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Abstract—The incorporation of a macroscopic approach re-
flecting Adaptive Cruise Control (ACC) and Cooperative Adap-
tive Cruise Control (CACC) traffic dynamics in a gas-kinetic
(GKT) traffic flow model is presented. The approach is a novel
one and is based on the introduction of a relaxation term that
satisfies the time/space-gap principle of ACC or CACC systems.
The relaxation time is assigned on multiple leading vehicles
in the CACC case; whereas in the ACC case this relaxation
time is only assigned to the direct leading vehicle. Numerical
simulations investigate the effect of ACC and CACC to traffic flow
macroscopic stability with respect to perturbations introduced in
a ring road and to flow characteristics in open freeways with
merging flows at an on-ramp. Following from the results, it
can be deduced that CACC vehicles increase the stabilization
of traffic flow, compared to ACC ones. Further, the proposed
CACC approach can further improve the dynamic equilibrium
capacity and traffic dynamics, especially at on-ramp bottlenecks.

I. INTRODUCTION

Vehicle Automation and Communication Systems (VACS),
such as Adaptive Cruise Control (ACC) and Cooperative Adap-
tive Cruise Control (CACC) systems, are likely to revolutionize
the way traffic flow will be controlled and optimized in the
near future. Although such technologies have been developed
to increase driver’s comfort and safety, the continuously in-
creasing use of such systems in the years to come will have a
direct impact on the overall traffic flow. The main aim of an
ACC system is to liberate the driver from the need to adjust its
speed to that of the leader by forcing the vehicle to slow down
when the leading vehicle has a lower speed and, reversely,
allows the vehicle to accelerate to a pre-determined speed when
the leading vehicle accelerates. In principle, the pre-specified
parameters of an ACC system are the time-gap to the leading
vehicle, their speed variance, and the speed of the vehicle.
However, the application of ACC systems, and for certain
parameter settings, may also induce negative effects on traffic
flow dynamics. Hence, and to minimize potential negative
effects, it is crucial to evaluate the impact of such systems
on traffic flow dynamics in advance. Vehicles equipped with
CACC systems have the ability of sharing traffic information
via vehicular networks or wireless technologies that allow
communication between such vehicles. Compared to ACC,
the literature on CACC systems is still very premature and
relevant studies, usually, do not explore the effects of CACC in
traffic flow quantitatively in terms of throughput, capacity, and

congestion reduction but aim on creating design frameworks,
to optimize and standardize the use of such technology.

Although much work has been reported for the microscopic
simulation of ACC/CACC systems at vehicle level, model ap-
plications of macroscopic traffic flow models for the simulation
of VACS are relatively rare. Very recently, and closely related
to the present work, in [6], [5] macroscopic models proposed
to describe the operations of ACC and CACC in the traffic
flow. Using linear and nonlinear stability analysis it was found
that CACC vehicles enhance the stabilization of traffic flow
with respect to both small and large perturbations, compared
to ACC vehicles, while numerical simulation supported the
analytical findings. The present work aims to contribute to the
macroscopic modeling of traffic flow consisting of ACC or
CACC vehicles, along with appropriate numerical approxima-
tions; it builds on a previous work of the authors in [1] where
a unified methodology was proposed for the numerical simula-
tion of several, widely applied, second-order non-equilibrium
macroscopic models. Here, the GKT second-order traffic flow
model, [8], [2], [9], is utilized as a basis to import and access
the macroscopic simulation of ACC/CACC traffic. ACC and
CACC effects are incorporated as source terms to the second
(”momentum”) equation of the system of partial differential
equations forming the GKT model, which controls the speed
dynamics. One major difference between our approach and
that from [6] is that the ACC/CACC term in [6] contributes
to the so-called convection term in the momentum equation
whereas in our approach the corresponding term contributes
to the relaxation term in the GKT model equations. Moreover,
in our modeling approach the time-gap parameter, which is
an important characteristic of such systems, is explicitly taken
into account. The main contributions of the present work can
be summarized as: (a) to derive a novel macroscopic approach
to model ACC and CACC equipped vehicles with the GKT
model and (b) to qualitatively assess its performance through
numerical simulations for various traffic flow scenarios for
manually driven and ACC/CACC equipped vehicles.

