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Abstract

Proposed or emerging vehicle automation and communication systems (VACS) may

contribute to the mitigation of motorway traffic congestion on the basis of appropriate

traffic control strategies. In this context, this paper presents a novel first-order multi-lane

macroscopic traffic flow model for motorways which is mainly intended for use within a

related optimal control problem formulation. The model’s starting point is close to the

well-known CTM (cell-transmission model), which is modified and extended to consider

additional aspects of the traffic dynamics, such as lane changing and the capacity drop,

via appropriate procedures for computing lateral and longitudinal flows. The model has

been derived with a view to combine realistic traffic flow description with a simple (linear

or piecewise linear) mathematical form, which can be exploited for efficient optimal

control problem formulations, as described in a companion (Part II) paper. Although

the model has been primarily derived for use in future traffic conditions including VACS,

it may also be used for conventional traffic flow representation. In fact, the accuracy

of the proposed modelling approach is demonstrated through calibration and validation

procedures using real data from an urban motorway located in Melbourne, Australia.
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1 Introduction

Traffic congestion is a major problem of modern motorway systems, causing serious in-

frastructure degradation in and around metropolitan areas. The European Commission

estimates that the yearly cost of road traffic congestion in Europe exceeds 120 billion e,

and similar figures apply to USA as well. Despite a multitude of practised traffic control

measures, improvements in combating traffic congestion and its detrimental consequences

have been relatively moderate. On the other hand, in the last two decades there has been

a significant and increasing interdisciplinary effort by the automotive industry as well as by

numerous research institutions around the world to plan, develop, test and start deploying

a variety of Vehicle Automation and Communication Systems (VACS) that are expected to

revolutionise the features and capabilities of individual vehicles within the next decades. A

wide description of VACS may be found in Bishop (2005).

Although most VACS will have no direct impact on traffic flow, as they are aiming at

improving safety or driver convenience, quite a few of them will change the vehicle behaviour

in the longitudinal or lateral directions and will offer new opportunities for innovative traffic

control actions, such as individual vehicle speed and lane-change advices, among others. An

arising difficulty in exploiting these new opportunities is due to the gradual and uncertain

future evolution path of VACS deployment, corresponding deployment scenarios ranging from

already available ACC (Adaptive Cruise Control) systems to fully automated and connected

vehicles and AHS (Automated Highway Systems) (Rao and Varaiya, 1994). This uncertainty

calls for the development of modelling and control approaches that are robust, to the extent

possible, to evolving VACS and corresponding penetration rates. Among the possible novel

actuators, we have considered that, in case some vehicles are enabled to communicate with

the infrastructure (V2I), it is possible to recommend to them variable speed limits, or even

dictate them their maximum driving speed (in case they are also equipped with an ACC

system), according to the real-time decisions of an external Decision Maker (DM). Of course,

the optimal control decisions must be computed for the aggregate traffic flow in specific space-

time windows, not for some individual vehicles only. Similarly, V2I-equipped vehicles may
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receive from the DM lane-changing advices, so as to implement corresponding lateral flow

decisions. To enable a rational design for these actions, an appropriate traffic flow model is

required.

To address this need, it is the main purpose of this paper to develop a macroscopic traffic

flow model to be used within a model-based optimal control strategy. In order to permit

a flexible use of variable speed limits and to implement a lane-changing control strategy,

the proposed model is defined considering multiple lanes. Moreover, due to this intended

utilisation, the simplicity of the proposed model is a primary requirement, so as to enable

efficient optimal control calculations even for large-scale traffic networks. Nevertheless, the

model accuracy is demonstrated in this paper by use of real data to be sufficient for other,

more conventional, model uses as well. This paper is followed by a second part (Roncoli

et al., 2015b), where the optimal control formulation and solution approaches, that take

advantage of the simple (specifically: piecewise linear) form of the proposed model.

The paper is structured as follows: in Section 2 some available models are reviewed and

the proposed multi-lane macroscopic traffic flow model for motorways is described, highlight-

ing its novel aspects. In Section 3, the proposed model is calibrated and validated using real

data from a motorway network; whereas Section 4 concludes the paper.

2 A multiple-lane traffic flow model for motorways

2.1 Literature review of multiple-lane traffic flow models

The vast majority of the proposed macroscopic motorway traffic flow models consider all the

variables aggregated across all the lanes (for a wide description and classification of existing

models, see Treiber and Kesting, 2013); only a limited number of studies consider the different

lanes in a motorway as independent entities. One of the first important works that addressed

this topic was by Gazis et al. (1962), where lane densities on a multi-lane highway were

assumed to oscillate around an equilibrium density; the authors developed a methodology to

attenuate the disturbances and to increase the stability of the system. This work inspired
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Michalopoulos et al. (1984), who proposed three models for capturing the lane-changing

behaviour. The first model is a continuum model, based on the assumption that vehicles

change lanes according to the difference of the deviations of their densities from equilibrium

values. The second model extends the first one, taking into account also acceleration and

inertia effects, incorporating them in a second-order model. A third extension was also

proposed, considering, in addition, the street width. However, these models were formulated

in a continuous space-time domain, without applying any discretisation scheme. In a more

recent work, Laval and Daganzo (2006) exploited the kinematic wave (KW) theory, proposing

a multi-lane KW-based model as a first module of a more complex model that considers also

moving blockages, treated as particles and characterised by bounded acceleration rates; lane

changes are assigned according to the difference of mean speed between two neighbouring

lanes. Yet another approach is presented by Jin (2013), in which the author developed a

multi-commodity model based on the LWR theory (Lighthill and Whitham, 1955); in this

case the lane-changing flow is defined based on the concept of lane-changing intensity (that

is introduced as a new variable which affects the speed-density relationship), defining a new

fundamental diagram (FD) and introducing a so-called entropy condition. Other approaches

are based on the gas-kinetic traffic flow model, such as Helbing (1997), where the author

derived macroscopic traffic flow equations for interacting lanes taking explicitly into account

queuing effects; and Hoogendoorn and Bovy (1999), where traffic is described as a collection

of vehicle platoons governed by continuum (smooth changes in the traffic flow variables)

and non-continuum processes (deceleration of vehicles and lane changing). Some recent

works are treating the problem of modelling the lane flow distribution at specific locations

of the network; Knoop et al. (2010) studied a relation between the total density and the lane

densities during free-flow and congested regime; Knoop et al. (2012) examined the number of

lane changes as function of several incentives, finding that the most critical are the densities

in the origin and in the target lanes; whereas Duret et al. (2012) analysed real data (in

free-flow conditions) for a three-lanes motorway, deriving a simple linear model considering

the lane distribution of traffic flow.
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2.2 The generic modelling framework

