

TECHNICAL UNIVERSITY OF CRETE

SCHOOL OF PRODUCTION ENGINEERING & MANAGEMENT

On the simulation of Steady and Unsteady Incompressible Flows

using the Finite Volume approach and Artificial Compressibility

concept on hybrid unstructured grids

By

Sotirios S. Sarakinos

A dissertation submitted in partial fulfilment of the

requirements for the degree of

Doctor of Philosophy (PhD)

Supervisor: Dr. Ioannis K. Nikolos, Associate Professor

Chania, Greece, April 2016

i

To my family and Kleoniki

ii

Abstract

In this study the development and evaluation of a Computational Fluid Dynamics (CFD) code for

the simulation of incompressible flows is reported. The code, named Galatea-I after the sea-

nymph of ancient Greek mythology, utilizes the Navier-Stokes equations, augmented with the

artificial compressibility method – which is considered superior to pressure-based methods such

as SIMPLE, especially in case of steady state flows – for the simulation of inviscid, laminar and

turbulent viscous incompressible flows, of steady or unsteady nature. For the simulation of

turbulence the Reynolds Averaged form of the Navier-Stokes (RANS) is used, where the stress

tensor in the viscous fluxes vector is analyzed with the Boussinesq assumption in a laminar and a

turbulent part. For the evaluation of the turbulent kinematic energy and the turbulent kinematic

viscosity the SST turbulence model has been incorporated in the Galatea-I solver. The flow

model, as well as the turbulence model equations are discretized in space over three dimensional

hybrid unstructured grids with a node-centered, Finite Volume (FV) scheme. For the evaluation

of inviscid fluxes Roe’s approximate Riemann solver is used, while for the calculation of the

velocity gradients, which are required for the evaluation of the viscous fluxes, either an element

based approach, or a nodal averaging method is used. Free-slip or no-slip conditions are imposed

on solid boundaries, while at the inlet or outlet boundaries a characteristics based boundary

conditions scheme has been incorporated. Time integration in pseudo-time is performed with an

explicit four-stage Runge-Kutta (RK(4)) scheme, while for the time-accurate evaluation of

unsteady flows a dual time-stepping scheme is adopted. Two acceleration techniques have been

applied in the Galatea-I solver. Firstly, via parallel processing with the domain decomposition

approach, where the initial computational grid is divided into smaller sub-domains, each

attributed to a single computer core and treated as an autonomous grid with inner boundaries,

where information from adjacent grids is passed via the Message Passing Interface (MPI).

Secondly, with an agglomeration multigrid method, where a number of consecutively coarser

meshes are generated by fusing adjacent control volumes of the finer meshes and evaluation of

the governing equations is performed successively on all generated and initial meshes, thus

enhancing the convergence rate of the iterative procedures. The performance of the Galatea-I

solver was assessed with a number of steady and unsteady test cases, demonstrating the

capabilities of the proposed methodologies in accuracy and efficiency. While many of the utilized

test cases can be characterized as standard for the evaluation of incompressible flow solvers, the

proposed code was used against more complex ones, such as the DARPA SUBOFF model and

the DLR-F11 aircraft model in high lift configuration. As far as the latter test case is concerned,

although it constitutes a test case where traditionally compressible flow solvers with

preconditioning matrices are evaluated, the Galatea-I solver has generated excellent results.

Keywords: Incompressible flows, RANS equations, Artificial Compressibility, SST, three-

dimensional unstructured grids, parallel processing, domain decomposition, MPI, agglomeration

multigrid, DARPA SUBOFF, DLR-F11 aircraft model.

iii

Πρόλογος

Σε αυτή τη διατριβή παρουσιάζεται η ανάπτυξη και αξιολόγηση ενός κώδικα Υπολογιστικής

Ρευστοδυναμικής (CFD) για την προσομοίωση ροών ασυμπίεστου ρευστού. Ο κώδικας, που

ονομάστηκε Galatea-I από τη νύμφη της αρχαίας ελληνικής μυθολογίας, χρησιμοποιεί τις

εξισώσεις Navier-Stokes για ασυμπίεστα ρευστά, τροποποιημένες με τη μεθοδολογία της

Τεχνητής Συμπιεστότητας (artificial compressibility) – που θεωρείται ανώτερη από τις

μεθοδολογίες που χρησιμοποιούν διόρθωση της πίεσης για την συντήρηση της συνθήκης μη

συμπίεσης του ρευστού, όπως η SIMPLE, ειδικά στην περίπτωση μόνιμων ροών – για την

προσομοίωση ατριβών, στρωτών συνεκτικών και τυρβωδών ροών ασυμπίεστου ρευστού,

μόνιμης αλλά και μη μόνιμης κατάστασης. Για την προσομοίωση της τύρβης γίνεται χρήση των

Σταθμισμένων κατά Reynolds εξισώσεων Navier-Stokes (RANS), ενώ ο τανιστής των τάσεων

που βρίσκεται στο συνεκτικό διάνυσμα ροής αναλύεται με βάση την υπόθεση Boussinesq σε δύο

μέρη – ένα στρωτό και ένα τυρβώδες. Για τον υπολογισμό της τυρβώδους κινητικής ενέργειας

και της τυρβώδους κινηματικής συνεκτικότητας γίνεται χρήση του μοντέλου τύρβης SST. Για τη

χωρική διακριτοποίηση του μοντέλου ροής αλλά και του μοντέλου τύρβης εφαρμόστηκε ένα

κεντροκομβικό σχήμα πεπερασμένων διαφορών σε τρισδιάστατα υβριδικά μη δομημένα

πλέγματα. Ο υπολογισμός των ατριβών διανυσμάτων ροής γίνεται με τον προσεγγιστικό επιλύτη

του Roe για προβλήματα Riemann, ενώ οι μερικές παράγωγοι της ταχύτητας που είναι

απαραίτητες για την εκτίμηση των συνεκτικών διανυσμάτων ροής, υπολογίζονται είτε με τη

χρήση μιας στοιχειοκεντρικής μεθόδου, είτε με μεθοδολογία ακμών. Οι οριακές συνθήκες που

εφαρμόζονται στα στερεά όρια είναι είτε ολίσθησης για ατριβείς ροές, είτε μη ολίσθησης για

συνεκτικές, ενώ στα όρια εισόδου και εξόδου του υπολογιστικού χωρίου εφαρμόζονται οριακές

συνθήκες που βασίζονται στη μέθοδο των χαρακτηριστικών μεταβλητών. Η ολοκλήρωση των

εξισώσεων στον ψευδό-χρόνο γίνεται με μια ρητή μέθοδο Runge-Kutta τεσσάρων βημάτων

(RK(4)), ενώ για την προσομοίωση μη μόνιμων ροών έχει ενσωματωθεί στον κώδικα μια

διαδικασία δυϊκού χρονικού βήματος. Δύο μέθοδοι επιτάχυνσης έχουν ενσωματωθεί στον

επιλύτη Galatea-I. Αρχικά, μια μέθοδος παράλληλης επεξεργασίας που βασίζεται στη μέθοδο

διαμέρισης πεδίου (domain decomposition), όπου το αρχικό υπολογιστικό πλέγμα χωρίζεται σε

μικρότερα υποπεδία, καθένα εκ των οποίων ανατίθεται σε ένα πυρήνα του επεξεργαστή και

διαχειρίζεται ως αυτόνομο πλέγμα με εσωτερικά όρια όπου κατάλληλη πληροφορία

αποστέλλεται από τα γειτονικά υποπεδία με το πρωτόκολλο MPI. Η δεύτερη μέθοδος

επιτάχυνσης βασίζεται στη μεθοδολογία πολυπλέγματος με συσσωμάτωση, κατά την οποία ένας

αριθμός από διαδοχικά αραιότερα πλέγματα κατασκευάζονται συγχωνεύοντας γειτονικούς

όγκους ελέγχου των πυκνότερων πλεγμάτων και η επίλυση των εξισώσεων ροής και τύρβης

γίνεται διαδοχικά σε όλα τα διαθέσιμα πλέγματα διαφορετικής πύκνωσης, βελτιώνοντας κατ’

αυτό τον τρόπο το ρυθμό σύγκλισης των επαναληπτικών διαδικασιών. Οι επιδόσεις του επιλύτη

Galatea-I αξιολογήθηκαν με τη εφαρμογή του σε ένα αριθμό υποθέσεων δοκιμής μόνιμης και μη

μόνιμης ροής, παρουσιάζοντας έτσι τις δυνατότητες της προτεινόμενης μεθοδολογίας σε

ακρίβεια και αποδοτικότητα. Αν και πολλές από τις υποθέσεις δοκιμής που χρησιμοποιήθηκαν

χαρακτηρίζονται ως πρότυπες για την αξιολόγηση επιλυτών ασυμπίεστης ροής, ο προτεινόμενος

κώδικας χρησιμοποιήθηκε για την προσομοίωση πιο περίπλοκων προβλημάτων, όπως το μοντέλο

iv

DARPA SUBOFF, και το μοντέλο αεροσκάφους DLR-F11 σε διάταξη υψηλής άντωσης. Όσον

αφορά την τελευταία περίπτωση, αν και αποτελεί πρόβλημα για την προσομοίωση του οποίου

χρησιμοποιούνται παραδοσιακά επιλύτες συμπιεστής ροής με πίνακες προπαρασκευής για την

αντιμετώπιση των χαμηλών αριθμών Mach, ο επιλύτης Galatea-I παρουσίασε εξαιρετικά

αποτελέσματα.

Λέξεις κλειδιά: Ασυμπίεστο ρευστό, εξισώσεις RANS, Τεχνητή Συμπιεστότητα, SST,

τρισδιάστατα μη δομημένα πλέγματα, παράλληλη επεξεργασία, διαμέριση πεδίου, MPI,

πολυπλέγμα συσσωμάτωσης, DARPA SUBOFF, μοντέλο αεροσκάφους DLR-F11.

v

Acknowledgments

With the completion of this study I would like to express my gratitude to those who have

supported me throughout this process.

First of all I would like to thank my supervisor Associate Professor Ioannis K. Nikolos for giving

me the opportunity to do this PhD and inspired my scientific interest in Computational Fluid

Dynamics. Throughout our long collaboration he has been tirelessly supportive, extremely patient

and positively motivational.

Secondly, I would like to thank Associate Professor Anargyros Delis and Assistant Professor

Dimitrios Rovas for their help as co-advisors, as well as all the members of the approving

committee for honoring me by participating at the defense of my dissertation.

Additionally, I would like to thank Dr. Georgios Lygidakis as a co-worker and as a friend for the

stimulating discussions, for the long hours of working with me and especially for providing me

the methodology for the agglomeration multigrid method and the SST turbulence model.

Finally, I would like to thank my family for their endless support throughout this thesis and my

life in general, for believing in me and for being there for me whenever I needed it. Last but not

least I would like to thank Kleoniki Nastouli for being with me for all those years, for pushing me

to accomplish my dreams and for helping me conquer my fears.

vi

Contents

Abstract ... ii

Πρόλογος .. iii

Acknowledgments ... v

CHAPTER 1 - INTRODUCTION ... 1-1

1.1 Setup of a CFD simulation ... 1-1

1.2 Incompressible flow solving techniques... 1-3

1.3 Parallel computing .. 1-5

1.4 Domain Decomposition .. 1-8

1.5 Present study ... 1-9

CHAPTER 2 - MATHEMATICAL MODELING ... 2-1

2.1 Governing Equations .. 2-1

2.1.1Flow Model .. 2-1

2.1.2 Turbulence Modeling .. 2-2

2.2 Time-Accurate Formulation ... 2-5

CHAPTER 3 - NUMERICAL MODELING ... 3-1

3.1 Spatial discretization .. 3-1

3.2 Calculation of fluxes... 3-5

3.2.1 Inviscid fluxes ... 3-5

3.2.2 Viscous fluxes ... 3-8

3.2.3 Turbulent fluxes... 3-9

3.2.4 Boundary conditions .. 3-10

3.2.4.a Inlet and Outlet boundaries ... 3-10

3.2.4.b Solid wall and symmetry boundaries .. 3-16

3.3 Temporal discretization .. 3-16

3.3.1 Steady State solution ... 3-17

3.3.2 Unsteady State solution – dual time stepping. ... 3-17

CHAPTER 4 - ACCELERATION TECHNIQUES ... 4-1

4.1 Parallel Processing ... 4-1

4.1.1 Domain Decomposition - Partitioning ... 4-1

4.1.2 Communication data structures ... 4-3

vii

4.1.3 Communication Procedure – MPI ... 4-4

4.2 Agglomeration multigrid method ... 4-12

4.2.1 Agglomeration methodology ... 4-13

4.2.2. Flux computation and numerical solution .. 4-16

CHAPTER 5 - NUMERICAL RESULTS ... 5-1

5.1 Steady-state numerical solutions .. 5-1

5.1.1 Inviscid flow over a rectangular wing with a NACA0012 airfoil 5-1

5.1.2 Three-dimensional lid-driven cavity flow ... 5-4

5.1.3 Steady viscous flow around a circular cylinder ... 5-8

5.1.4 Steady viscous laminar flow around a sphere.. 5-11

5.1.5 Turbulent flow over a rectangular wing with a NACA0012 airfoil. 5-15

5.1.6 Steady turbulent flow around an axisymmetric submarine hull at 0
o
, 18

o
 and 30

o
 angle

of attack .. 5-18

5.1.7 Turbulent flow around a submarine hull with bridge fairwater configuration. 5-28

5.2 Unsteady numerical solutions ... 5-37

5.2.1 Unsteady laminar flow around a circular cylinder .. 5-37

5.2.2 Unsteady turbulent flow around a circular cylinder. ... 5-42

5.2.3 Unsteady turbulent flow around a tall building. .. 5-46

5.2.4 Turbulent flow around the DLR-F11 model at 7
o
 angle of attack. 5-54

5.2.5 Turbulent flow around the DLR-F11 model at 12
o
 angle of attack. 5-66

5.3 Evaluation of the multigrid scheme .. 5-75

5.3.1 Inviscid flow over a rectangular wing with a NACA0012 airfoil 5-75

5.3.2 Three dimensional cavity flow (Re=400) .. 5-77

5.3.3 Steady turbulent flow around an axisymmetric submarine hull at 0
o
 angle of attack

(Re=12.0E+6). ... 5-79

CHAPTER 6 - CONCLUSIONS .. 6-1

6.1 Summary .. 6-1

6.2 Contributions .. 6-3

6.3 Ongoing – future work ... 6-4

6.4 Publications .. 6-5

REFERENCES ... 7-1

1-1

CHAPTER 1

INTRODUCTION

In this chapter the literature review behind Computational Fluid Dynamics (CFD) topics,

especially on incompressible fluid flows is presented, along with the main features presented in

this work.

1.1 Setup of a CFD simulation
Computational Fluid Dynamics (CFD) is the field of Fluid Mechanics that deals with the analysis

of systems involving fluid motion, heat transfer and associated phenomena, by means of

simulations on a computer system [Ver07]. The fundamental basis of most CFD problems is the

Navier-Stokes equations that describe the behavior of a single-phase fluid in space and time. The

typical procedure for a CFD application contains the definition of the geometry of the problem,

the spatial discretization of the geometry and the integration of the equations in time, for

obtaining a steady-state solution, or part of a transient simulation.

For the spatial discretization, initially a computational mesh or grid must be defined. The grid is

actually a specifically ordered set of points that define the geometry of the problem. There exist

basically two types of grids, Structured and Unstructured grids [Bla01]. With the first type of

grids each point can be identified by three indexes i, j, k, while the grid cells are quadrilaterals in

2D and hexahedrons in 3D. In unstructured grids the cells have no particular order and the nodes

cannot be identified by their indexes. Grid cells can be triangles in 2D, or tetrahedrons in 3D,

while more complex grids can contain a mix of different types of elements, such as quadrilaterals

in 2D and prisms and pyramids in 3D.

The main advantage of structured grids remains with the fact that the index of all nodes represents

a linear address space, allowing the access to a node’s neighbors simply by adding or subtracting

an integer value to the corresponding index. This property allows faster and easier evaluation of

fluxes and gradients, as no complex data structures should be defined to hold topological data of

the mesh. The disadvantage for this type of meshes is the difficulty of generating them, especially

in case of complex geometries [Bla01]. To remedy this drawback the geometry can be divided

into smaller and simpler parts, called blocks that can be meshed more easily. This type of mesh is

called multiblock [Lee81] [Ros92] [Kue93]. In this case, however, the exchange of flow

parameters between blocks has to be considered, as the complexity of the algorithm can be

increased. While they present a good alternative to the restricting “one-block” structured grids,

the main disadvantage of this type of meshes is the time needed for their generation; an

experienced user may require days, or even weeks for very complex geometries.

1-2

A special case of structured grids are the so-called Chimera grids [Bun85] [Che90], where each

geometrical entity is generated separately and then is combined with the others in a way that they

overlap each other. The challenge for this method is the accurate transfer of quantities between

overlapping meshes where they meet. The main advantage of this technique, over the multiblock

approach is that no specific action has to be taken for the grids on each block to meet at their

interfaces. However, the conservation of the properties of the governing equations can be difficult

to maintain between the different overlapping grids.

The second basic type of grid is the unstructured one [Tho93]. These grids can be generated

automatically with sufficient ease on any type of geometry, however complex. While it is still

necessary to provide some appropriate parameters for a good grid quality, the required time for its

generation is by no means comparable to that needed for a structured one. The main disadvantage

of such grids is the lack of the structured topology, leading to the necessity of appropriate data

structures inside the flow solver that will aid to the correct computation of fluxes and gradients.

As a result, the memory requirements for such meshes can be high, compared to the structured

grids. However, despite all the problems that such grids can induce, their usage is increasing and

many researchers today apply their CFD codes on such grid topologies.

While initially the first unstructured grids consisted exclusively of triangles or tetrahedrons, these

types of grids were proved useful only in the case of inviscid type of flows. In case of viscous

flows, where the boundary layer may be (for large values of the Reynolds number) close to the

solid wall boundary, the size of the grid has to be extremely fine at those areas. In order to reduce

the grid size due to that restriction, prisms with small height to base ratio are used at those areas

instead. At the interface of a quadrilateral surface of a prism and a triangular one of a tetrahedron,

pyramidal elements are used. The grids that combine more than one type of elements are called

mix-grids or hybrid meshes. The use of hybrid meshes was first reported by Nakahashi and

Obayashi [Nak87], and Weatherhill [Wea88].

Another decision that has to be made by the researcher is the discretization scheme for the

governing equations. The developed methodologies throughout the years are the finite-difference

method, the finite volume method, and the finite element one. The first method involves the

utilization of the Taylor series expansion for the discretization of the derivatives of the flow

variables [Mcd71]. This method was one of the first used for the numerical solution of differential

equations. In the field of incompressible flows, the first works presented used the finite difference

method for the evaluation of the flow field [Har65] [Cho67a] [Kim85] [Rog89] [Ros91]. The type

of grids used in these works is the so-called staggered grids; Cartesian type (structured) grids

where the scalar parameters such as pressure, density etc. are stored at the center of a cell, while

the velocity and momentum variables are stored at the cell faces.

With the finite volume scheme, the computational grid is discretized into a number of polyhedral

control volumes. The spatial derivatives at the right hand side of the governing equations are

calculated as a sum of all the fluxes that cross through the faces of the control volume. The

accuracy of the method depends on the specific scheme used for the storage of flow variables and

the calculation of fluxes. The decision can be made between the cell-centered scheme, where

variables are calculated at the center of each grid element and fluxes cross through the elements’

1-3

faces, and the node-centered one where the variables are calculated on each node and the fluxes

cross through the interface at the middle of the edge connecting this node and any neighboring

one. The finite volume scheme is very popular among researchers [Zha00] [Tai03] [Kal05]

[Tai05].

The finite element method was originally used for structural analysis. This method uses

unstructured grids, exclusively. Within the method, the governing equations have to be

transformed from a differential form to an equivalent integral one. This is performed either with

the variational principle where a physical solution is sought, for which a functional possesses an

extremum, or with the method of weighted residuals, or weak formulation. With the latter the

errors of the approximation of the solution are required to have a weighted average of zero over

the physical domain. Incompressible flow simulations with the finite element method have been

reported in [Tez92] [Tez92] [Gre98].

1.2 Incompressible flow solving techniques
The formulation of incompressible flows is most commonly achieved with the use of the

incompressible Navier-Stokes equations [Kwak11], however the “incompressibility” assumption

was always difficult to impose, due to the lack of the pressure term in the continuity equation,

strengthening in this way the elliptic nature of the equations. The first approach to address this

problem was proposed by Harlow and Welch [Har65]. Their method involved the solution of the

Poisson equation for pressure to satisfy the continuity equation and called it the marker-and-cell

(MAC) method, as they also used marked elements to track the fluid location in case of a free

surface. The MAC method constituted the basis for all pressure-based methods for the simulation

of incompressible flows, while it can be categorized as a special case of the pressure projection

method.

The pressure projection method, first formulated by Chorin in 1967 [Cho67b] involved the

evaluation of the flow field in two steps. In the first step an auxiliary velocity field is calculated

from the momentum equations with reference to the values of the previous step, while omitting

the pressure term, or calculating it with regard to values from the previous times step [Dwy86]

[Dwy89]. This calculation may involve several intermediate fields of velocity. In the second step,

the pressure is calculated along with the true value of velocity, in an iterative procedure that

converges to a divergence free velocity field. Thus, the correction of pressure assures the

satisfaction of the continuity equation. The main disadvantage of these methods can be the large

amount of time needed for the convergence of the pressure correction procedure, or the solving of

the Poisson equation for pressure [Kwa11].

As Chorin’s procedure calculates the flow in a number of steps, the method is also characterized

as fractional-step method. One of the problems encountered with this method is the boundary

conditions that have to be applied at the intermediate steps [Ors86]. A generalized scheme, where

physical boundary conditions can be applied was developed by Rosenfeld et al. [Ros91] and Kiris

and Kwak [Kir01].

1-4

With the major drawback of the MAC method being the requirement for many iterations to solve

the Poisson equation for pressure, the following idea grew, that for a steady-state solution the

correct pressure is needed only when the procedure has converged; the resulted SIMPLE (Semi-

Implicit Method for Pressure-Linked Equations) method simplifies the equation for pressure

requiring only a few iterations at each time step [Car73] [Pat72]. Initially, a guessed pressure

value is used to evaluate an intermediate velocity value with the momentum equation. The

pressure is corrected using values obtained by a simplified momentum equation, involving a

function depending on the discretization scheme that was chosen. The method has been used with

success for many computations [Doo84] [Van84] [Jan86] [Ach89] [Dav96].

On a different premise, Chorin proposed his “artificial compressibility” method in 1967

[Cho67a], where the incompressible Navier-Stokes equations would be formulated as the

compressible ones, as the temporal derivative of an artificial density variable, directly connected

to pressure with an “artificial compressibility” parameter, could be added to the continuity

equation, inducing a hyperbolic nature to the governing equations. The time parameter of this

extra derivative is actually an artificial pseudo-time parameter. The idea behind this approach is

that when the equations reach a steady-state the temporal derivative would be equal to zero, and

the incompressible equations would be restored. A similar method was proposed by Steger and

Kutler [Ste77], who adopted the approximate factorization method by Beam and Warming

[Bea76]. While Chorin’s method was initially developed for steady-state problems in two

dimensions, it was fully extended to three dimensions by Kwak et al. [Kwa86], using generalized

curvilinear coordinates. For the simulation of time-accurate flow problems, Rogers and Kwak

[Rog89] [Rog90] applied a second derivative of pressure in time to the momentum equations. The

new time variable was considered the physical time. For the evaluation of the flow state in a

physical time step, the governing equations have to converge to a divergence-free velocity field in

pseudo-time. Pan et al. [Pan89] and Taylor et al. [Tay91] developed finite-volume methods for

the evaluation of incompressible flows using structured grids in a generalized coordinate

formulation. Tai and Zhao [Zha00] proposed a methodology of artificial compressibility, using

characteristics for the discretization of the inviscid terms in 3D. Kallinderis and Ahn [Kal05]

reported a finite volume method for the artificial compressibility approach where viscous fluxes

were calculated using an edge-dual volume method.

Finally, other methods for the evaluation of incompressible flows involve the use of derived

variables, such as the stream function and the vorticity. The first approach is used to simulate

simple two-dimensional flows, as in order to extend it in three dimensions the velocity vector

potential has to be added to the equation, increasing in this way the complexity of the algorithm

[Qua13]. For the second method, instead of the momentum equation the vorticity transport

equation is used. The vorticity and velocity are calculated by the new equations, while pressure

still has to be evaluated with the Poisson equation. While some approaches have been reported in

2D, extension in the three dimensions is limited to simple geometries [Den79] [Haf89].

1-5

1.3 Parallel computing
With the advances in computer technology, the means for faster and more efficient simulations

were always presented to researchers, as well as industrial users. The idea of a computing

machine was present since the ancient times, with devices such as the abacus, or the more

complex “Antikythera Mechanism”, resembling the need of man for hardware assistance in

complex calculations. However, the first analytical machine, as the term is realized today was

first presented by the English mechanical engineer and polymath Charles Babbage in the early

19
th
 century [Hal70]. While Babbage was considered the “father of the computer”, his

revolutionary machine was in comparison nowhere near the modern computers; it consisted of a

vast network of cogs and wheels, while input was imported in the form of punched cards. The

principle of the first modern computer was first described by computer scientist Alan Turing in

his 1936 paper [Tur36]. Turing proposed the creation of a device that would manipulate symbols

written on a strip of tape according to a set of laws. This hypothetical device, later named a

Turing machine had set the basis for the algorithmic way in which modern computers operate,

characterizing them as Turing-complete.

In the following years, and with the advances in electronic hardware, more complex devices were

produced and mainly used for cryptology calculations in the Second World War. The

mathematical basis of digital computing was developed by the British mathematician George

Boole already in 1854 [Boo54], who introduced his Boolean algebra that is used even today in

modern computers. However, the hardware architecture of modern computers was first described

by John Von Neumann in 1945 [Neu45]. The von Neumann architecture describes the existence

and function of a Central Processing Unit (CPU), which performs basic arithmetic and logical

actions, along with a Memory Unit that is capable of storing data and interacting with the CPU.

User interaction is performed with appropriate input/output procedures. The von Neumann

architecture was applied to the ENIAC (Electronic Numerical Integrator And Computer), the first

electronic programmable computer, built in the United States of America [McC99].

While the first computers with electronic components used vacuum tubes in their design, the rise

to the “second generation” in computer era was given with the invention of the bipolar transistor.

The transistors replaced vacuum tubes in the computer design from 1955 [Fey65], as they were

smaller, required less power and emitted less heat, while their life expectancy was significantly

larger than that of the vacuum tubes. From then on, computer power increased year by year. In

1962 one of the first supercomputers, named the Atlas was built in the United Kingdom by the

Manchester University and the Ferranti Ltd. It was the first machine to use virtual memory and

paging, with pipelined instruction execution and was capable to produce approximately 500

kFLOPS [Lav75]. In the United States a series of computers designed by Seymour Cray used

innovative architecture and parallelism to achieve superior, for that time, performance. His

CDC6600 is considered the first supercomputer, with performance of about 1 MFLOPS [Imp04].

Computer power has since increased dramatically.

In his paper in 1965 Gordon Moore [Moo65] stated the observation that the number of transistors

in a dense integrated circuit would double once every year; in 1975 he revised his forecast by

doubling the expected time to two years. While Moore’s Law is nothing but an observation or

projection of the continuing trends in computing and not a physical law, it has continued to apply

1-6

for over half a century. Today’s computer systems can combine many different types of

processing units and memory units to achieve the best result in computer power. In the last years

“cramming” many cores in a single CPU has become common practice of the computer

companies, while parallelism can be achieved even between Graphic Processing Units (GPUs), to

increase that desired number in terms of floating-point operations per second (FLOPS). With the

first computer systems thriving to produce several MFLOPS, comparison to today’s biggest

systems is impossible; the current biggest known computer system incorporates 3,120,000

processor cores, achieving the awe-inspiring amount of 54,902.4 TFLOPS [Top500].

With the advancements in the hardware arena being ceaseless, the bar is then passed to the

algorithmic research, for the better utilization of all the available computer architectures. During

the past years, an effort has been made to provide automation in parallelism, by introducing

compiler programs that can parallelize an algorithm so it can be executed simultaneously by

several processor cores. While this approach can work in several cases, best performance is

achieved when the programmer himself provides the parallel algorithm [Gro99]. In 1967 Gene

Amdhal published his argument about the limits of parallelism and the maximum speed-up that

can be achieved with the use of multiple processors [Amd67]. His argument is now known as

Amdhal’s Law and is still used to predict the theoretical maximum acceleration that can be

achieved by an algorithm that utilizes several processors in parallel.

In 1966 Michael J. Flynn proposed a classification system for computer architectures based on

the level of parallelism that can be achieved with them [Fly66] [Fly72]. The classification that is

today known as Flynn’s Taxonomy categorizes computer architectures based on the data that each

processor can be provided, and the differentiation on the instruction that can be executed by each

CPU. Therefore, the initial categorization introduced four types of computer architecture:

 SISD (Single Information, Single Data): A sequential computer that can exploit no

parallelism either in instruction or data.

 SIMD (Single Instruction, Multiple Data): A computer system that can exploit multiple

data with a single instruction stream to perform operations that can be naturally

parallelized.

 MISD (Multiple Information, Single Data): Multiple instruction streams operate on a

single data stream.

 MIMD (Multiple Information, Multiple Data): Multiple instruction streams that can

operate on multiple data streams. Today’s distributed systems are recognized as MIMD

architectures.

