s (i.e. the PEP’s) trusted
environment. Thus, a node, depending on its capabilities and the available resources, might
include one or more of these functional components. A basic deployment of uSPBM’s access
control entities is depicted in Figure 5.

PAP

PEP
OH

Mobile &
Embedde
d/Micro
Devices

Sensors/
Nano Devices

OH OH

PDP

DPWS/SOAP/XML

Legend:
PAP: Policy Administration Point
PDP: Policy Decision Point
PEP: Policy Enforcement Point
PIP: Policy Information Point
OH: Obligation Handling

PIP

PEPPEP

PDP

PEP
OH

PDP

OH OH

Power
Devices

FIGURE 5. BASIC USPBM ACCESS CONTROL ARCHITECTURE

The XACML handling and decision-making engine can be adopted from any open source
implementation. Such open-source resources include Sun’s XACML implementation [85],
PicketBox XACML [86] (formerly JBossXACML), the Holistic Enterprise-Ready Application
Security Architecture Framework (Heras AF) XACML [87] and the Enterprise Java XACML
project [88]. Closed-source commercial alternatives exist as well, but these are not as
modifiable and, thus, often have limited usability in custom implementations. Considering the
above options, Sun’s XACML is the framework of choice for implementing uSPBM’s access
control engine, as it remains popular among developers and is actually the basis of various
current open source and commercial offerings.

3.1.1 TYPICAL APPLICATION SCENARIO & DATA FLOW

35

As an example, consider the case of a person who owns a smart thermostat. The thermostat
is a device that hosts a service which supports multiple operations such as setting the target
temperature, selecting operation mode, enabling power save, getting the current status or
even events such as notifications when the temperature in the room changes, or the target
temperature has been reached. As soon as the available device and its service are discovered,
a guest in the house can request access to the node that is of particular interest, e.g. in order
to extract the latest values from the temperature sensor attached to it. The guest’s request is
intercepted by the nodes PEP module which then forwards the request to the PDP, the latter
running on the house owner’s trusted device. The PDP has to consider all applicable policies
from the PAP, enriched by any relevant information residing on the PIP, while additional ones
might be added in real time regarding the specific access. For instance, a question can be
displayed on the house owner’s mobile phone regarding this access request giving the user
the option to explicitly grant or deny access. Once all the required information has been
collected, the PDP issues a decision which is sent back to the node’s PEP. Based on that
decision the PEP may or may not allow the guest to access said nodes data of interest. It should
be noted that, on top of the decision taken on the request, the PDP might set one or more
obligations for the PEP. An obligation is additional restrictions that should be taken into
account when enforcing a decision, like the requirement to log any permitted access or to
inform for unauthorized attempts. Moreover, prior to this communication the PAP should
have set all applicable policies and policy sets for all targets in the network. These policies are
made available to PDP for subsequent request evaluations.

In more detail, the data flow, as shown in Figure 6, consists of the following steps:

1. A remote entity (requester) requests access to the node’s resources.
2. The PEP, sends to the context handler a decision query about this particular access

request, together with some details, like target’s and requester’s names, and type of
requested access.

3. Upon receiving the request the context handler requests additional information and
attributes about the requester from a PIP. Note that this might be the result of PDP’s
demand

4. The PIP collects the requested attributes and returns them to the context handler
which forwards them to the PDP together with the request. At this point the PDP
might request additional attributes from the context handler which has to repeat the
communication with the PIP.

5. The PDP evaluates the request against the policies and sends the authorization
decision to the PEP.

6. The PEP fulfils optional obligations and enforces PDP’s decision.

36

FIGURE 6. DATA FLOW MODEL OF POLICY-BASED ACCESS CONTROL

3.1.2 ACCESS CONTROL POLICIES
The uSPDM components are complemented by a well-defined set of XACML policies which
define the rules that should be taken into account when examining access requests.

The main components of the XACML Policy are depicted in Figure 7. A policy set about a
specific target consists of a number of applicable policies which in turn define a set of rules.
Each rule contains information about the applicable Target, the effect, and additional
Conditions. Note that the target does not only refer to resources. It might reference
characteristics of a subject, resource, action or environment.

37

FIGURE 7: XACML POLICY COMPONENTS

RULE IMPLEMENTATION
A rule is the most elementary unit of policy, which is typically encapsulated within a policy.
This also facilitates the exchange of rules among the stakeholders, i.e. PDP and PAP. The main
components of a rule are:

• a target;
• an effect, indicates the rule-writer's intended consequence of a "True" evaluation

for the rule. Two values are allowed: "Permit" and "Deny".
• a condition,
• obligation expressions, and
• advice expressions

POLICY IMPLEMENTATION
Rules are not exchanged amongst system entities. Therefore, a PAP combines rules in a policy.
A policy comprises four main components:

• a target;
• a rule-combining algorithm-identifier;
• a set of rules;
• obligation expressions and
• advice expressions

POLICY INFORMATION TEMPLATE
Table 2 defines the policy information template used to represent policies for controlling
access to nSHIELD resources. This template is used to facilitate rules and policies defined by
PAP (scenario owners in the context of the nSHIELD) to be imported into the system.

TABLE 2. POLICY ATTRIBUTES TEMPLATE

POLICY
ATTRIBUTE

VALUE

38

Policy ID A unique identifier that allows the policy to be referenced within a
policy set.

Rule Combining
Algorithm

The procedure for combining decisions from multiple rules. Valid values
for this attribute are defined below.

Description A textual description of the purpose of the policy. It typically provides
information on most of the attributes found in this template.

Policy Target The part of a policy that specifies matching criteria for figuring out
whether a particular policy is applicable to an incoming service request.
Contains three basic "matching" components: Subjects (An actor),
Actions (An operation on a resource), and Resources (Data, service or
system component). Attributes of the subjects, resource, action,
environment and other categories are included in the request sent by
the PEP to the PDP.

Effect The intended consequence of a satisfied rule. It can take the values
"Permit" and "Deny". Note that this is not necessarily the authorization
decision returned by the PDP to the PEP which, besides the above, can
also include the values “Indeterminate” or “NotApplicable", and
(optionally) a set of obligations and advices

Condition
(optional)

Represents a Boolean expression that refines the applicability of the
rule

Obligations
expressions
(optional)

Operation that should be performed by the PEP in conjunction with the
enforcement of an authorization decision.

Advice
expressions
(optional)

A supplementary piece of information in a policy or policy set which is
provided to the PEP with the decision of the PDP.

RULE- AND POLICY- COMBINING ALGORITHMS
The following algorithms are used for combining rules of a policy as well as policies from a
policy set.

- Deny-overrides: It is intended for those cases where a deny decision should have
priority over a permit decision

- Ordered-deny-overrides: The behavior of this algorithm is identical to that of the
“Deny-overrides” rule-(policy-) combining algorithm with one exception. The order in
which the collection of rules (policies) is evaluated SHALL match the order as listed in
the policy (set).

- Permit-overrides: It is intended for those cases where a permit decision should have
priority over a deny decision.

- Ordered-permit-overrides: The behavior of this algorithm is identical to that of the
“Permit-overrides” rule-(policy-) combining algorithm with one exception. The order

39

in which the collection of rules (policies) is evaluated SHALL match the order as listed
in the policy (set).

- Deny-unless-permit: It is intended for those cases where a permit decision should
have priority over a deny decision, and an “Indeterminate” or “NotApplicable” must
never be the result. It is particularly useful at the top level in a policy structure to
ensure that a PDP will always return a definite “Permit” or “Deny” result. This
algorithm has the following behavior.

o 1. If any decision is "Permit", the result is "Permit".
o 2. Otherwise, the result is "Deny".

- Permit-unless-deny: It is intended for those cases where a deny decision should have
priority over a permit decision, and an “Indeterminate” or “NotApplicable” must
never be the result. It is particularly useful at the top level in a policy structure to
ensure that a PDP will always return a definite “Permit” or “Deny” result. This
algorithm has the following behavior.

o 1. If any decision is "Deny", the result is "Deny".
o 2. Otherwise, the result is "Permit".

- First-applicable (rule): Each rule SHALL be evaluated in the order in which it is listed
in the policy. For a particular rule, if the target matches and the condition evaluates
to "True", then the evaluation of the policy SHALL halt and the corresponding effect
of the rule SHALL be the result of the evaluation of the policy (i.e. "Permit" or "Deny").
For a particular rule selected in the evaluation, if the target evaluates to "False" or the
condition evaluates to "False", then the next rule in the order SHALL be evaluated. If
no further rule in the order exists, then the policy SHALL evaluate to "NotApplicable".

- First-applicable (policy): Each policy is evaluated in the order that it appears in the
policy set. For a particular policy, if the target evaluates to "True" and the policy
evaluates to a determinate value of "Permit" or "Deny", then the evaluation SHALL
halt and the policy set SHALL evaluate to the effect value of that policy. For a
particular policy, if the target evaluate to "False", or the policy evaluates to
"NotApplicable", then the next policy in the order SHALL be evaluated. If no further
policy exists in the order, then the policy set SHALL evaluate to "NotApplicable".

- Only-one-applicable (for policies only): In the entire set of policies in the policy set, if
no policy is considered applicable by virtue of its target, then the result of the policy-
combination algorithm SHALL be "NotApplicable". If more than one policy is
considered applicable by virtue of its target, then the result of the policy-combination
algorithm SHALL be "Indeterminate". If only one policy is considered applicable by
evaluation of its target, then the result of the policy-combining algorithm SHALL be
the result of evaluating the policy.

POLICY EXAMPLE
In uSPBM the outcome of a request is “Permit”, “Deny” or “Not Applicable”. The evaluation of
a request allows the PDP to make a decision based on a given policy or policy set, or combine
all applicable rules and policies using a Rule-combining or Policy-combining algorithm
respectively. Some of the standard combining algorithms used are “Deny-Overrides”, “Permit-
Overrides”, “First-Applicable” and “Only-One-Applicable”.

40

An uSPBM sample XACML policy is depicted in Figure 8.

<?xml version="1.0" encoding="UTF-8"?>
<Policy
 xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:oasis:names:tc:xacml:2.0:policy:schema:os
 access_control-xacml-2.0-policy-schema-os.xsd"
 PolicyId="0"
 RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-
algorithm:deny-overrides">
 <Target>
 <Subjects>
 <Subject>
 <SubjectMatch
 MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">Subject</AttributeValue>
 <SubjectAttributeDesignator
 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
 DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </SubjectMatch>
 </Subject>
 </Subjects>
 <Resources>
 <Resource>
 <ResourceMatch
 MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">Resource</AttributeValue>
 <ResourceAttributeDesignator
 AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
 DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </ResourceMatch>
 </Resource>
 </Resources>
 <Actions>
 <Action>
 <ActionMatch
 MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">Action</AttributeValue>
 <ActionAttributeDesignator
 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
 DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 <Rule
 RuleId="urn:oasis:names:tc:xacml:2.0:conformance-test:IIA1:rule"

41

 Effect="Permit">
 <Target>
 <Subjects>
 <Subject>
 <SubjectMatch
 MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue
 DataType="http://www.w3.org/2001/XMLSchema#string">Subject
</AttributeValue>
 <SubjectAttributeDesignator
 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
 DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </SubjectMatch>
 </Subject>
 </Subjects>
 <Resources>
 <Resource>
 <ResourceMatch
 MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">Resource</AttributeValue>
 <ResourceAttributeDesignator
 AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
 DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </ResourceMatch>
 </Resource>
 </Resources>
 <Actions>
 <Action>
 <ActionMatch
 MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">Action</AttributeValue>
 <ActionAttributeDesignator
 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
 DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 </Rule>
</Policy>

FIGURE 8. USPDM POLICY EXAMPLE

42

3.2 SERVICE-ORIENTED ARCHITECTURES
While XACML defines the structure and content of access requests and responses exchanged
among PEPs and PDPs, it does not provide any details regarding mechanism(s) used to transfer
these messages, thus providing the necessary flexibility to adapt to diversified environments.
Protocols that have been proposed for the communications among PEPs and PDPs are COPS
[89], SNMP [90] and LDAP [28], which matches the requirements for accessing the policy
repository and PIP.

Given the dynamic nature and the need for self-configurability, there will be situations where
there is no coordination or central control over the network of nodes. Therefore, nodes that
just joined the network have to discover which entity is responsible for making access
decisions. In this case, the corresponding systems, such as power nodes or base stations, have
to advertise their capabilities regarding PDP functionality while PEPs have to be able to
discover PDPs and their corresponding provided services. Therefore, the communication
mechanisms typically used alongside XACML were not appropriate for the ubiquitous
computing deployments uSPBM is intended for.

In the context of the IoT, existing networking mechanisms are updated to efficiently handle
the vast population of ubiquitous resource-constrained devices (e.g. IETF’s 6LoWPAN [30] for
IPv6 over 802.15.4), higher level, machine to machine interactions, are often required to make
use of the devices’ full potential. The above have shifted researchers’ and developers’ focus
on mechanisms that guarantee interoperability, providing seamless access to the various
devices and their functional elements. Service Oriented Architectures (SOAs) have evolved
from this need, providing interoperable, cross-platform, cross-domain and network-agnostic
access to devices and their services. This approach has already been successful in business
environments (e.g. [91]), as SOAs allow stakeholders to focus on the services themselves,
rather than the underlying hardware, network technologies and architectures [92]. As SOAs
are widely used, there is now an effort to apply this technology on embedded systems as well.
To enable these services, various industry stakeholders introduced DPWS, a profile of Web
Services protocols that enables Web Service messaging, discovery, description, and eventing
on resource-constrained devices. DPWS messages are typically encapsulated in SOAP (Simple
Object Access Protocol) envelopes and transported over any transport protocol, including
HTTP and UDP using the SOAP-over-HTTP and SOAP-over-UDP bindings respectively [93], or
even an SMTP binding which targets resource-constrained embedded devices and enables
secure web service messaging, discovery, description, and eventing. More details on the
specification follow below.

3.2.1 THE DEVICES PROFILE FOR WEB SERVICES (DPWS)
DPWS was introduced in 2004 by a consortium led by Microsoft and is now an OASIS open
standard (at version 1.1 since July 2009). The DPWS specification defines a minimal set of
implementation constraints to enable secure Web Service messaging, including discovery [94],
description, interactions and event-driven changes [95] on resource-constrained devices. It
employs similar messaging mechanisms as the Web Services Architecture (WSA, [96]), with
restrictions to complexity and message size, allowing the provision of totally platform- and
language-neutral services, similar to those offered by traditional web services.

43

The profile’s architecture includes hosting and hosted services. A single hosting service is
associated with each device while the same device may accommodate various hosted
services. The latter represent the device’s various functional elements and rely on the hosting
service for discovery. Thus, a multifunctional sensor integrated into e.g. a smart home or
enterprise environment, will have a single hosting service but may feature various hosted
services (e.g. a temperature service, a light intensity service, a movement-sensing service
etc.).

Furthermore, as discovery services are included, the device can advertise its presence on the
network and search for other devices. Metadata exchange mechanisms provide dynamic
access to service hosted on a device. Additionally, publish and subscribe eventing mechanisms
allow clients to subscribe to services provided by devices. The DPWS protocol stack can be
seen in Figure 9.

FIGURE 9. THE DPWS PROTOCOL STACK [23]

The DPWS specification enables the adoption of web services on embedded devices with
limited resources, allowing system owners to enjoy these benefits across the heterogeneous
systems of the IoT, and allowing us to overcome the important of interoperability barrier of
current IoT deployments, by moving to what is often referred to as the “Web of Things” (see
Figure 10).

44

FIGURE 10. FROM THE INTERNET OF THINGS (LEFT) TO THE WEB OF THINGS (RIGHT)

Thus, DPWS can enable user-to-machine and machine-to-machine interactions in a unified
manner, moving on from the current state of the field, where manufacturers offer a variety of
proprietary protocols which are not interoperable and essentially lock-in users, forcing them
to use a specific vendor/ecosystem. It is, therefore, the mechanism of choice for the
underlying uSPBM communications and device interactions.

3.2.1.1 ALTERNATIVES TO DPWS
There is a variety of Service Discovery Protocols (SDPs) that can be used to provide seamless
discovery and access to smart devices and their functional elements, each with its own set of
features and intricacies. Other than DPWS, prominent solutions include the Service Location
Protocol (SLP [97]) and the Universal Plug and Play (UPnP [98]).

These protocols provide mechanisms to search for devices and their services, select
appropriate services and use them. In more detail, the devices typically rely on these protocols
to perform the following tasks:

• Discovery: Discover pertinent devices on the network
• Description: Retrieval of descriptions of discovered devices, including hosted services

and their descriptions (e.g. using WSDL [99], as is the case in DPWS).
• Control: Invocation of identified operations on selected devices
• Eventing: Subscription to and notification via service event sources

45

An analysis of the above protocols based on their key features and supported tasks can be
found in Table 3.

TABLE 3. COMPARISON OF SDPS

 DPWS UPnP SLP
Current Version 1.1 1.1 2.0
License Open Open7 Open
Initial developer Microsoft Microsoft IETF
Security √ √
Discovery √ √ √
Description √ √ √
Control √ √
Eventing √ √

The comparison reveals that DPWS and UPnP offer a full set of features, including control and
eventing mechanisms, but SLP only focuses on discovery and description of services and not
their utilization, so it can be of limited use in the context of ubiquitous devices.

Moreover, while DPWS and UPnP appear to be similar in features, there are substantial
differences between the two. The former is built around the OASIS Web Services (WS-) stack,
offering significant benefits in terms of operational and development aspects, as well as of
device-to-device and user-to-device communication. Deploying Web Services on devices
allows the use of a single stack for local network and Internet interactions with devices and
other Web Services, taking advantage of pre-existing tools and development know-how and
leveraging the extensive work already carried out in defining the various WS-* family of
protocols (e.g. for security, an important aspect for which UPnP is lacking provisions). Thus,
DPWS-enabled devices feature superior scaling and seamless integration capabilities, both in
the context of enterprise environments (e.g. plant floors or enterprise-wide information
systems) and the Internet (e.g. regular W3C-specified Web Services). Scalability is a key area
where UPnP and SLP are found wanting. The former is suitable for small local networks, while
the latter features some basic provisions (with the use of a Discovery Agent) which are limited
to a local network or networks under common administration. Comparatively, the main
disadvantage of DPWS is the existence of numerous specifications (protocols, bindings etc.),
as is evident from Figure 9, which have not been consolidated yet.

It should be noted that DPWS was originally conceived and introduced as a successor to UPnP,
but the lack of backward compatibility meant that such a transition has not taken place yet.
Instead, nowadays DPWS is actively pushed by industry stakeholders as the solution of choice
for large-scale enterprise (e.g. industrial) deployments, while UPnP is mostly targeted to the
home environment (printers, home entertainment etc. [100]). Also, like UPnP, DPWS is
natively integrated into the various versions of the Windows operating system, from Windows
Vista onwards.

3.2.2 NODE.DPWS

7 Membership to the UPnP Forum needed for certain features. Includes some proprietary protocols.

46

This section presents Node.DPWS, a novel implementation of the DPWS specification that
focuses on the Node.js platform (http://nodejs.org/), also referred to as Node, a JavaScript-
based runtime environment designed to maximize throughput and efficiency. The associated
Node.DPWS libraries are the first to leverage the benefits of both DPWS and Node, allowing
the creation of high performance, scalable and lightweight DPWS devices for the
heterogeneous, often resource-constrained, platforms typically found in smart environments.
Moreover, the libraries are easy to use and the devices can be defined with a minimum of
code, reducing the development effort.

3.2.2.1 ALTERNATIVE DPWS LIBRARIES
A survey on alternative to Node.DPWS APIs for DPWS development reveals a plethora of
available solutions with diverse characteristics. These include the libraries contained within
Microsoft’s .NET Micro Framework (http://www.netmf.com), the Web Services for Devices
(WS4D, http://ws4d.e-technik.uni-rostock.de) toolkits which include WS4D-uDPWS, WS4D-
JMEDS, WS4D-Axis2 and WS4D-gSOAP, and, finally, the Service-Oriented Architecture for
Devices (SOA4D, https://forge.soa4d.org) solutions which include DPWS-Core and DPWS4J.
Information for the identified DPWS implementations is aggregated in Table 4.

TABLE 4. OVERVIEW OF DPWS TOOLKITS

 .NET Micro
Framework

WS4D-
uDPWS

WS4D-
JMEDS

WS4D-
Axis2

WS4D-
gSOAP

DPWS-
Core DPWS4J

Language C# C Java
Java

(Apache
Axis2)

C C Java

CPU/OS ARM

PC
(VM),

TelosB,
AVR

Raven

Java SE,
Java

CDC/CLDC,
Android

Java SE
Linux,

Windows,
ARM

Linux,
Windows

Java SE,
Java
CDC

DPWS 1.0 √ - √ √ √ √ √
DPWS 1.1 √ √ √ - Partial Partial -

IPv4 √ √ √ √ √ √ √
IPv6 - √ √ - Partial √ -

License Apache 2.0 FreeBSD EPL Apache
2.0 GPL/LGPL LGPL LGPL

Active Yes No Yes No No Yes No

Nevertheless, when focusing on key features such as code portability, deployment on
heterogeneous platforms, support for IPv6 (necessary for IoT applications) and active
development and support of the tools, the valid options are actually fewer, with WS4D-JMEDS
standing out as the most attractive choice. It is the most mature work of the WS4D initiative,
providing a feature-rich platform which is being constantly updated and improved. It is,
therefore, used as a benchmark to assess the potential benefits of Node.DPWS.

3.2.2.2 ABOUT NODE.JS

47

Node.js is a relatively new platform, introduced in May 2009 (in version v5.0.0, as of October
2015). It is an evented server-side implementation based on Google’s V8 JavaScript engine.
Both Node and the V8 engine are mostly implemented in C and C++, but Node’s wrapper
enhances the engine’s basic features by allowing server-side deployment of JavaScript
programs and the use of various C libraries, system calls, binary data manipulation and request
handling. The core development concept was to create the building block for lightweight and
scalable servers, providing an evented, non-blocking infrastructure for highly concurrent
applications.

Node handles network input/output (I/O) operations in an evented, non-blocking fashion,
while file I/O operations are handled asynchronously. This differentiates Node from typical
implementations which follow the threaded model where for each new connection a thread
is created, having inherent scaling issues. In Node, each new connection requires only a small
heap allocation. Moreover, Node’s executing thread cannot be blocked; in situations where
this would normally happen (e.g. waiting for data from a remote database), the thread’s
runtime is utilized to serve other requests. The above result in very fast applications, which
also scale well, even in the case of the resource-constrained devices (i.e. with no multi-core
processors or large amounts of memory) typically embedded in smart environments. More
details on Node’s characteristics and code samples can be found in [101].

Research indicates that while Node.js offers significant benefits in terms of I/O performance
and resource utilization, it is not as good at serving large static files [102]. This does not harm
its applicability in developing fast, scalable network applications, and is expected to improve
as the platform matures. Moreover, it is not an issue in the context of typical IoT applications,
where end devices typically transmit low level information (e.g. sensing data) and receive
commands on their functional elements (e.g. turn ON/OFF). Finally, some concerns regarding
the security of Node.js applications can be attributed to the lack of a stable version and can
be avoided by following security-conscious programming practices [103]. The platform is not
inherently insecure and can safely be used in production-grade deployments.

As Node.js addresses many of the issues with real-time and lightweight application
communications, it has quickly gained the support of the developers’ community (there is a
variety of libraries already available) and of major stakeholders in the industry [104], including
companies such as Google, Microsoft and Yahoo!. Popular websites such as Wikipedia,
LinkedIn, eBay and Microsoft’s Azure cloud platform already make use of Node.js, even
though it has not reached a stable version yet; an indicator that there is a strong demand for
Node’s features and that its user base will continue to grow over time.

3.2.2.3 THE NODE.DPWS LIBRARIES
Node’s characteristics are a good match for event-driven web services deployable on the
embedded devices expected to be present in smart enterprise, industrial, domestic and other
ubiquitous-computing-enhanced environments. Thus, it is an attractive solution for
implementing the DPWS specification, to potentially deliver highly scalable DPWS devices,
able to handle many clients concurrently, while having very low resource consumption.

48

Node.DPWS provides such an implementation of DPWS using Node.js, supporting both
versions 1.0 (2006) and 1.1 (2009) of the specification. The developer is responsible for
describing the device’s attributes (e.g. manufacturer or device name), its supported services
(e.g. Temperature service), operations (e.g. get current temperature) and events (e.g.
overheating alerts), and the libraries will properly advertise them and match them to requests.
More complex operations are also supported by the library; e.g. allowing clients to subscribe
to temperature readings at set intervals or when certain events occur, adopting the WS-
Eventing specification [95]. Node.DPWS also supports auto-discovery, by implementing WS-
Discovery [94], a multicast discovery protocol to locate services (the main mode of discovery
being a client looking for target services). Apart from discovering devices, the developed
library facilitates replies to discovery requests, forwarding the developer-defined device
details to requesting nodes whose queries match the device.

A key characteristic of Node.DPWS is its compact code, which is also easy to use. Operations
can be defined through minimal code and the developer only has to add the device's
information and its operations (along with their callback functions, adding the desired
functionality to the device). To highlight this, the source code of a DPWS device compared to
the same device implemented using WS4D-JMEDS is provided in Figure 11.

FIGURE 11. CREATING A SIMPLE DPWS DEVICE USING NODE.DPWS (LEFT) AND THE SAME DEVICE IN WS4D-
JMEDS (RIGHT).

In this example, the API’s are used to expose a simple service providing temperature readings.
In the case of Node.DPWS, the temperature operation is defined in a few lines of code:

49

input/output types are specified and then a handler is provided (called whenever the
operation is invoked). And while Node.js code is generally compact, this high level of
abstraction would not be possible without Node.DPWS, as the developer would have to deal
with the low level aspects of the specification’s implementation, such as the communications
(sockets etc.) and all the XML parsing and processing, in her code. Choosing the most
appropriate modules (e.g. server) where needed is a nontrivial task, especially for someone
not familiar with the complexities of server-side JavaScript programming and the Node.js
ecosystem. Further details on this can be gleaned by examining the freely available library
sources, which also include samples to help familiarize developers with its functionality.

3.2.2.4 PERFORMANCE EVALUATION
In order to assess the performance of Node.DPWS, we examined the behavior of a simple
DPWS device featuring a “GetTemperature” operation which, when invoked, returned an
integer value. Three versions of the device were developed: the Node.DPWS one and two
versions using WS4D-JMEDS, one compiled using Java Standard Edition (SE) and the other
following the Java Connected Device Configuration (CDC), part of the Java Platform Micro
Edition (Java ME) designed for handheld and embedded systems.

The applications were deployed on Beaglebone (http://beagleboard.org/bone) embedded
platforms (720MHz ARM Cortex-A8, 256MB RAM, Arch Linux ARM operating system),
interconnected via wired Ethernet to minimize the network’s impact. The test-bed also
featured a client application to discover and query the DPWS devices, recording response
times.

A total of 500 requests were issued from the benchmarking client (running on a desktop PC)
to each of the three DPWS devices, while various aspects of their performance were being
monitored. Figure 12 (left side) presents the recorded response time, i.e. the time that the
client had to wait to get a response to its “GetTemperature” invocation. The Node.DPWS
device responded faster than the WS4D-JMEDS-based implementations. Averaging the
response times over the 500 requests reveals that the Node.DPWS device performed
significantly better than both the WS4D-JMEDS devices, featuring an average response time
of 24.44ms, i.e. 53% and 66.3% faster than the CDC and SE variants respectively. In an
alternative representation of this performance gap, the Node.DPWS device was able to handle
40.92 requests per second, compared to 19.3 and 13.8 requests for the CDC and SE devices
respectively.

Moving to the DPWS device itself, CPU and memory load were recorded during benchmarking.
There were no significant differences in terms of CPU load: the average load while handling
the test requests was recorded at 90.4%, 96.7% and 91.9% for Node.DPWS, CDC and SE
respectively. The Node.DPWS device demonstrated better behavior in terms of the memory
consumed during benchmarks. Its memory footprint was measured at 26440 bytes on
average, which was 10% lower than its WS4D-JMEDS CDC counterpart (29387 bytes) and 18%
lower than the SE one (32280 bytes).

To examine the behavior of the APIs on complex applications, an implementation of uSPBM
was also evaluated, as the framework involves complex communication mechanisms,

50

including automated discovery of devices, subscription and eventing. All of the framework’s
entities were developed using the investigated APIs, including the policy enforcement points
(deployed on the Beaglebones) and the policy decision points and policy repositories
(deployed on a desktop PC). Figure 12 (right side) presents the average response times for 500
requests to retrieve data via the pertinent (now access-control-protected) operation. The
increased overhead of the access control mechanisms is evident, but the pattern formerly
observed is maintained in this more demanding use case. The performance gap is not as
evident as in the simpler scenario, as some of the delays are unrelated to the target device’s
implementation. For example, the device has to wait for the policy decision point to retrieve
the relevant policies and issue a decision on the access request before responding to the
benchmark client), but Node.DPWS still outperforms the alternatives, followed by JMEDS CDC
(response time increased by 22.51%) and JMEDS SE (increased by 32.63%).

FIGURE 12. AVERAGE RESPONSE TIME (IN MS) FOR 500 REQUESTS ON BOTH THE SIMPLE (LEFT) AND THE
POLICY-BASED ACCESS CONTROL IMPLEMENTATION (RIGHT)

Another important aspect, especially considering battery-powered IoT devices, is energy
consumption. To this end, voltage and current were monitored during benchmarks, using
hardware interfaces on the Beaglebones. The monitored consumption excluded the USB Host
port and expansion boards, but these were not actively used during testing, thus their
overhead should be minimal compared to that of the other hardware components. The energy
consumed to serve 500 requests, on each of the investigated scenarios and implementations,
are presented in Figure 13. As with the other examined parameters, the energy consumption
gains when developing the devices using Node.DPWS are significant.

24,44
51,99

72,48

275,96

338,08
366,00

0,00

50,00

100,00

150,00

200,00

250,00

300,00

350,00

400,00

Node.DPWS WS4D-JMEDS
CDC

WS4D-JMEDS
CDC

Node.DPWS WS4D-JMEDS
CDC

WS4D-JMEDS SE

Simple Device PBAC Device

51

FIGURE 13. ENERGY (IN MJ) REQUIRED TO HANDLE 500 REQUESTS.

The advantages of adopting Node.DPWS are evident in the above results, but accurately
quantifying the extent to which the noted differences can be attributed to the design of the
investigated libraries or to the underlying environments (i.e. Node.js with its fast C/C++ -based
engine and its event-driven, non-blocking design, set against the traditional Java environment)
is nontrivial. Both libraries were designed with the intrinsic characteristics of the
corresponding development environment in mind, so their behavior and features are, in great
degree, interwoven with the platform they were built upon. Still, the scenarios were carefully
chosen not to involve any unfair blocking requests (e.g. reading values from files), as this
would exacerbate differences between the environments, simultaneously obfuscating
differences between the libraries themselves.

Nevertheless, some design choices further differentiate the performance of the two libraries.
The Elementtree XML parser chosen for Node.DPWS is more efficient and has a smaller
memory footprint than the SAX parser used in JMEDS. Moreover, the Restify module
employed in the presented library is an extremely lightweight HTTP server. Node.DPWS only
binds services to a single developer-defined IP, while JMEDS automatically binds services to
all available interfaces, thus consuming extra resources. Another key difference is that
Node.DPWS only allows one instance of DPWS per device (still, all the desired elements can
be exposed as different hosted services on this single hosting service). In contrast, JMEDS
allows the deployment of multiple DPWS devices, an approach that adds complexity, as the
middleware is responsible for managing the discovery, invocation and eventing mechanisms
of all concurrently deployed devices, imposing extra processing overhead and delays.

3.2.2.5 SUMMARY
The above analysis demonstrates the benefits of leveraging the relatively novel Node.js
platform to implement the DPWS specification in the form of Node.DPWS; an easy to use and
lightweight set of libraries for creating and deploying DPWS devices on systems with limited
resources. The performance assessment revealed that Node.DPWS outperforms the most
attractive alternative currently available, the WS4D-JMEDS toolkit. The enhanced
performance, scaling and compact code characteristics of the library show that there is
significant room for improvement in the DPWS-related tools currently available. In the context

15531,7

33037,7

45620,8

156241,2

196227,6

233045,2

0,0 50000,0 100000,0 150000,0 200000,0 250000,0

Node.DPWS

WS4D-JMEDS CDC

WS4D-JMEDS SE

Node.DPWS

WS4D-JMEDS CDC

WS4D-JMEDS SE

Si
m

pl
e

De
vi

ce
PB

AC
 D

ev
ic

e

52

of the IoT, It is, therefore, worthwhile to pursue further work on the Node.DPWS
implementation, in order to enrich its libraries with more features, e.g. extending it to support
other WS-* protocols (WS-Security being a good candidate).

The advent of the IoT leads to the modernization of software engineering, bringing it closer to
the requirements of the ubiquitous computing world, with its plethora of heterogeneous,
resource-starved end devices that will typically handle “small” (sensing) data. This intensifies
the ever-present need of software practitioners to keep up to date with new tools and design
approaches. Node.js is one such innovative platform and Node.DPWS aims to motivate
researchers and developers alike to further explore the platform and the benefits of efficient,
lightweight and scalable web services in IoT applications. Nonetheless, in software
development one size does not fit all: the proposed library may be excellent for ubiquitous
sensing devices but will have inherent limitations when used for backend devices handling
large datasets. Thus, it is essential to examine use case scenarios at all development stages,
selecting the appropriate tools for each application; an even more compelling argument for
software practitioners maintaining an up-to-date and diverse skillset.

3.3 COMBINING THE TECHNOLOGIES
The combination of XACML with DPWS benefits both technologies, resulting in a solution that
exceeds the “sum” of its parts.

In more detail, XACML helps DPWS by providing fine-grained access control at the operations
level. This is important, as DPWS may have built-in security mechanisms, but offers no fine-
grained access control; access can either be allowed to a resource, or denied completely. For
many scenarios it is important to restrict the access of a service at the action level instead of
at the service level only. Moreover, XACML allows devices to dynamically adapt the
operation/features available to users, based on the environment and other variables. While
dynamic reconfiguration of devices is not supported by DPWS, this functionality can be
emulated by adjusting the applicable policies.

The XACML deployment also benefits by the adoption of DPWS. The most important gain
pertains to the ease of deployment, as the adoption of DPWS facilitates seamless Machine-
to-Machine (M2M) discovery and interactions, allowing the deployment of the XACML entities
to any platform, anywhere on the network, with minimal involvement on behalf of the user.
Moreover, the synchronous & asynchronous interactions enabled by DPWS, allow for reactive
access control, providing the necessary variables (operational or situational context, i.e. the
“Environment”) in a real-time, automated manner to the XACML entities. This improves upon
the typical Policy-based Access Control approach of XACML, enabling more sophisticated,
dynamic schemes (e.g. Risk Adaptive Access Control, RAdAC [105], see Figure 14)

53

FIGURE 14. THE EVOLUTION OF ACCESS CONTROL MODELS [105]

4. IMPLEMENTATION APPROACH
The implementation of the framework’s core entities (i.e. those dedicated to the authorization
mechanisms) and their communications are detailed in the sections below.

4.1 NODE CLASSIFICATION
At the lower level of the uSPBM architecture lie the various computing devices that the
framework's components are expected to be deployed. There is a plethora of heterogeneous
devices that are expected to be found in ubiquitous computing environments, each with its
own intrinsic characteristics in terms of size, performance, power source, networking
capabilities etc. Given these diverse characteristics and hardware limitations, not all of
uSPBM’s mechanisms will be deployable on all types of devices. Therefore, it became
apparent that it would help to classify the various platforms, depending on their intrinsic
characteristics.

To this end, four different categories of smart devices were identified: power devices, mobile
devices, embedded/micro devices and sensors/nano devices. These four categories represent
the basic hardware platforms which (or subsets of which) are expected to be found in a typical
uSPBM deployment, and cover the possible requirements of several market areas: from field
data acquisition, to transportation, to personal space, to home environment, to public
infrastructures, etc. A description of these categories can be found below.

4.1.1 POWER DEVICES

54

Devices with medium to high performance in terms of computing power and no particular
resource restrictions. Although these nodes are typically used as sink nodes and/or gateways
to other networks they can also have their own on-board sensors for collecting additional
information. Example of a power node is a laptop or a mains-powered embedded platform.

• Role
o DPWS client and server (i.e. DPWS peers).
o Responsible for interfacing with OSGi (Knopflerfish) framework.
o Policy Administration Point, Policy Information Point/Attributes Repository

and/or Policy Decision Point
• Underlying technologies

o Windows or Linux operating system (optionally with desktop environment)
o WiFi or Wired Ethernet, IPv4/IPv6 network

• Prototype platforms
o Beagleboard/Beagleboard xM [106]
o Typical PC/Laptop/Server

FIGURE 15. BEAGLEBOARD XM

4.1.2 MOBILE DEVICES
Portable devices, often associated with a person. Their characteristics may vary from powerful
devices with energy restrictions (e.g. smartphones) to devices with more resource constraints
(e.g. devices attached onto smart clothing, smart watches etc.).

55

• Role
o DPWS client and server (i.e. DPWS peer).
o Policy Enforcement Point and/or Policy Decision Point

• Underlying technologies
o Android mobile operating system
o WiFi, IPv4/IPv6.

• Prototype platforms
o Smartphone
o Tablet

FIGURE 16. SMARTPHONE AND TABLET DEVICES

4.1.3 EMBEDDED/MICRO DEVICES
Smaller devices, typically integrated into other entities (smart appliances, smart vehicles etc.)
with limited capabilities and resources, such as computational power, memory, storage space
and energy.

• Role
o DPWS client and server (i.e. DPWS peer).
o Policy Enforcement Point and/or Policy Decision Point
o Bridge between 802.15.4/6LoWPAN and IPv4/IPv6 networks (optional)

• Underlying technologies
o Angstrom or lightweight Ubuntu distribution operating system
o WiFi or Wired Ethernet, IPv4/IPv6. Optionally 802.15.4/6LoWPAN.

• Prototype platforms
o Beaglebone [107]

56

FIGURE 17. BEAGLEBONE EMBEDDED PLATFORM

4.1.4 SENSORS/NANO DEVICES
Small battery-powered devices with very limited capabilities and resources; typically sensor
motes.

• Role
o Devices running a DPWS service.
o Policy Enforcement Point (optionally)

• Underlying technologies
o Contiki or Java ME Squawk operating system
o 802.15.4/6LoWPAN network

• Prototype platforms
o SunSPOTs [108]
o Crossbow Technology IRIS motes 8

FIGURE 18. SUNSPOT SENSOR

8 http://bullseye.xbow.com:81/Products/productdetails.aspx?sid=264

57

FIGURE 19. IRIS MOTE

Some specification highlights of the abovementioned prototype platforms appear in Table 5.

TABLE 5. PROTOTYPE PLATFORM SPECIFICATIONS

 Sensor/Nano Embedde
d/Micro

Power Devices Mobile Devices

Memsic
IRIS

SunSP
OT

Beaglebone BeagleBoard BeagleBoard-
XM

Laptop Mobile Phone Tablet

Operating
System

TinyOS /
Contiki
(port)

Java
J2ME
CLDC
1.1

Linux Linux / WinCE Linux / WinCE Linux /
Windows

Android Android

Processor Atmel
ATMega
1281 @
16MHz

ARMv4
T @
180
MHz

MPU @ 720
MHz

(OMAP)

MPU @ 720
MHz (OMAP)

DSP @ 1 GHz
(DM3730)

Quad-core i5
@ 2.6GHz

Single-core
Cortex-A5 @

600MHz

Quad-
core @
1.9GHz

Memory 8KB RAM,
4KB

EEPROM

512KB
RAM

256MB RAM 256MB RAM 512MB RAM 8GB RAM 512MB RAM 2GB
RAM

Storage 128KB
Program

Flash
Memory,

512KB
Measure

ment
(Serial)
Flash

4MB
Progra
m Flash
Memor

y

SD/MMC/SD
IO card slot

SD/MMC/SDI
O card slot

SD/MMC/SDI
O card slot

512GB,
SD/MMC/SD
IO card slot

16GB,
SD/MMC/SDI

O card slot

32GB,
SD/MMC

/SDIO
card slot

Power Batteries
(2xAA)

3.7V
Battery

USB / DC USB / DC USB / DC Built-in
battery / DC

Built-in
battery / DC

Built-in
battery /

DC

58

Networki
ng

2.4 Ghz
radio

2.4 Ghz
radio

Wired
Ethernet, No

built-in
wireless

module (but
has

interface)

Wired
Ethernet, No

built-in
wireless

module (but
has interface)

Wired
Ethernet, No

built-in
wireless

module (but
has interface)

Wired
Ethernet,

WiFI,
Bluetooth

WiFI,
Bluetooth

WiFI,
Bluetoot

h

59

4.2 DPWS IMPLEMENTATION OF ACCESS CONTROL MECHANISMS
The section below details the approach followed to implement the authorization entities’
interactions using web services and the APIs of choice.

4.2.1 PEP-PDP COMMUNICATION
The Policy Enforcement Point must reside on every device with resources that must be
protected from unauthorized access. Other than the functional elements of the devices which
the framework intends to protect (e.g. access to its sensors), two extra operations must be
present on each DPWS device. These operations, in essence, constitute the PEP functionality
and its communication with the PDP. The latter acts as a DPWS client that accesses these
USPBM-specific operations. In more detail, these operations are:

• SAREvent: Service Access Request Event. A WS-Eventing operation to which
devices can subscribe. When fired, the operation outputs “SAROut”, a message
which includes all the information the PDP needs to have in order to evaluate a
request.

• PDPResponse: Policy Decision Point Response. An operation invoked by the PDP
with its answer to an access request. This response is a “PDPIn” message.

The message types are defined as follows:

• SAROut
o RequestID: A counter of requests issued by the specific device
o Subject: An actor whose attributes may be referenced to validate that a

request is authorized
o Action: An operation on a resource
o Resource: Data/service or system component that the “Subject” attempts

to access via the “Action”.
• PDPIn

o RequestID: A counter of requests issued by the specific device. This value
is used to match SAROut messages sent by the PEP to PDP responses and to
avoid replay attacks.

o Response: The response issued by the PDP regarding the specific request,
in the form of an integer (0: “Deny”, 1: “Permit”, 2: “Indeterminate” or 3: “Not
Applicable”).

The above, including a definition of the message types, can be seen in detail in Figure 20.

60

PDP

SAREvent

- SAROut

PDPResponse

1. Subscribes

2. Eventing

3. Invokes

- PDPIn

- RequestID
- Subject
- Action
- Resource

- RequestID
- Response

FIGURE 20. PEP-PDP IMPLEMENTATION

4.2.2 PDP-PIP/PAP COMMUNICATION
In terms of the discovery and information exchange that must take place between
infrastructure entities (PDP, PIP, PAP), an extra operation must reside with the entity that
stores the active policy set (namely the PIP/PAP). In specific, this extra operation is formed as
follows:

• PIPOperation: Policy Information Point Operation. Features an input in the form
of a “PIPIn” message and an output in the form of a “PIPOut” message. The
former is the request issued by the PDP (requesting all applicable policy rules), while
the latter contains all the information, i.e. policies and rules pertinent to the specific
request, the PIP has identified.

