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Abstract

Distributional Semantic Models (DSMs) have been successful at modeling the meaning of

words in isolation. Interest has recently shifted to compositional structures, i.e., lexical

units that comprise of words that represent individual concepts, such as phrases and sen-

tences. Network DSMs (NDSMs) represent and handle semantics via operations on word

neighborhoods, i.e., semantic graphs comprising of a target lexical unit’s semantically most

similar words. Semantic networks are based on activational priming, a cognitively-based

theory that a specific area which shares common features can be activated upon the trigger-

ing of a related stimulus. In this thesis, a variety of activation composition and similarity

modeling strategies is proposed that aims to address compositionality within the framework

of the respective layers of NDSMs. In the activation layer, we propose several activation

schemes, motivated by psycholinguistics, that utilize variable size activations in order to

compose neighborhoods for complex structures. In the similarity layer, we model similarity

metrics that operate on the derived neighborhoods to estimate similarity. The proposed

schemes cover a range of approaches for modeling semantics in complex structures. We

also investigate modifier properties and transformational models from the literature, and

propose a fusion scheme that regulates the transformational properties of phrase modifiers

in order to weight the contribution of its component models for handling semantics. To this

end, the model utilizes network and transformational models under a fusion scheme that

models similarity. It is shown that, by fusing strictly compositional with transformational

models to realise a flexible model that adapts to phrase behavior by considering modifier

properties, performance gains can be achieved.



Περίληψη

Τα Κατανεµηµένα Σηµασιολογικά Μοντέλα (ΚΣΜ) έχουν καταστεί επιτυχή όσον αφορά τη

µοντελοποίηση νοήµατος για αποµονωµένες λέξεις. Το ενδιαφέρον έχει πρόσφατα µετακινηθεί

σε συνθετικές δοµές, δηλαδή, σε λεκτικές µονάδες που συντίθενται από λέξεις που εκπροσω-

πούν διακριτές έννοιες, όπως φράσεις και προτάσεις. Τα Δικτυακά ΚΣΜ (ΔΚΣΜ) εκπρο-

σωπούν και χειρίζονται σηµασιολογική πληροφορία µέσα από επενέργειες σε γειτονιές λέξε-

ων, δηλαδή, σηµασιολογικούς γράφους που αποτελούνται από τις οµοιότερες σηµασιολογικά

λέξεις σε σχέση µε την εν λόγω λεκτική µονάδα. Τα σηµασιολογικά δίκτυα βασίζονται

στην ενεργοποιητική προέγερση, µία θεωρία βασισµένη στη γνωσιακή επιστήµη κατά την

οποία µία συγκεκριµένη περιοχή που µοιράζεται κοινά χαρακτηριστικά δύναται να ενεργο-

ποιηθεί υπό το έναυσµα κάποιου σχετικού ερεθίσµατος. Στην εργασία αυτή προτείνον-

ται µια ποικιλία από στρατηγικές σύνθεσης ενεργοποιητικών περιοχών και µοντελοποίησης

οµοιότητας µε σκοπό την αντιµετώπιση της διαδικασίας σύνθεσης στο πλαίσιο των σχετι-

κών επιπέδων στα ΔΚΣΜ. Στο επίπεδο ενεργοποίησης, προτείνουµε διάφορα σχέδια ενερ-

γοποίησης, παρακινούµενα από θεωρίες ψυχογλωσσολογίας, που χρησιµοποιούν ενεργοποι-

ητικές περιοχές µεταβλητού µεγέθους µε στόχο τη σύνθεση γειτονιών για σύνθετες δοµές.

Στο επίπεδο οµοιότητας, µοντελοποιούµε µετρικές οµοιότητας που λειτουργούν στις προ-

κύπτουσες γειτονιές για τον υπολογισµό οµοιότητας. Τα προτεινόµενα σχήµατα καλύπτουν

ένα εύρος προσεγγίσεων για τη µοντελοποίηση σηµασιολογικής πληροφορίας σε σύνθετες

δοµές. Επιπλέον, διερευνούµε τις ιδιότητες λέξεων που επέχουν ρόλο τροποποιητή, καθώς και

µετασχηµατικά µοντέλα από τη βιβλιογραφία, και προτείνουµε µία στρατηγική σύντηξης που

χρησιµοποιεί τις µετασχηµατικές ιδιότητες τροποποιητών σε φράσεις µε σκοπό την στάθµιση

της συµβολής των επιµέρους µοντέλων για το χειρισµό της σηµασιολογικής πληροφορίας. Για

το σκοπό αυτό, το µοντέλο χρησιµοποιεί µοντέλα βασισµένα σε δίκτυα και σε µετασχηµατικές

στρατηγικές κάτω από ένα συγχωνευτικό σχήµα, µε στόχο τη µοντελοποίηση οµοιότητας.

Αποδεικνύεται ότι, συντήξει αυστηρά συνθετικών και µετασχηµατικών µοντέλων για την υ-

λοποίηση ενός ευέλικτου µοντέλου που προσαρµόζεται στη συµπεριφορά των φράσεων και

στις ιδιότητες των τροποποιητών, µπορούν να επιτευχθούν οφέλη στην απόδοση.
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Chapter 1

Introduction

“An isolated word, or a detail of a design, can be understood. But the

meaning of the whole escapes. Once we know the number one, we believe that

we know the number two, because one plus one equals two. We forget that first

we must know the meaning of plus.”

- Alpha 60 Supercomputer, Alphaville

1.1 Background

Natural language is a communication tool that has evolved over the course of many mil-

lenia, for the purpose of efficient transmission of ideas and in order to promote under-

standing. Humans have subconsciously established an ability to use natural language to

their advantage by intuitively relating expressions, concepts and meanings, with specific

symbols, words and phrases, within a specific context. Concepts that relate to either ab-

stract or concrete meanings can be mapped to these language segments, that can in turn

be representative of these meanings. Natural Language Processing (NLP) is the field of

computer science that is related to the area of human - computer interaction, in terms

of Natural Language Understanding (NLU). NLP challenges include the comprehension of

natural language by computers, i.e., providing them with the ability to deduct concepts

and, subsequently, meaning, by using natural language as input. Semantics is called the

study of this meaning. Computational semantics study the automation of processing the

development of and reasoning with representations of meaning by natural language ex-

pressions. Meaning can be defined as the concept that is represented by a word, phrase,

etc. Concepts are initially composed of sensory experience, and further enriched by our

reflections upon our subjective sensory observations. When we use words and symbols

to reference those concepts, we create language. Broadly, the current thesis deals with

the ability of computers to utilize language lexicalizations, and the manner in which they

interact, in order to derive the respective meanings that they reference. The conceptual-
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ization of meanings can be subsequently used to approximate the semantic proximity, i.e.,

semantic relatedness, between different language lexicalizations. Semantics serve as vital

components for numerous other natural language applications as well, such as word sense

disambiguation, machine translation, semantic role labeling, information extraction, para-

phrasing and textual entailment [1], grammar induction, question answering, semantic

taxonomy, sentiment and affective text analysis [2], etc.

The process of estimating semantics from single-word tokens (unigrams) has reached

a mature state, and much progress has been made with respect to measuring word-level

semantic similarity. In general, word similarities cannot rely on simple lexical distance

metrics. The words “word” and “lord”, for example, however close they are in terms of

lexical distance, infer a completely different meaning. This cannot be captured by com-

paring their lexicalizations alone. Current approaches to address the problem of semantic

similarity can be generally divided into three main categories:

1. those that rely on a knowledge base and its structure, in order to cluster words into

predefined categories and semantic concepts (i.e., classes), subsequently estimating

similarity between two words as a function of the distance between their classes,

2. those that instead follow a data-driven approach, using raw data (e.g., a unannotated

corpus) and statistics extracted them in order to derive semantics and similarities,

and

3. hybrid approaches that attempt to utilize advantages from both directions by com-

bining both strategies.

In this thesis, we will focus on data-driven approaches for computing semantics and for

the estimation of semantic similarity via the use of statistical methods, applied on raw

input data. Concerning data-driven approaches, estimating word semantics is typically

realised by exploiting the distributional hypothesis of meaning, i.e., the hypothesis that

semantically close linguistic lexicalizations tend to share similar linguistic environments

[3, 4]. To this end, word semantics can be estimated by extracting statistics from the

context in which they occur, and can then be used to represent the words they refer.

This is typically realised by encoding those semantics into vectors. Vectors are generally

populated by information regarding the co-occurrence of a word with another, typically

within a specified window size (i.e., context). Various techniques are then used to nor-

malize and encode this information into high semantic spaces, such as feature reweighing,
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dimensionality reduction techniques, etc. These high-dimensional spaces, used for concept

representation, are known as Vector Space Models (VSMs) [5]. VSMs act as the building

block for Distributional Semantics (DS) and Distributional Semantic Models (DSMs) [6].

