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Abstract

The incorporation of two macroscopic approaches reflecting Adaptive Cruise Control (ACC) and
Cooperative Adaptive Cruise Control (CACC) traffic dynamics in a gas-kinetic (GKT) traffic flow
model is presented. The first approach was recently analyzed in the literature aiming to describe
the effects induced by the ACC and CACC systems due to changes of the speed of the leading
car(s) by the introduction of an acceleration/deceleration term. The second approach is a novel one
and is based on the introduction of a relaxation term that satisfies the time/space-gap principle of
ACC or CACC systems. In both approaches, the relaxation time is assigned on multiple leading
vehicles in the CACC case; whereas in the ACC case this relaxation time is only assigned to the
direct leading vehicle. We numerically approximate the resulting models by an accurate and robust
high-resolution finite volume relaxation scheme, where the nonlinear system of partial differential
equations are first recast to a diagonilizable semi-linear system and are then discretized by a higher-
order WENO scheme. Numerical simulations investigate the effect of the different ACC and CACC
approaches to traffic flow macroscopic stability with respect to perturbations introduced in a ring
road and to flow characteristics in open freeways with merging flows at an on-ramp. Following
from the numerical results, it can be concluded that CACC vehicles increase the stabilization of
traffic flow, with respect to both small and large perturbations, compared to ACC ones. Further,
the proposed CACC approach can better improve the dynamic equilibrium capacity and traffic
dynamics, especially at the on-ramp bottleneck.

Keywords: Traffic flow dynamics; Macroscopic traffic flow models; Cooperative adaptive cruise
control; Hyperbolic conservation laws; Numerical simulation; Finite volume relaxation schemes

1. Introduction

Emerging technologies in the field of Vehicle Automation and Communication Systems (VACS),
such as Adaptive Cruise Control (ACC) and Cooperative Adaptive Cruise Control (CACC) sys-
tems, are likely to revolutionize the way traffic flow will be controlled and optimized in the near
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future. Although such technologies have been developed to increase driver’s comfort and safety,
the continuously increasing use of such systems in the years to come will have a direct impact on
the overall traffic flow. The widespread use of such systems can form a potential solution to the con-
tinuously increasing problem of traffic congestion, by using advanced control strategies to increase
road capacity, stabilize the flow and accomplish an optimal usage of the available infrastructure. As
a result, a new generation of Traffic Management (TM) strategies need to be developed and tested,
which will allow for the optimal use and exploitation of such systems. To this end, the development
of appropriate modeling tools for such systems should be a priority, to allow for the reliable and
efficient simulation of their performance and of the effects they have on traffic flow; this would
allow to optimize the relevant parameters and explore new strategies for VACS implementation.

An ACC system forces the vehicle to slow down when the leading vehicle has a lower speed
and, reversely, allows the vehicle to accelerate to a pre-determined speed when the leading vehicle
accelerates. In principle, the pre-specified parameters of an ACC system are the time-gap to the
leading vehicle and the desired speed of the vehicle. The main aim of such a system is to liberate
the driver from the need to adjust its speed to that of the leader. However, the application of
ACC systems, and for certain parameter settings, may also induce negative effects on traffic flow
dynamics. Hence, and in order to minimize potential negative effects, it is crucial to evaluate the
impact of such systems on traffic flow dynamics in advance. Vehicles equipped with CACC systems
have the ability of sharing traffic information via vehicular networks or wireless technologies that
allow communication between such vehicles. CACC systems constitute a further development of
the ACC technology which provides more accurate and faster real time information sharing among
the equipped vehicles. Research has shown that CACC systems can potentially improve safety
as well as the traffic dynamics (in terms of capacity, flow, average speed and speed variation),
if widely adopted. Compared to ACC, the literature on CACC systems is still very premature and
relevant studies, usually, do not explore the effects of CACC in traffic flow quantitatively in terms of
throughput, capacity, and congestion reduction but aim on creating design frameworks, to optimize
and standardize the use of such technology.

Although much work has been reported for the microscopic simulation of ACC/CACC systems
at vehicle level, we refer for example to [1, 49, 8, 48, 9, 22, 23, 41, 34, 42, 2, 35, 36], model appli-
cations of macroscopic or gas kinetic traffic flow models for the simulation of VACS are relatively
rare. However, the development of accurate macroscopic traffic flow models for the simulation of
VACS will be of major importance in the future, for real-time prediction and control applications,
when the percentage of CACC/ACC vehicles will have significantly increased thus affecting con-
siderably the traffic dynamics. As macroscopic models require less computational resources and
simpler calibration effort than microscopic ones, they can be easily and more efficiently combined
with optimization algorithms, either for parameter estimation or for optimization purposes. In [43]
a design approach for an ACC strategy in an Automated Highway System based on macroscopic
traffic flow stability analysis was presented. Using a linearized stability analysis, it was shown that
the traffic flow equilibrium state was marginally stable under a constant time headway (CTH) pol-
icy. Moreover, in [51] a macroscopic model was presented with velocity saturation for traffic flow
where vehicles are controlled with ACC spacing policy. Additionally, a non-linear stability crite-
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rion was derived, while the stability results provided sufficient and necessary conditions for ACC
traffic flow stability. In [25] and [20] the macroscopic formulation of a kinetic model to variable
speed control was applied using Variable Message Signs (VMS). In the first work a sliding mode
controller was applied, being able to eliminate stop-and-go waves, as the controller increases the
flow above some density and decreases it for the flow below this density. In the second work a
similar approach was adopted, and VMS were used to inform drivers of slower traffic ahead. They
assumed that drivers decrease their desired velocity when control is active and applied the variable
average desired speed in the macroscopic implementation of the model. As a result, the occur-
rence of the so-called phantom traffic jams was prevented, as long as the speed adaptation by the
drivers was sufficiently large. The impact of ACC concepts on the macroscopic level of traffic flow
modeling was also considered in [10]. The simulation results showed that at lower time headways
there is an improvement of traffic conditions (higher flow rate, faster dissolution of the congestion),
even with small penetration rates; up to a certain penetration rate the traffic flow rate is increasing
whereas higher penetration rates do not provide additional benefits.

In [29] a continuum approach to model the dynamics of cooperative traffic flow was presented,
where the cooperation is defined in a way that the equipped vehicle can issue and receive a warn-
ing massage when downstream congestion has been created. To this end, a multi-class gas-kinetic
theory was extended to capture the adaptation of the desired speed of the equipped vehicles to the
speed at the downstream congested traffic. Numerical tests indicated that the equipped vehicles
contribute significantly to the stabilization of traffic flow, while increasing the fraction of equipped
vehicles leads to a delay in traffic inflowing to the congested area and consequently results in a
reduced shock-wave strength. In [30] the mixed operation of manual and ACC traffic flow was
investigated, by deriving macroscopic multi-class traffic equations, obtained from a gas-kinetic
model using the method of moments. A gas-kinetic macroscopic traffic flow model was further
proposed in [31], based on a car-following one, to describe the dynamics of traffic where vehi-
cles operate in the form of many platoons. A linear stability analysis showed a stabilization of
the flow with respect to small perturbations. The analytic results were supported by the numerical
simulation of an open freeway with an on-ramp bottleneck. In [33] the derivation of an improved
macroscopic model for multi-anticipative driving behavior, using a modified gas-kinetic approach,
was presented. Theoretical analysis and numerical simulations of the model were carried out to
show the improved performance of the derived model over other existing multi-anticipative macro-
scopic models. In [32] a macroscopic model is proposed to describe the operations of CACC in the
traffic flow. Using linear and nonlinear stability analysis it was found that CACC vehicles enhance
the stabilization of traffic flow with respect to both small and large perturbations, compared to
ACC vehicles, while numerical simulation supported the analytical findings. Further, from the lin-
ear analytical results, the relaxation term and the convection term counteracted the reinforcement
instability mechanism. This lead to different propagation of the shock waves.

The present work aims to contribute to the macroscopic modeling of traffic flow consisting of
ACC or CACC vehicles, along with appropriate numerical approximations; it builds on a previous
work of the authors in [7] where a unified methodology was proposed for the numerical simulation
of several, widely applied, second-order non-equilibrium macroscopic models. In [7], utilizing the
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relaxation approximation, from [24], the nonlinear macroscopic traffic flow differential equations
were transformed to a diagonilizable semi-linear problem. The resulting relaxation system was dis-
cretized using low- and high-resolution reconstructions in space which include a first-order upwind
scheme, a second-order MUSCL scheme and a fifth-order WENO scheme. The main features of
the proposed numerical approach are its simplicity, accuracy and robustness.