To expand the above classification to more modern needs, Frederica Darema proposed the term

SPMD (Single Process, Multiple Data), where multiple autonomous processors can execute

simultaneously the same program on different data [Dar88]. SPMD is nowadays the most

common style of parallel programming.

While Flynn defined the level of parallelism at a hardware level, his taxonomy can be extended to

classify parallel programming techniques. Data parallelism exists since the introduction of vector

processors in the 1970s; CPUs that could implement instruction sets containing instructions that

operated on one-dimensional arrays called vectors. However, since the SIMD machines have

1-7

become obsolete, data parallelism has become a programming style; e.g. application

programming interfaces (API) such as the OpenMP provide the programmer with tools to hint the

compiler when to apply parallelism on sequentially coded loops [Gro99].

Programs that share the MIMD architecture can operate either on a single shared, or a distributed

memory space. The shared-memory model allows each processor to have access to all of a single

shared address space. While shared-memory machines are hard to come by, this model can be

achieved in software level when processes have their local memory address space and also share

a portion of that memory.

A different approach to the data distribution and usage is the message-passing model, where a

number of processes, each with their own memory address space, communicate by sending and

receiving messages. The Message-Passing-Interface (MPI), developed in 1992 [MPI93] provided

the means for that kind of parallelism. With the message-passing model a set of data is copied

from the memory address space of a processor to that of another processor. The defining feature

of the MPI is that both processors must execute the message-passing procedure; the first one

sends and the latter receives.

With the advance of technology and the computer architectures, as well as the advancements in

software parallelization and parallel algorithms, more complex problems could be solved in a

logical amount of time. CFD was also benefited by parallel processing. Although it is difficult to

pinpoint the first attempts to parallelize a CFD algorithm, examples of such use exist even in the

late 1980s. In 1989 Roy D. Williams [Wil89] proposed an algorithm for the parallelization of the

Euler equations for compressible fluid. In his work, he used a parallelization strategy similar to

the domain decomposition with overlapping elements; the initial mesh was divided to the number

of used processors and communication at the inner-boundaries (where the grid was cut) was

performed by preserving copies of the inner-boundary nodes on neighboring processors. Data of

the whole grid was either stored on the address space of each processor, or copies of each

physical node shared data.

A more definitive approach was reported by Venkatakrishnan et al. in 1992 [Ven92], who

parallelized a compressible Euler solver on unstructured grids. In their approach the domain

decomposition method is fully defined, with different types of grid division, while a set of data

structures for the communication between processors is proposed. Exchange of data is performed

with a message-passing model. The same work has been reported in length in 1995 [Ven95],

where further information on the decomposition approach was given, as well as the

communication methodology between processors. In 1996 Lanteri [Lan96] compared the domain

decomposition approach using overlapping and non-overlapping techniques. Despite the larger

communication load, the latter proved to be more efficient; communication was performed with

blocking send and receive routines.

In 2003 Tai and Zhao proposed a methodology for the parallelization of an unsteady

incompressible flow solver. In their work they used the domain decomposition with overlapping

elements approach along with a geometric multigrid method to accelerate the simulation

procedure. Communication between processors was performed with the MPI, while the domain

decomposition was performed on each level of the non-nested multigrids, with respect to the

1-8

finest grid. A similar approach was reported in 2005 by Kallinderis and Ahn [Kal05] employing

the 3D incompressible Navier-Stokes with artificial compressibility, following the SPMD

paradigm.

Finally, a relatively recent trend in parallel processing is the usage of the Graphics Processing

Units (GPUs). A GPU is a processor specialized in graphics rendering. The demand for faster,

higher quality graphics in computer games has led to the development of better GPUs with more

than 1000 cores per processor unit. Use of the GPU with non-graphical problems was made

possible by translating them to graphical programming tasks. However, programming with a GPU

is different than conventional programming with a CPU. Specific programming languages have

been developed for this task, such as CUDA and BrookGPU, while a standardized effort was

made with OpenCL (Open Computing Language). Several researchers have tried to solve CFD

problems on GPUs in the past years, such as Göddeke et al. [God09], Thibault and Senocak

[Thi09] and Jespersen [Jes10]. While GPUs seem a better alternative than the conventional CPUs,

special consideration has to be made for the transfer of data to the GPU memory, which is usually

smaller than virtual memory, from the CPU memory and vice-versa. Bad decisions in that area

may produce deterioration of an algorithm’s speedup.

1.4 Domain Decomposition
As it was hinted in paragraph 1.3, the most common parallelization procedure in CFD is the

domain decomposition with, or without overlapping elements. The main concept of the method is

to divide the initial computational mesh into smaller ones, using a decomposition algorithm, and

solve any flow equations on each sub-domain separately, using data that can be imported through

the newly generated inner boundaries from neighboring sub-domains. The first domain

decomposition method, known as alternating Schwarz method, was formulated by H. A. Schwarz

in 1870 [Sch70], although it initially served as a theoretical tool; its use for solving elliptic

boundary value problems was proved more than half a century later [Smi04]. The use of domain

decomposition has been applied to a wide variety of fields, such as spectral methods, adaptive

methods, mixed finite element methods, boundary element methods and others.

While the part of the solution procedure involves the specific PDEs to be evaluated, the initial

part of the domain decomposition method concerns the division of the computational domain into

smaller ones. As the computational domain in most cases takes the form of a structured or

unstructured grid, the initial division of that grid proves to be essential, mainly for reasons

involving code synchronicity and acceleration. A grid is essentially a number of nodes connected

by edges, while computation of the PDEs is performed either on the grid nodes, or the grid

elements. Therefore, code synchronicity would be achieved with a division of the initial mesh

into smaller ones that contain (as much as possible) the same amount of nodes, or elements. The

second criterion, which is the obtained acceleration, involves also the amount of data that would

be transferred between neighboring sub-domains, which means minimization of the connecting

edges, or faces between neighboring partitions. For those reasons several algorithms have been

developed.

1-9

In 1992 Venkatakrishnan et al. [Ven92] proposed three partitioning algorithms that they used in

their parallelization method. All methods were used for the partitioning of triangular grids and are

based on the centroidal-dual grid that is composed by lines joining triangle centroids. The first

method, called coordinate bisection, uses the coordinate information of the centroidal-dual mesh;

coordinates are sorted in a particular direction and then divided into two sets. The second method,

called graph bisection, involves an iterative method of defining level sets, which represents the

neighbor lists starting with a root; when half of the mesh has been defined at one set a partition is

complete. The third method, called spectral bisection, is based on the spectral partitioning

algorithm. Partition division is then repeated as many times needed to produce the required

number of divisions. They reported also that the spectral bisection method provides better

partitions, in terms of inner boundary lengths.

Farhat and Lesoinne [Far93] reported a family of cost-effective algorithms for the automatic

partitioning of arbitrary 2D and 3D meshes. In particular, they examined the effect of different

partitioning methodologies on different solution techniques (explicit or implicit schemes).

Moreover, they assessed the effect of particular multiprocessor architectures (MIMD, SIMD) on

the design of a mesh partitioning algorithm, as well as the impact of the partitioning strategy on

load balancing, operation count, operator conditioning and processor mapping.

Diniz et al. [Din95] proposed three algorithms for the partitioning of unstructured grids in

parallel, capable of generating load balanced partitions, where communication between sub-

domains is minimized and computational load is balanced. The algorithms combine two

commonly used serial partitioners; the Inertial method [Nou87] and a parallel variant of the local

greedy heuristic method by Fiduccia and Mattheyses [Fid82].

Multi-level algorithms prove to provide very good results and have moderate complexity [Bui93]

[Hen95] [Kar95]; the mesh, considered originally as a graph, is coarsened until it contains only a

few hundred nodes. At this point bisection of the coarsened graph is performed and then the

partition is projected to the original graph by iterative refining. The algorithm assumes that since

the finer mesh has more degrees of freedom, the edge-cut produced by the refinement is minimal.

A specific case of a multilevel partitioning algorithm is the METIS algorithm by Karypis

[Kar98]. METIS is a software package for partitioning large irregular graphs, large meshes and

reducing orderings of sparse matrices. The improvement to the multi-level partitioning algorithms

that is introduced with this software is a set of algorithms for the better coarsening procedure, as

well as the refinement steps. The resulting partitions are well load balanced with the minimum

edge-cut between neighboring partitions. Various researchers have used this software for the

acceleration via parallel processing of their methodologies [Kal05] [Tai03].

1.5 Present study
In this work a code named Galatea-I was developed, for the simulation of steady and unsteady

incompressible inviscid, viscous laminar and turbulent flows, with the use of the incompressible

Navier-Stokes equations, augmented by the artificial compressibility method. For the simulation

of turbulence the appropriate Reynolds Averaged Navier-Stokes equations [RANS] are evaluated

1-10

along with the Shear Stress Transport model [Men03]. Spatial discretization is performed with a

node-centered finite-volume scheme, on three-dimensional hybrid grids that are consisted of

tetrahedral, prismatic and pyramidal elements [Bla01]. Calculation of the inviscid fluxes is

performed with Roe’s approximate Riemann solver [Roe81], while for the viscous fluxes two

schemes have been incorporated, to the user’s discretion; a method employing the edge-dual

control volume paradigm [Kal05] and a simpler but significantly faster nodal-averaged one

[Bla01]. Boundary conditions are imposed typically for solid walls and surfaces with free-slip

conditions; however for the inlet and outlet regions a characteristics based scheme was

developed, based on a similar two-dimensional scheme reported by Anderson et al. [And96].

Temporal discretization of the governing equations is performed with an explicit four-stage

Runge-Kutta (RK(4)) scheme [Lal88], while unsteady solutions can be simulated with a dual

time-stepping scheme [Kal05].

Acceleration of the simulation procedure is performed in two ways. Firstly, a domain

decomposition with overlapping elements method has been incorporated to the solver. Division of

the initial hybrid mesh is performed with the METIS [Kar95] software, while an efficient

algorithm has been developed for the formulation of the overlapping elements layer.

Communication between adjacent meshes is performed with the MPI, using mainly collective

operation routines that distribute the required quantities to all eligible recipients. Appropriate data

structures and algorithms have been developed for accurate exchange of data between adjacent

partitions. Secondly, an agglomeration multigrid scheme has been incorporated, in which several

successively coarser grids are generated with the fusion of adjacent control volumes, by following

a set of rules. Fusion can be performed in isotropic, semi- or full-coarsening directional mode,

depending of the type of flow to be simulated (inviscid, viscous laminar, or turbulent) and

consequently on the type of grid (tetrahedral or hybrid) [Mav99] [Car00] [Nish13] [Lyg14a]

[Lyg14b] [Lyg14c]. For the implementation of the parallel procedure on all multigrid levels

special care has to be taken for the ghost nodes at the overlapping region, as they have to be

merged or not, according to the behavior of their corresponding core nodes [Lyg14b] [Lyg14c]. A

FAS [Bla01] or a combined FMG-FAS [Lam04] [Lyg14b] [Lyg14c] procedure can be followed

for the iterative solution with the multigrid method.

The proposed methodology has been evaluated against many different three-dimensional and

quasi-3D inviscid, viscous laminar and turbulent benchmark test cases, while the obtained

numerical results were successfully compared to reference experimental and numerical results.

The agreement between the obtained results with the proposed code and the reference ones

indicates the capability of the aforementioned solver to predict accurately complex

incompressible flow phenomena in an efficient manner, with the help of the proposed parallel

processing methodology and the multigrid scheme.

The structure of this dissertation is as follows: in Chapter 2 the governing equations for

incompressible flow, along with the formulation of the artificial compressibility method is

presented, as well as the RANS equations with the SST turbulence model. In Chapter 3 the

numerical methodology is described, namely the spatial discretization scheme, flux computation,

with specific mention to the inflow and outflow boundary conditions, and the temporal

discretization scheme, with different formulation in case of a time-marching solution. In Chapter

1-11

4 the parallelization strategy is presented with the mention of the algorithms used for the

generation of the overlapping layer, as well as the exchange of data. Finally, in Chapter 5 several

test cases are presented for the evaluation of the proposed methodology.

2-1

CHAPTER 2

MATHEMATICAL MODELING

In this chapter the mathematical modeling for the incompressible flow solver is presented. The

governing equations for the flow model are the Navier-Stokes equations for incompressible fluid,

coupled with the artificial compressibility method [Cho67a] [Rog91] [Kal05]. Turbulence is

calculated via the Menter’s Shear Stress Transport (SST) model [Men03].

2.1 Governing Equations

2.1.1Flow Model

Incompressible flow is depicted by the continuity equation, depicting conservation of mass and

the momentum equations:

(2.1)

As the numerical solution of the above equations presents difficulties, especially due to the

special role of pressure [Cho67a] and the challenge to maintain incompressibility in an iterative

process [Kir01] [Kwa11] and thus satisfy the continuity equation, the artificial compressibility

method has been applied to the original equations. With this method a pseudo-time derivative of

pressure is added to the continuity equation, rendering the equations applicable to an iterative

solution procedure.

The augmented with the artificial compressibility method Navier-Stokes equations are presented

in vector form with dimensionless parameters as:

 (2.2)

2-2

where denotes the source term vector, that is equal to zero in this work [Lyg14a] [Sar14], while

τ represents the pseudo-time over which the variables are integrated so that the equations will

converge in a steady state solution, while , and denote the flow variables, inviscid fluxes

and viscous fluxes vectors, respectively

 (2.3)

 (2.4)

 (2.5)

where p represents pressure, u, v, w are the Cartesian components of velocity and β the artificial

compressibility parameter. The shear stresses τij are formulated as:

(2.6)

Here Re denotes the Reynolds number and ν represents the kinematic viscosity of the fluid, while

the averaged quantities are the Reynolds stress tensors [Bla01], formulating essentially the

Reynolds Averaged form of the Navier-Stokes equations (RANS) [Bla01].

The normalization of the variables used in the above equations is performed using a reference

length L
*
, the free-stream pressure p∞=ρV

2
ref, where ρ is the fluid density, the far-field velocity V∞

and the far-field kinetic viscosity νref, as:

 (2.7)

2.1.2 Turbulence Modeling

In order to finalize the set of equations the Reynolds stress tensors should be defined. In this work

the Reynolds averaging scheme along with the Boussinesq assumption is adopted [Bla01], so the

formulation of the shear stresses is defined as [Lyg14a] [Sar14]

2-3

 (2.8)

where k is the turbulence kinetic energy per unit mass and νt is the turbulent kinematic viscosity,

therefore Equation 2.6 is written as:

 (2.9)

For the evaluation of the turbulent kinetic energy, the SST (Shear Stress Transport) two-equation

turbulence model [Men03] was incorporated in the incompressible flow solver. The SST model is

a combination of k-ε and k-ω turbulence models, with the transition between the two realized

with the appropriate blending functions. The PDE formulation is similar to that of the flow

model, with the exception of the source term being not equal to zero:

 (2.10)

The variables vector of the turbulence model contains the turbulent kinetic energy

k and the specific dissipation rate ω, while the inviscid and viscous terms, as well as the source

term are defined as:

 (2.11)

 (2.12)

 (2.13)

The parameters σk, σω, , γ*
 are calculated with regard to the equivalent constants of the k-ω and

k-ε models, using the blending function F1 in a way that the parameter from the k-ω model is

multiplied by F1 and the one from k-ε with (1-F1) and then added together. Therefore, if φ

represents all coefficients of the SST model, φ1 the constants from k-ω and φ2 the ones from k-ε,

then the first would be calculated as:

 (2.14)

The utilized constants of the k-ω and k-ε models have values σk1=0.85, σk2=1, σω1=0.5, σω2=0.856,

β1=0.075, β2=0.0828, γ1
*
=0.555 and γ2

*
=0.44, while β

*
 has a constant value of 0.09 [Men03]

[NASA]. The blending function F1 is equal to zero far away from the solid wall surface, where

the k-ε model is activated and switches to unity near the boundary, where the k-ω model takes

over. The turbulent energy production term is calculated as:

2-4

(2.15)

The blending function F1 is evaluated as:

(2.16)

where d is the distance of the point in space where the SST model is applied, from the nearest

solid wall surface.

The turbulent kinematic viscosity is also calculated with the help of a blending function as

[Men03] [NASA]

 (2.17)

(2.18)

 (2.19)

 (2.20)

 (2.21)

The SST model selection over other alternative two-equation models, such as the k-ε and k-ω,

was made considering its superiority, as it combines the advantages of the two aforementioned

models, while diminishing their drawbacks [Men03]. In particular, while the k-ε model is very

accurate at predicting turbulence outside the boundary layer, it is unstable near the wall [Rod86].

In contrast, the k-ω model has great advantage near the wall surfaces, while its solution proves to

be sensitive to the free stream values of ω outside the boundary layer [Men92]. The blending

function utilized by the SST model designates essentially that near the wall boundaries the k-ω

model will be more prevalent, while away from the wall boundaries the k-ε model will be

sovereign.

2-5

2.2 Time-Accurate Formulation
The original form of the governing equations, described by Chorin [Cho67] was in a steady-state

formulation, where time was advanced through the pseudo-time parameter τ. For the simulation

of time-accurate flows the governing equations have to be modified to include a real time

parameter t. In this work, the dual-time stepping scheme, developed by Belov [Bel95] is adopted.

In this method, a true-time derivative of the velocity components is added to the original equation

(2.2) as:

 (2.22)

K=diag(0,1,1,1) (2.23)

The same dual-time stepping scheme has to be applied to the turbulence model equations, in order

to couple them with the flow ones:

 (2.10)

3-1

CHAPTER 3

NUMERICAL MODELING

In this chapter the numerical scheme for the evaluation of the governing equations described in

the previous chapter is presented. A node-centered finite volume scheme was adopted for the

spatial discretization of the flow and turbulence model equations, while temporal discretization is

performed with an explicit four-stage Runge-Kutta scheme. The evaluation of inviscid fluxes is

carried out with Roe’s approximate Riemann solver, while two methods were adopted for the

calculation of the viscous ones; an element based approach, based on the edge-dual volume

scheme, and a nodal-averaging one.

3.1 Spatial discretization
The computational meshes over which the flow and turbulence equations are discretized, are

hybrid unstructured grids, consisting mainly of triangular elements in two dimensions, or

tetrahedral elements in three dimensions. Layers of quadrilateral (in 2D) or prismatic (in 3D)

elements are added to the areas of the geometry where no-slip conditions must be employed, so

that the viscous boundary layer can be adequately computed. A three-dimensional grid may

contain pyramidal elements to connect the prismatic elements with the tetrahedral ones. Although

a structured grid would provide more accurate and efficient evaluation of fluxes and gradients

[Bla01], with the minimum requirements in computer memory, the excessive time required for

the generation of a structured grid on a complex geometry was the decisive factor for the use of

unstructured ones in this study. A number of simulations on different test cases, on simple and

more complex geometries, were rendered possible with the use of unstructured grids, without the

tedious work of structured grid generation.

Discretization over the computational grids is performed with a node-centered finite volume

scheme. With this method, the computational geometry is divided into small arbitrary control

volumes. Inside each control volume the quantities that are associated to the flow, such as flow

variables and gradients, are considered constant, while the surface integrals of Equation (2.2) is

evaluated by the summation of the fluxes passing through the control volume boundaries [Bla01].

With the node-centered scheme, a control volume, also called median-dual volume in that case

[Mav96] [Koo00] [Kim03] [Lyg12] [Sar14], is constructed around a grid node, by connecting

with lines the edge midpoints, face barycenters and barycenters of grid elements sharing this node

(only edge midpoints and element centers of mass in case of two-dimensional grids [Kal96]

[Kal05]). Hence, each element’s volume is shared equally to the number of its nodes. The 2D

equivalent of the median-dual volume of a node, contributed by three triangular elements and two

quadrilateral ones, is presented in Figure 3.1.

3-2

Figure 3.1 – 2D Median-dual volume of a node P, contributed by three triangular and two quadrilateral

elements.

The control volume is bounded by dashed lines, which also constitute the control surface

(boundary), over which inviscid and viscous fluxes will be eventually calculated. The

contribution of a tetrahedral, a prismatic and a pyramidal element to the 3D median-dual volume

of a node P is presented in Figure 3.2. For the sake of better presentation, the rear faces of the

grid elements were painted in blue, while the surface of the control volume was painted in purple.

Obviously, the control volume of the node P is not complete, as several other elements would also

share this node and contribute to its control volume.

Figure 3.2 – 3D Median-dual volume of node P, contributed by a tetrahedral, a prismatic and a pyramidal

element.

3-3

For the calculation of the grid elements’ volumes, the tetrahedral elements are primarily evaluated

as [Weiss]

 (3.1)

where (xi, yi, zi) represent the Cartesian coordinates of the tetrahedron’s vertices, and i = 1, ..,4.

The volumes of prisms and pyramids are evaluated with the use of the tetrahedron volume

formula, after their appropriate division into tetrahedrons, as presented in Figure 3.3.

Figure 3.3 – 3D Division of prismatic and pyramidal elements into tetrahedrons for the calculation of their

volumes.

With the definition of the discretization method, Equation 2.2 is integrated over the control

volume Ω of a node P as

 (3.2)

which is then treated with the Green-Gauss divergence theorem [Bla01] into

 (3.3)

where indicates the boundaries of the control volume Ω, defined by the sum of the faces that

surround each edge PQ, with Q representing all the neighboring nodes of P. The unit vector

represents the outward pointing normal vector of the boundary , thus transforming the inviscid

and viscous flux vectors , as [Shi01]

 (3.4)

3-4

 (3.5)

where the normal to the control surface velocity Θ is illustrated as:

 (3.6)

The unit vector is defined as

 (3.7)

In order to minimize memory usage, an edge-based data structure was employed in the

programming of the above quantities [Bla01] [Kal05]. While most of the appropriate data, such as

flow variables, derivatives and gradients, are stored on the nodes of the grid, calculation of fluxes

is performed in an edge-wise manner to reduce the computational complexity. Therefore, the total

computational flux amounted to a single node P is computed as the sum of fluxes passing the

interface between the control volume of P and every neighboring node Q. The required normal to

the control surface vector would then be calculated as the sum of all the normal vectors to the

facets that constitute the interface between nodes P and Q [Bla01], as it is presented in Figure 3.4.

Figure 3.4 – The normal to the control surface vector is calculated as the sum of the normal vectors to the

facets that constitute the interface between nodes P and Q.

With the definition of the necessary components, Equation 3.3 is then formulated as:

3-5

 (3.8)

The surface integrals for the inviscid and viscous terms of equation 3.8 are evaluated as sums of

all the fluxes through the faces composing the control volume of node P, on the direction ,

where Q is each node connected to P with an edge PQ

 (3.9)

 (3.10)

where and are the values of the flow variables on the left and right side of an edge PQ,

respectively.

3.2 Calculation of fluxes

3.2.1 Inviscid fluxes

For the calculation of the inviscid fluxes of the flow equations, a one-dimensional Riemann

problem is considered along the direction of the normal vector of each face of the control volume

of a node P. As the exact solution of such a problem requires an extensive amount of calculations,

an upwind scheme with Roe’s approximate Riemann solver [Roe81] is employed in this work.

With this premise, the inviscid fluxes at the midpoint of an edge PQ can be evaluated as:

 (3.11)

 (3.12)

 (3.13)

Here represents the Jacobian matrix of the inviscid flux vector , approximated with Roe’s

hypothesis, while the quantities marked by the L and R subscripts denote values of the variables

taken at the left and right side of the boundary between nodes P and Q, respectively. The

dependent variables used for the construction of are simple algebraic averages of the L and R

variable vectors, which Taylor and Witfield [Tay91] proved that they satisfy Roe’s conditions for

the construction of the flux Jacobian of the Euler equation with artificial compressibility. Hence,

the flux Jacobian [Shi01]

3-6

 (3.14)

satisfies:

 (3.15)

 (3.16)

A non-singular eigensystem in three dimensions, proving that is diagonizable was reported by

Shin [Shi01] and it is presented as follows:

 (3.17)

 (3.18)

 (3.19)

(3.20)

The quantity denoted by c represents the artificial speed of sound at a specified point in space and

depends on the artificial compressibility parameter. The vectors and

 are unit vectors, with their cross product producing :

 (3.21)

3-7

For the calculation of vectors and the component of which is in rotational order after the

one with the maximum value is set to zero. Then the other two components are evaluated by a set

of equations; the length of the vector must be equal to unity and the inner product between and

 must be equal to zero. Afterwards it is easy to calculate as the cross product between and .

It is obvious then that there are three cases that must be considered for calculating initially

[Vra12]:

if then

if then

if then

Finally, using the secant plane approximation [Roe81] [Lan98] to the inviscid flux vector the

following Equation (3.22) is used to transform Equation (3.11)

 (3.22)

thus obtaining the following formula that is actually implemented in this work:

 (3.23)

Algorithmically, a single edge-loop is required for the calculation of inviscid fluxes for all nodes

of the computational grid. The nodes P and Q of an edge PQ of the grid are arbitrarily assigned

the L, or R notification, so that the flux that passes through the boundary between the two nodes

are added to the flux balance of L and subtracted from that of R. In this way the positive direction

of is preserved on all edges. The required values of variables at L and R side of edge PQ are

equal to the variable values of the L and R nodes, respectively, for a first order accurate scheme.

In a higher order scheme the appropriate L and R values are reconstructed with the Taylor series

expansion, with a formulation based on the MUSCL (Monotonic Upstream Scheme for

Conservation Laws) approach [Bla01]. Since no strong discontinuities are expected in an

incompressible flow field, no limiter function is applied to the higher order scheme. Hence, the

left and right state of a flow variable U at the midpoint of PQ can be evaluated as [Bar92]

[And94] [Bla01] [ANSYS06] [Lyg13] [Sar14]

 (3.24)

 (3.25)

3-8

where the gradients and represent in case of a second order scheme the gradients at

 and , respectively, while the vector is the vector from node P to node Q. For the

evaluation of the gradients of variables an approach based on the Green-Gauss theorem is used

[Bar92] [Bla01]:

 (3.26)

3.2.2 Viscous fluxes

For the calculation of viscous fluxes, the evaluation of the velocity components’ gradients at the

middle of each edge of the computational grid is essential. For this purpose, two methodologies

were employed in this work; a more accurate, but tedious element based method [Kal96] [Kal05]

[Bla01] [Kal05] [Lyg14c] [Sar14] and a less accurate but significantly faster nodal-averaging one

[Bla01] [Lyg14c] [Sar14].

For the first methodology a new type of control volume, called the edge-dual volume, must be

constructed initially. This new type includes the elements of the grid that share a common edge

[Kal96] [Kal05] [Sar14], as is obvious in Figure 3.5, where the equivalent edge-dual volume of

an edge e shared by three tetrahedral elements, a prismatic and a pyramidal one is presented from

two different viewpoints.

Figure 3.5 – Edge-dual control volume of an edge e that is shared by three tetrahedral, one prismatic and one

pyramidal element.

Considering the aforementioned control volume configuration, the derivative of a velocity

component (u) with respect to a Cartesian direction (x) at the midpoint of edge e can be evaluated

using the divergence theorem as [Kal96] [Kal05] [Ahn06] [Lyg14c] [Sar14]

 (3.27)

3-9

where m represents the number of boundary faces of the edge-dual volume, and is the number

of nodes that constitute each boundary face; the average of the velocity component on each face

is required for this computation. While this method is proved [Kal05] to yield more accurate

approximations of the velocity derivatives, it is also very demanding computationally, as a face-

loop is required, which is not consistent with the edge-structure of the current flux balance

evaluation.

To remedy the aforementioned case, a second methodology of node-averaging was made

available, as a faster but less accurate alternative to the edge-dual method. In this case the

gradients at the endpoints P and Q of an edge are utilized, as well as the directional derivative

along the edge PQ. The mathematical formulation is presented as follows [Bla01] [Lyg14c]

[Sar14]

 (3.28)

 (3.29)

 (3.30)

 (3.31)

where represents the vector connecting the nodes P and Q, while the gradients and

 are the velocity components’ gradients at the endpoints of edge PQ. This scheme is

particularly attractive since it can be completed with a single edge-loop; the same loop that the

inviscid fluxes are evaluated with and the utilized velocity gradients are already evaluated for the

higher order inviscid fluxes, anyway. Moreover, although it provides less accurate results than the

element-based model, these results have been proven adequate in all cases.

3.2.3 Turbulent fluxes

Fluxes for the turbulence model are calculated in the same node-centered finite-volume

discretization scheme as with the flow model. The convective fluxes are evaluated with a simple

first-order upwind scheme, at the middle of each edge PQ as [Lar91] [And94] [Koo00]

[ANSYS06] [Lyg14a] [Sar14]:

 ,
(3.32)

Generally, a higher order scheme is not necessary for the above term, as the viscous terms are

more dominant in the turbulence PDE’s, so the numerical diffusion imported through the first

order-scheme is easily neglected.

For the computation of the more important viscous fluxes at the middle of each edge PQ, the

gradients of the corresponding turbulence variables (k, ω) must be primarily calculated in the

3-10

same way that the velocity gradients are calculated for the flow equations. Then, the viscous

fluxes are calculated for an edge PQ as [Kou03]:

 (3.33)

3.2.4 Boundary conditions

In order to complete the flux balance on all no+des of the computational mesh, additional fluxes

must be calculated for nodes that reside at the boundary of the domain from the direction of the

boundary surfaces. There are four different types of boundary conditions encountered in this

study: for solid wall, symmetry, inlet and outlet types of boundaries. The evaluation of all types

of fluxes is carried out at the barycenter of the boundary surfaces, while subsequently the flux is

equally distributed among the number of nodes of the boundary cell. The values of the variables

used for the calculation of fluxes are derived either from the far-field, or from inside of the

computational domain. The far field values are defined prior to the beginning of the simulation,

while values from the inside of the domain are calculated as the average of the corresponding

variables from all the nodes of the boundary face.