DSMs adopt the geometric metaphor of meaning: information is presented as coordinates

in a geometry space, according to which words are projected as points in the space [7].

Word co-occurrence statistics are, thus, considered as features, used to populate respective

feature vectors or, more generally, feature tensors [6, 8]. Those feature tuples can then be

utilized for various semantic tasks and applications. Their similarity, for example, can be

computed as the proximity between the corresponding points in the geometry space, i.e.,

similarity between words can be estimated by performing simple algebraic operations on

VSMs.

VSMs have proved to be efficient at capturing word semantics, and, within the frame-

work of DSMs, have been successful at estimating word semantic similarity [5]. However,

their application for semantic representation of longer and more complex structures, as is

the case with phrases or sentences, is, in itself, a more complex task. Meaning from such

structures derives as the result of various compositional phenomena, which are inherent

properties of natural language creativity [9]. Moreover, language creativity itself creates

limitations regarding the adaptation of methods, developed to estimate word semantics, to

the case of more complex structures. These complex structures are composed by words that

infer coherent meanings in isolation, and are essential components of the derived meaning

of the structure. This has motivated approaches regarding compositional semantics. Com-

positional semantics adopt the idea that the meaning of a complex linguistic expression,

i.e., a structure that is composed by constituent words that represent meanings of their

own, derives by the meanings of its parts, and can be modified by the manner in which

these parts relate and interact. The composed meaning is, thus, derived by also considering

the function of relations among the constituents, which is not always trivial to detect and

represent in computational semantics. The key idea behind recent approaches in semantic

composition using DSMs is the representation of words as vectors and the composition

of meaning through their combination, using simple composition schemes, e.g., vector ad-

dition or multiplication [10, 11], or via other proposed functions that consider additional

word properties and linguistic phenomena. Regardless of the function used, the composed

representations adhere to the paradigm of VSMs, while the cosine between the resulting

vectors is used for estimating semantic similarity. Such efforts have proved to be effective

when computing similarity between simple bigram structures, however, their limitations
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were revealed for the case of longer structures [12], where the composition of meaning

becomes more complex.

1.2 Motivation and Problem Statement

Interest in the research community of NLP has been shifted from words to larger and

more complex linguistic structures, such as phrases, sentences, or complete documents, for

the task of measuring semantic similarity. Typically, word-level semantics are estimated

by considering their co-occurrence within a common context, while their semantic simi-

larity can be computed by directly comparing their feature vectors. However, regarding

bigrams, or larger and more complex linguistic structures in general, such approaches are

bounded by unavoidable restrictions in data availability. The effectiveness of this approach

is also inversely proportional to the length and rareness of the structure in the data, while

inherent properties of language creativity also reveal the limitations of such approaches,

when considering large linguistic segments. In particular, for every word that is added to

a linguistic expression, the composition’s frequency of occurrence within a given corpus

decreases. Moreover, linguistic expressions that span over an area of text, cannot be eas-

ily detected within a corpus. For example, consider the bigrams “black car” and “quiet

neighborhood” within the sentence “he saw a seemingly black, although not quite sure of

the color, car, drive through the quiet and abandoned neighborhood”. In this example,

the formation of said bigrams is intercepted by other words or linguistic segments of the

sentence, rendering the detection of the bigrams a difficult task. Based on the aforemen-

tioned, compositional semantics are motivated by the information that resides within the

structure, and are concerned with the way that the meaning of the structure is composed

both from the meaning of its constituent words, and from the additional meaning that is

extracted from the relation among those constituents, i.e., the meaning that is encoded

within the functional relations within the structure itself. If word semantics can be es-

timated, comparing two phrases by estimating the similarities between the words that

constitute them could serve as a solution to the problem. Nevertheless, intrinsic infor-

mation by itself can only partially address the problem, since the meaning of multi-word

phrases encodes information that is not always a direct product of the composition of their

parts. Another problem derives from variations of word senses, which may also depend on

their use within a given context, such as the use of “back” as the back of a person or as

an adverb. Last but not least, phrases can be used in different ways, based on their literal



1.3. Contribution and Organization 5

of figurative applicability within a context. For instance, the phrase “piece of cake” can

be used whether to refer to something that is trivial to accomplish, or to an actual piece

of cake. Therefore, the selected approach for estimating semantics greatly depends on the

information and the fashion that this information is encoded in the target phrases, i.e.,

through their constituents and the relations among them. The problem is, thus, whether

and how appropriate semantics for a phrase can be derived from the semantics of its com-

ponents, without losing information during this process that is essential for tasks, such as

that of semantic similarity. This has become an important issue in distributional semantics

[10, 13–15], as it is not yet clear which way of combining the components is best suited for

which tasks, and many attempts to address this problem tend to result in ad-hoc realised

systems. Research has been primarily focused on measuring the similarity between sim-

ple structures. These structures are mainly bigram lexicalizations, such as noun-noun, or

adjective-noun constructions. Recently, attention has been shifted towards longer phrases,

or even complete sentences.

1.3 Contribution and Organization

In this thesis, an alternative approach is proposed for estimating similarity between phrases,

based on the notion of semantic networks, that serve as an added layer built on top of DSMs.

To this end, a recent network-based implementation of DSMs [16] has been extended in

[17], in order to handle semantics of compositional structures. The used framework consists

of activation models motivated by semantic priming [18]. It is proposed that each structure

activates a specific area that is regarded as a sub-space residing within the semantic network

(i.e., a semantic neighborhood). The novelty of the present work is two-fold:

1. First, strategies targeted on different perspectives are proposed for composing acti-

vation areas for compositional structures, within a framework alternative to VSMs.

2. Second, we utilize transformational properties of compositions to determine the con-

tribution of different approaches to similarity estimation under a fused approach.

In addition, the role of words as operators on the meaning of the structures they occur

in is studied, by measuring their transformative degree. The contribution of this thesis

resides on the proposal of various approaches that consider different linguistic properties of

a structure, for the computation of semantic neighborhoods. It also proposes a novel idea
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that considers the transformational degree of a given phrase, in order to estimate similarity

as a fusion of different compositional models.

The remainder of this thesis is organized as follows: in Chapter 2, various models of

semantic similarity from the literature are described, while the methods that accompany

such models are presented. In Chapter 3, the notion of NDSMs is presented, along with the

literature and the proposed approaches, regarding their utilization for semantic composi-

tion and similarity estimation between structures. The fusion model, integrating NDSMs

with transformational models from the literature, is also described in this chapter, while

the trasformative properties of modifiers is investigated. In Chapter 4, we describe the

experimental procedure that was followed for evaluating the models, and discuss on the

findings. The thesis is concluded in Chapter 5, with model applications on the sentential

level, conclusions and future work.
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Chapter 2

Models of Semantic Similarity

In this chapter, semantic models from the literature that estimate semantic relatedness

or similarity are separated and presented into two types of categories. The first category,

referred to as knowledge-based models, consists of models that estimate similarities with

respect to explicitly defined knowledge about the world, structured into lexical databases.

The second category, referred to as distributional semantic models, considers similarity as

a statistically inferred function of context word distributions. It should be pointed out

that semantic relatedness does not imply semantic similarity, even though the inverse is

valid. Semantic relatedness metrics utilize all possible relations between words in order

to conclude about the degree in which they are related, while semantic similarity metrics

merely make use of hierarchical types of relations, such as hyponymy or hyperymy.

2.1 Knowledge-based Models

The knowledge-based approach in semantic estimation is focused in methods that, in ad-

dition to linguistic information, also depend on explicitly defined domain or world knowl-

edge. This knowledge can aid models in solving problems such as ambiguity resolution, or

inferencing [19]. Knowledge is explicitly formulated in lexical networks, such as Roget’s

Thesaurus [20, 21], the WordNet lexical database [22], or, more recently, Wikipedia. These

resources encode relational dependencies that exist between words, such as synonymy or

antonymy, hypernymy or hyponymy, entailment, meronymy, etc. A drawback of handmade

lexical structures lies in their size, as they provide limited coverage. They also have scal-

ability issues, since creating such resources requires lexicographic expertise, as well as a

lot of cost in time and effort. Furthermore, these resources have strong lexical orientation

and tend to consider word semantics in isolation, rather than generic world knowledge [23].

The majority of knowledge-based systems is domain specific, which makes addressing of

specific tasks easier, since much of the ambiguity that is present in terms, in the generic

knowledge, can be eliminated by focusing on a specific domain. However, that is not always

the case, since some applications may have to interpret input from multiple domains.