Here, the GKT second-order traffic flow model, [44, 15, 16, 47], is utilized, within the afore-
mentioned computational framework, as a basis to import and access two alternative models for the
macroscopic simulation of ACC/CACC traffic. The first model is the one proposed by Ngoduy [32],
slightly modified and adapted, while the second one is a new approach, designed in order to take
into account additional features of the ACC/CACC traffic. Both models are incorporated as source
terms to the second (”momentum”) equation of the system of partial differential equations forming
the GKT model, which controls the speed dynamics. However, one major difference between the
two approaches is that the ACC/CACC term in [32] contributes to the so-called convection term in
the momentum equation whereas in our approach the corresponding term contributes to the relax-
ation term in the GKT model equations. Moreover, in our ACC and CACC modeling approach the
time-gap parameter, which is an important characteristic of such systems, is explicitly taken into
account.

Two main categories of simulation cases are presented in the numerical simulations to validate
the performance of the two approaches and their effects on the traffic flow characteristics. The first
one is for flows on a circular homogeneous freeway with respect to small and large perturbations.
The second is the simulation of a freeway with an on-ramp bottleneck. Each approach has its
own effects on the traffic flow dynamics, but, in general, both lead to the stabilization of the flow
when disturbances are introduced. Both approaches lead to more anticipative driving behavior in
congested traffic situations which leads to the suppression of instabilities. However, the ability to
explicitly define the time-gap in our approach enables the model to simulate ACC/CACC flows with
different time-gap settings, which lead to different dynamic behavior and equilibrium capacities.
This ability also gives the opportunity to access the impact of the time-gap settings on traffic flow
performance, as ACC/CACC systems increase driving comfort and safety but may have a negative
impact on traffic flow depending on their parameters’ settings.

We note here that, the main assumptions implied for the derivation and testing of the proposed
ACC and CACC approach are the following; (a) the penetration rate of ACC/CACC-equipped
vehicles is taken equal to 100% in this work, (b) all vehicles are assumed to be of the same class
with the same characteristics, (c) all equipped vehicles are assumed to have the same parameter
values for the ACC or CACC system they use and (d) the models are developed assuming single
lane flow conditions i.e. no lane changing is assumed. All these simplifications are assumed as to
isolate the behavior of the ACC and CACC modeling from other aspects of the traffic flow. Multi-
lane and multi-class effects in the current framework will be the subject of future work, as our
aim is to progressively built different aspects of VACS’ characteristics into a unified macroscopic
computational framework.

The main contributions of the present work can be summarized as follows: (a) to derive a
novel macroscopic approach to incorporate the behavior of ACC and CACC equipped vehicles
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into the GKT traffic flow model, (b) to compare its performance with the approach proposed by
Ngoduy in [32] in various test cases, (c) to qualitatively assess its performance through the numer-
ical simulations on various traffic flow scenarios, (d) to extensively validate the models through
a proposed suite of relevant demanding test cases and (e) to demonstrate that the adopted numer-
ical approach can effectively simulate different traffic flow phenomena for manually driven and
ACC/CACC equipped vehicles for both utilized approaches.

2. The GKT model and adaptive cruise control

The macroscopic model implemented and extended here is the gas-kinetic-based traffic flow
model (GKT model), which has been deduced from microscopic models describing driver-vehicle
behavior in [44, 15, 16, 47]. A similar derivation can be found also in [4]. The GKT model has
been shown to describe realistic characteristic properties of traffic flows. Furthermore, this model
is able to describe the hysteretic phase transitions to congested states, that typically occur behind
on-ramps, gradients, or other bottlenecks in busy freeways [13, 45].

In what follows, we will denote as functions in space, x, and time, t, ρ(x, t) the vehicle or traffic
density (number of vehicles per unit length), u(x, t) the average speed and q = ρu the traffic flow
rate (number of vehicles per unit time). We recast the GKT model in conservation law form with
sources (also called a balance law), written as

∂tρ + ∂x(ρu) = rrmp, (1)

∂t (ρu) + ∂x
(
ρu2 + θρ

)
= ρ

(
V?

e (ρ, u, ρa, ua) − u
τ

) [
1 − βF(ρ)

]
+ hrmp + αVacc. (2)

In (2) we have also incorporated the modeling of ACC and CACC cars in the terms αVacc and[
1 − βF(ρ)

]
, which will be explained later; by setting α = β = 0 in these terms, the GKT model

equations for manually driven cars are obtained and will be explained first.
Following [47], the source term rrmp in the continuity equation (1) denotes the effective source

density from on-ramps (or off-ramps) with merging (diverging) length lrmp and inflow qrmp > 0
from (or outflow qrmp < 0 to) the ramp, and is given as

rrmp(x, t) =


qrmp(t)

lrmp
if x is within merging or diverging zones,

0 elsewhere.
(3)

Further, in the momentum equation (2), the term hrmp describes changes of the macroscopic local
speed by assuming that on-ramp vehicles merge to the main road at speed urmp < u and, conversely,
that drivers reduce their speed to urmp before leaving the main road. Hence, this term is given as

hrmp(x, t) =
q · rrmp

ρ
+

(urmp − u)|qrmp|

lrmp
. (4)
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We note that, usually, one assumes urmp ≈ u [15, 16].
In equation (2), θ = A(ρ)u2 is a pressure-like term, with A(ρ) being a density-dependent vari-

ance factor given by the Fermi function as:

A(ρ) = A0 + δA
[
1 + tanh

(
ρ − ρcr

δρ

)]
in which ρcr is the critical density, which reflects the boundary between free flow and congested
traffic, with A0 and A0 + 2δA the variance prefactors between the two states; while δρ denotes
the width of the transition region. Typical range of values for the constants A0, δA and δρ are
given in Table 1, along with the typical range of the other parameters for this model following
[44, 15, 16, 11, 30, 47, 7]. These parameters are meaningful, measurable, and have the correct
order of magnitude for highway traffic while they can be adapted to city traffic as well [47].

The model also includes a traffic relaxation term aiming to keep flow in equilibrium, with V?
e

being the, non-local and dynamic, equilibrium speed (maximum out-of danger velocity meant to
mimic drivers’ behavior) with τ being a relaxation time. V?

e (ρ, u, ρa, ua) depends not only on the
local density ρ and mean speed u, but also on the non-local density ρa and mean speed ua, and is
defined as

V?
e (ρ, u, ρa, ua) = umax

1 − θ + θa

2A(ρmax)

(
ρaT

1 − ρa/ρmax

)2

B(δu)

 . (5)

According to (5), V?
e is given by the maximum velocity umax, reduced by a term that reflects

necessary deceleration maneuvers. Both ρa and ua are computed at an anticipated location xa =

x +γ(1/ρmax +T ·u) with T being the desired time-gap and γ a scale factor. Finally, B is a so-called
Boltzmann (interaction) factor, which, with δu =

u − ua
√
θ + θa

, is determined as

B(z) = 2

ze−z2/2
√

2π
+ (1 + z2)

∫ z

−∞

e−y2/2
√

2π
dy

 .
This term contains the standard normal distribution and the Gaussian error function and describes
the dependence of the braking interaction on the dimensionless velocity difference δu between the
actual location x and the anticipation location xa.

The crucial difference between the GKT model and other macroscopic traffic flow models is
its non-local character. The non-local relaxation term in (5) has smoothing properties similar to
those of a viscosity term, but its effect is forwardly directed and, therefore, more realistic. Fur-
thermore, this non-local interaction term allows for fast and robust numerical integration, so that
even extended freeway networks can be simulated in reasonable computational times. In contrast
to other macroscopic models, the steady-state speed-density relation, Ve(ρ), is not explicitly given,
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Parameters Units Typical Values
Desired free speed, umax km/h [110, 130]
Maximum density, ρmax veh/km [140, 160]
Critical density, ρcr veh/km [0.25, 0.4]ρmax
Desired time gap, T s [1, 2]
Anticipation factor, γ [1, 2]
Relaxation time, τ s [20, 40]
Variance pre-factor for free traffic, A0 0.008
Pre-factor δA 2.5A0
Transition width δρ veh/km [0.05, 0.1]ρmax

Table 1: Typical range of the parameters used for the GKT traffic model (1)-(2)

but results from the steady-state on homogeneous roads (with no inflows our outflows) as

Ve(ρ) =
ũ2

2umax

−1 +

√
1 +

4u2
max

ũ2

 (6)

with the abbreviation

ũ =
1
T

(
1
ρ
−

1
ρmax

) √
A(ρmax)

A(ρ)
.