II. THE GKT MODEL AND ADAPTIVE CRUISE CONTROL

The macroscopic model extended here is the gas-kinetic-
based traffic flow model (GKT model), from [8], [2], [9].
This model has been shown to describe realistic characteristic
properties of traffic flows. By denoting ρ(x, t) the traffic
density, u(x, t) the average speed and q = ρu the traffic flow



rate as functions in space, x, and time, t, the GKT model in
conservation law form with source terms is given as,

∂tρ+ ∂x(ρu) = rrmp, (1)

∂t (ρu) + ∂x
(
ρu2 + θρ

)
= ρ

(
V ?e (ρ)− u

τ

)
[1− βF (ρ)] +

+hrmp + αVacc. (2)

In (2) we have also introduced the modeling of ACC and
CACC cars via terms αVacc and [1− βF (ρ)], which will be
explained later. Setting α = β = 0 in these terms, the GKT
model equations for manually driven cars are obtained and will
be explained first.

In equation (2), θ = A(ρ)u2 is a pressure-like term, with
A(ρ) being a density-dependent variance factor given by the
Fermi function as:

A(ρ) = A0 + δA

[
1 + tanh

(
ρ− ρcr
δρ

)]
(3)

in which, ρcr is the critical density, that reflects the boundary
between free flow and congested traffic, with A0 and A0 +
2δA the variance pre-factors between the two states; while
δρ denotes the width of the transition region. Typical range
of values for the constants A0, δA and δρ, along with typical
range of the other parameters for this model can be found,
for example, in [8], [2], [5], [6], [9], [1]. The model includes
a traffic relaxation term aiming to keep flow in equilibrium,
with V ?e ≡ V ?e (ρ, u, ρa, ua) being the, non-local and dynamic,
equilibrium speed and τ being a relaxation time. V ?e depends
also on the non-local density ρa and mean speed ua, and is
defined as

V ?e = umax

[
1− θ + θa

2A(ρmax)

(
ρaT

1− ρa/ρmax

)2

B(δu)

]
. (4)

According to (4), V ?e is given by the maximum velocity
umax, reduced by a term that reflects necessary deceleration
maneuvers. Both ρa and ua are computed at an anticipated
location xa = x+γ(1/ρmax +T ·u) with T being the desired
time-gap and γ a scale factor. Further, B(δu) is a so-called

Boltzmann interaction factor, which, with δu =
u− ua√
θ + θa

, is

defined as

B(δu) = 2

[
δu
e−δu

2/2

√
2π

+ (1 + δu2)

∫ δu

−∞

e−y
2/2

√
2π

dy

]
.

This term describes the dependence of the braking interaction
on the dimensionless velocity difference δu between the actual
location x and the anticipation location xa.

Finally, and following [9], the source term rrmp in the
continuity equation (1) denotes the effective source density
from on-ramps (or off-ramps) with merging (diverging) length
lrmp and inflow qrmp > 0 from (or outflow qrmp < 0 to)
the ramp, and is given as rrmp(x, t) = qrmp(t)/lrmp for x
within merging (diverging) zones and zero elsewhere. Further,
in equation (2), hrmp describes changes of the macroscopic
local speed by assuming that on-ramp vehicles merge to the
main road at speed urmp < u and, conversely, that drivers
reduce their speed to urmp before leaving the main road.
Hence, this term is given as

hrmp(x, t) =
q · rrmp

ρ
+

(urmp − u)|qrmp|
lrmp

. (5)

The main difference between the GKT model and other
macroscopic traffic flow models is its non-local character.
The non-local relaxation term from (4) is forwardly directed
and, therefore, more realistic. In contrast to other macroscopic
models, the steady-state speed-density relation, V e(ρ), is not
explicitly given, but results from the steady-state on homoge-
neous roads.