2.1. Knowledge-based Models 8

A large number of metrics has been defined, that computes semantic relatedness or

similarity using various properties of the underlying graph structure of those resources

[24–30]. In this section, a brief presentation of the most widely-used knowledge based

metrics is displayed, based on their qualitative performance in various language processing

applications. A knowledge database is typically represented as a hierarchically structured

lexical network that is composed by nodes that each defines a specific concept, i.e., a

cluster of semantically related words, and edges, that refer to a type of relation between

two connected concepts. To this end, let c denote a concept, and i and j be two words

that belong to concepts ci and cj, respectively. Also, let l(ci, cj) define the shortest path

between ci and cj, i.e., the minimum length between the two concepts, computed in terms

of nodes or edges. Also, let d(ci) refer to the depth of ci, defined as the length of the path

from the hierarchy root r to ci, i.e., d(ci) = l(r, ci) (similarly for d(cj)).

Lesk similarity. The Lesk similarity is defined as an overlap function between definitions

of i and j, and is based on an algorithm that was proposed in [31] as a solution for word

sense disambiguation.

Hirst and St-Onge’s Relatedness. Hirst and St-Onge [32] proposed that semantic

relatedness between ci and cj is inversely proportional to the size of l(ci, cj), as well as to

the number of times t(ci, cj) that the direction changes in WordNet, when we move from ci

to cj. The path from ci to cj could follow three directions: a) horizontal: cj is an antonym

of ci, b) upward: cj is a hypernym or meronym of ci, or c) downward: cj is a hyponym or

holonym of ci. To this end, the authors proposed a relatedness measure that estimates the

strength of the relationship by

RHS(ci, cj) = α− l(ci, cj)− βt(ci, cj), (2.1)

where α and β serve as weighting parameters.

Sussna’s Depth-relative Scaling. A drawback of Hirst and St-Ogne’s Relatedess mea-

sure is the implicit assumption that edges are equally weighted, when considering semantic

relatedness. Sussna tried to address this issue by considering a range of weights, for each

relation r [33, 34]. The core idea was to normalize the weight of each edge for each relation

r that originates from ci, q(ci, r), by the total number of edges of the same type that also

originate from the same node, er(ci), as

q(ci, r) = max
r
−maxr−minr

er(ci)
. (2.2)
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Then, the semantic distance between ci and cj, Ds(ci, cj), is defined as the sum of their

respective weights across the directions that originate from both concepts, r and r′, nor-

malized by the maximum concept depth.

DS(ci, cj) =
q(ci, r) + q(cj, r

′)

2 max{d(ci), d(cj)}
(2.3)

This approach was motivated by the hypothesis that concepts positioned low in the hierar-

chical structure of the network tend to be more similar than those positioned at the upper

levels.

Wu & Palmer’s Conceptual Similarity. This scaled metric, proposed in [35], combines

the depths of ci and cj in the WordNet taxonomy, and the depth of their lowest common

subsumer (LCS), into a similarity score as

SWP (ci, cj) =
2d(LCS(ci, cj))

d(ci) + d(cj)
(2.4)

Leacock & Chodorow’s Normalized Path Length. In Leacock & Chodorow [36],

l(ci, cj) is normalized by the maximum length D in the taxonomy and a similarity metric

is defined as

SLC(ci, cj) = −log l(ci, cj)
2D

, (2.5)

where l is computed via node counts. 2.5 is defined as a similarity metric as it merely

considers IsA relations in the WordNet taxonomy.

Resnik’s Information-based approach. Resnik proposed that similar concepts tend to

share similar information. The measure introduced by Resnik [37] returns the Information

Content (IC) of LCS(ci, cj). IC is defined as

IC(c) = −logp(c), (2.6)

p(c) being the probability of occurrence of an instance of concept c in a corpus. To this

end, Resnik’s measure is defined as

SRes(ci, cj) = IC(LCS(ci, cj)). (2.7)

Lin’s Universal Similarity. Lin [28] attempted to derive a measure that can be used

both universally, and at the same time be theoretically valid. By using the IC as a measure

of commonality between two concepts, Lin enhanced Resnik’s similarity measure by adding
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a normalization factor, comprising of the IC of ci and cj as

SLin(ci, cj) =
2IC(LCS(ci, cj))

IC(ci) + IC(cj)
, (2.8)

where IC is defined by Eq. 2.7.

Jiang & Conrath’s Combined approach. Resnik’s approach restricts the role of net-

work edges in estimating semantic proximity, as they are solely utilized to detect the

superordinate of a concept pair. Limitations arise when attempting to distinguish between

different pairs of concepts that however share the same superordinate: in those cases, an

edge-based method might be more appropriate. In order to eliminate the drawbacks of

Resnik’s approach, Jiang and Conrath [29] attempted to merge both edge- and node-based

techniques by using network edges for similarity computations, and post-correct them by

adapting IC to the form of conditional probabilities. In particular, they proposed that

semantic distance between child concept ci and parent concept ck (i.e., ck = par(ci)) is

correlated with the conditional probability p(ci|ck), i.e., the probability of encountering an

instance of ci, given an instance of its parent concept ck, such as that

DJC(ci, ck) = −logp(ci|ck). (2.9)

By adopting Resnik’s framework for mapping concepts with probabilities, and based on

Eq. 2.6, Eq. 2.9 becomes

DJC(ci, ck) = IC(ci)− IC(ck). (2.10)

2.10 can be adapted to estimate similarity between an arbitrary pair of concepts ci and cj,

within a taxonomy, via Jiang and Conrath’s similarity metric, defined as

SJC(ci, cj) =
1

IC(ci) + IC(cj)− 2IC(LCS(ci, cj))
. (2.11)

Recently, using Wikipedia for computing semantic relatedness has attracted interest in the

respective field and has been investigated as an alternative knowledge base for estimating

relatedness or similarity [38]. In spite of its short lifespan (2001), Wikipedia provides en-

tries on a vast number of entities and even specialized concepts. Moreover, entity relations,

defined by the way in which Wikipedia articles are interlinked, can be interpreted in dif-

ferent ways according to the task at hand, as they encode implicit semantic relations that

are not present among WordNet concepts and relations, that has typically been used as
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the standard knowledge database. In [39], semantic relatedness is investigated in the spec-

trum of three measure categories, namely, path-based, IC-based, and text-overlap-based

measures. Wikipedia has been found to perform equally, if not better, than WordNet. In

[23], they use machine learning and propose a method called Explicit Semantic Analysis

(ESA) in order to represent text meanings in high-dimensional spaces. These spaces are

categorized as concepts, derived from Wikipedia. Apart from the described drawbacks,

knowledge-based solutions have provided a viable alternative to statistically or grammar-

based approaches that solely depend on linguistic information [25, 40].

2.2 Distributional Semantic Models

DSMs are typically constructed by co-occurrence statistics of word tuples. These statis-

tics are extracted from a raw input source, such as a corpus, and various techniques are

applied in order to post-process them into high-dimensional semantic spaces. The proce-

dure for constructing DSMs is typically based on the following steps. First, co-occurrence

counts are extracted from text. This can be realised via two different approaches, that also

categorize DSMs into structured and unstructured. Structured DSMs parametrize syntac-

tic relationships between words, which are utilized for surface analysis and extraction of

attributes. To this end, co-occurrence statistics are computed as corpus-derived triples,

which are typically composed by pairs of words and the syntactic or lexico-syntactic re-

lations between them. The approach is motivated by the assumption that these relations

encode semantic properties that are shared between these words [41–44]. Unstructured

DSMs instead adopt a bag-of-words model, i.e., they regard text as an unordered multi-set

of its words, without consideration of grammatical or syntactical properties [3, 6]. They,

thus, consider all context as feature properties of a target word i, utilizing co-occurrence

counts to represent distributed information. For instance, given the sentence “A boy plays

football with its friends in a huge park”, the words “boy” and “park” share a degree of

semantic features, according to unstructured DSMs, since they co-occur under the same

context, i.e., the words “a”, “plays”, “football”, “with”, “its”, “friends”, “in”, “a”, “huge”
1. A feature vector is therefore created that represents i as ~i = (ti,1, ..., ti,k, ..., ti,n), where

ti,k ≥ 0 and n is equal to the vocabulary size. ti,k is computed considering all occurrences

of i in the corpus. This is realised using a binary scheme that assigns 1 to ti,k, if tk occurs

within the 2H + 1 context window to the left or to the right of i, otherwise ti,k is assigned

1In the case of the context window size being equal to sentence length.
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0. This binary scheme is typically re-weighted, and the dimensionality of the matrix that

the set of vectors comprise is reduced. In the rest of the section, the standard techniques

upon which DSMs are built are described.