This also determines the equilibrium traffic flow (the so-called fundamental diagram) qe(ρ) =

ρVe(ρ), as shown in Fig. 1 for a standard parameter set.
Next, two approaches are presented to incorporate the modeling and effects of ACC and CACC

mechanisms in the GKT model. This is done through the terms αVacc and
[
1 − βF(ρ)

]
in equation

(2), with α = 1 for both approaches. The first approach is that presented in [32] obtained by setting
β = 0; and the second is a novel one proposed in the present work obtained by setting β = 1.
We emphasize here that, in the proposed approach, the original GKT non-local interaction term is
smoothly switched off and replaced by a new termVacc by a Fermi-like function F(ρ) such that in
congested traffic flow the new term takes over.

Ngoduy’s [32] ACC & CACC approach. In [32] a macroscopic model for ACC and CACC traffic
flow dynamics was derived and studied in the framework of the GKT model presented above.
The proposed cooperative mechanism lies in the fact that the equipment in ACC vehicles makes
the car-following behavior more responsive and agile, with respect to the leading vehicle (with
increased multi-anticipation for CACC), especially in congested situations, by getting an extra
interaction through exogenous factors of the intelligent devices. The main idea is to represent the
instantaneous response of the ACC (and CACC) system due to changes of the speed of the leading
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Figure 1: Equilibrium flow-density diagram of the GKT model for umax = 110 km/h, ρmax = 160 veh/km, T = 1.8s

vehicle(s) by deducing an acceleration/deceleration term in (2), which reads as

Vacc(ρ, u) =
∂u
∂x

M∑
m=1

m
τ?m
, (7)

with M being the number of preceding vehicles that the follower could exchange information (in-
teract) with, while M = 1 corresponds to an ACC system. The, density dependent, sensitivity
coefficients τ?m are constructed so that the CACC equipment revert to normal speed control in free-
flow situations, that is

1
τ?m

=
1

2τ0
m

[
1 + tanh

(
ρ − ρcr

∆ρ

)]
, (8)

where τ0
m reflects the relaxation time of the CACC vehicle to the mth leader in a congested traffic

situation. Under the assumption that a CACC vehicle takes longer time to relax to the furthest Mth

leader, it is supposed that τ?1 < τ?2 < · · · < τ?M and that
M∑

m=1

1
τ?m

=
1
τ?

, where τ? is the relaxation

time of the ACC system.
Typical values proposed in [32], and also adopted in the present work, are M = 1 and τ0 = 1s

for the ACC system and M = 3 and [τ0
1, τ

0
2, τ

0
3] = [2, 3, 6]s for the CACC one. Further, the transition

width in (8), ∆ρ, was set equal to 0.1ρmax, and the behavior of this choice with respect to density is
depicted in Fig. 2.
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A new approach to ACC & CACC. Here a novel approach to modeling ACC and CACC effects in
the GKT model is presented. One major difference between this new approach and that from [32] is
that the ACC/CACC term in the previously presented model contributes to the so-called convection
term in the momentum equation; whereas in our approach the corresponding term contributes to
the non-local relaxation term in the GKT model equations. Moreover, in our ACC and CACC
modeling approach the time-gap parameter, which is an important characteristic of such systems,
will be explicitly taken into account. The ability to explicitly define the time-gap in our approach
enables the model to simulate ACC/CACC flows with different time-gap settings, which lead to
different dynamic behavior and equilibrium capacities. This ability also gives the opportunity to
assess the impact of the time-gap settings on traffic flow performance.

We derive our approach on the basis of the control objectives that an ACC system should follow,
in accordance to [42]:

I. To travel with the maximum speed, set by the driver, in cases where no leading vehicles exist
in the range covered by the sensors, or leading vehicles exist within range but their velocities
are higher than the maximum speed set by the user (speed control mode).

II. To maintain vehicle speed equal to the speed of the leading vehicle at a specified distance,
when the leading vehicle is in range and its speed is lower than the maximum speed set by
the driver (gap control mode).

III. Transitions between the two aforementioned objectives should be as smooth as possible, in
order not to cause discomfort to the passengers, due to abrupt accelerations or decelerations.

Before we proceed, to avoid confusion, we need to clarify the terms headway and time-gap.
Time/space-headway is the time/space distance between the front bumper of the preceding vehi-
cle and the front bumper of the following vehicle, while time/space-gap is the time/space distance
between the rear bumper of the preceding vehicle and the front bumper of the following one. In a
Constant Time Headway (CTH) policy the inter-vehicle spacing is a linear function of the vehicle’s
speed, which feels more natural to the passengers of the ACC equipped vehicle. This type of ACC
(and - in extension - CACC) policy was adopted for the proposed model in this work.

To satisfy the above objectives, the proposed model is based on the following assumptions:
(1) For densities clearly below a threshold ρacc (being lower than or equal to ρcr) the additional term
to the GKT has no effect, as it is supposed that (on average) the drivers set their maximum speeds
(or react) as in a manual manner, i.e. as the GKT model describes (emulating in that way the speed
control mode). In the region around ρacc, a smooth but fast transition between the previous case
and the ACC/CACC-controlled situation takes place, described using again the Fermi function:

F(ρ) =
1
2

[
1 + tanh

(
ρ − ρacc

∆ρ

)]
. (9)

In our model, to achieve this fast transition, the transition width ∆ρ takes much lower values, of
∆ρ = 0.025ρmax, compared to those in Ngoduy’s model, leading to much steeper transition between
the two states. We refer to Fig. 2 for a comparison.
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Figure 2: Variance factor 1
2

[
1 + tanh

(
ρ−ρacc

∆ρ

)]
for ρmax = 160 veh/km and ρcr = 0.27ρmax

(2) During the gap control mode, a constant time gap T? is desired, which is imposed through its
corresponding effect on a desired density ρ? as

ρ? =
1

1/ρmax + T?u?
, (10)

where the denominator is the desired space headway, with 1/ρmax reflecting the vehicle length and
u? = u(x?) is the speed of the preceding vehicle, computed at position

x? = x + γ?(1/ρmax + T? · u), γ? ∈ [1, 2].

Additionally, the desired speed relaxes to the speed of the preceding vehicle u? after a relaxation
time τ?. As a result, the corresponding source term can be modeled for ACC vehicles as:

Vacc(ρ, u, ρ?, u?) =
1
2

[
1 + tanh

(
ρ − ρacc

∆ρ

)] (
ρ?u? − ρu

τ?

)
(11)

In [27] it was demonstrated that the minimum time-gap that can be achieved by ACC vehicles
is 0.8s. In general, indicative values used for ACC traffic are T? ∈ [0.8, 2.2]s, following [ISO
15622,2010] standards, and τ? ≈ 1s.

For CACC vehicles a similar approach is used, but the corresponding source term takes into
account the speeds of more than one preceding vehicles, with a different time relaxation for each
one of them. The ability for the system to look downstream increases the smoothing effect of the
corresponding source term. Furthermore, this additional information from far downstream allows
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for the use of lower values of time gaps (without compromising safety), which was also used in
the present study. For example, in [49], it was identified that CACC vehicles enable closer vehicle
following, with time-gap as low as 0.5 s. However, such a time gap is too short to be controllable
by humans, as for the stat-of-the-art ACC systems, the driver is required to be able to take over at
any time; consequently this requires the next step of ITS, autonomous driving. As reduced time
gaps are only achievable between vehicles that are equipped with the CACC technology the market
penetration rate for these systems plays an important role as well. In [49] it was concluded that the
CACC technology has the potential to increase significantly the highway capacity, even doubling
it if the penetration rate is high.