Next a novel approach to modeling ACC and CACC effects
in the model equations is presented. This is done through the
terms αVacc and [1− βF (ρ)] in equation (2), with α = 1
and β = 1. One major difference between this new approach
compared to others, e.g. from [6], is that in our approach
the corresponding term contributes to the non-local relaxation
term in the model equations. Moreover, in our approach the
time-gap parameter, which is an important characteristic of
such systems, is explicitly taken into account. The ability
to explicitly define the time-gap in our approach enables
the model to simulate ACC/CACC flows with different time-
gap settings, which lead to different dynamic behavior and
equilibrium capacities.

We derive our approach on the basis of the control ob-
jectives that an ACC system should follow, in accordance to
[7]:

I. To travel with the maximum speed, set by the driver,
in cases where no leading vehicles exist in the range
covered by the sensors, or leading vehicles exist within
range but their velocities are higher than the maximum
speed set by the user (speed control mode).

II. To maintain vehicle speed equal to the speed of
the leading vehicle at a specified distance, when the
leading vehicle is in range and its speed is lower than
the maximum speed set by the driver (gap control
mode).

III. Transitions between the two aforementioned objec-
tives should be as smooth as possible, in order not
to cause discomfort to the passengers, due to abrupt
accelerations or decelerations.

Before we proceed, and to avoid confusion, we need to clarify
the terms headway and time-gap. Time/space-headway is the
time/space distance between the front bumper of the preceding
vehicle and the front bumper of the following vehicle, while
time/space-gap is the time/space distance between the rear
bumper of the preceding vehicle and the front bumper of the
following one. In a Constant Time Headway (CTH) policy
the inter-vehicle spacing is a linear function of the vehicle’s
speed, which feels more natural to the passengers of the ACC
equipped vehicle.

To satisfy the above objectives, the proposed model is
based on the following assumptions:

(1) For densities clearly below a threshold ρacc (being lower
than or equal to ρcr) the additional terms in the model have
no effect, as it is supposed that (on average) the drivers set
their maximum speeds (or react) as in a manual manner, i.e.
as the GKT model describes (emulating in that way the speed
control mode). In the region around ρacc, a smooth but fast
transition between the previous case and the ACC/CACC-
controlled situation takes place, described using again the



Fermi function F (ρ) = 0.5 [1 + tanh (ρ− ρacc/∆ρ)] and to
achieve this fast transition, the transition width ∆ρ takes values
of ∆ρ ≈ 0.025ρmax, leading to a steep transition between the
two states.

(2) During the gap control mode, a constant time gap T ? is
desired, which is imposed through its corresponding effect on
a desired density ρ? as

ρ? =
1

1/ρmax + T ?u?
, (6)

where the denominator is the desired space headway, with
1/ρmax reflecting the vehicle length and u? = u(x?) is the
speed of the preceding vehicle, computed at position

x? = x+ γ?(1/ρmax + T ? · u), γ? ∈ [1, 2].

The desired speed relaxes to the speed of the preceding vehicle
u? after a relaxation time τ?. As a result, the corresponding
source term can be modeled for ACC vehicles as:

Vacc(ρ, u, ρ?, u?) = F (ρ)

(
ρ?u? − ρu

τ?

)
(7)

In [4] it was demonstrated that the minimum time-gap that can
be achieved by ACC vehicles is 0.8s. In general, indicative
values used for ACC traffic are T ? ∈ [0.8, 2.2]s, following
[ISO 15622,2010] standards, and τ? ≈ 1s.