3.2.4.a Inlet and Outlet boundaries

At inlet and outlet boundaries a locally one-dimensional characteristic type of boundary

conditions is used. For this type of boundary conditions the characteristic variables are calculated

at the boundary surfaces of the inlet or outlet regions and subsequently are used for the

calculation of fluxes on the boundary nodes. The derivation of this type of boundary condition for

3D grids is partially based on the work of Anderson et al. [And96] for 2D grids. For the

identification of the characteristic variables the linearized one-dimensional Euler equation are

taken into consideration [Lan98]

 (3.34)

where A is the flux Jacobian and xn represents the normal to the boundary coordinate. The system

of equations is considered hyperbolic if and only if matrix A is diagonizable, so it can be written

in the following form [Lan98]

 (3.35)

where and are the left and right eigenvector matrices of the Jacobian matrix, while Λ is its

eigenvalue diagonal matrix. Equation (3.35) entails the following [Lan98]:

 (3.36)

3-11

Thus, by multiplying Equation (3.34) with from the left side, and generating a product of

matrices , the following is implied:

(3.37)

So, if the characteristic variables vector is defined as , the characteristics form of

Equation (3.34) can be written as

 (3.38)

To identify the characteristic variables the characteristics vector is analyzed by its definition as

follows:

 (3.39)

If the matrix is equal to the left eigenvector of the Roe’s averaged flux Jacobian defined in

Section 3.2.1, then the above set of equations can be expanded as:

 for

 (3.40)

 for

 (3.41)

 for

 (3.42)

 for

 (3.43)

where
 represents the element of matrix at row i and column j and λk (k=1,…,4)

represents the respective eigenvalue of A. The elements of are considered constant in

Equations (3.40) – (3.43), in order to maintain the linearization of the fluxes, so the subscript “o”

is added to them to separate them from the variables, that have no subscript. The curves

 are called wave-fronts or characteristics [Lan98], while the characteristic variables are the

signals or information carried by the waves, with wave speeds equal to the eigenvalues . The

direction of each wave is defined by the corresponding eigenvalue sign; a positive eigenvalue

suggests the propagation of the respective wave towards the positive direction of . The

characteristic variables can then be extracted by integrating Equations (3.40) – (3.43), implying

the following set of equations:

3-12

(3.44)

Considering the integration of the equation for the first characteristic variable,
 can be

written as:

(3.45)

where is the outward-pointing normal to the boundary surface vector, as presented in Figure

3.6. The unit normal vector can be calculated with the following formula:

 (3.46)

Figure 3.6 – Normal to the boundary P1P2P3 normal vector .

Vector represents the velocity vector, while and are unit vectors, normal to

 , as described in Equation (3.21). The internal product is similar to the normal to the

boundary surface velocity , and from now on will be represented by . Hence

3-13

 (3.47)

The three right terms of Equation (3.40) can then be formulated as follows:

 (3.48)

Eventually, Equation (3.40) is written as:

 (3.49)

Similarly, it can be easily shown that Equation (3.41) yields the following formulation

 (3.50)

where , analogously to , is equal to . Finally, the integration of Equations (3.42) and

(3.43) yields the following:

 (3.51)

 (3.52)

The complete set of equations is presented below:

3-14

 for

 (3.53)

 for

 (3.54)

 for

 (3.55)

 for

 (3.56)

Considering the eigenvalue signs, the third eigenvalue () will be always positive, since .

Hence, the corresponding wave will propagate the third characteristic variable towards the

positive direction of , which is outwards of the computational domain. That means that at the

barycenter of the boundary cell will have a value derived from the inside of the computational

domain. In the same manner, the fourth eigenvalue will always be negative, so the corresponding

wave will propagate the signal towards the negative direction of , which means that at the

middle of the boundary cell will have a value derived from the free-stream. The first and

second eigenvalues’ signs depend on the location of the boundary cell; if it resides at the inflow,

Θ will have a negative value, because will have opposite direction from , so the

characteristic variable will have a value that is derived from the far-field, while at the outflow the

characteristic variable value will be derived from inside the computational domain for the exact

opposite reason. The above relations provide four equations, with unknowns the pressure p, the

normal velocity Θ and the tangential velocities at the boundary Φ1 and Φ2.

 (3.57)

 (3.58)

 (3.59)

 (3.60)

The above equations can also be expressed in matrix form (with the appropriate simplifications)

below:

 (3.61)

In the above equations the subscript b denotes the variables that are evaluated at the barycenter of

the boundary cell, while variables with subscript o are considered constant and in this work are

3-15

derived from the far-field. Also, the subscript denotes reference data taken from the free-

stream and i denotes data taken from the inside of the computational domain; these are calculated

as the average of the corresponding variables at the nodes of the boundary cell. Finally, special

consideration is taken for data marked with the r subscript; data is taken from the free-stream in

case of inflow, while for outflow data from inside the computational domain is used. The

unknowns of the above set of equations are evaluated directly with the use of the following

formulas:

 (3.62)

 (3.63)

 (3.64)

 (3.65)

Finally, the enforcement of the inflow and outflow boundary conditions is performed through the

evaluation of the appropriate inviscid fluxes at the boundary cells, while the viscous fluxes are

neglected, as their role is not so important so far away from solid walls. The required flow data

(pb, ub, vb, wb) can be easily extracted from the calculated variables (pb, Θb, Φ1b, Φ2b), as they are

directly linked. Specifically, while pressure at the boundary is directly calculated, the velocity

components can be calculated by the normal and shear velocities as shown below:

 (3.66)

 (3.67)

 (3.68)

 (3.69)

 (3.70)

 (3.71)

For the turbulence model, Dirichlet type boundary conditions are imposed at the inlet of the

computational domain, with the turbulence variables being set to zero on each boundary node. In

case of outlet boundary conditions, the inviscid turbulent fluxes are calculated via a simple

upwind scheme as [Kim03] [Kou03]:

 (3.72)

where Θ is the vertical to the boundary surface velocity, as explained above. The viscous

turbulent fluxes are neglected in the same way as with the flow model.

3-16

3.2.4.b Solid wall and symmetry boundaries

For solid wall boundaries, two cases of boundaries are considered; free-slip boundary conditions

in case of inviscid flow, or no-slip boundary conditions in case of viscous flow. For the case of

inviscid flow over a solid wall surface, the boundary condition is imposed implicitly by adding a

flux with zero vertical to the boundary surface velocity, to the flux balance. The flux is calculated

at the centroid of the face defined by boundary nodes P1, P2 and P3 as [Mav94]:

 (3.73)

The same boundary condition is imposed in case of symmetry boundary conditions, where the

flow is expected to evolve perpendicular to the boundary. For laminar and turbulent viscous

flows, no-slip conditions are applied on solid wall boundaries, by explicitly setting the velocity

components at the boundary nodes, equal to zero. For the turbulence model, turbulent kinetic

energy and the turbulent kinetic viscosity νt are also set to zero, while the specific dissipation rate

ω is evaluated as [Men03]

 (3.74)

where yb is the distance of the boundary node from the closest non-boundary one.

3.3 Temporal discretization
For the integration in time of the flow PDEs, as well as the equation of the turbulence model, an

explicit four-stage Runge-Kutta scheme (RK(4)) [Lal88] [Kal96] [Bla01] [Lyg14a] [Sar14] was

incorporated in the proposed methodology. Since the flux balance is evaluated for each node of

the computational grid, Equation 3.8 is transformed as:

(3.75)

where is the local time step at node P, which is differently calculated in case of inviscid or

viscous flows. The corresponding formulas for the calculation of the time step are presented

below [Kal05]:

 (3.76)

 (3.77)

 (3.78)

3-17

In the above equations, the length is the length of the shortest edge connected to node

P, while is the artificial speed of sound at the same node. For the calculation of the CFL

number in case of viscous flows, the quantities denoted by , and represent the artificial

speed of sound calculated in each Cartesian coordinate direction at node P, as [Kal05]:

 (3.79)

The quantities , and represent the projections of the node P node-dual volume surfaces

normal vector along the three Cartesian directions. They can be calculated as [Kal05]:

 (3.80)

The local time-stepping scheme ensures that time integration on each node can be performed at a

maximum acceptable pseudo-time step, ensuring a fastest convergence to a steady-state solution.

Employment of the explicit Runge-Kutta scheme must then be considered separately in case of a

time-accurate solution.

3.3.1 Steady State solution

In case of a steady-state solution, Equation (3.75) is solved iteratively with an explicit four-stage

Runge-Kutta scheme as:

 (3.81)

where k is the number of the internal Runge-Kutta iteration, while the four constants αk have the

values α1=0.11, α2=0.26, α3=0.5, α4=1.0, that achieve a second-order temporal discretization

scheme [Bla01].

3.3.2 Unsteady State solution – dual time stepping.

In case of a time-marching scheme, Equation (2.10) is discretized instead. Spatial discretization is

carried out in the same manner as with the steady-state equations. However, a different procedure

must be followed in case of the temporal discretization, where two temporal variables are preset

in the flow equations. Through a similar formulation with the steady-state formulas, Equation

(2.10) would then become [Rog91] [Kal05]:

(3.82)

3-18

The right hand side of Equation (3.82) can then be evaluated separately for the case of the

continuity equation and the momentum equations. In case of the momentum equations the real

time derivatives of the flow variables are analyzed with a second-order, three-point backward-

difference formula as [Kal05]

 (3.83)

where the superscripts m corresponds to flow quantities derived at times t=mΔt. The time-

accurate formulation can then be written as [Kal05]:

 (3.84)

In order to calculate the field variables in a new pseudo-time step n+1 and real time step m+1, the

real-time derivative of the variables vector has to be evaluated beforehand, by utilizing the

variables vector at real time steps m and m-1, as well as the variable vector at real time step m+1

and pseudo time step n. Then the right hand side term

 has to be evaluated as the

sum of fluxes at the current pseudo-time step, as with Equation (3.81). For the solution of the

steady-state problem defined in Equation (3.85) a four stage Runge-Kutta scheme is used as with

steady state solutions.

4-1

CHAPTER 4

ACCELERATION TECHNIQUES

Numerical simulations of incompressible flows with the artificial compressibility method tend to

be extremely time-consuming, and even very simple test cases may need a huge amount of

pseudo-time iterations to converge into a satisfactory solution. Especially in the case of time-

dependent solutions, where a large number of real time steps may be needed for the unsteady

flow phenomenon to develop, special measures must be taken for the acceleration of the

numerical evaluation procedure. In this work a domain decomposition parallel processing

approach was adopted, along with an agglomeration multigrid strategy. Both techniques

contribute greatly to the acceleration of the incompressible solver and prove to be essential tools

in any simulation.

4.1 Parallel Processing

4.1.1 Domain Decomposition - Partitioning

With the domain decomposition approach the initial computational grid is divided into a number

of smaller ones, each attributed to a single processor core, constituting in this way a semi-

autonomous computational grid on which the flow PDEs may be applied [Smi04] [Gro92]. For

the complete definition of the flow, appropriate data, such as flow variables and their gradients

must be defined at the inner boundaries of each sub-domain, as those data are computed at a

neighboring grid, by another processor core [Ven95] [Lan96]; this task is performed via a

message-passing inter-core communication method provided by the MPI (Message Passing

Interface). In Figure 4.1 partitioning of a domain into eight smaller sub-domains is presented.

Figure 4.1 – Eight-way partitioning of initial domain.

4-2

The whole procedure begins with the implementation of METIS, which is a software program for

partitioning large irregular graphs, large meshes, and computing fill-reducing orderings of sparse

matrices, with algorithms based on the multilevel graph partitioning paradigm [Kar95]. For the

partitioning of the initial domain, the mesh is handled as an undirected graph, where only the

nodes and the edges connecting them are essential. The division is performed in a node-wise

manner and the resulting sub-domains have more or less equal number of nodes, resulting in a

load-balanced parallelization, while the minimum number of edge-cuts is performed ensuring the

least possible exchange of data between partitions [Sar15].

In this work a single domain decomposition approach with overlapping is adopted [Smi04]

[Mou11]. The sub-domains produced by the partitioning procedure are actually a number of sets

of non-common nodes, called core nodes. For the implementation of the solver on these

partitions, the element-based structure of the initial grid must be reproduced. However, due to the

edge-cut that was performed, the elements that share nodes at the internal boundaries of a newly

created sub-domain cannot be fully defined, since some of their initial connections reside on a

neighboring partition. To remedy this, the missing nodes are added to the existing node list as

ghost nodes, and the now well-defined elements will exist on both neighboring partitions, thus

creating the so called overlapping layer [Lan96] [Sar15]. The overlapping layer between three

adjacent partitions is presented for a 2D unstructured grid in Figure 4.2.

Figure 4.2 – Overlapping layer between three adjacent partitions for a 2D unstructured grid.

For this procedure, a serial algorithm assigned to a single process was created. The steps of the

overlapping region construction algorithm are the following:

a) The core nodes of each sub-domain are renumbered based on the output of METIS.

b) The elements of the initial grid are assigned to sub-domains. Those that will form the

overlapping region, as described above, are arbitrarily assigned a partition (if the first

4-3

node of an element is a core node of a sub-domain, then the element is assigned to that

domain). The partition that receives an element is now called owner of that element.

c) The nodal connectivities of all elements of each sub-domain are defined from the

renumbered core node indexes, with respect to the initial grid. If an element’s

connectivities are not fully defined this element will be part of the overlapping layer; a

list of those elements is constructed.

d) Loop over the nodes of each element in the overlapping element list. If a node is a core

node owned by a partition different than the element’s owner then that element is added

to that partition’s list, but no nodes are defined for it. At the end of the loop all elements

of the overlapping layer are distributed to neighboring sub-domains, but information for

their nodes is missing.

e) Loop over the nodes of all the elements of each sub-domain. If current node information

is missing from the element connectivities, then this node is added as a ghost node at the

end of the list of nodes of the sub-domain and the missing information is adjusted. Ghost

nodes are separated from core ones, as they are put at the end of the node list. At the end

of the loop the overlapping layer is defined for all sub-domains.

4.1.2 Communication data structures

 After the partitioning of the initial domain and the definition of the overlapping elements,

information that each partition requires for communication at its inner boundaries must be

computed [Ven95]. For this task, an n×n communications matrix is constructed, where n is the

number of sub-domains. An element (i, j) of this matrix is equal to unity if the partition j is

neighbor to i and zero otherwise. Construction of the communications matrix is achieved with a

simple loop over the ghost nodes of each partition (i), where for each such node, the equivalent

core node’s owner can be easily identified as j. From this information, appropriate data structures,

essential for the communication between partitions may be composed. These data structures

consist of:

 nneighbours: an integer that represents the number of adjacent sub-domains.

 ineighbours(i): a list of the adjacent sub-domains, in the form of an integer array with

size equal to nneighbours.

 nreceivenodes(i): an integer array with size equal to nneighbours, where element i holds

the number of the partition’s ghost nodes that will receive information from an equal

number of core nodes of partition i.

 nsendnodes(i): an integer array of size nneighbours, that lists the number of the

partition’s core nodes that will have to send information to an equal number of ghost

nodes of adjacent partition i.

 ireceivenodes(i, j): a matrix with nneighbours rows, where each row consists of pointers

to the ghost nodes of this sub-domain that must receive information from the

corresponding core nodes of the ith partition of array ineighbours().

 isendnodes(i, j): a matrix with nneighbours rows, where each row is filled with pointers

to the partition’s core nodes that must send information to the respective ghost nodes of

the ith partition found in the array ineighbours().

In order to ensure that exchange of data will be precise, and that information will be transferred

without error from a core node to its equivalent ghost nodes of adjacent partitions, it is essential

4-4

that there exists an exact mapping between core nodes in matrix isendnodes() of a partition and

ghost nodes in matrix ireceivenodes() of an adjacent partition. Therefore, it is ensured that the

core node represented by the jth element in row i of matrix isendnodes() of a partition ipart will

be the same node as the ghost one found in the jth column of row k of matrix ireceivenodes() of

the partition ineighbours(i), where k will satisfy ineighbours(k)=ipart.

Figure 4.3 – The connectivities between the core and ghost nodes of adjacent partitions.

In Figure 4.3 a domain is divided into three partitions (0, 1, and 2). The overlapping region for

partition 0 is visible. The core nodes of partition 0 marked with a solid circle, while its ghost

nodes are marked with a hollow circle. According to their description the data structures for that

partition would have the following values:

 nneighbours = 0

 ineighbours(1) = 1

 ineighbours(2) = 2

 nreceivenodes(1) = 12

 nreceivenodes(2) = 11

 nsendnodes(1) = 10

 nsendnodes(2) = 11

4.1.3 Communication Procedure – MPI

As mentioned in paragraph 4.1.1, the exchange of data required for the correct evaluation of the

flow PDEs on all partitions is performed via the Message Passing Interface (MPI), which is a

language based communications protocol implementing the message-passing model for the means

of parallel computing [Gro99]. The message-passing model assumes a set of processes with local

4-5

memory only, which are able to communicate with other processes by sending and receiving

messages. All processes executed in parallel have separate address spaces. Communication

between two processes occurs when data from the address space of one is copied to the address

space of another. The above operation occurs only when the first process posts a send operation

and the second one posts a receive operation, so that the communication process is cooperative

[Gro99].

The MPI protocol, as an implementation of the message-passing model provides a list of

functions, for the point-to-point communication between processes, collective communication, as

well as a number of utility functions for the organization of the processes and the exchanged data.

A sample program structure using this protocol is presented in Figure 4.4. While for acceleration

reasons it is always preferable for the biggest part (or actually the most calculations-heavy part)

of the code to be implemented in parallel, initialization of the MPI environment, and hence the

parallel program, is not necessary to happen at the start of the code, nor finish at the end of it.

Parts of serial coding may be inserted before the MPI initialization or after its finalization. The

parallel part of the code is separated in sections where the processes work separately with data

from their address space, while it is possible for data exchange between them in any configuration

(either point-to-point, or collectively).

Figure 4.4 – Sample MPI program structure.

4-6

Each implementation of MPI either vendor or public domain, provides the means for execution of

the parallel code from an operating system either through command line, or with a GUI. With this

procedure the appropriate number of processes is generated and run in the operating system. In

this work each sub-domain is assigned to a single process, which is assigned essentially on a

single processor core. Since the message-passing procedure happens between processes and not

between processor cores, it would be possible to generate more parallel processes than the

available cores; however that would be unwise, since more than one process would take turns to

be executed on a single core and the parallel program’s efficiency would be degraded.

Each generated process runs the same parallel code, categorizing this parallel program as SPMD

(Single Program Multiple Data) on Flynn’s taxonomy classification [Flynn72] [Dar88]. For the

identification of the processes and the context in which the exchange of data between processes

will take place, the MPI execution environment must be initialized. This is performed with

MPI_INIT(), which is a function that must be executed in an MPI program only once before any

other MPI routine is called. With the execution of this function the MPI_COMM_WORLD

communicator is defined.

A communicator is and opaque object with a number of attributes as well as simple rules that

define its creation, use, and destruction, while it is responsible to determine the scope and

communication universe in which a point-to-point or collective exchange may take place [Gro96].

It contains a group of valid participant processes, which is an ordered set of processes, each with

a unique rank within the same communicator. The rank of a process within a certain

communicator object is an integer number with value ranging from zero to N-1, where N is the

number of processes in the communicator. The MPI_COMM_WORLD communicator contains

all available processes of the parallel program.

The rank of a process within the MPI_COMM_WORLD communicator is retrieved with a call

of the function MPI_COMM_RANK(comm, rank) by all available processes, where the comm

argument defines the communicator object in which the rank is queried (hence in this case equal

to MPI_COMM_WORLD). The size of the MPI universe (the number of processes – partitions

in which the initial flow domain was divided) may be recovered by calling the function

MPI_COMM_SIZE(comm), where the argument comm must be equal to

MPI_COMM_WORLD. A call of the same function with a different communicator object as an

argument would provide the number of processes in that communicator.

As each process runs the same code, but eventually receives a unique rank within the

MPI_COMM_SIZE universe – communicator, it is easy to assign different tasks to each process

with simple if-blocks, as is demonstrated below:

call MPI_INIT()

call MPI_COMM_SIZE(MPI_COMM_WORLD, size)

call MPI_COMM_RANK(MPI_COMM_WORLD, rank)

if(rank = = 0)

 do some preliminary work

 call MPI_COMM_BARRIER(MPI_COMM_WORLD)

 do some more work

4-7

else

 call MPI_COMM_BARRIER(MPI_COMM_WORLD)

 do some other work

end if

all processes do some work

In the above sample code, the function MPI_COMM_BARRIER(comm) helps for the

synchronization of all processes, as it serves as a “waypoint” on which a process pauses execution

until all other processes in the communicator comm execute the same function. Additionally,

with an if-block the process with rank equal to zero is separated from the other processes and

performs different tasks. In the Galatea-I program, process zero is assumed as a master process

and it is charged with additional work regarding calculation of the PDEs residuals and presenting

them on the computer screen, several other visual outputs, as well as the complete initial

construction of the overlapping layer between partitions, the communications data structures and

the distribution of all initial data to all the other processes. Distribution of data is then easy to

perform within the MPI environment.

When process with rank zero finishes all the initial work of gathering the partition data and

constructing the overlapping layer, it is charged with distributing all the required partition data to

all the other processes. This includes the nodes’ (core and ghost) coordinates, the element

connectivities, boundary conditions, and the flow domain initial data, such as attack angles, the

reference length, the real time step in case of an unsteady simulation, and the value of the

artificial compressibility β. When distribution of data is complete, all the processes proceed with

the initialization of their own sub-domains; calculation of appropriate control volumes, initial

normalization of the variables and the computational domain, initialization of flow variables and

imposition of boundary conditions on solid wall boundaries. Finally, flux calculation for the

relaxation of the governing equations may be performed iteratively by each process on the core

nodes of its domain. At the first pseudo-time iteration (t=0) the variable values on all nodes of the

computational grid are equal to their initial values, therefore there is no need for exchange of data

between core and ghost nodes, since their variable values are known. However, in case of a

higher order scheme, the core nodes’ gradients have to be calculated and their values passed to

the respective ghost nodes of adjacent sub-domains, prior to the iterative procedure, to account

for the existence of solid wall boundaries. At the end of each pseudo-time step, appropriate data

exchange is performed between core and ghost nodes of adjacent sub-domains. The exchanged

data consists of the flow variable vector , the velocity derivatives in case of viscous flow and

the Green-Gauss gradients in case of a higher spatial order scheme. The complete parallel

program (the same instance run by each process) is described in pseudo-code form below:

Program Start

Initialization of the MPI environment

Obtain rank in MPI_COMM_WORLD for each process

Obtain the number of parallel processes

if(rank = = 0) then

 Read initial grid data

4-8

 Read METIS partition data

 Recreate all sub-domains

 Construct the overlapping layer for each partition

 Construct the communications data structures

 Send partition and initial flow data to the other processes

 call MPI_BARRIER(MPI_COMM_WORLD)

else

 Receive partition and initial flow data from process 0

 call MPI_BARRIER(MPI_COMM_WORLD)

endif

//Iterative procedure

Do i = 1 to Number of iterations

 Do j = 1 to iterative method steps

 Perform relaxation of governing equations

 call MPI_BARRIER(MPI_COMM_WORLD)

 Exchange appropriate data

 End Do

End Do

End Program

Data exchange with the MPI may be performed in two ways; either with point-to-point

communication, where a process sends data to another single process, or with collective

communication, where a process may send the same set of data or distribute pieces of a set of

data to all the other processes sharing the same communicator object. Whichever type of

communication is used, the equivalent send or receive functions must be executed by all the

participating processes [Gro96].

With point-to-point communication, messages are passed between two processes, where one of

them serves as the sender and the other as the receiver. While there are different types of send

and receive routines used for different purposes, such as synchronous send, blocking or non-

blocking send/receive, buffered send and combined send/receive, in this work only blocking

send/receive routines are used, for means of security and synchronization. With this type of point-

to-point communication a send routine always waits for the corresponding receive one to reply

that the message has passed. The syntax of blocking send and receive routines is presented below:

 MPI_SEND(buf, count, datatype, dest, tag, comm)

 MPI_RECV(buf, count, datatype, source, tag, comm, status)

The message data passed with the MPI_SEND routine consists of count successive entries of the

type indicated by datatype derived from the sender address space, starting with the entry at

address buf. The message is accompanied with information that can be used to distinguish

messages and selectively receive them, called the message envelope. This includes the source of

the message, its destination dest, the tag argument which is an integer used to distinguish

different types of messages and is user defined, and the communicator comm within which the

sender (source) and receiver (dest) ranks may be found. Respectively, the message that will be

received by the MPI_RECV routine will consist of count elements of datatype type that will be

4-9

stored in the memory addresses starting at buf (defined in the MPI_RECV routine). The receive

process will “identify” the correct message by the message envelope, which was sent by the

correct source within the same communicator comm, and carry the correct tag. Finally,

additional information about the message may be derived by the status object, such as the

message length, the tag, source, and error code of the received message. As the blocking point-to-

point communication method involves only two processes (sender and receiver), and the sender

must wait for the receiver’s handshake, a routine where exchange of data between all the

neighboring partitions would take place, must at a time select a sender from the list of processes

(ranks) that will send its data to all the eligible receivers. Such a routine is presented below in

pseudo-code format.

Do i=0 to Number of processes – 1

 if (rank= =i) then

 Do j=1 to nneighbours

 Send data of isendnodes(j,k) to ineighbours(j)

 //k represents all the sending nodes

 End Do

 Else

 if(i exists in ineighbours())then

 Receive data from i and store it to ireceivenodes(j,m)

 //m represents all the receiving nodes

 End if

 End if

End Do

While the above routine provides accurate means of transferring data between partitions, it leaves

most of the processes idle most of the time, especially when large amounts of data is transferred

(in cases of large partitions), as exchange takes place between a sender and a receiver. For that

reason in this work transfer of data was performed with collective communication methods.

These methods involve all the processes in the scope of a communicator, therefore a collective

transfer routine must be executed by all the processes in a communicator. MPI provides a number

of different routines that cover different types of collective operations such as synchronization

(MPI_BARRIER), data movement, and collective computation. In the Galatea-I program, apart

from the already discussed MPI_BARRIER routine that provides synchronization, collective

communication routines were used only for data transfer. Of the available routines the ones used

were MPI_BCAST and MPI_SCATTERV [Gro96]. Their syntaxes along with the syntax

MPI_SCATTER that will help for the better understanding of MPI_SCATTERV are presented

below:

 MPI_BCAST(buffer, count, datatype, root, comm)

 MPI_SCATTER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root,

comm)

 MPI_SCATTERV(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount,

recvtype, root, comm)

Routine MPI_BCAST must be executed by all processes consisted in the communicator comm.

Data is broadcast from process with rank equal to root and received by all other processes. The

4-10

data sent are count number of entries of datatype type beginning at the entry with address

buffer. Data is received by all the processes inside comm that their rank is not equal to root. The

message consists of the same number of entries of datatype type and is stored at the memory

address that starts with the entry buffer. Since the exact same command is executed by all

processes, measures have to be taken in advance, so that the arrays or matrices in which the data

will be stored will be adequately allocated, so that the receive operation will not “starve”. The

procedure of the broadcast operation is more easily described in Figure 4.5.

Figure 4.5 – Schematic representation of the Broadcast procedure.

With routine MPI_SCATTER data is distributed from process with rank equal to root to all the

processes of the communicator comm, including root. The data are stored in the address space of

root and amount to sendcount×comm_size number of elements of type sendtype, starting from

the address sendbuf, where comm_size is the number of processes in the communicator comm.

The message sent to each process, including root consists of sendcount number of elements of

type sendtype and will be retrieved from root’s address space sequentially, according to the rank

of each receiver. The received message will be stored to the address space of each process at

memory space that begins at recvbuf, has a length of recvcount, and is of type recvtype. The

whole procedure can be schematically described in Fugure 4.6.

Figure 4.6 – Schematic representation of the Scatter procedure.

4-11

Routine MPI_SCATTERV works in the same way as MPI_SCATTER; data from the address

space of root starting at sendbuf are distributed to all the processes within the communicator

comm, including root. However, in this case, the count of data may vary, and also the location

from where the data is taken from may vary, depending on the process it is sent to. This is

accomplished by the arguments sendcounts and displs, respectively, which are arrays of size

equal to the number of processes in the communicator comm. Therefore, data sent to process i,

where i is the rank of the process within communicator comm, has size equal to sendcounts(i)

and can be retrieved from the address space of root from a position starting at sendbuf+displs(i).

In this way, different amounts of data can be sent to different processes, thus making this function

more attractive to the needs of the proposed algorithm. The received data have the same

properties as with MPI_SCATTER, only this time it may have different size.

In the program Galatea-I exchange of data is mainly performed using the MPI_SCATTERV

routine. For the implementation of this routine, and considering that it is always preferable to

send large amounts of data at once, as it improves the algorithms efficiency, prior to the exchange

a special array is constructed by each process. The array, named scatterarray contains all the

data that should be sent to all adjacent partitions. The size of scatterarray depends on the type of

the data sent (variable values, Green-Gauss gradients, velocity gradients), and the sum of core

nodes sending data to all partitions, which is equal to the numbers in nsendnodes(). Therefore,

the size of this array would be equal to the size of data that each core node would send (number

of variables), multiplied by the sum of nodes sending data to each adjacent partition.