The above message types, are detailed below:

• PIPIn
o RequestID: A counter of requests issued by the PDP to the PIP
o Request: The request to be evaluated in the form of a string. On receipt,

the PIP enriches the request (with current time and date etc.) and it passes
the request to a “policyFinder” module to find the appropriate policies.

• PIPOut
o RequestID: A counter of requests issued by the PDP to the PIP. This value

is used to match PIPIn messages sent by the PDP to PIP responses and to avoid
replay attacks.

o PolicyResponse: A field used to return pertinent policies
o StatusResponse: In cases of errors, e.g. when no pertinent policies are

identified, the exact issue is identified via this field (“Non-Applicable”,
“Cannot determine” or “Other error”)

61

The above, including a definition of the message types, can be seen in detail in Figure 21.

PDP

PIPOperation

1. Invokes
2. Response

- RequestID
- Request

- RequestID
- PolicyResponse
- StatusResponse

- PIPOut
- PIPIn

FIGURE 21. PDP-PIP/PAP IMPLEMENTATION

4.2.3 INFORMATION FLOW
The information flow that takes place whenever a request to an uSPBM-protected resource is
issued is as follows:

1. The PDP constantly monitors the network in order to listen to “Hello” messages
that PEP-equipped Devices broadcast when initializing.

2. As soon as the PDP catches such a “Hello” message, it subscribes to the SAREvent
of that PEP.

3. When a client tries to access an uSPBM-protected feature on the device (i.e. invokes
the protected operation), the SAREvent is fired which contains the Request ID, the
Client’s identifier, e.g. IP and/or username (Subject), the Invoked Operation (Action)
and the Device’s UUID, i.e. its Universally Unique Identifier (Resource)

4. The PDP generates an XACML request with the above data, in order to be handled and
evaluated by the XACML modules of the infrastructure entities.

5. The PDP invokes the PIPOperation present on the PIP/PAP, in order to retrieve
applicable policies.

6. The PIP replies with all applicable policies, otherwise it returns the error status.
7. The PDP then decides, based on information retrieved by the PIP, and invokes the

PDPResponse operation on the Device, transmitting the result of the query’s
evaluation.

It should be noted that, regarding policy look-ups, the authors chose to implement the system
so that the PEP checks with the PDP for every single request. This is essential when considering
scenarios where policies change dynamically (even in an automated fashion when certain
conditions are triggered), and where it is desirable to have the access control system enforce

62

said changes in real-time. Conversely, in deployments where policy changes are expected to
be infrequent or less dynamic in nature, access tokens with a predetermined validity period
could be introduced to reduce the load on the PDP, e.g. as defined in [109].

4.3 MESSAGE PROTECTION
The uSPBM’s mechanisms can be of limited efficacy if the actual associated messaging is not
protected. Malicious entities can eavesdrop, replay or tamper with the framework’s
messaging, potentially overriding the offered protection. The exchange of unprotected policy
messages might reveal useful information to attackers who will try to easily identify policy
restrictions. This would allow them to do a mapping of the security measures taken for the
specific environments hence exploit potential vulnerabilities. Moreover, in a more active
approach, an attacker might modify policy related messages, such as authorization requests
and/or decisions, obligations or advices in an attempt to downgrade adopted measures and
bypass access controls. Masquerading is another threat to the system’s integrity, where an
attacker sends forged messages pretending to be a legitimate user. Lack of authorization
requirements on requests might allow an attacker to make such message injections.

To avoid the aforementioned problems, security measures have to be taken to protect
message confidentiality, integrity and authentication. These measures can be deployed in
various layers in the OSI protocol stack, such as the application layer, the network layer or
even the link layer.

At the lower layers, as existing networking mechanisms are updated and adapted to efficiently
handle the vast population of the resource-constrained devices (e.g. work on the 6LoWPAN
[30]), the pertinent cryptographic primitives are also adapted and improved accordingly. Such
an example is the IPsec protocol and its variants that utilize header compression [110]–[112]
which can provide similar levels of protection while preserving the valuable node resources.
The security mechanisms inherent to the IEEE802.15.4 link-layer protocols [113] are also a
viable option, though a comparative analysis made between IPsec and IEEE802.15.4 link-layer
security [114], in some cases IPsec scales better while also offering end-to-end security.

Some prominent alternative schemes protect messages at the application or network layer
and can provide end-to-end message protection. Well-known security mechanisms for these
layers are the TLS (Transport Layer Security) protocol [115] and its counterpart proposed for
securing UDP messages, namely DTLS [116]. TLS is suitable for providing confidentiality,
integrity and authentication of messages exchanged between a client and a service, running
on a node. However, the inherent expensive computations of TLS or IPsec (such as the TLS
handshake protocol) do not match the requirements of resource-constrained environments,
for the protection of the communications that take place among the less powerful micro/nano
nodes (PEPs), or between PEPs and power nodes (PDPs). A TLS implementation on the Sun
SPOT (Small Programmable Object Technology) Java-enabled WSN platform, has shown that
the network lifetime is reduced by 70% [117].

Several lightweight alternatives based on TLS/SSL have been proposed for resource-
constrained environments. One such approach was proposed in [118], which uses ECC for key
exchange and authentication, RC4 for encryption and MD5 for integrity check. According to

63

the presented experimental results, it was able to complete a full SSL handshake within 2
seconds. Tiny 3-TLS proposed in [119] is an extension and adaptation of the TLS handshake
sub-protocol, tailored for securing communications between sensing nodes and remote
monitoring terminals. This protocol relies on the existence of an intermediate node, the sink
node, which in the proposed framework can be assigned to a power node. In [120] an
implementation of SSL was attempted through an enhanced version of Sizzle (a tiny-footprint
HTTPS stack [121]). Measurements were performed on Telos motes and it was concluded that
the exploitation of features such as session reuse and persistent HTTP(S) can spare multiple
executions of the key exchange phase, which is the most energy-demanding part of the
protocol. What is more, it was also shown that the extra cost for encrypting/authenticating
application data with SSL is around 15%. Again, the key exchange phase is performed via ECC
since it is significantly more efficient than the RSA alternative.

Other schemes focus on efficiently providing authenticated encryption, like the Identity-based
Cryptosystem (IBC) signcryption mechanisms presented by Fagen et al [122]. Related to the
above is the relatively novel concept of security fusion, whereby weak point-to-point
properties are combined in order to produce strong security properties in a resource-aware
manner [123].

The choice of security mechanisms is affected by many parameters, including the node
capabilities. Communications between, e.g. a PDP running on a power node and the policy
repository, can be protected using TLS as the power node can support the heavy computations
required by this protocol. Given that there are no resources restrictions on power nodes there
are no major obstacles, besides key management, to deploy TLS or even IPsec on these nodes.
Nevertheless, considering the less powerful micro or nano nodes, deployed protection
mechanisms have to be based on lightweight cryptographic protocols that satisfy the needs
and match the capabilities of constrained environments.

One may consider deployments of the framework’s entities over trusted and/or secure
networks (e.g. a VPN), but an alternative mechanism has to be considered for deployments
where this is not the case. Thus, in the case of uSPBM we make no assumptions about the
existence of other security mechanisms and focus on solutions at the application layer instead.

4.3.1 ASYMMETRIC VARIANT
A solution that can be adopted for this purpose is the Web Services Security Specification (WS-
Security or WSS [124]) and the corresponding cryptographic mechanisms, i.e. XML encryption
and signatures (enveloped, enveloping or detached) or a combination of those depending on
the particular requirements to provide confidentiality and integrity of the exchanged
messages. WS-Security is part of the WS-* family of specifications published by OASIS. The
protocol specifies enhancements to existing SOAP messaging, integrating security features in
the header of SOAP messages (working in the application layer), in order to provide message-
level confidentiality, integrity and authentication. The main mechanisms detail signing SOAP
messages (integrity, non-repudiation), encrypting SOAP messages (confidentiality) and
attaching security tokens to SOAP messages (authentication). There is a variety of supported
encryption, signature and security token formats (e.g. SAML Assertions [125], Kerberos tickets

64

[126], X.509 Certificates [127], Rights Expression Language (REL) Tokens [128], as well as
custom tokens).

A structured exchange of secure XACML messages using XML encryption and signature is
provided by SAML specifications (Security Assertion Markup Language [129]), thus offering
the required protection at the application layer. SAML is a plaform-independent, XML-based
standard for exchanging authentication and authorization information. SAML assertions are
typically transferred embedded using HTTP or XML-encoded SOAP messages that are
transferred over HTTP or UDP [93]. OASIS has defined a profile in [109] for the integration of
SAML with XACML and, among the others, the use of SAML for the secure transmission of
XACML requests and responses.

Therefore, considering the networking requirements and the corresponding security
mechanisms, the most appropriate options for securing XACML messages at the application
layer, while providing interoperability, are the following:

• SAML-integrated XACML messages transferred using the SOAP protocol
• SOAP-encapsulated XACML messages protected with TLS. Such an approach requires

using expensive TCP communications to transmit the resulting TLS messages. Another
option is to use an adaptation of TLS over UDP, namely DTLS.

Both of the above solutions are typically independent of the protocols used at the underlying
layers, allowing them to adapt in many environments, hence satisfying the interoperability
requirement.

In either of the aforementioned approaches, one of the main problems related to the
exchanged messages’ protection is key management, especially when considering the
following:

1. Communications might take place ad-hoc between nodes that do not have an
established trust relationship, hence they do not (pre-)share any secrets. Dynamic
structures and self-configuration capabilities demand for more flexible mechanisms.

2. Some nodes might not support public-key technologies, which further complicates the
processes of establishing trust relationships and keys.

The inherent key management problems, especially in resource-constrained environments,
have attracted a lot of attention in the research community and many schemes have been
proposed within this context. A survey and taxonomy on proposed wireless sensor networks
key management schemes is provided in [130].

Web Services Secure Conversation (WS-SecureConversation, [131]) is a WS-Security add-on
which introduces, similarly to TLS, a session key to secure communication across one or more
messages. The aim of the specification is to establish security context, share, renew, amend
or cancel said context as well as derive (potentially more efficient) session keys from the
aforementioned context. When multiple message exchanges are involved WS-
SecureConversation has proven to be more efficient than a plain WS-Security implementation
[132], but the former requires the presence of other WS-* protocols as well, like WS-Trust, so
the added complexity should also be considered.

65

Unlike TLS, WS-Security can offer end-to-end (message-level) security and it is more flexible
when application-level proxy servers are involved. Still, the performance overhead is
significant with the standard WS-Security implementation (see Table 6) and further work is
required to improve its usability in resource-constrained devices.

TABLE 6. WS-SECURITY AND TLS BENCHMARK RESULTS FOR 25 CONCURRENT REQUESTORS [133]

Security Mechanism Messages/sec CPU load Throughput
(kB/s)

 X.509 XML Signature & Encryption 352 99 2,403

 WS Secure Conversation XML Signature &
Encryption

798 98 5,679

 SSL with HTTP Basic 2,918 95 3,181

 None (message routing only) 5,088 96 5,419

Therefore, other than the baseline uSPBM entities communicating in plaintext, a variation of
the proof-of-concept implementations was also developed which adopted mechanisms
specified in WSS along with TLS (the latter being recommended in the DPWS specification).

Moreover, a symmetric authenticated encryption mechanism was also developed in used in
some uSPBM implementations, to provide for a more efficient and lightweight security
mechanism.

4.3.2 SYMMETRIC VARIANT
Considering the resource-constrained nature of the devices where the uSPBM framework may
be deployed as well as the need to minimize its performance impact in general, symmetric
cryptographic primitives could be considered more appropriate.

To this end, a security mechanism based on the AES/CCM [134] authenticated encryption
algorithm was implemented and was deployed to protect both PEP-PDP as well as PDP-
PIP/PAP communications, using pre-shared 256-bit keys. The utilization of the AES/CCM
algorithm guarantees that the uSPBM-related messages exchanged between the framework’s
entities are fully protected in terms of confidentiality, integrity and authenticity with an
acceptable performance overhead (CCM requires two block cipher encryption operations per
each block of an encrypted & authenticated message).

To implement this security mechanism, the message types detailed above (namely SAROut,
PDPIn, PIPIn & PIPOut) are all replaced by a SecureMessage type. So, the
operations are in this case defined as follows:

• SecureMessage

66

o Payload: The actual message transmitted (i.e. information previously
included in the replaced message type, e.g. RequestID, Subject, Action,
Resource in the case of SAROut messages), in encrypted form.

o MAC: The output of the CBC-MAC, i.e. the message authentication part of
AES/CCM.

o RandomData: Random data, necessary to guarantee the security of the
authenticated encryption mechanisms [134].

Thus, for example, the SAREvent operation now takes the form appearing in Figure 22. All
other operations, i.e. PDPResponse and PIPOperation, are also adjusted accordingly.

SAREvent

- SecureMessage

- Payload
- MAC
- RandomData

FIGURE 22. SECURE SAREVENT

With regard to the symmetric keys, each node shares a pre-installed key with the PDP, which
is installed to the nodes during installation. In more details, the PDP holds:

• A master key for communication with devices: DMK
• A master key for communication with infrastructure nodes (e.g. PAP/PIP): IMK

Moreover, the PDP shares a Shared Master Key (SMK) with each of the PEP-equipped devices
it needs to communicate with. Each of these SMKs is generated using the DMK and the
corresponding device’s universally unique identifier (UUID), using the AES algorithm, as
follows:

SMK = AESDMK(Device_UUID)

Equivalently, the PDP also shares a Shared Infrastructure Master Key (SIMK) with each of the
infrastructure entities (e.g. PAP/PIP) that it needs to communicate with. This SIMK is derived
using the IMK and the corresponding UUID of the infrastructure device, again using the AES
algorithm, i.e.:

SIMK = AESIMK(PAP_UUID)

So, the PDP holds all the values needed to communicate with each device, namely the counter
(i.e. RequestID) of the latest message exchanged and the key shared with the
corresponding device.

The RequestID is not only used to guarantee freshness, but also to create the Nonce needed
by the AES/CCM algorithm (the Nonce is the RequestID concatenated with random bytes):

Nonce = RequestID || Random_bytes

67

These random bytes must also be included in the message sent to the PDP (so that it can
reproduce the Nonce from the shared/expected RequestID and those random bytes).

Thus, the PDP-to-PEP implementation of Figure 20 now takes the form appearing in Figure 23,
and the PDP-to-PIP/PAP implementation of Figure 21 now takes the form appearing in Figure
24.

FIGURE 23. IMPLEMENTATION OF AES/CCM-PROTECTED PEP-PDP COMMUNICATION

.

68

FIGURE 24. IMPLEMENTATION OF AES/CCM-PROTECTED PDP-PIP/PAP COMMUNICATION

4.3.3 SECURITY ANALYSIS
We assume that legitimate clients possess valid credentials (pre-shared keys or certificates,
where applicable) and that they do not cheat intentionally. Still, compromised nodes (e.g. by
malware) from local or remote networks cannot be excluded. Moreover, the development of
the devices’ provided services and the interactions with their clients should be judged in a
case-by-case basis and are beyond the scope of this analysis.

In terms of generic threats, attackers could retrieve keys from compromised nodes. Thus,
private keys should be stored securely (e.g. on a TPM module). During the discovery phase, if
discovery messages use signatures, the integrity and identity of the client can be verified.
Otherwise, a malicious entity inside the home network can determine the presence of services
(but not use them, if protected by HTTPS). For cross-domain communications, interactions
between the MQTT broker and its clients (uSPBM Proxies) can be protected via TLS, while
application-level payload encryption can allow for end-to-end protection of published
messages (safeguarding communications from compromised brokers).

We analyzed the core (i.e. the access-control related) interactions of uSPBM using Microsoft’s
Threat Modeling Tool (2016 version 9), using STRIDE (Spoofing, Tampering, Repudiation,
Information disclosure, Denial of service, Elevation of privilege) for threat risk modeling, as
appearing in Figure 25.

9 https://www.microsoft.com/en-us/download/details.aspx?id=49168

69

FIGURE 25. STRIDE ANALYSIS OF USPBM'S CORE ACCESS CONTROL INTERACTIONS

Based on this analysis the following threats were identified:

• Improper data protection of PDP/PIP can allow an attacker to read information not
intended for disclosure. (Information Disclosure / Tampering). To this end, it is important
for authorization settings (including the security policies) to be stored securely and be
regularly reviewed.

• Device/PEP may be able to impersonate the context of PDP in order to gain additional
privilege. (Elevation of privilege). Thus, the devices must be protected from compromise
(by malware etc.).

• Device/PEP may be able to impersonate the context of User in order to gain additional
privilege. (Elevation of privilege). Again, this highlights the importance of protecting
devices from compromise.

• An attacker can read or modify data transmitted over an authenticated flow from device
to user. (Information Disclosure / Tampering). Thus, the provided services should feature
mechanisms that protect the confidentiality and integrity of their interactions with the
users.

70

4.4 INTERFACING WITH MIDDLEWARE & MANAGEMENT SYSTEMS
The OSGi Alliance is an open source standards organization that specified the OSGi standard
[78], a module system and service platform for Java that implements a complete and dynamic
component model. Applications offered by components are formed as bundles for
deployment and can be remotely installed, started, stopped and uninstalled without requiring
a reboot. To this end, we use Knopflerfish [135], the leading universal open source OSGi
implementation.

In uSPBM’s backend nodes, DPWS is integrated into OSGi by implementing operators that are
controlled by the relevant system components via an OSGi interface (see Figure 26. Embedded
devices specify their type and the provided services in DPWS. Each system component
implements a component operator bundle that handles its underlying DPWS devices and their
services. Thus, uSPBM’s infrastructure entities can be deployed as OSGi bundles and can
trivially be interfaced with other OSGi-based middleware entities and services, which are
common in the literature (see “Background & Related Work” section).

FIGURE 26. OSGI - DPWS INTERFACING

Possible features that the DPWS-OSGi interface could accommodate include:

• Allowing OSGi clients to use uSPBM device services and to deploy OSGi proxy services
for DPWS services.

• Allowing uSPBM clients to use OSGi services.
• Event-based OSGi-uSPBM services communication (e.g. subscription to uSPBM events

by OSGi bundles)
• OSGi-based uSPBM service creation & management

Moreover, other than the entities devoted to the uSPBM architecture itself, an extra entity
was developed to act as a gateway to help interface uSPBM with various other middleware
entities, such management agents (e.g. to monitor and manage the security status of the
devices) or even more sophisticated AI management mechanisms, such as the one presented

71

in [136]. This entity is called Device Operator (DOp) and it is used to transmit and enforce the
decisions of the management agent (e.g. a Security Agent) to the DPWS devices of uSPBM,
and to allow the transmission of information (such as the current operating status) from said
devices to the management agent. An uSPBM DPWS device deployed as an OSGi bundle and
discovered via a DPWS client on the network can be seen in Figure 27.

FIGURE 27. AN USPBM DEVICE DEPLOYED OVER OSGI AND DISCOVERED ON LOCAL NETWORK

The communication of the DOp with the rest of the middleware services and the management
agent can take place via OSGi, namely over Knopflerfish, in cases where they'll be deployed
on the same system. In case of remote deployment, the communication can be realized via
DPWS, as is the case with the rest of the uSPBM entities. The DOp features the following
operations:

• St_Event: A WS-Eventing operation. All of the uSPBM end devices, upon initialization,
search for the Device Operator and subscribe to St_Event. As soon as a management
agent issues a command that dictates a certain change in the state of uSPBM devices
(e.g. to increase the length of their encryption keys, in order to raise the security
level), the Device Operator fires an event, transmitting that information to the target
end devices.

• Update_Operation: As soon as each device performs a change in its operating
(because of a management agent decision or otherwise), it invokes the
Update_Operation to let the DOp know of this change. The DOp can then inform the
management agent of the new status of uSPBM’s devices.

72

The "Device Operator" (DOp) is, therefore, responsible for setting and updating the
operational status (e.g. the use of encryption or not) throughout the uSPBM framework. This
functionality is depicted in Figure 28.

Management
Agent

St_Event
2. Device Status Control

- Output: Status_Event

1. Subscribes

3. Fires

Update_Operation

- Update: string

4. Status Update

5. Status Update

FIGURE 28. IMPLEMENTATION OF THE USPBM DEVICE OPERATOR

To briefly describe a simplified scenario:

• An uSPBM node (let's assume it's a smart camera) will feature the necessary Policy
Enforcement Point (PEP) to make sure only authorized entities (i.e. those allowed by
the current policy set) will be able to access its resources (rotate camera, turn it on/off
etc.).

• In order to check said access requests, it communicates, when necessary, with the
Policy Decision Point, which in turn communicates with the Policy Information Point
to retrieve pertinent policies.

• Let us assume that the security of the policy messages exchanged between the uSPBM
entities support 3 different security levels (e.g. no encryption, 256-bit AES encryption
and 512-bit AES encryption).

• These mechanisms are enforced/controlled by the Device Operator bundle, which is
running along with the rest of the middleware services (the backend PC running the
Management Agent etc.).

73

• The uSPBM framework initializes with a pre-set security level. When the Management
Agent (or any other control entity) decides that a higher/lower security level is
needed, it relays this request to the "Device Operator" which in turns makes sure it's
implemented on all of the uSPBM entities.

This simplified scenario can be seen in Figure 29.

 Backend
PC

Management
 Agent

Other
Middleware

Services

uSPBM
Device

Operator
(OSGi Bundle)

Smart Camera

Exposes functional
elements via DPWS

(e.g. Rotate Left/
Right, Record, Turn

ON/OFF)

[uSPBM Policy
Enforcement Point]

uSPBM Control
[DPWS]

OSGi

Policy
Information

Point
Policy Decision

Point

User

Tries to access
Camera resources

Interfaces
with
Management
Agent and/or
other
Middleware
Services

uSPBM
Policy

Messaging
[DPWS]

FIGURE 29. SIMPLE SCENARIO DEMONSTRATING DEVICE OPERATOR'S FUNCTIONALITY

4.5 PERFORMANCE EVALUATION OF CORE ENTITIES
A performance evaluation was carried out in order to assess the performance overhead
incurred by the proposed mechanisms on typical embedded systems that may be found in
smart environments. This evaluation focuses on the main entities (i.e. the core authorization
mechanisms) of the uSPBM framework. A more detailed evaluation, including other features
such as management, authentication and cross-domain communications, can be found in later
chapters, pertaining to specific use cases.

74

To evaluate the core components, the PEP-equipped DPWS devices were deployed on
Beaglebone embedded platforms, equipped with a 720MHz ARM Cortex-A8 processor,
256MB of RAM, running on a minimal Linux-based operating system. The test-bed for the PDP
and PIP devices was a Beagleboard-xM power platform, featuring a 1GHz ARM Cortex-A8
processor (throttled to run at 600MHz during testing), 512MB of RAM and a minimal Linux-
based operating. The test-bed also featured a client application developed to query the
uSPBM-protected DPWS devices for benchmarking purposes, which run on a PC attached to
the same network via a wired LAN connection. The PDP and PIP/PAP applications are deployed
as Knopflerfish bundles, which is an open source service platform following the OSGi
specification. The uSPBM service is expected to be deployed alongside other services on the
main infrastructure systems. In view of that, the authors consider that the modular and
dynamic service deployment as well as the service orchestration features provided by the
OSGi framework will be advantageous in actual deployments. The test setup appears in Figure
30.

Service Consumer /
Client

FIGURE 30. PROOF-OF-CONCEPT TESTBED SETUP

For the evaluation process, two functional operations were added to the test DPWS device
deployed on the Beaglebone. So, a GetStatusuSPBM operation and a GetStatus
operation were also implemented on the device, in addition to the PEP-related operations
appearing in Figure 20. Both these extra operations, when invoked, returned a static integer
value, but the latter did so immediately while the former was PEP-protected, i.e. the test client
was only allowed to invoke it if the PDP allowed so. This facilitated the evaluation of the
response time overhead imposed by the uSPBM framework, as any extra delay when invoking
the GetStatusuSPBM operation can be attributed to the access control mechanisms.
Aiming to also weigh the impact of the security mechanisms, the assessment included tests
with and without encryption on both the PEP-to-PDP link and the PDP-to-PIP link (plaintext vs.
AES/CCM-protected message exchange).

A total of 100 consecutive requests were issued from the client application to the DPWS device
residing on the Beaglebone. The response time recorded by the test client trying to access the
device’s resources appear in Figure 31. “No uSPBM” refers to the invocation of the
GetStatus operation, while the “Plaintext uSPBM” & “AES-CCM uSPBM” columns refer to
the invocation of the GetStatusuSPBM operation, without and with AES/CCM encryption
of the uSPBM message exchanges, respectively. It must be reiterated that the AES/CCM

75

response time includes the overhead introduced by the encryption mechanisms on both the
PEP-to-PDP and the PDP-to-PIP/PAP communications. Random spikes on the response time
can be attributed to the triggering of “housekeeping” operations of the Java-based
applications running on the target platforms.

FIGURE 31. CLIENT-SIDE RESPONSE TIME (MS)

A breakdown of the response times (averaged over 100 requests) can be seen in Figure 32,
where it is evident that the bulk of the delay can be attributed to the Client-Device (i.e. PEP-
PDP) communication and to a lesser extent to the PDP-PIP link. As the DPWS devices featuring
the PEP functionality are bound to be deployed on resource-constrained devices, the
resources on the target devices themselves were monitored during testing; the results appear
in Table 7.

0

100

200

300

400

500

600

700

800
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

RE
SP

O
N

SE
 T

IM
E

(M
S)

REQUEST ID

No uSPBM Plaintext uSPBM AES-CCM uSPBM

76

FIGURE 32. RESPONSE TIME (MS) BREAKDOWN, AVERAGED OVER 100 REQUESTS

TABLE 7. RESOURCE CONSUMPTION ON USPBM-PROTECTED DPWS DEVICES DURING BENCHMARKS

Review of related work indicated that the number of stored policies can significantly affect
the performance of the access control system, to the point where the response time overhead
can become prohibitive in certain application scenarios [57]. This was taken under
consideration during development and, thus, the PIP stores policies in memory in the form of
a hash table. The effectiveness of this approach was validated during the performance
evaluation. Figure 33 depicts the PDP-PIP communication, focusing on the time the PDP has
to wait before it receives pertinent policies from the PIP, in scenarios were the number of
stored policies varies from 1 to 200. As is obvious from said figure, the impact of the number
of policies stored on the PIP is negligible. The improvement over the approach of Muller et al.
can be seen in Figure 34.

72,9

137,4

444,3

0,0

100,0

200,0

300,0

400,0

500,0

No uSPBM Plaintext uSPBM AES-CCM uSPBM

Client-Device PDP-PIP

Average No
uSPBM

Plaintext
uSPBM

AES/CCM
uSPBM

CPU (%) 87,4 94,5 97,7
Memory
(bytes) 28461 29909 36077

77

FIGURE 33. PDP PROCESSING TIME. AVERAGE RESPONSE TIME (MS) DEPENDING ON NUMBER OF STORED
POLICIES.

FIGURE 34. PDP PROCESSING TIME VS. NUMBER OF STORED POLICIES (IN MS). COMPARISON TO RELATED
WORK.

Tests were also conducted to determine the difference between the supported security
mechanisms, namely the WS-Security mechanisms and the symmetric ones of AES/CCM. To
this end, 50 policies were stored on the PIP and then 50 requests were sent from the client to
the PDP. For this test, the PDP and PIP/PAP were all deployed on a common Beagleboard xM
platform, with a client application on desktop PC. The requests were sent in two different
forms, to test different use cases: consecutively (as in the previous tests) and once every 30
seconds. During these tests, the client-side response time was monitored. The results appear
in Figure 35.

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140 160 180 200

TI
M

E
(M

S)

NUMBER OF STORED POLICIES

Plaintext AES-CCM

108 109 115102

205

496

50 100 500

uSPBM Müller et al.

78

FIGURE 35. THE EFFECT OF THE DIFFERENT SECURITY MECHANISMS UNDER TWO USE CASES (TIMES IN MS,
AVERAGED OVER 50 REQUESTS).

As is evident from these results, and as expected, there is a significant difference between
WS-Security and AES/CCM modes. The differences are exacerbated in the non-consecutive
requests, as there is no caching and, moreover, the socket between the two entities is closed.
This is especially burdensome for the WS-Security asymmetric mechanisms, as the
computationally intensive processes (handshake etc.) have to be repeated; thus the very
significant performance degradation.

95

113,2

153,6

176

198

894

0 100 200 300 400 500 600 700 800 900 1000

Plaintext

AES/CCM

WS-Security

Plaintext

AES/CCM

WS-Security
Co

ns
ec

ut
iv

e
Re

qu
es

ts
Re

qu
es

t /
 3

0s
ec

79

5. APPLICATIONS & EXTENSIONS
Smart device adoption is taking off in various domains, leading to the improvement of existing
and introduction of new business sectors, all of which constitute key pieces of the puzzle that
is the Internet of Things (IoT). This chapter presents such use cases of uSPBM, including its
deployment over heterogeneous platforms and introducing subsets of the framework’s
entities that significantly enhance its capabilities and applicability to the various domains
examined.

5.1 BODY SENSOR NETWORKS
Sensor nodes and actuators are becoming ubiquitous and research efforts focus on addressing
the various issues stemming from resources constraints and other intrinsic characteristics
typically associated with such devices and their applications. In the case of wearable nodes,
and especially in the context of e-Health applications, the security issues are exacerbated by
the direct interaction with the human body and the associated safety and privacy concerns.

The SOA approach of uSPBM constitutes an attractive solution for many types of networks,
including those that consist of nodes with limited capabilities. Such a network is a body sensor
network (BSN [137]) which comprises of a number of low-power implanted, wearable (on-
body) or in close distance wireless sensors and actuators. The environmental and physiological
sensors of a BSN provide vital information to medical staff, who can remotely monitor and
possibly control user’s medical treatment. For such an application there are many security
requirements that need to be satisfied [138], including secure transmission of sensitive
medical data to (remote) medical staff, unaltered instructions that reach patient’s actuators,
robust entity authentication and access control mechanisms.

The architecture presented in this section is a variation of the uSPBM mechanisms, simplified
and adapted to the environment of a BSN, so that it can run on resource-constrained devices,
thus facilitating secure and authorized access to BSN resources and services. The proposed
scheme specifically considers the very limited resources of so-called nano nodes that are
anticipated to be used in such an environment. A proof-of-concept implementation is
developed and a preliminary performance evaluation is presented.

The proposed scenario facilitates the separate and scalable deployment of nodes based on
the patient’s needs. For example, a patient might initially have only a temperature sensor
deployed and controlled, for instance, by his/her mobile phone, while subsequently a blood
pressure sensor is also added where access to its resources and data is controlled by a
proprietary device. Both these devices need to be accessible by authorized third parties, e.g.
doctors, hospitals, national health system representatives, and therefore should adopt a
unified set of policy rules, defined by the aforementioned stakeholders, including the patient,
and maintained on a third system.

5.1.1 MOTIVATION
In a typical BSN used for e-Health purposes, environmental and physiological sensors are
deployed for gathering all the required information depending on medical staff’s prescribed
needs, such as blood pressure and body and room temperature. On top of that, actuators

80

controlled by authorized medical staff can also be deployed, such as an automatic insulin
injection device used for remote treatment. Such sensitive actions, i.e. reading and issuing
commands, need strict access control decisions before being authorized so that user’s privacy
and even safety are not jeopardized by unauthorized actions.

Consider the scenario where the patient has multiple let’s say physiological sensors and
actuators deployed, to monitor patient’s condition and react based on patient’s reported
medical condition. One of the critical security requirements in this scenario is providing
authorized-only access to these resources. Only medical staff is supposed to read this
information and only authorized doctors shall be able to modify actuator’s (e.g. insulin pump)
status.

In this model uSPBM fits perfectly as it provides the necessary fine-grained access control to
resources. A doctor might deploy a new sensor on the patient’s network without worrying
about the current status of this network. The newly deployed sensor, let’s say temperature,
registers with patient’s controlling device, e.g. mobile phone, and an access policy is defined
for this sensor. The doctor or personnel in an emergency room, directly query the sensor for
its readings, instead of having to find out which patient’s device handles these requests and
authorizes them (as it would be in a centralized scenario where the patient’s mobile would
handle all these requests on all sensors’ behalf). The sensor, i.e. the Policy Enforcement Point
in access control language, queries the Policy Decision Point, whether access should be
granted or not. The PDP authenticates the requestor and contacts the Policy Information Point
to get all applicable policies which it uses to decide upon granting or denying access to the
requested resource.

The types of nodes, in terms of computing capabilities, which can be found in a BSN include
the following:

• Power Devices: nodes with medium to high performance in terms of computing
power and no particular resources restrictions. Although these nodes are typically
used as sink nodes and/or gateways to other networks they can also have their own
on-board sensors for collecting additional information. Example of a power node is a
mobile phone, a laptop or a dedicated sink node.

• Sensor/Nano Devices: small devices with limited capabilities and resources, such as
computational power, memory, storage space and energy, which in the case of nano
nodes might be very restricted. These are typically the on-body or implanted nodes
found in a BSN.

Access control is very important for protecting the sensitive resources of a BSN, which can
affect human lives. Among the requirements that have to be satisfied are the following [138],
[139]:

• Data confidentiality: Access to medical data should only be allowed to authorized
parties, such as medical staff. Note that unauthorized disclosure of medical data while
in transit is also a protection requirement.

• Message authentication: Commands issued to actuators must be authenticated to
avoid unauthorized execution.

81

• Availability: Data must remain available to authorized entities, such as medical staff,
while access to them must not be denied due to wrong decisions.

A central device may have the responsibility to collect data, manipulate, and add some logic
during their processing can control the deployed sensors. Such a device can be a mobile phone
or a dedicated sink node. If a value exceeds a threshold an alert can be sent to the user or the
medical staff. In this case the central device can do all access control decisions on the nodes’
behalf. The information is routed through a user’s gateway, such as a mobile phone or a laptop
and reaches the authorized medical staff.

In another scenario, access to these medical data is offered directly by the nodes as a service,
assuming that the corresponding nodes have the capacity to accommodate such functionality.
In such a scenario, the service requester, which can typically be any entity that can reach this
node, interacts with the service provider, i.e. the node, to get the required medical data. Upon
the request reaching user’s environment, through a user’s gateway, a question arises on
whether access to the resource should be granted or not. Although this scenario provides
more flexibility in terms of functionality, the deployed sensors are integrated on a low-power,
resource-constrained devices which do not have the computational power to handle such
requests. Moreover, these sensing devices are often expendable in e-Health applications,
prohibiting the permanent deployment of complex (and thus expensive) platforms. Therefore,
a solution has to be provided regarding the way that the node controls access to its resources.
The framework provided in this thesis addresses this issue.

5.1.2 PROPOSED ARCHITECTURE
The framework’s adaptation in this use case is based on the standardised XACML architecture
[22], [84] to provide a cross-platform solution that can typically be deployed in various types
of embedded systems while satisfying interoperability, an important requirement for next-
generation pervasive computing devices. Thus, the main entities include:

• Policy Enforcement Point (PEP): It performs access control, by making decision
requests and enforcing authorization decisions.

• Policy Administration Point (PAP): Creates and manages policies or policy sets.
• Policy Decision Point (PDP): It evaluates requests against applicable policies and

renders an authorization decision.
• Policy Information Point (PIP): It acts as a source of attribute values.
• Context Handler: It orchestrates the communications among the stakeholders,

converts, if necessary, messages between their native forms and the XACML
canonical form, and collects all necessary information for the PDP.

• Environment: Provides additional information independent of a particular
subject, resource or action. Refers to features related to the environment and can
affect a PDP’s decision, e.g. accident scene or hospital emergencies.

In the proposed architecture the sensor nodes and actuators, which have direct access to
resources, expose their functional elements to the PEP. These nodes are micro/nano nodes
and are not expected to have the capacity to accommodate additional functionality. The
context handler and the PDP are likely to run on power nodes together with PEP functionality,

82

only if the node has resources to share through corresponding services. Note that there can
be more than one power nodes in the user’s network, e.g. a mobile phone, tablet and/or a
dedicated device deployed with specific sensors. In this case only one of them will act as a
PDP. The functional model of the proposed framework is depicted in Figure 36.

FIGURE 36. FUNCTIONAL MODEL OF POLICY-BASED ACCESS CONTROL FOR HEALTHCARE ENVIRONMENTS

All the above XACML components can run on a single system or, in a more distributed
approach, on different systems based on their distinctive capabilities. The latter is the model
that fits the scenario described above, i.e. that of a BSN comprising of a number of nodes.

5.1.2.1 TYPICAL APPLICATION
As an example, consider the case of a patient who visits a doctor. A number of micro/nano
nodes are present on or near the patient’s body and each of these nodes hosts one or more
services exposing the various features of their sensors and actuators. As soon as the available
devices and their corresponding services (e.g. temperature or heart-rate service) are
discovered, the doctor can request access to the node that is of particular interest, e.g. in
order to extract the latest values from the temperature sensor attached to it. The doctor’s
request is intercepted by the node’s PEP module which then forwards the request to the PDP,
the latter running on a user’s trusted device. The PDP has to consider all applicable policies
from the PAP, enriched by any relevant information residing on the PIP, while additional ones
might be added in real time regarding the specific access. For instance, a question can be
displayed on the user’s mobile phone regarding this access request giving the user the option
to explicitly grant or deny access. Once all the required information has been collected, the
PDP issues a decision which is sent back to the node’s PEP. Based on that decision the PEP
may or may not allow the doctor to access said node’s data of interest. It should be noted
that, on top of the decision taken on the request, the PDP might set one or more obligations
for the PEP. An obligation is additional restrictions that should be taken into account when
enforcing a decision, like the requirement to log any permitted access or to inform for
unauthorized attempts. Moreover, prior to this communication the PAP should have set all
applicable policies and policy sets for all targets in the network. These policies are made
available to PDP for subsequent requests evaluations.

83

5.1.2.2 POLICY CONSIDERATIONS
While in most situations full control on the policy administration should be granted to the
patient there are many situations where this should be overridden, such as immediately after
an accident, or if the patients suffers from a mental illness, where additional entities must
gain access to the medical data. Therefore, among the healthcare access control requirements
is the need for both medical staff and patients to be able to define their own policy
requirements and restrictions [138] based on the need for treatment and their right to have
full control over their health data and records respectively. On top of that, additional entities
may request access to these resources, such as an insurance company which might want to
verify the patient’s medical condition upon request for expenses. All these stakeholders have
the right and need to define their own rules and policies regarding access to medical data. In
this case a Rule and/or Policy – Combining Algorithm has to be used to come to a conclusion
regarding granting or denying access to the requester. The involvement of multiple
stakeholders who want to define their own policies raises the need for maintaining multiple
repositories (note that these are not necessarily under user’s administration).

The delegation mechanism defined in XACML 3.0 can be a useful tool to a BSN. Delegation
allows the system owner or administrator to delegate some rights regarding the
administration of policies, such as to create additional policies. To support this functionality,
policies that will be used to control policies also have to be set by the system owner and/or
administrator which in our case might be the patient herself.

5.1.3 IMPLEMENTATION APPROACH
For the proposed scheme to be operational each device’s functional elements must be
represented by an appropriate DPWS entity and its corresponding operations. Assuming a
simple temperature sensor, for instance, a node is programmed as a DPWS device which hosts
a temperature service featuring various operations:

− A “GetTemperature” operation which, when invoked, will return the patient’s
current temperature.

− A more complex “TemperatureEvent” operation which, by exploiting the WS-
Eventing mechanism [95], allows a client device (e.g. doctor’s device) to subscribe to the
service and get temperature updates at set intervals as well as event notification
messages when the temperature exceeds a certain threshold.

− An additional “SetTemperatureThreshold” operation which, when invoked,
allows setting/updating the abovementioned warning threshold.

Similarly, the XACML-related elements of each node must be represented as DPWS devices,
clients or peers (i.e. devices that function both as clients and servers). The approach adopted
includes a DPWS client on the temperature sensor node described above. This client is then
used to discover and use the PDP service implemented on a control/gateway node. The
process followed when a user tries to access a sensor’s functional elements (e.g. the
temperature reading) is depicted in Figure 37.

84

FIGURE 37. USPBM BSN IMPLEMENTATION USING DPWS

In more detail, assuming a doctor tries to access the temperature sensor’s features (Step 1),
the request is automatically forwarded to the device’s PEP (Step 2). The PEP can then invoke
the “AccessRequest” operation on the control node’s PDP service (Step3), sending a
properly formulated access request to the PDP. When the PDP is done evaluating (Step 4) the
request based on subject’s attributes and policy rules, it can, in turn, trigger its
“PDPResponseEvent” (to which the sensor’s PEP client subscribes during initialization),
returning the authorization decision. This decision is then conveyed to the functional
operation of the device, thus granting or denying access to the “GetTemperature”
operation the doctor tried to invoke.

The PDP to PAP and PIP entities’ functionality can, equivalently, be developed as DPWS
devices and clients, exploiting the integrated discovery and subscription mechanisms, thus
bypassing the need to use other protocols (e.g. LDAP).

5.1.4 PROOF OF CONCEPT
A proof of concept implementation of the USPBM scheme presented in this work was
developed using Sun’s XACML as a basis for the policy and access control mechanisms. The
WS4D-JMEDS API was used for the creation of the necessary DPWS devices. The application
developed for the BSN included the functional operations of the BSN as well as the Policy
Enforcement Point that had to be deployed on each node. The implementation consists of the
following modules:

− An application that runs on the sensors and which implements the access to the functional
elements of the sensor (e.g. temperature reading) as well as the communication with the
sink node. A security mechanism was also developed, based on the AES algorithm in CBC
mode [140] and pre-shared secret keys, to guarantee that only the legitimate sink
node/bridge can access the sensors. When connected to the bridge, sensors ignore all
other connection requests. Moreover the security mechanism protects the messages
from eavesdropping on the sensors’-sink node communications.

85

− A sink node application that bridges the BSN (Figure 38), which in this case operates over
802.15.4, to the standard network infrastructure. This application has to be deployed on
a device equipped with dual 802.15.4 & Ethernet/wireless Ethernet functionality.