For CACC vehicles a similar approach is used, but the
corresponding source term takes into account the speeds of
more than one preceding vehicles, with a different time relax-
ation for each one of them. The ability for the system to look
downstream increases the smoothing effect of the correspond-
ing source term. Furthermore, this additional information from
far downstream allows for the use of lower values of time gaps
(without compromising safety), which was also used in the
present study. For example, in [10], it was identified that CACC
vehicles enable closer vehicle following, with time-gap as low
as 0.5 s. As reduced time gaps are only achievable between
vehicles that are equipped with the CACC technology the
market penetration rate for these systems plays an important
role. Thus, we propose for CACC traffic

Vcacc(ρ, u, ρ?, u?) = F (ρ)

M∑
i=1

(
ρ?u?i − ρu

τ?i

)
(8)

where u?i = u(x?i ) with x?i = x+i ·γ?(1/ρmax+T ? ·u), i =
1, . . . ,M, and

ρ? =
1

1/ρmax + T ?u?1
.

The parameter values used in this work for CACC traffic are
M = 3 with [τ?1 , τ

?
2 , τ

?
3 ] = [2, 3, 6].

III. THE RELAXATION APPROACH AND ITS NUMERICAL
DISCRETIZATION

Model equations (1)-(2) can be written in vector form,
supplied with initial conditions, as

∂tu + ∂xf(u) = s(u),

u(x, 0) = u0(x),
(9)

where the functions u, f(u) and s(u) ∈ R2 with u = [ρ, q]T,
f(u) = [ρu, ρu2+θρ]T and s(u) = [rrmp, [1−βF (ρ)](ρV ?e −
ρu)/τ + hrmp + αVacc.]T.

Systems in the form of (9) can be rewritten in quasi-linear
form

∂tu + J(u)∂xu = s(u), (10)

where J(u) =
∂f

∂u
is the Jacobian matrix of the system. This

Jacobian matrix has two distinct, real and positive eigenvalues,
for all physically reasonable parameter sets, given as

λ1,2 = u+
1

2

∂P

∂q
±

√(
1

2

∂P

∂q

)2

+
q

r

∂P

∂q
+
∂P

∂ρ
, (11)

which denote that the model equations constitute a strictly
hyperbolic set of partial differential equations.

Here we briefly present the class of relaxation models
of [3] applied to various second-order macroscopic traffic
flow models in [1]. Introducing the artificial variables w, the,
corresponding to (9), relaxation system reads as

∂tu + ∂xw = s(u),

∂tw + C2∂xu =
f(u)−w

ε
,

(12)

and the extra initial condition w(x, 0) = w0(x) = f(u0(x)),
where the small parameter ε (0 < ε� 1), is the relaxation rate
and C2 = diag{c21, c22} is a positive diagonal matrix. Applying
the Chapman-Enskog expansion in system (12), the following
approximation for u can be obtained,

∂tu + ∂xf(u) = s(u) + ε∂x

[(
∂f(u)

∂u

)
s(u)

]
+

+ε∂x

[(
C2 −

(
∂f(u)

∂u

)2
)
∂xu

]
+O(ε2). (13)

Equation (13) controls the first-order behavior of system (12),
with the third term on the right-hand side being an O(ε) dom-

inant dissipation term in the model with
(
C2 −

(
∂f(u)
∂u

)2)
being the diffusion-like coefficient matrix. Model (12) is well-
posed only if this matrix is positive semi-definite for all u.
This requirement on the diffusion coefficient matrix is the well-
known sub-characteristic condition [3], i.e.