2.2.1 Feature Weighting

Co-occurrence statistics constitute the raw vectorial representation of words. In their

simplest form, these VSMs are composed by binary vectors, i.e., a vectorial tuple that

indicates whether a (target) word occurs with a (context) word within a specified size.

Most frequently, vectorial features are instead composed of co-occurrence counts, i.e., the

frequencies in which words occur within the same window size with each other. In the

majority of the cases, these features need to be normalized. Feature normalization can be

implemented according to various schemes inspired from Information Retrieval (IR), such

as tf-idf, log-likelihood, etc.

2.2.2 Dimensionality Reduction

Co-occurrence matrices, in their original size, tend to be greatly large and sparse, while,

in their most part, they are composed of zero-valued elements. To this end, some type of

dimensionality reduction technique typically follows the computation of vectors, in order

to reduce the size of the matrix and to transcend the encoded semantics into higher and

more qualitative dimensional spaces. The most-widely used technique for dimensionality

reduction is Singular Value Decomposition (SVD). SVD is based on linear algebra and

has its origins in IR, and was proposed in [45]. Let X be the semantic space that a VSM

comprises, i.e., a word-context matrix. The key idea behind SVD is the factorization of

matrixX by considering three low-dimensional matrices, U , Σ, and V , so that their product

can form a low-rank approximation of X. Specifically, SVD computes the decomposition

X ≈ UkΣkV
T
k , (2.12)

where k is the desired dimension rank, and returns UkΣk, truncated to the min(k, rank(X))

dimension. This approximation can assist in a significant reduction of the dimensions of

X, typically from tens of thousands to just a few hundred. SVD is the most typically

selected technique in order to create semantic spaces that address the task of semantic

similarity [46]. Another dimensionality reduction technique used is the Non-negative

Matrix Factorization (NMF), proposed by [47]. NMF factorizes X into an n × r
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matrix W and an r × k matrix H. In particular, NMF computes the factorization of X

into two non-negative matrix factors 2, W and H, such as that

X ≈ WH. (2.13)

The W and H matrices are selected in order to minimize ‖X −WH ‖2. Typically, r is

chosen to be smaller that n or k, which results in H being a compressed version of the

original matrix to the reduced dimension k. In other words, each vector x ∈ X can be

approximated by a linear combination of the columns of W , weighted by the values of

h ∈ H such as that x ≈ Wh. Thus, W acts as an optimized function that serves the role

of transforming h into x.

2.2.3 Regression Techniques

Many models employ regression in order to learn the appropriate functions by empirical

fitting, rather than being set their parameters by manual configuration. This is useful

for composing a supervised model that can be adapted and used for various tasks and

applications, without the need for human intervention for setting the required parameters.

Learning is realised by training the model on input data, which is is typically done in DSMs

using regression techniques that try to learn the weights that best approximate observed

examples. A standard approach in regression analysis, subsequently inherited for training

language models, is by using (Partial) Least Squares Regression (LSR). Given an

input matrix X, derived after being passed through a dimensionality reduction technique,

such as SVD, LSR finds the matrix weights that solve

X = arg min(‖AX −B ‖2). (2.14)

Another regression technique, proposed in [48], is Ridge Regression (RR), also known

as L2 regularized regression. When multicollinearity is present, the matrix XTX becomes

almost singular, while the diagonal elements of (XTX)−1 become quite large, along with

weight variance. RR attempts to handle the problem of multicollinearity using a different

approach than LSR, specifically by employing the use of a (positive) constant λ in order

to strengthen the non-singularity of the matrix XTX by adding λ to its diagonal elements.

λ can be set using a predefined value, or it can be tuned using generalized cross-validation

[49]. The objective function is then learnt by minimizing least square error using provided

2X should also be a non-negative matrix for applying NMF
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input examples, i.e., it is trained to find the matrix which solves

X = arg min(‖AX −B ‖2 +λ ‖X ‖2). (2.15)

As a result, the learnt weight matrix B produces competitive results at a higher speed [50].

2.2.4 Word Embeddings: Context-predicting DSMs

Traditionally, contextual information has been the standard for providing semantic repre-

sentations to word meanings. This standard is based on the distributional hypothesis of

meaning, and the assumption that semantically similar words have a higher tendency to

share similar contextual distributions [3, 4]. DSMs are, by definition, derived by vectors

that provide information about word co-occurrence within specific context. These vectors

are in turn re-weighted and transformed, in order to achieve better compression and in

order to improve performance, in an indirectly unsupervised way. However, the process of

selecting the best configurations for each step involves decision making and can lead to ad-

hoc models that, in many cases, fail to perform at the same level, when applied in different

semantic tasks. Also, the problem of language creativity becomes an apparent obstacle,

when trying to compute representations for all possible combinations of words. During the

last few years, a new set of models has emerged within the field of DSMs. In these models,

which base their definitions on deep learning [51], the process is reversed and the weights

in a word vector are instead set in order to maximize the probability of the contexts they

occur in. Vector weights are, thus, learnt, in order to best approximate, or predict, the

representation of their respective word’s contextual features [52, 53]. This approach even-

tually leads to the same desired result: similar vectors will be shared among words with

similar meaning, since their weights will be trained using similar context. These models,

referred to as context-predicting DSMs, or word embeddings, have attracted the interest

of the field, since they use the same resources as traditional DSMs, such as unannotated

corpora, while they replace the need of specifying step-by-step parameters with a single,

well-defined training step [54]. These language models also address the problem of language

creativity, since they approximate word vectors, instead of relying on definite word counts

in order to compute them. To this end, the models appear to constantly gain support in

comparison with the traditional DSMs.
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2.2.5 Measures of Semantic Similarity

As a first step regarding data-driven approaches, as are DSMs, contextual features are

extracted from an input source, such as a corpus, within the basis of the distributional

hypothesis of meaning. These features are then regarded as semantic properties of the

words they represent. Feature extraction is typically realised by measuring the strength

of relations between the words of a given vocabulary. To this end, various methods have

been proposed that estimate the degree of such relations. Since the information that

is represented in DSMs encodes semantic properties of words, those methods comprise

metrics of semantic similarity between those words. Those metrics can be separated into

two categories, specifically a) co-occurrence-, and b) context-based.

Co-occurrence metrics

Co-occurrence-based are motivated by the assumption that semantic relatedness between

two words is associated with their co-existence within the same corpus unit D. The corpus

unit can be of any level, e.g., a document, a paragraph or a sentence. Let |D| define the

total number of corpus units, |D|i| being the set of units that are being indexed by word i.

Jaccard and Dice coefficient. The Jaccard coefficient measure calculates the semantic

diversity between sets and is defined as

SJacc(i, j) =
|D|i, j|

|D|i|+ |D|j| − |D|i, j|
. (2.16)

The measure estimates the maximum likelihood of the probability of a document where i

and j co-occur, over the probability of a document where either i or j occurs. It terms of

corpus unit sets, it is defined as the size of their intersection, divided by the size of their

union. The Dice coefficient measure is based on 2.16 and is computed as

SDice(i, j) =
2|D|i, j|
|D|i|+ |D|j|

. (2.17)

Normalized Google Distance. Proposed in [55, 56] and motivated by Kolmogorov

complexity. Normalized Google Distance (G) is defined as

DG(i, j) =
max{log|D|i|, log|D|j|} − log|D|i, j|
log|D| −min{log|D|i|, log|D|j|}

. (2.18)

Google Semantic Relatedness. In [57], a variation of DG is proposed as a similarity
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measure that is bounded within the [0, 1] range. To this end, Google Semantic Relatedness

(SG) is defined as

SG(i, j) = e−2DG(i,j), (2.19)

where DG(i, j) is computed as in Eq. 2.18.

Mutual Information. A typically used method for measuring co-occurrence statistics is

by computing the Mutual Information (MI) between two words. MI is computed by com-

paring the probability of observing the words together, with the probabilities of observing

them in isolation, as in

MI(i, j) = log2
p(i, j)

p(i)p(j)
(2.20)

The measure captures the co-occurrence significance between words with different frequen-

cies, and normalizes it against corpus size. However, this results in assigning low frequency

words with higher significance, which results in the misleading deduction that mutual de-

pendence of less frequent words is more informative than the mutual dependence of their

pairs [58]. As an alternative, Pointwise MI (PMI) is used, where MI is normalized by the

plain (or log) frequency of the co-occurrence, as in

PMI(i, j) = freq(i, j)MI(i, j). (2.21)

In order to limit the computed value to the positive range, e.g., for building positive weight

matrices for DSMs, Positive PMI (PPMI) is typically used, essentially by assigning 0 to

the case where PMI(i, j) < 0. In general, MI tends to rank very rare words higher in

terms of significance, whereas PMI contrarily emphasizes the frequency of words.