For example, if the data sent is the flow variables vector of each core node, the size of data would

be equal to 5, while if the velocity gradients were sent, the size of data would be equal to 3×3=9,

as there are three velocity components and three derivatives for each component. The order of

data in scatterarray should be ordered according to the ranks of all processes, so that the displs

array would be simply defined by the nsendnodes and ineighbours arrays. Specifically, arrays

displs and sendcounts would be constructed as follows:

Do i=1 to Number of processes

 exists =0

 Do j=1 to nneighbours

 if(i= =ineighbours(j)) then

 sendcounts(i-1) = (size of data sent)·nsendnodes(i)

 exists = 1

 End If

 End Do

 If(exists = = 0) then

 sendcounts(i-1) = 0

 End If

End Do

displs(0) = 0

4-12

Do i=2 to nneighbours

 displs(i-1) = idispls(i-1) + sendcounts(i-2)

End Do

In the above algorithm, adjustments to the arrays’ indexes are made since due to the MPI

implementation they have to be zero-based. The same applies for array scatterarray that should

then have the structure presented in Figure 4.7:

Figure 4.7 – Schematic representation of the scatterarray.

Finally, a routine for distributing information among all the adjacent sub-domains should only

contain a loop over the processes, as each one would take the role of root and distribute the

appropriate data to all the processes (including it). Such a routine is presented in pseudo-code

form below:

All processes construct displs

All processes construct sendcounts

All processes construct scatterarray

Do i=1 to Number of processes

 i becomes root and distributes scatterarray to all the processes

Enddo

All processes use recvbuf to fill their needs

4.2 Agglomeration multigrid method
With the agglomeration multigrid method, a number of successively coarser meshes are generated

from the initial mesh and relaxation of the partial differential equations is performed on all

generated meshes in a specific pattern [Mav99] [Car00] [Lyg14b] [Lyg14c] [Lyg14d] [Lyg14e].

Its main idea derives from the fact that convergence of most iterative methods is slower on finer

resolutions, as information is transferred only in one way, and this transfer must be repeated

numerous times in an iterative solution for it to converge [Fer02] [Lyg14e]. In this way high and

low frequency errors are generated, of which the solver is capable of eliminating the former,

while it is inefficient against the latter. With the relaxation of the equations on successively

coarser resolutions, these low frequency errors are transformed into high frequency ones, which

the iterative method is capable to encounter [Fer02, Dar06, Lyg14c]. The obtained solution from

the coarser grids is then merged with that from the finer ones to produce a more detailed

resolution. In this way the convergence of the iterative algorithm is sufficiently improved.

4-13

4.2.1 Agglomeration methodology

The first concern for the implementation of the multigrid method is the generation of the

successively coarser meshes [Mav97] [Mav98] [Car00] [Bla01] [Nis10] [Nis11] [Nis13]

[Lyg14b] [Lyg14c] [Lyg14e] [Lyg15]. In this study the agglomeration procedure is used for that

step, in which each coarser mesh is generated automatically inside the Galatea-I program, by

merging neighboring nodes’ control volumes and generating larger super-nodes. The procedure is

performed right after the implementation of the domain decomposition methodology, so each

sub-domain is considered an initial fine grid and successively coarser meshes are generated based

on it. Control volume fusion is performed in a topology-preserving framework that resembles the

advancing front technique, providing the means to be applied on purely tetrahedral or hybrid

meshes, using isotropic or directional agglomeration, respectively.

The agglomeration procedure is guided through a set of general rules that are pre-defined in order

to preserve the consistency of the solution between coarser and finer grids at external and internal

boundaries [Lyg15]. These are summarized below:

 Each non-boundary node’s control volume can only be fused with other adjacent non-

boundary control volumes [Nis10] [Nis11] [Lyg15].

 Each boundary control volume can only be fused with its adjacent boundary nodes of the

same type (e.g. solid wall, inlet, outlet, etc.) [Lyg15].

 A node that is located at the intersection of two or more surfaces with different boundary

type is not agglomerated and remains a singleton throughout all the coarser meshes. An

exception to the rule arises when in a two-boundary node one of the two boundaries is a

symmetry one. In that case that control volume can be fused with other control volumes

that share the same boundary types [Nis11] [Lyg15].

 Agglomeration is not performed on nodes that belong on two or more boundary surfaces

that form slope discontinuities; agglomeration is permitted on a node that belongs on two

surfaces that form a sharp edge with angle lower than 30
o
.

 In order to ensure the validity of the data transfer between adjacent sub-domains, ghost

nodes of each domain are not merged during the agglomeration procedure; they are fused

subsequently, according to the merging of their corresponding core nodes at the adjacent

mesh [Ven95] [Lyg15].

 For the simulation of turbulent flows, the maximum fusion of nodes to a super-node is

limited to a number of eight, in order to preserve the topology of the initial mesh [Nis11]

[Lyg15].

Based on these general rules, the isotropic and directional agglomeration can be defined.

With the isotropic agglomeration strategy [Lyg15] the nodes’ control volumes are merged with

no regard as to the type of elements to which the nodes belong. Agglomeration is initiated from

the nodes of the solid wall boundaries (except those that were prohibited to merge in the

aforementioned rules). The nodes of the solid wall boundaries that are eligible for agglomeration

are marked as seeds; in case of internal boundaries due to domain decomposition, only the core

nodes are marked as seeds.

4-14

Agglomeration is performed by looping over the seed nodes, by examining their eligibility for

fusion with their adjacent ones. In case no limitation arises, the nodes’ adjacent node control

volumes merge with its own, and form a super-node. In case no adjacent node can be merged

with the current node in loop, its adjacent super-nodes are examined, in order to include it. The

loop is complete when all nodes of the seed list are either agglomerated or have remained

singletons. A new list of seeds is then constructed from the nodes that the agglomeration front has

touched and a new loop begins [Han02] [Lyg15]. The procedure ends when all nodes of the sub-

domain (except ghost nodes) have been agglomerated or assigned as singletons. A schematic

representation of the isotropic agglomeration procedure is presented in Figure 4.8 [Lyg15].

Figure 4.8 – Schematic representation of the isotropic agglomeration procedure.

When the basic agglomeration procedure has ended, ghost nodes are agglomerated or become

singletons, depended on the behavior of their corresponding core nodes. With this procedure

ghost super-nodes are generated, although their number of nesting control volumes may differ

from that of their corresponding core nodes. However, that only happens so that there will be a

one-to-one communication connection between core super-nodes and ghost ones; the correct

amount of data will be transferred to each ghost node [Lyg15].

From the generated super-nodes the new super-edges are constructed, by deleting the internal

edges in a super control volume and utilizing the external ones to calculate the normal vectors

 at the interfaces between super-node control volumes. Each resulting normal vector is the

sum of the vectors of the corresponding surfaces that belong to two neighboring super-nodes

[Sor03] [Lyg15]. The same agglomeration procedure is repeated for the generation of the coarser

grid, based on the newly generated one.

4-15

When the agglomeration procedure is completed, geometric data, such as the normal vectors at

the boundary faces and super node control volumes have to be evaluated at each agglomeration

level. These computations are performed with respect to the corresponding values at the merged

nodes and edges. Additionally, communication data have to be established between the new core

and ghost super-nodes at the neighboring agglomerated partitions [Lyg15].

In case of a hybrid mesh, for the simulation of viscous flow with boundary layers, the isotropic

agglomeration scheme would not be preferable for the merging of node control volumes in the

prismatic inflation area; full-coarsening directional agglomeration would be used instead [Car00]

[Nis11] [Nis13] [Lyg15]. With this kind of agglomeration the nodes of each layer of the inflation

region are characterized by an index number that groups nodes of different layers that are on the

same column; these groups are also called implicit lines [Nis11] [Lyg15]. As with the isotropic

agglomeration, a list of seed nodes is constructed, beginning with those that belong to the

boundary region. The seed nodes are merged with eligible ones that reside on the same layer and

do not share the same index, forming super-nodes.

Another list of seed nodes is constructed then, included nodes that were touched by the

agglomeration front, and therefore belong to the next prismatic layer. These seed nodes are then

allowed to merge with eligible nodes that reside on the same implicit lines, and therefore share

the same indexes. This procedure is repeated until all the prismatic layer nodes have been merged

and formed new super-nodes, or have remained singletons. The isotropic agglomeration

procedure is then implemented to complete the process for the rest of the mesh. A schematic

representation of the directional agglomeration method is presented in Figure 4.9 [Lyg15].

Figure 4.9 – Schematic representation of the full-coarsening directional agglomeration procedure.

4-16

4.2.2. Flux computation and numerical solution

The use of the agglomerated grids for the multigrid scheme is realized with the partial differential

equations, with the implementation of the Full Approximation Scheme (FAS), according to which

the PDEs are solved only at the finest grid, while an approximate version of those equations is

relaxed at coarser levels [Fer02] [Sor03] [Lam04] [Nis10] [Nis11] [Nis13] [Lyg14b] [Lyg15]. So,

in this case Equation 3.81, or Equation 3.84 (for unsteady flow simulations) is solved only at the

finest grid, while an approximate version of those two is solved at the coarser grids. Flow

variables are transferred between different agglomeration levels by restricting their values from

finer to coarser grids and prolonging them from coarser to finer resolutions. This procedure is

implemented in a form that resembles a V structure; PDEs are evaluated at the finer grid and their

values are restricted towards the coarsest grid, then this procedure is repeated in reverse with the

prolongation of the flow variables. A V cycle is defined as V(v1, v2), where v1 represents the

number of relaxations before proceeding to a coarser mesh, while v2 denotes the number of

relaxations after retrieving a solution from a coarser mesh [Lyg15].

Each V cycle begins with the approximation of the governing equations at the finest grid that

provides updated values of the flow variables for each node P. These values are restricted to the

next coarser grid by a smoothing equation, as follows [Mav97] [Car00] [Sor03] [Ni11] [Lyg14c]

[Lyg15]

 (4.1)

 (4.2)

where H denotes the finer mesh, while h represents the coarser one, and

 and

 are

restriction operators. After the restriction the relaxation of the PDE at the coarser mesh is

performed by substituting the right hand side term of the equation with the following one

[Mav97] [Car00] [Bla01] [Nis11] [Lyg14b] [Lyg15]

 (4.3)

where is the flux balance of node P in the coarse grid. When restricting to an even

coarser mesh, the same equations are used.

After half part of the V cycle is completed and the solution of the equations at the coarsest grid is

obtained, the flow variables are transferred via prolongation to the finer grids. In case of inviscid

flow a simple point injection scheme is used as follows [Car00] [Lyg15]

 (4.4)

where

 is a prolongation operator. In case of laminar or turbulent flows a distance-based

procedure is used that considers the nodes of the same type (internal or boundary), as follows

[Kat09] [Lyg15]

4-17

 (4.5)

where is the vector that connects super-node p with the super-node Q, while and

represent the corrections of flow variables on these nodes. The updated flow variables of the

nodes of the finer mesh are simply calculated as follows:

 (4.6)

In this study the FAS methodology is integrated with the Full Multigrid (FMG) scheme [Fer02]

[Lyg14b] [Lyg15], in order to gain from the advantages that the two have and increase the

obtained acceleration. With the FMG scheme, the relaxation of PDEs begins at the coarsest mesh,

without completing the V cycle to the finest grid. Instead, the magnitude of the cycle increases

progressively, until the finest mesh is included in the procedure [Lyg15]. In this way an initial

guess of the equations’ solution is achieved rather early, which is then fed to the finer grid and the

FAS V cycle is continued for the rest of the simulation.

5-1

CHAPTER 5

NUMERICAL RESULTS

5.1 Steady-state numerical solutions

5.1.1 Inviscid flow over a rectangular wing with a NACA0012 airfoil

The first test case considers the inviscid flow over a rectangular wing with a NACA0012 airfoil

[Lyg14b] [Nee97], with zero angle of attack, while the free-stream velocity is equal to unity, in

order to be correctly utilized by the dimensionless equations in the developed solver. The

computational mesh consisted of 625,250 nodes and 3,500,243 tetrahedrons, while the simulation

was performed on a DELL T7500 workstation with two Intel(R) Xeon(R)-X5660 six-core

processors at 2.80 GHz. The computational grid around the rectangular wing with NACA0012

airfoil is presented in Figures 5.1 and 5.2. The evaluation of the incompressible field was

performed with an artificial compressibility parameter value equal to 10.0, while the steady-state

solution was achieved with the explicit four-stage Runge-Kutta scheme, using a Courant–

Friedrichs–Lewy (CFL) number equal to 0.5. A summary of the simulation parameters is

presented in Table 5.1.

Table 5.1 – Simulation parameters for the inviscid flow over a rectangular wing with a NACA0012 airfoil case.

Parameters

Type of flow Inviscid

Reynolds number -

Angle of attack

Grid density
625,250 nodes

3,500,243 tetrahedrons

Artificial compressibility

parameter β.
10.0

Number of partitions 4

Number of agglomerations 3

CFL 0.5

Computer system
DELL T7500 workstation with two Intel(R) Xeon(R)-

X5660 six-core processors at 2.80 GHz

For the qualitative evaluation of this case, the dimensionless pressure contours at the mid-span of

the wing are presented in Figure 5.3, while Figure 5.4 illustrates the extracted chordwise pressure

coefficient distribution, compared to corresponding numerical results found in the literature

[Nee97], demonstrating good agreement between the two.

5-2

Figure 5.1 – Far View of the computational domain

around the rectangular wing with NACA0012 airfoil

Figure 5.2 – Close view of the computational domain

around the rectangular wing with NACA0012 airfoil.

Figure 5.3 – Dimensionless pressure contours at mid-span of the rectangular wing with NACA0012 airfoil.

5-3

Figure 5.4 – Pressure coefficient distribution along the mid-span of the wing.

5-4

5.1.2 Three-dimensional lid-driven cavity flow

The second test case studied in this work concerns the three-dimensional lid-driven laminar

viscous flow inside a cubic cavity. The geometry, as illustrated in Figure 5.5 consists of a cube

with edge size equal to unity. All of the cube walls, except one, are considered as solid walls

where no-slip conditions are imposed, while the last wall, which is arbitrarily selected as the

upper surface of the cube, is considered as “inflow” where fluid moves with a velocity equal to

unity; .

Figure 5.5 – Geometry and utilized grid for the lid-driven cavity flow case.

The lid-driven cavity flow problem is considered a classic recirculation problem, and may

idealize many environmental, geophysical and industrial flows, while extensive work on this

specific case can be found in [Kos84] [Jia94] [Yan98] [Mon01] [Sheu02] [Tai05] [Vra12]. The

computational grid used in this work consists of 768,628 nodes, 1,280,935 tetrahedrons, while 10

layers of 1,050,140 prisms in total have been applied at the five walls of the cube where the no-

slip conditions were imposed. Simulation was performed on a DELL T7500 workstation with two

Intel
®
 Xeon

®
-X5650 four-core processors at 2.67 GHz, while for acceleration of the procedure by

parallel processing, the initial grid was divided into four sub-domains, with the METIS algorithm.

Many researchers have found that flows of this kind with Reynolds numbers ranging lower than

2000 (Re<2000) can result to steady-state solutions and no Taylor-Görtler-like (TGL) vortices

[Tai05] appear. In this work, two simulations were performed with aim to reach at a steady-state

solution; one with a Reynolds number equal to 400 (Re=400) and one at Re=1000, calculated

with respect to the cube’s edge length. The artificial compressibility parameter β was selected

equal to 10.0, while the steady-state solution of both described flows was achieved with the

explicit four-stage Runge-Kutta scheme using a CFL number equal to 0.5. The no-slip boundary

5-5

conditions in this case are imposed as it is described in Chapter 3, however due to the need to

maintain constant speed of unity at the inlet, Dirichlet boundary conditions were enforced at the

upper surface of the cubical cavity. A summary of the solution parameters is presented in Table

5.2.

Table 5.2 – Simulation parameters for the lid-driven laminar viscous flow inside a cubical cavity case.

Parameters

Type of flow Viscous – Laminar

Reynolds number 400, 1000

Angle of attack

Grid density

768,628 nodes

1,280,935 tetrahedrons

1,050,140 prisms

Artificial compressibility

parameter β.
10.0

Number of partitions 4

Number of agglomerations 3

CFL 0.5

Computer system
DELL T7500 workstation with two Intel

(R)
 Xeon

(R)
-

X5650 four-core processors at 2.67 GHz

Figure 5.6 illustrates the velocity profiles of component u on the vertical centerline of the x-z

plane at y=0.5, along with the profiles of the v component of velocity on the horizontal centerline

of the same plane at Re=400. The respective results for the case of Re=1000 are presented in

Figure 5.7. Both results are compared to corresponding numerical solutions by Tai and Zhao

[Tai05]; sufficient agreement can be reported, demonstrating that the proposed code is capable of

simulating accurately such complex flows.

In figure 5.8 the velocity streamlines on the x-y plane at x=0.5, along with the contours of the

dimensionless u velocity component at Re=400 (left) as well as Re=1000 (right) is presented. The

lower and two side edges of the plane are considered solid walls, where velocity has a value equal

to zero, while at the upper edge fluid moves with a velocity equal to unity towards the positive

direction of the x-axis. The flow at this plane is characterized by a primary vortex near the

middle, and two smaller ones being created at the bottom of the cavity. It can be observed that the

primary vortex moves towards the center of the cavity as the Reynolds number increases and two

smaller vortices appear in the two lower corners, with the leftmost one being more intense in the

case of Re=1000. In Figure 5.9 similar velocity streamlines along with the u velocity component

contours are presented at y=0.5 of the x-z plane. In both cases two symmetrical contra-rotating

vortices can be observed towards the negative direction of the x axis. In the case of Re=1000 a

singularity point can be observed on the x-z plane near the center of the cubical cavity. This point

is a discontinuity where the flow is moving vertically to the x-z plane and is also visible in the

case of Re=1000. Finally, in Figure 5.10, similar streamlines and contours are sketched at x=0.5

of the y-z plane. Here, two pairs of mirroring vortices appear near the four corners of the cube.

Each pair consists of a primary and a secondary vortex. The phenomenon intensifies with the

increase of the Reynolds number and the vortices become more distinct.

5-6

Figure 5.6 – Distributions of u and v velocity components along the x and y centerlines respectively, of the x-z

plane at z=0.5 (Re=400).

Figure 5.7 – Distributions of u and v velocity components along the x and y centerlines respectively, of the x-z

plane at z=0.5 (Re=1000).

5-7

Figure 5.8 – Velocity traces and u velocity contours on x-y plane at z=0.5 with Re=400 (left) and Re=1000 (right).

Figure 5.9 – Velocity traces and u velocity contours on x-z plane at y=0.5 with Re=400 (left) and Re=1000 (right).

Figure 5.10 – Velocity traces and u velocity contours on y-z plane at x=0.5 with Re=400 (left) and Re=1000

(right).

5-8

5.1.3 Steady viscous flow around a circular cylinder

The quasi-3D laminar flows over a circular cylindrical surface are popular test cases for

incompressible flow solvers [Cou77] [Fra90] [Tai03] [Vra12], as they tend to produce unsteady

results in most cases. Steady-state can be achieved only at very low Reynolds numbers, around

the value of 40, calculated with respect to the cylinder’s diameter. The computational grid,

presented in Figure 5.11, consists of 474,540 nodes, 1,222,663 tetrahedrons and 494,130 prisms,

while parallel computation was performed by dividing it into eight partitions. Simulation was

performed on a workstation with an AMD FX™ 8150 eight-core processor at 3.62 GHz. Further

acceleration was achieved with the multigrid scheme, for which three coarser grids were

generated with the directional agglomeration scheme.

Figure 5.11 – Utilized grid density for the steady viscous flow over a circular cylinder.

As it was mentioned before, steady state solution in this case can be achieved at a very low

Reynolds number, therefore simulation was performed at Re=40. The artificial compressibility

parameter was set equal to 10.0, while time integration was performed with the explicit Runge-

Kutta scheme with a CFL number of 0.5. A summary of the simulation parameters is presented in

Table 5.3.

In Figure 5.12 the velocity streamlines at the mid-span of the cylinder is presented, along with the

non-dimensional pressure contours. The two fully developed symmetrical vortices at the wake of

the cylinder can be observed, while the contours of the u velocity component are presented in

Figure 5.13. Assessment of this case can be performed by evaluating certain geometric

parameters of those two vortices [Cou77], which can be easily measured. Figure 5.14 illustrates

the basic geometric characteristics of the “twin vortices”; namely, Ls is the length of the “standing

eddies”, measured from the rear end of the cylindrical surface up to the end of the observed

recirculation, α represents the horizontal length measured from the rear end of the cylinder up to

5-9

the vortices’ center, b denotes the distance between the two vortices centers and θs is the

separation angle.

Table 5.3 – Simulation parameters for the steady viscous flow around a circular cylinder.

Parameters

Type of flow Steady viscous

Reynolds number 40

Angle of attack

Grid density

474,540 nodes

1,222,663 tetrahedrons

494,130 prisms

Artificial compressibility

parameter β.
10.0

Number of partitions 8

Number of agglomerations 3

CFL 0.5

Computer system
workstation with an AMD FX™ 8150 eight-core

processor at 3.62 GHz

Figure 5.12 – Velocity streamlines at the cylinder’s mid-span, and dimensionless pressure contours.

5-10

Figure 5.13 – Contours of the u velocity component at the mid-span of the cylindrical surface.

Figure 5.14 – Geometric characteristics of the “mirror vortices” appearing at the wake of the cylindrical

surface.

In table 5.4 the geometric parameters of the symmetrical vortices at the wake of the cylindrical

surface, obtained with Galatea-I, are presented in comparison with experimental and numerical

ones found in the literature. The results for the separation length Ls are closer to the experimental

ones by Coutanceuau et al. [Cou77], while good agreement with all reference results can be

reported for the separation angle θs. Sufficient agreement can also be reported for the parameter b,

while a discrepancy is observed for the length a. This can be attributed to the mesh density at the

wake of the cylinder. It is believed that finer mesh can provide better results.

5-11

Table 5.4 – Simulation parameters for the steady viscous flow around a circular cylinder.

 Separation

length Ls

Separation

angle θs

a b

Present solver 2.16D 53.2
 o
 0.51 0.56

Coutanceau et al.

[Cou77] (experimental)
2.13D 53.0

o
0.76 0.59

Franke et al. [Fra90]

(numerical)
2.36D 53.8

o
- -

Vrahliotis et al. [Vra12]

(numerical)
2.24D 53.0

o
 0.71 0.59

Finally, the convergence history of the four dimensionless parameters is presented in Figure 5.15.

The equations were converged up to a residual of 1.0E-9, requiring a little over than 30,000

iterations.

Figure 5.15 – Convergence history of the four flow parameters for the steady flow around a circular cylinder.

5.1.4 Steady viscous laminar flow around a sphere.

Viscous flow around a sphere at low Reynolds numbers is a simple test case with a theoretical

solution concerning the drag force, as it was presented by Stokes in 1851 [Sto51]. However,

significant interest is found in the simulation of the wake behind a sphere. Flow separation at the

rear of a sphere begins at a Reynolds number equal to 24 [Tan56] [Joh99], resulting in an

axisymmetric vortex ring. The flow is steady up to a Reynolds number in the region

210<Re<270, where the vortex is transformed into a double-threaded wake [Mag61] [Joh99],

steady in geometry, vortex shedding in nature.

In this test case the Reynolds number is equal to 100, computed with respect to the sphere’s

diameter. The computational mesh consists of 265,492 nodes, 236,362 tetrahedrons and 444,288

prisms, as 32 layers of prisms were generated over the sphere surface, with the first layer distance

5-12

from the surface mesh equal to 0.025D, where D is the sphere’s diameter. The flow direction is

along the y axis, with the artificial compressibility parameter being equal to 10.0 and the CFL

number equal to 0.5. The computational mesh is illustrated in Figure 5.16, while a summary of

the test case configuration is presented in Table 5.5.

Figure 5.16 – Utilized mesh for the viscous laminar flow around a sphere.

Table 5.5 – Simulation parameters for the steady viscous flow around a sphere.

Parameters

Type of flow Steady viscous

Reynolds number 100

Angle of attack

Grid density

265,492 nodes

236,362 tetrahedrons

444,288 prisms (32 layers)

Artificial compressibility

parameter β.
10.0

Number of partitions 4

Number of agglomerations 2

CFL 0.5

Computer system
workstation with an AMD FX™ 8150 eight-core

processor at 3.62 GHz

In Figure 5.17 the pressure contours around the sphere along with the velocity streamlines is

presented. The flow separation is obvious, while a pair of symmetrical vortices can be seen at the

wake of the sphere. Actually, what seems as a pair of vortices is in fact a single axisymmetric

vortex ring, a slice of which is visible in the figure. This is more obvious in Figure 5.18 where the

velocity streamlines have been sketched in a three-dimensional form and the axisymmetric vortex

is clearly defined. The geometric characteristics of the wake region of the sphere have been

documented by various researchers. The corresponding results of the present solver, compared to

those reported by various researchers, are presented in Table 5.6.

5-13

Figure 5.17 – Pressure contours along with velocity streamlines around a sphere at Re=100.

Figure 5.18 – Velocity streamlines at the wake of a sphere.

5-14

Table 5.6 – Characteristics of viscous laminar flow around a sphere.

 Separation

length Ls

Drag coefficient

Cd

Present solver 1.34D 1.098

Taneda [Tan56]

(experiment)
1.39D -

Lee [Lee00] (numerical) 1.34D 1.087

Le Clair [LeC70]

(numerical)
- 1.096

Wang et al.[Wan08]

(numerical)
1.36D 1.108

It is clear from the results on Table 5.5 that the present solver is capable of simulating accurately

such flows as the one presented in this case. The length of the vortex at the wake of the sphere is

clearly well predicted, as well as the drag coefficient on the sphere. In Figure 5.19 the pressure

coefficient on the surface of the sphere is presented. The results show very good agreement to the

numerical results by Lee [Lee00] and Le Clair [LeC70]. Additionally, the pressure coefficient at

the centerline of the wake region is presented in Figure 5.20 and is compared to the results from

Lee [Lee00]. Aside from minor discrepancies at approximately x/D=3, a sufficient accuracy is

observed for the results of the present solver.

Figure 5.19 – Pressure distribution on the surface of the sphere at Re=100.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0.00 50.00 100.00 150.00

C
p

Angle from stagnation point θ

Current

Lee

Le Claire

θ Flow

5-15

Figure 5.20 – Pressure distribution along the centerline of the wake behind the sphere, at Re=100.

5.1.5 Turbulent flow over a rectangular wing with a NACA0012 airfoil.

The first test case to introduce the turbulence equations is the quasi-3D problem of turbulent

viscous flow over a rectangular wing with a NACA0012 airfoil. This specific case proved to be a

challenge, due to the dense mesh that was required to be generated in order to simulate with

accuracy the thin boundary layer. The computational mesh that was finally generated, consisted

of 4,823,633 nodes, 5,182,381 tetrahedrons and 7,687,320 prisms, while it was divided in sixteen

partitions for parallelized computation on a Dell™ R815 Poweredge server with four AMD

Opteron™ 6380 sixteen-core processors at 2.50GHz. The computational mesh is presented in

Figure 5.21. The solution was accelerated employing four coarser meshes for the agglomeration

multigrid method. The Reynolds number was set equal to 3.0E+6, the artificial compressibility

parameter was set equal to 10.0 and the CFL number to 0.5. A summary of the simulation

parameters is presented in Table 5.6.

Figure 5.21 – Utilized mesh for the viscous turbulent flow around a rectangular wing with NACA0012 airfoil.

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0 2 4 6 8 10 12 14 16 18 20

C
p

y\D

Current

Lee

5-16

Table 5.7 – Simulation parameters for the steady viscous turbulent flow around a NACA0012 rectangular wing.

Parameters

Type of flow Steady viscous turbulent

Reynolds number 3.0E+6

Angle of attack

Grid density

4,823,633 nodes

5,182,381 tetrahedrons

7,687,320 prisms

Artificial compressibility

parameter β.
10.0

Number of partitions 16

Number of agglomerations 4

CFL 0.5

Computer system
Dell™ R815 Poweredge server with four AMD

Opteron™ 6380 sixteen-core processors at 2.50GHz

The simulation in this case was evaluated against the experimental data by Gregory and O’Reilly

[Greg70]. In Figure 5.22 the pressure coefficient distribution along the mid-span of the

NACA0012 rectangular wing is presented. It is clear that the results from the proposed solver

agree very well with the reference experimental data. In Figures 5.23 and 5.24 the contours of

pressure, streamwise velocity and turbulent kinematic viscosity, respectively, are illustrated.

Figure 5.22 – Pressure distribution along the mid-plane of the NACA0012 rectangular wing.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0.00 0.20 0.40 0.60 0.80 1.00

C
p

x\L

Current

Gregory and O'Reilly

5-17

Figure 5.23 – Pressure contours (left) and velocity contours (right) at the mid-span of the NACA0012

rectangular wing.

Figure 5.24 – Turbulent kinematic viscosity contours at the mid-span of the NACA0012 rectangular wing.

5-18

5.1.6 Steady turbulent flow around an axisymmetric submarine hull at 0o, 18o and 30o

angle of attack

The following benchmark test case is the first part of a family of test cases concerning the

(pseudo-) steady turbulent flow around the surfaces of a submarine model. The model, named

SUBOFF, was designed by the David Taylor Research Center (DTRC) [Gro89] [Hua89] [Gor90]

[Liu98] on behalf of the Defense Advanced Research Projects Agency (DARPA). It was designed

as an axisymmetric hull with appendable parts, such as a fairwater configuration, stern

appendages and two different stern ring wings. Experiments in a wing tunnel as well as a towing

tank were performed at the DTRC on different configurations of the SUBOFF model and on

different attack angles [Hua89], and the obtained experimental flow results were cross-validated

with corresponding numerical ones [Gor90].