A multiple-lane motorway is considered, which is subdivided into segments, while each seg-

ment comprises a number of lanes. The index i = 1, . . . , I is introduced for segments and

the index j = 1, . . . , J for lanes. The model is formulated in discrete time, considering the

discrete time step T for a simulation horizon K indexed by k = 1, . . . ,K, where the simu-

lation time is t = kT . The motorway is discretised in space by defining the segment-lane

entities, which are characterised by the following variables (a graphical representation of the

segment-lane variables is presented in Figure 1):

• the density ρi,j(k) [veh/km], i.e. the number of vehicles in the segment i, lane j, at

time step k, divided by the segment length Li;

• the longitudinal flow qi,j(k) [veh/h], i.e. the traffic volume leaving segment i and

entering segment i+ 1 during time interval (k, k + 1], thus remaining in lane j;

• the lateral flow fi,j,j̄(k) [veh/h] (j̄ = j ± 1), i.e. the traffic volume moving from lane j

to lane j̄ (vehicles changing lane remain in the same segment during the current time

interval); and

• the on-ramp flow ri,j(k) [veh/h], i.e. the traffic volume entering from the on-ramp

located at segment i, lane j, during the time interval (k, k + 1].

The off-ramp flow is determined according to given turning rates γi,j(k), as a percentage

of the total flow passing through all the lanes of the segment:

qoffi,j (k) = γi,j(k)

J∑
j=1

qi,j(k). (1)

According to the aforementioned notation, the variable ρi,j(k) is updated based on the

following conservation equation:

ρi,j(k + 1) = ρi,j(k) +
T

Li

[
qi−1,j(k) + ri,j(k)− qi,j(k)− qoffi,j (k)

+ fi,j+1,j(k) + fi,j−1,j(k)− fi,j,j−1(k)− fi,j,j+1(k)
]
.

(2)
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Figure 1: The segment-lane variables used in the model formulation.

It is important to highlight that, in order to ensure numerical stability, the time step T must

respect the Courant-Friedrichs-Lewy (CFL) condition (Courant et al., 1928), precisely:

T ≤ min
i,j

Li

vfreei,j

(3)

where vfreei,j is the maximum speed allowed in the corresponding segment-lane. Equation (2)

is the only dynamic equation considered in this first-order traffic flow model.

For the sake of simplicity, the flow entering from an on-ramp has priority over lateral and

longitudinal flow. In other words, it is not considered that mainstream congestion can spill

back into merging on-ramps. As an extension, this phenomenon can be accounted for the

definition of appropriate merge ratios at on-ramps; because of the constraints for the sub-

sequent optimisation problem, only linear approaches can be considered, e.g. Papageorgiou

et al. (1990) or Bar-Gera and Ahn (2010). The methodology to compute the lateral and

longitudinal flows is described in the next sections.

2.3 Computation of lateral flows

When appropriate communications between equipped vehicles and the control strategy are

available, efficient lane-changing advice or control may be effectuated for selected vehicles.

However, if the corresponding VACS penetration rates are small or if a no-control base-

case scenario is required for comparative evaluation, the model should be enabled to also

reproduce the “natural” aggregate lane-changing behaviour of traffic. Lateral flows due
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to “natural” lane-changing are considered among adjacent lanes of the same segment, and

corresponding rules must be defined in order to properly assign and bound the lateral flows.

To start with, the maximum available flow for lateral movements is calculated based on the

current amount of vehicles in the segment-lane:

Fi,j(k) =
Li
T
ρi,j(k). (4)

The pursued approach is to compute the lateral flow from segment-lane (i, j) to (i, j̄) as a

rate Ai,j,j̄ ∈ [0, 1] of the value Fi,j(k). We call this rate the attractiveness rate.

As a matter of fact, lane-changing behaviour and flows are extremely hard to model

accurately (both macroscopically and microscopically) because they depend on a very high

number of partly interdependent factors. To start with, different vehicle types (e.g. cars and

trucks) and related restrictions (e.g. regarding lane usage) may give rise to a variety of differ-

ent lane-changing characteristics. Human driver behaviour is another source of uncertainty

and variation. Furthermore, lane-changing behaviour is different in case of road curvature or

grade, lane drop, as well as in tunnels, on bridges, etc.; it is also dependent on the number

of lanes, environmental conditions (weather, lighting), traffic conditions (free-flow, dense,

congested) and traffic signs. Last not least, lane-changing activity is quite particular in

the vicinity of on-ramps and off-ramps, or at weaving sections. Given this diversity and

complexity, it appears appropriate, in the present context, to provide for a simple basic lane-

changing flow model, which would capture with some accuracy many “ordinary” situations;

accompanied by a space-time dependent parameter that could be used to influence the model

calculations appropriately whenever needed (e.g. near on- and off-ramps).

For the basic lane-changing flow model, it is assumed that drivers may consider a lane

change when one of the adjacent lanes offers a higher speed or a lower traffic density. The

latter option is preferred here because traffic densities are state variables of the proposed

model, whereas the speed values can be computed only a posteriori. Thus, under “ordinary”

conditions, the current attractiveness rate Ai,j,j̄ may be deemed to increase proportionally to

the current density difference ρi,j(k)−ρi,j̄(k) of adjacent lanes j and j̄. This basic assumption,

however, may be subject to variations due to various local effects, as mentioned earlier. For
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example, vehicles driving on the slow lane may consider a lane change upstream of on-

or off-ramps, to avoid interference with entering or exiting vehicles, respectively; similarly,

vehicle lane assignment may deviate from the basic rule upstream of lane-drop locations; also,

exiting vehicles have to move towards the exit lane(s) irrespective of the prevailing traffic

density there. Some of these or other variations from the basic rule may additionally depend

on time. To capture this variety of potential situations, the attractiveness rate is modelled

to depend on the weighted density difference Pi,j,j̄(k)ρi,j(k) − ρi,j̄(k), where the introduced

factor Pi,j,j̄(k) is mostly equal to 1, but should be tuned to reflect particular location- or

time-dependent effects where needed. This factor takes into account the same difference in

density between the adjacent lanes, irrespectively of the considered lane-changing direction,

thus it respects the relation Pi,j,j̄(k) = 1
Pi,j̄,j(k) for all the adjacent segment-lane couples (i, j),

(i, j̄). A similar concept, although with a different implementation based on the notion of

“density equilibrium”, was proposed by Gazis et al. (1962) and utilised by Munjal and Pipes

(1971) and Michalopoulos et al. (1984).