Context metrics

The underlying hypothesis behind context-based metrics is that semantically close words

tend to share the same linguistic context, i.e., similarity of context implies similarity of

meaning [3]. Context-based metrics utilize a contextual window of variable size, which is

centered on a word of interest i. For every instance of i, the H words left and right of i are

considered, i.e., the window has a size of 2H + 1. Thus, a feature vector is composed to

represent i, that has as many dimensions as the vocabulary entries (i.e., context words).

Then, a binary scheme is used in order to assign values to the vector, based on the oc-

currence of a context word within the contextual window, considering all occurrences of i
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in the corpus. This binary scheme is typically re-weighted, and the dimensionality of the

matrix that the set of vectors comprise is reduced. Then, context-based similarity metrics

can be used to compute similarity between words, by utilizing their respective vectorial

representations. Various context-based similarity measures have been proposed in the liter-

ature that utilize VSM modeling for similarity estimation. VSMs adhere to the geometric

metaphor of meaning, i.e., words can be mapped to a semantic space with geometrical

properties. Then, distance between two vectors can be estimated using metrics based on

info-theoretic grounding or inspired from geometrical properties.

Cosine. Cosine similarity is the most widely-used metric, within the framework of DSMs.

It estimates similarity between words i and j as the cosine of their feature vectors ~i and ~j,

respectively, i.e.,

SC(i, j) =
~i ·~j
‖~i‖‖~j‖

=

n∑
k=1

ikjk√
n∑
k=1

i2k

√
n∑
k=1

j2k

. (2.22)

To make up for words that do not share a common context, similarity between them is

assigned 0.

Manhattan-norm. The Manhattan-norm metric (MN) measures semantic distance as

the divergence of the bigram distributions at the left and right context of each word. To

this end, it utilizes the Manhattan metric (also referred to as City-block, or L1 metric)

[59] to measure semantic distance as the absolute value of those distributions difference.

The metric is bounded and symmetrical, since the Manhattan metric is bounded itself and

considers both normal and inverse word order distributions, i.e., [60]

DLR
MN(i, j) = DL

MN(i, j) +DR
MN(i, j). (2.23)

Euclidean. Another metric used for measuring semantic distance is the Euclidean distance

metric (also referred to as L2 ), defined as

distL2 =

√√√√ n∑
i=0

(ai − bi)2 (2.24)

Its main difference with the Cosine is that it considers and is influenced by vector length,

i.e., it measures positions in vector space, instead of vector directions.
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Kullback-Leibler divergence. Kullback-Leibler (KL) is a relative entropy measure that

considers the task of semantic similarity between two words as the comparison of their

conditional distributions. Using the divergence as a distance measure, however, reveals a

few complications. Although its asymmetry can be addressed by taking the sum (or mean)

of both divergences, or by using reversed order context distributions [61], the fact that the

distance measure is unbounded (since denominators may approach zero in many cases) is

not so trivial to address, as the measure can be dominated by few terms.

Jensen-Shannon. A solution to address the unbounded problem of KL is by using the

total divergence to the mean or with other words, as proposed by [62, 63]. The Jensen-

Shannon (JS) divergence compares both distributions to the mean of the two distributions,

therefore addressing both asymmetry and the unboundedness of KL.

Information-Radius. Another metric used as a similarity measure is the Information-

radius (IR) distance, which is similar to JS in the sense that it also addresses unbound-

edness, since it considers the average of the two probabilities as its logarithmic ration de-

nominator. IR can be made symmetric similarly to Eq. 2.23, where, for instance, DL
IR(i, j)

is defined as [60]

DL
IR(i, j) =

∑
v∈V

log

[
pLi (v|i)

1
2

(
pLi (v|i) + pLj (v|j)

)], (2.25)

where pLi is the left-context conditional probability of word i (similarly for pLj ), and V

defines the context vocabulary.

Similarity measures that are defined on distributions are closely interlinked to the ap-

proach of vector computation, and the overall performance of each measure is closely

related to both intrinsic and extrinsic parameters, such as corpora selection, evaluation

tasks, formulation of vectors, etc [64]. The selection of the similarity measure is, thus,

based on the task at hand. For the task of estimating semantic similarity between words,

the cosine similarity has been reported to perform well and is the most widely-used. Cosine

is typically considered as the standard choice in DSM modeling and has been adopted by

most evaluation studies in the field [12, 59, 65].

2.2.6 Composition

When considering complex structures, such as phrases or sentences, one way to estimate

the semantics of said structures is to apply the same models used for the estimation of

semantics in words. This is referred to in [66] as the holistic, or non-compositional, ap-
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proach, as intrinsic information about the composition of the phrases is entirely ignored

and semantics are computed completely based on context. Yet, however efficient as DSMs

may have proved to be at capturing word semantics, their limitations are revealed when

considered for semantic estimation of such structures. Treating multi-word constructions

as a unit and deriving semantics the same way as for semantics for unigrams, i.e., using the

distributional hypothesis of meaning via the extraction of context-based features, does not

scale. The number of combinations for phrases increases exponentially with vocabulary

size and structure length, resulting in a respective demand for context information. This

can scale out of control, especially when considering large structures. This approach is fur-

ther not in line with the cognitive comprehension of phrases; we are able to infer meanings

for complex structures, even though we may have not detected them within context. This

intuitively leads to the hypothesis that meaning for a complex structure is inferred from

knowledge that is already present within the structure’s components. However, it should

be noted, that there are cases when taking the holistic approach for phrases is a sensible

method, such as for estimating semantics for phrases that make use of figurative speech, or

for high frequency n-grams. It is also useful to extract context-based (i.e., observed) infor-

mation to compare with semantics derived by other approaches, or for learning functions

that can approximate such semantics.

Compositionality allows for the construction of complex meanings through combining

semantics of simpler elements. Linguistic structures adhere to the notion of “composition-

ality”, i.e., complex structures are formed by the combination of simple linguistic entities

that represent concepts and operations. Phrases are composed by words, sentences are

formed from combinations of phrases, and so on. The intuition for compositional ap-

proaches is, subsequently, that meaning also adheres to the same principles: the meaning

of a complex linguistic structure can be derived via a function that combines the meanings

of its constituents. Regardless of the best approach in estimating semantics, modeling the

meanings of complex phrases involves also modeling the way in which those meanings are

combined. Syntactic relations also encode salient information regarding the underlying

function between the constituents. What is more, a composed meaning may also account

to something larger than the combined meaning of its parts. Frege’s principle of composi-

tionality suggests that the meaning of a sentence should be explained as the meaning of its

words in isolation, along with the meaning that derives when combining them into sentence

parts [67]. Lakoff [68] further supported this idea, proposing that the meaning of the whole

can be greater than the meaning of the parts. The above suggest that the meaning of a
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complex structure could encompass semantics that may not be directly estimated or ac-

cessed through its constituents, when considered in isolation. This kind of knowledge does

not solely derive from word lexicalizations and the syntactic relations between them; it also

incorporates our subjective sensory interpretations of the world, modified by our previous

experiences, such as memories, thoughts and deductions, i.e., the compositional process

involves the way that novel interpretations integrate with existing knowledge. These ob-

servations where modulated in [11] under a function that acts on the meanings of two

constituents, i1 and i2, to derive the meaning of a complex phrase, i = (i1 i2), such as that

i = f(i1, i2, R,K), (2.26)

where R is an argument representing the syntactic relation between i1 and i2, and K is

an argument representing all knowledge that is activated during the compositional pro-

cess. Another issue that becomes apparent when estimating compositional semantics is

that compositionality is also a matter of degree. Some complex linguistic structures ap-

pear to derive their meaning by directly combining the meaning of their parts. Consider

the bigram “red triangle”: the composed meaning in this case is just the intersection of