− The DPWS Provider module (Figure 39) which discovers available sensors (via the sink
node), probes said sensors to discover their functionality and then maps this functionality
to a corresponding DPWS device. As a result of this procedure, a DPWS device is created
for each of the discovered sensors. This device also includes the necessary operations to
realize the PEP functionality, as well as the conversion of all low level messages
transmitted to and from the sensors to a DPWS compatible form. This procedure is
transparent from the perspective of the client (BSN user). Therefore, a client can use
DPWS discovery (Figure 40) to identify available sensors and their operations (functional
elements), invoke the desired operation or the chosen sensor and, if allowed by the PEP
(which will first check if the request is authorized), get the result of said invocation. The
communication of the PEP(s) deployed by the invoker to the infrastructure entity which
authorizes the requests (i.e. the PDP) must also be protected, as malicious tampering of
the policy messages exchanged by the USPBM entities can compromise the access control
efforts. To this end, a security mechanism based on the AES/CCM [134] authenticated
encryption algorithm was implemented, using 128bit keys. Deployment of this mechanism
guarantees that the USPBM-related messages exchanged between PEP and PDP (when
the former seeks the authorization status of a specific client’s request), are fully protected
in terms of confidentiality, integrity and authenticity.

FIGURE 38. THE BSN BRIDGE

86

FIGURE 39. THE BSN DPWS PROVIDER

87

FIGURE 40. DISCOVERING THE SENSORS AND THEIR HOSTED SERVICES ON THE NETWORK

5.1.4.1 PERFORMANCE EVALUATION
The performance of the proof of concept implementation was evaluated on a test-bed
featuring a SunSPOT mote [108] running the sensing application. Another SunSPOT mote was
connected to a personal computer acting as a sink node. The DPWS Provider application was
deployed on the same computer system. In a real-world application the bridge/DPWS Provider
functionality could be deployed on any smart device with dual 802.15.4 & Ethernet/wireless
Ethernet connectivity, even a small embedded or wearable device, as depicted in Figure 41.
The PDP/PIP/PAP application was running on a separate computer system which also stored
the policy files. This system also featured a client application developed to query the sensors
for benchmarking purposes. SunSPOTs communicate via the 802.15.4 radio, while the
personal computers communicated via wired Ethernet.

88

FIGURE 41. PROPOSED DEPLOYMENT OF THE PROOF-OF-CONCEPT USPBM BSN APPLICATION

A total of 50 consecutive requests were issued from the client application to the sensor. In
order to evaluate the delay imposed by the proposed scheme, the sensor featured both a PEP-
protected operation (GetTemperature) that the test client was allowed to invoke by the
current policy set and an unprotected operation (GetTemperatureUnprotected) which
could be invoked immediately (without going through the policy enforcement point for
authorization). Aiming to also weigh the impact of the security mechanisms, the assessment
included scenarios with and without encryption on both the SunSPOT-Provider link (plaintext
vs. AES-CBC) and the PEP-to-PDP link (plaintext vs. AES/CCM).

The average response time for 50 requests, including the overhead when considering a totally
unprotected (access control- and security-wise) operation as baseline, can be seen in Figure
42.

89

FIGURE 42. AVERAGE RESPONSE TIME (IN MS) FOR 50 REQUESTS. COLUMNS IN BLUE DEPICT THE SCENARIO
WHERE THERE IS NO SECURITY BETWEEN THE SENSOR AND THE PROVIDER, WHILE COLUMNS IN GREEN

CORRESPOND TO THE SCENARIOS WHERE AES-CBC ENCRYPTION WAS USED TO PROTECT SAID LINK

It should be noted that the bulk of the delay can be attributed to the communication between
the SunSPOT and the Provider, as was evident from timing tests run concurrently on the client
side and the Provider side. E.g. the results of such a test, run with AES-CBC protection on the
SunSPOT messages and no protection on the PEP-PDP communication, indicated that out of
the 527,3ms client-side delay (on average, for 50 requests) when invoking an unprotected (i.e.
no uSPBM involved) operation, 449,45ms was the average time that the Provider had to wait
until it got a reply from the SunSPOT. Therefore, the overhead of the DPWS communication
between client and the Provider (i.e. the DPWS device that “mirrors” the sensor’s
functionality) was 77,85ms.

Another interesting fact is that when changing the policy so that the invocation of the
protected operation by our test client is denied, the response time is negligible, as the request
is rejected by the PEP and is never forwarded to the sensor. In a test run of 50 such
unauthorized requests, the average response time of the DPWS device was just 8,39ms.

5.1.5 SUMMARY
In this section we proposed an adaptation to uSPBM framework for controlling access in BSNs
comprising of nodes with limited resources. In the proposed scheme emphasis was given on
the limited resources of some nodes found in such networks. This assumption and the relevant
provisions allow for a more flexible scheme and one which can be deployed in heterogeneous
systems, assisting in its integration with the Internet of Things. The results of these efforts
included a proof-of-concept implementation, which is presented in this work along with an
initial performance assessment.

5.2 AUTHENTICATED ACCESS TO LLN-CONNECTED RESOURCES
This section presents the uSPBM extension that allows authorized entities to access the
services provided by resource-limited nodes. The scheme provides flexibility in terms of the
authentication mechanism used, that is to say that the service requester can be authenticated

90

using e.g. username/password, certificate, or other authentication methods. Among the main
concerns of the proposed architecture are the nodes’ protection from unjustifiable use of their
resources and the need to be able to control access through a well-established set of policy
rules that can change and adapt to new environmental parameters.

The work builds upon the XACML model for policy based access control infrastructures,
proposing certain modifications to satisfy requirements stemming from the limited resources
of nodes, and the adoption of lightweight SOA mechanisms, through the use of the DPWS, for
entity interactions. Although mainly a framework, the main components of the proposed
architecture have been implemented and results are provided here as a proof of concept.

The proposed approach allows leveraging work already carried out on XACML policy
definitions, but also Web Services. With regard to the former, the “Cross-Enterprise Security
and Privacy Authorization Profile of XACML v2.0 for Healthcare” [141] constitutes important
background work, compatible and in-line with the scheme proposed in this thesis. This OASIS
profile specifies the use of XACML to promote interoperability within the healthcare
community by providing common semantics and vocabularies for interoperable policy
request/response, policy lifecycle, and policy enforcement.

The benefits of adopting a SOA-based approach come in the form of increased usability and
interoperability. While typical XACML deployments require the setup of complex
infrastructures to enable entities’ interaction and policy retrieval (e.g. via the Lightweight
Directory Access Protocol, LDAP [28]), the proposed framework leverages the benefits of
DPWS. This allows the deployment of devices aligned with the Web Services technologies,
thus facilitating interoperability among services provided by resource-constrained devices,
facilitating seamless discovery and interactions among entities, and allowing the deployment
of the framework’s entities to any platform, anywhere on the hospital or home network, with
minimal involvement on behalf of the user.

5.2.1 MOTIVATION
Before moving into the presentation of the proposed architecture, it would be good to
demonstrate through specific scenarios, the incentives behind this work that have also
formulated the requirements defined below. The proposed scheme addresses the main need
to be able to remotely access data collected by sensors and control actuators deployed in a
LLN. The architecture utilizes service oriented technology to be able to provide services to
remote authorized parties where access restrictions are imposed through policy rules. This
typically means that access is not necessarily restricted to entities of a closed system. Such an
architecture fits perfectly to a Body Sensor Network (BSN) deployment [137], [142], which
actually inspired this work, and which we use here to demonstrate the architecture’s
applicability and the way that policy based access control SOAs are envisaged.

Let’s assume that a patient has multiple medical sensors and/or actuators deployed to
monitor and/or control his/her medical condition. Sensors and actuators typically reside on
nodes with very limited processing power and capabilities, namely nano nodes. These can
communicate and register with a mobile device that the user has in possession, such as a
mobile phone or tablet. An application running on this mobile device actively monitors

91

sensor’s readings and, if necessary or appropriately instructed, forwards these data to
authorized medical staff. Alternatively, the data could be given to medical staff not as a result
of an alert, but as a response to a request issued by this staff.

Now consider the case where in the context of telemedicine or in case of an accident as well
as for many other medical reasons, other people not previously registered with the user’s
application, need to gain access to those readings and actuators. For example, a patient is
involved in an accident, which is reported to the emergency services, and some readings have
to be taken to validate his medical conditions while emergency services are on their way to
the accident scene.

In this case, the requester, i.e. doctor, emergency services staff, will request remote access to
the readings of these sensors or even issue commands to the actuators. Without loss of
generality, we can claim that in the eHealth environment, as with any other environments,
services might need to be accessed occasionally, depending on the patient’s health condition,
and on a need to know basis. Therefore, several questions arise that have to be addressed in
the proposed architecture, mostly related to patient’s privacy and life protection.

• Who is eligible to access this information?
• How do we authenticate a user that has not been registered with the specific service

in the past?
• How is the legitimacy of his/her request evaluated?
• Who and how is going to decide about this requester’s privileges?

In our scenario we consider that the medical staff can look in a central repository for the types
of services provided by the patient and can request access to them. This is checked against
applicable policies that the user in conjunction with medical staff and/or national insurance
and/or insurance company and/or applicable law have defined. If access is granted the
request is forwarded to the patient’s device and the requested information is disclosed or
access to the actuator is permitted. As a result, the requester will be able to have sensor
readings, e.g. patient’s heart rate, and/or act remotely, e.g. inject an altered dose of insulin.

Access control is very important for protecting the sensitive resources of a BSN, which can
affect human lives. Among the requirements that have to be satisfied are the following [138],
[139]:

• Data confidentiality: Access to medical data should only be allowed for authorized
parties, such as medical staff. Note that unauthorized disclosure of medical data while
in transit is also a protection requirement.

• Message authentication: Commands issued to actuators must be authenticated to
avoid unauthorized execution.

• Availability: Data must remain available to authorized entities, such as medical staff,
while access to them must not be denied due to wrong decisions.

IP based networking in LLNs changes the way that participating nodes can be accessed and
their respective services can be consumed. For instance, there is no need for a dedicated
application server that will intervene between a node and a remote party that wants to access

92

the node’s resources [143]. However, one of the problems that these nodes face in such a
deployment, is that they have limited resources which do not suffice for the deployment of
strong protection mechanisms. Without those mechanisms however, nodes are exposed to
direct access from the Internet without having the capacity to handle unlimited requests.
Therefore, several issues arise regarding the protection of nodes resources, which have to be
addressed. The main aim is to protect the limited resources of a node that implements a
service oriented architecture, to provide access to data and mechanisms that the node has
under control.

Within this context, the proposed architecture is designed to satisfy the following
requirements:

• Provide services using of Service Oriented Architecture technologies;
• Provide fine-grained access control to nodes’ resources;
• Authenticate remote entities wishing to access protected nodes resources;
• Control access to nodes’ resources through well-defined policies;
• Protect sensitive nodes from unauthorized access and unnecessary consumption

of valuable resources including network and energy;
• Secure the channel between the participating nodes to provide message

confidentiality, integrity and authentication;
• Comply with existing standards to satisfy interoperability among the participating

entities, such as between the identity provider chosen by the requester and the
service orchestrator, regarding the exchange of authentication messages,
assertions or user metadata and attributes.

In the following section we describe the proposed architecture that satisfies the above.

5.2.2 PROPOSED ARCHITECTURE
The architecture proposed in this work is an enhanced policy based access control scheme
that seeks to provide flexibility regarding the chosen authentication mechanism while
satisfying the aforementioned requirements, typically imposed by nodes’ resource limitations.
For this purpose, certain modifications to the OASIS standardized policy-based access control
scheme are proposed to accommodate these needs.

The scheme utilizes and seeks compliance with the following technologies:

• An XACML-based architecture consisting of the main components already
mentioned (i.e. PEP, PDP, PAP & PIP).

• SAML 2.0 specification to protect, transport, and request XACML schema
instances and other information needed by an XACML implementation [109].
Note that although SAML can be used to convey authorization decision
statements, this functionality in SAML is intentionally restricted compared to the
more flexible XACML solution, hence the adoption of XACML and the use of SAML
for encapsulating XACML messages.

In the XACML data-flow model defined in the OASIS standard the PEP, via the context handler,
is considered as the device that orchestrates the exchange of messages among the requester,

93

the PDP, the Attribute Authority and the Attribute Repository. According to the XACML
specifications the PEP is considered as “part of a remote-access gateway, part of a Web server
or part of an email user-agent, etc”. Therefore all initial requests, valid or not, are sent to the
PEP which will act as a routing device between the requester and the back-end key entities
that examine the requests and make decision based on policy rules and other parameters,
such as the requester’s and/or resource’s attributes.

While this model is appropriate for typical application gateways, it cannot be considered as
such for resource-constrained nodes that only have the capacity to accept requests from a
limited number of clients. Beyond this threshold, valuable node resource consumption is not
acceptable as it leads to battery drainage and service unavailability. In this context, resource-
constrained devices have to participate in the decision making process only if absolutely
necessary and only to authorized entities to save valuable resources. As such, they cannot
assume the role of a PEP as this is defined in the XACML standard.

Moreover, the flow model currently defined by XACML, considers that the PIP has all the
required attributes for the requester, and that the PDP gets all the information from the PIP,
which might be queried twice for the required attributes, once from the PEP and once from
the PDP. Use of specific PIP implies that services will only be provided to entities subscribed
to the specific scheme, thus narrowing down flexibility. This is in contrast to a more flexible
approach where services are offered to a broader group of users, subject to policy restrictions.

The proposed architecture is depicted in Figure 43. In this proposal we assume that nodes
bearing sensor and actuators, expose their functionality as web services. This can either be
done through the device that the node is attached to, e.g. a mobile device, or directly by the
node, assuming that it is powerful enough to accommodate such functionality. All these nodes
are part of a dispersed environment where there is not necessarily a single gateway or web
server to assume the role of PEP as this is defined in the XACML standard. Besides that, the
service owner might want to register these services with multiple servers. As a result, the PEP
functionality cannot be assigned to a gateway but it should be on the device that exposes this
functionality, e.g. the mobile device, a wearable node, etc. For a given PEP, one of these web
servers is assumed to play the role of the orchestrator as described below.

94

FIGURE 43. AUTHENTICATED ACCESS CONTROL.

The core component of the proposed scheme is the Service Orchestrator (SO) which acts as a
proxy for certain operations, such as relaying queries and messages exchanged among
participating entities, yet not for handling the information the PEP exchanges with the
requester.

Initially, the node, which assumes the role of a PEP, registers its services, defines the
connection point to be the SO and sets the policy rules for its resources. This is accomplished
once during the set-up phase. Following that, the data flow of the proposed architecture
includes the following steps:

• A requester, who wants to access the service, formulates an appropriate request
based on the advertised service rules, and sends it to the SO (step 1a). Note that
this is in contrast to the XACML specifications which opted for sending the request
directly to the PEP, introducing significant overhead that a limited-resources
device cannot handle.

• The SO forwards the request to the PDP (step 1b) which, based on the requested
target, fetches all applicable policies from the PAP (step 2) and informs the SO
about the needed user attributes (step 3). As a result, the SO presents a list of
approved Identity Providers (IdP) for the requester to authenticate (step 4).

• The requester chooses the appropriate IdP and the SO issues a (signed)
authentication request (<AuthnRequest>) together with an attribute query
(<AttributeQuery>) to the chosen IdP [109]. Upon successful authentication
(step 5) the requester consents for the disclosure of certain attributes that the SO
requires. Note that the IdP might be an entity that operates within the same
environment as the SO. The actual authentication method used by the IdP is
outside the scope of this work.

• The IdP formulates a proper assertion for the necessary attributes and sends it to
the SO via the Requester (step 6a). As a result, the SO forwards the received
assertion to the PDP (Step 6b [144]).

95

• The forwarded assertion allows the PDP to establish a security context by
combining the supplied attributes with the applicable policy rules which the PDP
obtained from the PAP (step 2). Note that additional policy rules, might be
obtained at this point (step 7), based on the requester’s attributes. The typical
XACML decision making process can take place during this step.

• The access decision is sent to the SO (step 8). If the decision is to grant access, a
signed or MAC-protected ticket is forwarded to the PEP together with details
about the request (step 9). This is the first time that the node is contacted, and is
only performed by an authorized party, hence not exposed to the outside world.
If access is denied the decision is simply forwarded to the Requester. The Service
Provider might also be informed on that based on appropriate pre-configurations.

• Now the PEP can respond to the service request through the SO (step 10). The SO
can in turn send to the requester the Access Decision and the response to the
Access Request. The Access Decision can be used as a token for re-accessing the
same service without undergoing the authentication process.

The framework can trivially be expanded to cater for the joint operation of two or more access
control infrastructures (i.e. PDPs and corresponding PIPs/PAPs). This can be used as a means
to consolidate the requirements of different stakeholders and their active policy sets. In such
a case, the SO can query all the different PDPs and provide or deny access based on pre-
defined simple rules (e.g. only in cases where all PDPs explicitly allow such access). So, for
example, someone’s request to access the patient’s blood sugar levels will only be forwarded
to the pertinent medical device if both the patient and the attending doctor have authorized
the specific individual to perform such an action.

5.2.3 IMPLEMENTATION APPROACH
Sun’s XACML [85] was used for this implementation as well. All of the framework’s entities
were implemented and their interfaces exposed using DPWS. This facilitates the discovery and
description of the devices involved, also offering control and eventing mechanisms which
assist in the communication of the necessary information among the entities. The DPWS API
of choice is again the WS4D-JMEDS (Java-based) stack [145], as it is the most advanced and
active work of the WS4D initiative [146], supporting almost all of the existing DPWS features
and providing portability to a wide range of platforms. The approach adopted to protect the
messaging of the proof of concept implementation is the use of WS-Security [124].

The exact implementation of the framework’s entities and their communication interfaces
depicted in Figure 44 are detailed below.

96

FIGURE 44. DPWS-BASED IMPLEMENTATION OF THE AUTHENTICATION SCHEME.

5.2.3.1 SERVICE ORCHESTRATOR TO POLICY DECISION POINT
The SO is implemented as a DPWS peer (i.e. both a client and a server). Other than the
necessary mechanisms needed to interface with the approved identity providers (which will
vary depending on the specific scenario/deployment examined), it also features an
“Attribute_Requirements” operation. Similarly, the PDP has an
“Access_Request_Operation”. The latter is invoked by the SO as soon as an access
request arrives from a service consumer, relaying the request for evaluation. As soon as the
XACML decision-making process is completed, the PDP replies to the invocation with its access
decision. As detailed in the information flow above, prior to providing a decision, it may need
to invoke the “Attribute_Requirements” operation on the SO, in order to inform it of
the needed user attributes, getting the proper assertion as an answer.

5.2.3.2 SERVICE ORCHESTRATOR TO POLICY ENFORCEMENT POINT
The Policy Enforcement Point must reside on every device with resources that must be
protected from unauthorized access. Other than the functional elements of the devices which
the framework intends to protect (e.g. access to its sensors), one extra operation must be
present on each DPWS device, namely the “PEP_Operation”. The SO, acting as a client,
invokes this operation providing the service consumer’s access request along with the decision
(pre-issued by the PDP) as input. If the decision accompanying the invocation is positive, the
PEP replies to the SO with the resource (e.g. temperature reading) that the service consumer
originally tried to access. This information is then relayed to the service consumer/requester.
The above DPWS-based communication mechanisms are depicted Figure 44.

5.2.4 PERFORMANCE EVALUATION
5.2.4.1 TEST-BED SETUP
The platform-agnostic nature of SOAs enables the proposed framework to be deployed, by
design, on a variety of platforms and operating systems. However, in order to realistically
assess the performance of the proposed framework, the developed entities had to be
deployed on devices expected to be present in healthcare deployments. Therefore, the
proposed framework was implemented and its performance was evaluated on a
heterogeneous environment, featuring relatively resource-constrained embedded platforms
as well as desktop computers.

97

The PEP-equipped target device (i.e. the device providing the actual service to be accessed)
was on a Beaglebone [107], a low-cost credit-card-sized embedded device that runs a compact
Linux-based operating system. It uses an ARM Cortex-A8 single core CPU running at 720MHz
(throttled at 500MHz during testing) with 256MB DDR2 RAM. The test-bed for the Service
Orchestrator was a similar but slightly more powerful and versatile Beagleboard-xM
embedded platform [106], featuring an 1GHz ARM Cortex-A8 processor (throttled to run at
600MHz during testing) and 512MB DDR2 RAM, also running a minimal Linux-based operating
system. The access control infrastructure entities, i.e. the PDP and PIP/PAP, were deployed on
a desktop system (Core i5 CPU at 3.3GHz, 8GB DDR3 RAM). An identical desktop system was
used to run the service consumer, a client application programmed to automatically invoke
the resources exposed by the SO and record response times, for benchmarking purposes.

Tests also included a second scenario where an extra PDP and PIP/PAP were deployed on a
more resource-constrained platform, namely a Beaglebone embedded device, like the one
used for the target device (i.e. the PEP). The latter was used to investigate the performance
impact when the SO has to query two different PDPs, each with its own policy set, to emulate
the use case where e.g. a patient and a hospital each have their own access control
infrastructure and policy requirements. In this scenario, the SO had to evaluate both
responses and only allow the user to access the resources if both PDPs allowed such access.

The test-bed setup described above is depicted in Figure 45. Note that this setup is by no
means the only option for the proposed framework’s deployment. For instance, a Beaglebone
was chosen for the SO to simply demonstrate the ability of the SO to be deployed even in a
constrained environment of an embedded system. In a large-scale deployment one would
expect the functionality of the SO to be deployed at an application server to ensure the system
is able to serve a sufficient number of users.

FIGURE 45. THE TEST-BED SETUP, FEATURING EMBEDDED DEVICES AND DESKTOP PCS. ORANGE LINES

INDICATE COMMUNICATION WHERE WS-SECURITY IS OPTIONALLY ENABLED. ALSO DEPICTS THE EXTRA PDP &
PIP/PAP INTRODUCED IN THE SECOND TEST SCENARIO.

98

Aiming to also assess the performance impact in situations where the messages exchanged
would have to be secured, an alternative proof-of-concept implementation was developed
adopting the security mechanisms specified in WS-Security. These mechanisms safeguard the
integrity and confidentiality of the policy messaging exchanged by the framework’s entities.

The application profiling (i.e. CPU and memory utilization) was focused on the Service
Orchestrator, which is the main entity of the proposed approach, and on devices which are
expected to have resource limitations, i.e. the PEP-equipped target device. Moreover, the
impact on user experience was also assessed, by recording client-side response times in all
usage scenarios.

The steps related to the Identity Provider were omitted during testing, as these will vary
depending on the Identity Provider that the user will choose and are deployment-specific, thus
out of the scope of the framework presented in this work.

5.2.4.2 RESULTS
A total of 100 consecutive requests were issued from the service consumer application to the
SO residing on the Beagleboard-xM. The response time recorded by the test client trying to
access the target device’s resources appear in Figure 46. The WS-Security mechanisms impose
a significant overhead to the response times, which is expected given the use of asymmetric
cryptographic mechanisms. In contrast, the response times for the second scenario indicate
that the introduction of a second instance of the PDP and PIP/PAP is not prohibitive, while
allowing to consolidate the policy requirements of different stakeholders.

FIGURE 46. CLIENT-SIDE RESPONSE TIME FOR 100 REQUESTS TO THE SERVICE ORCHESTRATOR.

99

FIGURE 47. SERVICE ORCHESTRATOR’S AVERAGE CPU LOAD (%).

Profiling of the SO revealed a lightweight application, even under the load of consequent
requests, or in the presence of two PDP and PIP/PAP instances. The average CPU load and
memory consumption appear in Figure 47 and Figure 48 respectively. As the occupied memory
remains constant irrespectively of the presence of one or two PDPs, the numbers for the
second scenario are omitted. The use of WSS imposes a relatively small memory overhead,
while the average CPU load drops, as the device has to wait more between requests, due to
the network and processing overhead on other framework entities.

The same behaviour with regard to CPU load was also recorded on the target device (i.e. the
device featuring the PEP), as is depicted in Figure 49. As in the case of the SO, introducing the
WSS mechanisms increases the memory footprint (appearing along with SO values in Figure
48), but the latter, along with CPU load, are not significantly affected by the presence of
multiple PDPs and the corresponding PIP/PAPs, thus the numbers of the second scenario are
omitted from the corresponding figures.

100

FIGURE 48. SERVICE ORCHESTRATOR'S AND TARGET DEVICE’S MEMORY UTILIZATION (IN BYTES) FOR SCENARIO

1.

FIGURE 49. TARGET DEVICE'S CPU LOAD (%) FOR SCENARIO 1.

5.2.5 SECURITY CONSIDERATIONS
One of the main concerns in accessing services and issuing commands, is the protection of the
data being exchanged among the participating entities. In the proposed scheme the service
provider has a pre-established relationship with the SO, PDP and PAP. Note that all these three
entities are only functional components and therefore the exact needs in secure channel
establishment depend on the actual deployment choice and cannot be specified. In a

101

simplified approach, the SO, PDP and PAP can be part of the same entity and therefore a
secure channel establishment using pre-shared keys is a viable and efficient option.

Regarding the underlying message security mechanisms, there are a number of proposed or
standardized schemes that handle the protection of messages at various layers of the network
stack. The WS-Security mechanisms adopted for the proof of concept implementation is
typically used alongside DPWS, but its public-key security primitives can impose a significant
performance overhead, as is evident from the performance evaluation presented in the
previous section. Therefore, considering the resource-constrained nature of some devices,
and the need to minimize performance impact in general, alternative cryptographic primitives
can also be investigated for production environments.

It is expected that some of the framework’s entities will be deployed on normal, relatively
powerful nodes (personal computers or even servers). Thus, e.g. the link between the
Requester and the SO could alternatively be protected using common methods, like TLS, the
same way that the communication channel between the Requester and the IdP is anticipated
to be protected, although the latter is outside the scope of this work. The cost of using TLS,
however, between the Requester and the SO is that the secure channel breaks at the SO and
the SO has to re-encrypt the communication using the security parameters set for the link
between the SO and the service provider.

The actual authentication scenario could be further elaborated during deployment to match
system owner’s specific requirements and trust relationships with identity providers. Several
options in such a deployment exist as they have been demonstrated in [147].

The proposed scheme provides the Service Provider the flexibility to change the
orchestrator(s) it uses based on its needs. This also applies to applicable policy rules which the
service provider can modify to match his/her requirements. As an example, consider the
situation where the owner of the mobile device being used to offer these services, changes
mobile operator. He/she simply has to change SO, to a platform operated by the new mobile
operator, and register his/her policies with it. Use of the SO provides additional benefits which
are related to the node’s connectivity. The node can wake up occasionally to fetch any
requests sent to the SO. This approach also helps save node’s resources, as no requests are
sent to the node unless the latter asks for it. If the service request was sent directly to the PEP,
the corresponding device would have to always be online, otherwise the service would be
unavailable.

5.2.6 SUMMARY
As computing becomes ubiquitous, adopters aim to exploit the potential of pervasive systems,
including LLN nodes bearing sensors and actuators, in order to introduce new types of services
and address inveterate and emerging problems, healthcare being one of the most prominent
application. Nevertheless, a key factor in the wide adoption and success of these new
technologies is the effectiveness with which the various security and privacy concerns are
tackled within the resource-constrained environment.

102

To this end, this section proposed an architecture for providing robust authenticated access
control to heterogeneous resource-constrained devices. The scheme builds upon the
standardized technologies, namely access control mechanisms based on XACML and SOA-
based interfacing of its key entities. In contrast to typical XACML deployments, the core PEP
functionality and the hosting resource-constrained device are efficiently relieved from the
expensive computations that the XACML standard defines, without sacrificing any of the
policy-based decision making process. The device is sheltered from direct user interaction,
helping alleviate concerns that are typical to resource-constrained devices, like DoS attacks.
Emphasis was given on the scheme’s ability to serve users authorized by, typically, any
authentication scheme, thus enabling the large-scale deployment of the solution to many
environments.

As a proof of concept, the components of the proposed scheme were developed and deployed
on a heterogeneous test-bed featuring desktop systems and typical embedded devices. The
performance overhead imposed on the three most important endpoints, i.e. the client
attempting to access the protected resources, the Service Orchestrator and the PEP, was
analyzed and presented to demonstrate the feasibility of the suggested solution.

5.3 CROSS-DOMAIN SMART ENVIRONMENTS –THE XSACD VARIANT
In recent years, massive advancements in computing and communication technologies have
led to what can only be described as a revolution in terms of how people perform the various
tasks comprising their everyday lives; a revolution enabled by the ubiquitous presence of
computing devices in all aspects of modern life. These major changes could not leave the
residential environment unaffected, with smart homes gradually becoming a reality. In these
cases, homes may feature sophisticated lighting (e.g. smart light bulbs), ambient environment
controls (e.g. heating, ventilation and air conditioning via smart thermostats), appliances
(smart -fridge, -oven, -washing machine, -coffee makers etc.), communication systems
(including smart phones), entertainment (e.g. smart TVs), and home security (smart cameras,
door and window controls etc.) devices. Moreover, the residential environment borders with
other ubiquitous computing applications, like smart metering and e-health, as these will have
to be integrated into the smart home ecosystem. Nevertheless, as said devices typically
handle personal sensitive data and often feature direct interaction with the physical world, a
key factor in the wider adoption and success of these new technologies will be the
effectiveness with which the various security and privacy concerns are tackled. A necessary
instrument in successfully addressing these issues is the presence of robust access control
mechanisms and seamless management of devices.

To this end, we adopt uSPBM to the smart home / consumer environment, in the form of the
Cross-domain Service Access Control for devices (XSACd) framework. By leveraging uSPBM’s
mechanisms, new devices can easily join existing networks and offer services protected by a
predefined or dynamic policy set. Based on the policy rules set by the system owner, the
proposed architecture provides fine-grained AC over the plethora of devices and services that
may be found in smart home environments. Thus, XSACd assists in the use of the various smart
devices aiming to enhance consumers’ lives, while addressing their security concerns.

103

A key limitation to the use of DPWS across different domains, is that its device discovery is
limited to local networks (as it is based on UDP multicast messages). To address this, XSACd
also introduces proxies that, based on an external, Internet-based, broker, can enable the
discovery and interaction with DPWS devices residing in other networks, in an automated
manner (i.e. in a seamless way from the user’s perspective).

5.3.1 MOTIVATION
In a typical ubiquitous-computing-enhanced residential setting, various smart devices are
expected to be present on appliances (e.g. smart fridge) and automation-enabled structures
(e.g. smart doors), also including environmental sensors and actuators. Moreover, these are
typically complemented by purpose-built devices intended to organize, manage and enhance
the functionality of the rest of the smart infrastructure, like energy monitors and control
nodes (e.g. a computing system with touch-based input to allow seamless monitoring and
interaction with the devices).

 This heterogeneous assortment of devices will feature a variety of services, each with its own
intrinsic characteristics (some being critical in terms of the residents’ safety, others dealing
with private sensitive data etc.), thus requiring a different protection profile. For example, all
residents should be able to control the smart doors and windows of a house, but, perhaps,
children should not be able to tamper with a subset of those (e.g. front door) at certain
timeframes (e.g. during the night). In another scenario, visitors may have the rights to monitor
the environmental sensors of the residence, but not to set the climate control at their will.
Moreover, the residence owners may decide they feel alright with visitors checking the
contents of their smart fridge, but they, expectedly, should not be able to add goods to the
shopping lists. Assuming the presence of e-health devices in the smart home ecosystem, it is
anticipated that the patient, her spouse and medical staff should be able to monitor the
various readings and control the actuators that deliver the prescribed medicine, but only the
latter group should have access to the service that controls the drug dosage. Moreover, it
would be desirable to allow medical staff to operate on the devices remotely, to avoid
unnecessary visits to the hospital. In cases where the residence is equipped with smart-
metering devices, authorized power company staff should be the only ones able to adjust
and/or reset the meters remotely (for billing purposes), but, nevertheless, the owners should
be able to access the consumption readings as well.

Furthermore, a survey [20] on smart home users revealed that inflexibility (often forcing users
to adopt solutions offered by a single manufacturer) and difficulties in achieving security
constitute significant barriers to the broader adoption of pertinent technologies and devices.

From the above, and considering that, typically, the only pervasive protection mechanism
present in home environments is the access to the wireless network, it is evident that strong
and interoperable access control mechanisms are required to safeguard a variety of aspects
pertaining to the operation of a smart home environment. Additionally, this should be
achieved in a flexible, platform-agnostic manner, acting as an enabler instead of introducing
new (or further exacerbate existing) obstacles to the adoption of “smart” devices and services.

104

To this end, the presented framework is based on standardized mechanisms, which also allows
leveraging work already carried out both in terms of Web Services as well as XACML policy
definitions. DPWS can enable user-to-machine and M2M interactions in a unified manner,
moving on from the current state of the field, where consumer electronics manufacturers
offer a variety of proprietary protocols which are not interoperable and essentially lock-in
consumers, forcing them to use a specific vendor/ecosystem. With regard to XACML, the
scheme can trivially be expanded to cater for additional specific concerns, such as privacy
issues and/or the handling of sensitive data (e.g. healthcare, as covered by the relevant OASIS
Cross-Enterprise Security and Privacy Authorization profile for XACML v2.0 [141]).

5.3.2 PROPOSED ARCHITECTURE
In the proposed framework, the following key entities are present and can be deployed on
different smart home nodes, depending on their role and resources:

• Policy Enforcement Point (PEP): Makes decision requests and enforces
authorization decisions. This is expected to be present in every smart device
(appliances, sensors, e-health de-vices, energy monitoring or smart metering
devices etc.) which provides its resources to the end users, and which need to be
protected by the active policy set.

• Policy Decision Point (PDP): Evaluates requests against applicable policies and
renders an authorization decision. It is expected to be deployed on more feature-
rich nodes, typically a personal computer or an embedded system that acts as a
controlling node for the whole smart home infrastructure

• Policy Administration Point (PAP) & Policy Information Point (PIP): The former
creates and manages policies or policy sets, while the latter acts as a source of
attribute values. These two entities will typically be deployed on the same
feature-rich node, facilitating direct interaction with end-users (e.g. home
owners). A desktop computer or a laptop are good candidates for this role.

• Cross-domain Proxy: This entity is responsible for catching all discovery messages
of the network, processing their contents and transmitting them to other
networks, also transmitting to the local network all messages received from other
domains.

• Broker: This is the main entity through which all cross-domain traffic is routed.
The broker is responsible for distributing messages to all interested clients (i.e.
the proxies) based on a message’s topic. To this end, all proxies have to subscribe
to the Broker.

As is evident from the above, and considering that nodes embedded in a smart home may not
have the computing resources to accommodate expensive mechanisms, the core decision
process is under-taken by more powerful nodes expected to operate within the node’s trusted
environment. Such an approach allows requests to be directly addressed to the node in
question, while maintaining the capability to centrally manage and control access to these
nodes. An overview of the architecture can be seen in Figure 50.

105

FIGURE 50. SMART HOME ACCESS CONTROL ARCHITECTURE & CROSS-DOMAIN COMMUNICATION. MAIN
ENTITIES.

5.3.3 IMPLEMENTATION APPROACH
As with all uSPBM implementations, Sun’s XACML engine [85] was the basis of the access
control mechanisms, while WS4D-JMEDS [145] was used to expose the framework’s entities
via DPWS. Using the above API and exploiting the features of DPWS, the XACML functionality
can be exposed to the home network (and the Internet, if needed), allowing the seamless
discovery and communication of the framework’s entities, regardless of the device where they
may be deployed. In more detail, the XACML features are exposed as follows.

5.3.3.1 PEP TO PDP IMPLEMENTATION
The Policy Enforcement Point must reside on every device with resources that must be
protected from unauthorized access. Other than the functional elements of the devices which
the framework intends to protect (e.g. access to its sensors), two extra operations must be
present on each DPWS device. These operations, in essence, constitute the PEP functionality
and its communication with the PDP. The latter acts as a DPWS client which accesses these
USPBM-specific operations.

More specifically, the first operation is the "SAREvent" (Service Access Request Event),
referring to an operation following the WS-Eventing [95] specification to which devices can
subscribe. When fired, the operation outputs “SAROut” (Service Access Request Output),
a message which includes all the information the PDP needs to have in order to evaluate a

106

request (i.e. Subject, Action and Resource). The second operation is "PDPResponse" (Policy
Decision Point Response), which is invoked by the PDP to relay an answer to a pending access
request.

5.3.3.2 PDP TO PIP/PAP IMPLEMENTATION
In terms of the discovery and information exchange that must take place between
infrastructure entities (PDP, PIP, PAP), an extra operation must reside with the entity that
stores the active policy set (namely the PIP/PAP). This extra operation is named
"PIPOperation" (Policy Information Point Operation). It features an input for the request
issued by the PDP (requesting all applicable policy rules), and an output containing all the
pertinent information (i.e. policies and rules) that the PIP has identified.

5.3.4 EVENT SEQUENCE
The above DPWS operations and the sequence of events that take place when an access
request is received for a protected resource are depicted in Figure 51.

FIGURE 51. DPWS IMPLEMENTATION OF THE XACML MECHANISMS

In more detail, the PDP is implemented as a DPWS client, constantly monitoring the network
for “Hello” messages transmitted by DPWS devices as they initialize. Whenever it discovers a
PEP-equipped device, it automatically subscribes to its “SAREvent” operation.

Each time a user tries to access a resource on one of these AC-protected devices, the
“SAREvent” is fired, notifying the PDP that a request has to be evaluated, and transmitting
all the information required for XACML to make such a decision. This information includes the

PIP/PAP

PDP

SAREvent

PDPResponse

1. Subscribes

2. Eventing

5. Invokes

3. Invokes

4. Response

PIPOperation

107

Request ID (a counter of policy decision requests issued by the specific device), the Client’s
identifier, e.g. IP and/or username (Subject), the Invoked Operation (Action) and the Device’s
UUID, i.e. its Universally Unique Identifier (Resource).

The above data is used by the PDP to generate an XACML request, i.e. a request in a form that
can be evaluated by the XACML decision engine. This process also involves the PDP invoking
the “PIPOperation” of the PIP/PAP, in order to retrieve the applicable policies.

Based on the information included in the PEP request and the pertinent policies retrieved from
the PIP/PAP, the PDP can then decide if the user’s pending request is authorized or not. This
decision is conveyed to the PEP by invoking its “PDPResponse” operation.

Finally, based on the decision received, the PEP either grants or denies access to the device’s
re-source that the user initially tried to access.

5.3.5 USPBM/XSACD CROSS-DOMAIN PROXY
On its own, DPWS does not support cross-domain communications, since device discovery is
based on a UDP multicast protocol, WS-Discovery [94]. So, without the use of a purpose-built
proxy, all the above entities must be on the same network in order to operate. Our proxy
implementation is not based on a central server that catches all “hello” and “bye”
messages as is typical for such proxies; this presumes that at every discovery proxy has a list
of known devices and that proxies communicate each other to “share” devices, which is not
really usable.

XSACd’s proxy uses MQ Telemetry Transport (MQTT [24]), a publish-subscribe OASIS standard
protocol, as the backbone of communication between networks. An MQTT Broker, deployed
somewhere on the Internet, is responsible for handling and organizing all communications
between the various domains and their corresponding proxies. In every local network a MQTT
client is deployed which has two roles:

• catch all discovery messages of the network, handle the info and transmit
them at the other DPWS networks and

• transmit to the current network all messages that are published from other
networks.

Catching all messages from the network is done by adding a membership to a predefined
address, namely 239.255.255.250:3702, which is the UDP broadcast and default port
of DPWS discovery default settings. Then every SOAP xml message is parsed; if it is a “hello”
message the IP of the message is changed from the 192.168.*.* ,which is normally used
in a local network, to the external IP, also using NAT-PMP (if the network’s router supports it)
the local port is forwarded, so that external communication is achieved. Then the changed
“hello” message is transmitted to all the other DPWS proxy subscribers. When a client from
a local network searches (sends a probe) for a device, the proxy saves the ID of the message
and also the information of the sender. That way, if a device is found that meets the search
criteria (i.e. a probe match is received), it will only transmit the response to the local network
that made the search. Moreover, the sender information is kept because, when a client sends

108

a probe message, it waits for the probe response at the same port. Moreover, as every
message ID is saved, duplicate transmissions are eliminated.

It must also be mentioned that for multi-home communication to be fully supported, after the
device discovery (facilitated by the DPWS proxy), the client asks the target device of its
metadata, provided in the form of a WSDL [99] file. In order to have a successful
communication, the WSDL file must contain the external IP of the device. This was not
supported in any available DPWS implementation, so we modified our custom DPWS
implementation in the Node.js programming environment [148], allowing us to track the
GetMetadata message: if it originates from the local network, it uses the local IP
(192.168.*.*) at the WSDL, otherwise it uses the router’s external IP. Any standard MQTT
Broker could be used to interact with the XSACd proxies. For the proof-of-concept
implementation, we opted for the Mosquitto open source message broker [149].

Figure 52 depicts a simplified view of the above, along with the steps that take place during
normal operation; in this example, when a device from the local network issues a probe match
and gets a reply from a device deployed in another domain. All external traffic is routed
through the local router in a typical home deployment; to this end, the proof-of-concept
implementation automates port forwarding.

109

FIGURE 52. XSACD CROSS-DOMAIN PROXY IMPLEMENTATION AND MAIN STEPS. SIMPLIFIED VIEW.

A screenshot of a command line remote connection to the proxy appears in Figure 53.

110

FIGURE 53. XSACD CROSS-DOMAIN PROXY. COMMAND LINE REMOTE CONNECTION TO THE EMBEDDED TEST
PLATFORM

Compared to the proxy presented by Müller et al [57], the XSACd approach has various
benefits. Scaling is an issue with the previous work, as in the case of N networks, each proxy
must communicate with N-1 other proxies. So, for example, a proxy must send its probe match
request to N-1 other networks, initiating an equal number of connections. In our approach,
each proxy only needs to communicate with the MQTT Broker, which is responsible for
disseminating all DPWS messages to the other registered proxies. Moreover, there is added
complexity in that the proxy has to tamper with the metadata files, whereas in XSACd all
devices properly formulate their metadata files by themselves. An additional complication is
that they propose different types of proxies (client proxy & server proxy), depending on the
network's role, whereas an XSACd proxy can accomplish both roles simultaneously. Finally,
there is a significant gap in the performance and reliability in favor of the MQTT approach
adopted in this work compared to the HTTP-based communications of the previous work, as
is evident from the comparison benchmarks appearing in Table 8.

TABLE 8. PERFORMANCE & RELIABILITY COMPARISON OF MQTT AND HTTP ON TYPICAL MOBILE APPLICATION10

 3G WiFi

HTTPS MQTT w. SSL HTTPS MQTT w. SSL

Receive

msg/hour 1,708 160,278 3,628 263,314

%battery/msg 0.01709 0.00010 0.00095 0.00002

msg delivery 240 / 1024 1024 / 1024 524 / 1024 1024 / 1024

Send msg/hour 1,926 21,685 5,229 23,184

10 http://stephendnicholas.com/archives/1217

111

%battery/msg 0.00975 0.00082 0.00104 0.00016

5.3.6 SECURITY CONSIDERATIONS
The effectiveness of any access control mechanism can easily be compromised unless
appropriate security mechanisms are deployed to protect policy messaging. A malicious entity
would otherwise be able to eavesdrop, replay or tamper with the access control messaging,
overriding the offered protection to provide access to unauthorized entities or denying access
to authorized ones. When feasible, deployments over trusted and/or secure networks (e.g.
over a Virtual Private Network, VPN) can address most of these concerns, but an alternative
mechanism has to be considered for deployments where these provisions are not realistic.