In this study the flow around the axisymmetric hull of the submarine model has been simulated in

different Reynolds numbers and angles of attack, while the flow around the submarine hull with a

fairwater configuration has also been simulated at 0
o
 angle of attack and 0

o
angle of yaw. For the

generation of the geometric entities of the SUBOFF model, appropriate Fortran codes have been

developed, based on existing ones published openly by the DTRC [Gro89].

Figure 5.25 – The geometry of the SUBOFF axisymmetric hull.

In this case the axisymmetric hull of the SUBOFF model is initially simulated at 0
o
 angle of

attack with the free-stream Reynolds number equal to 12.0E+6. The flow around the same

geometry is then simulated at a Reynolds number equal to 14.0E+6 at angles of attack equal to

0
o
, 18

o
 and 30

o
. All Reynolds numbers are calculated with respect to the length of the model. The

geometry of the hull is presented in Figure 5.25. The original length of the model is equal to

14.291667 ft (4.356 m) with a maximum diameter equal to 1.66666667 ft (0.508 m). The utilized

mesh for this case is presented in Figures 5.26 and 5.27. The three-dimensional hybrid grid

consisted of 2,132,623 nodes, 4,479,251 tetrahedrons and 2,713,100 prisms. Attention was

directed to the stern area of the model, where flow separation phenomena were expected to occur;

thickening of the surface mesh was applied in those regions. The same computational mesh has

been utilized for all simulated flows.

5-19

Figure 5.26 –Utilized mesh for the SUBOFF hull case.

Figure 5.27 – Detail of SUBOFF hull mesh at the stern area.

Simulation was performed on a DELL T7500 workstation with two Intel(R) Xeon(R)-X5650

four-core processors at 2.67 GHz. The CFL number was set equal to 0.5 and the artificial

compressibility parameter β was set equal to 10.0 for all cases. The original computational

domain was divided into eight sub-domains for parallel processing. The differentiation in the

angle of attack was imposed on each case through the boundary conditions and the initial

conditions. The simulation parameters for this test case are summarized in Table 5.8.

5-20

Table 5.8 – Simulation parameters for the steady viscous turbulent flow around the SUBOFF bare hull.

Parameters

Type of flow Steady viscous turbulent

Reynolds number 12.0E+6, 14.0E+6

Angle of attack 0
o
, 18

o
, 30

o

Grid density

2,132,623 nodes

 4,479,251 tetrahedrons

 2,713,100 prisms

Artificial compressibility

parameter β.
10.0

Number of partitions 8

Number of agglomerations 4

CFL 0.5

Computer system
DELL T7500 workstation with two Intel(R) Xeon(R)-

X5650 four-core processors at 2.67 GHz

Figure 5.28 illustrates the pressure coefficient distribution along the middle of the hull geometry

at 0
o
 angle of attack for a Reynolds number equal to 12.0E+6, along with reference numerical

results. Very good agreement is observed between the results obtained by the current solver and

those found in the literature. The pressure coefficient distribution at the same region for the

simulation with Reynolds number equal to 14.E+6 is presented in Figure 5.29, while Figure 5.30

contains the velocity profiles at x\L=0.904. The results for this case are compared to experimental

ones [Tox08], as well as numerical ones [Gro11]. As it can be observed, there is a good

agreement with the numerical results, but small discrepancies are observed when compared to the

experimental ones. Concerning the discrepancies found at the pressure coefficient distribution,

these are considered negligible as the general form of the pressure distribution is well predicted.

The poor agreement with the experimental results at the velocity profile data was also observed

by Gross et al. [Gro11].

Figure 5.28 – Pressure coefficient distribution along the middle of the hull geometry at 0o angle of attack

(Re=12.0E+6).

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

C
p

x\L

Current

Gorski et al.

5-21

Figure 5.29 – Pressure coefficient distribution along the middle of the hull geometry at 0o angle of attack

(Re=14.0E+6).

Figure 5.30 – Velocity profiles at x\L=0.904 of the bare hull model geometry at 0o angle of attack (Re=14.0E+6).

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

C
p

x\L

Current

Numerical (Gross et al.)

Experimental (Toxopeus)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.2 0.4 0.6 0.8 1

r-
r 0

u

Current

Experimental (Toxopeus)

Numerical (Gross et al.)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

-0.2 -0.15 -0.1 -0.05 0

r-
r 0

w

Current

Experimental (Toxopeus)

Numerical (Gross et al.)

5-22

Figure 5.31 – Pressure contours at the mid-plane of the hull geometry at 0o angle of attack (Re=12.0E+6).

Figure 5.31 contains the pressure contours around the hull model at 0
o
 angle of attack, for a

Reynolds number equal to 12.0E+6. The turbulent kinematic viscosity contours for the same test

case are presented in Figure 5.32. Finally, in Figure 5.33 the streamwise velocity contours at the

stern region of the bare hull model, along with the velocity streamlines are illustrated.

Figure 5.32 – Turbulent kinematic viscosity contours along the middle of the hull geometry at 0o angle of attack

(Re=12.0E+6).

5-23

Figure 5.33 – Streamwise velocity contours along with velocity streamlines at the stern region of the SUBOFF

bare hull geometry, at 0o angle of attack (Re=12.0E+6).

While there are no significant changes in the flow when the Reynolds number increases to

14.0E+6, there are major differences when the flow angle changes radically, to 18
o
 and then to

30
o
. The differences in the streamwise velocity contours, as well as the turbulent kinematic

viscosity contours, between the simulations with the three flow angles, with Reynolds number

equal to 14.0E+6, are presented in Figure 5.34. As it was expected, at 0
o
 angle of attack the

turbulent kinematic viscosity increases at the stern area of the hull in a symmetric fashion, leading

to a thicker turbulent layer. This increase in μτ is due to the minor flow separation phenomena that

occur in that region, as the thickness of the hull decreases. As the angle of attack increases the

boundary layer at the windward side becomes thinner, while it thickens at the leeward side. This

observation can hint at the existence of three-dimensional flow separation phenomena at the

leeward side of the hull with increasing the angle of attack. These phenomena can be easily

identified by sketching the skin friction lines on the surface of the model. In Figure 5.35 the skin

friction lines on the windward and leeward side of the SUBOFF hull are presented for the three

different attack angles. At higher angles of attack the points where the skin friction lines converge

indicate flow separation regions.

5-24

Figure 5.34 – Streamwise velocity contours (left) and turbulent kinematic viscosity contours (right) for the

turbulent flow around a bare submarine hull at angles of attack equal to a) 0o, b) 18o and c) 30o.

c) Angle of attack = 0o

b) Angle of attack = 18o

a) Angle of attack = 30o

5-25

Figure 5.35 – Skin friction lines on the surface of the hull geometry at three angles of attack. Lines are sketched

on the windward (upper) and leeward (lower) sides.

For the numerical evaluation of the cases with angles of attack equal to 18

o
 and 30

o
 the pressure

coefficient distributions have been evaluated on the windward and leeward side of the hull, as

well as the intermediate side. In figure 5.36 the pressure coefficient distribution along the

midplane of the bare hull geometry at the leeward and windward side is presented. The results

from the Galatea-I code are compared to numerical ones [Tox08] [Gro11]. A good agreement can

be found with the corresponding results by Toxopeus with minor discrepancies at the stern of the

hull, especially at the leeward side, where strong separation phenomena occur. Similar results are

presented in Figure 5.37 for the case of 30
o
 angle of attack. The results are compared with

numerical ones by Gross et al. [Gro11] that were produced with their home code, as well as with

those that they produced with ANSYS
TM

 CFX
TM

. Sufficient agreement can be found with the

0
ο
 angle of

attack

18
ο
 angle of

attack

30
ο
 angle of

attack

5-26

results from both codes at the windward side of the hull, while at the leeward side a slight

disagreement with the results from their homemade code can be observed; results that were

produced with CFX
TM

 are very close to the ones produced with Galatea-I.

Figure 5.36 – Pressure coefficient distribution along the midplane of the SUBOFF hull at the leeward side

(upper) and the windward side (lower) at 18o angle of attack.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
p

x\L

Pressure coefficient distribution at the leeward
side at 18o

 angle of attack

Current

Gross et al.

Toxopeus

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
p

x\L

Pressure coefficient distribution at the windward
side at 18o angle of attack

Current

Gross et al.

Toxopeus

5-27

Figure 5.37 – Pressure coefficient distribution along the midplane of the SUBOFF hull at the leeward side

(upper) and the windward side (lower) at 30o angle of attack.

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8 1

C
p

x\L

Pressure coefficient at the leeward side at 30o
angle of attack

Gross et al. (CFX)

Gross et al.(house code)

Current

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0

C
p

x\L

Pressure coefficient at the windward side at 30o
angle of attack

Gross et al.

Current

5-28

5.1.7 Turbulent flow around a submarine hull with bridge fairwater configuration.

The next case comes from the SUBOFF family and concerns the turbulent flow around the bare

hull geometry that was described in the previous section, attached with a bridge fairwater

configuration. Similarly to the previous case, the fairwater sail geometry was produced using the

appropriate Fortran codes. The fairwater sail is attached on the hull geometry at x\L=0.207 and is

modeled as forebody, a parallel middle body and an afterbody region; a sail cap attaches to the

top of the geometry. Figure 5.38 illustrates the fairwater geometry, while the complete model is

presented in Figure 5.39.

Figure 5.38 – Fairwater sail geometry attached on the SUBOFF hull geometry.

Figure 5.39 – Complete model of the SUBOFF hull with attached fairwater sail configuration.

5-29

In order to reduce the computational cost, as well as the memory consummation, the symmetry of

the flow was exploited and half of the geometry was meshed. The utilized mesh consisted of

1,873,583 nodes, 5,830, 454 tetrahedrons, 1,689,493 prisms and 532 pyramids. The inflation

mesh that consisted of prisms contained 15 layers, while the first layer’s distance from the solid

wall was equal to 5∙10
-5

L. Attention was focused on the fairwater area, as the most complex

phenomena encountered in this case would appear near that region; thickening of the mesh was

applied in certain regions of the sail geometry, especially the leading and trailing edges, as well as

its base. As with the bare hull geometry, increase of the mesh density was applied at the stern area

of the model. In Figure 5.40 the utilized mesh is presented as a whole, along with details of the

mesh thickening that was applied in certain areas of the model. In Figure 5.41 detailed view of

the mesh at the fairwater area is presented.

Figure 5.40 – Utilized computational mesh for the SUBOFF hull with fairwater configuration test case.

Figure 5.41 – Detailed view of the mesh at the fairwater sail area.

5-30

The Reynolds number for this case was set equal to 12.0E+6, calculated with respect to the hull’s

length. The artificial compressibility parameter was set equal to 10.0 and the explicit Runge-

Kutta temporal discretization scheme was realized with a CFL number equal to 0.5. Simulation

was performed on a Dell T7500 workstation with two Intel® Xeon® X5660 four-core processors

at 2.80 Ghz. For parallel processing the utilized mesh was partitioned into eight sub-domains. A

summary of the simulation parameters can be found in Table 5.9.

Table 5.9 – Simulation parameters for the steady viscous turbulent flow around the SUBOFF hull with fairwater

sail configuration.

Parameters

Type of flow Steady viscous turbulent

Reynolds number 12.0E+6

Angle of attack 0
o

Grid density

1,873,583 nodes

5,830,454 tetrahedrons

1,689,493 prisms

532 pyramids

Artificial compressibility

parameter β.
10.0

Number of partitions 8

Number of agglomerations 4

CFL 0.5

Computer system
Dell T7500 workstation with two Intel® Xeon® X5660

four-core processors at 2.80 Ghz.

Figure 5.42 – Pressure contours on the surface and around the SUBOFF hull and fairwater sail model.

5-31

Figure 5.43 – Streamwise velocity contours on the surface and around the SUBOFF hull and fairwater sail

model.

5-32

Figure 5.44 – Turbulent kinematic viscosity contours on the surface and around the SUBOFF hull and fairwater

sail model.

As it was expected, due to the fairwater configuration, a thick turbulent boundary layer can be

observed at the upper region of the hull, due to the wake of the sail. As it is visible in Figures 5.42

and 5.43, a stagnation point exists at the forebody region of the sail, that leads to high pressure

values (Figure 5.42) and low streamwise velocity values (Figure 5.43). The generated turbulent

boundary layer at the wake of the sail is visible in Figure 5.44, where the turbulent kinematic

viscosity is plotted.

5-33

Figure 5.45 – Pressure contours and velocity streamlines around the fairwater sail (left). Detail of the horseshoe

vortex developing before the stagnation point at the base of the sail (right).

Figure 5.46 – Pressure contours and velocity streamlines on the Y-Z plane at the trailing edge of the fairwater

sail.

At the base of the fairwater configuration a horseshoe vortex is developing as the flow at the

stagnation point is swept downwards and interferes with the boundary layer at the hull. The

vortex is presented in Figure 5.45, where on the left the pressure contours, along with the velocity

streamlines are sketched around the fairwater sail, while on the right a detail at the base upwind

the sail is shown, with a more obvious illustration of the horseshoe vortex. On the same figures

there can be seen that there is considerable turning of the flow over the top of the sail. In Figure

5.46 the area at the trailing edge of the sail is illustrated, with the pressure contours and crossflow

velocity streamlines at that area. The trailing vortex at the base of the sail, part of the horseshoe

5-34

vortex that is presented in Figure 5.47 is also evident. The flow in this figure is pictured as if the

viewer would look forward, towards the bow of the submarine. Moreover, on the same figure, a

secondary vortex can be observed, developing at the tip of the sail. The tip vortex is of minor

intensity and dissipates towards the stern of the hull, either due to viscosity or numerical factors.

In Figures 5.47, 5.48 and 5.49, the pressure coefficient on various points on the fairwater sail and

on various heights was calculated and compared to numerical results by Gorski et al. [Gor90].

Although a discrepancy is observed between the current and reference results near the leading

edge of the sail, the pressure coefficient at the rest of the geometry seems to agree very well with

the numerical results. As the point near the leading edge (0.207L) is near the symmetry plane of

the model, the observed discrepancy can be attributed to numerical diffusion due to the symmetry

boundary conditions in that area. In Figure 5.50 the velocity streamlines around the SUBOFF hull

with fairwater sail configuration are presented in a three-dimensional perspective. The forming

horseshoe vortex is visible at the base in front of the fairwater sail, while the flow envelopes the

whole geometry with adequate turning over the presented obstacles.

Figure 5.47 – Pressure coefficient on the sail at height z=0.0629L.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0.2 0.22 0.24 0.26 0.28 0.3

C
p

x/L

z=0.0629L

Current

Gorski et al. (numerical)

5-35

Figure 5.48 – Pressure coefficient on the sail at height z=0.0818L.

Figure 5.49 – Pressure coefficient on the sail at height z=1.007L.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0.2 0.22 0.24 0.26 0.28 0.3

C
p

x/L

z=0.0818L

Current

Gorski et al. (numerical)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0.2 0.22 0.24 0.26 0.28 0.3

C
p

x/L

z=1.007L

Current

Gorski et. Al
(numerical)

5-36

Figure 5.50 – Velocity streamlines around the SUBOFF hull with the fairwater sail configuration.

5-37

5.2 Unsteady numerical solutions

5.2.1 Unsteady laminar flow around a circular cylinder

The first test case that involves unsteady flow conditions is the popular among researchers

[Rog90] [Bel95] [LiuC98] [Cha99] [Tai03] [Vra12] laminar viscous flow around a circular

cylinder test case. This kind of flow produces unsteadiness at very low Reynolds numbers (just

over 100) and as such has been very well documented in the open literature. While as

demonstrated in Chapter 5.1.3 with steady laminar flow around a circular cylinder a pair of

symmetrical vortices appear at the wake of the cylindrical surface, when the Reynolds number

increases beyond 100 these vortices begin to oscillate. In each real time step there is a large and a

smaller vortex following oscillatory motion and shedding vortices at the wake of the cylinder,

thus forming the so called von Karman street [VKa63].

Figure 5.51 – Geometry of the computational field for unsteady flow around a circular cylinder.

Figure 5.52 – Computational mesh for the simulation of unsteady laminar flow around a circular cylinder.

The utilized geometry for this model consisting of a circular cylinder of diameter D=1m, and

length L=2m is presented in Figure 5.51. In order to fully capture the Von Karman street

phenomenon the field at the wake of the cylinder was extended to 30D, while at the upstream

region, as well as over and under the cylinder the length of the computational field was equal to

10D. The generated computational mesh consisted of 1,361,895 nodes, 6,975,754 tetrahedrons

and 274,770 prisms; the latter enveloped the cylindrical surface in 15 layers. The first layer height

was equal to 1.0E-3, while at the area of the wake sufficient thickening of the mesh was applied

5-38

to accurately calculate all the flow phenomena in that region. The computational mesh is

presented in Figure 5.52.

Simulation for this case was performed on a workstation with an AMD FX™ 8150 eight-core

processor at 3.62 GHz. The computational mesh was divided into eight sub-domains for parallel

processing, while three coarser meshes were generated with the agglomeration method for

employing the directional agglomeration multigrid methodology in order to further accelerate the

simulation procedure. The Reynolds number was set equal to 200, calculated with respect to the

cylinder’s diameter, while the artificial compressibility parameter was set equal to 10.0 and the

CFL number was equal to 0.5; the dimensionless real time step was equal to 0.05. A summary of

the simulation parameters can be found in Table 5.10.

Table 5.10 – Simulation parameters for the unsteady laminar flow around a circular cylinder.

Parameters

Type of flow Unsteady Laminar

Reynolds number 200

Angle of attack

Grid density
1,361,895 nodes

6,975,754 tetrahedrons

 274,770 prisms

Artificial compressibility

parameter β.
10.0

Number of partitions 8

Number of agglomerations 3

CFL 0.5

Dimensionless real time step 0.05

Computer system
Workstation with AMD FX™ 8150 eight-core processor at

3.62 GHz.

In Figure 5.53 the evolution of lift and pressure coefficients on the cylinder surface through real

time is presented. It can be observed that unsteadiness is achieved from the first real time

moments, where the oscillatory movement of the flow is at a minimum. The phenomenon

increases in amplitude and achieves periodicity at approximately dimensionless real time equal to

45. The frequency of the periodic oscillatory motion can provide the Strouhal number, which is a

dimensionless number that describes the vortex shedding phenomenon and is calculated as:

 (5.1)

where f is the vortex shedding frequency, L∞ is the characteristic length and U∞ is the far field

velocity. In Table 5.11 the Strouhal number, the mean lift and drag coefficients, as well as their

deviations are compared to reference results found in [Rog90] [Bel95] [LiuC98] [Cha99] [Tai03]

[Vra12]. It is obvious that there is sufficient agreement between the results from Galatea-I and

the reference ones.

5-39

Table 5.11 – Comparison of flow numerical properties between current and reference solvers.

St CL CD

Current 0.196 0.0±0.63 1.34±0.047

Rogers and Kwak [Rog90] 0.185 0.0±0.65 1.23±0.05

Belov et. al. [Bel95] 0.193 0.0±0.64 1.19±0.042

Liu et. al. [LiuC98] 0.192 0.0±0.69 1.31±0.049

Chan and Anastasiou [Cha99] 0.183 0.0±0.63 1.48±0.05

Tai et al. [Tai03] 0.195 0.0±0.64 1.31±0.041

Vrahliotis et al. [Vra12] 0.198 0.0±0.69 1.36±0.046

Figure 5.53 – Time history of lift and drag coefficients on the circular cylinder.

In Figures 5.54 through 5.57 the pressure contours and velocity streamlines around the circular

cylinder are illustrated for four different moments in a period of the oscillatory phenomenon

(T=0, T=0.25, T=0.5 and T=0.75). The vortex shedding phenomenon is very clear in these

illustrations, as there can be observed a periodic movement of two vortices (a major and a minor

one) at the wake of the cylinder. The iconic Von Karman Street can also be observed as it

propagates towards the rear boundary of the computational domain. The vortex shedding

phenomenon is more clearly illustrated in Figure 5.58, where the evolution of the vorticity

contours at the wake of a cylinder in a period of the phenomenon is presented.

-1

-0.5

0

0.5

1

1.5

2

0 20 40 60 80 100 120

Time

CL

CD

5-40

Figure 5.54 – Pressure contours and velocity streamlines around a cylinder at T=0.

Figure 5.55 – Pressure contours and velocity streamlines around a cylinder at T=0.25.

Figure 5.56 – Pressure contours and velocity streamlines around a cylinder at T=0.5.

5-41

Figure 5.57 – Pressure contours and velocity streamlines around a cylinder at T=0.75.

Figure 5.58 – Evolution of vorticity contours in a period of the vortex shedding phenomenon.

5-42

5.2.2 Unsteady turbulent flow around a circular cylinder.

Utilizing the same geometry as with the previous chapter, the turbulent viscous flow around a

circular cylinder was simulated. In order to reduce the computation time, as expected by the

turbulence modeling and the unsteady computation, a coarser mesh than the one utilized in the

laminar viscous case was generated. The new mesh consisted of 654,103 nodes, 1,305,744

tetrahedrons and 810,650 prisms, with the height of the first prism being equal to 5∙10-4D, where

D is the cylinder’s diameter. The Reynolds number of the free-stream flow was set equal to

1.0E+6, calculated with respect to D. The artificial compressibility parameter was set equal to

10.0. Integration in pseudo-time was performed with a CFL number equal to 0.5, while the

simulation was advanced in time with a dimensionless real time step equal to 0.05. The

simulation was accelerated via parallel processing by dividing the initial mesh into eight sub-

domains, while the agglomeration multigrid technique was employed, by generating two coarser

meshes for each sub-domain, employing the full-coarsening directional agglomeration technique.

A summary of the simulation parameters can be found in Table 5.12.

Table 5.12 – Simulation parameters for the unsteady turbulent flow around a circular cylinder.

Parameters

Type of flow Viscous Turbulent, Unsteady

Reynolds number 1.0E+6

Angle of attack

Grid density
654,103 nodes

 1,305,744 tetrahedrons

810,650 prisms

Artificial compressibility

parameter β.
10.0

Number of partitions 8

Number of agglomerations 3

CFL 0.5

Dimensionless real time step 0.05

Computer system
Workstation with AMD FX™ 8150 eight-core processor at

3.62 GHz.

As with the laminar viscous flow case, the resulting flow is oscillatory in nature, shedding

vortices periodically and generating the iconic Von-Karman Street. The evolution in time of the

flow around the cylindrical surface can be observed in Figure 5.59, where the lift and drag

coefficients around the object are plotted as a function of time. Contrary to the results from the

laminar viscous flow case, the oscillatory character of the turbulent flow is simulated from the

very first real time moment, with the magnitude of the lift and drag coefficient intensifying in

time and finally achieving periodicity.

5-43

Figure 5.59 – Time history of lift and drag coefficient on circular cylinder under turbulent viscous flow.

The periodic nature of the flow can be also observed in Figures 5.60 to 5.63, where the pressure

coefficient with the velocity contours is presented on the left side, while on the right side the

turbulent kinematic viscosity is illustrated. The Von Karman Street phenomenon is obvious in

these figures, especially in the illustrations of the turbulent kinematic viscosity; as the flow

develops towards the rear side of the computational domain the phenomenon dissipates due to the

magnitude of the turbulent kinematic viscosity. In Figure 5.64 the evolution of the vorticity

contours at the wake of the cylinder are presented as they evolve in a period of the phenomenon.

Figure 5.60 – Pressure contours with velocity streamlines (left) and turbulent kinematic viscosity contours

(right) around the cylinder at T=0.

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0 20 40 60 80

Time

CL

CD

5-44

Figure 5.61 – Pressure contours with velocity streamlines (left) and turbulent kinematic viscosity contours

(right) around the cylinder at T=0.25.

Figure 5.62 – Pressure contours with velocity streamlines (left) and turbulent kinematic viscosity contours

(right) around the cylinder at T=0.5.

5-45

Figure 5.63 – Pressure contours with velocity streamlines (left) and turbulent kinematic viscosity contours

(right) around the cylinder at T=0.75.

The qualitative evaluation of the results obtained with the current code can be found in Table

5.13, where the Strouhal number for the vortex shedding phenomenon, as well as the drag

coefficient around the cylindrical surface are compared to corresponding results found in [Shi93]

[Cat03]. While the result for the Strouhal number is in the same range with the reference ones, a

large differentiation can be observed in the drag coefficient result.

Table 5.13 – Comparison of results for unsteady turbulent flow around circular cylinder at Re=1.0E+6.

St CD

RANS (Current) 0.222 1.18

Shih et. al. [Shi93] (experimental) 0.203 0.24

Catalano [Cat03] (URANS) 0.31 0.40

Catalano [Cat03] (LES) 0.35 0.31

5-46

Figure 5.64 – Evolution of vorticity contours in a period of the vortex shedding phenomenon for turbulent flow

around a circular cylinder.

5.2.3 Unsteady turbulent flow around a tall building.

The air flow around the Commonwealth Advisory Aeronautical Research Council (CAARC)

standard tall building consists a popular test case among researchers [Pat86] [Che04] [Hua07]

[Bra09] [Dag09] [Dag10] [Dan13] [Zha15], especially in cooperation with structural analysis

codes and the simulation of the building deformation due to strong wind effects. Initially, the

building model was proposed for the comparison of various wind tunnel techniques used for the

simulation of natural wind characteristics [Mel80] [Syk83] [Bla85] [Tan86] [Oba92] [Xu92]. The

original geometry of the building consisted of a simple rectangular prism with length (L) equal to

30.8m (100ft), width (W) equal to 45.72m (150ft) and height (H) equal to 183.88m (600ft).

Additional specifications for the building’s geometric characteristics suggested that it had to have

a flat top, without parapets, and the exterior walls had to be flat without mullions or other

geometric disturbances [Mel80]. In Figure 5.65 a sketch of the geometric model that was

prepared for this case is presented. The boundary walls of the computational domain were

5-47

modeled at a sufficient distance from the building, as proposed by Huang et al. [Hua07], in order

to eliminate the flow obstacle effect that is caused with the interaction of the inflow velocity with

the building geometry [Mur98].

Figure 5.65 – Geometry of the CAARC standard tall building test case. Top View (up) and Side View (down).

In figures 5.66 and 5.67 the computational mesh generated for this case is presented. As the flow

is three-dimensional with unsteady nature, no symmetry boundary condition could be applied and

the complete geometry had to be included in the mesh. In order to keep computation time to a

minimum and considering the amount of real time iterations that the simulation would have to

complete, a rather coarse mesh was generated, consisting of 434,082 nodes, 623,801 tetrahedra

and 640,685 prisms. As the base surface of the model constitutes the ground around the building,

solid wall boundary conditions had to be applied there as well. Therefore, in order to accurately

calculate the boundary layer effect at the ground around the building, as well as on the building

surfaces, the inflation layer of prisms constituted of 20 layers, with the first layer height equal to

W/2500 and a growth factor of 1.2. Details of the mesh inflation layer can be seen in Figure 5.67.

5-48

Figure 5.66 – Far view of the computational mesh for the flow around the CAARC standard tall building test

case.

Figure 5.67 – Computational mesh around the CAARC tall building geometry (left) and detail of inflation layers

at the base of the building (right).

In order to simulate wind behavior at such a low height (183m), the wind at the inlet had to be

specially defined. As it is proposed by Huang et. al [Hua07] there are two kinds of expressions to

define the velocity profile at the atmospheric boundary layer; one using a power law and another

utilizing a logarithmic law. In this case the first was implemented, where the inlet velocity at each

height was calculated using the following formula.

5-49

 (5.2)

where is the value of air velocity at a height equal to the building height, is

the building height and α is a coefficient that in this case is equal to 0.3. The inlet velocity is

calculated on each node of the computational domain and is implicitly imposed as boundary

condition through the characteristics based boundary conditions scheme. Another important

aspect of the wind inflow is the turbulence intensity profile and its significance for the accuracy

of the simulation is often mentioned in the open literature [Hua07] [Bra09] [Dag09]. Turbulence

intensity can be described as the level of turbulence and is defined as:

 (5.3)

where is the root mean square of the turbulent velocity fluctuations and U is the mean

velocity. The turbulent kinetic energy can be calculated from the turbulence intensity as [Hua07]:

 (5.4)

while the dissipation rate ω can be calculated as a function of k as [FLU6.3]:

 (5.5)

where Cμ is an empirical constant specified in the turbulence model, approximately equal to 0.09

and l is the turbulence integral length scale, which in this case is equal to 0.58m as it was

measured at the model height H in the wind tunnel tests performed by Huang et al. [Hua07].

While for the velocity profile equation 5.2 was implemented in the code, the velocity intensity

profile values at the inlet were interpolated from the wind tunnel test data reported by the same

team [Hua07]. In Figure 5.68 the velocity profile at the inlet, as well as the turbulence intensity

profile are presented. At the top, left and right side of the model free-slip boundary conditions

were imposed.

The Reynolds number for this case was equal to 380,000 and was measured based on the building

height (H) and the velocity at the same position (UH). The non-dimensional variables used in this

code were defined with the use of these values. The artificial compressibility parameter was set

equal to 10.0, while the CFL number was equal to 0.5. Computation was performed on a

workstation with an AMD FX™ 8150 Eight-Core processor at 3.62 GHz, with a partitioning of

the original domain into six smaller sub-domains for parallel processing. Due to the small size of

the computational mesh it was deemed unnecessary to use the multigrid method as well. The

unsteady simulation was performed for 1300 real time iterations in order to obtain the time

averaged results. The real time step was equal to Δt=0.05 and in each time step 50 pseudo-time

iterations were performed, except for the initial real time iteration, where totally 3000 pseudo-

time iterations were needed for the simulation to achieve a good initial condition. A summary of

the simulation parameters is presented in Table 5.14.