“everything that is red” and “everything that is triangle”, i.e., “red triangle” acts as a fully

compositional structure. On the other hand, some linguistic structures, such as idioms,

i.e., phrases that make figurative use of language, or some multi-word expressions, such

as, e.g., “piece of cake”, “put to the sword”, etc., behave as non-compositional, since their

meaning is more accurately approximated by holistic approaches, i.e., information about

their context contributes more than the meaning of their parts. In [69] it is proposed that

the meaning of a word should not be considered in isolation, but based on the linguistic en-

vironment of the statement, i.e., the composed meaning is estimated from the constituents,

and the meaning of said constituents is derived from the composition. There is no criterion

to categorize linguistic structures into fully compositional or fully non-compositional; some

structures appear to be just partially compositional, as are, e.g., some syntactically fixed

structures (e.g., “take advantage”), in which case each of the constituents has a unique

effect on the structure’s meaning [70]. Compositionality appears to be a matter of degree

rather than a binary concept. VSMs are typically used to represent words in isolation, and

meanings are encoded into vectors spaces. Various approaches in the literature regarding

composition propose different approaches to derive compositional semantics by combining

the constituent vectors through a specified function. In the rest of the section we describe

some of the most widely accepted approaches.
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Vector Composition. The most straightforward method for deriving a compositional

representation for a complex structure is to merely combine the constituent vectors. In

[10, 11], various methods have been proposed that focus on such compositions. One of the

simplest set of methods regarding vector composition are those decribed by the additive

model, i.e., regarding the composed vector of a complex structure as a linear function of

the cartesian product of its constituent vectors [46]. To this end, a bigram i = (i1 i2) can

be represented by a vector ~i that is computed as

~i = A~i1 +B~i2, (2.27)

where ~i1 and ~i2 are the vectorial representations of i1 and i2, respectively, while A and B

define matrices which determine the contributions made by ~i1 and ~i2 to ~i. In its simplest

form, A = B = I, which results in ~i being computed by a simple point-wise addition of

~i1 and ~i2’s values, i.e., ~i = ~i1 + ~i2. This method blends together the content of the con-

stituents, but, although effective at some tasks, the scheme’s lack of considering syntactic

structure computes identical representations for structures sharing the same vocabulary.

For example, the bigrams “business world” and “world business” have different meanings,

i.e., the first describes a world devoted to business while the second describes business

around the world. However, the sum of their vectors will result in an identical represen-

tation for both cases. To this end, the simple additive model proved ineffective, at least

for the task of semantic similarity where word order plays a vital role. This is further

enhanced if we consider longer and more complex structures, such as sentences, where the

subject might become the object and, respectively, a causer might become the receiver

of an action. Although this simple point-wise addition is word-order insensitive, using A

and B can be used to weight each constituent’s impact in the composition. In [71], the

additive model is extended to incorporate semantic neighbors as a means of representing

background knowledge in

i = i1 + i2 +
k∑
i

ni, (2.28)

where n ∈ N defines a member of a set of neighbors N of k size. The author composes N

by selecting the m most similar neighbors to the first constituent, refining them by the k

most similar to the second, i.e., N consists of a subspace of the predicate i1 neighborhood

that is closer to argument i2. The aforementioned types of composition do not consider the

impact that a constituents’ contribution has in the other. A proposed method of combining
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vectors in order to give more emphasis to the components that are more relevant between

the two constituents is the multiplicative model. The model computes the composed

vector through the tensor product of its constituents and is defined as

~i = C~i1~i2, (2.29)

C being a 3-rank tensor, which projects the tensor product of ~i1 and ~i2 onto the space of

~i. In its simplest form, C = I and Eq. 2.29 is reduced to being a simple vector product

~i = ~i1 � ~i2, i.e., a simple point-wise multiplication of ~i1 and ~i2’s values. Variations include

taking all pair-wise products of ~i1 and ~i2, i.e.,~i = ~i1⊗~i2, or taking their circural convolution,

i.e., compressing the tensor product by summing along its transdiagonal values.

The Dual-space model. Turney [66] argued that compositional semantics are character-

ized by four linguistic phenomena that need to be handled successfully by semantic models,

specifically

• Linguistic creativity: the ability of language to derive a phrase consisting of an infinite

number of words and combinations.

• Order sensitivity: the consideration of word order between words, which has a great

impact on the derived meaning of the composition.

• Adaptive capacity: the ability of language components to form arbitrary types of

syntactic relations among them, which may be ignored by the followed approach to

derive semantics.

• Information scalability: the prerequisite that an increase in the number of component

words in a phrase should not be associated with exponential growth in information,

neither should any loss of information result as a sacrifice to cover this condition.

Turney proposed a dual-space model that combines relational and compositional meth-

ods for representing compositional semantics, based on the intuition that the domain and

functionality of a word are characterized by the nouns and the verbs, respectively, that

appear within its context. He argued that nouns are conceptually related to the target

word, while verbs associate with its syntactic, functional environment. To this end, his

approach utilized two complementary models, specifically, a domain space and a function

space, motivated by an attempt to address the aforementioned series of phenomena. Both

models are constructed using the same approach: a matrix is built by collecting context
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term frequency, followed by PPMI reweighing and, subsequently, reducing the matrix’s

dimensionality via SVD. The difference between the two spaces resides in the context vo-

cabulary: in the domain space, nouns were used, while, for the function space, verb-based

patterns were utilized. Composing semantics was thus reduced to combining the repre-

sentations from the two models. The dual-space model, therefore, does not construct a

general-purpose representation for complex structures; instead, the composite meaning is

computed based on the task at hand.

Transformational Models. The described models have been criticized for their use

mainly as bag-of-words models, i.e., they ignore word order, and the functional effect

that words apply on their linguistic environment inside the structure and the way they

can change its composed meaning. For example, a “nice” table is still a table, but a

“fake” or “broken” table is not. To this end, the multiplication class, defined in Eq. 2.29,

can be regarded as a function where the representation of the first constituent performs a

transformation on the representation of the second. In particular, Eq. 2.29 can be formatted

as

~i = U~i2, (2.30)

where U = C~i1 is the partial product of C with ~i1. In Eq. 2.30, U can be seen as a

matrix representation of the first constituent. To this end, U functions as an operator

on ~i1, i.e., it operates on the representation of the second constituent into the vectorial

representation of the bigram i. This idea serves as a cornerstone in logic-based semantic

frameworks [67], in which word order determines the type of function for each component.

The aforementioned adaptation was proposed by [72] for the estimation of semantics, when

considering adjective-noun constructions. The idea is that adjectives act as linear trans-

formations on noun vectors, and that the representation of an adjective-noun construction

can be computed by a matrix-by-vector composition of their components. For example,

when considering an adjective-noun bigram, such as “bad cat”, the operator word (“bad”)

acts as a modifier to the head word (“cat”), i.e., it modifies the latter’s meaning in order

to derive the composition. Baroni and Zamparelli [73, 74] built on this idea that utilizes

syntax and word order in order to estimate compositional semantics. To this end, they

argued that adjectives can be regarded as modifiers on the composed meaning of the struc-

ture, and proposed that adjectives act as functions, operating on the meaning of the noun,

and that the representation of the composed meaning can be derived by a transformational

composition. The application of these functions is realized via matrix-by-vector multipli-
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cation, through the use of a transformational model, referred to as lexical function, and

defined as [74]:

f(α) =def F × a = b, (2.31)

where F is the matrix-encoded function, a is the vectorial representation of the argument α,

and b is the compositional vector output. The weights of F are learnt according to selected,

corpus-observed, examples of input and output distributional representations. The input

is the representation of the second constituent of the phrase (head word), and the output

is the observed representation of the phrase, i.e., a holistic-based estimation of its vector

weights. In order to learn F , the authors employed regression techniques to estimate the

set of weights in the matrix so that, when multiplied with the input vector, the result

will best approximate the (observed) vector output. For example, the function for the

modifier “bad”, in the example above, can be learnt by regressing over observed vectorial

representations of nouns and <bad *> phrases, i.e., phrases that contain the modifier as

the first constituent and the respective noun as the second, such as <pet, bad pet>, <dog,

bad dog>, <bird, bad bird>, etc. In [73, 74], the authors used two regression techniques

in order to train F , specifically LSR and RR. Then, the learnt F matrix weights can be

applied to any noun, in order to compute the respective representation of the compositional

structure. For example, using the trained set of weights for the modifier “bad”, and the

vectorial representation of a head noun, e.g., “cat”, the composite representation for the

phrase “bad cat” can be induced. Coecke [8] generalized this idea to cover all functional

types, instead of just adjectives, by utilizing tensors of higher order, for example, 3-order

tensors for the case of transitive verbs. The idea of a functional space also served as

the fundamental basis in [75]. Here, the matrix-vector model was extended and adapted

it to the computation of semantics for multi-word sequences of any syntactic type. In

particular, the authors considered a linguistic structure of arbitrary length, such as a

sentence, into a dependency tree, and argued that each tree node can be regarded as both

a parameter matrix and a continuous vector; the vector being utilized to represent the

inherit meaning of the constituent, while the matrix served as the function type that is

activated for the constituent, when changing the meaning of adjacent lexical units. Then,

the representation of sentential semantics is constructed via a bottom-up procedure, i.e.,

by recursively multiplying the vector of the first component with the matrix of the second,

and vice versa, until the semantics of the whole structure are computed. Their proposed