C2 −
(
∂f(u)

∂u

)2

≥ 0, ∀u. (14)

Condition (14) can always be satisfied by choosing sufficiently
large values for the elements in C2, for u varying in a
bounded domain. As such, the solution of the relaxation model
(12) converges strongly to the unique entropy solution of the
original conservation laws. In practice this can be equivalent
to the choice

λ2 ≤ c2, where λ = max
1≤i≤2

|λi| and c = min
1≤i≤2

|ci|. (15)

Now, system (12) can be easily diagonalized leading to the
following decoupled system of equations:

∂t(w + Cu) + C∂x(w + Cu) =
f(u)−w

ε
+ Cs(u);(16)

∂t(w −Cu)−C∂x(w −Cu) =
f(u)−w

ε
−Cs(u).(17)



The left-hand side of system (16)-(17) is linear with constant
wave speeds. Its solution has the property that it propagates at
finite speeds along linear characteristic curves dx/dt = ±C.
From (16)-(17) and by setting g1,2 = w ± Cu, the follow
relations to the original variables of the relaxation system hold,

u =
1

2
C−1 (g1 − g2) and w =

1

2
(g1 + g2) . (18)

The structure of the linear characteristic field of the relaxation
system constitutes a clear advantage compared to the original
conservation laws for their numerical integration.

For the spatial discerization of (12) the finite volume
approach is adopted. Let xi = i∆x, xi± 1

2
= (i ± 1

2 )∆x,
where ∆x is a uniform spatial discretization step. The discrete
cell average of u in the cell Ii = [xi− 1

2
, xi+ 1

2
] at time t is

defined as ui(t) and the approximate value of u at (xi+ 1
2
, t)

by ui+ 1
2
(t). The semi-discrete relaxation system is given as

∂

∂t
ui +

1

∆x

(
wi+ 1

2
−wi− 1

2

)
= r(u)i,

∂

∂t
wi +

C2

∆x

(
ui+ 1

2
− ui− 1

2

)
= −1

ε
(wi − f(u)i).

(19)

where r(u)i and f(u)i are discrete averages of the source term
and flux function, respectively. To completely define the spatial
discretization, we need to compute the flux values ui± 1

2
and

wi± 1
2

. As system (12) has linear characteristics and its char-
acteristic speeds, +ck and −ck, are constant, the construction
of an upwind scheme is much simpler than developing such
a scheme for the original nonlinear conservation laws. For
example, the first-order upwind scheme, [3], [1], applied to
g1 and g2 gives g1

i+1
2

= g1i and g2
i+1

2

= g2i+1
.

For increasing the spatial order of accuracy, a WENO-type
interpolant approach is applied, where the approximate solu-
tion is reconstructed using higher-order polynomials. By direct
application of this reconstruction to the k−th components of
the characteristic variables, g1,2 = w±Cu, a non-oscillatory
higher-order spatial discretization is obtained. The superiority
of applying higher-order schemes, compared to low-order ones,
in traffic flow simulations has been recently demonstrated
in [1]. By applying a fifth-order WENO reconstruction the
discrete values of each component of g1

i+1
2

and g2
i+1

2

, at a cell

boundary i+ 1
2 , are defined as left and right extrapolated values

g−1
i+1

2

and g+
2
i+1

2

i.e., g1
i+1

2

= g−1
i+1

2

and g2
i+1

2

= g+
2
i+1

2

. Af-
ter the reconstructions have been performed to each component
of the characteristic variables, the numerical fluxes for ui+ 1

2

and wi+ 1
2

are computed from (18). In a similar manner we
compute the face values at cell boundary i− 1

2 .

The semi-discrete relaxation system (19) constitutes a sys-
tem of autonomous ordinary differential equations with a stiff
relaxation term. A time marching approach based on implicit-
explicit (IMEX) Runge-Kutta (RK) splitting was considered
as to avoid the time step restrictions imposed by an explicit
solver due to stiffness. As such, the explicit RK scheme treats
the non-stiff stage of the splitting while a diagonally implicit
RK scheme treats the stiff one. We note that even though an
implicit scheme is used, either linear or nonlinear algebraic
equations have to be solved due to the special structure of the

relaxation system. The choice of the time marching step ∆tn

is based only on a usual CFL condition,

CFL = max

(
(max
i,k

cnk )
∆tn

∆x
,

∆tn

∆x

)
≤ 1

2
,

where the values of the relaxation constants cnk are re-computed
at each time step based on the Jacobian eigenvalues as to
satisfy the sub-characteristic condition (14). For a detailed
presentation of the spatial and temporal discretizations, as
well as the treatment of boundary conditions and source term
computations, we refer to [1].