5-50

Figure 5.68 – Velocity profile (left) and turbulence intensity profile (right) at the inlet of the CAARC tall

building model.

Table 5.14 – Simulation parameters for the unsteady turbulent flow around the CAARC tall building.

Parameters

Type of flow Viscous Turbulent, Unsteady

Reynolds number 380,000

Angle of attack

Grid density

434,082 nodes

623,801 tetrahedrons

640,685 prisms

Artificial compressibility

parameter β.
10.0

Number of partitions 6

CFL 0.5

Real time step 0.05

Computer system
Workstation with AMD FX™ 8150 Eight-Core processor at

3.62 Ghz

The mean pressure coefficient on the building wall at the height of z=2/3H is presented in Figure

5.69 and is compared to corresponding results found in [Hua07] [Dag09]. The pressure

coefficient diagram can be separated into three regions. Values at x\L = [0, 1.5] represent the

windward side of the building, values at x\L = [1.5, 2.5] represent the parallel to the flow side of

the building and values at x\L = [2.5, 4] represent the leeward side of the building. As it is

obvious, the pressure distribution at the front wall of the building agrees very well with the

experimental results, as well as the numerical ones. At the side walls there is good agreement

with the numerical results by Huang et al. [Hua07] while it differs from the numerical results by

Dagnew et al. [Dag09] mainly in magnitude. However there is a significant discrepancy

compared to the experimental results by both researchers. These discrepancies are observed in

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5

z/
z H

c/cH

Inlet velocity profile

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4

z/
z H

Turbulence Intensity

Turbulent intensity profile

5-51

their reports as well and are attributed to the selection of the turbulence model and on differences

at the turbulence conditions set at the inflow in each case. At the leeward side of the building the

pressure distribution falls at the same range as the reference results. Slight discrepancies can be

observed in the magnitude of the pressure distribution; however results from the wind tunnel

experiments performed by Huang et al. are in very good agreement with the results of the current

code.

Figure 5.69 – Mean pressure coefficient distribution at z=2/3H of the CAARC standard tall building.

In figures 5.70 and 5.71 the pressure coefficient contours on the windward and leeward wall of

the CAARC building are presented, respectively. On the windward side it is obvious that

maximum pressure effect is achieved near the top of the building, where the velocity profile

reaches a maximum, while at the base of the building an increase in the pressure coefficient along

with its decrease at the sides of the building due to flow separation designates the development of

a horseshoe vortex as is typical with similar flows around blunt bodies with sharp edges [Hus96]

[Iac03]. At the sides of the building separation of the flow leads to low values of the pressure

coefficient, while at the leeward side of the building similar values designate the area where the

major vortices appear.

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

C
p

x\L

Mean pressure coefficient at z=2/3H

 Current

Huang et al. - experimental

Huang et al. - k-ε

Dagnew et al. - Wind tunnel test data

Dagnew et al. k-ε

1.5

4

2.5

Wind

x\L
0

5-52

Figure 5.70 – Mean pressure coefficient contours on the windward side of the building.

Figure 5.71 – Mean pressure coefficient contours on the leeward side of the building.

In figure 5.72 the pressure and velocity contours at the mid-plane of the CAARC standard tall

building are presented. As it was expected, high pressure appears at the windward side near the

top of the building, where wind velocity reaches its maximum value, while there is underpressure

due to the building geometry at its leeward side. Furthermore, the velocity contours clearly reveal

the variations induced by the velocity profile at the inlet, while at the leeward side of the building

the streamwise velocity has negative values, due to the recirculation phenomena developed at that

5-53

area. It can be observed that no flow obstacle effect is developed at the outlet, justifying the

chosen length of the computational domain.

Figure 5.72 – Pressure contours (up) and streamwise velocity contours (down) at the mid-plane of the CAARC

tall building case.

In figure 5.73 the pressure contours along with the velocity streamlines around the CAARC

building are presented, where several features of the flow can be observed. At the base of the

building at the windward side the horseshoe vortex that was described above is obvious. This

vortex “hugs” the building and eventually dissipates at the leeward side due to viscosity. At the

Y-Z plane a major vortex is developed near the top of the building with a secondary one at the

base of it. These vortices are developed at the Y-X plane as a pair of twin symmetrical vortices at

the leeward side of the building. Finally, at the walls of the building that are parallel to the flow,

smaller vortices develop due to separation of the flow that is caused by the model’s geometry.

5-54

Figure 5.73 – Pressure contours and velocity streamlines at the mid-plane (left) and at height z=2/3H of the

CAARC standard tall building.

5.2.4 Turbulent flow around the DLR-F11 model at 7o angle of attack.

The final test case that was considered with the Galatea-I code concerns the flow around an

aircraft geometry with a high lift configuration, as it would have been during landing. While the

air is a compressible fluid, flows in such conditions are of low-Mach numbers (below 0.3) and

thus the flow is considered incompressible. This specific test case was designed by NASA for the

purposes of the 2
nd

 High Lift Prediction Workshop (HiLiftPW-2) that was held in June 2013 in

San Diego, California [Cav14] [Chi14] [Del14] [Eli14] [Hof14] [Han14] [Lee15] [Mav15]

[Mur15] [Rud14] [Rum14]. The geometry consists of the DLR-F11 model; a generic semi-span

wing consisted of three elements (leading edge slat, wing, and trailing edge Fowler flap) with a

body pod [Rum14]. The aircraft geometry is presented in Figure 5.74, while in Figure 5.75 the

different elements of the aircraft model are described. The untwisted swept wing of the model had

a semi-span equal to 1.4m and an aspect ratio of 9.353, while the aerodynamic chord was equal to

0.34709m. The wing components were set in one particular landing configuration; the slat set at

26.5
o
 and the flap at 32

o
, while both slat and flap were mounted on the wing with the appropriate

slat tracks and flap tracks, respectively, collectively referred at as “support brackets” or

“brackets”. The model was tested both at low and high Reynolds numbers test wind tunnels,

providing results on the forces, moments, and surface pressures for various angles of attack

[Rud12].

The high Reynolds number flow conditions were Re=15.1E+6, Mach=0.175, Tref =114.0 K, pref =

295 kPa, while the low Reynolds number flow conditions were Re=1.35E+6, Mach=0.175, Tref

=298.6 K, pref = 100.7 kPa. The Reynolds numbers were calculated with respect to the

aerodynamic chord length. For the HiLiftPW-2 the geometry of three configurations of the DLR-

F11 model were provided; Config 2 consisted of the wing-body-high lift system plus a side-of-

body flap seal, Config 4 consisted of Config 2 along with the slat and flap support brackets, and

Config 5 consisted of Config 4 as well as some slat pressure tube bundles. For each configuration

5-55

a set of coarse, medium, and fine grids were provided by NASA, while the participants were

allowed to generate their own meshes.

Figure 5.74 – Geometry of the DLR-F11 aircraft model.

Due to the size of the provided meshes and restrictions in computational resources, simulation

was carried out on the more simple geometry; Config 2 was selected, where the wing consisted of

the three components, without the support brackets, or the pressure tube bundles. Although as it

was demonstrated by Chitale et al. [Chi14], these brackets alter the flow behavior, especially

under the wing, simulation of the flow around the simpler configuration provided adequate

results, capable of demonstrating the current code’s capabilities. The simulation was performed

for angles of attack equal to 7
o
 and 12

o
. In this section the results for the 7

o
 angle of attack are

presented. The utilized computational mesh was characterized as “medium” in density and

consisted of 30,767,679 nodes, 58,300,006 tetrahedrons, 40,864,715 prisms and 275,227

pyramids. In Figure 5.76 the utilized computational grid is presented in whole, as well as a detail

of the surface mesh at the aircraft region. Simulation was carried out on a Dell™ R815

Poweredge server with four AMD Opteron™ 6380 sixteen-core processors at 2.50GHz. The

initial domain was divided into 32 sub-domains for parallel processing. Integration in pseudo-

time was achieved with a CFL number equal to 0.25, while the artificial compressibility

5-56

parameter was equal to 10.0. Due to unsteadiness that occurred during the initial run of this test

case, the flow was subsequently treated as unsteady in nature; the dimensionless real time step

was set equal to 0.5 and the simulation was carried out for 43 real time iterations. A summary of

the case parameters can be found in Table 5.15.

Figure 5.75 – Detailed view of the elements consisting the DLR F-11 aircraft model.

Figure 5.76 – Computational mesh for the simulation of the turbulent flow around the DLR-F11 model.

Body Wing

Slat

Flap

5-57

Table 5.15 – Simulation parameters for the turbulent flow around the DLR-F11 model (7o angle of attack).

Parameters

Type of flow Viscous Turbulent, Unsteady

Reynolds number 15.1E+6

Angle of attack 7
o

Grid density

30,767,679 nodes

58,300,006 tetrahedrons

40,864,715 prisms

275,227 pyramids

Artificial compressibility

parameter β.
10.0

Number of partitions 32

CFL 0.25

Real time step 0.5

Computer system
Dell™ R815 Poweredge server with four AMD Opteron™

6380 sixteen-core processors at 2.50GHz

Quantitative evaluation of the test case results was performed by comparing with the

experimental data of the pressure coefficient along several cross-sections of the wing, which were

provided by the workshop organizers [Rud12]. Corresponding results from the current solver

were extracted as the time-average results from the 43 real time iterations that have been

performed. Figures 5.77 to 5.86 illustrate such comparisons. The pressure coefficient distribution

on each figure is divided into three parts; the leftmost area represents the leading edge slat, the

middle part is the wing area and the rightmost part is the pressure distribution around the trailing

edge flap. Good agreement is found between current numerical and experimental data on most

cross-sections. Some discrepancies can be observed at 89.1% and 96.5% of the wing span, which

are located near the tip of the wing. These disagreements are especially located at the flap area,

where flow separation phenomena are expected to occur, on a very small area. Refinement of the

mesh in that specific area could produce better results, however the current discrepancies are

considered of minor impact.

Figure 5.77 – Pressure coefficient distribution around the DLR-F11 wing at 15% wing span (7o attack angle).

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

-C
p

X/C

Current

Experimental

5-58

Figure 5.78 – Pressure coefficient distribution around the DLR-F11 wing at 28.8% wing span (7o attack angle).

Figure 5.79 – Pressure coefficient distribution around the DLR-F11 wing at 44.9% wing span (7o attack angle).

Figure 5.80 – Pressure coefficient distribution around the DLR-F11 wing at 54.3% wing span (7o attack angle).

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1

-C
p

X/C

Current

Experimental

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

-C
p

X/C

Current

Experimental

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

-C
p

X/C

Current

Experimental

5-59

Figure 5.81 – Pressure coefficient distribution around the DLR-F11 wing at 68.1% wing span (7o attack angle).

Figure 5.82 – Pressure coefficient distribution around the DLR-F11 wing at 71.5% wing span (7o attack angle).

Figure 5.83 – Pressure coefficient distribution around the DLR-F11 wing at 75.1% wing span (7o attack angle).

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1

-C
p

X/C

Current

Experimental

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1

-C
p

X/C

Current

Experimental

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1

-C
p

X/C

Current

Experimental

5-60

Figure 5.84 – Pressure coefficient distribution around the DLR-F11 wing at 81.8% wing span (7o attack angle).

Figure 5.85 – Pressure coefficient distribution around the DLR-F11 wing at 89.1% wing span (7o attack angle).

Figure 5.86 – Pressure coefficient distribution around the DLR-F11 wing at 96.4% wing span (7o attack angle).

-2

-1

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

-C
p

X/C

Current

Experimental

-1

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

-C
p

X/C

Current

Experimental

-2

-1

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1

-C
p

X/C

Current

Experimental

5-61

In Figures 5.87 to 5.89 the pressure contours along with the streamlines around the DLR-F11

wing at various wing spans are illustrated. Various flow phenomena can be observed in those

Figures. The flow comes at the wing at an attack angle of 7
o
. The stagnation point at the leading

edge slat is obvious in all three figures. Due to the geometry of the slat, the flow separates at its

lower point and forms a vortex between the slat and the wing. The vortex is more visible near the

aircraft body (15% wing span) and is carried along the pocket that is formed between the slat and

the wing as it is obvious in all the figures. A similar vortex is formed at the rear of the wing, at

the area between the wing and the trailing edge flap. Both vortices are the reason for the

unsteadiness that was observed during the simulation. The streamlines envelop all three

components of the wing and a thick boundary layer is formed at the leeward side of the wing, as it

can be observed in Figure 5.90, where the turbulent kinematic viscosity contours at 15% wing

span are presented. Finally, there can be observed a streamline curvature at the leeward side of

the flap area, due to the structure of the geometry. However, this curvature is not visible at 96.4%

wing span, where the flow is separated at the flap region, due to proximity to the wing tip. An

overall picture of the pressure contours on the DLR-F11 model surfaces is presented in Figure

5.91.

Figure 5.87 –Pressure contours (left) and velocity streamlines (right) around DLR-F11 wing at 15% wing span.

5-62

Figure 5.88 –Pressure contours (left) and velocity streamlines (right) around DLR-F11 wing at 54.3% wing span.

Figure 5.89 –Pressure contours (left) and velocity streamlines (right) around DLR-F11 wing at 96.4% wing span.

5-63

Figure 5.90 –Turbulent kinematic viscosity contours around DLR-F11 wing at 15% wing span (7o attack angle).

5-64

Figure 5.91 – Pressure contours on the DLR-F11 aircraft surfaces (7o angle of attack).

5-65

In Figure 5.92 the vorticity contours at the wake of the DLR-F11 wing were sketched on

successive X-Y parallel planes, in order to picture the wingtip vortex that is generated in that

area. The computed results are compared qualitatively to those from Chitale et al. [Chi14], who

published similar illustrations of the vorticity contours at the same region. As it can be observed,

the vorticity contours predicted with the Galatea-I software are of slightly better quality than the

ones produced with the Medium mesh (approx. 17.34 million nodes) of Chitale et al., while they

are worse than the ones produced with their Fine mesh (approx. 112.96 million nodes). A view of

the same vorticity contours observed from top-rear side of the aircraft is illustrated in Figure 5.93.

Figure 5.92 – Vorticity contours on Y-Z planes at the wake of the DLR-F11 wing (left) and qualitative

comparison with reference numerical data (right) [Chi4].

Figure 5.93 – Vorticity contours on Y-Z planes at the wake of the DLR-F11 wing observed from the top-rear

side of the aircraft.

5-66

5.2.5 Turbulent flow around the DLR-F11 model at 12o angle of attack.

With the results from the previous section as initial state of the flow the mesh for the DLR-F11

model was used for the simulation of turbulent flow around it with a 12
o
 angle of attack. The flow

conditions were the same as with the case with 7
o
 angle of attack, as well as the simulation

parameters. The case was run on a Dell™ R815 Poweredge server with four AMD Opteron™

6380 sixteen-core processors at 2.50GHz. The comparable results were computed as the time-

average of 43 real time iterations. The simulation parameters for this case are presented in Table

5.16.

Table 5.16 – Simulation parameters for the unsteady flow around the DLR-F11 model (12o angle of attack).

Parameters

Type of flow Viscous Turbulent, Unsteady

Reynolds number 15.1E+6

Angle of attack 12
o

Grid density
30,767,679 nodes

58,300,006 tetrahedrons
40,864,715 prisms
275,227 pyramids

Artificial compressibility

parameter β.
10.0

Number of partitions 32

CFL 0.25

Real time step 0.5

Computer system
Dell™ R815 Poweredge server with four AMD Opteron™

6380 sixteen-core processors at 2.50GHz

For the quantitative evaluation of the simulation the pressure coefficient around the wing of the

DLR-F11 model was calculated at various wing spans. The results are compared to the

experimental ones provided for the HiLiftPW-2 [Rud12] and presented in Figures 5.94 to 5.103.

As it can be observed, the overall quality of the results is very good, as there is a satisfactory

agreement with the experimental data at all the wing locations. Some discrepancies can be found

in Figures 5.102 and 5.103, which are located near the wing tip. These disagreements were also

observed in the case with 7
o
 angle of attack and can be attributed to the flow separation

phenomena occurring in that region, especially at the area of the flap.

Figure 5.94 – Pressure coefficient distribution around the DLR-F11 wing at 15% wing span (12o attack angle).

-2

-1

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1

-C
p

X/C

Current

Experimental

5-67

Figure 5.95 – Pressure coefficient distribution around the DLR-F11 wing at 28.8% wing span (12o attack angle).

Figure 5.96 – Pressure coefficient distribution around the DLR-F11 wing at 44.9% wing span (12o attack angle).

Figure 5.97 – Pressure coefficient distribution around the DLR-F11 wing at 54.3% wing span (12o attack angle).

-2

-1

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

-C
p

X/C

Current

Experimental

-2

-1

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

-C
p

X/C

Current

Experimental

-2

-1

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

-C
p

X/C

Current

Experimental

5-68

Figure 5.98 – Pressure coefficient distribution around the DLR-F11 wing at 68.1% wing span (12o attack angle).

Figure 5.99 – Pressure coefficient distribution around the DLR-F11 wing at 71.5% wing span (12o attack angle).

Figure 5.100 – Pressure coefficient distribution around the DLR-F11 wing at 75.1% span (12o attack angle).

-2

-1

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

-C
p

X/C

Current

Experimental

-2

-1

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

-C
p

X/C

Current

Experimental

-2

-1

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

-C
p

X/C

Current

Experimental

5-69

Figure 5.101 – Pressure coefficient distribution around the DLR-F11 wing at 81.8% span (12o attack angle).

Figure 5.102 – Pressure coefficient distribution around the DLR-F11 wing at 89.1% span (12o attack angle).

Figure 5.103 – Pressure coefficient distribution around the DLR-F11 wing at 96.4% span (12o attack angle).

-2

-1

0

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1

-C
p

X/C

Current

Experimental

-2

-1

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

-C
p

X/C

Current

Experimental

-2

-1

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

-C
p

X/C

Current

Experimental

5-70

In Figures 5.104, 5.105 and 5.106 the pressure contours around the wing at three wing spans are

presented, along with the flow streamlines. Several flow phenomena can be observed in those

Figures, especially from the behavior of the streamlines. The flow at the rear of the slat area, as

well as at the area between the main wing and the flap, presents some recirculation, which seems

to be transferred towards the tip of the wing and slowly dissipates. The stagnation point at the

three components of the wing is obvious, with high pressure values and the colliding of the

streamlines with the wing geometry. Due to the curvature of the wing, set up for landing, the

streamlines are curved over the flap area. This phenomenon is carried out at the greater

percentage of the wing, while at the tip separation of the flow occurs, as it is obvious in Figure

5.106. This can also justify the poor agreement with the experimental results near the tip of the

wing at the flap area. In Figure 5.107 pressure contours on the surface of the DLR-F11 mode are

presented.

Figure 5.104 –Pressure contours (left) and velocity streamlines (right) around DLR-F11 wing at 15% wing span

(12o angle of attack).

Figure 5.105 –Pressure contours (left) and velocity streamlines (right) around DLR-F11 wing at 54.3% wing

span (12o angle of attack).

5-71

Figure 5.106 –Pressure contours (left) and velocity streamlines (right) around DLR-F11 wing at 96.4% wing

span (12o angle of attack).

In Figure 5.108 a comparison between the surface streamlines at the upper wing area for the cases

with 7
o
 and 12

o
 angles of attack is illustrated. In both cases the effect of the aircraft body to the

flow at the base of the wing is obvious, as there is significant curvature of the flow, especially on

the main wing area. Due to the change in the angle of attack there is a bending of the streamlines

around the aircraft body, especially in the lower figure, near the trailing edge of the wing. At the

flap region there is significant flow separation in both cases, especially towards the wing tip,

although the phenomenon is more intense for the case with the higher angle of attack. The flow

separation regions can be easily identified as the regions where the streamlines coincide and form

a single line. The vorticity contours at the wake of the wing of the DLR-F11 model are illustrated

in Figure 5.109. As it was expected, the tip vortex phenomenon occurs in this case as well, with

significant intensity, while vortices seem to occur near the lower part of the aircraft body. These

vortices represented actually the bending of the streamlines around the aircraft body that was

observed in Figure 5.108.

5-72

Figure 5.107 – Pressure contours on the DLR-F11 aircraft surfaces (12o angle of attack).

5-73

Figure 5.108 – Surface streamlines on the upper wing area with flow at 7o angle of attack (top) and 12o angle of

attack (bottom).

5-74

Figure 5.109 – Vorticity contours at the wake of the wing of the DLR-F11 model (12o angle of attack)

5-75

5.3 Evaluation of the multigrid scheme
For the assessment of the multigrid scheme, several simulations of some of the aforementioned

test cases were performed, using different multigrid techniques and compared to non-multigrid

test runs, providing insight on the achieved acceleration of the iterative procedure.

5.3.1 Inviscid flow over a rectangular wing with a NACA0012 airfoil

For this test case three coarser meshes were generated with the isotropic agglomeration method.

Figure 5.110 illustrates a far view of the initial fine grid and the three coarser generated ones,

while in Figure 5.111 a closer view of the area around the rectangular wing is presented. For the

purposes of comparison only FAS was implemented in this case. The derived history of residual

convergence per number of iterations and (wall-clock) time are presented in Figure 5.112,

respectively. The speed-up of convergence of the multigrid run compared to a non-multigrid one

was equal to approximately 18.9 regarding the number of iterations, and equal to approximately

15.6 regarding the elapsed time.

a) b)

c) d)

Figure 5.110 – Initial and three coarser grids generated via isotropic agglomeration for use with the multigrid

scheme of the complete domain of the rectangular wing with NACA0012 airfoil flow field.

5-76

a) b)

c) d)

Figure 5.111 – Initial and three coarser grids generated via isotropic agglomeration for use with the multigrid

scheme; close view around the NACA0012 airfoil.

Figure 5.112 – Convergence history for the case of inviscid flow around NACA0012 rectangular wing, per

iterations (left) and per elapsed time (right).

5-77

5.3.2 Three dimensional cavity flow (Re=400)

For this test case two coarser multigrid meshes were generated with two methodologies; one with

the isotropic agglomeration method and one with the full-coarsening directional agglomeration

method. For the former, the number of control volumes was reduced approximately eight times,

while for the latter the generated control volume number was five times smaller than with the

initial fine grid. In Figure 5.113 the initial control volume arrangement, along with the two

coarser generated ones with the directional agglomeration method are presented.

a) b)

c)

Figure 5.113– Initial control volume mesh and two coarser generated mesh via directional agglomeration

scheme for the lid-driven cavity flow test case.

The convergence history per iterations and per elapsed time of both types of agglomeration

schemes, along with a run with no multigrid implementation are presented in Figure 5.114. For

the multigrid runs the combined FMG-FAS process was implemented. As it was expected, better

acceleration was achieved, both in terms of number of iterations and elapsed time, with the full

coarsening directional agglomeration method; a speed-up of approximately 6.3 was achieved per

iterations and approximately 5.1 per elapsed time. With the isotropic agglomeration the respective

speed-up factors were ~5.0 and ~3.6. All simulations were allowed to converge up to a final

5-78

residual of 1.0E-9. The advantage of the directional agglomeration strategy resides in its

capability to preserve the initial topology of the hybrid mesh.

Figure 5.114 – Convergence history of pressure per number of iterations/cycles (top) and time (bottom) for the

3D lid-driven cavity flow case at Re=400.

5-79

5.3.3 Steady turbulent flow around an axisymmetric submarine hull at 0o angle of

attack (Re=12.0E+6).

For the case of the turbulent flow around the DARPA SUBOFF hull geometry at 0
o
 angle of

attack three coarser grids were generated with a full-coarsening directional strategy. The initial

grid along with the generated coarser ones is presented in Figure 5.115. The number of control

volumes was reduced approximately five times on each agglomeration level. In Figures 5.116 and

5.117 detailed views of the fused control volumes that make up the three coarser meshes at the

bow and stern area of the submarine, respectively, are presented.

Figure 5.115 – Initial fine grid and three coarser grids generated with the full-coarsening directional

agglomeration methodology.

Both FMG-FAS and only-FAS multigrid strategies were implemented for this case in order to

examine the improvement to convergence that they can provide, compared to the convergence of

a non-multigrid simulation run. In Figures 5.118 and 5.119 the convergence history per iterations

and per time of pressure and of the turbulent kinetic energy, respectively, are presented for all

multigrid and non-multigrid simulations. The FMG-FAS scheme achieved a speed-up of

approximately 5.0 in terms of elapsed time, compared to the single grid (~3.0E-4 residual of

pressure). The corresponding speed-up factor for the FAS scheme was approximately 3.0. The

superiority of the FMG-FAS scheme is obvious in this case, as despite the oscillatory nature of

Ζ

X

Y

Ζ

X

Y

Ζ

X

Y

Ζ

X

Y

5-80

the convergence it managed to achieve at the same iterations\elapsed time as with simple FAS a

residual of more than an order of magnitude lower. The superiority of the multigrid methods

against that of the non-multigrid runs is more obvious in Figure 5.119, where the irregular bumps

that can be seen at the convergence of turbulent kinetic energy for the non-multigrid run, are not

visible at the convergence history of the multigrid ones.

Figure 5.116 – Close-up view of the fused control volumes at the bow area of the submarine hull.

Figure 5.117 – Close-up view of the fused control volumes at the stern area of the submarine hull.

5-81

Figure 5.118 – Convergence history of pressure for multigrid and single grid runs of the turbulent flow around

the SUBOFF hull geometry.

5-82

Figure 5.119 – Convergence history of turbulent kinetic energy for multigrid and single grid runs of the

turbulent flow around the SUBOFF hull geometry.

6-1

CHAPTER 6

CONCLUSIONS

6.1 Summary
In this thesis the development of a code that enables the simulation of incompressible fluid flows,

by solving the Reynolds Averaged Navier-Stokes (RANS) equations, enhanced with the artificial

compressibility method, was reported. As the Reynolds averaging scheme, along with the

Boussinesq assumption [Bla01] was used in this work, evaluation of the kinetic energy was

succeeded with the SST model. The governing equations are discretized in space over hybrid

unstructured three-dimensional computational grids, composed by tetrahedrons, prisms and

pyramids, with a node-centered finite-volume scheme [Lyg14a] [Sar14] [Lyg16]. Temporal

discretization was performed with an explicit four-stage Runge-Kutta scheme (RK(4)), while for

the simulation of time accurate flows, a dual time stepping approach was adopted. At the

boundaries of the computational domain the typical no-slip or free-slip conditions were applied

on wall boundaries for viscous or inviscid flows, respectively, while at the inlet and outlet regions

of the mesh a locally one-dimensional characteristic type of boundary condition was formulated

[Sar14]. Acceleration of the aforementioned techniques was performed in two ways; via an

agglomeration multigrid scheme [Mav99] [Car00] [Nish13] [Lyg14a] [Lyg14b] [Lyg14c], and a

domain decomposition parallelization approach [Ven95] [Lan96] [Sar15]. With the former

approach, several successively coarser grids are generated and relaxation of the PDEs is

performed on the coarser ones and prolonged to the finer meshes, thus eliminating low frequency

errors. With the latter method, the initial grid is divided into smaller ones, and the governing

equations are solved simultaneously on all sub-domains, utilizing the architecture of multi-core

processors.

The described methodologies were validated against standard benchmark test cases, as well as

more complex ones. The obtained results were in satisfactory agreement with the experimental

data and with numerical results from reference solvers, thus demonstrating the performance of the

proposed methodology for such simulations. More specifically, in the case of steady-state

solutions, the current code’s capability to predict laminar viscous flows was assessed with

standard test cases, such as the flow inside a closed cavity [Tai05] [Vra12], the flow around a

circular cylinder at low Reynolds number [Cou77] [Vra12], or the flow around a sphere [Tan56]

[LeC70] [Lee00] [Wan08]. In the first case the velocity profiles at the mid-plane of the cavity

was compared to corresponding numerical results found in open literature, and were found in

good agreement. In the second and third case the geometric characteristics of the vortices

generated at the wake of the simulated geometries agreed well with the corresponding data from

reference solvers. In all three cases recirculation phenomena were adequately predicted, thus

verifying the proposed methodologies’ capabilities to predict such phenomena. Of great interest

was the adoption of the DARPA SUBOFF test cases [Gro89] [Hua89] [Gor90] [Liu98] for the

evaluation of the current code’s capabilities to predict turbulent phenomena in (pseudo-) steady

state. The selected test cases of the SUBOFF family concerned the flow around an axisymmetric

6-2

submarine hull at three different angles of attack, namely at 0
o
, 18

o
 and 30

o
, and different

Reynolds numbers, while additionally the flow around the same axisymmetric hull, with a

fairwater configuration attached to it was simulated at a zero angle of attack and yaw. In the

former set of test cases the results comprised the pressure coefficient distribution over the hull

geometry, as well as the velocity profiles near the stern. The simulation results were compared to

corresponding numerical results from reference solvers, as well as experimental data [Tox08]

[Gro11] and exhibited satisfactory agreement. For the latter case of the SUBOFF group the

pressure coefficient distributions at several points of the fairwater surface was computed and

compared to reference data [Gor90]. With the DARPA SUBOFF test case, the demonstration of

the Galatea-I solver’s capabilities to predict complex flow phenomena, such as flow separation,

recirculation vortices and tip vortex phenomena, was made possible.