Finally, the attractiveness rate Ai,j,j̄ is computed as:

Ai,j,j̄(k) = µ max

[
0,
Pi,j,j̄(k)ρi,j(k)− ρi,j̄(k)

Pi,j,j̄(k)ρi,j(k) + ρi,j̄(k)

]
(5)

where the coefficient µ is a unique parameter in the range [0, 1], reflecting a sort of “aggress-

iveness” in lane-changing. As mentioned earlier, we have Pi,j,j̄(k) = 1 for the vast majority

of locations; hence, the calibration of Pi,j,j̄(k) is only necessary, for good modelling accuracy,

at few specific motorway locations (e.g. upstream of on- and off-ramps, lane drop locations,

etc.), where lateral flow may occur in the direction from a lower density to a higher one. In

general, this calibration can be performed according to empirical observation of the relative

densities between adjacent segments. Analysing some available data, it was indeed confirmed

that the specific locations of a motorway, where Pi,j,j̄(k) 6= 1, are mainly in proximity of on-

and off-ramps; some additional details are given in the case study of Section 3. The fraction

within the brackets in (5) is introduced in order to obtain a value in the range [−1, 1], where

a value equal to 0 (i.e., no lane-changes) is obtained when the density difference is at the

predefined equilibrium. Note that, due to the max-operator, only the positive values are
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considered, which means that for each couple of adjacent segments-lanes, only one lateral

flow has a positive value.

The modelling function in (5) is non-linear; nevertheless this is no impediment for the

subsequent optimal control problem formulation because the lateral flows will be considered

controllable in the control problem. Thus, (5) is intended to reflect the “natural” lane-

changing flow behaviour. Since the proposed methodology is not strongly dependent on the

function used here for computing Ai,j,j̄(k), other functions could be used for this computation

if deemed more appropriate.

As mentioned earlier, vehicles bound for specific off-ramps should change lanes in a due

manner. According to (1), the off-ramp flow is computed as a percentage of the total flow

passing through all lanes of the segment and not only of the shoulder lane. If the values

Pi,j,j̄(k) are properly tuned and the turning rates γi,j(k) do not feature strong oscillations,

this should not create any noticeable problem. In the general case, however, it could happen

that the number of vehicles in the shoulder lane is insufficient to guarantee the necessary

exiting flow in accordance with the corresponding pre-fixed exiting rate. In order to cope

with this possibility, an approach is introduced, which incorporates a forecast of the entering

and leaving flows in the off-ramp location. Assuming that the segment containing the off-

ramp is denoted by indices î and ĵ, the target of having enough vehicles in the segment to

feed the exit implies that ρî,ĵ(k + 1) ≥ 0; since we have only one entering lateral flow (from

lane j̄), this condition yields, using (2):

ρî,ĵ(k) +
T

Lî

[
qî−1,ĵ(k)− qî,ĵ(k)− γî,ĵ(k)

J∑
j=1

qî,j(k) + fî,j̄,ĵ(k)
]
≥ 0. (6)

Thus, the minimum lateral flow that guarantees the condition is:

foff
î,j̄,ĵ

(k) = qî,ĵ(k) + γî,ĵ(k)
J∑
j=1

qî,j(k)− qî−1,ĵ(k)−
Lî
T
ρî,ĵ(k). (7)

Considering the assumptions of a time step T ≈ Li

vfreei,j

and free flow conditions (qî,ĵ =

ρî,ĵ(k)vfree
î,̂i

, in case a triangular FD is used), it can be derived that virtually all the vehicles

present in segment i at time k will be transferred into segment i + 1 during time intervals
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(k, k + 1]; thus it is a reasonable approximation to state that:

qi,j(k) ≈ qi+1,j(k + 1). (8)

According to (7) and (8), the following formula provides an approximation of the required

amount of lateral flow needed to satisfy the off-ramp flow qoffi,j (k) in (1):

foff
î,j̄,ĵ

(k) = γî,ĵ(k)
J∑
j=1

qî,j(k)− qî−1,ĵ(k) ≈ γî,ĵ(k)
J∑
j=1

qî−1,j(k − 1)− qî−2,ĵ(k − 1). (9)

This procedure is applied only in the direction towards the lane that includes the ramp and

it could be iteratively applied to further upstream segments in case the flow is not sufficient

to match the exit rate. Consider also that a negative value foff
î,j̄,ĵ

(k) will be rejected by a

successive equation. This approach is capable of generating lateral flows sufficient to ensure

an appropriate off-ramp flow for the vast majority of cases,except for some extreme scenarios

where infeasible flows may still be generated.

In conclusion, the lateral demand flow, i.e. the flow that will actually materialise if there

is enough space in the target segment-lane, is assigned according to the following formula:

Di,j,j̄(k) = max
[
Ai,j,j̄(k)Fi,j(k), foff

i,j,j̄
(k)
]

(10)

where j̄ = j ± 1.

To complete the lateral flow modelling development, we need to account for the space

available in the segment-lane that is receiving the vehicles moving laterally. To this end, the

following function describing the available space in terms of flow acceptance is considered:

Si,j̄(k) =
[
ρjam
i,j̄
− ρi,j̄(k)

] Li
T
. (11)

Since the available space may not be sufficient for accepting the lateral flow entering from

both sides, the assigned quantity is proportionally distributed according to the following

relation:

fi,j−1,j(k) = min

[
1,

Si,j(k)

Di,j−1,j(k) +Di,j+1,j(k)

]
Di,j−1,j(k)

fi,j+1,j(k) = min

[
1,

Si,j(k)

Di,j−1,j(k) +Di,j+1,j(k)

]
Di,j+1,j(k).