A detailed analysis of the protection of the access control –related communications can be
found in chapter 4.3. In terms of protecting the communication of the proxies with the MQTT
broker, there are various options that could be explored. As of version 3.1, MQTT supports
the use of a username and password to secure the communication with the broker. There is
also the option of using web sockets and secure web sockets .Moreover, since MQTT is based
on TCP, one could always opt for the use of more typical socket security mechanisms, such as
SSL/TLS, but this would add a notable amount of processing overhead. In this proof-of-concept
we used a symmetric mechanism based on AES/CCM [134] to encrypt every payload sent from
the publisher to the subscribers. Thus, a username and password is used to secure access to
the MQTT broker and, moreover, the messages exchanged are encrypted, to protect them
from eavesdropping and tampering (using the authenticated encryption mechanisms of
AES/CCM).

5.3.7 PERFORMANCE EVALUATION
The use of platform-agnostic technologies (i.e. DPWS and Java) enables the proposed
framework to be deployed, by design, on a variety of platforms and operating systems.
However, in order to realistically assess the performance of the proposed framework and its
impact on the target devices, the developed entities have to be deployed on devices expected
to be present in smart home environments.

Therefore, the infrastructure entities, namely the PDP and PIP/PAP, were deployed on a
laptop (quad core CPU at 2.6GHz, 4GB RAM), as a personal computer is typically available in
home environments and is expected to act as a management hub through which the residents
monitor and control their smart residence. A total of 50 policies were stored in the policy
repository, which the authors considered a realistic approximation of the number of policies
needed, considering the relatively limited number of devices expected to reside in a smart
home. Tests were also carried out with 500 policies, to assess the impact more policies would
have on the framework’s performance

Regarding the target platforms – i.e. the platforms featuring the services that need to be
protected – we chose to use relatively resource-constrained smart embedded devices
(600MHz low power single core CPU, 512MB RAM) running the Android open source operating
system for mobile devices. Such operating systems are already found in many smart

112

commercial appliances (e.g. smart fridges) offered by the various consumer vendors.
Moreover, their adoption is expected to spread as more sophisticated home devices become
available to end users; thus, the above platform can be considered a realistic choice for
evaluating the performance of the proposed mechanisms.

The DPWS device deployed on the smart platform not only featured the access control related
operations (as depicted in Figure 51) but also featured three simple operations, emulating
part of the functionality of a smart appliance (e.g. smart fridge). Via the above operations, the
user can get the current temperature, subscribe to a service that periodically informs of said
temperature and also set the desired temperature when needed. A basic touch GUI was
developed for this device, which can be seen in Figure 54.

FIGURE 54. SCREEN CAPTURE OF THE (PEP-PROTECTED) DPWS TEST DEVICE DEPLOYED ON THE TOUCH-
ENABLED SMART PLATFORM.

A client application was also developed for testing purposes; the “Smart Home Browser”. This
application is deployable on various end devices (personal computers, smart phones or
tablets) and allows users to discover and control the various DPWS-enabled smart appliances
(to get the current contents of the smart fridge, to subscribe to the power consumption
readings provided by the smart metering device etc.). A screenshot of the Smart Home
Browser prototype implementation appears in Figure 55.

113

FIGURE 55. THE "SMART HOME BROWSER"; AN APPLICATION DEVELOPED TO FACILITATE THE DISCOVERY OF
DPWS DEVICES AND PROVIDE ACCESS TO THEIR HOSTED SERVICES.

A command line-only variation of this client, programmed to automatically invoke operations
and record response times, was developed for benchmarking purposes. This benchmark client
was used to evaluate the performance of three setups: a simple DPWS device with no PEP
implemented (i.e. with direct access to its services), a DPWS device protected by the
presented access control entities communicating in plaintext, and a third setup with the
entities’ communications being protected via WS-Security. This allows us to separately assess
the impact of the access control functionality and the impact of the security mechanisms that
may be needed to protect the policy messaging in some deployments.

In addition to the client-side measurements, the CPU and memory utilization was also
monitored on both the personal computer that hosted the PDP and PIP/PAP as well as on the
PEP-equipped smart device. Furthermore, two different usage scenarios were investigated: In
the first scenario, the client issued 100 concurrent requests to invoke the services, allowing
the investigation of the performance under heavy load conditions. The results appear in Figure
56.

FIGURE 56. CLIENT-SIDE RESPONSE TIME FOR 100 CONCURRENT REQUESTS (IN MS)

0

100

200

300

400

500

600

No Access Control XSACd Plaintext XSACd WSS

114

Investigating a second use case scenario, we set the benchmark client to issue 20 requests,
one every 3 minutes, emulating more realistic usage conditions in the context of a smart home
environment. The results of the above assessments in terms of the average response time (i.e.
the time the user has to wait before she receives the data she intended to access) are depicted
in Figure 57. In both usage scenarios, the overhead of the access control mechanism are
considered acceptable. The impact of the WSS protection is significant in cases of infrequent
requests (as in the second scenario, where the connections close between the request
timeouts and, thus, have to be reinitiated).

FIGURE 57. AVERAGE CLIENT-SIDE RESPONSE TIME (IN MS) FOR THE INVESTIGATED DEPLOYMENTS AND USAGE
SCENARIO.

In terms of the resources consumed on the target, PEP-protected device, and focusing on the
most demanding scenario (i.e. concurrent requests), profiling indicated a mild footprint during
tests, even in the case of the relatively resource-constrained smart platform used in this setup.
Average memory consumption is presented in Figure 58, where the overhead of the access
control mechanisms appears trivial compared to the simpler DPWS device.

38,27

511,2

140,86

768

166,98

992,4

0

100

200

300

400

500

600

700

800

900

1000
Co

nc
ur

re
nt

3m
in

/r
eq

Co
nc

ur
re

nt

3m
in

/r
eq

Co
nc

ur
re

nt

3m
in

/r
eq

No access control XSACd, plaintext XSACd, WSS

115

FIGURE 58. MEMORY FOOTPRINT (IN KB, LOGARITHMIC SCALE) ON THE PEP-PROTECTED DEVICE, INCLUDING
THE OVERHEAD COMPARED TO THE SIMPLE DPWS DEVICE WITH NO ACCESS CONTROL PROTECTION.

The average CPU load was inversely proportional to the client response times (depicted in
Figure 57); when the device has to wait for a reply from the framework (i.e. the PDP) before
serving the client, its CPU load is expectedly lower. The recorded values were 11.6%, 9.3% and
8.4% for no access con-trol, XSACd and XSACd with WSS respectively. The same ranking was
also documented when moni-toring average transmission (TX) and reception (RX) rates on the
target device – see Figure 59. The most taxing scenario network-wise was that of the device
with no access control, but in all cases the data rates were relatively low, with the lowest
recorded value being 16.13kB (average TX of XSACd, WSS device) and the highest being
26.5kB/sec (average RX of DPWS device without access control).

FIGURE 59. NETWORK THROUGHPUT ON TARGET DEVICE DURING TESTS.

The number of stored policies may significantly affect the performance of the access control
system, to the point where the response time overhead becomes prohibitive [57]. This was

4460,34 4464,95

50,07 54,68

1,00

10,00

100,00

1000,00

10000,00

WSACd, plaintext WSACd, WSS

Memory footprint Overhead

27049

23306
20777

25805

18121
16514

0

5000

10000

15000

20000

25000

30000

No access control XSACd, plaintext XSACd, WSS

Average RX (bytes/sec) Average TX (bytes/sec)

116

taken under consideration during development and, thus, XSACd's PIP stores policies in the
form of a hash table residing in memory. The effectiveness of this approach was validated
during benchmarks: increasing the number of stored policies from 50 to 500 increased the
response time by 7,37% in the first scenario (i.e. consecutive requests) and by just 1,7% in the
more realistic second scenario (i.e. a request every 3 minutes).

Finally, to assess the load that the DPWS proxy might impose on the device it will be deployed
on, the proof-of-concept implementations of the proxies were deployed on two Beagleboard-
xM embedded devices (1GHz ARM Cortex-A8 processor, throttled at 600MHz during testing,
512MB DDR2 RAM, a minimal Linux-based operating system). Each of the platforms resided
on a different geographical area and they communicated via the Internet. Even though these
test-bed platforms were relatively resource-constrained, their CPU load during testing was
minimal (below 10% when handling messages, otherwise idle). The memory footprint of the
application is relatively stable at around 16MB, of which around 6,6MB are occupied by the
various libraries used in its implementation.

The MQTT Broker used was just a standard implementation of Mosquitto [149], thus assessing
its performance is beyond the scope of this work

5.3.8 SUMMARY
This section presented XSACd, an adaptation of uSPBM for smart homes and other smart
environments, often residing across different networks. The intrinsic requirements of the
smart home environment, its users and the often resource-constrained nature of its devices
fundamentally affected the choice and implementation of the mechanism that form the basis
of this work. Thus, XSACd’s entities are platform-agnostic, lightweight and interact seamlessly,
minimizing the home users’ involvement in deploying, setting up and maintaining the system.
The proxies responsible for the communication across different domains, require no
interaction on behalf of the users, offering automated discovery and interactions with the
target devices across the Internet.

5.4 SMART VEHICLES – THE RTVMF FRAMEWORK
Smart vehicles will be an important segment of the imminent Internet of Things (IoT) –enabled
world, where computing devices will permeate our lives and will even be easy to design and
create at home [150]. Modern vehicles already feature a number of embedded electronics
that monitor and control their subsystems, to enhance passenger comfort and safety, achieve
energy-efficient operation and maximize vehicle lifetime. Superior safety features can help
avoid many accidents, and they are the focus of various governmental initiatives worldwide,
which define stricter regulations (such as the COMMISSION DIRECTIVE 2008/89/EC enforcing
daytime running lights in new vehicles). This push is expected to intensify, to benefit from
Intelligent Transportation Systems (ITS), prompt emergency response and advanced features
like early braking and road lane departure warnings, e.g. as indicated by the “Policy
orientations on road safety 2011-20” European Union (EU) program [151]. Automotive
legislation also necessitates the production of more eco-friendly vehicles, a target partly
achieved by subsystems monitoring the vehicles’ operation in real-time, triggering
adjustments to engine parameters. Based on the above stimuli, the integrated electronics
increase with every vehicle generation, and are expected to rise steeply with the introduction

117

of smart and, eventually, self-driving vehicles. This “intelligence” will also enable a variety of
novel services that everyone will enjoy, from end-users (e.g. parents lending the family vehicle
to their teenager) to private and public entities operating vehicle fleets (logistics, car-rental,
governments, rescue services etc.).

To facilitate the deployment and operation of these services in a secure and interoperable
manner, we merge uSPBM with an agent-based reasoning system that allows us to monitor
various operational parameters, which are assessed using security, privacy and dependability
–related metrics, enabling real-time monitoring and interaction with a smart vehicle or a
smart vehicle fleet. This combination of technological building blocks, produces RtVMF, a
smart vehicle management framework based on the integration of novel primitives with
standardized technologies. The proposed approach can provide real-time management of
vehicles, aggregating and quantifying various operating parameters (e.g. engine health) using
a set of security, privacy and dependability metrics. The owner and other stakeholders can set
policies of fair use (e.g. maximum speed), tracking the driver’s behavior, and informing
emergency services when an accident occurs. Thus, it allows individuals and companies or
public entities relying on vehicle fleets for day-to-day operations to minimize the risks
associated with passenger safety, protect vehicle investments, enhance productivity, and
reduce transportation and staff costs.

To validate the feasibility of our approach, a working prototype of the framework was
developed and deployed on real vehicles. Moreover, we carried out a performance evaluation
on a test-bed consisting of devices expected to be found on smart vehicles and a typical
backend infrastructure (i.e. a command and control center), to investigate the performance
overhead of RtVMF.

5.4.1 MOTIVATION
A typical car may currently utilize over 80 built-in microprocessors, providing advanced safety
systems, emission monitoring and in-car commodities [152] which aim to enhance passenger
comfort and safety, also protecting the vehicle’s subsystems by providing early warning of
failures and/or adjusting their operation accordingly. Typically, electronic control units (ECU)
manage and interconnect the distinct systems [153], and the infotainment infrastructure
provides enhanced facilities, like navigation, to passengers [154]. Newer vehicle generations
will take this further, supporting communication with other vehicles, the city infrastructure
and backend systems. Such prototype deployments are already under assessment in the EU
and the United States (USA); e.g. the UMTRI Safety Pilot [155].

Real-time monitoring of the vehicle’s state and the driver’s behavior will allow public entities,
logistics organizations and other businesses to minimize the vehicle investment risks and
promote strategies for increasing productivity and safety while reducing transportation and
staff costs. Government regulations are decisive motivators of pertinent research efforts. The
United Kingdom aims to minimize road deaths in business-owned vehicles; starting in 2008,
road death is considered an unlawful killing, enabling seizing of the company’s records and
bringing prosecutions against directors who fail to enforce safe driving policies. Therefore,
fleet management is now imperative for organizations owning a significant amount of
vehicles.

118

The European Commission also defines new regulations for vehicle safety, such as the eCall
system [156], which will become mandatory for every vehicle moving in the European Union
by 2018. This emergency service dictates that, when an accident occurs, the vehicle should
automatically relay essential information (its location, its direction and speed before the
crash, number of passengers etc.) to appropriate Public Safety Answering Points (PSAP). By
providing early notification and allowing efficient coordination of the emergency services, it is
expected to decrease the response time to such incidents by 50% in rural and 40% in urban
areas, drastically reducing the number of deaths and the severity of injuries for the thousands
of people involved in road accidents every year [151].

However, security-related incidents are a tangible threat, as exploiting vulnerabilities in the
infotainment infrastructure can allow the remote control of vehicle components; an attacker
can control turn off the lights or even control the brakes while on the move [8]. As more
vehicles feature seamless connection to Internet, urges engineers to consider security at the
design phase. To this end, there is a need for systematic methodologies for developing secure
and efficient vehicular embedded systems.

Researchers of the Ford motor company have presented a methodology for modeling
automotive systems in terms of Security, Privacy, Usability and Reliability (SPUR [157]).
Evaluated components are analyzed based on the offered SPUR functionality, assigning a
qualitative value (low, medium or high) to each parameter. They apply this method on real
system attributes, such as the valet key and the anti-lock braking system.

The EU-funded project nSHIELD [158] proposed two quantitative methodologies for building
secure embedded systems in terms of Security, Privacy and Dependability (SPD): the attack
surface metric and the multi-metric methodologies. The latter, a key RtVMF component, was
demonstrated in social mobility applications, while the former was demonstrated in avionics
and railway applications.

Finally, any novel components should be compatible with existing vehicles; it is estimated that
there are over 500 million vehicles already roaming US and EU roads alone [159], [160],
indicating a huge market for anyone involved in retrofitting such modules.

RtVMF aims to address the above issues. The principal concern is the enhancement of
passenger safety and the framework can enable this in various ways: Mechanisms are included
to allow the vehicle owner (e.g. a logistics company or a father lending his car to his son) to
specify driving rules, such as maximum speed and/or the operating area (through geo-
fencing). Furthermore, sensors can monitor vehicle health, informing stakeholders about
engine malfunctions or emergencies in real-time. Thus, the adoption of RtVMF can allow any
public or private organization with vehicle fleets to reduce the risks to their personnel and
their vehicle investment, advancing productivity while reducing transportation and staff costs.
Moreover, it can help achieve compliance with upcoming regulations, both for vehicle safety
and green infrastructure management.

5.4.2 THE RTVMF ARCHITECTURE

119

RtVMF consists of various components, comprising a low-cost multi-agent system for smart
vehicles, also allowing the integration of smart city infrastructures into the monitoring and
decision-making process, as depicted in Figure 60.

FIGURE 60. RTVMF ARCHITECTURE AND DEMONSTRATOR DEPLOYMENT

The following sections describe the main building blocks of RtVMF, which adopts a SOA
approach for the underlying communications, providing seamless interaction between the
framework’s entities. All entities specify semantic information (e.g. their type and provided
services) using DPWS, supporting device and service description, discovery, messaging and
eventing. This allows the deployment of devices aligned with Web Services technologies,
facilitating interoperability among services provided by resource-constrained device and
providing seamless Machine-to-Machine (M2M) interactions.

5.4.2.1 THE RTVMF AGENTS
The multi-agent system is implemented using the Java Agent DEvelopment framework (JADE),
which supports all agent deployment standards defined by the Foundation for Intelligent
Physical Agents (FIPA), including the Agent Communication Language (ACL). Event Calculus
(EC) forms the basis of the reasoning process, using the Jess (Jess-EC) rule engine for the
implementation. We model the ambient context in Jess-EC and develop reasoning services
based on a formal theory that reasons about the composability and integration of the
underling devices and technologies, verifying the system’s current SPD level. An ambient
environment management theory is responsible for administrating the system in real time.
The Common Alerting Protocol (CAP), also an OASIS standard, models the semantic

120

information exchanged between agents. Agents transform the CAP alerts into Jess-EC events
(and vice-versa), triggering the reasoning process. The external communications rely on GSM.
The RT-SPDM system [136] is a preliminary version of the above.

At the smart vehicle end, an RtVMF agent monitors the vehicle and is responsible for a minimal
set of decisions (regarding security, privacy, dependability and safety), to avoid unnecessary
backend communications, to safeguard continuity of operations when network connectivity
is not available and to avoid unnecessarily transmitting sensitive information. The agent runs
on the Infotainment system, communicating internally with the ECU and externally with other
agents, acting as an intermediate layer between the vehicle and external entities.

The Command & Control (C&C) center is responsible for smart vehicle management. A master
RtVMF agent, deployed at the backend, collects information from smart vehicles and
infrastructure agents. The master agent has global knowledge of the system and carries out
all computationally intensive tasks, implementing the fleet management strategy. An
extension of the backend could use databases or cloud services to store vehicle and driver
history records, maintaining log files and execution reports. Moreover, the positioning
information of the smart vehicles can be display on a geographic information system (GIS) to
provide location-based services (e.g. geo-fencing).

To implement the above functionality, we integrated DPWS along with the JADE agents into
the Open Service Gateway initiative (OSGi) – a standardized middleware that constitutes a
module system and service platform. ECU and supplementary vehicle devices model the
provided functionality in DPWS and exchange information with the vehicle’s agent through
OSGi.

5.4.2.2 SPD METRICS
At the smart city infrastructure or service provider end, the master RtVMF agent monitors the
vehicles, and communicates information to enforce SPD and safety plans, based on an
ambient intelligence-based, decision making mechanism. We adopt the nSHIELD [158] multi-
metric methodology for modelling and measuring the SPD features of each entity and the
system as a whole.

The multi-metric methodology is based on an analysis of a system’s individual components
and determines triple vectors representing the <S,P,D> features, based on the evaluation
of corresponding metrics. Each measurable parameter takes a value from a set, mapped in a
range from 0 to 100. These values represent no protection to optimum protection
respectively, based on a preceding security analysis. The individual SPDs are also composed
to form the overall system SPD (SPDSystem). The system is configured at runtime to achieve a
targeted SPD level (SPDGoal). The above enable the SPD analysis of individual elements and of
their combination, allowing stakeholders to inspect each component and the composed
system as a whole, evaluating the effectiveness of different configurations and associated
mechanisms in terms of achieving the desired SPDGoal. This approach eases human
monitoring and operation of the system, provided the backend application development
considers human-computer interaction principles.

121

More details on the multi-metric methodology appear in Garitano et al. [161], along with a
smart vehicle use case. Its assessment includes three scenarios with nine different
configurations. Metrics evaluate features like encryption and GPRS/SMS communication,
enhancing security and inspecting driving behavior. The use case demonstrates the simplicity
of the solution and its scalability, with an equally effective evaluation of simple and complex
systems.

With regard to the dynamic SPD levels, ideal security, privacy and dependability settings may
not always be possible, as congestion may hamper operation by congestion, missing mobile
network coverage or other variables. So, for example, in situations where low latency is
essential (e.g. V2V communications), a vehicle may resort to simpler cryptographic
mechanisms, resulting in a lower Security level. In another case, the driver may decide not to
report his exact location, but a larger area, to obstruct tracking of her movement and protect
her privacy. This will have a positive effect on the Privacy level of the specific vehicle, as
reported at the backend system. Variations in the Dependability level will be more common.
The vehicle’s health is monitored in real time (tire pressure, ECU warning messages etc.),
directly affecting its Dependability level. E.g., when the car exceeds the planned travel mileage
between services, the reported Dependability value will be lower.

5.4.2.3 SECURITY
The protection of messages exchanged between RtVMF entities is of critical concern, as a
violation of the framework's security could give an erroneous view with regard to the actual
vehicle (or vehicle fleet) situation, cause unnecessary trouble for emergency response services
or even endanger the safety of vehicle occupants.

To this end, the framework protects the communications of the various entities (managed
vehicles, the backend, and users, such as vehicle owners) with the WS-Security standard. The
latter, typically used alongside DPWS, provides end-to-end security, with message encryption
to provide confidentiality, but also digital signatures to assure integrity and provide non-
repudiation. Security tokens can also be attached to establish the sender's identity and, as
various security token are supported (e.g. SAML, Kerberos, X.509), it can trivially be integrated
into existing Vehicular PKI (VPKI) infrastructures. An added benefit is that entities without
proper credentials cannot discover the services hosted by a smart vehicle agent, even if they
have access to the same network.

While WS-Security safeguards all exchanged messages, to protect the ACL messages
exchanged by agents, the implementation also includes the JADE-S add-on, which extends
JADE with the Java Authentication and Authorization Service (JAAS), Java Cryptography
Extension (JCE) and Java Secure Socket Extension (JSSE) mechanisms. This allows us to
authorize agent actions against agent permissions residing in policy files containing
information regarding the agent types and the valid actions that they can perform. Moreover,
it is used to verify the integrity of the received reasoning data (e.g. when a vehicle informs of
its updated SPD state), which is one of the most critical aspects in the framework’s operation.

Moreover, the security features built into OSGi offer inner-platform security on both agents
and managed devices. This allows us to control which bundles can be started/stopped, when,

122

by whom etc., based on pre-defined rules, thus limiting bundle functionality and providing an
extra layer of protection, even in cases where a malicious entity manages to gain access to the
software platform itself, aiming to disrupt the service.

RtVMF also integrates the strong access control provided by uSPBM, allowing its operators to
manage access to the resources of smart vehicles in a centralized manner. The policy-based
access control mechanisms of uSPBM exploit and extend the DPWS functionality of the
framework’s devices, to implement the necessary communications and entities (e.g. policy
enforcement points on vehicles). Thus, a multifunctional RtVMF-enabled vehicle may feature
various hosted services (a location service, a fuel consumption service etc.), access to which
will be controlled based on the active policy set. Such an example could be a logistics company
that allows drivers to track their designated vehicles’ locations through their mobile phone:
the company can simply modify the active policies to give a specific individual access to a
vehicle’s location service; after returning the vehicle, a policy reset can withdraw the driver’s
access privileges.

5.4.3 PROOF OF CONCEPT
As a proof of concept, we retrofitted RtVMF onto an existing vehicle, using off-the-shelf
components. The setup relies on the infotainment system – or the user’s smart phone, if a
smart infotainment system is not available, as was the case with the vehicle we used – for
communication with the backend system. An Android-based application runs on the smart
device, performing the vehicle’s basic reasoning process, also communicating and receiving
commands from the C&C. The application collects information regarding the car’s sensors (e.g.
fuel consumption) from the ECU via a widely available and affordable Bluetooth-enabled OBD
scan tool (model ELM327 Bluetooth OBD-II, cost of ~10 Euros). The application collects
additional data from sensors integrated into infotainment, namely acceleration and GPS
position. The insert in Figure 61 depicts the above car setup.

123

FIGURE 61. TEST-BED USED FOR DEMONSTRATION & PERFORMANCE EVALUATION. PROOF OF CONCEPT
RTVMF RETROFITTING (INSERT)

RtVMF can also incorporate a smart city’s infrastructure and, as proof of this, we include a
wireless sensor network (WSN) in the test setup, emulating e.g. environmental or traffic
sensors spread across a smart road. The sensors communicate via a reputation-based secure
routing protocol (presented in Hatzivasilis et al. [162]), enabling them to detect several types
of sensor malfunctions and malicious attacks, guaranteeing network service continuation and
resilience. The backend collects and processes information from the WSN’s gateway, including
it into the reasoning process.

5.4.3.1 DEMONSTRATION SCENARIO
We demonstrate RtVMF using a smart city scenario that includes the WSN-equipped smart
city infrastructure described above, a backend C&C and two smart vehicles with various
sensing capabilities. The scenario architecture appears in Figure 60.

The use case scenario aims to demonstrate that the RtVMF backend is automatically informed
of all changes in the various entities and their subcomponents, composing a new SPD state

124

based on these updated metrics. The set of countermeasures are able to mutually support
each other when the system has to react to a particular incident (attack, emergency etc.),
maintaining acceptable SPD levels, while conserving resources (if needed), also informing and
aiding the response of the various stakeholders (vehicle owner, emergency services etc.). The
scenario steps appear in detail in Table 9.

TABLE 9. SCENARIO STEPS

STEP Events Effect Overall
(S,P,D)

State
Visualization

1 Power-on of all systems and
discovery/registration

 Initial
State 80,70,65

2

The WSN detects a Black Hole attack, which
causes the Security level to decrease,
indicating malicious activity.

MA is informed through WSN that an attack
occurs and it sends a command to the vehicles
to increase security.

Security
level

decreases
60, 70, 65

3

Security level is increased on both Car 1 & Car
2, as they now use stronger encryption to
better safeguard V2V and V2Backend
communications in the context of a potentially
compromised infrastructure.

MA is informed.

Security
level

increases
85,70,65

4

The WSN has counteracted the Black Hole
attack, reporting the change to the MA. The
Security level is now higher, as the malicious
activity has been countered.

The MA asks Cars 1 & 2 to return to normal
state (to conserve resources)

Security
level

returns to
initial state

80, 70, 65

5

ECU of Vehicle 1 reports increased engine
temperature, affecting its Dependability level.

MA is informed.

Dependabil
ity level

decreases
80, 70, 50

125

6

Car 1 crashes (lowering SA1 Dependability);
eCall message transmission.
C&C now has access to exact vehicle location,
as dictated by access control policies (lowering
SA1 Privacy).
Encryption is disabled to facilitate emergency
response (lowering SA1 Security).

The MA is informed and sends email to C&C
operators/administrators.

S & P & D
levels

decrease
50, 50, 40

7

Car 1 is repaired, returning to normal SPD
state.

SA1 reports new state to MA.

S & P & D
levels

increase
80,70,65

5.4.3.2 PERFORMANCE EVALUATION
As a full-scale deployment was not feasible, an experimental test-bed was used to evaluate
RtVMF. We deployed a Linux-based device, emulating the ECU, on a BeagleBone embedded
device (720MHz ARM Cortex-A8 processor, 256MB RAM, Linux OS). The Android-based
version of the agent was deployed on a tablet (1.9GHz quad-core processor, 2GB RAM,
Android OS), emulating the vehicle’s infotainment. The backend system run on a laptop PC,
while a separate laptop was used as a gateway for the “smart city infrastructure” WSN which
was based on IRIS motes (Atmel ATmega1281 16MHz CPU, 8kB RAM, 128Kb flash) running the
reputation-based secure routing. Finally, a desktop PC was used as a client to the services
provided by the vehicle (e.g. to access its location), for benchmarking purposes. This setup,
also used to carry out all of the demonstration steps, appears in Figure 61.

We evaluated the performance of RtVMF focusing on the resource-constrained devices, as
documenting all performance aspects of all entities involved in such complex framework
would not be practical. The benchmark client issued consecutive requests to access the smart
vehicle’s location (from the infotainment device) and its engine temperature (from the ECU).
Access control mechanisms protected both operations, thus, before replying, the devices
communicated with the backend to verify that the client was authorized to access this data.
Furthermore, at random intervals, the benchmark client would communicate with the master
agent to trigger changes in the SPD state of the prototypes (e.g. to increase the key length
used for encryption), thus evaluating the impact such changes can have on the responsiveness
of the devices and the system as a whole.

The master agent is the most computationally demanding entity of RtVMF; its code size is
1.87MB, occupies 45MB RAM and needs 1.6 seconds, on average, to perform the reasoning
process. Moving to other entities, we focused on the infotainment device (i.e. the android
application) and the corresponding Linux-based application developed emulating the ECU.
Their CPU load during tests was not that significant, with an average of 4.8% recorded on the
Beaglebone and of 4.1% on the Android platform. Memory consumption was also acceptable,

126

averaging 33.46MB on the Beaglebone and 26MB on the Android device. The most interesting
performance parameter is the delay experienced by the backend operator attempting to
retrieve the smart vehicle’s status and the latency of the system when changing between SPD
states; also confirmed by relevant pilot programs, where stakeholders highlighted the need to
have real-time or near real-time access to vehicles’ operating parameters [155]. These results
appear in Figure 62, which shows the response time (recorded client-side) for each of the
requests issued concurrently to both the vehicle’s infotainment (tablet) and its ECU
(Beaglebone). The Linux-based embedded device is more responsive, with an average
response time of 93.16ms compared to 198.7ms for the infotainment. This is reasonable, as
there are more processes running at the background on the Android tablet, including the
vehicle agent (which also features a GUI, further affecting its responsiveness). Nevertheless,
both devices demonstrated acceptable response times. Also evident in the graph are the
spikes recorded when the devices had to change SPD states (i.e. had to process the incoming
master agent request, change their operating parameters accordingly and inform the master
agent once the changes were in place). These SPD state changes do introduce significant
delays, but they are not a concern, as they should be rare during normal operation (when the
framework needs to react to some attack, when a vehicle crashes etc.).

FIGURE 62. RESPONSE TIME (IN MS) PER REQUEST, FOR BOTH TEST PLATFORMS

While the above results validate the proof-of-concept, realistic, larger-scale deployments
should not be problematic either: the only potential bottleneck is at the backend, and
especially the reasoning process at the master agent. Nevertheless, Jess-EC provides an
efficient method for pattern matching. The computational complexity is linear in the working
memory size and is of the order of O(RFP), where R is the number of rules, P is the average
number of patterns per rule left-hand-side, and F is the number of facts on the working
memory. In our case, the implemented management theory consists of around 50 rules. P is
kept small (in order of one to three) as each entity is assigned a unique identifier and the
scenario events affect specifically declared components. Thus, only F affects the scalability of
the reasoning process. Every new vehicle requires about 10 facts to be modelled, resulting in

0

200

400

600

800

1000

1200

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Infotainment (smart device) ECU (embedded device)

127

low overhead (in the nanosecond range) to integrate its status to the system’s total and less
than 40 extra bytes of memory for the master agent.

5.4.4 SUMMARY
This section presented RtVMF, a smart vehicle management framework based on uSPBM
which provides real-time monitoring of vehicle fleets, including secure, dependable and
privacy-aware monitoring of vehicles’ operating parameters. The framework can maintain
vehicle fleets in good condition by constant monitoring of vehicle health and drivers’
compliance to good-driving practices, allowing prompt reporting to various events (e.g. an
emergency), adapting accordingly, and also informing and aiding the response of emergency
services.

Government and emergency services could monitor their fleet improving everyday workflow
and vehicle assignments, fully exploiting vehicle investments. Private sector entities operating
in transportation could also benefit by adopting the proposed framework. Bus and taxi
companies could reduce the transportation time, designing and adopting better strategies to
satisfy their passengers’ expectations, e.g. by better scheduling trips, thus providing quick and
timely service.

Moreover, it can help achieve compliance with governmental regulations but also helps build
solid business cases. These involve retrofitting the large number of existing vehicles, but also
enabling novel services. Such services may include enhanced road insurance services,
adjusting fees based on user driving behavior, mileage, vehicle condition etc., while
safeguarding users’ privacy by, e.g., ensuring their preferences are not violated through strong
policy enforcement mechanisms.

128

6. CONCLUSIONS & FUTURE WORK
Ubiquitous devices in the form of resource-constrained interconnected embedded systems
are constantly gaining popularity. Such devices nowadays offer real-time accessibility and
have the capability to provide various services to remote parties. Although such connectivity
has paved the road to many new applications boosted from technological advances in
processors, memory and communication technologies, it has raised many privacy and security
concerns.

In many environments, networks of devices manage well-defined services and process
information that require protection from malicious entities attempting to perform
unauthorized access and modifications. The information they manage might be safety critical,
sensitive, or confidential, and therefore constitute an attractive target. Their protection
necessitates the deployment of robust mechanisms that will, among others, control access to
participating nodes’ resources and prevent data breaches. This is not a trivial task, considering
the resource limitations of some of the nodes that prohibit the deployment of
computationally demanding mechanisms. Moreover, parameters related to the environment
that these nodes operate also have to be considered. Unattended nodes operating in hostile
environments should not be left with the responsibility to make critical decisions on requests
issued by remote third parties regarding access permission to their resources. These nodes
are subject to physical compromise. In this case it is essential not to expose any unnecessary
functionality to unauthorized entities to protect the whole system. Besides that, these nodes
might not even have the capacity to handle such requests and make appropriate decisions. In
others, it might not be appropriate to consume valuable energy resources on the decision
making process. Such requests should therefore be off-loaded to more powerful, protected
and authorized nodes that have the capability and functionality to handle them and make
decisions based on robust access control mechanisms.

The scheme proposed in this thesis addresses the above requirements and defines a policy-
based management mechanism based on eXtensible Access control Markup Language
(XACML, [22]) policies. It provides serving nodes the ability to control access to their resources
based on policy constraints set by the system owner. Considering that managed nodes might
not have the computing resources to accommodate expensive mechanisms the core decision
process is undertaken by more powerful nodes expected to operate within node’s trusted
environment. Such an approach allows requests to be directly addressed to the node in
question, while maintaining the capability to centrally control access to said nodes.

The service oriented nature of the proposed scheme is accomplished by the use of the Devices
Profile for Web Services (DPWS, [23]), an OASIS standard which allows the deployment of
devices aligned with the Web Services technologies, thus facilitating interoperability among
services provided by resource-constrained devices. The implementations of these compact
web services are based on a novel set of libraries, Node.DPWS, which outperform the existing
platform-agnostic tools available to developers.

The proposed architecture can be considered a generic policy-based management model that
can be easily adapted to meet certain requirements of various ubiquitous computing -related
scenarios. It is based on standardized mechanisms, thus allowing new devices to easily join

129

existing networks and offer services protected by a predefined or dynamic policy set. It
facilitates use of smart devices for enhancing citizens’ lives while preserving their privacy and
addressing their security concerns. Based on the policy rules set by the system owner, the
proposed architecture provides fine-grained access control in ubiquitous computing and the
Internet of Things (IoT).

Combining XACML with DPWS, we aim to tackle two of the most important IoT barriers, as
recognized by end-users, researchers and business stakeholders alike: lack of interoperability
and the associated difficulty of device management, along with the lack of fine-grained,
context-aware access control. With regard to the latter, uSPBM does indeed offer fine-
grained, context-aware authentication & authorization for users, devices & services, while the
former (i.e. interoperability) is guaranteed through the standardized communication
technologies adopted. This also allows us to exploit pre-existing work on these technologies
(e.g. specifications to adapt XACML policies to different domains and the successful use of
SOAs in a variety of areas). Facilitated by the underlying design choices, uSPBM’s entities are
platform-agnostic and interact seamlessly, minimizing involvement in deploying, setting up
and maintaining the system.

The framework is also extremely flexible and modular, operating with a different subset of
modules needed for each scenario (e.g. some management or authentication features may be
needed in one scenario, but not in another). The flexibility in terms of deployment options is
enhanced by the presence of cross-domain proxies, which allow us to overcome the
limitations of DPWS and provide seamless interactions between different domains and
networks. Moreover, each entity type may be assigned more than one role, in scenarios where
this is feasible, thus allowing the system to offload computationally demanding tasks to other
infrastructure components.

Emphasis is also given on the security of the communicated request/response and service
provision messages, as a critical issue is the protection of policy messages exchanged among
the framework’s entities. The mechanisms deployed for this task are closely dependent on the
application requirements (e.g. the need for point-to-point or message-level confidentiality),
as well as the potential support for more advanced security characteristics, such as node trust-
sharing schemes and security context awareness. From a cryptographic point of view a
scheme may seem far more efficient but the overall overhead may actually be quite significant
and render the scheme impractical for large-sized networks. To this end, different security
mechanisms have been analyzed and implemented, both symmetric and asymmetric in
nature, each with its intrinsic characteristics. In any case, before making a decision, several
parameters need to be considered in order to adapt the proposed framework to a specific
application and its requirements.

Finally, efforts were made to produce proof-of-concept implementations of each of the
framework’s entities, to validate the feasibility of the proposed approach in various
application domains (smart homes, e-health, smart vehicles) and on a number of
heterogeneous hardware platforms (PCs/laptops, embedded devices, smartphones/tablets
and wireless sensor devices)

130

There are a variety of aspects to explore in order to improve the framework’s features and its
applicability to a variety of domains. Focusing on the authorization language, additional work
should be carried out on adapting the utilized standards to better facilitate smart city and IoT
deployments in general. More specifically, XACML policies could be tailored to the needs of
specific ubiquitous computing deployments and their intrinsic requirements. While there are
already specifications for adapting XACML to various areas (e.g. healthcare [141]) and specific
requirements (e.g. privacy [163]), there are a variety of application areas brought forward by
the IoT (agriculture, industry, smart homes etc.) that could also be explored. In this context,
semantics are often utilized to provide context-awareness [164] and spatio-temporal factors
have to be considered, due to the constant mobility of users and their devices [165], [166]
with application-specific requirements (e.g. healthcare [74]). These efforts could lead to the
definition of corresponding XACML specifications, potentially extending XACML policies to
consolidate the requirements introduced in the new IoT reality.

In terms of the framework’s communications, more lightweight DPWS implementations could
be developed. This would be especially useful for scenarios involving extremely resource-
constrained devices (e.g. sensors, as in [167]). Moreover, this would help further evaluate the
proposed framework on alternative sensor platforms, to include devices less capable than the
SunSPOTs. This work will have to be carried out concurrently with the investigation of
lightweight cryptographic primitives appropriate for said devices and the communication
mediums they typically use.

Some of the newer IoT-oriented protocols could also be investigated for the framework’s
underlying communications, comparing them to DPWS. Potential alternative standardized
protocols include CoAP [168], MQTT [24] (already used for uSPBM’s proxy communications)
and XMPP [169], among others, also considering the alternative security mechanisms
available to each protocol. The results of these efforts could also lead to the adoption of a
hybrid, custom protocol, combining the advantages of the various already existing
standardized solutions; even though such an approach would inevitably compromise the
interoperability with existing standards.

Regardless of the application area where uSPBM will be deployed, stakeholders (e.g. business
or homeowners) using the framework will be responsible for defining some parameters of the
active policy set, depending on their requirements and preferences. Thus, an important aspect
to be investigated is the provision of user-friendly interfaces for specifying access control
policies, e.g. using a GUI with easy to use drop-down menus and tick boxes or having the user
answer simple questions, automatically translating the user input to policies.

Finally, uSPBM will have to be tested on a larger scale, to confirm its effectiveness in actual
IoT-scale deployments. This will be necessary in order to collect valuable feedback to improve
key areas of uSPBM’s operation, such as its scalability, and, most importantly, its ease of
deployment, use and maintenance.

Along with the above, further research is required for establishing secure mechanisms tailored
for ESs, in order to address potential threats to their secure operation, including those
exacerbated by the intrinsic characteristics of the devices and their application fields,
especially in the case of critical systems’ applications. What is more, given the widespread

131

adoption of smart devices in our everyday lives (e.g. smart vehicles, smart houses, smart
clothing), it is important to deal effectively with the inherent security concerns. The challenge
lies with the researchers to put more effort in the above matters and come up with
appropriate solutions, thus helping realize the promise of pervasive computing and the
Internet of Things (IoT).

132

7. REFERENCES

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of
Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE
Commun. Surv. Tutorials, vol. 17, no. 4, pp. 2347–2376, Jan. 2015.

[2] Intel, “A guide to the Internet of Things,” 2015. [Online]. Available: https://www-
ssl.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot.html.

[3] Cisco, “The Internet of Everything, Global Private Sector Economic Analysis,” 2013.
[Online]. Available: https://www.cisco.com/web/about/business-insights/docs/ioe-
economy-faq.pdf.

[4] K. Mayes and K. Markantonakis, “Information Security Best Practices,” in Secure Smart
Embedded Devices, Platforms and Applications, K. Markantonakis and K. Mayes, Eds.
New York, NY: Springer New York, 2014, pp. 119–144.

[5] Cisco, “The Internet of Everything (IoE) Value Index,” 2013. [Online]. Available:
http://www.cisco.com/web/about/ac79/docs/innov/IoE-Value-Index_External.pdf.

[6] Accenture, “Igniting Growth in the Consumer Technology,” 2015. [Online]. Available:
https://www.accenture.com/_acnmedia/PDF-3/Accenture-Igniting-Growth-in-
Consumer-Technology.pdf.

[7] A. G. I. and J. V. Vidal, “Lights off! The Darkness of the Smart Meters,” in BlackHat
Europe, 2014.

[8] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy, B.
Kantor, D. Anderson, H. Shacham, and S. Savage, “Experimental security analysis of a
modern automobile,” in IEEE Symposium on Security and Privacy (SP), 2010, pp. 447–
462.

[9] T. Bonaci, J. Herron, T. Yusuf, J. Yan, T. Kohno, and H. J. Chizeck, “To Make a Robot
Secure: An Experimental Analysis of Cyber Security Threats Against Teleoperated
Surgical Robots,” CoRR, vol. abs/1504.04339, 2015.

[10] J. Radcliffe, “Hacking Medical Devices for Fun and Insulin: Breaking the Human SCADA
System,” in BlackHat USA, 2011.

[11] S. Erven and M. Collao, “Medical Devices: Pwnage and Honeypot,” in Derbycon Security
Conference, Louisville, Kentucky, USA, 2015.

[12] S. Erven and A. Brand, “Medical Device Security: An Infectious Disease,” in Thotcon
2015, Chicago, IL, USA, 2015.

[13] A. Cui and S. J. Stolfo, “A quantitative analysis of the insecurity of embedded network
devices,” in Proceedings of the 26th Annual Computer Security Applications Conference
on - ACSAC ’10, 2010, p. 97.

[14] HP, “Internet of Things Research Study,” 2014. [Online]. Available:
http://h20195.www2.hp.com/V2/GetDocument.

[15] OWASP, “Internet of Things Top Ten Project,” Open Web Application Security Project

133

(OWASP). [Online]. Available:
https://www.owasp.org/index.php/OWASP_Internet_of_Things_Top_Ten_Project.

[16] HP, “Internet of Things Security Study: Home Security Systems Report,” 2015. [Online].
Available: http://goo.gl/AzOcWp.