IV. NUMERICAL SIMULATIONS AND DISCUSSION

We investigate numerically the performance of the models
presented, which aim to describe the traffic flow dynamics for
the different vehicle types such as, manually driven, ACC and
CACC vehicles. We consider two test cases. The first one is for
traffic flows on a circular homogeneous freeway where we aim
to examine the formation of traffic instabilities with respect to
perturbations introduced in the flow field. The second category
of test cases is the simulation of a freeway with an on-ramp i.e.
a potential bottleneck. For all numerical tests presented next,
the relaxation rate ε = 10−8 and the CFL value to 0.4.

A. Homogeneous Traffic with a Localized Perturbation

For this test case we assume that the traffic flow is in a
ring of circumference of L = 10km. Following [8], [2], [6],
[1], we consider a dipole-like initial variation of the average
density ρ̄ given as

ρ(x, 0) = ρ̄+ ∆ρ

[
cosh−2 (D)− x+

x−
cosh−2 (E)

]
(20)

where D = (x− x0)/x+ and E = (x− x0 −∆x0)/x− with
x+ = 201.5 and x− = 805m and ∆x0 = x+ + x−. The
initial flow q(x, 0) = qe(ρ(x, 0)) = ρV e(ρ) is assumed in
local equilibrium. The induced perturbation eventually leads to
instabilities for given values of ρ̄. This can be understood also
intuitively, at larger densities a higher percentage of drivers
that approach a density peak must brake, thus increasing the
density peak. The ring was discretized with npts = 400 grid
points. The model parameters used in the simulations were
umax = 110 km/h, ρmax = 160 veh/km, ρcr = 0.27ρmax,
τ = 35s, A0 = 0.008, δA = 0.02, δρ = 0.1ρmax, T = 1.8s
and γ = 1.2. Simulations are reported up to final time of
1200s. The scenario presented here is for ρ̄ = 35 and ∆ρ = 6
veh/km. A cascade of traffic jams emerges, i.e. stop-and-go
traffic, as can be seen in Fig. 1 for manually driven cars.

In Fig. 2 the spatio-temporal evolution using the proposed
ACC and CACC approaches are shown. The coefficient used
are τ? = 1 for ACC and [τ?1 , τ

?
2 , τ

?
3 ] = [2, 3, 6] for CACC

traffic. The value for ρacc = 0.9ρcr and T ? = 1 for CACC
traffic while for ACC T ? = 1.2. We note here that these values
for T ? correspond to a more conservative driving behavior,
compared to lower values that correspond to more aggressive
driving behavior. The ACC traffic is still in the unstable
regime, but remains uncongested; while for CACC traffic the
initial perturbation rapidly fades out with time, leading to a
homogeneous traffic. A similar test and corresponding results
can also be found in [6], although for a different modeling and



Fig. 1. Density evolution for manual cars for ρ̄ = 35 and ∆ρ = 6

numerical approach. Referring to Fig. 3, it is important to note
the increased traffic flow rate along the total length of the ring
road for ACC and CACC traffic, which is more pronounced
for CACC traffic, as a result of the imposed desired time gap.