Thus, we propose for CACC traffic

Vacc(ρ, u, ρ?, u?) =
1
2

[
1 + tanh

(
ρ − ρacc

∆ρ

)] M∑
i=1

(
ρ?u?i − ρu

τ?i

)
(12)

where u?i = u(x?i ) with x?i = x + i · γ?(1/ρmax + T? · u), i = 1, . . . ,M, and

ρ? =
1

1/ρmax + T?u?1
.

The parameter values used in this work for CACC traffic are M = 3 with [τ?1 , τ
?
2 , τ

?
3 ] = [2, 3, 6] as

to be consistent with the values used in [32].
In summary, the first approach for ACC/CACC traffic, from [32], contributes essentially to the

convection term, by introducing an acceleration/deceleration term in the flow equation, while the
new approach contributes to the relaxation term of the GKT model.

Remark 1. The incorporation of the ACC/CACC terms in equation (2) using the parameters α and
β can provide a further generalization of the model in terms of the assumed penetration rate, p,
of ACC/CACC-equipped vehicles in the flow. Although, in this work a penetration rate of p = 1 is
assumed, as stated in the Introduction, flows with penetration rates lower than 1 maybe simulated
by appropriately modifying the values of the parameters α and β by setting them equal to p. This
approach is based on the observation that in some situations, the macroscopic dynamics of micro-
scopic models with heterogeneous vehicles/drivers is essentially that of identical vehicles/drivers
with parameters equal to the mean of the heterogeneous vehicle/driver population. This approach
will be investigated in future work.

3. The relaxation approach and its numerical discretization

Model equations (1)-(2) can be written in vector form, supplied with initial conditions, as

∂tu + ∂xf(u) = s(u),

u(x, 0) = u0(x),
(13)
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where the functions u, f(u) and s(u) ∈ R2 with u = [ρ, q]T, f(u) = [ρu, ρu2 + θρ]T and s(u) =

[rrmp, (1 − βF(ρ))(ρV?
e (ρ, u, ρa, ua) − ρu)/τ + hrmp + αVacc]T. Systems in the form of (13) can be

rewritten in quasi-linear form
∂tu + J(u)∂xu = s(u), (14)

where J(u) =
∂f
∂u

is the Jacobian matrix of the system, given as

J(u) =

 0 1
∂P
∂ρ
− u2 ∂P

∂q
+ 2u

 , with P = ρθ(ρ, u). (15)

The Jacobian matrix has two distinct and real (positive) eigenvalues, for all physically reasonable
parameter sets, given as

λ1,2 = u +
1
2
∂P
∂q
±

√(
1
2
∂P
∂q

)2

+
q
r
∂P
∂q

+
∂P
∂ρ

= u

1 + A(ρ) ±

√
A(ρ)2 + A(ρ) + ρ

dA(ρ)
dρ

 , (16)

which denote that the model equations constitute a strictly hyperbolic set of partial differential
equations.

3.1. The relaxation model

In this section we briefly present the class of relaxation models introduced in [24] and applied
in various second-order macroscopic traffic flow models in [7]. By the introduction of the artificial,
relaxation, variables v the relaxation system, corresponding to (13), reads as

∂tu + ∂xv = s(u),

∂tv + C2∂xu =
f(u) − v

ε
,

(17)

with initial data
u(x, 0) = u0(x),

v(x, 0) = v0(x) = f(u0(x)),

where the small parameter ε (0 < ε � 1), is the relaxation rate and C2 = diag{c2
1, c

2
2} is a positive

diagonal.
For small ε, and applying the Chapman-Enskog expansion in system (17), see for example

[24, 28], the following approximation for u can be obtained,

∂tu + ∂xf(u) = s(u) + ε∂x

[(
∂f(u)
∂u

)
s(u)

]
+ ε∂x

C2 −

(
∂f(u)
∂u

)2 ∂xu
 + O(ε2). (18)

Equation (18) controls the first-order behavior of system (17), with the third term on the right-hand
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side being an O(ε) dominant dissipation term in the model and
(
C2 −

(
∂f(u)
∂u

)2
)

being the diffusion-
like coefficient matrix. The model (17) is well-posed only if this matrix is positive semi-definite
for all u. This requirement on the diffusion coefficient matrix is the well-known sub-characteristic
condition, [26, 24], i.e.

C2 −

(
∂f(u)
∂u

)2

≥ 0, ∀u, (19)

which ensures the dissipative nature of (18); and it is equivalent to

λ2 ≤ c2, where λ = max
1≤i≤2

|λi| and c = min
1≤i≤2

|ci|. (20)

Condition (19) can always be satisfied by choosing sufficiently large values for the diagonal ele-
ments in C2, for u varying in a bounded domain. As such, the solution of the relaxation model (17)
converges strongly to the unique entropy solution of the original conservation laws [6, 28].

System (17) can be easily diagonalized leading to the following decoupled system of equations:

∂t(v + Cu) + C∂x(v + Cu) =
f(u) − v

ε
+ Cs(u); (21)

∂t(v − Cu) − C∂x(v − Cu) =
f(u) − v

ε
− Cs(u). (22)

The left-hand side of system (21)-(22) is linear with constant wave speeds, split into positive and
negative parts. Thus, its solution has the property that it propagates at finite speeds along linear
characteristic curves dx/dt = ±C. From (21)-(22) and by setting g1,2 = v±Cu, the follow relations
can be obtained that recover the original variables of the relaxation system,

u =
1
2

C−1 (g1 − g2) and v =
1
2

(g1 + g2) . (23)

The structure of the linear characteristic field of the relaxation system constitutes a clear advantage
compared to the original conservation laws for their numerical integration.

3.2. Discretizations in space and time

Let xi = i∆x, xi± 1
2

= (i ± 1
2 )∆x, where ∆x is a uniform spatial discretization step. The discrete

cell average of u in the cell Ii = [xi− 1
2
, xi+ 1

2
] at time t is defined as ui(t), i.e. ui(t) = 1

∆x

∫
Ii

u(x, t)dx,
and the approximate value of u at (xi+ 1

2
, t) by ui+ 1

2
(t). Integrating (17), for continuous time, the

semi-discrete relaxation system is given as

∂

∂t
ui +

1
∆x

(
vi+ 1

2
− vi− 1

2

)
= s(u)i,

∂

∂t
vi +

C2

∆x

(
ui+ 1

2
− ui− 1

2

)
= −

1
ε

(vi − f(u)i).
(24)
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where s(u)i and f(u)i are discrete averages of the source term and flux function, respectively. To
completely define the spatial discretization, we need to compute the flux values ui± 1

2
and vi± 1

2
.

As system (17) has linear characteristics and its characteristic speeds, +ck and −ck, are constant,
the construction of an upwind scheme is much simpler than developing such a scheme for the
original nonlinear conservation laws. For example, the first-order upwind scheme, [24, 39, 7],
applied to g1 and g2 gives g1i+ 1

2
= g1i and g2i+ 1

2
= g2i+1 .

To increase the spatial order of accuracy, a WENO-type interpolant approach is applied, where
the approximate solution is reconstructed using higher-order polynomials. By direct application of
this reconstruction to the k−th components of the characteristic variables, g1,2 = v ± Cu, a non-
oscillatory higher-order spatial discretization is obtained. The superiority of applying higher-order
schemes, compared to low-order ones, in traffic flow simulations has been recently demonstrated in
[7]. By applying the fifth-order WENO reconstruction proposed in [5], the discrete values of each
component of g1i+ 1

2
and g2i+ 1

2
, at a cell boundary i + 1

2 , are defined as left and right extrapolated

values gL
1i+ 1

2

and gR
2i+ 1

2

i.e.

g1i+ 1
2

= gL
1i+ 1

2

and g2i+ 1
2

= gR
2i+ 1

2

. (25)

For a general function ψ(x) the fifth-order accurate extrapolated value ψL
i+ 1

2
is defined as

ψL
i+ 1

2
=

2∑
r=0

ω−r h−r (26)

where h−r are extrapolated values obtained from cell averages in the rth stencil (i−r, i−r+1, i−r+2)
as

h−0 =
1
3
ψi +

5
6
ψi+1 −

1
6
ψi+2;

h−1 = −
1
6
ψi−1 +

5
6
ψi +

1
3
ψi+1;

h−2 =
1
3
ψi−2 −

7
6
ψi−1 +

11
6
ψi,

and ω−r , r = 0, 1, 2 are non-linear WENO weights given by

ω−r =
ar∑2
l=0 al

, ar = Cr

(
1 +

η5

IS −r + ε

)
, r = 0, 1, 2 (27)

with C0 = 3/10,C1 = 3/5,C2 = 1/10, and ε being a very small number used to assure that the
denominator does not vanish; in our numerical implementation is set to ε = 10−40, as suggested in
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[5]. The smoothness indicators IS −r are given by

IS −0 =
13
12

(ψi − 2ψi+1 + ψi+2)2 +
1
4

(3ψi − 4ψi+1 + ψi+2)2;

IS −1 =
13
12

(ψi−1 − 2ψi + ψi+1)2 +
1
4

(ψi−1 − ψi+1)2;

IS −2 =
13
12

(ψi−2 − 2ψi−1 + ψi)2 +
1
4

(ψi−2 − 4ψi−1 + 3ψi)2.