[17] A. Jacobsson, M. Boldt, and B. Carlsson, “A risk analysis of a smart home automation
system,” Futur. Gener. Comput. Syst., Sep. 2015.

[18] M. L. Mazurek, B. Salmon, R. Shay, K. Vaniea, L. Bauer, L. F. Cranor, G. R. Ganger, M. K.
Reiter, J. P. Arsenault, J. Bresee, N. Gupta, I. Ion, C. Johns, D. Lee, Y. Liang, and J. Olsen,
“Access control for home data sharing,” in Proceedings of the 28th international
conference on Human factors in computing systems - CHI ’10, 2010, p. 645.

[19] D. Barnard-Wills, L. Marinos, and S. Portesi, “uropean Union Agency for Network and
Information Security (ENISA): Threat Landscape and Good Practice Guide for Smart
Home and Converged Media,” 2014.

[20] A. Brush, B. Lee, and R. Mahajan, “Home automation in the wild: challenges and
opportunities,” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, 2011, pp. 2115–2124.

[21] ENISA, “Security and Resilience in eHealth Infrastructures and Services,” 2015.
[Online]. Available: https://www.enisa.europa.eu/activities/Resilience-and-
CIIP/critical-infrastructure-and-services/ehealth_sec/security-and-resilience-in-
ehealth-infrastructures-and-services.

[22] B. Parducci, H. Lockhart, and E. Rissanen, “eXtensible Access Control Markup Language
(XACML) Version 3.0,” OASIS Standard, 2013. [Online]. Available: http://docs.oasis-
open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf.

[23] D. Driscoll, A. Mensch, T. Nixon, and A. Regnier, “Devices profile for web services,
version 1.1,” OASIS, 2009. [Online]. Available: http://docs.oasis-open.org/ws-
dd/dpws/wsdd-dpws-1.1-spec.pdf.

[24] A. Banks and R. Gupta, “MQTT Version 3.1.1,” OASIS Standard, 2014. [Online].
Available: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.pdf.

[25] C. Röcker, M. Ziefle, and A. Holzinger, “From Computer Innovation to Human
Integration: Current Trends and Challenges for Pervasive HealthTechnologies,” 2014,
pp. 1–17.

[26] H. A. Kielland Aanesen and J. Borras, “eHealth: The future service model for home and
community health care,” in 2013 7th IEEE International Conference on Digital
Ecosystems and Technologies (DEST), 2013, pp. 172–177.

[27] S. Tennina, E. Kartsakli, A. Lalos, A. Antonopoulos, P.-V. Mekikis, M. Di Renzo, Y. Zacchia
Lun, F. Graziosi, L. Alonso, and C. Verikoukis, “WSN4QoL: Wireless Sensor Networks for
quality of life,” in 2013 IEEE 15th International Conference on e-Health Networking,
Applications and Services (Healthcom 2013), 2013, pp. 277–279.

[28] J. Sermersheim, “Lightweight Directory Access Protocol (LDAP): The Protocol,” The
Internet Engineering Task Force. pp. 1–69, 2006.

[29] P. Rashidi and A. Mihailidis, “A survey on ambient-assisted living tools for older adults,”

134

IEEE J. Biomed. Heal. Informatics, vol. 17, no. 3, pp. 579–590, 2013.

[30] G. Mulligan, “The 6LoWPAN architecture,” in Proceedings of the 4th workshop on
Embedded networked sensors - EmNets ’07, 2007, p. 78.

[31] Z. Alliance, “Zigbee Specification,” Zigbee Alliance website, pp. 1–604, 2008.

[32] Z-Wave, “About Z-Wave,” z-wave.com, 2015. [Online]. Available: http://www.z-
wave.com/z-wave_benefits.

[33] S. Bluetooth, “Specification of the Bluetooth system,” Core, version, vol. 1, pp. 2005–
10, 2005.

[34] B. P. Crow, I. Widjaja, L. G. Kim, and P. T. Sakai, “IEEE 802.11 Wireless Local Area
Networks,” IEEE Commun. Mag., vol. 35, no. 9, pp. 116–126, 1997.

[35] H. Bohn, A. Bobek, and F. Golatowski, “SIRENA - Service Infrastructure for Real-time
Embedded Networked Devices: A service oriented framework for different domains,”
in International Conference on Networking, International Conference on Systems and
International Conference on Mobile Communications and Learning Technologies
(ICNICONSMCL’06), 2006, vol. 43, no. 1, pp. 43–43.

[36] F. Jammes, A. Mensch, and H. Smit, “Service-oriented device communications using
the devices profile for Web services,” in Proceedings - 21st International Conference
on Advanced Information Networking and Applications Workshops/Symposia,
AINAW’07, 2007, vol. 2, pp. 947–955.

[37] “Service-Oriented Device & Delivery Architecture (SODA).” [Online]. Available:
https://itea3.org/project/SODA.html.

[38] “Service-Oriented Cross-layer Infrastructure for Distributed Smart Embedded Devices
(SOCRADES).” [Online]. Available: http:

[39] S. Karnouskos, D. Savio, P. Spiess, D. Guinard, V. Trifa, and O. Baecker, “Real-world
Service Interaction with Enterprise Systems in Dynamic Manufacturing Environments,”
in Artificial Intelligence Techniques for Networked Manufacturing Enterprises
Management SE - 14, L. Benyoucef and B. Grabot, Eds. Springer London, 2010, pp. 423–
457.

[40] “MORE Project.” [Online]. Available: http://www.ist-more.org/.

[41] J. Schmutzler, U. Bieker, and C. Wietfeld, “Network-Centric Middleware Supporting
Dynamic Web Service Deployment on Heterogeneous Embedded Systems,” in 14th
International Conference on Concurrent Enterprising, 2008.

[42] IMC-AESOP, “IMC-AESOP Project Overview,” Project Description, 2011. [Online].
Available: http://imc-aesop.eu/html/ProjDes.html.

[43] “Web of Objects (WOO), ITEA 2 Project.” [Online]. Available: http://www.web-of-
objects.com/.

[44] P. Spieß and S. Karnouskos, “Maximizing the business value of networked embedded
systems through process-level integration into enterprise software,” in 2007 2nd
International Conference on Pervasive Computing and Applications, ICPCA’07, 2007,
pp. 536–541.

135

[45] S. Mitropoulos and C. Douligeris, “The impact of Service-Oriented Architecture (SOA)
technologies in global market-oriented enterprises,” Int. J. Appl. Syst. Stud., vol. 4, no.
1/2, p. 106, 2011.

[46] C. Y. Leong, A. R. Ramli, and T. Perumal, “A rule-based framework for heterogeneous
subsystems management in smart home environment,” IEEE Trans. Consum. Electron.,
vol. 55, no. 3, pp. 1208–1213, Aug. 2009.

[47] T. Perumal, A. Ramli, and C. Leong, “Interoperability framework for smart home
systems,” IEEE Trans. Consum. Electron., vol. 57, no. 4, pp. 1607–1611, Nov. 2011.

[48] A. Sleman and R. Moeller, “SOA distributed operating system for managing embedded
devices in home and building automation,” IEEE Trans. Consum. Electron., vol. 57, no.
2, pp. 945–952, May 2011.

[49] T. Bray, “RFC7159: The JavaScript Object Notation (JSON) Data Interchange Format,”
Internet Engineering Task Force (IETF) Request for Comments, 2014. [Online].
Available: http://tools.ietf.org/html/rfc7159.

[50] J. Bourcier, C. Escoffier, and P. Lalanda, “Implementing Home-Control Applications on
Service Platform,” in 2007 4th IEEE Consumer Communications and Networking
Conference, 2007, pp. 925–929.

[51] R. R. Igorevich, P. Park, J. Choi, and D. Min, “iVision based Context-Aware Smart Home
system,” in The 1st IEEE Global Conference on Consumer Electronics 2012, 2012, pp.
542–546.

[52] V. Venkatesh, V. Vaithayana, P. Raj, K. Gopalan, and R. Amirtharaj, “A Smart Train Using
the DPWS-based Sensor Integration,” Res. J. Inf. Technol., vol. 5, no. 3, pp. 352–362,
Mar. 2013.

[53] T. Cucinotta, A. Mancina, G. F. Anastasi, G. Lipari, L. Mangeruca, R. Checcozzo, and F.
Rusina, “A Real-Time Service-Oriented Architecture for Industrial Automation,” IEEE
Trans. Ind. Informatics, vol. 5, no. 3, pp. 267–277, Aug. 2009.

[54] S. Pöhlsen, S. Schlichting, M. Strähle, F. Franz, and C. Werner, “A DPWS-Based
Architecture for Medical Device Interoperability,” in World Congress on Medical
Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany SE - 22,
vol. 25/5, O. Dössel and W. Schlegel, Eds. Springer Berlin Heidelberg, 2009, pp. 82–85.

[55] C. Manifavas, K. Fysarakis, K. Rantos, K. Kagiambakis, and I. Papaefstathiou, “Policy-
Based Access Control for Body Sensor Networks,” in Information Security Theory and
Practice. Securing the Internet of Things SE - 11, vol. 8501, D. Naccache and D.
Sauveron, Eds. Springer Berlin Heidelberg, 2014, pp. 150–159.

[56] K. Fysarakis, I. Papaefstathiou, C. Manifavas, K. Rantos, and O. Sultatos, “Policy-based
access control for DPWS-enabled ubiquitous devices,” in Proceedings of the 2014 IEEE
Emerging Technology and Factory Automation (ETFA), 2014, pp. 1–8.

[57] A. Müller, H. Kinkelin, S. K. Ghai, and G. Carle, “A Secure Service Infrastructure for
Interconnecting Future Home Networks based on DPWS and XACML Categories and
Subject Descriptors The Devices Profile for Web Services,” pp. 31–36.

[58] O. Dohndorf, J. Kruger, H. Krumm, C. Fiehe, A. Litvina, I. Luck, and F.-J. Stewing,
“Towards the Web of Things: Using DPWS to bridge isolated OSGi platforms,” in 2010

136

8th IEEE International Conference on Pervasive Computing and Communications
Workshops (PERCOM Workshops), 2010, pp. 720–725.

[59] H. Wang, B. Sheng, and Q. Li, “Elliptic curve cryptography-based access control in
sensor networks,” Int. J. Secur. Networks, vol. 1, no. 3/4, p. 127, 2006.

[60] M. L. Das, “Two-factor user authentication in wireless sensor networks,” IEEE Trans.
Wirel. Commun., vol. 8, no. 3, pp. 1086–1090, Mar. 2009.

[61] D. He, J. Bu, S. Zhu, S. Chan, and C. Chen, “Distributed Access Control with Privacy
Support in Wireless Sensor Networks,” IEEE Trans. Wirel. Commun., vol. 10, no. 10, pp.
3472–3481, Oct. 2011.

[62] Y. Zhou, Y. Zhang, and Y. Fang, “Access control in wireless sensor networks,” Ad Hoc
Networks, vol. 5, no. 1, pp. 3–13, Jan. 2007.

[63] Y. Faye, I. Niang, and T. Noel, “A survey of access control schemes in wireless sensor
networks,” Proc. World Acad. Sci. Eng. Tech, no. Laboratory LID, pp. 814–823, 2011.

[64] S. Yu, K. Ren, and W. Lou, “FDAC: Toward Fine-Grained Distributed Data Access Control
in Wireless Sensor Networks,” IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 4, pp. 352–
362, 2011.

[65] J. Maerien, S. Michiels, C. Huygens, D. Hughes, and W. Joosen, “Access Control in Multi-
party Wireless Sensor Networks,” in Wireless Sensor Networks SE - 3, vol. 7772, P.
Demeester, I. Moerman, and A. Terzis, Eds. Springer Berlin Heidelberg, 2013, pp. 34–
49.

[66] A. Serbanati, A. S. Segura, A. Oliverau, Y. B. Saied, N. Gruschka, D. Gessner, and F.
Gomez-Marmol, “Internet of Things Architecture, Concept and Solutions for Privacy
and Security in the Resolution Infrastructure,” EU project IoT-A, Project report D4. 2,
2012. .

[67] S. L. Keoh, K. Twidle, N. Pryce, A. E. Schaeffer-Filho, E. Lupu, N. Dulay, M. Sloman, S.
Heeps, S. Strowes, J. Sventek, and E. Katsiri, “Policy-based Management for Body-
Sensor Networks,” in 4th International Workshop on Wearable and Implantable Body
Sensor Networks (BSN 2007), no. March, Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 92–98.

[68] J.-E. Lee, S.-H. Cha, J.-O. Lee, S.-J. Kang, and K.-H. Cho, “A Policy-Based Management
Framework for Self-managed Wireless Sensor Networks,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2006, vol. 4238, pp. 43–52.

[69] N. Matthys and W. Joosen, “Towards policy-based management of sensor networks,”
in Proceedings of the 3rd international workshop on Middleware for sensor networks -
MidSens ’08, 2008, pp. 13–18.

[70] W. Zhang and H. Xu, “A Policy Based Wireless Sensor Network Management
Architecture,” in 2010 Third International Conference on Intelligent Networks and
Intelligent Systems, 2010, pp. 552–555.

[71] T. Bourdenas and M. Sloman, “Starfish,” in Proceedings of the 2010 ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems - SEAMS ’10, 2010, pp.
75–83.

137

[72] A. A. A. El-Aziz and A. Kannan, “Access control for healthcare data using extended
XACML-SRBAC model,” in 2012 International Conference on Computer Communication
and Informatics, 2012, pp. 1–4.

[73] Y. Zhu, S. Keoh, M. Sloman, and E. Lupu, “A lightweight policy system for body sensor
networks,” IEEE Trans. Netw. Serv. Manag., vol. 6, no. 3, pp. 137–148, Sep. 2009.

[74] C. Santos-Pereira, A. B. Augusto, R. Cruz-Correia, and M. E. Correia, “A secure RBAC
mobile agent access control model for healthcare institutions,” Proc. 26th IEEE Int.
Symp. Comput. Med. Syst., pp. 349–354, Jun. 2013.

[75] A. Faravelon, S. Chollet, C. Verdier, and A. Front, “Enforcing privacy as access control
in a pervasive context,” in 2012 IEEE Consumer Communications and Networking
Conference (CCNC), 2012, pp. 380–384.

[76] M. Jung, G. Kienesberger, W. Granzer, M. Unger, and W. Kastner, “Privacy enabled web
service access control using SAML and XACML for home automation gateways,” 2011
Int. Conf. Internet Technol. Secur. Trans., no. December, pp. 584–591, 2011.

[77] J. E. Kim, G. Boulos, J. Yackovich, T. Barth, C. Beckel, and D. Mosse, “Seamless
Integration of Heterogeneous Devices and Access Control in Smart Homes,” in 2012
Eighth International Conference on Intelligent Environments, 2012, pp. 206–213.

[78] “Open Services Gateway Initiative (OSGi).” [Online]. Available: http://www.osgi.org/.

[79] E.-A. Cho, C.-J. Moon, and D.-K. Baik, “Home gateway operating model using reference
monitor for enhanced user comfort and privacy,” IEEE Trans. Consum. Electron., vol.
54, no. 2, pp. 494–500, May 2008.

[80] P. Busnel, P. El-Khoury, S. Giroux, and K. Li, “An xacml-based security pattern to achieve
socio-technical confidentiality in smart homes,” Int. J. Smart Home, vol. 3, no. 1, pp.
17–26, 2009.

[81] L. Seitz, G. Selander, and C. Gehrmann, “Authorization framework for the Internet-of-
Things,” in 2013 IEEE 14th International Symposium on a World of Wireless, Mobile and
Multimedia Networks, WoWMoM 2013, 2013.

[82] P. Fremantle, B. Aziz, J. Kopecky, and P. Scott, “Federated Identity and Access
Management for the Internet of Things,” in 2014 International Workshop on Secure
Internet of Things, 2014, pp. 10–17.

[83] T. Perumal, a. Ramli, and C. Leong, “Design and implementation of SOAP-based
residential management for smart home systems,” IEEE Trans. Consum. Electron., vol.
54, no. 2, pp. 453–459, May 2008.

[84] A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B. Quinn, S. Herzog, A. Huynh,
M. Carlson, J. Perry, and S. Waldbusser, “Terminology for Policy-Based Management,”
RFC 3198, 2001. [Online]. Available: http://www.ietf.org/rfc/rfc3198.txt.

[85] “Sun Microsystems Laboratories, XACML.” [Online]. Available:
http://sunxacml.sourceforge.net.

[86] “PicketBox XACML.” [Online]. Available:
https://community.jboss.org/wiki/PicketBoxXACMLJBossXACML.

138

[87] “Holistic Enterprise-Ready Application Security Architecture Framework (Heras AF)
XACML.” [Online]. Available: http://www.herasaf.org/heras-af-xacml.html.

[88] “Enterprise Java XACML.” [Online]. Available: http://code.google.com/p/enterprise-
java-xacml/.

[89] D. Durham, “RFC 2748 (The COPS (Common Open Policy Service) Protocol),” Req.
comments, pp. 1–38, 2000.

[90] R. Presuhn, “Version 2 of the Protocol Operations for the Simple Network Management
Protocol (SNMP),” RFC, 2002.

[91] S. Murer and C. Hagen, “15 Years of Service Oriented Architecture at Credit Suisse,”
pp. 1–30, 2013.

[92] N. Serrano, J. Hernantes, and G. Gallardo, “Service-Oriented Architecture and Legacy
Systems,” IEEE Softw., vol. 31, no. 5, pp. 15–19, 2014.

[93] T. Nixon, A. Regnier, and R. Jeyaraman, “SOAP-over-UDP Version 1.1,” OASIS, 2009.
[Online]. Available: http://docs.oasis-open.org/ws-dd/soapoverudp/1.1/os/wsdd-
soapoverudp-1.1-spec-os.pdf.

[94] T. Nixon, A. Regnier, V. Modi, and D. Kemp, “Web Services Dynamic Discovery (WS-
Discovery), version 1.1,” OASIS, 2009. [Online]. Available: http://docs.oasis-
open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.pdf.

[95] D. Box, L. F. Cabrera, C. Critchley, F. Curbera, D. Ferguson, S. Graham, D. Hull, G.
Kakivaya, A. Lewis, B. Lovering, P. Niblett, D. Orchard, S. Samdarshi, J. Schlimmer, I.
Sedukhin, J. Shewchuk, S. Weerawarana, and D. Wortendyke, “Web Services Eventing
(WS-Eventing),” W3C Member Submission, vol. 2009. pp. 1–34, 2006.

[96] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and D. Orchard,
“Web Services Architecture,” Group, vol. 22, pp. 19–26, 2004.

[97] M. D. E. Guttman, C. Perkins, J. Veizades, “RFC 2608: Service Location Protocol, Version
2,” pp. 1–54, 1999.

[98] A. Donoho, J. Costa-requena, T. Mcgee, A. Messer, A. Fiddian-green, and J. Fuller,
“UPnPTM Device Architecture 1.1,” Architecture, pp. 1–136, 2008.

[99] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, “Web Services
Description Language (WSDL) 1.1,” International Business, no. March. pp. 1–40, 2001.

[100] T. Nixon, “UPnP Forum and DPWS Standardization Status,” 2008. [Online]. Available:
http://download.microsoft.com/download/f/0/5/f05a42ce-575b-4c60-82d6-
208d3754b2d6/UPnP_DPWS_RS08.pptx.

[101] S. Tilkov and S. Vinoski, “Node.js: Using JavaScript to build high-performance network
programs,” IEEE Internet Comput., vol. 14, pp. 80–83, 2010.

[102] I. K. Chaniotis, K.-I. D. Kyriakou, and N. D. Tselikas, “Is Node.js a viable option for
building modern web applications? A performance evaluation study,” Computing, Mar.
2014.

[103] A. Ojamaa and D. Karl, “Security Assessment of Node . js Platform,” in Information
Systems Security, 2012, pp. 35–43.

139

[104] “Projects, Applications, and Companies Using Node.” [Online]. Available:
https://github.com/joyent/node/wiki/Projects,-Applications,-and-Companies-Using-
Node.

[105] R. McGraw, “A Survey of Access Control Models,” U.S. National Institute of Standards
and Technology (NIST) Privilege (Access) Management Workshop, 2009. .

[106] “BeagleBoard-xM System Reference Manual, Rev. C.” [Online]. Available:
http://beagleboard.org/static/BBxMSRM_latest.pdf.

[107] “BeagleBone System Reference Manual, RevA3_1.0.” [Online]. Available:
http://beagleboard.org/static/beaglebone/a3/Docs/Hardware/BONE_SRM.pdf.

[108] R. B. Smith, “SPOTWorld and the Sun SPOT,” 2007 6th Int. Symp. Inf. Process. Sens.
Networks, 2007.

[109] H. Lockhart, B. Parducci, and E. Rissanen, “SAML 2.0 Profile of XACML, Version 2.0,”
OASIS, 2010. [Online]. Available: http://docs.oasis-open.org/xacml/3.0/xacml-profile-
saml2.0-v2-spec-cd-03-en.pdf.

[110] K. Rantos, A. Papanikolaou, and C. Manifavas, “IPsec over IEEE 802.15.4 for low power
and lossy networks,” in Proceedings of the 11th ACM international symposium on
Mobility management and wireless access - MobiWac ’13, 2013, pp. 59–64.

[111] K. Rantos, A. Papanikolaou, C. Manifavas, and I. Papaefstathiou, “IPv6 security for low
power and lossy networks,” in 2013 IFIP Wireless Days (WD), 2013, pp. 1–8.

[112] S. Raza, S. Duquennoy, T. Chung, D. Yazar, T. Voigt, U. Roedig, and A. H. M. Chung,
“Securing communication in 6LoWPAN with compressed IPsec,” in 2011 International
Conference on Distributed Computing in Sensor Systems and Workshops DCOSS, 2011,
pp. 1–8.

[113] N. Sastry and D. Wagner, “Security considerations for IEEE 802.15.4 networks,” in
Proceedings of the 2004 ACM workshop on Wireless security - WiSe ’04, 2004, p. 32.

[114] S. Raza, S. Duquennoy, J. Höglund, U. Roedig, and T. Voigt, “Secure communication for
the Internet of Things-a comparison of link-layer security and IPsec for 6LoWPAN,”
Secur. Commun. Networks, vol. 7, no. 12, pp. 2654–2668, Dec. 2014.

[115] T. Dierks and E. Rescorla, “RFC 5246 - The Transport Layer Security (TLS) Protocol
Version 1.2,” IETF, 2008. [Online]. Available: http://tools.ietf.org/rfc/rfc5246.txt.

[116] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security,” RFC 4347, 2012.
[Online]. Available: http://tools.ietf.org/rfc/rfc6347.txt.

[117] D. E. Boyle and T. Newe, “On the implementation and evaluation of an elliptic curve
based cryptosystem for Java enabled Wireless Sensor Networks,” Sensors Actuators, A
Phys., vol. 156, no. 2, pp. 394–405, 2009.

[118] W. Jung, S. Hong, M. Ha, Y.-J. Kim, and D. Kim, “SSL-Based Lightweight Security of IP-
Based Wireless Sensor Networks,” in 2009 International Conference on Advanced
Information Networking and Applications Workshops, 2009, pp. 1112–1117.

[119] S. Fouladgar, B. Mainaud, K. Masmoudi, and H. Afifi, “Tiny 3-TLS: A trust delegation
protocol for wireless sensor networks,” in Lecture Notes in Computer Science (including

140

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
2006, vol. 4357 LNCS, pp. 32–42.

[120] V. Gupta and M. Wurm, “The Energy Cost of SSL in Deeply Embedded Systems,” Sun
Microsystems, Inc., Mountain View, CA, USA, 2008.

[121] V. Gupta, M. Wurm, Y. Zhu, M. Millard, S. Fung, N. Gura, H. Eberle, and S. Chang Shantz,
“Sizzle: A standards-based end-to-end security architecture for the embedded
Internet,” in Pervasive and Mobile Computing, 2005, vol. 1, no. 4, pp. 425–445.

[122] F. Li, H. Zhang, and T. Takagi, “Efficient Signcryption for Heterogeneous Systems,” IEEE
Syst. J., vol. 7, no. 3, pp. 420–429, Sep. 2013.

[123] S. Nair, O. Al Ibrahim, and S. Abraham, “State Machine-Based Security Fusion for
Resource-Constrained Environments,” IEEE Syst. J., vol. 7, no. 3, pp. 430–441, Sep.
2013.

[124] K. Lawrence, C. Kaler, A. Nadalin, R. Monzilo, and P. Hallam-Baker, “Web Services
Security: SOAP Message Security 1.1,” OASIS Standard Specification, 2006. [Online].
Available: https://www.oasis-open.org/committees/download.php/16790/wss-v1.1-
spec-os-SOAPMessageSecurity.pdf.

[125] R. Monzilo, C. Kaler, A. Nadalin, P. Hallam-Baker, and C. Milono, “Web Services Security
SAML Token Profile Version 1.1.1,” OASIS Standard, 2012. [Online]. Available:
http://docs.oasis-open.org/wss-m/wss/v1.1.1/wss-SAMLTokenProfile-v1.1.1.pdf.

[126] R. Monzilo, C. Kaler, A. Nadalin, P. Hallam-Baker, and C. Milono, “Web Services Security
Kerberos Token Profile Version 1.1.1,” OASIS Standard, 2012. [Online]. Available:
http://docs.oasis-open.org/wss-m/wss/v1.1.1/os/wss-KerberosTokenProfile-v1.1.1-
os.pdf.

[127] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker, “Web Service Security X.509
Certificate Token Profile 1.1,” Oasis Stand. Specif., pp. 1–22, 2006.

[128] K. Lawrence, C. Kaler, T. Demartini, A. Nadalin, R. Monzillo, and P. Hallam-baker, “Web
Services Security Rights Expression Language (REL) Token Profile 1.1,” Language
(Baltim)., pp. 1–27, 2006.

[129] S. Cantor, J. Kemp, R. Philpott, and E. Maler, “Assertions and Protocols for the OASIS
Security Assertion Markup Language (SAML) V2.0,” OASIS, 2005. [Online]. Available:
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf.

[130] J. Zhang and V. Varadharajan, “Wireless sensor network key management survey and
taxonomy,” Journal of Network and Computer Applications, vol. 33, no. 2. pp. 63–75,
2010.

[131] K. Lawrence, C. Kaler, A. Nadalin, M. Goodner, M. Gudgin, A. Barbir, and H. Granqvist,
“WS-SecureConversation 1.4,” OASIS, 2009. [Online]. Available: http://docs.oasis-
open.org/ws-sx/ws-secureconversation/v1.4/ws-secureconversation.pdf.

[132] H. Liu, S. Pallickara, and G. Fox, “Performance of web services security,” in 13th Annual
Mardi Gras Conference, 2005, pp. 72–78.

[133] F. Lascelles and A. Flint, “WS-Security Performance,” Websphere Journal, 2006.
[Online]. Available: http://websphere.sys-con.com/node/204424.

141

[134] D. Whiting, R. Housley, and N. Ferguson, “Counter with CBC-MAC (CCM),” 2003.
[Online]. Available: http://tools.ietf.org/rfc/rfc3610.txt.

[135] “Knopflerfish - Open Source OSGi service platform.” [Online]. Available:
http://www.knopflerfish.org/.

[136] K. Fysarakis, G. Hatzivasilis, I. Askoxylakis, and C. Manifavas, “RT-SPDM: Real-Time
Security, Privacy and Dependability Management of Heterogeneous Systems,” 2015,
pp. 619–630.

[137] G. Yang and M. Yacoub, Body sensor networks, vol. 6, no. 3. Springer London, 2006.

[138] B. Alhaqbani and C. Fidge, “Access control requirements for processing electronic
health records,” in Proceedings of the 2007 international conference on Business
process management, 2007, pp. 371–382.

[139] P. Ray and J. Wimalasiri, “The need for technical solutions for maintaining the privacy
of EHR.,” in Proceedings of the International Conference of IEEE Engineering in
Medicine and Biology Society, 2006, vol. 1, no. 1557–170X (Print) LA - eng PT - Journal
Article SB - IM, pp. 4686–4689.

[140] W. F. Ehrsam, C. H. W. Meyer, J. L. Smith, and W. L. Tuchman, “Message verification
and transmission error detection by block chaining,” U.S. Patent 4,074,066, 1978.

[141] D. DeCouteau, M. Davis, and D. Staggs, “OASIS Cross-Enterprise Security and Privacy
Authorization (XSPA) Profile of XACML v2.0 for Healthcare Version 1.0,” OASIS Stand.
Specif., pp. 1–21, 2009.

[142] B. Lo and G. Yang, “Body Sensor Networks: Infrastructure for Life Science Sensing
Research,” in 2006 IEEE/NLM Life Science Systems and Applications Workshop, 2006,
pp. 1–2.

[143] W. Colitti, K. Steenhaut, and N. De Caro, “Integrating wireless sensor networks with
the web,” Conf. Inf. Process. Sens. Networks, pp. 2–6, 2011.

[144] S. Cantor, J. Hodges, F. Hirsch, R. Philpott, R. S. A. Security, J. Hughes, A. Origin, H.
Lockhart, B. E. A. Systems, M. Beach, R. Metz, B. A. Hamilton, R. Randall, T. Wisniewski,
I. Reid, P. Austel, R. L. B. Morgan, P. C. Davis, J. Kemp, P. Madsen, A. Anderson, and S.
Microsystems, “Profiles for the OASIS Security Assertion Markup Language (SAML),”
Language (Baltim)., vol. 16, no. 3, p. 66, 2005.

[145] “WS4D-JMEDS DPWS Stack.” [Online]. Available:
http://sourceforge.net/projects/ws4d-javame/.

[146] E. Zeeb, G. Moritz, D. Timmermann, and F. Golatowski, “WS4D: Toolkits for Networked
Embedded Systems Based on the Devices Profile for Web Services,” in 2010 39th
International Conference on Parallel Processing Workshops, 2010, pp. 1–8.

[147] “STORK 2.0, Secure Identity Across Borders Linked 2.0,” D4.1 First version of process
flows, 2012. [Online]. Available: https://www.eid-stork2.eu/.

[148] K. Fysarakis, D. Mylonakis, C. Manifavas, and I. Papaefstathiou, “Node.DPWS: Efficient
Web Services for the IoT,” IEEE Softw., pp. 1–1, 2015.

[149] “Mosquitto Open Source MQTT v3.1/v3.1.1 Broker.” [Online]. Available:

142

http://mosquitto.org.

[150] S. Hodges, N. Villar, J. Scott, and A. Schmidt, “A new era for ubicomp development,”
IEEE Pervasive Comput., vol. 11, no. 1, pp. 5–9, 2012.

[151] “Road safety study for the interim evaluation of Policy Orientations on Road Safety
2011-2020,” European Commission, Jeanne Breen Consulting, 2015. [Online].
Available:
http://ec.europa.eu/transport/road_safety/pdf/study_final_report_february_2015_fi
nal.pdf.

[152] J. A. Cook, I. V. Kolmanovsky, D. McNamara, E. C. Nelson, and K. V. Prasad, “Control,
computing and communications: Technologies for the twenty-first century model T,”
Proc. IEEE, vol. 95, no. 2, pp. 334–355, 2007.

[153] A. Doshi, B. T. Morris, and M. M. Trivedi, “On-road prediction of driver’s intent with
multimodal sensory cues,” IEEE Pervasive Comput., vol. 10, no. 3, pp. 22–34, 2011.

[154] K. Lee, J. Flinn, T. J. Giuli, B. Noble, and C. Peplin, “AMC,” in Proceeding of the 11th
annual international conference on Mobile systems, applications, and services -
MobiSys ’13, 2013, p. 1.

[155] “Connected Vehicle Infrastructure Deployment Considerations: Lessons Learned from
Safety Pilot and Other Connected Vehicle Test Programs,” U.S. Department of
Transportation, 2014. [Online]. Available:
http://www.roadsbridges.com/sites/default/files/Deployment_Considerations_repor
t_06_02_2014_v1.pdf.

[156] “Telematic applications: eCall HGV/GV, additional data concept specification,”
Economic Commission for Europe, 2011. [Online]. Available:
http://www.unece.org/fileadmin/DAM/trans/doc/2011/dgwp15ac1/INF.30e.pdf.

[157] T. J. Giuli, D. Watson, and K. V. Prasad, “The last inch at 70 miles per hour,” IEEE
Pervasive Comput., vol. 5, no. 4, pp. 20–27, 2006.

[158] “Build secure embedded systems with nSHIELD,” 2014.

[159] U. D. of Transport, “National Transportation Statistics.” [Online]. Available:
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transp
ortation_statistics/html/table_01_11.html.

[160] “2015-2016 Automobile Industry Pocket Guide,” European Automobile Manufacturers’
Association. .

[161] I. Garitano, S. Fayyad, and J. Noll, “Multi-Metrics Approach for Security, Privacy and
Dependability in Embedded Systems,” Wirel. Pers. Commun., vol. 81, no. 4, pp. 1359–
1376, Apr. 2015.

[162] G. Hatzivasilis, I. Papaefstathiou, and C. Manifavas, “ModConTR: A modular and
configurable trust and reputation-based system for secure routing in ad-hoc
networks,” in 2014 IEEE/ACS 11th International Conference on Computer Systems and
Applications (AICCSA), 2014, pp. 56–63.

[163] E. Rissanen, “XACML v3.0 Privacy Policy Profile Version 1.0,” OASIS. [Online]. Available:
http://docs.oasis-open.org/xacml/3.0/privacy/v1.0/xacml-3.0-privacy-v1.0.html.

143

[164] A. Huertas Celdran, F. J. Garcia Clemente, M. Gil Perez, and G. Martinez Perez,
“SeCoMan: A Semantic-Aware Policy Framework for Developing Privacy-Preserving
and Context-Aware Smart Applications,” IEEE Syst. J., pp. 1–14, 2014.

[165] R. Abdunabi, M. Al-Lail, I. Ray, and R. B. France, “Specification, Validation, and
Enforcement of a Generalized Spatio-Temporal Role-Based Access Control Model,”
IEEE Syst. J., vol. 7, no. 3, pp. 501–515, Sep. 2013.

[166] E. Georgakakis, S. A. Nikolidakis, D. D. Vergados, and C. Douligeris, “Spatio temporal
emergency role based access control (STEM-RBAC): A time and location aware role
based access control model with a break the glass mechanism,” in 2011 IEEE
Symposium on Computers and Communications (ISCC), 2011, pp. 764–770.

[167] I. K. Samaras, G. D. Hassapis, and J. V. Gialelis, “A Modified DPWS Protocol Stack for
6LoWPAN-Based Wireless Sensor Networks,” IEEE Trans. Ind. Informatics, vol. 9, no. 1,
pp. 209–217, Feb. 2013.

[168] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application Protocol (CoAP),”
IETF RFC 7252, 2014. [Online]. Available: https://tools.ietf.org/html/rfc7252.

[169] P. Saint-Andre, “Extensible Messaging and Presence Protocol (XMPP) : Core,” Internet
Engineering Task Force. pp. 1–212, 2011.

[170] K. Markantonakis, R. N. Akram, and M. G. Msgna, “Secure and Trusted Application
Execution on Embedded Devices,” 2015, pp. 3–24.

[171] S. Alam, M. M. R. Chowdhury, and J. Noll, “Interoperability of Security-Enabled
{Internet of Things},” Wirel. Pers. Commun., vol. 61, no. 3, pp. 567–586, 2011.

[172] M. Daněk, J. Kadlec, R. Bartosinski, and L. Kohout, “Increasing the level of abstraction
in {FPGA}-based designs,” in International Conference on Field Programmable Logic
and Applications (FPL 2008), 2008, pp. 5–10.

[173] M. Msgna, K. Markantonakis, and K. Mayes, “The B-Side of Side Channel Leakage:
Control Flow Security in Embedded Systems,” 2013, pp. 288–304.

[174] M. Msgna, K. Markantonakis, D. Naccache, and K. Mayes, “Verifying Software Integrity
in Embedded Systems: A Side Channel Approach,” pp. 261–280, 2014.

[175] “Trusted Platform Module. ISO/IEC 11889-1:2009.” [Online]. Available:
http://www.trustedcomputinggroup.org/resources/tpm_main_specification.

[176] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljačić, “Wireless
power transfer via strongly coupled magnetic resonances,” Science (80-.)., vol. 317,
no. 5834, pp. 83–86, 2007.

[177] A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Efficient wireless non-radiative mid-
range energy transfer,” Ann. Phys. (N. Y)., vol. 323, no. 1, pp. 34–48, 2008.

[178] M. Naedele, “An access control protocol for embedded devices,” in 4th International
IEEE Conference on Industrial Informatics (INDIN ’06), 2006, pp. 565–569.

[179] C. Szilagyi and P. Koopman, “Low cost multicast authentication via validity voting in
time-triggered embedded control networks,” in 5th Workshop on Embedded Systems
Security (WESS ’10), 2010, pp. 10:1–10:10.

144

[180] C. Szilagyi and P. Koopman, “Flexible multicast authentication for time-triggered
embedded control network applications,” in IEEE/IFIP International Conference on
Dependable Systems & Networks (DSN ’09), 2009, pp. 165–174.

[181] K. Rantos, A. Papanikolaou, K. Fysarakis, and C. Manifavas, “Secure policy-based
management solutions in heterogeneous embedded systems networks,” in 2012
International Conference on Telecommunications and Multimedia (TEMU), 2012, pp.
227–232.

[182] G. Carl, G. Kesidis, R. R. Brooks, and S. Rai, “Denial-of-service attack detection
techniques,” IEEE Internet Comput., vol. 10, no. 1, 2006.

[183] D. R. Raymond and S. F. Midkiff, “Denial-of-Service in Wireless Sensor Networks:
Attacks and Defenses,” IEEE Pervasive Comput., vol. 7, no. 1, pp. 74–81, Jan. 2008.

[184] R. Smith, “PhlashDance, Discovering permanent denial of service attacks against
embedded systems.” 2008.

[185] K. Stefanidis and D. N. Serpanos, “Implementing filtering and traceback mechanism for
packet-marking IP-traceback schemes against DDoS attacks,” in 2008 4th International
IEEE Conference Intelligent Systems, 2008, vol. 2, pp. 14–28–14–33.

[186] I. Aad, J.-P. Hubaux, and E. W. W. Knightly, “Impact of Denial of Service Attacks on Ad
Hoc Networks,” IEEE/ACM Trans. Netw., vol. 16, no. 4, pp. 791–802, Aug. 2008.

[187] R. N. Akram, K. Markantonakis, R. Holloway, S. Kariyawasam, S. Ayub, A. Seeam, and R.
Atkinson, “Challenges of security and trust in Avionics Wireless Networks,” in 2015
IEEE/AIAA 34th Digital Avionics Systems Conference (DASC), 2015, pp. 4B1–1–4B1–12.

[188] M. R. Doomun and K. M. S. Soyjaudah, “Analytical comparison of cryptographic
techniques for resource-constrained wireless security,” Int. J. Netw. Secur., vol. 9, no.
1, pp. 82–94, 2009.

[189] B. Preneel, “Research challenges in lightweight cryptography.” 2009.

[190] T. Eisenbarth, S. Kumar, C. Paar, A. Poschmann, and L. Uhsadel, “A Survey of
Lightweight-Cryptography Implementations,” IEEE Des. Test Comput., vol. 24, no. 6, pp.
522–533, Nov. 2007.

[191] R. Roman, C. Alcaraz, and J. Lopez, “A Survey of Cryptographic Primitives and
Implementations for Hardware-Constrained Sensor Network Nodes,” Mob. Networks
Appl., vol. 12, no. 4, pp. 231–244, Oct. 2007.

[192] C. Paar, A. Poschmann, and M. Robshaw, “New designs in lightweight symmetric
encryption,” RFID Secur., vol. III, pp. 349–371, 2009.

[193] P. Kitsos, N. Sklavos, M. Parousi, and A. N. Skodras, “A comparative study of hardware
architectures for lightweight block ciphers,” Comput. Electr. Eng., vol. 38, no. 1, pp.
148–160, Jan. 2012.

[194] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw, Y.
Seurin, and C. Vikkelsoe, “PRESENT: An Ultra-Lightweight Block Cipher,” in
Cryptographic Hardware and Embedded Systems - CHES 2007, vol. 4727, P. Paillier and
I. Verbauwhede, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 450–
466.

145

[195] K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, and T. Shirai, “Piccolo: An
Ultra-Lightweight Blockcipher,” Cryptogr. Hardw. Embed. Syst. CHES 2011, Springer,
LNCS, vol. 6917, pp. 342–357, 2011.

[196] C. De Cannière, “Trivium: A Stream Cipher Construction Inspired by Block Cipher Design
Principles,” in Information Security, vol. 507932, 2006, pp. 171–186.

[197] D. Watanabe, K. Ideguchi, J. Kitahara, K. Muto, and H. Furuichi, “Enocoro-80: A
Hardware Oriented Stream Cipher,” in 3rd International Conference on Availability,
Reliability and Security (ARES 08), 2008, pp. 1294–1300.

[198] M. Feldhofer, J. Wolkerstorfer, and V. Rijmen, “AES implementation on a grain of
sand,” IEE Proc. Inf. Secur., vol. 152, no. 1, pp. 13–20, 2005.

[199] D. Engels, M.-J. O. Saarinen, P. Schweitzer, and E. M. Smith, “The Hummingbird-2
Lightweight Authenticated Encryption Algorithm,” in 7th Workshop of {RFID} Security
and Privacy {(RFIDSec ’11)}, vol. 7055, A. Juels and C. Paar, Eds. Amherst,
Massachusetts, USA, 2012, pp. 19–31.

[200] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers, “The
SIMON and SPECK lightweight block ciphers,” in Proceedings of the 52nd Annual Design
Automation Conference on - DAC ’15, 2015, pp. 1–6.

[201] F. Karakoç, H. H. Demirci, A. E. Harmancı, F. Karakoc, H. H. Demirci, and A. E. Harmanci,
“ITUbee: A Software Oriented Lightweight Block Cipher,” in 2nd International
workshop on lightweight cryptography for security & privacy (LightSEC 2013), vol. 8162,
2013, pp. 16–27.

[202] ECRYPT, “eSTREAM project,” 2008. [Online]. Available:
http://www.ecrypt.eu.org/stream/.

[203] A. Bogdanov, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw, and Y. Seurin, “Hash
Functions and RFID Tags: Mind the Gap,” in Cryptographic Hardware and Embedded
Systems – CHES 2008, vol. 5154, E. Oswald and P. Rohatgi, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 283–299.

[204] K. Gaj, E. Homsirikamol, M. Rogawski, R. Shahid, and M. U. Sharif, “Comprehensive
Evaluation of High-Speed and Medium-Speed Implementations of Five {SHA-3} Finalists
Using {Xilinx} and {Altera} {FPGAs}.” 2012.

[205] J. Guo, T. Peyrin, and A. Poschmann, “The PHOTON Family of Lightweight Hash
Functions,” in Advances in Cryptology – CRYPTO 2011, Springer, LNCSS, vol. 6841, P.
Rogaway, Ed. Santa Barbara, CA, USA, 2011, pp. 222–239.