Fig. 2. Density evolution for ρ̄ = 35 and ∆ρ = 6 for ACC (top) and CACC
flows using (7) and (8)

B. Traffic states close to an on-ramp

Different traffic states (i.e. congestion patterns) can be
developed close to bottlenecks caused by on-ramps, lane
closures, etc. in a freeway, see for example [2], [9]. We
simulate a freeway of length L = 30km with open boundaries

0 2000 4000 6000 8000 10000
0
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1000

1500

2000

2500

3000

x(m)

q
(
V
e
h
/
h
)

Fig. 3. Flow profiles at t = 1200 s for ρ̄ = 35 and ∆ρ = 6: for ACC (solid
black line), CACC (dashed red line) and manual cars

for a total of 150 minutes. Imposing an initial homogeneous
equilibrium traffic flow qf = 1824.5 veh/h (which results
to ρ(x, 0) = 30 veh/km) simulations are performed for an
on-ramp inflow qrmp = 200 veh/h of length lrmp = 400m
located at xrmp = 8000m with a merging zone for x ∈
[xrmp − lrmp/2, xrmp + lrmp/2]. The model parameters used
in the simulations are, umax = 110 km/h, ρmax = 140
veh/km, ρcr = 0.27ρmax, τ = 40s, A0 = 0.008, δA = 0.02,
δρ = 0.1ρmax, T = 1.7s and γ = 1.2.

The traffic density evolution for manual traffic is presented
in Fig. 4. One can observe an Oscillating Congested Traffic
(OCT), [2], flow upstream of the ramp and stop-and-go waves
downstream. These stop-and-go waves initially travel down-
stream but at later times start traveling upstream converging
to the oscillatory congested region upstream of the ramp.
Whenever an upstream traveling jam passes the bottleneck,
it triggers a new perturbation

Fig. 4. Density evolution close to an on-ramp for manual cars for qrmp =
200 veh/h

In Fig. 5 the spatio-temporal evolution for ACC and CACC
traffic is presented and in Fig. 6 the flow rate profiles at
t = 150 min are compared between each other and those
resulted from manual traffic. The ACC traffic becomes non-
oscillatory both upstream and downstream of the ramp but
a Synchronized Homogeneous Congested Traffic (HCT), [2],
region slowly develops upstream, with the downstream flow
rate greatly increased. For the CACC traffic the upstream



congestion has completely disappeared and a more pronounced
increase in the flow rate is established.

Fig. 5. Density evolution with qrmp = 200 veh/h for ACC (top) and CACC
traffic
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Fig. 6. Flow rate profiles at t = 150 min for qrmp = 200 veh/h: for ACC
(solid black line), CACC (dashed red line) and manual cars

V. CONCLUSIONS

A macroscopic approach to model the dynamics of ACC
and CACC traffic flows was presented. To model the impact of
ACC and CACC vehicles on traffic flow dynamics the second-
order GKT model was used as the basis model since it allows
to describe the fluctuations of speed dynamics around a so-
called equilibrium speed-density relationship. An important

part of the simulation process is the numerical solution of
the resulting models by the application of a high-resolution
finite volume relaxation scheme. The approach presented here
is based on the introduction of a relaxation term in the mo-
mentum equation that satisfies the time/space-gap principle of
ACC systems. The relaxation time is distributed over multiple
vehicles in the CACC systems whereas in the ACC ones the re-
laxation time is only related to the direct leading vehicle. Thus,
the effects of ACC vehicles have been extended to account for
the information exchange between multiple vehicles. We have
shown numerically that CACC vehicles enhance the stabiliza-
tion of traffic flow with respect to introduced perturbations
compared to ACC vehicles. The observed enhanced dynamic
equilibrium capacity for our CACC system resulted to the
suppression of traffic congestion at an on-ramp bottleneck. We
postulate that, this approach of jam-avoiding driving by CACC
vehicles, which dynamically increases the local capacity near
the on-ramp, can be transferred to other kinds of bottlenecks
as well thus enhancing traffic operations. Our ongoing work
is the numerical investigation of the characteristics of mixed
traffic flow consisting of CACC and manual vehicles to access
the contribution of the penetration rate of CACC vehicles to
the stabilization of the traffic dynamics. In addition, further
validation of the proposed ACC/CACC approach compared to
microscopic simulations is under development.
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