MV-RNN model utilizes a recursive neural network (RNN) that is applied in order



2.2. Distributional Semantic Models 25

to learn the compositional function for computing vector and matrix representations for

sequences of arbitrary length and syntactic type. Words that lack operator semantics

are assigned the identity matrix, while, words that act mainly as modifiers are assigned

vectors that are close to zero. Their model has combined different theoretical properties

with good performance on several empirical tasks, while also generalizing several models in

the literature [72–74, 76]. In [50], the authors also proposed a generalization of the learning

method introduced by Baroni and Zamparelli for computing higher rank tensors, allowing

for the induction of semantic representations for larger linguistic structures.
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Chapter 3

Composition in NDSMs

Network Distributional Semantic Models (NDSMs) are based on the notion of semantic

priming [18]. Semantic priming refers to the cognitive concept of improving performance,

in terms of speed or accuracy, of responding to a stimulus, such as word or picture. Priming

is cognitively motivated, as it is triggered by associating meanings with sensory interpre-

tations and related concepts. By considering a semantic network composed from a lexicon

and the associations among its entries, activational priming can be regarded as the equiv-

alent action of a stimulus activating a specific sub-area of the network, whose members

share similar semantic and associative properties. Based on this idea, Iosif and Potamianos

[16, 77] proposed an unstructured approach for the construction of DSMs which integrates

cognitive thinking with semantic theories. In their work, it is argued that the traditional

approach for computing VSMs can be extended into a two-tier system, specifically by

1. encoding corpus statistics parsimoniously in a semantic network, and

2. shift similarity computation, from corpus-based techniques to functions over network

subspaces (semantic neighborhoods).

Semantic neighborhoods comprise of lexical units that are semantically associated with a

target. The notion of “lexical unit” can refer to any conceptually coherent lexical structure,

spanning from words (unigrams) up to word sequences (n-grams). Semantic properties of

said units are, therefore, encoded into the neighborhood, which is realised as a sub-graph

of the complete network. The semantic neighborhood is an adaptation of the theoretical

model of priming, in the case of a semantic network; the neighborhood acts as the activation

area that is triggered upon the activation of the stimuli, which, in this case is its associated

lexical unit. Estimating similarities between the members of the network is thus reduced to

comparing their neighborhood properties. This cognitively motivated approach constituted

a new paradigm for implementing DSMs, allowing for the consideration of different aspects

regarding semantic similarity. Encoding activational priming into the form of undirected

network sub-graphs enables the utilization of methods that derive from theoretical back-

grounds of cognitive research, graph theory or algebra for comparing the encoded semantic
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properties of words and, thus, modeling similarity. Computing neighborhoods for complex

structures, however, leads to the same natural language phenomena that are described in

Section 2.2.6. Activation areas for complex phrases can, thus, be computed as a function

of activations of phrase constituents, in adherence with the principle of compositionality.

In the rest of the chapter, we describe the work in NDSMs. First, approaches from

the literature are presented for estimating compositional semantics and similarity between

complex linguistic structures via the use of a two-layer system, specifically an activation

and a similarity layer. We extend this model by proposing schemes and metrics that address

various compositional and natural language phenomena. Next, a novel method is proposed

for estimating the transformational degree of linguistic structures by leveraging on the

training error produced through a transformational model from the literature. Finally, a

model is proposed that computes semantic similarity of phrases by utilizing this method to

determine the contribution of different compositional models under a late fusion scheme.

3.1 Semantic Networks in DSMs

A semantic network can be defined as a graph Q = (V,E) whose set of vertices V includes

the lexical units under investigation and whose set of edges E contains links between the

vertices. The links between the units in the network are weighted according to their pair-

wise semantic similarity, which can be computed using some defined similarity metric 1.

The network acts as a parsimonious representation of corpus statistics that pertains to

the estimation of semantic similarities between unit pairs, as they are represented by the

vertices. Given a selected lexical unit, an area is modeled within the semantic network

that clusters a set of semantically related lexical units. This area is referred to as seman-

tic neighborhood, and its members as semantic neighbors. The semantic neighborhood of

a lexical unit, ξ, can therefore be regarded as a sub-graph of Q, Qξ, also referred to as

the activation area, or activation, of ξ. The vertices of Qξ, i.e., the neighbors of ξ, are

determined according to their semantic similarity with ξ. Given a set of lexical units,

the most semantically related to ξ comprise its semantic neighbors. The neighborhood is

placed within the semantic concept defined by the selected lexical unit. This is especially

valid for the case of highly coherent lexical units, such as unigrams and bigrams. The no-

tion of semantic neighborhoods adheres to psycholinguistic analysis regarding the lexical

interpretation of concepts, i.e., the idea that each lexical unit triggers, or activates, re-

1the most salient ones are described at Section 2.2.5
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lated concepts or meanings that are shared among a subset of lexical units in the network.

Semantic neighborhoods also play an important role in discovering relations that are in-

discernible in raw data; diverse syntactic, semantic and pragmatic information is expected

to be encoded as features of semantic neighbors. Such relations surface via the systematic

covariation of compositional schemes and similarity metrics.

3.2 Compositional NDSMs

NDSMs are computed over semantic networks, in order to extract indirect relations between

network edges. They constitute of two separate sequential layers, each addressing different

semantic tasks via the utilization of semantic networks, in particular

1. an activation layer, responsible for computing semantic neighborhoods, and

2. a similarity layer, which operates on semantic neighborhoods to estimate similarities

between their respective lexical units.

The activation layer pertains to computing an appropriate activation that can more

accurately represent a target lexical unit. In the case of selecting neighbors for a simple

unigram, this layer merely consists of selecting the n most similar to the latter. For the

case of more complex structures, however, such as bigrams, computing activations in not as

trivial. Properties of natural language, as well as compositional phenomena, can affect the

computation of a representative activation area, as the relations between the constituents,

as well as the syntactic properties of each word, may seriously impact the quality of the

derived neighborhood. This is also applicable in the similarity layer, where some similarity

metrics also consider these constituents for their operations. Thus, inherent properties

of natural language, such as word order, appear to affect the computations in both the

activation and the similarity stage, and need to be addressed appropriately for each case.

In order to describe the details in the activation and similarity layer of NDSMs, as well

as to highlight and address the associated problems, the bigram lexical unit will be used

as a use case. To this end, we define two bigrams, e.g. i = (i1 i2) and j = (j1 j2), where

i1 and i2 denote the first and second constituent of bigram i (similarly for j). Also, let

Ni1 , Ni2 , Nj1 and Nj2 define the activations of i1, i2, j1 and j2, and let Ni and Nj define

the composed activations of i and j, respectively. Since the constituents of i and j are

unigrams, their neighborhoods are easily computed as described in Section 3.1, i.e., by

selecting the n most similar words to the unigram. Ni and Nj, however, are computed as
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a function of their respective neighborhoods. Following this paradigm, we adapt the ideas

regarding NDSMs, introduced in [16, 77], to the case of more complex structures [17].

3.2.1 The Activation Layer

In the framework of DSMs, neighborhoods were computed in the activation layer for the

case of unigrams in [16], and were extended to short phrases (bigrams) in [77]. In both cases,

unigrams are selected as the members (neighbors) of the activation areas (neighborhoods).

NDSMs typically form unigram activations by selecting the semantically closest words to

comprise their semantic neighbors. For the case of unigrams being the targeted lexical

units, the activation layer merely comprises of the semantic neighborhood of the unigram.

In [77], it was proposed that composed semantic neighborhoods can be computed for a

complex structure, specifically for bigram, noun-noun structures. The approach was based

on the intersection of senses; given a bigram i = (i1 i2), the semantic neighborhood of i is

computed by taking the neighborhood overlap of i1 and i2, i.e., Ni is composed by selecting

the neighbors that are shared between the activations, as

Ni = Ni1 ∩Ni2 . (3.1)

This is illustrated with an example in Fig. 3.1. In this example, Ni1 ={“circumflex”,

“city”, “market”, “province”, “investment”, “region”, “partners”, “fund”, “finance”, “pun-

ishment”}, while i1 is the word “capital”, and Ni2 ={“stock”, “investment”, “global”, “es-

tate”, “fund”, “finance”, “industry”, “analysis”, “value”, “trading”}, while i2 is the word

“market”. The composed neighborhood for the bigram “capital market” (i) is computed

as Ni ={“investment”, “fund”, “finance”}. This approach pertains to the idea that the

meaning of a complex structure should be more specific than the meaning of its parts [78].