Unsteady flows were simulated with the Galatea-I solver, with the use of the dual time stepping

scheme. For the evaluation of this methodology the laminar and turbulent viscous flow around a

circular cylinder was initially simulated. The code was able in both cases to produce the so called

Von Karman vortex street. The characteristics of the flow, namely the Strouhal number for the

vortex shedding phenomenon and the lift and drag coefficient variation on the cylinder were in

good agreement with reference results [Rog90] [Bel95] [LiuC98] [Cha99] [Tai03] [Vra12],

especially in the case of laminar flow. Discrepancies in the drag coefficient variation for the

turbulent flow case were found; however, this was attributed to the rather coarse mesh that was

used in this case. The turbulent flow around the CAARC Standard Tall Building test case [Mel80]

[Syk83] [Hua07] [Bra09] [Dag09] [Zha15] was realized with the unsteady flow solver. This case,

initially established as a standard for the simulation of natural wind characteristics, was used for

the demonstration of the Galatea-I capabilities to produce turbulent flow results of unsteady

nature. Finally, the flow around the DLR-F11 aircraft model in high lift configuration [Cav14]

[Chi14] [Del14] [Eli14] [Hof14] [Han14] [Lee15] [Mav15] [Mur15] [Rud14] [Rum14] was

successfully simulated with the use of the proposed methodology. The flow around an aircraft,

although compressible in most cases, is of incompressible nature during the phases of take-off, or

landing; the Mach in these cases is sufficiently low for the flow to be characterized as

incompressible. The configuration was simulated in two angles of attack and the solver was able

to successfully produce very satisfactory results in the form of the pressure coefficient

distribution around the wing elements at various wing spans; the current numerical results were in

very good agreement with experimental ones, although minor discrepancies were found at the tip

of the wing due to insufficient density of the computational mesh in this region. This kind of flow

is generally of unsteady nature; the simulated tip vortices and the flow separation across the wing

flap area attest to this statement. The comparable results were obtained as the mean state of the

unsteady flow.

Significant contribution to the efficiency of the described simulations was obtained through the

acceleration techniques that were incorporated to the Galatea-I solver. In all test cases presented

in this study the multi-core capabilities of the available computing systems were exploited via the

parallel processing methodology. A comparison between the various agglomeration strategies

was implemented on three test cases; the inviscid flow around a NACA0012 rectangular wing,

the laminar viscous flow inside a closed cavity and the turbulent viscous flow around the DARPA

SUBOFF axisymmetric hull model at zero degrees angle of attack. For the inviscid flow test case

6-3

three coarser meshes were generated via the isotropic agglomeration methodology. Compared to

the single grid simulation a maximum speed-up coefficient of approximately 15.6 regarding the

elapsed time was observed. For the cavity flow test case, besides the comparison between

multigrid and non-multigrid simulations, the directional and isotropic methodologies of

agglomeration were also tested; two coarser meshes were generated with each agglomeration

method. The multigrid simulations provided a speed-up coefficient over the single grid solution

of approximately 3.6 and 5.1 for the isotropic and directional agglomeration strategies,

respectively, with the latter being clearly superior, as it was expected. For the turbulent flow test

case no isotropic agglomeration grids were generated; three coarser grids were generated with the

directional agglomeration scheme. In this case comparison between the simple Full Coarsening

FAS multigrid scheme and the Full Coarsening FMG-FAS scheme was realized, with the latter

proving superior to the former; a speedup factor of approximately 5.0 was observed, compared to

the 3.0 speedup coefficient that was achieved with the simple FAS methodology. The superior

acceleration results of the FMG-FAS methodology is clearly attributed to its nature; just by

solving the governing equations on the coarser grids a crude approximation of the flow field can

be achieved, which the finer grids can quickly enhance.

6.2 Contributions
The main contributions of this work are listed below:

1. A computational methodology and the corresponding software tool was developed

(Galatea-I) for the simulation of the 3D, steady and unsteady, inviscid, laminar, and

turbulent flows, based on the artificial compressibility concept. The methodology uses

unstructured hybrid grids, is parallelized using the domain decomposition concept, while

a considerable acceleration is achieved through the use of the multi-grid technique. This

development is not a trivial task, as the materialization and the successful combination of

such complex computational procedures is a challenge.

2. The adoption of the artificial compressibility concept for the solution of the

incompressible flow equations, and the combination of this concept with the multigrid

technique and with parallel processing, which render the artificial compressibility

concept very attractive and competitive to pressure-correction techniques.

3. The development of boundary conditions for 3D flow fields, based on characteristics,

which proved to be effective and accurate.

4. The development of the parallelization strategy, based on the domain decomposition

concept and MPI protocol. Moreover, for the implementation of this strategy, several

supporting methodologies (and the corresponding software) have been developed as well,

such as: a) the algorithm for the correct renumbering of the sub-domains of a partitioned

initial grid, b) the algorithm for the generation of the overlapping region between

adjacent partitions, c) the algorithm for the correct transfer of data between domains,

incorporating collective communication MPI functions. This last algorithm ensured the

correct communication of adjacent partitions and the balanced synchronous execution of

all parallel instances of the same code.

5. The incorporation and adaption of a (previously developed) multigrid methodology in the

Galatea-I code. The extensive evaluation of this methodology to various test cases

demonstrated its ability to considerably accelerate the convergence rate.

6-4

6. The use of a very wide suite of different test cases (steady and unsteady) for the extensive

validation of the proposed methodology and the developed software. This extensive

evaluation demonstrated the potential of the proposed methodologies in simulating

complicated flow fields with very satisfactory accuracy and with comparable or better

results from those of alternative methodologies. Moreover, proved the equipotential of

the artificial compressibility concept for accurately simulating such complicated flow

phenomena.

6.3 Ongoing – future work
The Galatea-I code has been already incorporated in a computational methodology for Fluid-

Structure Interaction (FSI), serving as the fluid flow simulator. With this methodology the

computed forces on solid structures that interact with the fluid flow are transferred via a

partitioned FSI coupling procedure to an open-source Computational Structural Mechanics

(CSM) code [Calculix] that computes the resulting deformations, and rates of deformation. The

spatial coupling of the structural and flow meshes, is realized with an interpolation scheme, based

on Radial Basis Functions (RBFs), which employs the Partition of Unity approach [Ren09].

Mesh deformation is applied with an RBF interpolation methodology that is accelerated with a

surface point reduction technique, based on the agglomeration of adjacent boundary nodes

[Str15]. The static form of the methodology has been already tested with the CAARC Standard

Tall Building model test case and has provided very satisfactory results. For the realization of a

dynamic FSI methodology an Arbitrary Lagrangian-Eulerian (ALE) algorithm is under

development, to allow for the simulation of flows with moving meshes and boundaries.

Additionally to the RANS based SST turbulence model, several models that incorporate the Large

Eddy Simulation approach (LES) have been already applied to the Galatea-I solver; the

Smagorinsky model [Sma63], the WALE (Wall Adapted Local Eddy-viscosity) model [Nic99],

the dynamic Germano-Lilly model [Ger91] [Lil92] and the dynamic Kinetic Energy model

[Dav97]. All four methodologies provide the required by the Boussinesq assumption turbulent

kinematic viscosity and thus can be used by the same flow equations as the ones used in the

Galatea-I code.

Future extensions to the current presented work include the following:

 Incorporation of the energy equation in order to simulate heat transfer problems. The

incompressible solver could then be coupled with the already developed radiative heat

transfer algorithm developed by Lygidakis et al. [Lyg12].

 Development of a procedure for the simulation of free-surface boundaries, such as the

Volume of Fluid (VOF) or Moment of Fluid (MOF) methods. With this addition the

incompressible flow solver could be used for the simulation of multi-fluid flows with a

free surface.

 Further examination of the MPI libraries. A non-geometric grouping of the adjacent

partitions could provide further acceleration, as data transfer would only occur inside

carefully designed groups.

 Modularization of the Galatea-I solver to include other numerical methods. A modular

program, developed with Object Oriented programming, could perform geometric based

6-5

schemes, such as the domain decomposition approach or the agglomeration method

separately from any numerical method. Subsequently, any numerical method would be

applied to the core code as a module and the coupling of different methods would be

more reasonable.

6.4 Publications

1. G. N. Lygidakis, S. S. Sarakinos, I. K. Nikolos, “Comparison of different agglomeration

multigrid schemes for compressible and incompressible flow simulations”, Advances in

Engineering Software, Available online 13 January 2016, ISSN 0965-9978,

http://dx.doi.org/10.1016/j.advengsoft.2015.12.004

2. S. S. Sarakinos, G. N. Lygidakis, I. K. Nikolos, “Flow Analysis of the DLR-F11 High

Lift Model Using a Time-Accurate Unsteady Incompressible Solver Based on the

Artificial Compressibility Method”, Journal of Aircraft, 2016 (Submitted).

3. S. S. Sarakinos, G. N. Lygidakis, “Evaluation of a Parallel Agglomeration Multigrid

Finite-Volume Algorithm, Named Galatea-I, for the Simulation of Incompressible Flows

on 3D Hybrid Unstructured Grids”, ASME 2014 International Mechanical Engineering

Congress and Exposition, Montreal, Quebec, Canada, November 14-20, 2014.

4. G.N. Lygidakis, S.S. Sarakinos, I.K. Nikolos, "A Parallel Agglomeration Multigrid

Method for Incompressible Flow Simulations", in P. Iványi, B.H.V. Topping, (Editors),

Proceedings of the Ninth International Conference on Engineering Computational

Technology, Civil-Comp Press, Stirlingshire, UK, Paper 27, 2014.

5. S. S. Sarakinos, G. N. Lygidakis, I. K. Nikolos, “Assessment of the Academic CFD code

GALATEA – I with the DARPA SUBOFF Test Case”, ASME 2015 International

Mechanical Engineering Congress and Exposition, Houston, Texas, November 13 – 19,

2015.

6. S.S. Sarakinos, G.N. Lygidakis, I.K. Nikolos, “Simulating Unsteady Incompressible

Flows using Galatea-I, a Parallel Multigrid Finite-Volume Solver”, Proceedings of the

8th GRACM International Congress on Computational Mechanics, Volos, Greece, 12 –

15 July 2015.

7. S.S. Sarakinos, G.N. Lygidakis, I.K. Nikolos, "Acceleration Strategies for Simulating

Compressible and Incompressible Flows", in P. Iványi, B.H.V. Topping, (Editors),

Proceedings of the Fourth International Conference on Parallel, Distributed, Grid and

Cloud Computing for Engineering, Civil-Comp Press, Stirlingshire, UK, Paper 47, 2015.

8. G. A. Strofylas, G. I. Mazanakis, S. S. Sarakinos, G. Ν. Lygidakis, I. K. Nikolos, “Using

Improved Radial Basis Functions Methods for Fluid-Structure Coupling and Mesh

Deformation”, ECCOMMAS Congress 2016, Crete Island, Greece, 5–10 June 2016

(Accepted).

9. S. S. Sarakinos, G. N. Lygidakis, I. K. Nikolos, “Assessment of the academic CFD code

Galatea-I with the DLR-F11 model in High Lift configuration”, ASME 2016

International Mechanical Engineering Congress and Exposition, Phoenix Convention

Center, 11-17 November, 2016 (Submitted).

http://dx.doi.org/10.1016/j.advengsoft.2015.12.004

6-6

10. G. N. Lygidakis, S. S. Sarakinos, I. K. Nikolos, “Comparison of different LES turbulence

models for the simulation of flow over the CAARC standard tall building”, ASME 2016

International Mechanical Engineering Congress and Exposition, Phoenix Convention

Center, 11-17 November, 2016 (Submitted).

11. G. A. Strofylas, G. I. Mazanakis, S. S. Sarakinos, G. Ν. Lygidakis, I. K. Nikolos, “On the

use of Improved Radial Basis Functions methods in Fluid Structure Interaction

Simulations”, ASME 2016 International Mechanical Engineering Congress and

Exposition, Phoenix Convention Center, 11-17 November, 2016 (Submitted).

7-1

REFERENCES

[Ach89] S. Acharya, and F. H. Moukalled, “Improvements to incompressible flow calculation on

a nonstaggered curvilinear grid”, Numerical Heat Transfer, Part B Fundamentals, 15(2), pp. 131-

152, 1989.

[Ahn06] H.T. Ahn, and Y. Kallinderis, “Strongly Coupled Flow/Structure Interactions with a

Geometrically Conservative ALE Scheme on General Hybrid Meshes”, Journal of Computational

Physics, 219, pp. 671-696, 2006.

[Amd67] G. M. Amdahl, “Validity of the single processor approach to achieving large scale

computing capabilities,” in Proceedings of the Spring Joint Computer Conference, pp. 483–485,

April 18-20, 1967.

[And94] W.K. Anderson, and D.L. Bonhaus, “An Implicit Algorithm for Computing Turbulent

Flows on Unstructured Grids”, Computers & Fluids, 23, pp. 1-21, 1994.

[And96] W. K. Anderson, R. D. Rausch, and D. L. Bonhaus, “Implicit/multigrid algorithms for

incompressible turbulent flows on unstructured grids”, Journal of Computational Physics, 128(2),

pp. 391–408, 1996.

[ANSYS06] ANSYS CFX-Solver Theory Guide, ANSYS CFX Release 11.0, December 2006.

[Bar92] T.J. Barth, “Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and

Navier-Stokes Equations”, in Proceedings of the AGARD-FDP-VKI special course at VKI,

AGARD-R-787, pp. 6.1-6.61, Rhode-Saint-Genese, 2-6 March, 1992.

[Bea76] R. M. Beam and R. F. Warming, “An implicit finite-difference algorithm for hyperbolic

systems in conservation-law form,” Journal of Computational Physics, 22(1), pp. 87–110, 1976.

[Bel95] A. Belov, L. Martinelli, and A. Jameson, “A new implicit algorithm with multigrid for

unsteady incompressible flow calculations”, in Proceedings of the 33rd Aerospace Sciences

Meeting and Exhibit, Reno, NV, USA, 1995. AIAA 95-0049.

[Bla01] J. Blazek, Computational Fluid Dynamics: Principles and Applications, Elsevier, 2001.

[Bla85] P. A. Blackmore, “A comparison of experimental methods for estimating dynamic

response of buildings”, Journal of Wind Engineering and Industrial Aerodynamics, 18(2), pp.

197-212, 1985.

[Boo54] G. Boole, An Investigation of the Laws of Thought on Which are Founded the

Mathematical Theories of Logic and Probabilities, Macmillan. Reprinted with corrections, Dover

Publications, New York, NY, 1958. (Reissued by Cambridge University Press, 2009; ISBN 978-

1-108-00153-3), 1854.

7-2

[Bra09] A. L. Braun, and A. M. Awruch, “Aerodynamic and aeroelastic analyses on the CAARC

standard tall building model using numerical simulation”, Computers & Structures, 87(9), pp.

564-581, 2009.

[Bra96] M.E. Braaten, and S.D. Connell, “Three-Dimensional Unstructured Adaptive Multigrid

Scheme for the Navier-Stokes Equations”, AIAA, (34), pp. 281-290, 1996.

[Bui93] T. N. Bui, and C. Jones, “A heuristic for reducing fill-in in sparse matrix factorization”,

in Proceedings of Society for Industrial and Applied Mathematics (SIAM) Conference on Parallel

Processing for Scientific Computing, Norfolk, VA (United States), 21-24 Mar 1993.

[Bun85] P. G. Buningt, “A 3-D chimera grid embedding technique”, in Proceedings of the 7th

Computational Physics Conference, Cincinnati, OH, USA, 1985.

[Calculix] G. Dhondt, CalculiX CrunchiX User’s Manual, version 2.7, 2014.

[Car00] G. Carre, L. Fournier, and S. Lanteri, “Parallel linear multigrid algorithms for the

acceleration of compressible flow calculations”, Computional Methods in Applied Mechanics and

Engineering, 184, pp. 427-448, 2000.

[Car73] L. S. Caretto, A. D. Gosman, S. V. Patankar, and D. B. Spalding, “Two calculation

procedures for steady, three-dimensional flows with recirculation,” in Proceedings of the Third

International Conference on Numerical Methods in Fluid Mechanics, pp. 60–68, 1973.

[Cat03] P. Catalano, M. Wang, G. Iaccarino, and P. Moin, “Numerical simulation of the flow

around a circular cylinder at high Reynolds numbers”, International Journal of Heat and Fluid

Flow, 24, pp. 463–469, 2003.

[Cav14] Cavallo, Peter A. “CRUNCH CFD Calculations for HiLiftPW-2 with Discretization

Error Predictions”, 52nd Aerospace Sciences Meeting, AIAA SciTech, (AIAA paper: 2014-0916).

2014.

[Cha99] C.T. Chan, and K. Anastasiou, “Solution of incompressible flows with or without a free

surface using the finite volume method on unstructured triangular meshes”, International Journal

for Numerical Methods in Fluids, 29, pp. 35–57, 1999.

[Che04] Chen, L., and C. W. Letchford, “Parametric study on the along-wind response of the

CAARC building to downbursts in the time domain", Journal of Wind Engineering and Industrial

Aerodynamics, 92(9), pp. 703-724, 2004.

[Che90] G. Chesshire, and W. D. Henshaw, “Composite overlapping meshes for the solution of

partial differential equations,” Journal of Computational Physics, 90(1), pp. 1–64, 1990.

[Chi14] K. C. Chitale, M. Rasquin, J. Martin, and K. E. Jansen, "Finite Element Flow Simulations

of the EUROLIFT DLR-F11 High Lift Configuration", arXiv preprint arXiv:1402.6759, 2014.

[Cho67a] A. J. Chorin, “A numerical method for solving incompressible viscous flow problems,”

Journal of Computational Physics, 2(1), pp. 12–26, 1967.

7-3

[Cho67b] A. J. Chorin, “The numerical solution of the Navier-Stokes equations for an

incompressible fluid,” Bulletin of the American Mathematical Society, 73(6), pp. 928–931, 1967.

[Cou77] M. Coutanceau, R. Bouard, “Experimental determination of the main features of the

viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady Flow”,

Journal of Fluid Mechanics, 79(2), pp. 231-256, 1977.

[Dag09] A. K. Dagnew, G. T. Bitsuamalk, and R. Merrick, “Computational evaluation of wind

pressures on tall buildings”, in Proceedings of the 11th American Conference on Wind

Engineering, San Juan, Puerto Rico, 2009.

[Dag10] A. K. Dagnew, and G. T. Bitsuamlak, “LES evaluation of wind pressures on a standard

tall building with and without a neighboring building", in Proceedings of the 5th International

Symposium on Computational Wind Engineering, Chapel Hill, North Carolina, USA, 2010.

[Dan13] S. J. Daniels, I. P. Castro, and Z-T. Xie, “Peak loading and surface pressure fluctuations

of a tall model building”, Journal of Wind Engineering and Industrial Aerodynamics, 120, pp. 19-

28, 2013,

[Dar88] F. Darema, D. A. George, V. A. Norton, and G. F. Pfister, “A single-program-multiple-

data computational model for EPEX/FORTRAN,” Parallel Computing, 7(1), pp. 11–24, 1988.

[Dar06] M.S. Darwish, T. Saad and Z. Hamdan, “A High Scalability Parallel Algebraic Multigrid

Solver”, in Proceedings of the European Conference on Computational Fluid Dynamics

(ECCOMAS CFD 2006), Egmond aan Zee, The Netherlands, 5-8 September, 2006.

[Dav96] L. Davidson, “A pressure correction method for unstructured meshes with arbitrary

control volumes”, International Journal for Numerical Methods in Fluids, 22(4), pp. 265–281,

1996.

[Dav97] L. Davidson, “LES of recirculating flow without any homogenous direction: A dynamic

one-equation subgrid model,” in Proceedings of the 2nd International Symposium on Turbulence

Heat and Mass Transfer, Delft, Netherlands, pp. 481-490, 1997.

[Del14] T. Deloze, and E. Laurendeau. “NSMB contribution to the 2nd High Lift Prediction

Workshop”, 52nd Aerospace Sciences Meeting, AIAA SciTech, (AIAA 2014-0913), 2014.

[Den79] S. C. R. Dennis, D. B. Ingham, and R. N. Cook, “Finite-difference methods for

calculating steady incompressible flows in three dimensions,” Journal of Computational Physics,

33(3), pp. 325–339, 1979.

[Din95] P. C. Diniz, S. Plimpton, B. Hendrickson, and R. W. Leland, “Parallel Algorithms for

Dynamically Partitioning Unstructured Grids”, in Proceedings of Society for Industrial and

Applied Mathematics (SIAM) Conference on Parallel Processing for Scientific Computing, San

Francisco, CA, USA,15-17 Feb 1995.

[Doo84] J. P. Van Doormaal and G. D. Raithby, “Enhancements of the SIMPLE method for

predicting incompressible fluid flows,” Numerical Heat Transfer, 7(2), pp. 147–163, 1984.

7-4

[Dwy86] H. S. Dwyer, M. Soliman, and M. Hafez, “Time accurate solutions of the Navier-Stokes

equations for reacting flows”, in Proceedings of the Tenth International Conference on

Numerical Methods in Fluid Dynamics, Beijing, China, June 23–27, 1986.

[Dwy89] H. A. Dwyer, and S. Ibrani, “Time accurate solutions of the incompressible and three-

dimensional Navier-Stokes equations”, Computer Methods in Applied Mechanics and

Engineering, 75(1–3), pp. 333–341, 1989.

[Eli14] P. Eliasson, and S-H. Peng, "Results from the Second AIAA CFD High-Lift Prediction

Workshop Using Edge", Journal of Aircraft, 52(4), pp. 1042-1050, 2014.

[Far93] C. Farhat, and M. Lesoinne, “Automatic partitioning of unstructured meshes for the

parallel solution of problems in computational mechanics,” International Journal for Numerical

Methods in Engineering, 36(5), pp. 745–764, 1993.

[Fer02] J.H. Ferziger, and M. Peric, Computational Methods for Fluid Dynamics - 3rd Edition,

Springer, 2002.

[Fey65] R. P. Feynman, R. B. Leighton, and M. Sands, Feyman Lectures on Physics: Quantum

Mechanics, Narosa Publishing House, 1965.

[Fid82] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for improving network

partitions”, in Proceedings of the 19th Conference on Design Automation, pp. 175–181, 1982.

[FLU6.3] FLUENT, ANSYS. 6.3. Theory Manual. 2005. Fluent Inc. Central Source Park, 10

Cavendish Court, Lebanon, NH 03766, USA.

[Fly66] M. J. Flynn, “Very high-speed computing systems”, Proceedings of the IEEE, 54(12), pp.

1901-1909, 1966.

[Fly72] M. J. Flynn, “Some computer organizations and their effectiveness,” Transactions on

Computers, IEEE, 100(9), pp. 948–960, 1972.

[Fra90] R. Franke, W. Rodi, B. Schonung, “Numerical calculation of laminar vortex shedding

flow past cylinders”, Journal of Wind Engineering and Industrial Aerodynamics, 35, pp. 237-257,

1990.

[Ger91] M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, “A dynamic subgrid‐scale eddy

viscosity model”, Physics of Fluids, 3(7), pp. 1760–1765, 1991.

[God09] D. Goddeke, S. H. Buijssen, H. Wobker, and S. Turek, “GPU acceleration of an

unmodified parallel finite element Navier-Stokes solver,” in Proceedings of the HPCS’09

International Conference on High Performance Computing & Simulation, pp. 12–21, 2009.

[Gor90] J.J. Gorski, R.M. Coleman, H.J. Haussling, “Computation of incompressible flow around

the DARPA SUBOFF bodies”, Ft. Belvoir: Defence Technical Information Center, July 1990.

 http://www.dtic.mil/get-tr-doc.

http://www.dtic.mil/get-tr-doc/pdf?AD=ADA226481
http://www.dtic.mil/get-tr-doc/pdf?AD=ADA226481
http://www.dtic.mil/get-tr-doc/pdf?AD=ADA226481

7-5

[Gre98] P. M. Gresho, and R. L. Sani, Incompressible flow and the finite element method. Volume

1: Advection-diffusion and isothermal laminar flow, John Wiley and Sons, Inc., New York, 1998.

[Greg70] Gregory, N., and C. L. OReilly, Low-speed aerodynamic characteristics of NACA 0012

aerofoil section, including the effects of upper-surface roughness simulating hoar frost, Technical

Report, Her Majesty’s Stationery Office, London, 1970.

[Gro89] N.C. Groves, T.T. Huang and M.S. Chang, “Geometric characteristics of DARPA

(Defense Advanced Research Projects Agency) SUBOFF models (DTRC model numbers 5470

and 5471)”, Ft. Belvoir: Defence Technical Information Center, March 1989,

http://www.dtic.mil/get-tr-doc.

[Gro11] Gross, Andreas, A. Kremheller, and Hermann Fasel. "Simulation of Flow over Suboff

Bare Hull Model", in Proceedings of the 49th AIAA aerospace sciences meeting, 2011.

[Gro92] W. D. Gropp, “Parallel computing and domain decomposition,” in Proceedings of the

Fifth International Symposium on Domain Decomposition Methods for Partial Differential

Equations, Philadelphia, PA, 1992.

[Gro96] W. D. Gropp, and A. Skjellum, “MPICH model MPI implementation reference manual”,

Technical report, Argonne National Laboratory, Argonne, 1996.

[Gro99] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: portable parallel programming with

the message-passing interface, vol. 1, MIT press, 1999.

[Haf89] M. Hafez, J. Dacles, and M. Soliman, “A velocity/vorticity method for viscous

incompressible flow calculations,” in Proceedings of the 11th International Conference on

Numerical Methods in Fluid Dynamics, pp. 288–296, 1989.

[Hal70] D. S. Halacy, Charles Babbage, father of the computer, Crowell-Collier Press, 1970.

[Han02] V. Hannemann, “Structured Multigrid Agglomeration on a Data Structure for

Unstructured Meshes”, International Journal for Numerical Methods in Fluids, 40, pp. 361-368,

2002.

[Han14] J. Hanke, P. Shankara, and D. Snyder, “Numerical Simulation of DLR-F11 High Lift

Configuration from HiLiftPW-2 Using STAR-CCM+”, 52nd Aerospace Sciences Meeting, AIAA

SciTech, (AIAA 2014-0914), 2014.

[Har65] F. Harlow and J. Welsh, “Numerical Calculation of Time-Dependent Viscous

Incompressible Flow of Fluid with Free Surface,” The Physics of Fluids, 8(10), pp. 2182–2189,

1965.

[Hen95] B. Hendrickson and R. Leland, “A multi-level algorithm for partitioning graphs”, in

Proceedings of the 1995 ACM/IEEE conference on Supercomputing, p. 28, San Diego, California,

3-6 December 1995.

http://www.dtic.mil/get-tr-doc/pdf?AD=ADA210642
http://www.dtic.mil/get-tr-doc/pdf?AD=ADA210642
http://www.dtic.mil/get-tr-doc/pdf?AD=ADA210642
http://www.dtic.mil/get-tr-doc/pdf?AD=ADA210642

7-6

[Hof14] J. Hoffman, J. Jansson, N. Jansson, and R. V. de Abreu, “Time-resolved adaptive FEM

simulation of the DLR-F11 aircraft model at high Reynolds number”, In Proceeding of 52nd

Aerospace Sciences Meeting, AIAA, 2014.

[Hua07] S. Huang, Q. S. Li, and S. Xu. "Numerical evaluation of wind effects on a tall steel

building by CFD", Journal of Constructional Steel Research, 63(5), pp. 612-627, 2007.

[Hua89] T. T. Huang, H. L. Liu, and N.C. Groves, “Experiments of the DARPA SUBOFF

program”, Ft. Belvoir: Defence Technical Information Center, December 1989,

http://www.dtic.mil/get-tr-doc.

[Hus96] H. J. Hussein, and R. J. Martinuzzi. "Energy balance for turbulent flow around a surface

mounted cube placed in a channel", Physics of Fluids, 8(3), pp. 764-780, 1996.

[Iac03] G. Iaccarino, A. Ooi, P. A. Durbin, and M. Behnia, “Reynolds averaged simulation of

unsteady separated flow”, International Journal of Heat and Fluid Flow, 24(2), pp. 147-156,

2003.

[Imp04] J. Impagliazzo and J. A. N. Lee, “History of computing in education”, in Proceedings of

the IFIP 18th World Computer Congress, TC3/TC9, 51st Conference on the history of computing

in education, Toulouse, France, Springer Science & Business Media, 22-27 August 2004.

[Jan86] D. S. Jang, R. Jetli, and S. Acharya. "Comparison of the PISO, SIMPLER, and SIMPLEC

algorithms for the treatment of the pressure-velocity coupling in steady flow

problems", Numerical Heat Transfer, Part A: Applications, 10(3), pp. 209-228, 1986.

[Jes10] D. C. Jespersen, “Acceleration of a CFD code with a GPU,” Scientific Programming,

18(3–4), pp. 193–201, 2010.

[Joh99] T. A. Johnson, and V. C. Patel. "Flow past a sphere up to a Reynolds number of

300", Journal of Fluid Mechanics, 378, pp. 19-70, 1999.

[Kal05] Y. Kallinderis, and H.T. Ahn, “Incompressible Navier-Stokes Method with General

Hybrid Meshes”, Journal of Computational Physics, 210, pp. 75-108, 2005.

[Kal96] Y. Kallinderis, “A 3-D Finite Volume Method for the Navier Stokes Equations with

Adaptive Hybrid Grids”, Applied Numerical Mathematics, 20, pp. 387-406, 1996.