(12)
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These values may be directly used for updating the densities according to (2). It is interesting

to note that the lateral flows act as “source/sink” terms for the implemented numerical

scheme of the LWR model, therefore they have no influence on the CFL condition, implying

that the current condition (3) is sufficient. In some exceptional cases, to avoid excessive

lateral flows, an option could be to limit the lateral flow by a fixed upper bound, or by the

capacity of the leaving or entering segment/lane. Note that, in case of limited available space

in the target segment-lane, the described approach assigns higher priority to the lateral flows,

with respect to the longitudinal flows, via (12). Naturally, these flows will be considered in

the computation of the longitudinal flows in the next subsection.

2.4 Computation of longitudinal flows

As previously mentioned, the longitudinal flows are defined as the flows going from a segment

to the next downstream one, while remaining in the same lane. These flows may be considered

controllable via appropriate speed control of equipped vehicles, however they need to be

appropriately modelled for the no-control case. The main logic for their computation is based

on the conventional cell transmission model (CTM), where the longitudinal flow is computed

as the minimum between an upstream demand flow and a downstream supply flow. However,

one important phenomenon that regularly appears in real traffic, but is not reproduced by

the classical CTM, is the capacity drop phenomenon, i.e. the reduction of discharge flow

once queues start forming at a bottleneck location. The reasons for this phenomenon are not

exactly clear; some research works attribute the reason of the capacity drop to the limited and

varying acceleration of vehicles leaving a congested area (see, e.g. Papageorgiou et al., 2008)

while trying to reach the desired speed; whereas some other works attribute the capacity

drop to the voids generated due to the acceleration of merging vehicles at on-ramps (Laval

and Daganzo, 2006, Cassidy and Ahn, 2005); in Treiber et al. (2006) potential explanations

are also presented. In second-order models, such as METANET (Papageorgiou and Messmer,

1990), the capacity drop appears as a consequence of the spatiotemporal evolution of the

speed dynamics. Since the speed is not dynamically calculated, this option is not available
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for first-order LWR models; hence, several attempts have been made in order to introduce

it in some other ways. Hall and Hall (1990) suggested the introduction of an inverse lambda

fundamental diagram (FD), whereas Leclercq et al. (2011) proposed an analytical model

that incorporates endogenously the capacity drop. Lebacque (2003) addressed the problem

by imposing an upper bound to the acceleration depending on the traffic phase, distinguishing

between traffic equilibrium and maximum acceleration conditions; this work was exploited,

proposing a so-called “node model” by Monamy et al. (2012). Laval and Daganzo (2006)

proposed the introduction of discrete particles in the traffic flow, treating them as moving

temporary blockages. In a more recent and interesting approach, Srivastava and Geroliminis

(2013) extended the LWR model by defining a FD with two values of capacity and providing

a memory-based methodology to choose the appropriate value in the numerical solution of

the problem, thus distinguishing between congested and uncongested states.

A common feature of most of the aforementioned approaches is the non-linear formulation

that makes them unattractive for the purpose of this paper. For this reason, in this work,

a simple model for including the capacity drop phenomenon in the model calculation is

employed. The origin of the proposed approach may be found in the work by Lebacque

(2003), that contains also a wider theoretical description of this model. The basic idea is to

mimic the limited acceleration that usually appears at the head of a congestion, by adding

a term that bounds the outflow of the segment. This way, the so-called “recovery state”

replaces the usual free-flow state at the head of a congestion, causing a lower outflow, that

yields also a reduced speed compared to the usual CTM.

In the remaining part of this section, we are considering the LWR model discretised ac-

cording to the well-known Godunov-scheme (Godunov, 1959). Following other works (e.g.

Lebacque, 2003), we are naming “demand part” the function representing the greatest pos-

sible flow that can be sent by the upstream segment; and “supply part” the function rep-

resenting the greatest possible flow that can be received by the downstream segment. In

addition, for the sake of simplicity, a triangular-shaped FD is used, as in the original for-

mulation of the CTM (Daganzo, 1994). However, for the subsequent formulation of the
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optimisation problem, any concave piecewise-linear function, which will be deemed to be

more accurate in capturing speed at lower densities, can be considered.

In our model, since we are interested in a linear formulation, the aforementioned capacity-

drop approach is achieved by redefining the demand part of the FD in the following way: in

case of congestion (i.e. ρi,j(k) > ρcri,j , where ρcri,j is the critical density for the segment-lane

(i, j)), the flow is linearly decreased according to a fixed slope −wD, instead of being equal

to capacity flow as in the conventional CTM; this can be seen in the sketched FD of Figure 2.

Note that, in order to avoid interference with possible shockwaves caused by a back-spilling

congestion, the relation wD < wS must hold. This extension calls for the definition of an

additional point in the FD, qjami,j , i.e. the flow that is allowed to leave a segment while

it has entered a completely congested state (i.e. ρi,j(k) = ρjami,j ). Note that this simple

modification of the demand function is not sufficient to create a capacity drop at the head

of a congestion under all circumstances; this is achieved is here via the lateral and ramp

flows, which act as sources for the LWR model (which are not considered explicitly in the

demand and supply functions); this permits to obtain a density increase beyond the critical

value in the segment-lane placed at the head of the congestion, which triggers the capacity

drop. Other possibilities to account for capacity drop in a first-order model, maintaining

linear constraints, are currently under investigation. Note that in the conventional CTM we

have qjami,j = qmaxi,j , i.e. no capacity drop at the head of congestion.

In conclusion, the demand part for the longitudinal flow calculation is computed as:

QDi,j(k) = min
[
vfreei,j ρi,j(k),−wDρi,j(k) + gD

]
(13)

where:

wD =
vfreei,j ρcri,j − q

jam
i,j

ρjami,j − ρcri,j

gD =
ρcri,j

(
vfreei,j ρjami,j − q

jam
i,j

)
ρjami,j − ρcri,j

.