[206] A. Bogdanov, M. Knežević, G. Leander, D. Toz, K. Varıcı, and I. Verbauwhede,
“spongent: A Lightweight Hash Function,” in 13th International Workshop on
Cryptographic Hardware and Embedded Systems {(CHES ’11)}, vol. 6917, B. Preneel and
T. Takagi, Eds. Nara, Japan, 2011, pp. 312–325.

[207] A. A. Kamal and A. M. Youssef, “An FPGA implementation of the NTRUEncrypt
cryptosystem,” in 2009 International Conference on Microelectronics - ICM, 2009, pp.
209–212.

[208] C. Manifavas, G. Hatzivasilis, K. Fysarakis, and K. Rantos, “Lightweight Cryptography for
Embedded Systems – A Comparative Analysis,” in 6th Internations Workshop on

146

Autonomous and Spontaneous Security (SETOP 2013), vol. 8247, RHUL, Egham, U.K.:
Springer-Verlag Berlin Heidelberg, 2014, pp. 333–349.

[209] G. Hatzivasilis, A. Theodoridis, H. Gasparis, C. Manifavas, and I. Papaefstathiou, “ULCL
- An Ultra-lightweight Cryptographic Library for Embedded Systems,” in Proceedings of
the 4th International Conference on Pervasive and Embedded Computing and
Communication Systems, 2014, pp. 247–254.

[210] C. Kuo, M. Luk, R. Negi, and A. Perrig, “Message-in-a-bottle,” in Proceedings of the 5th
international conference on Embedded networked sensor systems - SenSys ’07, 2007,
p. 233.

[211] B. Doyle, S. Bell, A. F. Smeaton, K. McCusker, and N. O’Connor, “Security considerations
and key negotiation techniques for power constrained sensor networks,” Comput. J.,
vol. 49, no. 4, pp. 443–453, May 2006.

[212] Jyh-How Huang, J. Buckingham, and R. Han, “A Level Key Infrastructure for Secure and
Efficient Group Communication in Wireless Sensor Network,” in First International
Conference on Security and Privacy for Emerging Areas in Communications Networks
(SECURECOMM’05), 2005, pp. 249–260.

[213] K. M. Martin and M. B. Paterson, “An Application-Oriented Framework for Wireless
Sensor Network Key Establishment,” Electron. Notes Theor. Comput. Sci., vol. 192, no.
2, pp. 31–41, May 2008.

[214] D. Boneh and M. Franklin, “Identity-Based Encryption from the Weil Pairing,” in SIAM
Journal on Computing, vol. 32, no. 3, 2001, pp. 213–229.

[215] L. B. Oliveira, M. Scott, J. Lopez, and R. Dahab, “TinyPBC: Pairings for authenticated
identity-based non-interactive key distribution in sensor networks,” in 2008 5th
International Conference on Networked Sensing Systems, 2008, vol. 34, no. 3, pp. 173–
180.

[216] C.-Y. Chen and H.-C. Chao, “A survey of key distribution in wireless sensor networks,”
Secur. Commun. Networks, vol. 7, no. 12, pp. 2495–2508, Dec. 2014.

[217] M. A. Simplício, P. S. L. M. L. M. Barreto, C. B. Margi, T. C. M. B. M. B. Carvalho, M. A.
Simplicio Jr., P. S. L. M. L. M. Barreto, C. B. Margi, and T. C. M. B. M. B. Carvalho, “A
survey on key management mechanisms for distributed Wireless Sensor Networks,”
Comput. Networks, vol. 54, no. 15, pp. 2591–2612, Oct. 2010.

[218] S. Yoshihama, T. Ebringer, M. Nakamura, S. Munetoh, T. Mishina, and H. Maruyama,
“ws-Attestation: Enabling Trusted Computing on Web Services,” in Test and Analysis of
Web Services, L. Baresi and E. Di Nitto, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 441–469.

[219] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, and J. Arkko, “Diameter base protocol,”
2003.

[220] G. Hatzivasilis and C. Manifavas, “Building Trust in Ad Hoc Distributed Resource-Sharing
Networks Using Reputation-Based Systems,” in 2012 16th Panhellenic Conference on
Informatics, 2012, pp. 416–421.

[221] P. Resnick and R. Zeckhauser, “Trust among strangers in Internet transactions:
Empirical analysis of eBay’s reputation system,” Adv. Appl. …, no. 11, pp. 127–157,

147

2002.

[222] S. Buchegger, C. Tissieres, and J.-Y. Le Boudec, “A Test-Bed for Misbehavior Detection
in Mobile Ad-hoc Networks &#8212; How Much Can Watchdogs Really Do?,” in
Sixth IEEE Workshop on Mobile Computing Systems and Applications, 2004, pp. 102–
111.

[223] S. Madhavi and T. H. Kim, “An intelligent distributed reputation based mobile intrusion
detection system,” Int. J. Comput. Sci. Telecommun., vol. 2, no. 7, pp. 53–58, 2011.

[224] T. R. Abdalrazak and H. K. Sawant, “Collaborative trust-based secure routing based ad-
hoc routing protocol,” Int. J. Mod. Eng. Res., vol. 2, no. 2, pp. 95–101, 2012.

[225] Y. Zhang, L. Xu, and X. Wang, “A Cooperative Secure Routing Protocol based on
Reputation System for Ad Hoc Networks,” J. Commun., vol. 3, no. 6, pp. 43–50, Nov.
2008.

[226] K. Damandeep and S. Jyotsna, “Proposed P2P trust and reputation based model to
secure grid,” IJCA Proc. Int. Conf. Recent Adv. Futur. Trends Inf. Technol. (iRAFIT 2012),
vol. iRAFIT, no. 2, pp. 19–24, 2012.

[227] B. Gedik and L. Liu, “Protecting location privacy with personalized k-Anonymity:
{Architecture} and algorithms,” IEEE Trans. Mob. Comput., vol. 7, no. 1, pp. 1–18, Jan.
2008.

[228] G. Zhong and U. Hengartner, “Toward a distributed k-anonymity protocol for location
privacy,” in Proceedings of the 7th ACM workshop on Privacy in the electronic society -
WPES ’08, 2008, p. 33.

[229] P. Golle and K. Partridge, “On the anonymity of home/work location pairs,” in 7th
International Conference on Pervasive Computing (Pervasive 2009), 2009, vol. 5538,
pp. 390–397.

[230] L. Liu, “From data privacy to location privacy: models and algorithms,” in Proccedings
of the 33rd international conference on Very large databases, 2007, pp. 1429–1430.

[231] K. Fysarakis, C. Manifavas, I. Papaefstathiou, and A. Adamopoulos, “A lightweight
anonymity & location privacy service,” in IEEE International Symposium on Signal
Processing and Information Technology, 2013, pp. 000124–000129.

[232] P. Kotzanikolaou, E. Magkos, N. Petrakos, C. Douligeris, and V. Chrissikopoulos, “Fair
Anonymous Authentication for Location Based Services,” 2013, pp. 1–14.

[233] L. Liu, “Privacy and location anonymization in location-based services,” SIGSPATIAL
Spec., vol. 1, no. 2, pp. 15–22, Jul. 2009.

[234] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam, “L -diversity,”
ACM Trans. Knowl. Discov. Data, vol. 1, no. 1, p. 3–es, Mar. 2007.

[235] K. Gupta, A. S. Yadav, and S. Yadav, “Location Privacy Using User Anonymity and
Dummy Locations,” Int. J. Innov. Technol. Creat. Eng., vol. 1, no. 10, pp. 5–8, 2011.

[236] B. Lee, J. Oh, H. Yu, and J. Kim, “Protecting location privacy using location semantics,”
in Proceedings of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining - KDD ’11, 2011, p. 1289.

148

[237] M. Gruteser and D. Grunwald, “Enhancing Location Privacy in Wireless LAN Through
Disposable Interface Identifiers: A Quantitative Analysis,” Mob. Networks Appl., vol.
10, no. 3, pp. 315–325, Jun. 2005.

[238] Leping Huang, K. Matsuura, H. Yamane, and K. Sezaki, “Enhancing wireless location
privacy using silent period,” in IEEE Wireless Communications and Networking
Conference, 2005, 2005, vol. 2, pp. 1187–1192.

[239] B. H. B. Hoh and M. Gruteser, “Protecting Location Privacy Through Path Confusion,”
in 1st International Conference on Security and Privacy for Emerging Areas in
Communications Networks (SECURECOMM ’05), 2005, pp. 194–205.

[240] P. Hallam-baker and M. Hondo, “Web Services Policy Framework (WS- Policy),”
Structure, no. March. pp. 1–25, 2006.

[241] K. Lawrence, C. Kaler, A. Nadalin, M. Goodner, and M. Gudgin, WS-Trust 1.4. 2009, pp.
1–85.

[242] “Service-Oriented Architecture for Devices (SOA4D).” [Online]. Available:
http://cms.soa4d.org/.

[243] J. Hui and P. Thubert, “Compression Format for IPv6 Datagrams over IEEE 802.15.4-
Based Networks.”

[244] Ieee, “IEEE Standard for Local and metropolitan area networks, Part 15.4: Low-Rate
Wireless Personal Area Networks,” IEEE Std 802.15.4-2011, no. June. 2011.

[245] T. Kothmayr, C. Schmitt, W. Hu, M. Brunig, and G. Carle, “A DTLS based end-to-end
security architecture for the Internet of Things with two-way authentication,” in 37th
Annual IEEE Conference on Local Computer Networks -- Workshops, 2012, pp. 956–963.

[246] “Gumstix Verdex Pro XL6P COM.” [Online]. Available:
https://store.gumstix.com/verdex-pro-xl6p-com.html.

[247] Acme Systems, “FOX LX.” [Online]. Available: http://www.acmesystems.it/FOXLX.

[248] Freescale, “i.MX51 Processors.” [Online]. Available:
http://www.freescale.com/webapp/sps/site/taxonomy.jsp?code=IMX51_FAMILY.

[249] Xilinx, “Spartan-6 FPGA Family.” [Online]. Available:
http://www.xilinx.com/products/silicon-devices/fpga/spartan-6/index.htm.

[250] K. Dietrich, J. Winter, G. Luzhnica, and S. Podesser, “Implementation Aspects of
Anonymous Credential Systems for Mobile Trusted Platforms,” in 12th IFIP TC 6/TC 11
International Conference on Communications and Multimedia Security (CMS ’11), 2011,
pp. 45–58.

[251] K. Dietrich and J. Winter, “Towards customizable, application specific mobile trusted
modules,” in Proceedings of the fifth ACM workshop on Scalable trusted computing -
STC ’10, 2010, p. 31.

[252] ARM Security Technology, “Building a Secure System using TrustZone Technology,”
2008. [Online]. Available: http://infocenter.arm.com/help/topic/com.arm.doc.prd29-
genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf.

[253] A. Böttcher, B. Kauer, and H. Härtig, “Trusted Computing Serving an Anonymity

149

Service,” in 1st International Conference on Trusted Computing and Trust in
Information Technologies: Trusted Computing (Trust ’08) -- Challenges and
Applications, 2008, pp. 143–154.

[254] H. Hartig, M. Hohmuth, N. Feske, C. Helmuth, A. Lackorzynski, F. Mehnert, and M.
Peter, “The Nizza Secure-System Architecture,” in International Conference on
Collaborative Computing: Networking, Applications and Worksharing, 2005, p. 10.

[255] A. Muñoz, A. Maña, and P. Antón, “In the Track of the Agent Protection: A Solution
Based on Cryptographic Hardware,” in Computer Network Security, vol. 6258, I.
Kotenko and V. Skormin, Eds. Springer Berlin, Heidelberg, 2010, pp. 284–297.

[256] J. Winter and K. Dietrich, “A Hijacker’s Guide to the LPC Bus,” in Public Key
Infrastructures, Services and Applications, vol. 7163, S. Petkova-Nikova, A. Pashalidis,
and G. Pernul, Eds. Springer Berlin, Heidelberg, 2012, pp. 176–193.

[257] F. Vater, S. Peter, and P. Langendörfer, “Combinatorial Logic Circuitry as Means to
Protect Low Cost Devices Against Side Channel Attacks,” in Information Security Theory
and Practices. Smart Cards, Mobile and Ubiquitous Computing Systems, vol. 4462, D.
Sauveron, K. Markantonakis, A. Bilas, and J.-J. Quisquater, Eds. Springer Berlin,
Heidelberg, 2007, pp. 244–253.

[258] P. Christou, K. Kyriakoulakos, E. Sotiriadis, A. H. Authentication, K. Papadopoulos, G.-
G. Mplemenos, and I. Papaefstathiou, “Low-Power Security Modules optimized for
WSNs,” in 16th International Workshop on Systems, Signals and Image Processing
(IWSSIP), 2009, pp. 1–4.

[259] G.-G. Mplemenos, P. Christou, and I. Papaefstathiou, “Using reconfigurable hardware
devices in WSNs for accelerating and reducing the power consumption of header
processing tasks,” in 2009 IEEE 3rd International Symposium on Advanced Networks
and Telecommunication Systems (ANTS), 2009, pp. 1–3.

[260] A. Brokalakis, G.-G. Mplemenos, K. Papadopoulos, and I. Papaefstathiou, “RESENSE: An
Innovative, Reconfigurable, Powerful and Energy Efficient WSN Node,” in 2011 IEEE
International Conference on Communications (ICC), 2011, pp. 1–5.

[261] P. Simons, E. van der Sluis, and V. van der Leest, “Buskeeper PUFs, a promising
alternative to D Flip-Flop PUFs,” in IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST ’12), 2012, pp. 7–12.

[262] S. Katzenbeisser, Ü. Koçabas, V. Leest, A.-R. Sadeghi, G.-J. Schrijen, H. Schröder, and C.
Wachsmann, “Recyclable PUFs: Logically Reconfigurable PUFs,” in Cryptographic
Hardware and Embedded Systems (CHES ’11), 2011, vol. 6917, pp. 374–389.

[263] J. Petit, C. Bosch, M. Feiri, and F. Kargl, “On the potential of PUF for pseudonym
generation in vehicular networks,” in IEEE Vehicular Networking Conference (VNC),
2012, pp. 94–100.

[264] M. Feiri, J. Petit, and F. Kargl, “Efficient and secure storage of private keys for
pseudonymous vehicular communication,” in First Workshop on Security, Privacy and
Dependability for CyberVehicles (CyCar ’13) at 20th ACM Conference on Computer and
Communications Security (CCS '13), 2013, pp. 9–18.

[265] S. T. Ben Hamida, J.-B. Pierrot, and C. Castelluccia, “An Adaptive Quantization
Algorithm for Secret Key Generation Using Radio Channel Measurements,” in 3rd

150

International Conference on New Technologies, Mobility and Security (NTMS ’09),
2010, pp. 1–5.

[266] J. Brakensiek, A. Dröge, M. Botteck, H. Härtig, and A. Lackorzynski, “Virtualization as an
Enabler for Security in Mobile Devices,” in 1st Workshop on Isolation and Integration
in Embedded Systems (IIES ’08), 2008, no. April, pp. 17–22.

[267] M. Peter, H. Schild, A. Lackorzynski, and A. Warg, “Virtual Machines Jailed Virtualization
in Systems with Small Trusted Computing Bases,” in 1st EuroSys Workshop on
Virtualization Technology for Dependable Systems (VDTS ’09), 2009, pp. 18–23.

[268] A. Lackorzynski, T. Universit, H. Schild, A. Lackorzynski, and A. Warg, “Faithful
Virtualization on a Real-Time Operating System,” in Eleventh Real-Time Linux
Workshop, 2009, pp. 237–243.

[269] U. Steinberg and B. Kauer, “NOVA : A Microhypervisor-Based Secure Virtualization
Architecture,” pp. 209–222, 2010.

[270] S. Liebergeld, M. Peter, T. Universit, A. Lackorzynski, T. Universit, and A. Lackorzynski,
“Towards Modular Security-conscious Virtual Machines,” in Twelfth Real-Time Linux
Workshop, 2010.

[271] P. Trakadas, T. Zahariadis, H. C. Leligou, S. Voliotis, and K. Papadopoulos, “Analyzing
energy and time overhead of security mechanisms in Wireless Sensor Networks,” in
2008 15th International Conference on Systems, Signals and Image Processing, 2008,
no. September, pp. 137–140.

[272] A. Kargl, S. Pyka, and H. Seuschek, “Fast Arithmetic on ATmega128 for Elliptic Curve
Cryptography.” 2008.

[273] S. Li, T. Li, X. Wang, J. Zhou, and K. Chen, “Efficient Link Layer Security Scheme for
Wireless Sensor Networks,” J. Inf. Comput. Sci., vol. 4, no. 2, pp. 553–567, 2007.

[274] C. Karlof, N. Sastry, and D. Wagner, “TinySec: A Link Layer Security Architecture for
Wireless Sensor Networks,” in 2nd International Conference on Embedded Networked
Sensor Systems (SenSys ’04), 2004, pp. 162–175.

[275] A. Poschmann, G. Leander, K. Schramm, and C. Paar, “New Lightweight Crypto
Algorithms for RFID,” in IEEE International Symposium on Circuits and Systems (ISCAS
’07), 2007, pp. 1843–1846.

[276] L. Uhsadel, A. Poschmann, and C. Paar, “Enabling Full-Size Public-Key Algorithms on 8-
Bit Sensor Nodes,” in Security and Privacy in Ad-hoc and Sensor Networks, vol. 4572, F.
Stajano, C. Meadows, S. Capkun, and T. Moore, Eds. Springer Berlin, Heidelberg, 2007,
pp. 73–86.

[277] F. Vater and P. Langendörfer, “An Area Efficient Realisation of AES for Wireless
Devices,” it -- Inf. Technol., vol. 49, no. 3, pp. 188–193, 2007.

[278] A. Poschmann, D. Westhoff, and A. Weimerskirch, “Dynamic Code-Update for the
Efficient Usage of Security Components in {WSNs},” in Communication in Distributed
Systems (KiVS), ITG-GI Conference, 2007, pp. 1–11.

[279] K. Potzmader, J. Winter, D. Hein, C. Hanser, P. Teu, and L. Chen, “Group Signatures on
Mobile Devices: {Practical} Experiences,” in Trust and Trustworthy Computing, vol.

151

7904, M. Huth, N. Asokan, S. Čapkun, I. Flechais, and L. Coles-Kemp, Eds. Springer
Berlin, Heidelberg, 2013, pp. 47–64.

[280] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission of IPv6 Packets
over IEEE 802.15.4 Networks,” RFC, vol. RFC4944, no. 4944. pp. 1–30, 2007.

[281] W.-B. Poettner and L. Wolf, “IEEE 802.15.4 Packet Analysis with Wireshark and Off-the-
Shelf Hardware,” in 7th International Conference on Networked Sensing Sytems (INSS
’10), 2010.

[282] J. Granjal, E. Monteiro, and J. Sá Silva, “Enabling Network-Layer security on IPv6
Wireless Sensor Networks,” in IEEE Global Telecommunications Conference
(GLOBECOM ’10), 2010, pp. 1–6.

[283] J. Granjal, E. Monteiro, and J. Sá Silva, “A Secure Interconnection Model for IPv6
Enabled Wireless Sensor Networks,” in IFIP Wireless Days (WD ’10), 2010, pp. 1–6.

[284] P. Trakadas, T. Zahariadis, H. C. Leligou, S. Voliotis, and K. Papadopoulos, “AWISSENET:
Setting Up a Secure Wireless Sensor Network,” in 50th International Symposium
ELMAR 2008, focused on Mobile Multimedia, 2008, pp. 519–523.

[285] K. Papadopoulos, T. Zahariadis, H. C. Leligou, and S. Voliotis, “Sensor Networks Security
Issues in Augmented Home Environment,” in 12th IEEE International Symposium on
Consumer Electronics (ISCE ’08), 2008, pp. 519–523.

[286] K. Dietrich, “Anonymous Client Authentication for Transport Layer Security,” in
Communications and Multimedia Security, vol. 6109, Springer Berlin, Heidelberg, 2010,
pp. 268–280.

[287] C. Wachsmann, L. Chen, K. Dietrich, H. Löhr, A.-R. Sadeghi, and J. Winterhor,
“Lightweight Anonymous Authentication with TLS and DAA for Embedded Mobile
Devices,” in Information Security, vol. 6531, M. Burmester, G. Tsudik, S. Magliveras,
and I. Ilić, Eds. Springer Berlin, Heidelberg, 2010, pp. 84–98.

[288] K. Dietrich and J. Winter, “A Secure and Practical Approach for Providing Anonymity
Protection for Trusted Platforms,” in 12th International Conference on Information and
Communications Security (ICICS ’10), 2010, pp. 311–324.

[289] “Near Field Communication (NFC).” [Online]. Available: http://www.nfc-
forum.org/home.

[290] K. Dietrich, “Anonymous RFID Authentication Using Trusted Computing Technologies,”
in Radio Frequency Identification: Security and Privacy Issues, vol. 6370, S. B. Ors Yalcin,
Ed. Springer Berlin, Heidelberg, 2010, pp. 91–102.

[291] K. Dietrich, “An Integrated Architecture for Trusted Computing for Java Enabled
Embedded Devices,” in ACM Workshop on Scalable Trusted Computing (STC ’07), 2007,
pp. 2–6.

[292] F. Armknecht, L. Chen, A.-R. Sadeghi, and C. Wachsmann, “Anonymous Authentication
for RFID Systems,” in Radio Frequency Identification: {Security} and Privacy Issues, vol.
6370, S. B. Ors Yalcin, Ed. Springer Berlin, Heidelberg, 2010, pp. 158–175.

[293] V. Manolopoulos, P. Papadimitratos, S. Tao, and and A. Rusu, “Securing Smartphone
based ITS,” in 11th IEEE International Conference on ITS Telecommunications (ITST),

152

2011, pp. 201–206.

[294] N. Alexiou, M. Laganá, S. Gisdakis, M. Khodaei, and P. Papadimitratos, “VeSPA:
Vehicular Security and Privacy-preserving Architecture,” in 2nd ACM Workshop on Hot
Topics on Wireless Network Security and Privacy (HotWiSec ’13), 2013, pp. 19–24.

[295] N. Alexiou, S. Gisdakis, M. Lagana, and P. Papadimitratos, “Towards a secure and
privacy-preserving multi-service vehicular architecture,” in IEEE 14th International
Symposium and Workshops on a World of Wireless, Mobile and Multimedia Networks
(WoWMoM ’13), 2013, pp. 1–6.

[296] N. Bibmeyer, J. Petit, and K. M. Bayarou, “CoPRA: Conditional pseudonym resolution
algorithm in VANETs,” in 10th Annual Conference on Wireless On-demand Network
Systems and Services (WONS ’13), 2013, pp. 9–16.

[297] Road vehicles - Vehicle to grid communication interface - Part 1: General information
and use-case definition. 2013.

[298] C. Höfer, J. Petit, R. K. Schmidt, and F. Kargl, “POPCORN: Privacy-preserving charging
for eMobility,” in First Workshop on Security, Privacy and Dependability for
CyberVehicles (CyCar ’13) at 20th ACM Conference on Computer and Communications
Security (CCS '13), 2013, pp. 37–48.

[299] T. Zahariadis, E. Ladis, H. C. Leligou, P. Trakadas, C. Tselikis, K. Papadopoulos, and S.
Voliotis, “Trust Models for Sensor Networks,” in 50th International Symposium ELMAR-
2008, 2008, no. September, pp. 10–12.

[300] T. Zahariadis, H. C. Leligou, S. Voliotis, S. Maniatis, P. Trakadas, and P. Karkazis, “An
Energy and Trust-aware Routing Protocol for Large Wireless Sensor Networks,” pp.
216–224.

[301] N. Kuntze, C. Rudolph, and J. Paatero, “Establishing Trust between Nodes in Mobile Ad-
Hoc Networks,” in Trusted Systems, vol. 7711, C. J. Mitchell and A. Tomlinson, Eds.
Springer Berlin, Heidelberg, 2012, pp. 48–62.

[302] A. Oberle, A. Rein, N. Kuntze, C. Rudolph, J. Paatero, A. Lunn, and P. Racz, “Integrating
Trust Establishment into Routing Protocols of Today’s {MANETs},” in Wireless
Communications and Networking Conference (WCNC ’13), 2013, pp. 2369–2374.

[303] A. Neumann, C. Aichele, M. Lindner, and S. Wunderlich, “Better approach to mobile
ad-hoc networking (B.A.T.M.A.N.),” 2008.

[304] A. Karjalainen and J. Kangasharju, “On Interactions between Routing and Service
Discovery in Wireless Sensor Networks.”

[305] A. Fagiolini, G. Valenti, L. Pallottino, G. Dini, and A. Bicchi, “Local Monitor
Implementation for Decentralized Intrusion Detection in Secure Multi-Agent Systems,”
in 2007 IEEE International Conference on Automation Science and Engineering, 2007,
pp. 454–459.

[306] A. Fagiolini, F. Babboni, and A. Bicchi, “Dynamic distributed intrusion detection for
secure multi-robot systems,” in 2009 IEEE International Conference on Robotics and
Automation, 2009, pp. 2723–2728.

[307] M. Garcia-Otero, F. Alvarez-Garcia, and F. J. Casajus-Quiros, “Securing Wireless Sensor

153

Networks by Using Location Information,” in 2009 16th International Conference on
Systems, Signals and Image Processing, 2009, pp. 1–4.

[308] U. Zurutuza, E. Ezpeleta, Á. Herrero, and E. Corchado, “Visualization of Misuse-Based
Intrusion Detection: Application to Honeynet Data,” in Soft Computing Models in
Industrial and Environmental Applications, 6th International Conference SOCO 2011,
2011, vol. 87, pp. 561–570.

[309] M. Fiore, E. C. Casetti, C. Chiasserini, and P. Papadimitratos, “Discovery and Verification
of Neighbor Positions in Mobile Ad Hoc Networks,” IEEE Trans. Mob. Comput., vol. 12,
no. 2, pp. 289–303, 2013.

[310] N. Bißmeyer, J. Njeukam, J. Petit, and K. M. Bayarou, “Central misbehavior evaluation
for VANETs based on mobility data plausibility,” in 9th ACM international workshop on
Vehicular inter-networking, systems, and applications (VANET ’12), 2012, pp. 73–82.

[311] S. Dietzel, J. Petit, G. Heijenk, and F. Kargl, “Graph-based Metrics for Insider Attack
Detection in VANET Multi-hop Data Dissemination Protocols,” IEEE Trans. Veh.
Technol., vol. 62, no. 4, pp. 1505–1518, 2013.

[312] R. Wouter van der Heijden, S. Dietzel, and F. Kargl, “SeDyA: Secure dynamic
aggregation in VANETs,” in 6th ACM conference on Security and privacy in wireless and
mobile networks (WiSec ’13), 2013, pp. 131–142.

[313] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann, “Impact of Network
Density on Data Aggregation in Wireless Sensor Networks,” in 22nd International
Conference on Distributed Computing Systems (ICDS ’02), 2002, pp. 457–458.

[314] C. Castelluccia and C. Soriente, “ABBA: A Balls and Bins Approach to Secure Aggregation
in WSNs,” in 6th International Symposium on Modeling and Optimization in Mobile, Ad
Hoc, and Wireless Networks and Workshops (WiOPT ’08), 2008, pp. 185–191.

[315] P. Schaffer, I. Vajda, L. Buttyán, P. Schaffer, and I. Vajda, “CORA: Correlation-based
resilient aggregation in sensor networks,” in Ad Hoc Networks, 2007, vol. 7, no. 6, pp.
373–376.

[316] M. Sivrianosh, D. Westhoff, F. Armknecht, and J. Girao, “Non-Manipulable Aggregator
Node Election Protocols for Wireless Sensor Networks,” in 5th International
Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
(WiOpt ’07), 2007, pp. 1–10.

[317] T. Holczer and L. Buttyan, “Anonymous Aggregator Election and Data Aggregation in
Wireless Sensor Networks,” Int. J. Distrib. Sens. Networks, vol. 2011, 2011.

[318] A. Francillon and C. Castelluccia, “Code Injection Attacks on Harvard-Architecture
Devices,” in 15th ACM conference on Computer and Communications Security (CCS ’08),
2008, pp. 15–26.

[319] A. V Taddeo and A. Ferrante, “A Security Service Protocol for MANETs,” in 6th IEEE
Consumer Communications and Networking Conference (CCNC ’09), 2009, pp. 1–2.

[320] J. Petit, M. Feiri, and F. Kargl, “Spoofed Data Detection in VANETs using Dynamic
Thresholds,” in 3rd IEEE Vehicular Networking Conference (VNC 2011), 2011, pp. 25–
32.

154

[321] A. Reiter, G. Neubauer, M. Kapfenberger, J. Winter, and K. Dietrich, “Seamless
Integration of Trusted Computing into Standard Cryptographic Frameworks,” 2nd Int.
Conf. Trust. Syst. (INTRUST ’10), pp. 1–25, 2011.

[322] M. Diaz, D. Garrido, and A. Reyna, “One Step Closer to the Internet of Things: SMEPP,”
in Future Internet Symposium FIS:2009, 2009.

[323] “Device Profile for Web Services specification for Java (DPWS4J).” [Online]. Available:
https://forge.soa4d.org/projects/dpws4j/.

[324] C. Timm, J. Schmutzler, P. Marwedel, and C. Wietfeld, “Dynamic Web Service
Orchestration applied to the Device Profile for Web Services in Hierarchical Networks,”
in ICST/IEEE 4th International Conference on Communication System Software and
Middleware, 2009.

[325] K. E. Kjær, “A Survey of Context-Aware Middleware,” in 25th conference on IASTED
International Multi-Conference: Software Engineering, 2007, pp. 148–155.

[326] W. Zhang and K. M. Hansen, “An OWL/SWRL based Diagnosis Approach in a Pervasive
Middleware,” in 20th International Conference on Software Engineering and
Knowledge Engineering (SEKE ’08), 2008, pp. 893–898.

[327] A. Fiaschetti, F. Lavorato, V. Suraci, A. Palo, A. Taglialatela, A. Morgagni, R. Baldelli, and
F. Flammini, “On the Use of Semantic Technologies to Model and Control Security,
Privacy and Dependability in Complex Systems,” in Computer Safety, Reliability, and
Security, vol. 6894, Springer Berlin, Heidelberg, 2011.

[328] M. M. R. Chowdhury and J. Noll, “Securing Critical Infrastructure: A Semantically
Enhanced Sensor Based Approach,” in 2nd International Conference on Wireless
Communication, Vehicular Technology, Information Theory and Aerospace & Electronic
Systems Technology (Wireless VITAE), 2011, pp. 1–5.

[329] J. Noll, Z. Iqbal, and M. M. R. Chowdhury, “Integrating Context- and Content-Aware
Mobile Services into the Cloud.” 2011.

[330] G. Dini and I. M. Savino, “A Security Architecture for Reconfigurable Networked
Embedded Systems,” Int. J. Wirel. Inf. Networks, vol. 17, no. 1–2, pp. 11–25, Jun. 2010.

[331] P. Langendoerfer, S. Peter, K. Piotrowski, R. Nunes, and A. Casaca, “A Middleware
Approach to Configure Security in WSN,” in 1st ERCIM Workshop on eMobility, in
conjunction with WWIC 2007, 2007.

[332] O. Derin, E. Diken, and L. Fiorin, “A Middleware Approach to Achieving Fault Tolerance
of Kahn Process Networks on Networks on Chips,” Int. J. Reconfigurable Comput., vol.
2011, 2011.

[333] A. Heinig, M. Engel, F. Schmoll, and P. Marwedel, “Using Application Knowledge to
Improve Embedded Systems Dependability,” in Workshop on Hot Topics in System
Dependability (HotDep ’10), 2010.

[334] G. Nunes, A. Cardoso, A. Santos, and P. Gil, “Multi-Agent Topologies over WSANs in the
Context of Fault Tolerant Supervision,” in Technological Innovation for Sustainability,
vol. 349, L. M. Camarinha-Matos, Ed. Springer Berlin, Heidelberg, 2011, pp. 383–390.

[335] G. Nunes, A. Cardoso, A. Santos, and P. Gil, “Multi-Agent Based Architecture for Robust

155

Supervision over Wireless Sensor Networks,” in 9th Portuguese Conference on
Automatic Control (Controlo 2010), 2010.

[336] J. Barbarán, M. D’iaz, I. Esteve, D. Garrido, L. Llopis, and B. Rubio, “A Real-Time
Component-Oriented Middleware for Wireless Sensor and Actor Networks,” in 1st
International Conference on Complex, Intelligent and Software Intensive Systems (CISIS
’07), 2007, pp. 3–10.

[337] D. Slamanig and M. Pirker, “A Framework for Privacy-Preserving Mobile Payment on
Security Enhanced {ARM TrustZone} Platforms,” in IEEE 11th International Conference
on Trust, Security and Privacy in Computing and Communications, 2012, pp. 1155–
1160.

[338] D. Derler, K. Potzmader, J. Winter, and K. Dietrich, “Anonymous Ticketing for NFC-
enabled Mobile Phones,” in Trusted Systems, vol. 7222, L. Chen, M. Yung, and L. Zhu,
Eds. Springer Berlin, Heidelberg, 2012, pp. 66–83.

[339] M. Pirker, D. Slamanig, and J. Winter, “Practical Privacy Preserving Cloud Resource-
Payment for Constrained Clients,” in Privacy Enhancing Technologies, vol. 7384, S.
Fischer-Hübner and M. Wright, Eds. Springer Berlin, Heidelberg, 2012, pp. 201–220.

[340] M. Pirker, J. Winter, and R. Toegl, “Lightweight Distributed Heterogeneous Attested
Android Clouds,” in Trust and Trustworthy Computing, vol. 7344, S. Katzenbeisser, E.
Weippl, L. J. Camp, M. Volkamer, M. Reiter, and X. Zhang, Eds. Springer Berlin,
Heidelberg, 2012, pp. 122–141.

[341] M. Pirker, J. Winter, and R. Toegl, “Lightweight Distributed Attestation for the Cloud,”
in 2nd International Conference on Cloud Computing and Services Science (CLOSER ’12),
2012, pp. 580–585.

[342] S. Nadjm-Tehrani and M. Vasilevskaya, “Towards a Security Domain Model for
Embedded Systems,” in 13th IEEE International Symposium on High-Assurance Systems
Engineering (HASE ’11), 2011, pp. 180–181.

[343] Y. Zhang, B. Hamid, and D. Gouteux, “A Metamodel for Representing Safety LifeCycle
Development Process,” in 6th International Conference on Software Engineering
Advances (ICSEA 2011), 2011, pp. 550–556.

[344] B. Hamid, J. Geisel, A. Ziani, and D. Gonzalez, “Safety Lifecycle Development Process
Modeling for Embedded Systems -- Example of Railway Domain,” in Software
Engineering for Resilient Systems, vol. 7527, P. Avgeriou, Ed. Springer Berlin,
Heidelberg, 2012, pp. 63–75.

[345] A. Ziani, B. Hamid, and J.-M. Bruel, “A Model-Driven Engineering Framework for Fault
Tolerance in Dependable Embedded Systems Design,” in 38th EUROMICRO Conference
on Software Engineering and Advanced Applications (SEAA ’12), 2012, pp. 166–169.

[346] B. Hamid, S. Gürgens, C. Jouvray, and N. Desnos, “Enforcing S & D Pattern Design in
RCES with Modeling and Formal Approaches,” Model Driven Eng. Lang. Syst., vol. 6981,
pp. 319–333, 2011.

[347] S. Trujillo, I. Alonso, B. Hamid, D. Gonzalez, M. Blanco, and H. (Yulin) Zhang, “Towards
variability support for security and dependability patterns,” in Proceedings of the 15th
International Software Product Line Conference on - SPLC ’11, 2011, vol. 2, p. 1.

156

[348] C. Jouvray, M. Sall, and A. Kung, “Enforcing trust in embedded systems using models,”
in Proceedings of the International Workshop on Security and Dependability for
Resource Constrained Embedded Systems - S&D4RCES ’10, 2010, p. 1.

[349] B. Hamid, N. Desnos, C. Grepet, and C. Jouvray, “Model-based security and
dependability patterns in RCES,” in Proceedings of the International Workshop on
Security and Dependability for Resource Constrained Embedded Systems - S&D4RCES
’10, 2010, p. 1.

[350] F. Krichen, B. Hamid, B. Zalila, and M. Jmaiel, “Towards a Model-Based Approach for
Reconfigurable DRE Systems,” pp. 295–302, 2011.

[351] A. Groll, J. Holle, C. Ruland, M. Wolf, T. Wollinger, and F. Zweers, “OVERSEE - A Secure
and Open Communication and Runtime Platform for Innovative Automotive
Applications,” in 7th Embedded Security in Cars Workshop (ESCAR 2009), 2009.

[352] A. Groll, J. Holle, M. Wolf, and T. Wollinger, “Next Generation of Automotive Security:
Secure Hardware and Secure Open Platforms,” in 17th ITS World Congress, 2010.

[353] N. McGuire, A. Platschek, and G. Schiesser, “OVERSEE - A Generic FLOSS
Communication and Application Platform for Vehicles,” in 12th Real-Time Linux
Workshop, 2010.

[354] G. Griessnig, I. Kundner, E. Armengaud, S. Torchiaro, and D. Karlsson, “Improving
Automotive Embedded Systems Engineering at European Level,” E I Elektrotechnik und
Informationstechnik, vol. 128, no. 6, pp. 209–214, 2011.

[355] G. Pedroza, M. S. Idrees, L. Apvrille, and Y. Roudier, “A Formal Methodology Applied to
Secure Over-the-Air Automotive Applications,” in IEEE Vehicular Technology
Conference (VTC Fall), 2011, pp. 1–5.

[356] D. Knorreck, L. Apvrille, and P. de Saqui-Sannes, “TEPE: A SysML Language for Time-
Constrained Property Modeling and Formal Verification,” ACM SIGSOFT Softw. Eng.
Notes, vol. 36, no. 1, pp. 1–8, 2011.

[357] A. Lackorzynski and A. Warg, “Taming Subsystems Capabilities as Universal Resource
Access Control in L4,” in 2nd Workshop on Isolation and Integration in Embedded
Systems (IIES ’09), 2009, pp. 25–30.

[358] M. Kost, J.-C. Freytag, F. Kargl, and A. Kung, “Privacy Verification using Ontologies,” in
6th International Conference on Availability, Reliability and Security (ARES ’11), 2011,
pp. 627–632.

[359] A. Kung, J. Freytag, and F. Kargl, “Privacy-by-design in ITS applications,” in IEEE
International Symposium on World of Wireless, Mobile and Multimedia Networks
(WoWMoM), 2011, pp. 1–6.

157

ANNEX A – EMBEDDED SYSTEMS SECURITY
Embedded systems (ESs) permeate our lives in various forms, ranging from avionics to e-
textiles, automobiles, home automation and wireless sensor nodes. In terms of their physical
size, they range from miniature wearable or sensor nodes (i.e. motes) to large industrial
deployments of programmable logic controllers (PLCs).

The various intrinsic and application-specific characteristics of ESs complicate the task of
guaranteeing the security, namely handling the confidentiality, integrity and availability
aspects of their applications and the data they handle. Their characteristics habitually include
resource constraints (namely computational capabilities, storage capacity, memory and
power), dynamically formulated, remotely-managed networking and even unattended
operation in hostile environment and time-critical applications. Therefore, while securing
networked computer systems is not a novel concern, the techniques developed for personal
and enterprise systems are often unsatisfactory or even inapplicable to embedded devices.

In addition to the above, ES applications often feature direct interaction with the physical
world, being responsible for vital, time-critical applications, where a delay or a speed-up of
even a fraction of a second in system’s response or reaction could have dire consequences.
This further differentiates ES security, as a security incident in a critical application may lead
to asset damage or even personal injury and death.

Moreover, next-generation ES services, like the ones pertaining to the Internet of Things (IoT),
may require the integration of multiple administrative domains (e.g. one domain may host the
devices and enable access to devices and information, whereas another domain may make
use of the information for designing innovative services). Each domain will typically have its
own security requirements and constraints, therefore ensuring their security [170], while
maintaining interoperability [171], is a challenging task.

This section aims to provide an overview of the challenges in designing secure embedded
systems, covering both node hardware and software issues, as well as relevant network
protocols and cryptographic algorithms. In the next subsections we present physical security
issues that are evident in embedded systems, the various access control mechanisms used for
controlling access to resources. Indicative examples of cryptographic mechanisms specially-
crafted for embedded systems and various protocol and management issues. Moreover,
through a survey of pertinent EU-funded research efforts, recent advances in the field are
identified, highlighting opportunities for future research.

PHYSICAL SECURITY ISSUES
Regarding the physical layer and given the often unattended nature of deployed ESs,
sometimes within hostile environments, the risk of device tampering should not be ignored.
In the remainder of this section, some aspects of physical security in ESs are presented.

SIDE CHANNEL ATTACKS
A malicious entity’s physical access to a non-tamper-resistant device, apart from providing
physical access to the system components, would also enable the launch of various attacks.
These include micro-probing and reverse engineering or sophisticated side-channel attacks

158

(SCA), timing attacks, simple power analysis (SPA), differential power analysis (DPA), as well
as their electro-magnetic counterparts, SEMA and DEMA respectively, and also differential
fault attacks (DFA). The aforementioned methods can potentially expose critical information
concerning the operation of the device (algorithms used, length of keys etc.) which could
prove critical to the security both of the device itself and the network as a whole.

In the case of ESs utilizing field-programmable gate arrays (FPGAs), the concept of run-time
reconfiguration [172] can be explored to reduce component count and/or power
consumption, increase fault tolerance etc. as needed. Self-reconfigurability can, for example,
make a node more secure against side-channel attacks through the measurement of
electromagnetic radiation and also implement self-healing properties. Self-recovery
mechanisms could reallocate functional blocks to mark and replace faulty resources, through
device reprogramming in the case of self-reconfigurable nodes or through controlled
degradation of service techniques in less “intelligent” devices. Furthermore, the above-
mentioned side channels could also have a positive aspect, as research has shown they can be
exploited to verify the integrity of embedded software and to control the execution flow [173],
[174].

TRUSTED PLATFORM MODULE
A Trusted Platform Module (TPM, [175]), is a microcontroller that can securely store a
relatively small amount of information on it, which can then be used either for authenticating
the platform (e.g. passwords, certificates, encryption keys) or for ensuring that the platform
has not been breached (e.g. platform measurements, configuration data). Still, the
microcontroller does not control the software that is running on the platform itself. Instead,
through the tamper-resistant security functions it provides, the platform’s operating system
or any running applications access the necessary information, to determine and implement
their security policies accordingly. The software embedded on such a TPM component is
directly related to the component’s physical size (the higher the memory requirements, the
larger the module’s surface) and consequently cost. Any optimization of the module’s
software will have a direct impact on the overall execution speed, as well as to the power
consumption (faster execution allows the module to return to a more power sparring
idle/sleep state).