The expression η5 is given in terms of the smoothness indicators as

η5 = |IS −0 − IS −2 |.

For the right face value ψR
i+ 1

2
, the corresponding weights ω+

r and smoothness indicators are given

by symmetry. After the above reconstructions have been performed to each component of the
characteristic variables from (25), the numerical fluxes for ui± 1

2
and vi± 1

2
are computed from (23).

In a similar manner we compute the face values at cell boundary i − 1
2 .

Source term’s discretization. The discrete average values in (24) for the flux function, f(u)i, and
source term, s(u)i, can be obtained by using high-order quadrature rules, such as Simpson’s rule.
However, for small values of the relaxation rate ε it is sufficient to project f(u)i and s(u)i into the
local limit values f(ui) and s(ui), respectively [38, 39].

In addition, for every computational cell Ii = [xi− 1
2
, xi+ 1

2
] and at each time step, we have to com-

pute the non-local values ρa and ua in (5) at the anticipated location xa. As generally the position of
xa is not a multiple of ∆x, we implement the following procedure to define the computational cell
xa belongs to, for computing ρa and ua. As xi = (i− 1)∆x, we can locate the cell Ik, k = i, i + 1, . . . ,
in which xa belongs with k = i + b

xa−(xi−0.5∆x)
∆x c, where b·c is the floor function. Then, in the cell Ik

a piecewise linear interpolation is performed, using the high-order reconstructed values at the right
and left of the cell faces xk− 1

2
and xk+ 1

2
, respectively. For example, (ρa)i is computed as

(ρa)i = ρR
k− 1

2
+

ρL
k+ 1

2
− ρR

k− 1
2

∆x

(
xa − xk− 1

2

)
.

A similar procedure was also proposed in [47]. With the same procedure we compute the non-local
terms for the ACC and CACC modeling from (11) and (12), respectively, while for the velocity
derivative approximation in (7) a fourth-order finite difference approximation was implemented.

3.3. Time integration
The semi-discrete relaxation system (24) constitutes a system of autonomous ordinary differ-

ential equations which can be formulated as

dY
dt

= F (Y) −
1
ε
G(Y), (28)
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with the time-dependent vector functions given as

Y =

(
ui

vi

)
, F (Y) =

(
s(u)i − ∆ivi

−C2∆iui

)
and G(Y) =

(
0

vi − f(u)i

)
,

with

∆ivi =
vi+ 1

2
− vi− 1

2

∆x
and ∆iui =

ui+ 1
2
− ui− 1

2

∆x
.

A time marching approach based on implicit-explicit (IMEX) Runge-Kutta (RK) splitting for (28)
is considered as to avoid the time step restrictions imposed by an explicit solver due to stiffness. As
such, the explicit RK scheme treats the non-stiff stage of the splitting for F (Y) while a diagonally
implicit RK scheme treats the stiff stage for G(Y) [3, 37, 38, 39, 40? ]. We note that even though
an implicit scheme is used, either linear or nonlinear algebraic equations have to be solved due to
the special structure of the relaxation system.

Defining as ∆tn the current time step and Yn the approximate solution at t = tn, the s−stage
IMEX method can be implemented as

Yk = Yn + ∆tn
k−1∑
m=1

ãkmF (Ym) −
∆tn

ε

s∑
m=1

akmG(Ym), k = 1, 2, . . . , s (29)

Yn+1 = Yn + ∆tn
s∑

k=1

b̃kF (Yk) −
∆tn

ε

s∑
k=1

bkG(Yk). (30)

The s × s matrices Ã = [ãkm] and Ã = [akm] are chosen such that the splitting is explicit in F (Y)
and implicit in G(Y). The s−vectors b̃ and b are the coefficients which characterize the IMEX
scheme [37] and are given in a double tableau as

d̃ Ã

b̃T
and

d A

bT

where d̃ and d are the s−vectors used in the context of non-autonomous systems of differential
equations. The left and right tables are associated with the explicit and implicit RK schemes,
respectively. Here we implement the third-order IMEX method from [3] where its double tableau
is given as

0 0 0 0
γ γ 0 0

1-γ γ-1 2-2γ 0

0 1
2

1
2

and

0 0 0 0
γ 0 γ 0

1-γ 0 1-2γ γ

0 1
2

1
2

with γ = (3 +
√

3)/6. Using this IMEX scheme, the source terms are treated implicitly and the
advection terms are treated explicitly and the high-order relaxation scheme is stable independently
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of ε. Thus, the choice of ∆tn in each time step is based only on a usual CFL condition [24],

CFL = max
(
(max

i,k
cn

k)
∆tn

∆x
,
∆tn

∆x

)
≤

1
2
,

where the values of the relaxation constants cn
k are re-computed at each time step.

The relaxation constants cn
k in C2 should satisfy criterion (19) and the size of C2 influences

the numerical dissipation of the numerical scheme. Larger ck values usually add more numerical
dissipation, thus for accuracy reasons it is desirable to have ck as small as possible. The choice of
their value can be based on rough estimates of the characteristic speeds of the original problem.
For example, one can set every eigenvalue λ of J(u) to satisfy |λ| ≤ cmax, where cmax = maxk ck.
By doing so, we ensure that the characteristic speeds of the hyperbolic part of (17) are at least as
large as the characteristic speeds of the original problem.

In our implementation, the values of cn
k , k = 1, 2, are adjusted according to the behavior of the

solution by considering a global selection on every time step ∆tn. Based on the global maximum
of each eigenvalue of the system’s Jacobian matrices over the grid cells Ii, their choice is made as

cn
k = max

i
|λn

k | + e, k = 1, 2,

where e is a small correction parameter of O(10−2), added to avoid the characteristic speeds from
vanishing. The above choice was found sufficient for our simulations in the next sections.

3.4. Initial and boundary conditions

Initial and boundary condition for the relaxation system are imposed for the relaxation vari-
ables keeping in mind that at the small relaxation limit, ε → 0+, the equilibrium v = f(u)
should be satisfied. Following from that for a given initial condition u(x, 0) = u0(x) we set
v(x, 0) = v0(x) ≡ f(u0(x)), thus satisfying the local equilibrium and avoid the introduction of
an initial layer from the relaxation system. In a similar way different boundary conditions can be
imposed to the relaxation system, e.g. periodic, Dirichlet or homogeneous Neumann, thus avoiding
the introduction of artificial boundary layers. We refer to [7] for more details on this subject.

4. Numerical simulations and discussion

In this section, we extensively investigate numerically the performance of the models presented,
which aim to describe the traffic flow dynamics for the different vehicle types such as, manually
driven, ACC and CACC vehicles. We consider two main categories of test cases in the numerical
simulations. The first one is for traffic flows on a circular homogeneous freeway where we aim
to examine the formation of traffic instabilities and the general flow characteristics with respect to
small and large perturbations introduced in the flow field. The potential stabilization effects on the
traffic flow when ACC or CACC vehicles are considered is of primary importance. The second
category of test cases is the simulation of a freeway with an on-ramp i.e. a potential bottleneck.
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Different traffic states (i.e. congestion patterns) can be developed close to the bottleneck caused
by the on-ramp. Here we aim to investigate the different states that occur from the on-ramp flow
and to determine if the proposed ACC and CACC approaches can act as a sort of control measures
to avoid the different resulting breakdowns of traffic. We note here that, for brevity, the above
mentioned test cases are chosen as to highlight the difference of the two implemented ACC and
CACC approaches and to give a clear insight to their performance. However, further validation of
the proposed model, including comparisons with microscopic simulations, constitutes an ongoing
work which will be presented in the future. For all numerical tests presented next, the relaxation
rate ε was set to 10−8 and the CFL value to 0.4.