(14)

The supply function is computed based on the density of the downstream segment-lane

as in the classic CTM:

QSi,j(k) = min
[
vfreei+1,jρ

cr
i+1,j ,−wSρi+1,j(k) + gS

]
(15)
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Figure 2: The proposed demand (left) and supply (right) parts of the Fundamental Diagram;

the demand part includes the linear term for capacity drop.

where:

wS =
vfreei+1,jρ

cr
i+1,j

ρjami+1,j − ρcri+1,j

gS =
vfreei+1,jρ

cr
i+1,jρ

jam
i+1,j

ρjami+1,j − ρcri+1,j

.

(16)

The calibration of the slope −wD is a non-trivial task because of the complexity in

measuring the effects of a capacity drop. As mentioned earlier, the capacity drop phenomenon

is an empirical fact, but the exact reasons for its occurrence have not been fully explored

until now. Model calibration exercises, based on real traffic data (as in this paper), may

lead to a factual quantification of its impact. However, as real traffic flow data in presence

of VACS-equipped vehicles are not yet available, such calibration exercises in presence of

VACS can only be produced based on corresponding simulated traffic data. Most probably,

automated car-following (ACC or cooperative ACC) and lane-changing systems will alter

the quantifiable impact of the capacity-drop phenomenon (see, e.g., Kesting et al., 2008)

compared to the current situation; but a reliable quantification seems hardly possible at the

present stage, because it will depend on the specific dynamics and parameter settings of

the automated systems, as well as on the corresponding penetration rates. In view of this

uncertainty, the presented modelling approach provides a flexibility in correctly reflecting

the future gradual evolution of traffic flow dynamics via appropriate specification of the

parameter wD.

Since the proposed model considers a higher priority associated to lateral flows, their

14



values must be considered while computing the demand and the supply terms, according to:

Q̂Di,j(k) = min

{
QDi,j(k),

Li
T
ρi,j(k) + [fi,j−1,j(k) + fi,j+1,j(k)]− [fi,j,j−1(k) + fi,j,j+1(k)]

}
Q̂Si,j(k) = QSi,j(k) + [fi+1,j,j−1(k) + fi+1,j,j+1(k)]− [fi+1,j−1,j(k) + fi+1,j+1,j(k)]

(17)

Thus, the final longitudinal flows qi,j(k) are calculated according to the following equa-

tion:

qi,j(k) = min
[
Q̂Di,j(k), Q̂Si,j(k)

]
. (18)

The model admits the possibility of introducing upper bounds qoff,maxi,j for exit flows

at off-ramps, which leads to the modelling of possible congestion due to limited-capacity

off-ramps flows. In this case, the upper-bounds qoff,maxi,j will affect the outflow in all the

mainstream lanes at the off-ramp location; to reproduce this phenomenon, the longitudinal

flow must be updated as follows:

δoffi,j (k) = min

[
1,

qoff,maxi,j

γi,j(k)
∑J

j=1 qi,j(k)

]

q̂i,j(k) = δoffi,j (k)qi,j(k).

(19)

Lateral flow into a segment-lane may affect its capacity. To reflect this possibility within

our approach, we may readily render the flow capacity of a segment-lane linearly dependent

on the entering lateral flows. Again, a linear relation can be considered, with the purpose

of decreasing the capacity proportionally to the entering or exiting flow (and similarly, the

concept can be extended also for the flow entering from on-ramps); the following general

formula can be applied, that updates the computation of the demand part for the longitudinal

flow used in (13):

ĝD = gD − αef [fi,j−1,j(k) + fi,j+1,j(k)]− αlf [fi,j,j−1(k) + fi,j,j+1(k)]− αrri,j(k) (20)

where αef , αlf , and αr are parameters to be opportunely tuned for entering lateral flow,

exiting lateral flow, and on-ramp flow respectively.
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Figure 3: The geographical map of the M1 stretch used in this section. The considered

direction is from the green (bottom right) to the red (top left) marks.

3 Model calibration and validation

3.1 Network description

The motorway traffic flow model introduced in Section 2 is now applied to a particular

motorway stretch in order to calibrate its parameters and validate the model equations. The

chosen network is a stretch of the Monash Freeway (M1) located in the area of Melbourne,

Victoria, Australia. Specifically, it is an urban motorway characterised by a traffic pattern

that is strongly dependent on the demand due to commuters driving to and from the city

centre. In Figure 3, an aerial map of the area is shown; the highlighted road is the M1, where

the direction towards the city centre will be considered (from East to West).

The considered stretch, sketched in Figure 4, is 5.26 km long and is composed by four

lanes. It starts immediately upstream of the on-ramp connected to Gully Road, it includes

the on- and off-ramps connecting M1 to Blackburn Road and Forster Road, and it termin-

ates about 1 km downstream of the off-ramp connecting Huntingdale Road. As previously

mentioned, there are two traffic peaks during working days: the morning peak, during which

vehicles are mostly directed towards the city centre, and the afternoon peak in which vehicles

are directed towards the residential districts outside the city. Data is collected through 11

sensor-stations that deliver measurements of flow and speed (per lane) every minute; sensors
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Figure 4: A graphical representation of the motorway stretch considered.

are also located at the ramps, measuring the corresponding in- and out- flows. The network

is subdivided in 20 segments, with lengths ranging from 259 m to 314 m, as seen in Figure

4, that shows also the locations of the sensor-stations (black dots), on-ramps, and off-ramps.

In the rest of this paper, the lanes are numbered 1, . . . , 4 from the shoulder lane (close to

the roadside), to the outer lane (close to the road median).

It was decided to take into account the morning peak, specifically from 5 AM to 9 AM;

and to use the data of the 14th of August 2013 for model calibration, while morning peak data

other days are reserved for model validation. Typically, major congestion is created from

about 6:15 AM. The reason why a major congestion is created is quite complex; essentially,

it is due to a combination of the increased demand, the high number of trucks and the slope

of the motorway. As a matter of fact, in the last part of the network, the motorway slope

is rising, which causes the slowing down of trucks, and, because of that, a high amount of

cars leaving the shoulder lane to avoid the reduction of speed. Thus, a reduction of the

capacity in the first (shoulder) lane takes place due to the slope and the high percentage of

trucks, and an increase of flow in the other lanes due to escaping (lane-changing) cars. This

creates a congestion that spills back and spreads all over the considered network, reaching

the merging areas of on-ramps. The congestion lasts for a couple of hours, until it is resolved

thanks to the reduced overall demand at the end of the peak period.