PROTECTION OF POWER SUPPLY
Several types of embedded systems devices are mostly battery-powered, something that
creates issues of energy constraints. Especially in cases where e.g. small sensor nodes are
meant to be used in unattended environments, they are expected to operate for certain time
intervals (sometimes spanning over a few months) until they have their power source replaced
or recharged. An attacker could therefore launch a Denial-of-Service (DoS) attack, aiming at
draining the battery power by forcing extensive use of the device’s wireless connection or
CPU.

In order for the electronic parts of the embedded device to function properly, continuous
power is required, with both voltage and current levels lying within specific limits. The power
source should also be able to monitor its own state and react accordingly in cases where an
issue is detected that could affect the normal operation of the system. Moreover, suitable fail-

159

safe mechanisms should exist, implemented in software and/or hardware that would protect
the device and prevent any potential damage from spreading across the rest of its
components.

Most of the requirements mentioned above are satisfied in modern uninterruptible power
supply (UPS) systems; nevertheless, they cannot easily be applied to the operating
environments of some embedded systems, due to strict size and cost constraints. Instead,
alternative solutions are implemented, such as energy scavenging, super-capacitors, micro-
solar cells and remote/wireless power transferring schemes [176], [177], to name a few. Still,
such solutions must carefully be adopted to each specific scenario (e.g. a micro-solar cell is
useless if the device cannot be reached by enough direct sunlight), also taking into
consideration fail-safe options with respect to the criticality of the possible failures and the
probability for them to occur, so as to protect the device effectively.

ACCESS CONTROL
Access control mechanisms are essential to prevent unauthorized/malicious entities to access
the resources, physical or otherwise, available to the ESs as well as the hosting devices. The
way access control is implemented varies depending on the hardware capabilities of the
nodes, the type of network and the application under consideration. Some common methods
include:

1. Profile authentication: If a node has some specific characteristics (e.g. hardware
specifications, operating system), it can join an existing network.

2. Access code: Demonstrating knowledge of the code grants access to the network
and its resources. This code can either be programmable or configurable. This
category includes typical password access, based on memory data, switch
configuration or any other procedure.

3. Predefined topology: Only pre-established nodes can join the network (e.g. MAC
filtering).

There is ongoing research on ES-specific access control protocols since the commonly-used
authentication schemes, typically password-based, can be impractical or even insecure when
considering the heterogeneous nature of ES networks can demonstrate and the scalable
remote manageability often required [178]. Moreover, even in wired embedded networks and
in industries such as automotive and aviation, most control networks utilized (e.g. Controller
Area Network, Time-Triggered Protocol, FlexRay) are designed with safety and reliability in
mind and do not feature any built-in security mechanisms like node authentication, data
encryption or prevention of DoS attacks [179], [180], leading to critical vulnerabilities [8].

ESs are often deployed in applications bound by strict security requirements (e.g. e-Health
applications are a prime example), including secure transmission of sensitive data to remote
entities, instructions that need to reach actuators in an unaltered form, robust entity
authentication and access control mechanisms [138].

Regarding the latter, among the proposed schemes that have gained popularity are those
where decisions are made based on policy restrictions. Such a scheme is the standardized by
OASIS eXtensible Access Control Markup Language (XACML), an XML-based general-purpose

160

policy decision language. Besides being used for representing authorization and entitlement
policies for managing access to resources, it provides a processing model for evaluating
requests and making decisions based on the defined set of policies [181]. Policy-based access
control allows dynamic decision making on controlled nodes’ resources based on policy
restrictions set by the system owner.

Still, unprotected policy messages would expose the system’s security, revealing private
information to attackers who might also try to identify policy restrictions and do a mapping of
the security measures taken for the specific environments, hence exploiting potential
vulnerabilities. Moreover, in a more active approach, an attacker might masquerade as a
legitimate entity or modify policy-related messages, such as authorization requests and/or
decisions, obligations or advices in an attempt to downgrade adopted measures and bypass
access controls. To avoid the aforementioned problems, appropriate security measures, like
the ones detailed in later subsections, have to be deployed to safeguard message
confidentiality, integrity and authentication.

DENIAL OF SERVICE (DOS)
The aim of a DoS or a Distributed DoS (DDoS) attack is to harm the availability of a specific
node or a network of nodes, thus preventing or delaying legitimate entities from accessing the
services or resources they wish to [182]. DoS attacks on ES nodes can take multiple forms,
such as exploiting the vulnerabilities in their software/firmware, or attacking the network they
belong to by jamming, misrouting, flooding and so on. DoS attacks can be mounted more or
less on every layer, by exploiting the particular characteristics or mechanisms found in them.
Their aim is to cause the nodes to constantly process or send dummy data, thus draining their
power source via unnecessary use of their wireless connection and prolonged demand for
memory and CPU cycles. The effects of such attacks are particularly critical in the case of nano
and micro/personal nodes, where the power reserve is usually rather limited. In addition,
flooding types of DoS attacks consume part of the network’s bandwidth, which may also
indirectly affect the normal operation of the network or a significant part of it, depending on
the overall network’s capacity.

Another type of DoS attack involves the case where an attacker gains physical access to the
device and modifies or destroys it as a physical entity. Depending on the role of this particular
node for the rest of the network or cluster of nodes it belongs to, its unavailability could have
a significant impact on these entities. For instance, it could lead to partial or total loss of the
data sink, selection of non-optimal routes, or even the loss of a control node that is vital for
the normal operation of the system.

Given that large-scale networks are most probably heterogeneous in their nature, they
contain different capabilities and vulnerabilities, which need to be addressed independently
for achieving effective protection against DoS attacks. What is more, in cases where there is
provision for dynamic network size variation, shielding against DoS attacks can become a very
challenging task [183]. In addition, the problem becomes even more complex and difficult to
solve for cases where the available resources and capabilities exhibit strict limitations.

161

In cases where the ES network is of an unattended nature, the use of a remote management
system is vital. Nevertheless, such systems offer additional attack surface and their
compromise can allow an adversary to upload malicious firmware. In this way, the attacker is
able to corrupt memory and data sent/received or even lead to permanent damage of
hardware sub-components by intended misconfiguration (Permanent DoS – PDoS, or
bricking). The success of such attacks is based on the fact that the various firmware upgrade
mechanisms are usually insecure and do not employ complex security mechanisms for
verifying authenticity and integrity, such as the ones used in digital certificates. This process
of rendering a device unbootable or non-reflashable is also known as phlashing [184].

One of the main reasons for the DoS attacks being relatively easy to successfully launch is the
use of old protocols that suffer from lack of security requirements. For instance, the IP
protocol takes for granted various assumptions regarding the trust of network nodes and
consequently does not dispute the related information found in the packet headers and/or
payload. Any integrity-checking mechanisms are rather primitive and simple in nature (e.g.
checksums), as their aim is to detect accidental data corruption and not deliberate
modification of information. Therefore, continuing to use such protocols as the base for
building custom network communication protocols on it makes it particularly hard to design
(D)DoS-resilient systems and services. An additional obstacle is the fact that basic software
methodologies do not take into consideration security requirements, able to deal with such
kinds of attacks [185].

The majority of the aforementioned attacks can be avoided by employing suitable
authentication, access control and integrity-checking mechanisms. It is also equally important
to provide secure mechanisms for node firmware deployment and software updates, able to
verify both the authenticity and integrity of the firmware/software to be uploaded and reject
it if it does not pass the required checks. Furthermore, more recent network protocols should
be used, able to provide means and metrics for quantifying (D)DoS attack resilience [186]. The
use of intrinsically secure ES firmware offering various fail-safe mechanisms or even hardware
redundancy could be employed in cases where dependability is highly critical (e.g. avionics
[187] and the military), as they are expected to increase the cost of the end-product.

CRYPTOGRAPHIC MECHANISMS
As has already been mentioned, embedded devices often have inherent limitations in terms
of processing power, memory, storage and energy. Efficient algorithm designs and
implementations that adhere to these constraints, while satisfying application demands, can
significantly impact battery lifetime and allow the implementation of many applications.

Key management is an equally important issue, both from a security and a management point
of view. The rather simple pre-shared key (PSK) scheme, where every embedded device has
the necessary cryptographic keys pre-installed, is difficult to manage in distributed and
dynamic environments (physical access to the device is required) or in cases where there is a
large number of such devices. Moreover, the disclosure of the master key leads to the instant
compromise of all the system/network. Having an appropriate scheme that triggers periodic
re-keying limits the amount of ciphertext that has been encrypted with the same key, thus
increasing the system’s security level.

162

This section presents several lightweight cryptographic and key management schemes,
suitable for resource-constrained devices.

LIGHTWEIGHT CRYPTOGRAPHY
Embedded devices often have inherent limitations in terms of processing power, memory,
storage and energy. The cryptographic functionality that ESs utilize to provide tamper
resistant hardware and software security functions has direct impact on the systems:

• Size: Memory elements constitute a significant part of the module’s surface.
• Cost: Directly linked to the surface of the component.
• Speed: Optimized code provides results faster.
• Power Consumption: The quicker a set of instructions is executed, the quicker the

module can return to an idle state or be put in sleep mode where power
consumption is minimal.

Traditional cryptography solutions focus in providing high levels of security, ignoring the
requirements of constrained devices. Lightweight cryptography (LWC) is a research field that
has developed in recent years and focuses in designing schemes for devices with constrained
capabilities in power supply, connectivity, hardware and software (e.g. RFIDs, sensor nodes,
contactless smartcards, and mobile devices). There has already been significant effort on the
subject of crypto optimization, aiming to maintain the security level that “traditional”
algorithms and implementations offer while narrowing what is often referred to as “battery
gap” [188], i.e. the very high energy consumption overheads for supporting security on
battery-constrained systems. A number of surveys [189]–[193] provide an overview of this
subject.

Schemes proposed include hardware designs, which are typically considered more suitable for
ultra-constrained devices, as well as software and hybrid implementations for lightweight
devices.

• Hardware designs implement the exact functionality without redundant components.
The main design goal is the reduction of the logic gates that are required to materialize
the cipher. This metric is called Gate Equivalent (GE [194]). A small GE predisposes
that the circuit is cheap and consumes little power. For constrained de-vices an
implementation including up to 3000 GE can be considered acceptable while for even
smaller devices, like 4-bit microcontrollers, implementations of 1000 GE are being
studied. Energy consumption and power constraints are other significant factors.
Energy consumption is important when a device is running on batteries while power
constraints affect passive devices, like passive RFID tags, that must be connected to a
host device to operate. Security attacks and relevant countermeasures that are
correlated to power analysis are also considered in hardware designs.

• Software implementations typically only require a microprocessor to operate. The
main design goals are the reduction of memory and processing requirements of the
cipher. Implementations are optimized for throughput and power savings. Portability
is their main advantage over hardware implementations.

163

Hybrid schemes combine the two approaches exploiting the best features from both.
Hardware implements the basic cipher functionality and software performs the data and
communication manipulation. A common practice is the design of cryptographic co-
processors. The throughput is mostly affected by the communication bandwidth between
hardware and software components. Hybrid implementations target on specific
communication applications, like RFID tags, portable devices and Internet servers.

ISO/IEC 29192 includes ciphers and cryptographic mechanisms for LWC. The standards are
PRESENT [194] and CLEFIA [195] for block ciphers, and TRIVIUM [196] and Enocoro [197] for
stream ciphers.

Compact implementations of “traditional” ciphers, like AES [198], are also applied to
embedded devices. Newer lightweight block ciphers are Humminbird-2 [199], Piccolo [195],
SIMON and SPECK [200], ITUbee [201]. For stream ciphers, the finalists of the eSTREAM
project [202], Grain, Salsa20, Rabbit and HC128 are suitable for LWC.

Hash functions design is another area where further research is required. For LWC, compact
implementations of the standardised functions SHA-2 [203], SHA-3 [204] are examined. Newer
functions that are suitable in this domain are Blake [204], Photon [205], SPONGENT [206] and
other hash functions based on lightweight block ciphers, like DM-PRESENT [203].

Asymmetric algorithms and protocols must also be adapted to operate on devices with the
afore-mentioned resource limitations. This is an elaborate task, since asymmetric ciphers are
computationally far more demanding than their symmetric counterparts and are usually
executed on powerful hardware. The performance gap is exacerbated on constrained devices,
such as 8-bit microcontrollers. Even an optimized asymmetric algorithm (e.g. elliptic-curve
cryptography – ECC), performs 100 to 1000 times more slowly than a standard symmetric
algorithm (e.g. AES), which correlates to a proportionally higher power consumption.

In terms of practical relevance, two families of established public-key algorithms stand out:
ECC and NTRU [207]. ECC in particular is considered the most attractive option in ESs, due to
its small operand length and its relatively low processing requirements. NTRU is the most
popular lattice-based cryptosystem. Its security is based on the shortest vector problem and
it can efficiently be deployed on embedded systems. Compared to ECC in hardware, NTRU is
1.5 times faster with only the 1/7 of the memory footprint. Compared to RSA in software, it is
200 times faster in key generation, almost 3 times faster in encryption and 30 times faster in
decryption.

The need for lightweight cryptography introduces major multi-dimensional challenges in
cryptographic algorithms design, from the ES operating system (OS) to the hardware and
software cryptographic provisions embedded on the device itself. Hardware and software co-
design seems to offer the best results in terms of speed/size ratio for many ubiquitous
computing applications [190]. Regarding primitives that cannot yet be effectively
implemented (e.g. hashes in the case of crypto and public key crypto in the case of
asymmetric), alternatives could be investigated so that the protocols which are based upon
them can be researched further and perhaps put into practice. Special care should be taken

164

during the development of optimized implementations so that they do not introduce new
leakage channels which could be exploited by Side-Channel Attacks (SCA).

A comparative analysis of lightweight ciphers on embedded systems was performed recently,
where the authors evaluate the proposed schemes based on performance metrics and classify
them for various types of embedded devices [208]. Various cryptographic libraries exist that
offer key establishment mechanisms and communication protocols, like for example ULCL
[209], wolfSSL11 and OpenSSL12.

KEY DISTRIBUTION MECHANISMS
Key distribution, either for initialization or re-keying [210] has been a challenging topic
especially for dynamic, heterogeneous and resource-limited environments. The majority of
these schemes is based on symmetric mechanisms, thus requiring pre-distribution of the
shared secret with all the disadvantages already discussed. Other schemes [211] are being
proposed as well, some of which feature location-aware and identity-based mechanisms.
Although some of the proposed schemes are indeed energy efficient [212], key management
based on shared secrets has proven ineffective, especially in dynamically-formulated
infrastructures. There have been attempts to correlate key establishment techniques to
applications but these were based solely on the use of symmetric keys and on a framework
level [213].

This has led part of the research community to focus its attention on public-key schemes (e.g.
ECC). This enables the distribution of authentic public keys via insecure channels, as the
verifying party does not need to have a copy of the secret key. Therefore, a mobile node’s key
database may, for example, be updated with all valid public keys once, according to a pre-
defined schedule or ad hoc, and from that point onwards the device will be able to
authenticate other entities in off-line mode.

Identity-based cryptography – IBC [214] provides an alternative solution to the very expensive,
for many nodes, public-key cryptography. IBC allows publicly-available information that can
uniquely identify participating nodes to be utilized for the secure exchange of keys. Thus,
nodes do not have to depend on a public key infrastructure and digital certificates for the
exchange of authenticated public keys. The advent of identity-based schemes and pairing-
based cryptography has shown that such schemes offer a promising solution for managing
keys in resource-constrained nodes [215].

Even with a public-key scheme, we still need to implement symmetric cryptography. Thus,
alternative schemes that are based only in symmetric cryptography are also proposed [216],
[217]. Some of them are location-aware and identity-based mechanisms and are energy-
efficient. Their disadvantage is the pre-distribution phase that is required prior to first usage.
The schemes are inefficient in dynamic environments but are proposed in applications where
public-key schemes cannot be used.

11 https://www.wolfssl.com/wolfSSL/Home.html

12 https://www.openssl.org

165

NETWORK PROTOCOL AND MANAGEMENT ISSUES
Certain applications of embedded systems, like Wireless Sensor Networks, rely on the integrity
of the platform for providing trustworthy services (e.g. measurements taken by a sensor). It is
therefore essential to have a method for validating this integrity and assuring that system
components have not been compromised. The integrity of the service-requester platform, i.e.
control node, must also be validated before allowing it to allocate resources to the nodes it
controls or receive the data these nodes have collected. In addition, it should be established
that these secure resource management mechanisms will not act as a bottleneck in service
performance. Examples of current research on the subject are the WS-Attestation mechanism
[218], which enables Trusted Platform Module (TPM) remote platform attestation using web
services.

SECURE RESOURCE MANAGEMENT
Inspecting the problem from a higher level, middleware resources should be managed by
monitoring their availability, enforcing a policy based on which of these resources are
assigned, implementing a secure model for the identification and authorization of requests,
as well as an accounting system to track resource usage. Most of the above can be found in
protocol Diameter [219], successor to RADIUS, which offers strong authentication,
authorization, accounting and resource management mechanisms. Diameter is already
adopted by many IP systems like in the 3rd Generation Partnership Project (3GPP).

REPUTATION-BASED SCHEMES
Reputation-based schemes are a novel paradigm for enhancing security in various
applications, including secure routing and intrusion detection systems for Mobile Ad Hoc
Networks – MANETS [220]. These systems are easy to implement, lightweight and can protect
a MANET from a wide variety of attacks.

The basic concept is inspired from social behavior and relies on the cooperation of the nodes.
Much like human interaction, each entity decides to trust or ignore a new, unknown entity
based on the opinion of its peers about the individual in question. Consequently, much like in
social networks, trustworthy behavior is encouraged. The three main goals identified [221] for
reputation systems are:

• To provide the required information in order to distinguish between a trustworthy
principal and an untrustworthy one.

• To encourage principals to act in a trustworthy manner.
• To discourage untrustworthy principals from participating in the service.

Reputation-based mechanisms are used in Intrusion Detection Systems (IDSs) and provide two
main functionalities: Secure routing and resource management. Watchdog and Path-rater
[222] are the building blocks of such systems. Watchdog is a monitoring component and based
on its observations Path-rater ranks the available routing paths. The main steps in the
reasoning process of a reputation-based scheme are as follows:

1. Gather information.
2. Score and rank.

166

3. Select entity.
4. Transaction.
5. Reward and punish.

Misbehavior detection and intrusion detection can either be distributed, where information
about entities’ reputation changes are immediately broadcast to the whole network (or local),
in which case each entity decides, based solely on its own data about the reputation of other
nodes. It should be noted, however, that the latter is not as effective in terms of speed in
detecting and isolating of malicious nodes. Known reputation-based systems for secure
routing are IRmIDS [223], Reputated-ARAN [224] and CSRAN [225].

While secure routing provides P2P protection, reputation-based systems for secure resource
management provide end-to-end protection. Such systems rank resources, providers and
consumers. Based on these values, network entities are able to recognize legitimate providers
and resources of good quality while keeping out selfish and malicious users. Several
reputation-based schemes have been proposed for resource management in P2P and Grid
networks [226].

ANONYMITY AND LOCATION PRIVACY
Location-based applications constitute a rapidly expanding market, owing to the widespread
use and advances in mobile devices and positioning systems alike. Enhanced reality
applications and other similar services are starting to emerge and are expected to spread in
the coming years. Other examples of such smart services include location-aware emergency
response, enhanced entertainment and/or advertisement services, or even location
monitoring of personnel and fleets of vehicles.

The location of individual users is necessary in order to enable the abovementioned services
but, even though its disclosure may not pose a security risk for the embedded device itself,
said information constitutes sensitive personal data of the user or users associated with each
device and should be handled accordingly. Disclosure of such information can enable a
malicious user to harass, blackmail or even enter the individual’s residence (e.g. when he/she
is away). There is on-going research on the subject, including mechanisms for safeguarding
location privacy [227], [228] as well as reports on the weaknesses of current “sanitization”
mechanisms [229].

Literature on this topic includes variations and enhancements of a few recurring methods.
Anonymization methods aiming to remove identifying information using generalizations and
suppressions are the most popular in the literature, with k-anonymity being the basic
mechanism used, as described in [228]. The principle of k-anonymity involves the use of a
cloaking area, where there are at least k users in it, and blurs their identities in order to make
each user’s identity indistinguishable from the rest k−1 users. In general, there are two
important and mostly unavoidable trade-offs when choosing this k-value: A trade-off between
privacy and quality of service and a trade-off between privacy and personalization [230]. K-
anonymity-based schemes have typically being deployed for privacy-preserving location
monitoring and to allow mobile users to take advantage of location-based personalized
services without compromising their privacy [231], [232].

167

Elementary anonymity schemes (e.g. a pure k-anonymity scheme) are inadequate if used
independently and hence they are often combined with auxiliary mechanisms, in order to
achieve better privacy safeguards [229], [233]. Attempting to further enhance these basic
schemes, the use of personalized k values is proposed, for systems with context-sensitive
privacy requirements [227]. Moreover, if combined with l-diversity [234], another dimension
can be added to k-anonymity, where l is a set of distinct locations. Other than the above
suggested improvements, the use of dummy locations [235] and semantic information [236]
are also proposed in the literature, in order to address issues that are not solved by plain k-
anonymity mechanisms.

Pseudonym-based methods are another common anonymisation theme, involving disposable
pseudonyms for each node in the location service [237]. As the pseudonyms change over time,
they are being used as temporal identifiers, making it hard for potential attackers to track the
users. Silence periods can be introduced to further enhance this concept, as detailed in [238].
Other literature schemes rely on path perturbation, i.e. trying to cross paths in areas where
at least two users meet [239].

SECURE SERVICE DISCOVERY, COMPOSITION AND DELIVERY PROTOCOLS
Services in distributed networks must be discovered, composed and delivered in a secure way.
The Organisation for the Advancement of Structured Information Standards (OASIS) has
released related standards including WS-Security [124], WS-Policy [240], WS-Trust [241] and
WS-Secure Conversation [131] which have already been approved and the current trend is to
bring web services into ESs and it is thus imperative to adopt the aforementioned
specifications.

For this purpose, OASIS developed two standards: Devices Profile for Web Services (DPWS
[23]) and Web Services Dynamic Discovery (WS-Discovery [94]), which specify the use of web-
services-based communications in resource-constrained and ad hoc environments. The
profile’s architecture includes hosting and hosted services. A single hosting service is
associated with each device while the same device may accommodate various hosted
services. The latter represent the device’s various functional elements and rely on the hosting
service for discovery. Discovery services are included as well, enabling devices to “advertise”
their presence on the network and search for other devices. Metadata exchange services
provide dynamic access to services hosted on a device and their meta-data. Furthermore,
publish/subscribe eventing services allow other devices to subscribe to messages provided by
a certain service.

Additional research on this area has been conducted by the Service-Oriented Architecture for
Devices (SOA4D[242]) open-source initiative which facilitates the development of service-
oriented software components adapted to the requirements of embedded devices. Web
Services for Devices (WS4D) is another open source initiative, providing a number of toolkits
aimed at developing DPWS-compliant applications for resource-constrained devices in ad-hoc
networks, maintaining interoperability with regular W3C-specified Web Services. A detailed
overview of the WS4D initiative can be found in [146].

COMMUNICATIONS SECURITY

168

Embedded nodes have quite a few choices regarding the protocols they adopt in their
communication stack, depending on their computation capabilities and needs. One of the
predominant solutions is the 6LoWPAN [243] stack, i.e. IPv6 over 802.15.4 [244]. Such an
approach benefits from the adoption of well-known and standardized solutions for providing
security at the network layer. This is IPsec which, however, has to utilize compressed header
format [111], [112] to fit into the limited message space provided by IEEE802.15.4, i.e. for low-
power, low data rate wireless communication standard for small devices.

The network layer, however, is not the only layer in the TCP/IP stack where messages can be
protected. The others are application and data link layer. The corresponding security
mechanisms for these two layers are the Datagram Transport Layer Security – DTLS protocol
[245], which is based on the well-known TLS (Transport Layer Security [115]) but uses
datagram protocols and the inherent security mechanism of IEEE802.15.4 which is defined in
the same standard. All these mechanisms were designed to provide at least confidentiality,
integrity and message authentication, yet they have slightly different properties.

Security mechanisms found at the bottom layers of the communication stack relieve
applications from deploying their own distinct security mechanisms. However, this comes at
a cost. With regards to the IEEE 802.15.4 security protocol which protects messages at the
data link layer, protection takes place on a node-by-node basis. This introduces significant
computational overhead to the nodes which have to decrypt incoming messages, verify their
integrity, and re-encrypt them, typically using a different set of keys, prior to forwarding them
to the next node. This process consumes valuable node resources on routing nodes.

As opposed to 802.15.4, IPsec offers end to end protection of messages. Therefore,
intermediate routing nodes’ resources are only used for routing packets and not for message
protection. In this sense, security provided at the network layer can be considered as a
valuable mechanism for low power and lossy networks.

IPsec can be either used within such a network to secure communications among participating
nodes in cases where these are deployed in a hostile environment to secure communications
among participating nodes, or between a node and remote party. This second choice requires
utilizing a gateway, e.g. sink node, which can simply forward messages or set up a tunnel to
further protect messages and also provide communicating node details and traffic flow
confidentiality. As an example, consider the secure remote access to an aircraft’s device to
control it in case of an emergency. The aircraft’s gateway can be used to further protect the
message and hide the addresses of communicating entities, while padding can conceal
communication patterns and characteristics.

Compared to IPsec, DTLS demonstrates similar characteristics, in terms of end-to-end
message protection, but it suffers from an expensive handshake mechanism and the inability
to cope with applications that utilize the TCP protocol.

One of the problems one should consider when deploying one of these three solutions, is the
use of robust key management mechanisms designed for resource-constrained devices.
Traditional public key cryptography solutions are considered inappropriate in some

169

environments and alternatives, including those that utilize lightweight cryptography, elliptic
curves and identity based cryptography should be considered.

170

ANNEX B – PERTINENT EU-FUNDED RESEARCH
This section gives an overview of the research efforts in some recent EU-funded projects
related to embedded systems security, following a layered approach. In particular, the first
subsection presents the various technologies related to embedded systems’ nodes. The
second subsection deals with the network-related technologies, while the third subsection
presents the approaches followed for the middleware and overlay layers. The final subsection
focuses on architectures and frameworks, as well as on the formal validation of the security
of embedded systems.

Embedded systems security is a recurring theme in current research efforts, brought in the
limelight by the wide adoption of ubiquitous devices. Significant funding has been allocated
to various European projects on the subject of embedded systems security, in order to
investigate and overcome the various security challenges. A survey was conducted to provide
an overview of recent EU research efforts pertaining to embedded systems security, where
several prominent security issues and the respective proposed approaches are presented.
Twenty such projects that focus on embedded systems security aspects were identified and
the investigated technologies were categorized using a layered approach, to facilitate the
presentation of the results; the categories comprise the node, network and middleware &
overlay layers, as well as architectures, frameworks and formal validation of the security of
embedded systems.

The survey presented here aims at providing an overview of said past and running projects in
order to identify emerging trends, state-of-the-art technologies being used or developed,
opportunities for composing or expanding past work and, generally, highlight open issues that
need to be addressed in the future. In addition, this survey partly demonstrates the broader
areas of embedded systems security that researchers chose to focus on, given the latest
technological advancements (nationally-funded projects have not been taken into account).

Out of a large number of projects initially gathered, a smaller subset of the most recent ones
was selected to be included in this work, based on their relevance to security and
dependability aspects of embedded systems design, as well as their availability of public
deliverables and publications lists. Research in these projects has been conducted using EU
resources, hence they have a budget within the funding limits imposed by the EU itself and
have undergone a similar review process in terms of novelty, application and quality
requirements. In addition, they all try to achieve the common goal of attaining a uniform
technological level among all EU state-members. Details on the EU-funded projects related to
embedded systems security that were selected for the purposes of this survey are presented
in Table 10.

TABLE 10. SELECTED EU-FUNDED PROJECTS RELATED TO EMBEDDED SYSTEMS SECURITY.

Acronym Project Title Start Date
End Date

Cost
(EUR) Call

1 AETHER
Self-adaptive embedded

technologies for pervasive
computing architectures

01/01/200
6 5.92M FP6

171

31/12/200
8

2 AWISSENET Ad-hoc PAN and wireless sensor
secure network

01/01/200
8

28/02/201
0

3.10M FP7

3 CESAR
Cost-efficient methods and

processes for safety relevant
embedded systems

01/03/200
9

01/03/201
2

33.5M ARTEMIS
JU

4 CHAT

Control of heterogeneous
automation systems: Technologies

for scalability, reconfigurability
and security

01/09/200
8

31/08/201
1

3.58M FP7

5 EVITA E-safety vehicle intrusion
protected applications

01/07/200
8

31/12/201
1

5.89M FP7

6 GINSENG Performance control in wireless
sensor networks

01/09/200
8

29/02/201
2

4.66M FP7

7 HYDRA

Networked Embedded System
middleware for heterogeneous
physical devices in a distributed

architecture

01/07/200
6

30/06/201
0

12.75
M FP6

8 MADNESS

Methods for predictAble Design of
heterogeNeous Embedded System

with adaptivity and reliability
Support

01/01/201
0

31/12/201
2

2.92M FP7

9 MORE

Network-centric Middleware for
group communications and

resource sharing across
heterogeneous embedded

systems

01/06/200
6

31/05/200
9

2.75M FP6

10 OVERSEE Open VEhiculaR SEcurE platform

01/01/201
0

30/06/201
2

3.91M FP7

11 PRESERVE Preparing Secure Vehicle-to-X
Communication Systems

01/01/201
1

31/12/201
4

5.44M FP7

12 pSHIELD
Pilot Embedded Systems

Architecture for Multi-layer
Dependable Solutions

01/06/201
0

31/12/201
1

5.40M ARTEMIS
JU

13 SecFutur
Design of Secure and energy-

efficient embedded systems for
Future internet applications

01/05/201
0

30/04/201
3

4.20M FP7

172

14 SEPIA
Secure, Embedded Platform with
advanced Process Isolation and

Anonymity Capabilities

01/06/201
0

31/05/201
3

3.26M FP7

15 SMEPP Secure Middleware for embedded
peer to Peer Systems

15/09/200
6

14/09/200
9

4.46M FP6

16 TECOM Trusted Embedded Computing

01/01/200
8

31/03/201
1

9.02M FP7

17 TERESA
Trusted computing Engineering for
Resource constrained Embedded

Systems Applications

01/11/200
9

31/10/201
2

3.79M FP7

18 UbiSec&Sens Ubiquitous sensing and security in
the European homeland

01/01/200
6

31/12/200
8

2.91M FP6

19 UNIQUE Foundations for Forgery-Resistant
Security Hardware

01/09/200
9

29/02/201
2

4.22M FP7

20 WSAN4CIP
Wireless sensor networks for the

protection of critical
infrastructures

01/01/200
9

31/12/201
1

4.02M FP7

The ubiquitous nature of embedded systems is evident in Table 9, which features the various
application areas pertaining to each project. It should be noted that the application table was
produced based on how the researchers themselves identify the application areas of the
technologies they present, as this emerges from the project deliverables and publications. It
goes without saying that many of the identified technologies could belong to other application
areas as well, either with or without additional modifications.

TABLE 11. APPLICATION AREAS OVERVIEW.

Acronym Aerospace Automotive Railway

Smart
home
and

smart
buildings

Smart
metering

e-Health

Industry
4.0 and

agricultur
e

Mobile
devices

Critical
infrastructur

e and
environment
al monitoring

AETHER X X X X X

173

AWISSENET X X

CESAR X X X X

CHAT X

EVITA X

GINSENG X

HYDRA X X X X

MADNESS X

MORE X X

OVERSEE X X

PRESERVE X X

pSHIELD X

SecFutur X X X

SEPIA X

SMEPP X X X

TECOM X X X X

TERESA X X X X X

UbiSec&Sens X X X

UNIQUE X X

WSAN4CIP X X

In terms of the layers that were used to classify identified literature work, the lowest one is
the node which involves the hardware and firmware technologies. The network layer includes
various protocols, authentication schemes and other security-related mechanisms.
Middleware layer mainly refers to low-level software that operates on top of the device’s
operating system but, in most cases, below any other applications (namely, overlay). Finally,
the architectures and formalization classification comprises various frameworks and other
holistic approaches to the security of embedded systems, including solutions that consider
their formal validation.

174

NODE TECHNOLOGIES
The heterogeneous nature of the field is evident from the literature review. In terms of
hardware used, it was confirmed that there is a variety of platforms being utilised, with equally
varied capabilities, such as the low-power TelosB, IRIS and MICAz platforms from Crossbow
Technology,13 the more capable Verdex Pro XL6P COM from Gumstix [246] and the FOX LX
board from Acme Systems [247]. In some cases, even more powerful devices are being used,
such as the Freescale i.MX51 [248] and the Xilinx Spartan-6 FPGA family [249]. The latter,
along with low power x86-based platforms are also typically used in the development of future
vehicular applications. Equally varied are the software security solutions being utilised and
developed, featuring different operating environments, protocols and cryptographic
primitives.

Given the often unattended nature of deployed embedded systems, sometimes within hostile
environments, the aspect of physical security cannot be ignored. Gaining physical access to a
device enables the launch of various side-channel attacks, such as simple/differential power
analysis and differential fault attacks, which could potentially expose security-related
information (cryptographic algorithms used, length of keys, etc.), thus jeopardising the
security of both the device itself and the network it belongs to as a whole. What is more, the
inherent limitations of embedded systems devices in terms of processing power, memory,
storage and energy, require suitable cryptographic techniques that take those constraints into
consideration. Such lightweight cryptographic mechanisms can facilitate secure
communication without becoming a burden, resource-wise, on the device itself. Alternatively,
virtualisation techniques can be used to fortify ESs security and specialised hardware modules
can be employed to speed up various cryptographic functions.

This section is dedicated to presenting technologies aiming at protecting the embedded
system’s physical security, a variety of lightweight cryptography schemes and other
techniques for enhancing a node’s physical security that take into consideration the various
resource constraints. An overview of the node-related technologies identified, can be found
in Table 12.

TABLE 12. NODE TECHNOLOGIES OVERVIEW (PROJECTS THAT DID NOT FOCUS ON THESE ASPECTS HAVE BEEN
LEFT UNCHECKED).

Acronym
Purpose-built
hardware and

features
Virtualisation

Lightweight
crypto

Side-channel
security issues

Trusted
Platform
Modules

AETHER X X

AWISSENET X X

CESAR

13 http://www.moog-crossbow.com

175

CHAT

EVITA

GINSENG

HYDRA

MADNESS

MORE

OVERSEE

PRESERVE

pSHIELD

SecFutur X

SEPIA X X X X

SMEPP X

TECOM X X

TERESA

UbiSec&Sens X X

UNIQUE X

WSAN4CIP X

HARDWARE-RELATED SECURITY MODULES
TAMPER-RESISTANT MODULES
A significant area of security research related to Wireless Sensor Networks (WSN) aims at
utilising Trusted Platform Module (TPM) hardware and adapting it to the specific needs of
resource-constrained applications. Such a TPM-related subject is that of the implementation
of the Direct Anonymous Attestation (DAA) scheme specified by the Trusted Computing Group
(TCG). In [250] a detailed report on the implementation of the aforementioned functionality
is provided, as well as suggestions for improvements. The presented experimental results
indicate that especially the rogue detection part of the DAA protocol can be very time
consuming and the overhead is very evident on resource-constrained devices, increasing
linearly with the size of the black lists of rogue TPMs. Moreover, problems with the
mechanisms and protocols used to report compromised TPMs are identified. On the subject
of TPMs, research has also focused on the security extensions of mobile platforms for hosting
Mobile Trusted Module (MTM) functionality. Two different reconfigurable MTM architectures

176

are presented in [251]; the first one is based on a software implementation of the MTM
running on the same physical processor as the applications using that MTM and the second is
based on JavaCards providing the MTM functionality via the Java runtime environment, each
with its own set of isolation mechanisms between the MTM and its users. The techniques
utilise security features commonly found on mobile devices, i.e. Secure Elements and ARM
TrustZone [252], proposing respective techniques for dynamic loading of TPM commands,
aiming to alleviate the performance and memory issues arising from the security facilities of
mobile platforms. In [253] the server side of Trusted Computing functionality is examined,
presenting a design based on the Nizza Architecture [254] but minimising the trusted
computing base and aiming to provide anonymous and trustworthy service for users, even
counteracting certain insider attacks which, with the proposed scheme cannot go undetected.

An approach for protecting agents by utilising tamper-resistant cryptographic hardware is
presented in [255]. The proposed agent migration protocol (Secure Migration Library –
SecMiLiA) is based on the use of Trusted Computing technology that attempts to protect the
agent from malicious hosts. A weakness of this system is the key management system that
requires further improvement. In particular, due to the fact that the available key storage in
the TPM is very limited, the key to be used is loaded into memory when required and is
offloaded as soon as it is no longer useful, thus triggering many key transactions. Issues such
as the use of key caching and the best possible management of cached keys remain topics that
future research could deal with.

It should be evident from the above that TPMs are an important tool for building secure
embedded system platforms; still, it must be noted that they should not be considered fail-
proof. In [256] an active hardware attack on TPMs is detailed, which may not allow access to
protected data (e.g. cryptographic keys), but circumvents the chain of trust assumed to be
provided by the trusted platform. So, the module itself might be tamper resistant but the
communication channels are often vulnerable and this is something that must be taken into
consideration at the design phase.

Regarding defence against more invasive attacks, a clock frequency watch dog, implemented
using a digital standard CMOS library, is presented in [257]. The proposed scheme is able to
prevent clock speed manipulations, thus preventing side channel attacks on cryptographic
hardware devices. The cost in terms of both additional area and energy requirements is low
and is therefore suitable for being applied to low-cost devices, such as wireless sensor nodes.

HARDWARE ACCELERATION
Another approach to WSN node security is based on the use of low cost, low energy
consumption Complex Programmable Logic Devices (CPLDs), which are programmable logic
devices having a complexity between that of Programmable Logic Arrays (PLAs) and that of
Field Programmable Gate Arrays (FPGAs), sharing architectural features with both. A WSN
platform which embeds a CPLD in a standard WSN node is presented in [258]. As real-world
experiments show, this CPLD-equipped platform can increase the performance of a standard
WSN node by a factor of 1220 to 3000 when executing certain algorithms and also reduce
power consumption, with a reported reduction of up to 98%. This concept is further expanded
in [259], where various networking and security protocols are implemented on the

177

aforementioned platform and real-world performance is compared to existing schemes. In
[260] RESENSE is presented, a complete node platform integrating this technique on popular
WSN nodes (MICAz and IRIS from Crossbow Technology) running the TinyOS operating system.

PHYSICALLY UNCLONABLE FUNCTIONS (PUFS)
The use of Physically Unclonable Functions (PUFs) is a method for protecting devices against
attacks on their keys [261]. These functions extract secrets from physical characteristics of
integrated circuits (ICs), which can be used, amongst others, for storing keys securely. The
keys are therefore “hidden” into the various hardware parts, instead of being stored into the
device’s memory. In this way, even by using very advanced tools for attacking hardware, any
such attempts for side-channel attacks will be unsuccessful in retrieving any useful
information. For an additional layer of security, Logically Reconfigurable PUFs (LR-PUFs) can
be used that have the ability of changing their challenge/response behaviour in a random
manner [262]. Hence, a potential attacker will also have to deal with a continually-changing
behaviour. PUFs can be used in any embedded system comprising ICs, even in the very
resource-constrained RFID tags, especially when the latter are used for high-security
applications, such as passports.

Combining PUFs and Public PUFs (PPUFs) with Fuzzy Extractors, it is possible to substitute
dedicated hardware security modules, as demonstrated in [263], [264], where these
technologies are investigated in the context of pseudonymous communication in vehicular
networks. There are various open issues in said field, as these anonymisation techniques are
not really effective when every vehicle knows the PPUF characteristics and alternatives should
be investigated (e.g. using lists of the PPUF characteristics themselves as pseudonyms).
Moreover, using PPUFs in challenge-response and authentication mechanisms in general
could be further investigated.

CHANNEL CHARACTERISTICS EXPLOITATION
A similar concept of exploiting physical characteristics in order to derive cryptographic keys,
is the method presented in [265]. No dedicated hardware is being used in this case; instead,
an adaptive quantisation algorithm is proposed, able to generate sufficiently long keys by
exploiting the radio channel randomness between two communicating parties. In multipath
radio environments, due to the scatters effects, the waveforms travel differently from one
location to another. Hence, a potential eavesdropper is incapable of obtaining similar channel
measurements and therefore cannot extract the secret key from the communicated data.

VIRTUALISATION
Virtualisation is a feature that, as research has shown, adds to the overall security of the
system, in various ways. Firstly, it seems to be a remedy for facing the severe security
challenges that mobile devices have, given that they are usually targeting a completely open
setup [266]. In addition, efficient virtual machines have successfully been implemented in
micro-kernel based systems, thus enabling the reuse of arbitrary operating systems [267]. The
overhead imposed on the kernel growth was rather marginal and the overall performance was
found to be similar to other virtual machine implementations. An analysis on how and to
which degree recent x86 virtualisation extensions can influence the response times of a real-
time operating system that hosts virtual machines was performed in [268]. In [269] it was

178

shown that a thin and rather simple virtualisation layer can add to the overall system’s
security, as it provides fewer options for attack to a potential adversary. What is more, this
approach was found to exhibit significantly better performance, compared to contemporary
full virtualisation environments. Finally, regarding the way virtual machines should be
implemented, it is claimed in [270] that their construction should follow the principle of
incremental complexity growth. Namely, additional functionality should not be included in the
trusted computing base of a component if the benefits it offers are less than the drawbacks
(e.g. due to larger risk for introduced bugs and errors). Such an approach can be efficiently
implemented and it was possible to achieve high throughput and good real-time performance.

The utilisation of Trusted Platform Modules and virtualisation techniques is an emerging
pattern in relevant EU projects. A combination of said technologies is presented in [251],
intending to provide a reference design for a Trusted Computing-based, lightweight,
virtualisation framework specifically aimed at cloud computing scenarios, an increasingly
important area of applications. An overview of the proposed architecture, which exploits both
the ARM TrustZone and TPM DAA technologies. Lightweight containers are supervised by a
relevant supervisor application. In the proposed scheme lightweight containers
(μcompartments) are built on top of the Linux kernel, with each isolation container enclosing
the code and data required for the compartment to operate. Each compartment is monitored
and managed by a per-compartment supervisor application, responsible for constructing the
security policies, enforcing them and finally destructing its compartment.

LIGHTWEIGHT CRYPTOGRAPHY
An overview of the literature pertaining to time and energy overhead various cryptographic
primitives impose on popular types of wireless sensor nodes is presented in [271]. A number
of symmetric and public-key algorithms, hash functions and cryptographic primitives in
general are mentioned as well as their lightweight counterparts, where available. It is worth
pointing out that the node lifetime data presented in the literature usually refers to the
overhead imposed by the security-related functionality alone and, in a real-life scenario,
values would be significantly lower due to additional functions running on the same node.