4.1. Homogeneous Traffic with Localized Perturbations

In the tests presented in this section, we assume that the traffic flow is in a ring of circumference
of L = 10km, thus periodic boundary conditions were implemented. Following [44, 15, 16, 7], we
consider a dipole-like initial variation of the average density ρ̄, as shown in Fig. 3, given as

ρ(x, 0) = ρ̄ + ∆ρ

[
cosh−2

( x − x0

w+

)
−

w+

w−
cosh−2

(
x − x0 − ∆x0

w−

)]
where w+ = 201.5 and w− = 805m with ∆x0 = w+ + w−. The initial flow q(x, 0) = qe(ρ(x, 0)) =

ρVe(ρ), and following from (6), is assumed in local equilibrium. The induced perturbation even-
tually leads to instabilities for given values of ρ̄. This can be understood also intuitively, at larger
densities a higher percentage of drivers that approach a density peak must brake, thus increasing
the density peak. Depending on increased values of ρ̄, different situations emerge. Starting with
almost homogeneous initial traffic, the development of traffic instabilities consists a strict test also
for numerical performance. Various tests were performed for different densities ρ̄. The ring was
discretized with npts = 400 grid points (∆x = 25m). The model parameters used in the simulations
were umax = 110 km/h, ρmax = 160 veh/km, ρcr = 0.27ρmax, τ = 35s, A0 = 0.008, δA = 0.02,
δρ = 0.1ρmax, T = 1.8s and γ = 1.2. Simulations are reported up to final time of 1200s.

Localized cluster. In the first scenario, ρ̄ = 25 and the initial perturbation was set to ∆ρ = 6
veh/km. This traffic flow field is unstable, thus, by introducing the perturbation, a single density
cluster is formed for manually driven cars, i.e. using the original GKT model, as shown in Fig. 3.
As it can be seen, the perturbation first travels downstream and grows in its amplitude; and when it
gets large enough, it starts propagating upstream. Next, and in Fig. 4, the results for the evolution
of density for ACC and CACC traffic flows using model (7), with the coefficient τ0 = 1s for ACC
and the CACC coefficients [τ0

1, τ
0
2, τ

0
3] = [2, 3, 6]s, as proposed in [32], are shown. For ACC traffic

flow, a stable flow field of uncongested traffic is obtained, with the initial perturbation traveling
downstream; while for CACC cars the initial perturbation dies out with time. In Fig. 5 the obtained
profiles of density, speed and flow rate at t = 1200s are shown for manual, ACC and CACC traffic.
The resulted uncongested traffic can be clearly seen along with an increased traffic flow rate along
the total length of the ring road.
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Figure 3: Initial perturbation for ρ̄ = 25 and ∆ρ = 6 (left) and (right) the spatio-temporal density evolution for manually
driven cars (α = β = 0 in (2))

Figure 4: Density evolution for ρ̄ = 25 for ACC (left) and CACC traffic using (7)
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Figure 5: Density, velocity and flow profiles at t = 1200s using (7) for ρ̄ = 25 and ∆ρ = 6

In Figs 6 and 7 the results for the evolution of density for ACC and CACC traffic flows with
the same initial conditions using the novel modeling equations (11) and (12) are presented. The
coefficient τ? = 1s for ACC and the CACC coefficients [τ?1 , τ

?
2 , τ

?
3 ] = [2, 3, 6]s. The value for

ρacc = 0.9ρcr and two different values for T? for CACC traffic are tested, T? = 1.2 and T? = 1s
while for ACC T? = 1.2s. We note here that these values for ACC and CACC systems correspond
to a more conservative/considered driving behavior, compared to lower (although not very realistic
with the current state-of-the-art) values, like 0.8s for ACC or even 0.5s for CACC, that correspond
to more aggressive driving behavior. First, and comparing with the results of the previous ACC and
CACC approach, a similar behavior is obtained. Both ACC and CACC flow are now stable with
the initial perturbation traveling downstream. Only for the ACC flow the perturbation’s amplitude
slightly grows but then remains almost constant; while for the CACC traffic using T? = 1s in (12)
the perturbation dies out. This reduction of the T? value from 1.2 to 1 for the CACC traffic has
the expected effect of smoothing the traffic, as explained in Section 2, and can be affordable from
CACC systems as a pre-specified parameter. This value of T? = 1 in (12) has been adopted in all
the simulations that follow. In Fig. 7 the resulted uncongested, almost homogeneous, traffic can be
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clearly seen along with an increased traffic flow rate along the total length of the ring road.

(a) ACC traffic for T? = 1.2s (b) CACC traffic for T? = 1.2s

(c) CACC traffic for T? = 1s

Figure 6: Density evolution for ρ̄ = 25 and ∆ρ = 6 for ACC (left) and CACC traffic using (11) and (12)

Stop-and-go waves. The next scenario is for ρ̄ = 35 and ∆ρ = 6 veh/km and all other parameters
kept the same. Increasing ρ̄ a cascade of traffic jams emerges, i.e. stop-and-go traffic, as can be seen
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Figure 7: Density, velocity and flow profiles at t = 1200s using (11) and (12) for ρ̄ = 25 and ∆ρ = 6

in Fig. 8 for manually driven cars. In Fig. 9 the results for the evolution of density for ACC and
CACC cars using (7) are shown. The initial homogeneous density belongs to the unstable regime
for ACC vehicles, with the stop-and-go traffic becoming less profound; but to the stable regime for
CACC traffic, with the perturbation traveling upstream and retaining an almost constant amplitude.
In Fig. 10 the obtained profiles of density, speed and flow rate at t = 1200s are shown for manual,
ACC and CACC traffic. The resulted uncongested traffic behavior for CACC can be clearly seen
in Fig. 10 along with an increased traffic flow rate in the total length of the ring road for ACC and
CACC traffic. The simulation results presented here confirm the observation presented in [32] for
a similar test case using the same set of parameters in (7).

Next, and in Fig. 11 the spatio-temporal evolution using the new ACC and CACC approach (11)
and (12) are shown. The ACC traffic is still in the unstable regime, but remains uncongested; while
for CACC traffic the initial perturbation rapidly fades out with time, leading to a homogeneous
traffic. Referring to Fig. 12, it is important to note the increased traffic flow rate along the total
length of the ring road for ACC and CACC traffic, which is more pronounced for CACC traffic, as
a result of the imposed desired time gap at the proposed ACC and CACC approach.
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Figure 8: Spatio-temporal density evolution for manual cars for ρ̄ = 35 and ∆ρ = 6

Figure 9: Density evolution for ρ̄ = 35 and ∆ρ = 6 with ACC (left) and CACC traffic using (7)

Suppression of a traffic jump. The next scenario is for ρ̄ = 28 and ∆ρ = 60 veh/km and all other
parameters kept the same. Under these conditions the traffic flow is metastable, i.e., nonlinearly
unstable with respect to perturbations exceeding a certain critical amplitude but otherwise stable
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Figure 10: Density, velocity and flow profiles at t = 1200s using (7) for ρ̄ = 35 and ∆ρ = 6

[11]. As can be seen in Fig. 13, a persistent traffic jump is produced which propagates around the
ring road. In Fig. 14 the results for the evolution of density for ACC and CACC cars using (7)
are shown. For both ACC and CACC traffic the shock wave disappears since the positive peak of
the large initial perturbation fades out quickly, in fact earlier in the CACC traffic. In Fig. 15 the
spatio-temporal evolution using the new ACC and CACC approach (11) and (12) are presented.
Similarly to the previous results, the smoothing of the initial perturbation can be observed, leading
to uncongested and convectively stable traffic field. A noticeable difference in the CACC traffic
here, compared to the previous approach, is the downstream propagation of the damped positive
peak of the initial perturbation.