The traffic data retrieved from the detectors is adapted in order to be supplied to the
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model. The Detector D1 is used for providing entering flows, modelled as on-ramps placed at

the first segment. In order to obtain similar outflows at the off-ramps, the measurements E1,

E2, and E3, together with the respective measurements on the mainstream D3, D5, and D9,

are used to compute the turning rates γi,j(k). No off-ramp blocking occurs in this stretch,

hence (19) is not needed. Also, no capacity reduction in dependence of the lateral flows is

considered in the model validation study.

3.2 Calibration results

The calibration of the model parameters to best match the measurement data has been per-

formed with the help of an optimisation-based methodology for the validation of macroscopic

traffic flow models. This methodology attempts to minimise a cost function that measures

the difference between the results obtained applying the model on one hand, and the meas-

urements taken from the detectors on the other hand, via appropriate specification of the

model parameters. Because the used traffic flow model presents a strongly non-linear (and

non-convex) behaviour, the chosen optimisation technique must be able to handle the high

probability of being trapped in (possibly bad) local minima. In this case, the Nelder-Mead

Method (Lagarias et al., 1998) has been employed for optimal parameter calibration. A

detailed explanation of the applied methodology is presented by Spiliopoulou et al. (2014)

and its origin goes back to the pioneering work by Cremer and Papageorgiou (1981).

The proposed model allows for different parameter values to be introduced for each

segment-lane entity. This, however, would lead to a very high number of parameters to be cal-

ibrated and, most probably, to over-parametrisation; i.e. matching of details and even meas-

urement errors which have no essential physical significance; moreover, over-parametrisation

may lead to a model which seems to be very accurate in calibration with one real data set,

but turns out to be much less accurate when applied to other data sets, which were not

used in the optimal calibration phase. Thus, in order to reduce the number of parameters

(which also simplifies the optimisation problem), segment-lanes are grouped as shown in

Table 1. The displayed grouping is firstly and foremost based on the lane number; further
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Lane Segments Detectors ρcr (veh/km) ρjam (veh/km) qjam (veh/h)

1

1 – 3 D1 – D2 18.57 120 1823

4 – 7 D3 – D4 18.00 120 1500

8 – 9 D5 18.06 120 1900

10 – 11 D6 18.00 120 1900

12 – 16 D7 – D9 20.01 120 1899

17 – 20 D10 – D11 17.01 80 359

2
1 – 4 D1 – D3 20.03 120 1800

5 – 20 D4 – D11 21.32 120 998

3
1 – 4 D1 – D3 20.00 120 1799

5 – 20 D4 – D11 21.71 120 997

4
1 – 4 D1 – D3 24.47 120 1900

5 – 20 D4 – D11 24.74 120 1892

Table 1: The group of segments-lanes that share the same parameters for calibration and

validation.

sub-grouping was based on some observed patterns which were dependent on the network

topology. Specifically, lanes 2, 3, and 4 are split in two groups, comprising segments 1-4 and

5-20, respectively. The subdivision of lane 1 into many smaller groups is mainly due to the

changing of traffic pattern implied by the proximity of on- and off-ramps.

In North-American freeways, the free speeds are similar on different lanes, while on

European motorways different lanes typically feature different free speeds. The presented

model allows for different free speeds to be assigned to different lanes, even to different

segment-lanes. For simplicity, mainly due to the subsequent usage of the validated model

within an optimal control problem formulation, the free speed is assumed equal for all

segment-lanes in the calibration study. Data observation at low densities suggests that a

value vfreei,j = 105 km/h reflects a reasonable approximation. More information on the mo-

tivation and impact of this choice are given further below. According to the segment lengths
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and this free speed value, a time step, that respects the condition (3), is T = 5 s. The value

of the jam density is set to ρjami,j = 120 veh/km for all the segments-lanes except for segments

17–20 lane 1, where a value ρjami,j = 80 veh/km is chosen in order to reflect its aforemen-

tioned peculiarity. For the computation of lateral flows, the methodology described in (5)

is applied, and the coefficients Pi,j,j̄(k) are properly tuned according to some observation of

the measured densities and their proportion between neighbouring lanes at specific locations.

In accordance with the discussion of Section 2.3, the measurements of traffic detectors (by

lane) are used to evaluate lane-changing flows, particularly at critical segment-lanes with

systematically strong lane-changing activity. Lanes 2, 3, and 4 do not feature strong dif-

ferences in terms of densities, apart from some underutilisation of lane 4 in case of very

low flow (that has a minor impact on traffic dynamics); therefore, for the whole stretch,

the corresponding coefficients are set to Pi,j,j̄(k) = 1. On the other hand, between lane 1

and lane 2, the situation is more complex, since lane 1 is directly affected by the vehicles

entering or exiting through on- and off-ramps; in addition, lane 2 is also indirectly affected,

because mainstream vehicles may change lane in advance in order to avoid the potential

slowdown caused by vehicles entering at a lower speed from an on-ramp. Thus, in order to

account for these situations, a different parameter for the lane-changing computation is used;

specifically, a value of Pi,j,j̄(k) = 1.5 is set in the segments upstream of the on-ramps and

downstream of the off-ramps. Certainly, more complex approaches can be implemented in

order to compute values Pi,j,j̄(k) (e.g. computing them endogenously in dependence of the

current traffic conditions), however the obtained results appear satisfactory for the purposes

of the paper.

The flows entering the network are fed in the model as the on-ramp flows ri,j(k), while

the upstream motorway boundary flows are treated as ramp flows for the corresponding

segment-lanes. All these the demand profiles shown in Figure 5.

The cost function takes into account the difference in terms of both speed and longitud-

inal flow, allowing indirectly to capture also the lateral flow movements. More specifically,

the cost function is calculated as the root-mean-square error (using the corrected sample
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Figure 5: The demand profiles computed from detectors D1, R1, R2, and R3, that are used

in the calibration phase.