[Kar95] G. Karypis and V. Kumar, “Analysis of multilevel graph partitioning,” in Proceedings of

the 1995 ACM/IEEE conference on Supercomputing, 1999.

[Kar98] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning

irregular graphs,” SIAM Journal on scientific Computing, 20(1), pp. 359–392, 1998.

[Kat09] A. Katz and A. Jameson,”Multicloud: Multigrid Convergence with a Meshless

Operator”, Journal of Computational Physics, 228, pp. 5237-5250, 2009.

[Kim03] K. Kim, Three-Dimensional Hybrid Grid Generator and Unstructured Flow Solver for

Compressors and Turbines, PhD thesis, Texas A&M University, 2003.

http://www.dtic.mil/get-tr-doc/pdf?AD=ADA218797
http://www.dtic.mil/get-tr-doc/pdf?AD=ADA218797
http://www.dtic.mil/get-tr-doc/pdf?AD=ADA218797

7-7

[Kim85] J. Kim and P. Moin, “Application of a fractional-step method to incompressible Navier-

Stokes equations,” Journal of Computational Physics, 59(2), pp. 308–323, 1985.

[Kir01] C. Kiris and D. Kwak, “Numerical solution of incompressible Navier–Stokes equations

using a fractional-step approach,” Computers & Fluids, 30(7), pp. 829–851, 2001.

[Koo00] B. Koobus, C. Farhat and H. Tran, “Computation of Unsteady Viscous Flows around

Moving Bodies Using the k-ε Turbulence Model on Unstructured Dynamic Grids”, Computer

Methods in Applied Mechanics and Engineering, 190, pp. 1441-1466, 2000.

[Kou03] D.G. Koubogiannis, A.N. Athanasiadis and K.C. Giannakoglou, “One- and Two-

Equation Turbulence Models for the Prediction of Complex Cascade Flows Using Unstructured

Grids”, Computers and Fluids, 32, pp. 403-430, 2003.

[Kue93] H. Kuerten and B. Geurts, “Compressible turbulent flow simulation with a multigrid

multiblock method”, in NASA CONFERENCE PUBLICATION, pp. 305–305, 1993.

[Kwa11] D. Kwak and C. C. Kiris, Computation of viscous incompressible flows, Springer

Science & Business Media, 2011.

[Kwa86] D. Kwak, J. L. C. Chang, S. P. Shanks, and S. R. Chakravarthy, “A three-dimensional

incompressible Navier-Stokes flow solver using primitive variables,” AIAA Journal, 24(3), pp.

390–396, 1986.

[Lal88] M.H. Lallemand, “Etude de Schemas Runge-Kutta a 4 pas pour la Resolution Multigrille

des Equations d’ Euler 2D”, Raport de Recherche, INRIA, 1988.

[Lam04] N.K. Lambropoulos, D.G. Koubogiannis and K.C. Giannakoglou, “Acceleration of a

Navier-Stokes equation solver for unstructured grids using agglomeration multigrid and parallel

processing”, Computer Methods in Applied Mechanics and Engineering, 193, pp. 781-803, 2004.

[Lan96] S. Lanteri, “Parallel solutions of compressible flows using overlapping and non-

overlapping mesh partitioning strategies”, Parallel Computing, 22(7), pp. 943–968, 1996.

[Lan98] C.B. Laney, Computational Gasdynamics, Cambridge University Press, 1998.

[Lar91] B. Larrouturou, “How to Preserve Mass Fractions when Computing Compressible Multi-

component Flows”, Journal of Computational Physics, 95, pp. 59-84, 1991.

[Lav75] S. H. Lavington, A history of Manchester computers, NCC Publications, 1975.

[LeC70] B. P. Le Clair, A. E. Hamielec, and H. R. Pruppacher. "A numerical study of the drag on

a sphere at low and intermediate Reynolds numbers", Journal of the Atmospheric Sciences, 27(2),

pp. 308-315, 1970.

[Lee81] K. D. Lee, and P. E. Rubbert, “Transonic flow computations using grid systems with

block structure,” in Proceedings of the Seventh International Conference on Numerical Methods

in Fluid Dynamics, pp. 266–271, 1981.

7-8

[Lee00] S. Lee, “A numerical study of the unsteady wake behind a sphere in a uniform flow at

moderate Reynolds numbers”, Computers & Fluids 29(6), pp. 639-667, 2000.

[Lee10] E.M. Lee-Rausch, D.P. Hammond, E.J. Nielsen, S.Z. Pirzadeh and C.L. Rumsey,

“Application of the FUN3D unstructured-grid Navier-Stokes solver to the 4th AIAA drag

prediction workshop cases”, in Proceedings of 28th AIAA Applied Aerodynamics Conference,

Chicago, Illinois, AIAA 2010-4551, 28 June - 1 July 2010.

[Lee15] E. M. Lee-Rausch, C. L. Rumsey, and M. A. Park, “Grid-Adapted FUN3D Computations

for the Second High Lift Prediction Workshop”, Journal of Aircraft, 52(4), pp. 1098-1111, 2015.

 [Lev10] D.W. Levy, K.R. Laflin, E.N. Tinoco, J.C. Vassberg, M. Mani, B. Rider, C. Rumsey,

R.A. Wahls, J.H. Morrison, O.P. Brodersen, S. Crippa, D.J. Mavriplis and M. Murayama,

“Summary of data from the fifth AIAA CFD drag prediction workshop”, in Proceedings of 51st

AIAA Aerospace Sciences Meeting, Grapevine, Texas, AIAA 2013-0046, 7 -10 January, 2013.

[Lil92] D. K. Lilly, “A proposed modification of the Germano subgrid-scale closure method”,

Physics of Fluids A, Fluid Dynamics, 4(3), pp. 633–635, 1992.

[Liu98] H.L. Liu, and T.T. Huang, “Summary of DARPA SUBOFF experimental program data”,

Ft. Belvoir: Defense Technical Information Center, June 1998,

http://handle.dtic.mil/100.2/ADA359226.

[LiuC98] C. Liu, X. Zheng, and C.H. Sung, “Preconditioned multigrid methods for unsteady

incompressible flows”, Journal of Computational Physics, 139, pp. 35–57, 1998.

[Lyg12] G.N. Lygidakis and I.K. Nikolos, “Using the Finite-Volume Method and Hybrid

Unstructured Meshes to Compute Radiative Heat Transfer in 3-D Geometries”, Numerical Heat

Transfer Part B: Fundamentals, 62, pp. 289-314, 2012.

[Lyg13] G.N. Lygidakis and I.K. Nikolos, “Using a High-Order Spatial/Temporal Scheme and

Grid Adaptation with a Finite-Volume Method for Radiative Heat Transfer”, Numerical Heat

Transfer Part B: Fundamentals, 64, pp. 89-117, 2013.

[Lyg14a] G.N. Lygidakis and I.K. Nikolos, “Using a parallel spatial/angular agglomeration

multigrid scheme to accelerate the FVM radiative heat transfer computation - part I:

methodology”, Numerical Heat Transfer B, 66, 471-497, 2014.

[Lyg14b] G.N. Lygidakis, S.S. Sarakinos and I.K. Nikolos, “A parallel agglomeration multigrid

method for incompressible flow simulations”, in Proceedings of 9th International Conference on

Engineering Technology, Naples, Italy, 2-5 September, 2014, Civil-Comp Press, paper 27.

[Lyg14c] G.N. Lygidakis and I.K. Nikolos, “A parallel agglomeration multigrid method for the

acceleration of compressible flow computations on 3D hybrid unstructured grid”, in Proceedings

of 11th World Congress on Computational Mechanics (WCCM XI), 5th European Conference on

Computational Mechanics (ECCM V), 6th European Conference on Computational Fluid

Dynamics (ECFD VI), IACM-ECCOMAS, Barcelona, Spain, 20-25 July, 2014.

7-9

[Lyg14d] G.N. Lygidakis and I.K. Nikolos, “Using the DLR-F6 Aircraft Model for the

Evaluation of the Academic CFD Code "Galatea"”, in Proceedings of the International

Mechanical Engineering Congress and Exposition, ASME-IMECE2014, Montreal, Canada, 14-20

November 2014, IMECE2014-39756.

[Lyg15] G.N. Lygidakis, On the numerical solution of compressible fluid flow and radiative heat

transfer problems, Ph.D. Thesis, Technical University of Crete, 2015.

[Lyg16] G. N. Lygidakis, S. S. Sarakinos, I. K. Nikolos, “Comparison of different agglomeration

multigrid schemes for compressible and incompressible flow simulations”, Advances in

Engineering Software, Advances in Engineering Software, Available online 13 January 2016,

ISSN 0965-9978, http://dx.doi.org/10.1016/j.advengsoft.2015.12.00.

[Mag61] R. H. Magarvey, and R. L. Bishop. "Transition ranges for three-dimensional

wakes", Canadian Journal of Physics, 39(10), pp. 1418-1422, 1961.

[Mav96] D.J. Mavriplis and V. Venkatakrishnan, “A 3D Agglomeration Multigrid Solver for the

Reynolds-Averaged Navier-Stokes Equations on Unstructured Meshes”, International Journal for

Numerical Methods in Fluids, 23, pp. 527-544, 1996.

[Mav97] D.J. Mavriplis, “Directional Coarsening and Smoothing for Anisotropic Navier-Stokes

Problems”, Electronic Transactions on Numerical Analysis, 6, pp. 182-197, 1997.

[Mav98] D.J. Mavriplis, “Multigrid Strategies for Viscous Flow Solvers on Anisotropic

Unstructured Meshes”, Journal of Computational Physics, 145, pp. 141-165, 1998.

[Mav99] D.J. Mavriplis and S. Pirzadeh, “Large-Scale parallel unstructured mesh computations

for 3D high-lift analysis”, NASA ICASE Report, No. 99-9, 1999.

[Mav10] D.J. Mavriplis and M. Long, “NSU3D results for the fourth AIAA drag prediction

workshop”, in Proceedings of 28th AIAA Applied Aerodynamics Conference, Chicago, Illinois,

AIAA 2010-4550, 28 June - 1 July 2010.

[Mav15] D. Mavriplis, "NSU3D Results for the Second AIAA High Lift Prediction Workshop."

Journal of Aircraft, 52(4), pp. 1063-1081, 2015.

[McC99] S. McCartney, ENIAC: The triumphs and tragedies of the world’s first computer,

Walker & Company, 1999.

[McD71] P. W. McDonald, “The computation of transonic flow through two-dimensional gas

turbine cascades,” in Proceedings of ASME 1971 International Gas Turbine Conference and

Products Show, pp. V001T01A089–V001T01A089, 1971.

[Mel80] Melbourne, W. H. “Comparison of measurements on the CAARC standard tall building

model in simulated model wind flows”, Journal of Wind Engineering and Industrial

Aerodynamics, 6(1), pp. 73-88, 1980.

7-10

[Men92] F. R. Menter, “Influence of free stream values on k-ω turbulence model predictions”.

AIAA Journal, 30(6), pp. 1657-1659, 1992.

[Men03] F. Menter, F.J. Carregal, T. Esch and B. Konno, “The SST turbulence model with

improved wall treatment for heat transfer predictions in gas turbines”, Proceedings of the

International Gas Turbine Congress, IGTC 2003-TS-059, Tokyo, Japan, 2 - 7 November, 2003.

[Moo65] G. Moore, “Cramming More Components Onto Integrated Circuits”, Electronics, (38) 8,

pp. 114, 1965.

[Mou11] V. Moureau, P. Domingo, and L. Vervisch, “Design of a massively parallel CFD code

for complex geometries,” Comptes Rendus Mécanique, vol. 339(2), pp. 141–148, 2011.

[MPI93] The MPI Forum, MPI: A Message Passing Interface, 1993.

[Mun90] B. R. Munson, D. F. Young, and T. H. Okiishi, Fundamentals of fluid mechanics, New

York, 1990.

[Mur15] M. Murayama, K. Yamamoto, Y. Ito, T. Hirai, and K. Tanaka, “Japan Aerospace

Exploration Agency Studies for the Second High-Lift Prediction Workshop”, Journal of

Aircraft, 52(4), 1026-1041, 2015.

[Mur98] S. Murakami, "Overview of turbulence models applied in CWE–1997", Journal of Wind

Engineering and Industrial Aerodynamics, 74, pp. 1-24, 1998.

[Nak87] K. Nakahashi and S. Obayashi, “Viscous flow computations using a composite grid,” in

Proceedings of 8
th
 Computational Fluid Dynamics Conference, Honolulu, HI, pp. 303–312, 1987.

[NASA] NASA/Langley Research Center, www.larc.nasa.gov.

[Nee97] R.E. Neel, Advances in Computational Fluid Dynamics: Turbulent separated flows and

transonic potential flows, PhD Thesis, Blacksburg, Virginia, USA, 1997.

[Neu45] J. von Neumann, “First draft of a report on the EDVAC”, 1945, Reprinted in Papers of

John von Neumann on Computing and Computer Theory, W. Aspray and A. Burks, eds. MIT

Press, Cambridge, MA, 1987.

[Nic99] F. Nicoud and F. Ducros, “Subgrid-scale stress modelling based on the square of the

velocity gradient tensor,” Flow, Turbulence and Combustion, 62, pp. 183–200, 1999.

[Nis10] H. Nishikawa, B. Diskin and J.L. Thomas, “Critical Study of Agglomerated Multigrid

Methods for Diffusion”, AIAA Journal, 48, pp. 839-847, 2010.

[Nis11] H. Nishikawa and B. Diskin, “Development and Application of Parallel Agglomerated

Multigrid Methods for Complex Geometries”, in Proceedings of the 20th AIAA Computational

Fluid Dynamics Conference, Honolulu, Hawaii, USA, 27 - 30 June, 2011, AIAA 2011-3232.

7-11

[Nish13] H. Nishikawa, B. Diskin, J.L. Thomas and D.P. Hammond, “Recent advances in

agglomerated multigrid”, in Proceedings of 51st AIAA Aerospace Sciences Meeting, Grapevine,

Texas, USA, 7 - 10 January, 2013, AIAA 2013-0863.

[Nou87] B. Nour-Omid, A. Raefsky, and G. Lyzenga, “Solving finite element equations on

concurrent computers,” in Proceedings of Parallel computations and their impact on mechanics,

Boston, MA, USA, 13-18 December, 1987.

[Oba92] E. D. Obasaju, "Measurement of forces and base overturning moments on the CAARC

tall building model in a simulated atmospheric boundary layer", Journal of Wind Engineering and

Industrial Aerodynamics, 40(2), pp. 103-126, 1992.

[Ors86] S. A. Orszag, M. Israeli, and M. O. Deville, “Boundary conditions for incompressible

flows”, Journal of Scientific Computing, 1(1), pp. 75–111, 1986.

[Pan89] D. Pan and S. R. Chakravarthy, “Unified formulation for incompressible flows,” in

Proceedings of the 27th AIAA Aerospace Sciences Meeting, 1, 1989.

[Pat72] S. V. Patankar, and D. B. Spalding, “A calculation procedure for heat, mass and

momentum transfer in three-dimensional parabolic flows”, International Journal of Heat and

Mass Transfer, 15(10), pp. 1787-1806, 1972.

[Pat86] D. A. Paterson, and C. J. Apelt. “Computation of wind flows over three-dimensional

buildings”, Journal of Wind Engineering and Industrial Aerodynamics, 24(3), pp. 193-213, 1986.

[Qua13] L. Quartapelle, Numerical solution of the incompressible Navier-Stokes equations, vol.

113, Birkhauser, 2013.

[Ren09] T. C. S. Rendall and C. B. Allen, “Improved radial basis function fluid-structure

coupling via efficient localized implementation”, International Journal for Numerical Methods in

Engineering, 78(10), pp. 1188–1208, 2009.

[Rod86] W. Rodi, G. Scheuerer, “Scrutinizing the k–ε turbulence model under adverse pressure

gradient conditions”, Journal of Fluids Engineering, 108, 1986.

[Roe81] P. Roe, “Approximate Riemann Solvers, Parameter Vectors and Difference Schemes”,

Journal of Computational Physics, 43, pp. 357-371, 1981.

[Rog89] S. E. Rogers, D. Kwak, and C. Kiris, “Numerical solution of the incompressible Navier-

Stokes equations for steady-state and time-dependent problems”, in Proceedings of the Tenth

Australasian Fluid Mechanics Conference, University of Melbourne, 11-15 Dec., 1989.

[Rog90] S. E. Rogers and D. Kwak, “Upwind differencing scheme for the time-accurate

incompressible Navier-Stokes equations,” AIAA Journal, 28(2), pp. 253–262, 1990.

[Ros91] M. Rosenfeld, D. Kwak, and M. Vinokur, “A fractional step solution method for the

unsteady incompressible navier-stokes equations in generalized coordinate systems”, Journal of

Computational Physics, 94(1), pp. 102–137, 1991.

7-12

[Ros92] C. C. Rossow, “Efficient computation of inviscid flow fields around complex

configurations using a multiblock multigrid method,” Communications in Applied Numerical

Methods, 8(10), pp. 735–747, 1992.

[Rud12] R. Rudnik, K. Huber, and S. Melber-Wilkending, “EUROLIFT Test Case Description

for the 2nd High Lift Prediction Workshop”, 30th AIAA Applied Aerodynamics Conference, Fluid

Dynamics and Co-located Conferences, (AIAA Paper 2012-2924), 2012.

[Rud14] Rudnik, R., and S. Melber-Wilkending. “DLR Contribution to the 2nd High Lift

Prediction Workshop”, 52nd Aerospace Sciences Meeting, AIAA SciTech, (AIAA 2014-0915).

2014.

[Rum14P] C. L. Rumsey, J. P. Slotnick, “Overview and Summary of the Second AIAA High Lift

Prediction Workshop”, in Proceedings of AIAA Scitech 2014, National Harbor, Maryland, 13 - 17

January, 2014.

[Sar14] S.S. Sarakinos, G.N. Lygidakis and I.K. Nikolos, “Evaluation of a Parallel

Agglomeration Multigrid Finite-Volume Algorithm, named Galatea-I, for the Simulation of

Incompressible Flows on 3D Hybrid Unstructured Grids”, in Proceedings of the International

Mechanical Engineering Congress and Exposition, ASME-IMECE2014, Montreal, Canada, 14-

20 November 2014, IMECE2014-39759.

[Sar15] S.S. Sarakinos, G.N. Lygidakis, I.K. Nikolos, "Acceleration Strategies for Simulating

Compressible and Incompressible Flows", in P. Iványi, B.H.V. Topping, (Editors), Proceedings

of the Fourth International Conference on Parallel, Distributed, Grid and Cloud Computing for

Engineering, Civil-Comp Press, Stirlingshire, UK, Paper 47, 2015.

[Sch70] H. A. Schwarz, Ueber einen Grenzubergang durch alternirendes Verfahren, Zurcher u.

Furrer, 1870.

[Shi93] W. C. L. Shih, C. Wang, D. Coles, A. and Roshko, “Experiments on flow past rough

circular cylinders at large Reynolds numbers”, Journal of Wind Engineering and Industrial

Aerodynamics, 49, pp. 351–368, 1993.

[Shi01] S. Shin, Reynolds-averaged Navier-Stokes computation on tip clearance flow in a

compressor cascade using an unstructured grid, Ph.D. Thesis, Virginia Polytechnic Institute and

State University, 2001.

[Sma63] J. Smagorinsky, “General circulation experiments with the primitive equations”,

Monthly Weather Review, 91(3), pp. 99–164, 1963.

[Smi04] B. Smith, P. Bjorstad, and W. Gropp, Domain Decomposition: Parallel Multilevel

Methods for Elliptic Partial Differential Equations, Cambridge: Cambridge University Press,

2004.

[Sor03] K.A. Sorensen, O. Hassan, K. Morgan and N.P. Weatherill, “A Multigrid Accelerated

Hybrid Unstructured Mesh Method for 3D Compressible Turbulent Flow”, Computational

Mechanics, 31, pp. 101-114, 2003.

7-13

[Str15] G. A. Strofylas, G.N. Lygidakis, I.K Nikolos, “Accelarating RBF-Based Mesh

Deformation by Implementing An Agglomeration Strategy”, in Proceedings of ASME

International Mechanical Engineering Congress & Exposition (IMECE 2015), Houston, Texas,

2015, IMECE2015-50902.

[Ste77] J. L. Steger and P. Kutler, “Implicit Finite-Difference Procedures for the Computation of

Vortex Wakes,” AIAA Journal, 15(4), pp. 581–590, 1977.

[Stok51] G. G. Stokes, On the effect of the internal friction of fluids on the motion of pendulums,

Vol. 9. Pitt Press, 1851.

[Syk83] D. M. Sykes, “Interference effects on the response of a tall building model”, Journal of

Wind Engineering and Industrial Aerodynamics, 11(1), pp. 365-380, 1983.

[Tai03] C. H. Tai, and Y. Zhao, “Parallel unsteady incompressible viscous flow computations

using an unstructured multigrid method,” Journal of Computational Physics, 192, pp. 277-311,

2003.

[Tai05] C. H. Tai, Y. Zhao, and K. M. Liew, “Parallel-multigrid computation of unsteady

incompressible viscous flows using a matrix-free implicit method and high-resolution

characteristics-based scheme”, Computer Methods in Applied Mechanics and Engineering,

194(36–38), pp. 3949–3983, 2005.

[Tan56] S. Taneda, “Experimental investigation of the wake behind a sphere at low Reynolds

numbers”, Journal of the Physical Society of Japan, 11(10), pp. 1104-1108, 1956.

[Tan86] H. Tanaka, and N. Lawen. "Test on the CAARC standard tall building model with a

length scale of 1: 1000", Journal of Wind Engineering and Industrial Aerodynamics 25(1), pp.

15-29, 1986.

[Tay91] L. K. Taylor and D. L. Whitfield, “Unsteady three-dimensional incompressible Euler and

Navier-Stokes solver for stationary and dynamic grids”, 22nd Fluid Dynamics, Plasma Dynamics

and Lasers Conference, Fluid Dynamics and Co-located Conferences, 1991.

[Tez92] T. E. Tezduyar, S. Mittal, S. E. Ray, and R. Shih, “Incompressible flow computations

with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements,”

Computer Methods in Applied Mechanics and Engineering, 95(2), pp. 221–242, 1992.

[Thi09] J. C. Thibault and I. Senocak, “CUDA implementation of a Navier-Stokes solver on

multi-GPU desktop platforms for incompressible flows,” in Proceedings of the 47th AIAA

aerospace sciences meeting, pp. 2009–758, 2009.

[Tho93] J. F. Thompson and N. P. Weatherill, “Aspects of numerical grid generation: current

science and art”, 11th Applied Aerodynamics Conference, Guidance, Navigation, and Control

and Co-located Conferences, 1993.

[Top500] http://www.top500.org/

7-14

[Tox08] S. Toxopeus, “Viscous-flow calculations for bare hull DARPA SUBOFF submarine at

incidence”, International Shipbuilding Progress, 55(3), pp. 227, 2008.

[Tur36] A. M. Turing, “On computable numbers, with an application to the

Entscheidungsproblem”, Journal of the London Mathematical Society, pp. 230–265, 1936.

[Van84] Van, D. J., and G. D. Raithby, “Enhancement of the SIMPLE method for predicting

incompressible fluid flow”, Numerical Heat Transfer, 7(2), pp. 147-163, 1984.

[Vas10] J.C. Vassberg, E.N. Tinoco, M. Mani, B. Rider, T. Zickuhr, D.W. Levy, O.P. Brodersen,

B. Eisfeld, S. Crippa, R.A. Wahls, J.H. Morrison, D.J. Mavriplis and M. Murayama, “Summary

of the fourth AIAA CFD drag prediction workshop”, in Proceedings of 28th AIAA Applied

Aerodynamics Conference, Chicago, Illinois, AIAA 2010-4547, 28 June - 1 July, 2010.

[Ven92] V. Venkatakrishnan, H. D. Simon, and T. J. Barth, “A MIMD implementation of a

parallel Euler solver for unstructured grids,” The Journal of Supercomputing, 6(2), pp. 117–137,

1992.

[Ven95] V. Venkatakrishnan, “Implicit schemes and parallel computing in unstructured grid

CFD”, in Proceedings of 26th Computational Fluid Dynamics Lecture Series Program, Von

Karman Institute for Fluid Dynamics, Rhode Saint-Genese, Belgium,13-17 March, 1995.

[Ver07] H. K. Versteeg and W. Malalasekera, An introduction to computational fluid dynamics:

the finite volume method, Pearson Education, 2007.

[VKa63] T. von Karman, Aerodynamics, Cornell University press: Mc Graw-Hill Company,

1963.

[Vos10] J.B. Vos, and S. Sanchi, , “DPW4 results using different grids including near-field/far-

field drag analysis”, in Proceedings of 28th AIAA Applied Aerodynamics Conference, Chicago,

Illinois, AIAA 2010-4552, 28 June - 1 July, 2010.

[Vra12] S. Vrahliotis, T. Pappou, S. and Tsangaris, “Artificial compressibility 3-D Navier-Stokes

solver for unsteady incompressible flows with hybrid grids”, Engineering Applications of

Computational Fluid Mechanics, 6(2), pp. 248-270, 2012.

[Wan08] X. Y. Wang, K. S. Yeo, C. S. Chew, and B. C. Khoo, “A SVD-GFD scheme for

computing 3D incompressible viscous fluid flows”, Computers & Fluids, 37(6), pp. 733-746,

2008.

[Wea88] N. P. Weatherill, “On the combination of structured-unstructured meshes”, in

Proceedings of Numerical grid generation in computational fluid mechanics’88, pp. 729–739,

1988.

[Weiss] E. W. Weisstein, “Tetrahedron”, from MathWorld -- A Wolfram Web Resource.

http://mathworld.wolfram.com/Tetrahedron.html.

7-15

[Wil89] R. D. Williams, “Supersonic fluid flow in parallel with an unstructured mesh,”

Concurrency: Practice and Experience, 1(1), pp. 51–62, 1989.

[Xu92] Y. L. Xu, K. C. S. Kwok, and B. Samali, “Control of wind-induced tall building vibration

by tuned mass dampers”, Journal of Wind Engineering and Industrial Aerodynamics, 40(1), pp.

1-32, 1992.

[Zha00] Y. Zhao, and B. Zhang, “A high-order characteristics upwind FV method for

incompressible flow and heat transfer simulation on unstructured grids”, Computer Methods in

Applied Mechanics and Engineering, 190(5–7), pp. 733–756, 2000.

[Zha15] Y. Zhang, W. G. Habashi, and R. A. Khurram. “Predicting wind-induced vibrations of

high-rise buildings using unsteady CFD and modal analysis”, Journal of Wind Engineering and

Industrial Aerodynamics, 136, pp. 165-179, 2015.

	Abstract
	Πρόλογος
	Acknowledgments
	CHAPTER 1
	INTRODUCTION
	1.1 Setup of a CFD simulation
	1.2 Incompressible flow solving techniques
	1.3 Parallel computing
	1.4 Domain Decomposition
	1.5 Present study

	CHAPTER 2
	MATHEMATICAL MODELING
	2.1 Governing Equations
	2.1.1Flow Model
	2.1.2 Turbulence Modeling

	2.2 Time-Accurate Formulation

	CHAPTER 3
	NUMERICAL MODELING
	3.1 Spatial discretization
	3.2 Calculation of fluxes
	3.2.1 Inviscid fluxes
	3.2.2 Viscous fluxes
	3.2.3 Turbulent fluxes
	3.2.4 Boundary conditions
	3.2.4.a Inlet and Outlet boundaries
	3.2.4.b Solid wall and symmetry boundaries

	3.3 Temporal discretization
	3.3.1 Steady State solution
	3.3.2 Unsteady State solution – dual time stepping.

	CHAPTER 4
	ACCELERATION TECHNIQUES
	4.1 Parallel Processing
	4.1.1 Domain Decomposition - Partitioning
	4.1.2 Communication data structures
	4.1.3 Communication Procedure – MPI

	4.2 Agglomeration multigrid method
	4.2.1 Agglomeration methodology
	4.2.2. Flux computation and numerical solution

	CHAPTER 5
	NUMERICAL RESULTS
	5.1 Steady-state numerical solutions
	5.1.1 Inviscid flow over a rectangular wing with a NACA0012 airfoil
	5.1.2 Three-dimensional lid-driven cavity flow
	5.1.3 Steady viscous flow around a circular cylinder
	5.1.4 Steady viscous laminar flow around a sphere.
	5.1.5 Turbulent flow over a rectangular wing with a NACA0012 airfoil.
	5.1.6 Steady turbulent flow around an axisymmetric submarine hull at 0o, 18o and 30o angle of attack
	5.1.7 Turbulent flow around a submarine hull with bridge fairwater configuration.

	5.2 Unsteady numerical solutions
	5.2.1 Unsteady laminar flow around a circular cylinder
	5.2.2 Unsteady turbulent flow around a circular cylinder.
	5.2.3 Unsteady turbulent flow around a tall building.
	5.2.4 Turbulent flow around the DLR-F11 model at 7o angle of attack.
	5.2.5 Turbulent flow around the DLR-F11 model at 12o angle of attack.

	5.3 Evaluation of the multigrid scheme
	5.3.1 Inviscid flow over a rectangular wing with a NACA0012 airfoil
	5.3.2 Three dimensional cavity flow (Re=400)
	5.3.3 Steady turbulent flow around an axisymmetric submarine hull at 0o angle of attack (Re=12.0E+6).

	CHAPTER 6
	CONCLUSIONS
	6.1 Summary
	6.2 Contributions
	6.3 Ongoing – future work
	6.4 Publications

	REFERENCES