4.2. Traffic states close to an on-ramp

As it was analyzed in [47], the dynamics of ring roads or homogeneous infinite roads, i.e.,
closed systems, is controlled by traffic density. The dynamics of realistic roads, i.e., open systems
with a bottleneck, is controlled by two flow-like quantities. The uncongested road sections are
controlled by the inflow, and the congested sections by the (dynamic) bottleneck capacity.
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Figure 11: Density evolution for ρ̄ = 35 and ∆ρ = 6 for ACC (left) and CACC flows using (11) and (12)

Different traffic states (i.e. congestion patterns) can be developed close to bottlenecks caused
by on-ramps, lane closures, gradients etc. in a freeway. Here we investigate the different states
that occur from an on-ramp flow. Varying the initial traffic density or flow, q f , of the freeway, the
ramp length, lrmp and the ramp inflow, qrmp, in the GKT model, leads to several interesting states
of congested traffic. All these different congested states are observable in empirical traffic data, see
[14, 16, 15, 17, 46, 47] and references therein. Our aim is to determine if the proposed ACC and
CACC approaches can act as a sort of control measures to avoid the different resulting breakdowns
of traffic; to this end, we must first verify the ability of the numerical model to reproduce such
states as analyzed in [16, 15, 47]. Specifically, we simulate a single freeway lane, and two different
sets of simulations were performed for an on-ramp of length lrmp = 400m at xrmp = 8000m with
a merging zone for x ∈

[
xrmp − lrmp/2, xrmp + lrmp/2

]
. The first set of simulations is for initial

flow rates in the freeway on the ”uncongested” side of the fundamental diagram, referring to Fig.
1, while the second for a flow rate on the ”congested” side. The model parameters used in the
simulations are, umax = 110 km/h, ρmax = 140 veh/km, ρcr = 0.27ρmax, τ = 40s, A0 = 0.008,
δA = 0.02, δρ = 0.1ρmax, T = 1.7s and γ = 1.2. In the numerical scheme, the number of grid
points used was npts = 400 and the CFL value was set to 0.4.

For the first set of cases we simulate a freeway of length L = 15 km with open boundaries for a
total of 120 minutes. To obtain stationary conditions, we simulate the first 20 minutes with a given
homogeneous flow, q f , on the freeway and a constant ramp inflow, qrmp, applying homogeneous
von Neuman boundary conditions at both ends of the freeway. Then we introduce a perturbation
of amplitude δqrmp by linearly increasing the ramp flow up to qrmp + δqrmp at t = 22.5min, and
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Figure 12: Density, velocity and flow profiles at t = 1200s using (11) and (12) for ρ̄ = 35 and ∆ρ = 6

decreasing it again to qrmp by t = 25min. This perturbation on the ramp inflow corresponds to
a temporary peak in the traffic inflow. When traffic breaks down at the bottleneck and congested
traffic has formed upstream of it, one says that the bottleneck is activated. The different congested
states that can be observed for manual traffic are presented next. It is noted that these states are
observable in empirical traffic data as well [16, 15].

”Synchronized” homogeneous congested traffic (HCT). In this case, the initial homogeneous equi-
librium traffic flow q f = 1350 veh/h, without perturbations in the initial condition. The constant
ramp inflow qrmp = 400 veh/h and the on-ramp’s perturbation amplitude δqrmp = 150 veh/h. In
the 120 minute simulation, shown in Fig. 16(a), the developed ”synchronized” highly congested
traffic can be observed. Here, a widening region of high density and low velocity is developed, but
in there flow remains relatively high. This congested region’s upstream front propagates upstream,
while the downstream front is standing at the ramp.

Oscillating congested traffic (OCT). In this case, the initial homogeneous equilibrium traffic flow
q f = 1540 veh/h, the constant ramp inflow qrmp = 180 veh/h and the on-rump’s perturbation
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Figure 13: Spatio-temporal density evolution for manual cars for ρ̄ = 28 and ∆ρ = 60

Figure 14: Density evolution for ρ̄ = 28 and ∆ρ = 60 veh/km with ACC (left) and CACC flows using (7)

amplitude δqrmp = 180 veh/h. The 120 minute of simulation spatio-temporal results for the traffic
density are shown in Fig. 16(b) where a standing front at the ramp can be seen while the congested
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Figure 15: Density evolution for ρ̄ = 28 and ∆ρ = 60 for ACC (left) and CACC flows using (11) and (12)

flow produced upstream oscillates.

Pinned localized cluster (PLC). In this case, the initial homogeneous equilibrium traffic flow q f =

1425 veh/h, the constant ramp inflow qrmp = 200 veh/h and the on-rump’s perturbation amplitude
δqrmp = 400 veh/h. The spatio-temporal results for the traffic density are shown in Fig. 16(c) where
the pinned at the rump localized congestion can be observed.

Triggered stop-and-go waves (TSG). In the final case, the initial homogeneous equilibrium traffic
flow q f = 1690 veh/h, the constant ramp inflow qrmp = 75 veh/h and the on-rump’s perturbation
amplitude δqrmp = 75 veh/h. The simulation spatio-temporal results for the traffic density are
shown in Fig. 16(d) where the traffic stop-and-go waves evolution can be seen.

All the results are consistent with those in [16, 15] for the same set of parameters in the GKT
model and in all cases the induced perturbation in δqrmp causes the breakdown in traffic close
to the on-ramp. The perturbation travels downstream as long as it is small and upstream as it
becomes larger and eventually activates the bottleneck associated with the on-ramp. Applying
ACC or CACC to these situations alleviates the problem of traffic breakdown. As can be seen in
Fig. 17, applying approach (7) and then (11) and (12) produces very similar results in all cases
(here, and for brevity, we only present the one that corespondents to PLC traffic for manual cars).
Activation of ACC and CACC dynamically increases the local capacity near the on-ramp, thus free
flow occurs both upstream and downstream of the on-ramp.

Having verified that the numerical model can reproduce the different traffic breakdown states,
for initial flow rates in the freeway on the ”uncongested” side of the fundamental diagram, we
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Figure 16: Density evolution of different traffic states close to an on-ramp for manual cars

next present the second set of test cases for an initial flow rate on the ”congested” side. For these
cases, we simulate a freeway of length L = 30km with open boundaries for a total of 150 minutes.
Keeping the initial homogeneous equilibrium traffic flow q f = 1824.5 veh/h (which results to
ρinitial = ρ(x, 0) = 30 veh/km) we vary only the ramp inflow qrmp to obtain different scenarios. No
perturbation to qrmp is imposed, i.e. δqrmp = 0, and all other model and computational parameters
remain the same. It is important to note that, following from the phase diagram of the traffic states
forming in the vicinity of an on-ramp in [14, 16, 15], similar situations are expected to emerge as
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Figure 17: Density evolution for traffic states close to an on-ramp for ACC and CACC traffic using (7) (top) and using
(11) and (12) (bottom)

in the previous set of cases. Keeping q f constant in each case but decreasing the ramp inflow qrmp

different traffic flow regimes can be observed. Our aim here is to quantify the effects of the different
ACC and CACC approaches on the resulted traffic flow fields.

The first case here is for qrmp = 400 veh/h. The traffic density evolution for manual traffic is
presented in Fig. 18. One can observe the HCT upstream of the ramp and the moving localized
clusters produced downstream of the ramp. These clusters need almost two hours before disap-
pearing from the flow field.

In Fig. 19 the spatio-temporal evolution for ACC and CACC traffic using (7) is presented and
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Figure 18: Density evolution close to an on-ramp for manual cars for qrmp = 400 veh/h

in Fig. 20 the density, velocity and flow rate profiles at t = 150min are compared between each
other and those resulted from manual traffic. As it can be observed, the ACC traffic produces an
oscillatory, but uncongested, flow downstream of the ramp but reduces the HCT upstream. The
CACC application stabilizes the downstream flow but retains the average values of the traffic flow.

In Fig. 21 the spatio-temporal evolution for ACC and CACC traffic using (11) and (12) is
presented, and in Fig. 22 the density, velocity and flow rate profiles at t = 150min are compared
between each other and those resulted from manual traffic. Activation of ACC stabilizes the traffic
downstream of the ramp and at the same time greatly increases the flow both upstream and down-
stream, while the upstream HCT congestion is reduced. For CACC the HCT region is propagating
at a much lower speed upstream, while an increased homogeneous flow is produced downstream
of the on-ramp. Moreover, the resulted flow upstream is almost uniform despite the formation of
HCT. The increased flow rate for the CACC traffic compared to the ACC one is mainly attributed
to the reduced value of the imposed time-gap, T?, in (12) which leads to an increased bottleneck
capacity.