21



variance) according to the following formula, in which q̄dj (k) and v̄dj (k) are the flow and

the speed, respectively, computed by the model (the flow is calculated directly, whereas

an approximation of the speed is calculated as vi,j(k) =
qi,j(k)
ρi,j(k)) at the location of detector

d (d = 2, . . . , D; in this case D = 11) and q̂dj (k) and v̂dj (k) are the corresponding values

measured by the detectors:

min
q̄,v̄

αq
√√√√∑K

k=1

∑J
j=1

∑D
d=2

[
q̄dj (k)− q̂dj (k)

]2

KJ (D − 1)− 1
+ αv

√√√√∑K
k=1

∑J
j=1

∑D
d=2

[
v̄dj (k)− v̂dj (k)

]2

KJ (D − 1)− 1


(21)

Weigh coefficients αq [h/veh] and αv [h/km] are chosen in order to normalise the results;

in this study, a good choice for the (normalised) weight of the speed term was found to be

the double of the weight of the flow term; in this case αq = 0.04 h/veh and αv = 2 h/km.

A possible useful improvement, if needed, could also be to set a different weighting factor

to different parts of the network or during specific time intervals, in order to point out to

the optimiser specific phenomena. The function (21) is also used as a performance index for

evaluating the achieved results, particularly for the model validation.

A graphical representation of the results obtained in the model calibration may be seen

in Figures 6 and 7. The tuned parameters that are obtained are given in Table 1, while the

cost function and RMSE values for flow and speed are given in Table 2. Hereafter, some

more detailed explanations on the real congestion pattern and the related reflection by the

calibrated model are presented.

• Congestion is first created at about 6 AM because of the increase of the on-ramp flow

at segment 2, and possibly because of some weaving phenomena due to the downstream

exit (off-ramp at segment 4). This congestion is captured by the model (see detector

2 in Figure 7);

• As previously briefly mentioned, the main congestion starts in segment 17 (captured

by Detector 10) at about 6:15 AM because of the high number of trucks reducing

their velocity because of the slope of the motorway. In the calibrated model, this

phenomenon is reproduced, firstly, via the relatively low calibrated ρcri,j value, and
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then via the decreased value ρjami,j set for that specific location that causes a rapid

diminishing of the outflow once the critical density is reached.

• Since lane 1 of segments 17-20 is overcrowded with trucks, most car drivers take the

decision to move to the adjacent lanes; this causes an increase of density that, quite

rapidly, triggers a capacity drop due to the starting of a strong congestion. While

rendering the model capable of dealing with the described complex phenomenon, the

lane-changing factor Pi,j,j̄(k) plays a fundamental role. In fact, for each segment-lane

located in segments 18-20, lane 1, these values are set to Pi,j,j̄(k) = 2 (in the direction

j̄ > j) during the time period in which trucks are the predominant vehicles (until about

6:30 AM), and are decreased progressively to Pi,j,j̄(k) = 1 while the traffic composition

is moving back to normal. These parameters generate accordingly strong lateral flows

directed from lane 1 to 2 (despite the density in lane 2 becoming higher than in lane

1), and, consequently, also to the other lanes in the direction of the road median.

This generates a density increase in all the lanes and, once the density exceeds its

critical value, the capacity drop is triggered. This can be observed in Figure 6, by close

inspection of the flow at Detector 11 for lanes 2, 3, and 4. In fact, since no boundary

conditions are set at the network exit (segment 20), the classic CTM would generate

flow values equal to the capacity of the segment for all the period when ρ ≥ ρcr.

Instead, the proposed model is capable of generating a reduction of the outflow in the

corresponding segments (that act as the head of the congestion), for all the congestion

period, which is in excellent agreement with the observed real outflows; this is clearly

visible looking at Figure 6 for Detector 11, lane 2, just after 6 AM. This reduction in

the segment capacity disappears when the density is again undercritical, and the model

restores the capacity flow (for Detector 11, lane 2, this happens at about 8:20 AM).

• Once the congestion in the last segments has started, it spills back, covering the whole

stretch at about 6:35 AM. The back-spilling main congestion worsens further because

of the increased flows entering from the on-ramps. More specifically, it may be seen

that the increased ramp flow at segment 12 at about 7:30 AM contributes to strengthen
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the speed reduction (this can be seen comparing the speed diagrams at Detectors D8

and D7). Another contribution to the main congestion is again due to an increased flow

entering from the on-ramp R2 that increases after 7 AM, causing a further reduction

of speed (see the speed diagram for Detector D5). In this situation, the model is

reproducing the congestion pattern because of the proper calibration of its parameters,

above all the critical density. During this period, lateral movements are present almost

exclusively in proximity of on- and off-ramps, where lane-changes are assigned from

and towards lane 1; therefore, at those locations, the chosen values for Pi,j,j+1(k) are

greater than one (e.g. Pi,1,2(k) = 1.5).

• Around 8 AM, the demand starts to decrease, and this causes the gradual disappearance

of the congestion, restoring the maximum flow and speed. Again, the model is able to

follow properly this congestion dissolution pattern.

Via careful inspection of the graphs of Figure 7, it may be noticed that, as mentioned

earlier, the real speeds are sometimes different among different lanes, while, in the proposed

model, the same free speed is used for all the lanes. This choice was made here to account

for the ultimate intended usage of the calibrated model, i.e. as the modelling part of an

optimal control problem in Part II (Roncoli et al., 2015b). Specifically, using different free

speeds for different lanes may result in underutilisation of the slower lanes (in low-density

situations) in an attempt of the control to decrease the vehicle travel times. Some ways to

overcome this limitation are mentioned in Part II. Nevertheless, in the presented example,

the difference in speed among lanes is not excessive, and the calibrated model results repro-

duce the main traffic flow phenomena (in terms of traffic volumes and mean speeds) with

remarkable accuracy in space and time. Thus the model can be employed as a solid basis for

the assessment of improvements that may be obtained via appropriate control actions.