In the literature, whenever strong encryption is required on rather resource-constrained
devices, elliptic-curve cryptography (ECC) is always a strong candidate. In [272] the finite fields
Fp, F2d and Fpd are being investigated for suitability for performing ECC on the ATmega128

microcontroller and it turns out that binary fields are most preferable when efficient
implementations are required.

An interesting security scheme for WSN that provides transparent security is proposed in
[273]. This scheme is effectively a lightweight CBC-X mode cipher that is able to provide
encryption/decryption and authentication, combined as a one-pass operation. Consequently,
it exhibits significant energy gains of about 50-60%, compared to TinySec [274]. Furthermore,
the proposed scheme has no ciphertext expansion for the transmitted data payload, thus
significantly reducing the communication overhead. Although a block cipher is used,
ciphertext expansion is avoided by having padding rules making use of a Data Stealing
technique and a MAC Stealing technique, thus allowing for zero redundant padding bytes.

179

A strong, compact and efficient block cipher, DESL (DES Lightweight extension), based on the
DES (Data Encryption Standard) cipher design is proposed in [275]. Instead of using 8 S-boxes
as in DES, it uses a single S-box repeated eight times, thus considerably reducing chip size
requirements. Furthermore, a lightweight implementation of DESL is also proposed, that
requires almost half the chip size and 86% less clock cycles compared to the best AES
implementations targeted for RFID applications, therefore rendering DESL a strong candidate
for ultra low-cost encryption applications.

An optimised implementation of a modular multiplication is presented in [276]. The proposed
algorithm was tested on an 8-bit microcontroller (AVR), using an 160-bit standard compliant
elliptic curve (namely, secp160r1). Given that the majority of the processing time for elliptic-
curve cryptography (ECC) is spent on modular multiplication, related schemes such as EC
ElGamal or ECDSA would greatly benefit from it, as well as their applications in the field of
resource-constrained devices (such as WSNs).

Hardware-specific optimisations have also played an important role in lightweight
cryptography research efforts. The authors in [277] present an area-efficient implementation

of AES (requires 0.33mm2 in a 0.25μm technology), featuring good performance and low
power consumption. These goals were achieved by both optimising individual functional
blocks of AES, as well as the overall architecture.

MISCELLANEOUS NODE TOPICS
The authors in [278] propose a scheme for implementing security on extremely low-cost
sensors that run with minimal resources regarding computational power, energy consumption
and memory size. The sensors are initially loaded with firmware suitable for providing
asymmetric cryptography during the one-time bootstrapping phase. Then, through a dynamic
code update, it is replaced by other security protocols that are required for the operation of
the WSN, effectively offering hybrid security functionality. Their proof-of-concept
implementation makes use of the FlexCup plug-in for TinyOS.

The practicality of group signature schemes on mobile devices is examined in [279], where the
authors constructed a Java framework that allows for an in-depth evaluation of three such
schemes (out of a total of seven defined in the upcoming ISO20008-2 standard). Performance
evaluation took place on a laptop bearing an Intel i7 CPU, as well as on three recent Android-
based smartphones, so as to gather up-to-date results. The conducted tests were aiming at
determining the required signing time, as this is considered very important in the investigated
scenarios. Initial results ranged from 304.2 to 4752.7 ms, among the three smartphones, for
various algorithms and key lengths. However, when pre-computation was employed, the
times dropped significantly and fell within the range of 0.71 to 631.11 ms, respectively.
Verification times were significantly longer for the mobile devices (245.6 to 9735.5 ms),
nevertheless still within acceptable limits for real-world implementations.

NETWORK TECHNOLOGIES
The resource-constrained and often heterogeneous and distributed nature of embedded
systems, imposes restrictions and introduces issues at the network layer as well. It is quite
common that certain applications of embedded systems require the integrity of the provided

180

service. If web services are being used, it is important to be able to ensure the validity of each
participating node, thus ensuring that the system has not been compromised and their
communicated data (e.g. measurements) is trustworthy. This is the objective that the various
attestation techniques try to achieve. One other issue that needs to be taken care of is the
secure transmission of the obtained data to their destination. Examples for meeting this
requirement are the implementation of secure routing or secure data aggregation techniques.
Detection of potentially malicious nodes in a network is another important issue that may
achieved with the deployment of a suitable intrusion detection system (IDS). Such systems
usually look for abnormalities in the overall system behaviour and raise alerts accordingly.
Once again, all these additional security mechanisms should not burden the overall system’s
performance to an extent where the system is effectively rendered useless, therefore suitable
lightweight techniques must be employed.

This section is dedicated to presenting technologies related to node attestation and
authentication techniques, secure routing and secure data aggregation and various intrusion
detection schemes. Table 13 features an overview of the network technologies identified and
their related projects.

TABLE 13. NETWORK TECHNOLOGIES OVERVIEW (PROJECTS THAT DID NOT FOCUS ON THESE ASPECTS HAVE
BEEN LEFT UNCHECKED).

Acronym
6LoWPAN

and
802.15.4

Privacy
and

anonymit
y

NFC and
RFID

Secure routing
and secure

services
protocols

Intrusion and
malicious

node
detection

Secure
aggregation

AETHER X

AWISSENET X X X X

CESAR

CHAT X

EVITA

GINSENG X

HYDRA

MADNESS

MORE

OVERSEE

PRESERVE X X X X

181

pSHIELD X

SecFutur X X

SEPIA X X

SMEPP

TECOM

TERESA

UbiSec&Sens X X

UNIQUE X X

WSAN4CIP X

NODE ATTESTATION AND AUTHENTICATION
The interoperability with existing infrastructures and the Internet is a major challenge which
must be tackled in a definitive way if we are to realise what is often referred to as the Internet
of Things (IoT). A very valuable tool in this area is the combination of the IEEE 802.15.4
standard with 6LoWPAN (IPv6 over Low power Wireless Personal Area Networks, [280])
which, expectedly, introduces new security challenges and opportunities. An example of the
security challenges introduced by using these new technologies can be found in [281], where
an off-the-shelf T-Mote Sky wireless sensor is transformed into an 802.15.4 packet sniffer.
Analysis is then trivial using open source software like Wireshark. Of course, this technique is
a valuable tool in the hands of researchers developing protocols but can also be exploited by
malicious users to eavesdrop on a network or even launch active attacks (e.g. packet
injection). The authors in [282] propose new compression mechanisms for 6LoWPAN security
headers, along with cryptographic mechanisms typically used with the IP security architecture,
allowing the establishment of end-to-end secure channels between internet hosts and sensor
nodes. The proposed mechanisms also allow for fine-grained control over the energy
consumed on security-related tasks on the nodes, while the proposed model was evaluated
in [283], with AES/CCM and SHA1 as the cryptographic primitives of choice.

The security and constraints stemming from the limited resources of sensor nodes have been
investigated in EU projects extensively. Such an EU-funded attempt at trying to tackle these
issues is presented in [284], giving an overview of the topic, including security and operational
requirements, sensor and network constraints as well as the objectives of this specific project.
Another overview, more focused on smart-home applications, can be found in [285], where,
among others, key privacy and security issues are identified.

PRIVACY AND ANONYMITY
Anonymous Authentication and Anonymity schemes in general are another key area of
current research, since privacy is essential in many applications (e.g. social, medical) and

182

anonymising access to resources and services is a common technique to safeguard users’
privacy. An analysis of how trusted computing technologies can be used for anonymous
authentication and how they can be integrated into common security frameworks (e.g. Java
Crypto Architecture) can be found in [286]. This work is based on the DAA scheme for
providing anonymity over secure communications channels (i.e. anonymous TLS client
authentication), but using alternative, more lightweight, schemes than those defined in the
TPM v1.2 specification. Another interesting aspect of this work are the discrepancies reported
between various TPM manufacturers (e.g. Infineon, Atmel, Winbond, Intel, ST Micro), TPM
emulators and the original specification.

Another anonymous authentication scheme based on an optimised version of DAA and aimed
at resource-constrained mobile devices is presented in [287]. Functionality includes secure
devices authentication, credential revocation as well as anonymity and untraceability of said
devices against service providers. The proof-of-concept implementation was deployed on an
ARM11-equipped development platform (exploiting the ARM TrustZone feature, using an
elliptic curves and pairings scheme, while integration with the OpenSSL security framework
was also demonstrated).

Further work on Trusted Computing Group anonymity schemes (i.e. PrivacyCA and DAA) is
attempted in [288]. The goal is to overcome the need for a trusted third party which is evident
in the aforementioned standard schemes, while maintaining compatibility with the TPM v1.2
specification. The proposed anonymisation scheme for trusted platforms overcomes the need
for a trusted third party while, relying on the TPM’s DAA functionality so that no TPM
modifications are required.

Regarding anonymous authentication, a Direct Anonymous Attestation protocol utilising Near
Field Communication-equipped (NFC, [289]) mobile devices and RFID is proposed in [290],
expanding on the now relatively popular Secure Element (SE) scheme presented in [291].
Experimental results are also presented, using off-the-shelf mobile devices.

The scheme proposed in [292] offers anonymous authentication for RFID, with the use of
additional devices, the anonymisers. The latter interact with the RFID tags and any
communication with external devices (e.g. RFID tag readers) is performed through the
anonymisers that mask certain information, thus ensuring the tags’ anonymity and
unlinkability. What is more, the anonymisers operate as some sort of proxies to the RFID tags,
by undertaking the task of performing the required public-key cryptographic operations that
the tags are unable to do so, due to their very resource-constrained nature.

As smartphones are already ubiquitous, some researchers focus on taking advantage of the
features of modern smartphones in smart vehicle applications, as this alleviates some of the
requirements from the vehicle platform itself (in terms of processing power, presence of GPS
functionality etc.). In [293] the privacy issues of such an application, namely the use of
smartphones for data acquisition of Intelligent Transportation Systems (ITS). The authors
propose the extension of an existing architecture with anonymous authentication, allowing
for privacy-aware traffic and location sample collection and protecting users’ privacy even in
cases of compromised ITS servers.

183

Wireless communication in Vehicular Ad hoc Networks (VANETs) is typically protected by
digital certificates. As such certificates and related identifiers must not be usable to track
vehicles, short-term pseudonymous certificates are applied and regularly changed in order to
protect the driver’s privacy. The authors in [294], [295] introduce and implement a distributed
PKI architecture for vehicular networks, utilising pseudonymous certificates for privacy-
preserving vehicular applications complying with related standards. Using tickets as
cryptographic tokens, the proposed scheme offers authentication, authorisation and
accountability, while maintaining the vehicle’s privacy (e.g. guaranteeing that consecutive
pseudonym requests cannot be correlated).

Nevertheless, there are certain incidents (e.g. traffic accidents) where it should be possible to
identify the actual user via the certificate issuer. Hence, resolution of pseudonym identifiers
is needed. The authors in [296] propose a generic pseudonym resolution protocol to be used
by network infrastructure entities under such critical pre-defined conditions. The proposed
protocol, CoPRA, does not increase pseudonym certificate size and imposes no additional
overhead nor delay in the certificate acquisition phase. Moreover, it allows for validation of
the situation that warrants the pseudonym resolution, prior to providing any information
regarding the users’ identity.

Privacy concerns pertaining to future smart vehicles are not restricted to VANET-related
issues. The expected wide deployment of electric vehicles and charging infrastructures will
require the use of protocols to control authentication, authorization and billing of vehicle
owners. The ISO/IEC 15118 [297] standard defines the vehicle to charging station
communication interface, also including the necessary security mechanisms. Still, it does not
cater for the privacy protection of service users, making it trivial to, for example, let charging
station operators track the location of a specific user. Therefore, authors in [298] propose
POPCORN, a modular extension to the protocol defined in the abovementioned standard,
which includes various privacy enhancing technologies like anonymous credentials. A proof-
of-concept implementation is also presented to demonstrate the feasibility and investigate
the performance of the proposed scheme.

SECURE ROUTING
Secure routing protocols constitute another critical research area of networking technologies.
In [299] an overview of security issues and current trends in trusted routing for ad-hoc
networks is provided, evaluating their applicability in WSNs. Various trust-management
enhanced routing protocols and trusted routing frameworks are investigated, focusing on
their applicability on resource constrained environments. A secure routing protocol better
suited to such environments is proposed in [300], namely Ambient Trust Sensor Routing
(ATSR) and its performance and effectiveness is evaluated. In ATSR the geographical location
of nodes along with other parameters (e.g. their remaining energy; for better load balancing
and lifetime extension) are considered. Moreover, the protocol features a distributed trust
model, based both on direct and indirect trust data, to detect malicious nodes.

The authors in [301], [302] also proposed a mobile ad-hoc network routing protocol based on
the B.A.T.M.A.N. (Better Approach To Mobile Ad-hoc Networking) protocol [303] that utilises
concepts from the domain of trusted computing. Device attestation is integrated on the

184

protocol itself, thus routing and data transmissions can be restricted to trustworthy devices
only. A Trusted PlatfModule (TPM) serves as root-of-trust on each device and hence, any
devices that have been identified as being malicious can automatically be recognised by all
network nodes, thus leading to their exclusion from the trusted network. Additional issues
need to be looked into, such as interoperability with other network standards, interaction
with other networks (homogeneous or not) and the maintenance of a trustworthy connection
over another layer-2 protocol.

The interactions between secure routing protocols and the Service Discovery functionality on
WSN networks where the nodes are used as service providers are investigated in [304].
Simulation results presented in the aforementioned work indicate that in some situations
there is an efficiency gain if routing protocols allow the higher layers to override the routing
decisions which might, for example, try to avoid using an untrusted node that the service
discovery layer wants to use.

INTRUSION AND MALICIOUS NODE DETECTION
Intrusion Detections Systems (IDS) are a key tool in safeguarding distributed ES networks. A
dynamic and distributed IDS scheme is presented in [305] and further expanded in [306],
where nodes act as local monitors of their neighbours and, in combination with data received
from other monitors, are able to detect malicious entities. Simulations are used to prove the
effectiveness of the proposed methods, with applications focusing mostly on smart vehicles.
Defensive techniques for sensor networks based on the nodes’ locations are surveyed in [307];
assuming every node is capable of detecting its own location. Furthermore, concepts of robust
statistics (i.e. robust regression) are proposed, aiming to localise a node in the presence of
malicious beacons. To facilitate the analysis and understanding of IDS data, various advanced
methods have been investigated in EU funded products, including neural network-based
techniques for the visualisation of said data, as presented in [308].

Awareness of nearby vehicles and their location is a basic foundation of electronic safety
application in VANETs. However, the ad hoc nature of the vehicular networks makes them
vulnerable to malicious nodes. Moreover, it is realistic to assume that in some cases there will
be no pre-established trust relationships between vehicles. Researchers in [309] try to address
these challenges by proposing a fully distributed cooperative solution, namely a lightweight
protocol which relies only on information exchange among neighbouring entities, enabling
the effective identification of adversarial nodes.

A central evaluation scheme is proposed in [310], where malicious peers are detected and
excluded from the VANET using misbehaviour detection systems. These systems use trust and
reputation information provided in misbehaviour reports submitted by vehicles as well as
roadside units. As simulations indicate, the presented system is significantly effective against
ghost/malicious vehicles broadcasting faked position and other information, which is one of
the most critical attacks on VANETs. It should be noted that the proposed scheme is not fully
distributed and vehicles rely on a central authority, namely the Misbehaviour Evaluation
Authority, to detect attackers.

185

Even in cases where a PKI scheme is established, insider attackers, i.e. malicious entities
possessing legitimate key material, must be considered as well. Authors in [311] propose the
exploitation of redundant information dissemination for consistency checks and evaluate
dissemination protocols using three graph-based metrics they introduce.

SECURE AGGREGATION
Information aggregation techniques are a useful tool, especially in mobile ad-hoc networks
(MANETs), to facilitate information dissemination and to reduce bandwidth requirements. In
the context of VANETs, which are considered a sub-category of MANETs, the vehicles must
communicate to exchange information for various enhanced services (safety, efficiency,
traffic, entertainment etc.). Aggregation techniques can be used so that vehicles exchange
high quality summaries of said information, instead of exchanging each individual message.
Still, it is essential to utilise secure aggregation schemes, as the information exchanged
between vehicles can be used of important decisions (e.g. traffic management, fleet control
or road safety). Authors in [312] present such a dynamic and secure aggregation scheme for
VANETs, which prevents insider attacks from influencing the aggregation results.
Furthermore, its security mechanisms can be applied to existing aggregation schemes to
produce dependable aggregates.

When it comes to Wireless Sensor Networks (WSNs), maximising the sensors’ battery life is,
naturally, of great importance. For this reason, in-network aggregation protocols have been
proposed, where the required function(s) on the measurements is/are computed as data
traverses the network [313]. One problem in such a scheme is that a corrupted sensor
providing incorrect measurements cannot be distinguished from a sensor under attack, where
the attacker has either modified the environmental conditions or has obtained the sensor’s
cryptographic secrets, in order to inject false measurements into the data sink. A novel secure
data aggregation protocol is presented in [314] that is able to provide security, privacy and
integrity for sensor networks, using inexpensive cryptographic tools. The main idea of the
proposed ABBA (A Balls and Bins Approach) protocol is to define several bins for different
sensing intervals and to demand each sensor to provide its sensed value adding one ball in the
appropriate bin.

The aforementioned problem of deliberately-introduced corrupt data in an in-network
aggregation protocol may be countered by exploiting the statistical properties found in the
communicated data [315]. In particular, the naturally existing correlation between the
readings produced by different sensors are taken into consideration to increase the resilience
of data aggregation, without any special assumption on the distribution of the sensor
readings, or the attacker’s strategy.

Should the scheme involve the election of aggregator nodes, the authors in [316] discuss the
requirements that need to be fulfilled, in order to have a non-manipulable aggregator node
election protocol. Moreover, they provide a comparative review of three Secure Aggregator
Node Election (SANE) protocols, based on a particular threat model.

A similar private aggregator node election protocol, where the election is performed in an
anonymous manner, was proposed in [317]. The objective of this protocol was to make it

186

difficult for an adversary to identify aggregator nodes in the network and then physically
compromise them. The protocol was deployed alongside with a private data aggregation
protocol and a private query protocol, that masked the data flows to and from the aggregator
nodes, thus maintaining their privacy. An enhanced version of the protocol was also proposed
that is able to detect any misbehaviour within the network, such as the one introduced by an
attacker who injects false reports. Nevertheless, further research is required for the system
to be able to identify the misbehaving node.

MISCELLANEOUS NETWORK TOPICS
Due to the very limited memory of certain types of devices (e.g. Harvard-based architecture
devices, such as Mica motes), it was believed that these devices were immune to buffer
overflow attacks that inject code into the stack and then execute it. Nevertheless, the authors
in [318] demonstrated the feasibility of a remote code injection attack for Mica sensors, where
the injected code is permanent, thus enabling the attacker to gain full control of the target
sensor, persistently across reboots. What is more, they show how this attack can be
transformed into a worm, namely how to make the injected code self-replicating and
therefore able to propagate through the WSN, with the potential of eventually forming a
sensor botnet. The employed techniques for this attack involve return-oriented programming
and fake stack injection. It only suffices for the attacker to corrupt one network node and use
its keys to propagate the malware to its neighbours. Packet authentication and cryptographic
techniques in general can make such code injection attacks more difficult, nevertheless they
cannot completely prevent them.

A security service protocol for MANETs, able to negotiate the security settings for the
communications is presented in [319], a feature which is particularly useful in heterogeneous
networks, both in terms of hardware and of services provided. This negotiation protocol aims
at selecting the cheapest services that consume the least possible amount of energy, while
offering the highest possible security level among nodes with different security requirements.
In addition, run-time negotiation of services is supported, thus making it suitable for cases
where self-adaptivity is involved. Nevertheless, the protocol is not yet complete and
additional work is required on the message exchange for key management and errors.

The trustworthiness of messages received by peers is especially important in the context of e-
vehicle safety-related applications (e.g. local danger warnings), as critical decisions often need
to be made on those messages; decisions directly affecting passenger safety. To increase the
trustworthiness in said messages, a consensus mechanism can be used, i.e. the same warning
needs to be received at least x times from peers before it is considered legitimate. Researchers
in [320] investigate this threshold and its effect on the decision delay, including the possibility
of malicious peers launching information forgery attacks.

MIDDLEWARE AND OVERLAY TECHNOLOGIES
Moving to higher layers, namely middleware and overlay, researchers have to tackle
additional challenges as system complexity increases. On the other hand, operating from a
higher level allows the utilisation of more advanced features, like the secure and efficient
resource management (by aggregating information from the lower layers) and mechanisms to
facilitate the interoperability and management of heterogeneous ES networks. It is, therefore,

187

of no surprise that middleware and overlay technologies are a common area of research and
development efforts for many of the projects investigated, aiming to exploit the
aforementioned tools in order to design secure embedded systems and related services.

This section is dedicated to presenting various types of middleware, such as trusted, service-
oriented, context-aware, reconfigurable and fault-tolerant. Table 14 presents the middleware
and overlay technologies as well as the attempts related to architecture and formalisation,
which were identified in this work.

TABLE 14. MIDDLEWARE AND OVERLAY TECHNOLOGIES OVERVIEW (PROJECTS THAT DID NOT FOCUS ON THESE
ASPECTS HAVE BEEN LEFT UNCHECKED).

Acronym Secure middleware

Services and overlay
applications

Reconfigurability and
fault tolerance

AETHER X

AWISSENET

CESAR

CHAT X

EVITA

GINSENG X X

HYDRA X

MADNESS X

MORE X X

OVERSEE

PRESERVE

pSHIELD X

SecFutur

SEPIA X X

SMEPP X X

TECOM X

TERESA X

188

UbiSec&Sens X X

UNIQUE

WSAN4CIP

TRUSTED MIDDLEWARE
Trusted Software is another important area of middleware layer research and [321] proposes
a Trusted Software Stack (TSS – which acts as an interface between applications and a TPM)
to be integrated into existing security framework, facilitating the adaptation to Trusted
Computing technology. The prototype developed and proposed uses the .NET programming
environment, taking advantage of the environment’s fault-detection functionality (e.g.
regarding buffer overflows), portability and developer base.

SERVICE-ORIENTED MIDDLEWARE
The main features of a secure, service-oriented middleware for embedded peer-to-peer
systems, in order to face the various security challenges of the Internet of Things (IoT) are
presented in [322]. The notion of groups is used, as peers offer services inside groups and the
discovery of these services is also performed within the group. Services can be state-less or
state-full, and the latter ones may be session-less or session-full. The offered API allows for
abstract peer and group management, as well as for events and message handling, features
that facilitate application development within this environment. The presented service model
and component-based middleware satisfies necessary principles such as security,
heterogeneity, interoperability and scalability. The model was validated with two very
different applications, including applications of WSN for monitoring radiation in nuclear power
plants and for health-care in a mobile environment.

The deployment and orchestration of web services on heterogeneous embedded systems is
another emerging research area and a task often assigned to the middleware layer, following
the standardisation of the Devices Profile for Web Services (DPWS, [23]) open framework and
research already conducted in the SIRENA project 14 and its follow-ups, SODA 15 and
SOCRADES16. Some pervasive applications often require remote management and monitoring
while maintaining interoperability, and the Web Services standard offers a solid basis for that.
It is therefore justifiable that the runtime of the middleware developed for the MORE project17
was based on the aforementioned DPWS specifications, as detailed in [41]. The DPWS4J [323]
Java-based stack was extended and, to further facilitate development, the middleware is
managed via the OSGi [78] modular service platform environment running on a Java Virtual
Machine. Further enhancements were also introduced, enabling small footprint service
orchestration in a DPWS-compliant environment [324]. The whole concept was validated on
Gumstix Verdex XL6P embedded platforms.

14 http://www.sirena-itea.org
15 http://www.soda-itea.org/
16 http://www.socrades.eu/
17 http://www.ist-more.org/

189

CONTEXT-AWARE MIDDLEWARE
An extensive overview of context-aware middleware, is presented in [325], categorising their
properties and use. An ontology-based approach has been followed in [326], using the Web
Ontology Language (OWL) and Semantic Web Rule Language (SWRL) in order to develop
monitoring and diagnosis rules. In this way, any malfunctions can be detected and self-healing
procedures can be invoked, in an effective, extensible and scalable way, as it was proved by
the experimental results.

Enriching the relations between the different systems’ parts with semantic information, as
well as exploiting contextual process data, can yield useful information which can be fed into
the various control and decision-making algorithms [327], [328]. Utilising the aforementioned
concepts to enhance user profiling and trust sharing and to offer content and context-
awareness for cloud-based services is also examined in [329]. The proposed model is based
on a representation of the cloud service through semantic integration and ontologies for user
profiles, trust, context and content. OWL restrictions are specified to guarantee access to
trust-based context data.

RECONFIGURABLE AND FAULT-TOLERANT MIDDLEWARE
The aspect of reconfigurability and its repercussions on security are considered from a higher-
level perspective in [330]. A security architecture is proposed which, based on a middleware
layer, offers secure reconfiguration and communication (i.e. SecComm component
framework) with fine-grained application-specific policy enforcement, authenticated
downloading from a remote source (i.e. ALoader component framework) as well as a re-keying
service for key distribution and revocation (i.e. Rekeying component framework).

The scheme presented in [331] is a configurable and adaptive middleware, that aims at
reducing the complexity of the realisation of an appropriate security level for a given WSN
application. It consists of a modular middleware architecture which separates core
functionality needed for adaptability support from pure security functionalities and also
introduces the concept of a middleware compiler. A suitable configuration tool compiles a
security architecture at development time and the architecture allows for dynamic exchange
of security modules at run time. An initial set of security modules get configured before the
deployment of the application; the application programmer then has to specify the security
functionality that is required by the application, such as secrecy and authentication, as well as
some additional information regarding the hardware platform of the sensors (processor type,
memory size, etc.). Based on this information, the appropriate security modules are selected.
In cases where either the application needs have changed or an update is required for facing
a newly-detected vulnerability, security modules can be exchanged after deployment. Such
functionality is particularly useful for long-living applications.

Middleware can also be used in Kahn Process Networks (KPN) implemented on a Network on
Chip (NoC). In [332], a methodology for identifying requirements and implementing fault
tolerance and adaptivity is presented. The overhead in terms of computational time and total
data traffic can be lower than 10%, depending on the chosen bound of the connectors and the
tokens’ size being transferred at the application level. Since embedded systems exhibit a
significant number of soft errors, their correction imposes equally significant hardware and

190

real-time overhead. For improving embedded systems’ dependability, the authors of [333]
proposed an approach that exploits application knowledge to classify errors according to their
relevance and the impact of their correction to the system. Avoiding to correct every single
error (effectively delaying the error-correcting process) caused a reduction in the imposed
correction overhead, thus making it easier to meet mandatory deadlines in cases where real-
time behaviour is an absolute requirement.

Fault monitoring and fault tolerant control for constrained sensor nodes is also examined in
the GINSENG project [334], [335], wherein a multi-layered, middleware-based architecture is
proposed. The scheme involves multiple agents implementing distributed artificial intelligence
techniques for robust control over the wireless sensor nodes and also details the
communication and coordination mechanisms involved.

In [336] a middleware called MWSAN is proposed that provides high-level services for
Wireless Sensor and Actor Networks (WSANs), where the nodes are not only able to sense
environmental data, but can also react by affecting the environment. It follows the
component-oriented paradigm and it leaves it up to the developers to configure it according
to the actor and sensor resources, by taking into consideration issues such as the network
configuration, the quality of service and coordination among actors. Since actor nodes are
usually more powerful than sensor nodes, the middleware features high configurability to
match the diversity of requirements between these two types of nodes. For instance, the
middleware for sensors does not include the various actor-related components, thus leading
to a much smaller memory footprint. What is more, provision has been made for enabling the
definition of real-time characteristics, in order to offer improved temporal behaviour, such as
cases of priority schemas where the highest priority events are executed first.

OVERLAY APPLICATIONS
Facilitating seamless online payments is another key issue researchers try to address. Such
services often raise privacy concerns, and location-based services even more so. Privacy-
preserving payment schemes are one of the main themes examined in the SEPIA project.
Application scenarios involve end-users being equipped with mobile devices featuring ARM
processors and TrustZone support [337], like NFC-equipped smartphones. An application of
the aforementioned privacy-preserving mechanism on NFC-enabled smartphones is
presented in [338]. The proposed method is based on selective disclosure protocols and
experimental results on a standard JavaCard indicate a key of up to 1024 bits may be feasible.
Utilisation of the ARM TrustZone features would be beneficial to the security and overall
performance of the model, as would further support for lightweight cryptography (e.g. ECC)
on the JavaCard.

Cloud-related scenarios are an associated theme where, for instance, privacy issues arise from
the application of the split processing mode on mobile transactions. In such schemes,
lightweight tasks are executed on end-user devices (e.g. smartphones, tablets), whereas more
demanding tasks are offloaded to the Cloud. The proposed payment scheme utilises ARM’s
TrustZone and Intel’s Trusted Execution Technology (TXT), assuming said support is present
on both the client and cloud provider platforms and allows the end-user to take advantage of
the cloud resources while the cloud provider is unable to track users’ activity patterns [339].

191

Moreover, the authors in [340], [341] propose a node join protocol which, via remote-
attestation, doesn’t allow nodes with unknown configurations to join the cloud network, thus
alleviating concerns for control over data and code execution on such networks. Proof-of-
concept implementations are presented for the Android operating system, both on Intel and
ARM-based platforms. Presented work assumes every node hosts a TPM which, in the case of
the ARM platform, requires an add-on module to be installed. With the add-on module in
place, the ARM prototype’s security qualities were similar to that of the x86-based platform.

ARCHITECTURES AND FORMALISATION
Embedded systems are usually the building blocks of a greater and more complex systems,
created for a given purpose. A careful design of such architectures, as well as of their provided
services would certainly have a positive effect on any security-related issues, by minimising
unforeseen flaws and deficiencies. What is more, formalising the process of designing and
building embedded systems would, in most cases, lead to an easier integration of the final
system, while maintaining high levels of security and dependability.

In this section, such proposed frameworks and architectures are presented for different
application areas: safety-critical applications, security and dependability applications, and
smart vehicle applications. The pertinent fforts identified are presented in Table 15.

TABLE 15. ARCHITECTURE AND FORMALISATION EFFORTS OVERVIEW (PROJECTS THAT DID NOT FOCUS ON
THESE ASPECTS HAVE BEEN LEFT UNCHECKED).

Acronym Architectures Formalisation

AETHER

AWISSENET

CESAR X X

CHAT

EVITA X X

GINSENG

HYDRA

MADNESS

MORE

OVERSEE X

PRESERVE X

pSHIELD

192

SecFutur X

SEPIA

SMEPP

TECOM

TERESA X

UbiSec&Sens

UNIQUE

WSAN4CIP

Some approaches in current research focus on providing fully-featured frameworks and/or
formalising the process of designing and developing secure and dependable embedded
systems, especially in applications where safety is critical. In [342], the two distinct domains
of embedded systems and security are considered, and an appropriate view of a final system
model is provided, aiming to support cooperation between the two domains, while leaving
them independent from each other. The proposed scheme is intended for on-demand
provision of communication services in crisis-related situations, where different actors could
be involved, also bearing heterogeneous client devices. The model consists of two
components: The System Security Interface (SSI) that abstracts the system design model for
communicating security needs and resource availability and the Security Building Block (SBB)
that abstracts the implementation for a security mechanism.

In [343] a process metamodel is introduced which takes safety lifecycle requirements into
consideration for secure software engineering (e.g. validation). This concept is explored
further in [344], where a process metamodel, the Repository-Centric Process Metamodel
(RCPM) is described. RCPM includes safety lifecycle concepts at its core and includes software
tools for creating the required models, as well as a case study based on a railway application.
Moreover, the authors in [345] present a model-based framework which focuses on
formalising and managing fault-tolerance and redundancy concepts and which uses
composable UML components to construct fault-tolerant infrastructures. A test case of a
fault-tolerant GPS is evaluated using the aforementioned system. A similar model-based
technique is used in [346] aiming to encode security and dependability patterns (S&D), while
introducing artefacts for the formal validation of these patterns. Therefore, the fulfilment of
S&D requirements identified at higher abstraction levels can be validated via the proposed
process. The concept of S&D formalisation is further explored in [347], where the authors
focus on the systematic reuse of S&D patterns in embedded systems where security and
dependability are major concerns. To facilitate, automate and enforce fulfilment of S&D
requirements, [348] defines a trust-aware platform-independent architecture, the TECOM
architecture, as it was the outcome of the research project bearing the same name. An
attempt to encode S&D patterns utilising meta-modelling techniques can also be found in

193

[349], while said work also includes an implementation of those patterns using a profiled UML
and adapted to resource-constrained embedded systems. The goal is to help application
developers integrate the application building blocks they typically use with security and
dependability building blocks. Furthermore, the authors in [350] apply modelling techniques
on reconfigurable systems; namely distributed real time embedded systems. The approach
presented is called RCA4RTES and published work includes the case study of a Global
Positioning System (GPS), where state machines describe the dynamic reconfigurations of the
system.

With the widespread use of embedded systems leading to the Internet of Things, smart
vehicles are another emerging and significant application. The potential new features and
services available to vehicle occupants are, of course, numerous. Still, security and
dependability is essential in this scenario and any compromise to the safety of vehicle
occupants and other road users would not be acceptable. For example, updates could be
exploited by an attacker to install malicious firmware during an over-the-air diagnosis and
firmware update. The authors in [351] introduce the Open VEhiculaR SEcurE platform
(OVERSEE), which aims to provide a standardised vehicular infrastructure with a protected
runtime environment and on-board access and communication points. The proposed platform
allows the integration of multiple Engine Control Units (ECUs) into one hardware node. It
offers temporal and spatial isolation, a secure interface for connecting to external networks
(e.g. the Internet) and also the required interfaces and open APIs to allow the secure
download and execution of OEM and third party applications, much like the functionality
offered by smartphones and their application “markets” [352], [353]. Part of the research in
the field is more engineering-oriented in nature. The authors in [354] presents such an
approach, as developed on project CESAR. Functional safety and tool-chain integration are the
main challenges which researchers try to address by developing a reference technology
platform. The work presented in [355] extends the safety-oriented environment AVATAR (a
SysML modelling language framework) [356] with security constructs and verification
techniques, to formally secure safety-critical automotive applications.

A capability-based, object-oriented software architecture is presented in [357]. Featuring a
micro-kernel interface and enforceable security policies along with virtualisation provisions, it
aims to improve security and provide isolation between multiple un-trusted software
components.

The authors in [358] propose Privacy-by-Design, i.e. a systematic approach of integrating
privacy requirements onto the design and implementation of a system. Using ontologies, a
formal method is introduced which allows the evaluation of the system in terms of the
realization of those pre-defined privacy requirements. The application of this method on the
development of Intelligent Transportation Systems (ITS) applications is demonstrated in [359].

IDENTIFIED OPEN ISSUES
The increased complexity and interconnection of the current systems’ components, as well as
the varying and often undefined security levels of the networks they consist of, demand
different approaches in the way the requirements are stated, in addition to the way these
systems are designed. An integrated approach is required, where the components’ security

194

level is properly and systematically assessed, thus enabling the correct evaluation of the
architecture’s overall security level. In order for this to occur, reliable and useful metrics need
to be defined, also applicable to legacy and therefore potentially insecure systems.

Furthermore, lightweight alternatives or improvements to existing cryptographic primitives
and key distribution mechanisms could be looked into. Even though plenty of mechanisms
and techniques already exist that would typically be deployed to secure other types of
computing devices (e.g. for access control, cryptography, network routing etc.), they are not
always applicable or have limited efficacy in the context of embedded systems.

The development of comprehensive cryptographic tools focused on embedded systems,
featuring lightweight primitives, could be a very important development, including utilization
of TPM functionality, and virtualization features, where available. Similarly, extending and
improving the interoperability of existing, standardized, cryptographic mechanisms (e.g.
IPsec) with new types of networks (e.g. 6LoWPAN deployments), would be desirable.

Wearable systems introduce more challenges, like developing the means to securely and
seamlessly collect, store and transmit various data, some of which might be private sensitive
in nature (thus having to consider regulatory compliance issues that arise when dealing with
such data). Access to location-based services is commonly required in such applications, as
well as various vehicular and smartphone-related smart services, which again raises various
privacy concerns. This mandates the development of efficient anonymizing schemes, which
must allow the user to access said services, while prohibiting the service provider from
uniquely identify the specific user and her location among the rest of the users.

Future research is also expected to focus on revising the traditional role of middleware
(namely, facilitating interaction and compositions via discovery and orchestration). By
upgrading middleware technologies and transforming them into recommendation engines,
able to dynamically and adaptively detect patterns and predict potential service interactions,
embedded systems will better reflect the new crowdsourcing, social and generally human-
related applications. These changes though are bound to introduce novel security and privacy
issues that will have to be addressed.

The concepts of self-reconfiguration (e.g. in order to adapt to changes in the security levels,
network, application/user requirements or location) and self-recovery (e.g. in fault conditions)
could be investigated further. This can be achieved via on-the-fly hardware and/or software
changes and can even be used to enhance the robustness of embedded systems against side-
channel attacks (by controlling electromagnetic emissions etc.).

Moreover, there is room for improvement on the formalisation, definition and application of
security and dependability (S&D) concepts. It is important to be able to formalise S&D
requirements and product lifecycle in general, accurately modelling the processes from
research and development until the end product. In this way, it will enable the validation of
the end-product whether it meets all S&D and the other requirements defined at earlier
stages.

195

As future work in the context of the survey presented in this section, it would be interesting
to examine each of the sections (e.g. node) and their identified technologies separately and
with respect to the current state of the art for each of the identified technologies of the
section. Such a comparison would facilitate the evaluation of the results of EU-funded
research efforts in a global context and help draw useful conclusions about the quality of the
projects’ output and the return on European investments in said research topics.

196

	Περίληψη
	Abstract
	Λέξεις Κλειδιά
	Keywords
	Acknowledgements
	Publications
	Journal Publications
	Conference Publications

	Contents
	List of Tables
	List of Figures
	1. Introduction
	1.1 Motivation
	1.2 The Framework
	1.3 Use Cases
	1.3.1 Energy / Smart Metering
	1.3.2 Smart Vehicles
	1.3.3 e-Health
	1.3.4 Transport Infrastructure
	1.3.5 Smart Home
	1.3.6 Ambient Assisted Living
	1.3.7 Smart Factory (Industry 4.0)

	2. Background & Related Work
	3. Core Technologies & Entities
	3.1 Policy-Based Access Control
	3.1.1 Typical Application Scenario & Data Flow
	3.1.2 Access Control Policies
	Rule Implementation
	Policy Implementation
	Policy Information Template
	Rule- and Policy- combining Algorithms
	Policy Example

	3.2 Service-Oriented Architectures
	3.2.1 The Devices Profile for Web Services (DPWS)
	3.2.1.1 Alternatives to DPWS

	3.2.2 Node.DPWS
	3.2.2.1 Alternative DPWS Libraries
	3.2.2.2 About Node.js
	3.2.2.3 The Node.DPWS libraries
	3.2.2.4 Performance evaluation
	3.2.2.5 Summary

	3.3 Combining the Technologies

	4. Implementation Approach
	4.1 Node Classification
	4.1.1 Power Devices
	4.1.2 Mobile Devices
	4.1.3 Embedded/Micro Devices
	4.1.4 Sensors/Nano Devices

	4.2 DPWS Implementation of Access Control Mechanisms
	4.2.1 PEP-PDP Communication
	4.2.2 PDP-PIP/PAP Communication
	4.2.3 Information Flow

	4.3 Message Protection
	4.3.1 Asymmetric Variant
	4.3.2 Symmetric Variant
	4.3.3 Security Analysis

	4.4 Interfacing with Middleware & Management Systems
	4.5 Performance Evaluation of Core Entities

	5. Applications & Extensions
	5.1 Body Sensor Networks
	5.1.1 Motivation
	5.1.2 Proposed Architecture
	5.1.2.1 Typical Application
	5.1.2.2 Policy Considerations

	5.1.3 Implementation Approach
	5.1.4 Proof of Concept
	5.1.4.1 Performance Evaluation

	5.1.5 Summary

	5.2 Authenticated Access to LLN-Connected Resources
	5.2.1 Motivation
	5.2.2 Proposed Architecture
	5.2.3 Implementation Approach
	5.2.3.1 Service Orchestrator to Policy Decision Point
	5.2.3.2 Service Orchestrator to Policy Enforcement Point

	5.2.4 Performance Evaluation
	5.2.4.1 Test-bed setup
	5.2.4.2 Results

	5.2.5 Security Considerations
	5.2.6 Summary

	5.3 Cross-Domain Smart Environments –The XSACd Variant
	5.3.1 Motivation
	5.3.2 Proposed Architecture
	5.3.3 Implementation Approach
	5.3.3.1 PEP to PDP implementation
	5.3.3.2 PDP to PIP/PAP implementation

	5.3.4 Event sequence
	5.3.5 uSPBM/XSACd Cross-domain Proxy
	5.3.6 Security considerations
	5.3.7 Performance Evaluation
	5.3.8 Summary

	5.4 Smart Vehicles – The RtVMF Framework
	5.4.1 Motivation
	5.4.2 The RtVMF Architecture
	5.4.2.1 The RtVMF Agents
	5.4.2.2 SPD Metrics
	5.4.2.3 Security

	5.4.3 Proof of Concept
	5.4.3.1 Demonstration Scenario
	5.4.3.2 Performance Evaluation

	5.4.4 Summary

	6. Conclusions & Future Work
	7. References
	Annex A – Embedded Systems Security
	Physical Security Issues
	Side Channel Attacks
	Trusted Platform Module
	Protection of Power Supply

	Access Control
	Denial of Service (DoS)

	Cryptographic Mechanisms
	Lightweight Cryptography
	Key Distribution Mechanisms

	Network Protocol and Management Issues
	Secure Resource Management
	Reputation-based Schemes
	Anonymity and Location Privacy
	Secure Service Discovery, Composition and Delivery Protocols
	Communications Security

	Annex B – Pertinent EU-funded Research
	Node Technologies
	Hardware-Related Security Modules
	Tamper-Resistant Modules
	Hardware Acceleration
	Physically Unclonable Functions (PUFs)
	Channel Characteristics Exploitation

	Virtualisation
	Lightweight Cryptography
	Miscellaneous Node Topics

	Network Technologies
	Node Attestation and Authentication
	Privacy and Anonymity
	Secure Routing
	Intrusion and Malicious Node Detection
	Secure Aggregation
	Miscellaneous Network Topics

	Middleware and Overlay Technologies
	Trusted Middleware
	Service-Oriented Middleware
	Context-Aware Middleware
	Reconfigurable and Fault-Tolerant Middleware
	Overlay Applications

	Architectures and Formalisation
	Identified Open Issues