The second case is for qrmp = 200 veh/h. The traffic density evolution for manual traffic
is presented in Fig. 23. One can observe the OCT flow upstream of the ramp and stop-and-go
waves downstream. These stop-and-go waves initially travel downstream but at later times start
traveling upstream converging to the oscillatory congested region upstream of the ramp. Whenever
an upstream traveling jam passes the bottleneck, it triggers a new perturbation

In Fig. 24 the spatio-temporal evolution for ACC and CACC traffic using (7) is presented. Both
the ACC and CACC traffic have become stable upstream of the ramp, but the ACC traffic remains
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Figure 19: Density evolution with qrmp = 400 veh/h for ACC (left) and CACC traffic using (7)

oscillatory downstream. Similar to the previous case, both ACC and CACC flows retain the same
average values as can be seen in Fig. 25

In Fig. 26 the spatio-temporal evolution for ACC and CACC traffic using (11) and (12) is
presented and in Fig. 27 the density and flow rate profiles at t = 150min are compared between
each other and those resulted from manual traffic. The ACC traffic becomes non-oscillatory both
upstream and downstream of the ramp but an HCT region slowly develops upstream, but the down-
stream flow rate is greatly increased. For the CACC traffic the upstream congestion has completely
disappeared and a more pronounced increase in the flow rate is established.

The last case is for qrmp = 75 veh/h. The traffic density evolution for manual traffic is presented
in Fig. 28. One can observe the TSG flow upstream of the ramp and the formation of stop-and-go
waves downstream of the ramp. These downstream stop-and-go waves initially travel with the flow
but at later times start traveling against the flow, converging to the TSG region upstream of the
ramp.

In Fig. 29 the spatio-temporal evolution for ACC and CACC traffic using (7) is shown, while
the density and flow rate profiles at t = 150min are compared between each other and those resulted
from manual traffic in Fig. 30. The ACC traffic remains oscillatory both downstream and upstream
of the ramp. Actually the downstream oscillations enter the higher density region upstream of the
ramp and generate additional ones. For the CACC the traffic is now non-oscillatory but the density
downstream of the ramp is not affected by the incoming ramp flow and remains unchanged.

Fig. 31 presents the spatio-temporal evolution for ACC and CACC traffic using (11) and (12).
For both ACC and CACC traffic the resulting flows are now uncongested and stable with increased
flow rates. As it can be seen in Fig. 32 the vehicles’ increased average velocity has become uniform
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Figure 20: Density, velocity and flow rate profiles at t = 150min for qrmp = 400 veh/h using (7) for ACC and CACC

throughout the entire domain for CACC traffic.

5. Conclusions

This work presents two macroscopic approaches to model the dynamics of ACC and CACC
traffic flows. To model the impact of ACC and CACC vehicles on traffic flow dynamics, as de-
scribed by the two approaches, the second-order GKT model was used as the basis model since it
allows to describe the fluctuations of speed dynamics around a so-called equilibrium speed-density
relationship. An important part of the simulation process is the numerical solution of the resulting
models by the development of a high-resolution finite volume relaxation scheme. The first ap-
proach to ACC and CACC was adapted from Ngoduy [32] where the core idea was to represent the
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Figure 21: Density evolution with qrmp = 400 veh/h for ACC (left) and CACC traffic using (11) and (12)

instantaneous response of the ACC and CACC due to changes of the speed of the leader(s) by the
introduction of a relaxation acceleration/deceleration term in the momentum equation of the GKT
model. The second approach presented here is a novel one and is based on the introduction of a
new relaxation term in the momentum equation that satisfies the time/space-gap principle of ACC
systems. Further, in the new approach the original GKT non-local interaction term is smoothly
switched off by the Fermi-like function and replaced by the new relaxation term such that in con-
gested traffic flow this term takes over. In both approaches, the relaxation time is distributed over
multiple vehicles in the CACC systems whereas in the ACC ones the relaxation time is only related
to the direct leading vehicle. Thus, the effects of ACC vehicles have been extended to account
for the information exchange between multiple vehicles. Although the two approaches introduce a
relaxation source term in the second equation of the GKT model, there is an important fundamental
difference between them in terms of which ACC criteria are satisfied. It should be noticed that by
setting shorter time-gap and short relaxation time, for example, T = 1s and τ = 5s, in the original
GKT model will produce similar dynamics as that of the (C)ACC approaches presented. However,
in our approach, the constant time gap T? is imposed through its corresponding effect on the de-
sired density ρ?, via eq. (10) for ACC, and the flow eventually is forced to relax to this (desired)
ρ?.

To study the performance and effects of the two approaches, as well as their differences, in
the traffic flow characteristics, two main categories of test cases were presented in the numerical
simulations. The first one is for flows on a circular homogeneous freeway (with periodic boundary
conditions) with respect to small and large perturbations introduced. The second is the simulation
of a freeway with an on-ramp (i.e. a potential bottleneck) where open boundary conditions have
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Figure 22: Density, velocity and flow rate profiles at t = 150min for qrmp = 400 veh/h using (11) and (12)

been used. In all the tests performed in the first category, the formation of traffic instabilities with
respect to initial perturbations for different car types (CACC, ACC and manual vehicles) has been
investigated. We have shown numerically that for both approaches CACC vehicles enhance the
stabilization of traffic flow with respect to both small and large perturbations compared to ACC
vehicles. Each approach has its own effects to the dynamics of traffic flow, but generally leads
to the stabilization of the flow due to disturbances. This is in accordance with the analytical and
numerical findings presented in [32]. However, and although both modelling approaches lead to
comparable qualitative results, in some cases different shock-wave propagation patterns can also
be observed due to the different contribution of the ACC/CACC term for each model.

A major deference between our approach and that in [32] is the observed enhanced dynamic
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Figure 23: Density evolution close to an on-ramp for manual cars for qrmp = 200 veh/h

Figure 24: Density evolution with qrmp = 200 veh/h for ACC (left) and CACC traffic using (7)

equilibrium capacity for our CACC system due to the satisfaction of the time/space-gap principle.
For the second category of test cases, both approaches lead to more anticipative driving behavior
in the congested traffic situations, which leads to the suppression of the oscillation waves, so that
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Figure 25: Density and flow rate profiles at t = 150min for qrmp = 200 veh/h using (7) for ACC and CACC

Figure 26: Density evolution with qrmp = 200 veh/h for ACC (left) and CACC traffic using (11) and (12)

the traffic is convectively stable near the on-ramp. From the numerical results, we can conclude
that, by applying ACC and CACC systems, the flow becomes stabilized with respect to on-ramp
perturbations (temporary inflow peaks) and all oscillation waves caused near a bottleneck can be
eliminated for densities on the ungongested side of the fundamental diagram. The observed en-
hanced dynamic equilibrium capacity for our CACC system resulted to the suppression of traffic
congestion at the on-ramp bottleneck, improved outflow from the bottleneck and harmonization of
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Figure 27: Density and flow rate profiles at t = 150min for qrmp = 200 veh/h using (11) and (12)

Figure 28: Density evolution close to an on-ramp for manual cars for qrmp = 75 veh/h

the average speed for higher inflow values from the ramp and main flow in the congested side of the
fundamental diagram, compared to Ngoduy’s approach. As a bottleneck is defined by a capacity
reduction, the inclusion of the time/space-gap principle in our CACC approach manages to fill the
capacity gap at the bottleneck. We postulate that, this approach of jam-avoiding driving by CACC
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Figure 29: Density evolution with qrmp = 75 veh/h for ACC (left) and CACC traffic using (7)
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Figure 30: Density and flow rate profiles at t = 150min for qrmp = 200 veh/h using (7) for ACC and CACC

vehicles, which dynamically increases the local capacity near the on-ramp, can be transferred to
other kinds of bottlenecks as well thus enhancing traffic operations.

Following from this work, we can argue that the proposed ACC and CACC approach, along
with its accurate numerical approximation, can provide a macroscopic insight into the dynamics
of intelligent traffic flow. Our ongoing work is the numerical investigation of the characteristics
of mixed traffic flow consisting of CACC and manual vehicles to access the contribution of the
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Figure 31: Density evolution with qrmp = 75 veh/h for ACC (left) and CACC traffic using (11) and (12)

penetration rate of CACC vehicles to the stabilization of the traffic dynamics. In addition, further
validation of the proposed ACC/CACC approach compared to microscopic simulations is under
development.
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