Another deliberate simplification, which is not dictated by the model structure, but by the

need to use the same model with the same parameters for traffic control testing in Part II, is

that, in the present model application and validation, we do not use downstream boundary

data (from detector D11). More specifically, no supply functions (according to Figure 2
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Figure 6: Comparison between the real flow data (orange/lighter line) and the calibrated

model results (blue/darker line).
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Figure 7: Comparison between the real speed data (orange/lighter line) and the calibrated

model results (blue/darker line).
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and (18)) are considered in the calculation of flows for the downstream-most segment-lanes

of the modelled motorway stretch. As a consequence, any congestion phenomena back-

spilling from downstream cannot be imported by the model, although this would improve

the model results, since some few short-lived shock waves in the data are actually stemming

from downstream. A calibration and validation exercise of the same model without these two

simplifications (i.e. allowing for different free speeds for different lanes and using downstream

boundary data) was reported in Roncoli et al. (2015a) to improve the model accuracy; see

Table 2 for the corresponding improved index values; see Roncoli et al. (2015a) for the

detailed diagrams and results.

Even though the model is capable of reproducing the congestion pattern, the resulting

variable trajectories appear smoother than in reality. This is due to the nature of this

model that, considering macroscopic variables, cannot reproduce accurately some microscopic

phenomena (e.g. the shockwaves created by some slow cars changing lanes). As a final

remark, no direct comparative results of lane changing flows are provided, simply because

of no availability of real data. An accurate account of real lane-changing flows could be

obtained, for example, by counting vehicles which change lane in each specific area of the

long motorway stretch, which implies the availability of an enormous amount of data (i.e.

the trajectories of all vehicles, retrieved, for instance, via video analysis). Since the only flow

measurements available were longitudinal flow measurements (per lane) on the mainstream,

we believe that, having a satisfactory match of flows (per lane) can be deemed as a reasonable

indirect option of assessing the lane-change modelling component. In fact, we have re-run the

model with the calibrated parameters, but without lane-changing. The corresponding results

(not detailed here) show clearly that, without the lane-change component, the model is not

capable of reproducing the traffic pattern; which highlights the pertinence of the proposed

lane-changing modelling.
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Day
Without downstream boundary conditions With downstream boundary conditions

Cost function Flow RMSE Speed RMSE Cost function Flow RMSE Speed RMSE

14/08 47.9 319 17.6 45.1 293 16.7

12/08 46.9 308 17.3 39.7 285 14.1

15/08 50.9 344 18.6 42.3 298 15.2

16/08 44.1 297 16.1 36.4 278 12.6

Table 2: Comparison of cost function values for different days used in the model validation.

The RMSE values do not include the weights αq and αv, and they are expressed in [veh/h]

and [km/h] respectively.

3.3 Model validation

In order to test and demonstrate the validity of the proposed model, the parameters resulting

from the calibration process are applied to the same motorway stretch but for different days.

Specifically, the model is fed with boundary data stemming from different (incident-free)

days, and its results, obtained with the same parameter values specified in the calibration

procedure, are compared with corresponding real data from stretch-internal detectors. For

all days, the (recurrent) traffic behaviour is similar to the one described in the previous

subsection. The main congestion starts around 6:15 AM from the segments 17-20 of the

stretch; it spills back covering all the other segments; and it lasts for about 2 hours, until

the reduction of demand causes its dissolution. Again, the results obtained are satisfactory,

since the traffic flow model is able to reproduce correctly the traffic congestion pattern. For

a quantitative comparison, the cost function (21) is used for the different days, obtaining the

results shown in Table 2.

For the sake of brevity, only the demand profiles (Figure 8) and the graphical comparisons

of resulting flow and speed (Figures 9 and 10) related to the 15th of August 2013 are presented

here.

28



5 6 7 8 9
0

500

1000

1500

2000

2500

3000

Time (h)

D
e
m

a
n
d
 (

v
e
h
/h

)

Demand at segment 1, lane 1

5 6 7 8 9
0

500

1000

1500

2000

2500

3000

Time (h)

D
e
m

a
n
d
 (

v
e
h
/h

)

Demand at segment 1, lane 2

5 6 7 8 9
0

500

1000

1500

2000

2500

3000

Time (h)

D
e
m

a
n
d
 (

v
e
h
/h

)

Demand at segment 1, lane 3

5 6 7 8 9
0

500

1000

1500

2000

2500

3000

Time (h)

D
e
m

a
n
d
 (

v
e
h
/h

)

Demand at segment 1, lane 4

5 6 7 8 9
0

500

1000

1500

2000

2500

3000

Time (h)

D
e

m
a

n
d

 (
v
e

h
/h

)

Demand at segment 2, lane 1

5 6 7 8 9
0

500

1000

1500

2000

2500

3000

Time (h)

D
e

m
a

n
d

 (
v
e

h
/h

)

Demand at segment 8, lane 1

5 6 7 8 9
0

500

1000

1500

2000

2500

3000

Time (h)

D
e

m
a

n
d

 (
v
e

h
/h

)

Demand at segment 12, lane 1

Figure 8: The demand profiles computed from detectors D1, R1, R2, and R3, that are used

in the validation phase.
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Figure 9: Comparison between the real flow data (orange/lighter line) and the validated

model results (blue/darker line) for the 15/08.
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Figure 10: Comparison between the real speed data (orange/lighter line) and the validated

model results (blue/darker line) for the 15/08.
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4 Conclusions

This paper introduced a novel first-order multi-lane macroscopic modelling approach for

motorways, with the main purpose of applying it in a model-based optimal control scheme.

The model originates from the conservation equation, and methodologies for the computation

of lateral and longitudinal flows are proposed; a noteworthy ingredient is the inclusion of

the capacity drop phenomenon in the first-order model. In order to test and demonstrate

the accuracy of the proposed model, a calibration procedure, based on real data collected by

a set of detectors in an urban motorway, has been conducted. Despite the complex causes

behind the occurring congestion, the model is capable to replicate the flows and speeds for

the analysed scenario. Validation results, while applying the model with data from different

days at the same stretch, confirm the robustness of the modelling approach.

The extension of this work, presented in Part II (Roncoli et al., 2015b), is the formula-

tion of a linearly-constrained optimal control problem with the purpose of mitigating traffic

congestion assuming that vehicles are equipped with VACS and that they are able to ma-

terialise different control actions, i.e. ramp metering, mainstream traffic flow control, and

lane-changing control.
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