However, it does not consider specific phenomena which prevent scaling the model to more

complex structures, while it ignores important properties of compositionality. Applying the

described model to the case of longer structures makes a certain limitation apparent. The

fact that the resulting neighborhoods are composed using a fixed size for the neighborhoods

of its constituents (e.g., Ni1 and Ni2) allows the computation of empty neighborhoods for

a complex lexical unit (e.g., Ni), when there is no overlap between the constituents’ neigh-

borhoods. Moreover, as stated by Frege [67], the meaning of a complex structure should

also be explained along with the meaning that derives from the composition, which is some-

thing that a simple intersection scheme may not detect. Last but not least, the composition
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Figure 3.1: Activation composition for the bigram “capital market”: The neighborhood is
composed as the intersection of fixed-size constituent neighborhoods.

function should also consider the relations between the constituents, as well as their word

order, when selecting neighbors for the composed activation area; syntactic infromation

should affect the contribution of an activation to the composed neighborhood. In order to

address this problem, the computation of composed activations is aided by weighing the

contribution of the constituent neighborhoods. To this end, let n define a neighborhood

member, and S(.) be a similarity metric. S(i, n) is then computed as (similarly for S(j, n))

S(i, n) = wactS(i1, n) + (1− wact)S(i2, n), (3.2)

where wact defines a weight parameter ranging between 0 and 1. By weighting the con-

stituent contributions during the neighborhood composition, the composed neighborhood

and, thus, its encoded semantics, can be regulated with respect to each phrase and based

on the impact of its constituents on the composed meaning, as well as on the relation type

between each other.

In order to address the rest of the described problems, five different schemes are pre-

sented for the computation of neighborhoods in the activation layer. The model proposed

by [16, 77] differ from the model proposed in this work in the sense that the former re-

quires predefining the size of the constituent neighborhoods, while the latter instead require

setting the required size for the composed neighborhood. To this end, the literature mod-

els will be referred to as fixed-size models, while the models presented in this thesis, for
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which the constituent neighborhood sizes are dynamically adapted, will be referred to as

variable-size models [17].

Scheme 1: Intersection (inter). In this scheme, the neighborhood of a lexical unit is

computed by taking the intersection inter of the constituent neighborhoods. For the case

of bigram i = (i1 i2), this corresponds to Ni=Ni1∩Ni2 . This adheres to findings from the

literature of psycholinguistics suggesting that the composed activation and, therefore, its

respective meaning, should be more specific than those of its constituents [78]. To address

the limitation caused by the size overlap of the constituent neighborhoods, an extension of

the literature model is proposed. In particular, it is proposed that activation size is adapted

by relaxing the hard constraint regarding the fixed size for the constituent neighborhoods.

To this end, given a complex structure, e.g., i = (i1 i2), in order to compute the activation

area Ni, the activation areas (i.e., sizes) of Ni1 and Ni2 are gradually extended until a

minimum size, θ, is reached for Ni. The variability of constituent sizes is illustrated in

Fig. 3.2, while a simpler intersection example is contained in Fig. 3.3. In order to distinguish

the fixed- from the variable-size inter schemes, the former is annotated as interfix, and

the latter as intervar.

Figure 3.2: Scheme 1 (Intersection) activation composition for the bigram “capital market”:
Constituent neighborhood sizes (n) are incrementally increased until a minimum size (θ =
10) is reached for the composed neighborhood.
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Scheme 2: Union (union). In this scheme, the union union of neighborhoods is used

to compute the composed neighborhood, e.g., Ni=Ni1∪Ni2 . This scheme is motivated by

the idea that, in some cases, a lexical unit should associate with a larger activation area,

compared to those of its constituents. This is in line with Frege’s principle of composition-

ality [69], which indicates that the meaning of the whole encodes information that is not

present in its parts, when considered in isolation; the composition may induce semantics

that are only triggered via the combination of the separate word components. An example

of the scheme is contained in Fig. 3.3.

Scheme 3: Most similar (mostsimilar). In this activation scheme, mostsimilar, the

members for the structure’s activation are selected based on their computed semantic

similarity, with respect to its constituents. Specifically, let Ni be {n1, ..., nm, ..., nθ}, where

nm ∈ {Ni1∪Ni2}. The Ni set can be regarded as a list, ranked according to S(i, nm), where

S(.) stands for a metric of semantic similarity. The idea behind this scheme is that different

activations may be computed for Ni1 and Ni2 , given the context of i1 and i2, respectively,

i.e., i2 for i1 and i1 for i2. This is motivated by the notion that different semantics are

triggered for a constituent word based on context (where context is, from an intrinsic

perspective, the other constituent(s) of its enclosing structure) and the relations between

them [69]. The scheme also addresses a scalability issue: the resulting neighborhood retains

the same size as those of its constituents, enabling the recursive application of the model

over longer structures. An example of the scheme is contained in Fig. 3.3.

Figure 3.3: Activation schemes for the phrase “national government”: intersection inter
(overlap of neighborhoods), union union (members of both neighborhoods), and selection
of most similar neighbors mostsimilar (members in bold).

Scheme 4: Head edge (headedge). The headedge scheme selects appropriate neighbors
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by utilizing the network edge that connects the second (head word) with the first con-

stituent as an inclusion radius that originates from the former. To this end, the composed

neighborhood comprises of all members of Ni2 , and those members of Ni1 that are seman-

tically closer to i2 than i1 is, as illustrated by Fig. 3.4. To this end, Ni is computed based

Figure 3.4: Scheme 4 (Head edge) activation composition for the bigram “capital market”:
Composed neighborhood is built by the activation of the head word (“market”), enhanced
by the first word (“capital”) neighbors that are semantically closer to the second than the
first is.3

on the following conditions:

ni ∈ Ni

if ni ∈ Ni2 , or

if ni ∈ Ni1 and S(ni, i2) ≥ S(i1, i2).
(3.3)

The scheme is motivated by the idea that only specific properties of constituent neighbor-

hoods are activated for shaping the composed meaning, based on the linguistic environment

inside the enclosing phrase. Therefore, varying neighborhood properties may be activated

for a lexical unit, based on the type of relation between the unit with the other constituents.

This scheme composes neighborhoods based on network edge rather than activation size,

i.e., the derived activation does not have a specific size, but instead uses a network edge as

the criterion for member selection. The scheme also focuses on the head word activation to

initialize the composed neighborhood (at least for the case of bigram structures), which is

then enhanced by the inclusion of neighbors from the first word’s activation. This method

is in line with other work from the literature that proposes that the composed meaning of

a bigram structure is estimated by an operation of the first word on the meaning of the

second [72–74]. The scheme also tries to capture domain properties (encoded in the head

word activation), as modified by the attributional properties (encoded in the first word
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activation) that best engage it. Finally, the approach ensures that at least |Ni2| neighbors

will compose Ni. The scheme adheres to the theory that a complex structure is not always

just a sum or a direct composition of its parts, but rather a function of their relation.

Scheme 5: Projection (project). The scheme is based on the idea presented in [79], i.e.,

the hypothesis that high-dimensional spaces comprise of manifolds of very low dimension-

ality that are embedded in these structures. The authors base their approach on evidence

from psycholinguistics analysis and cognitive science, which shows that knowledge is hier-

archically clustered into conceptual manifolds comprising of closely related senses [80–82].

To this end, the authors extended this hypothesis into DSMs by constructing a hierarchical

conceptual model based on the aforementioned assumptions, i.e., on the idea that a lexical

semantic network can be projected into multiple low-dimensional subspaces. This scheme,

project, utilizes this idea in order to retrieve the subspace in which the constituents of

a complex structure share the maximum semantic properties (or, equivalently, the least

semantic distance). In particular, this scheme projects i1 and i2 into the manifold of the

network where S(i1, i2) has the maximum value, S being a metric of semantic similarity.

Since that subspace comprises of words that are closely related, and since the constituents

share the maximum properties in that subspace, it is conclusively deducted that it encodes

semantic features that are representative of both the (triggered) constituent semantics and

the relational type between them. To this end, the subspace comprises the (projected) ac-

tivation for the structure, i.e., Ni is composed by the members that constitute the manifold

where i1 and i2 are most closely placed. In the case that a common subspace is not found

between the two constituents, the mostsimilar scheme is used as a fall-back scenario. A

minor difference of the project scheme with the work in [79] relates to the task that each

work attempts to address. In [79], the model is used to measure semantic similarity be-

tween two words, while, in this scheme, the projected words are the constituents of a larger

structure and the task is the estimation of the composition semantics.

3.2.2 The Similarity Layer

Activation areas, computed in the activation layer, serve as metric spaces and, since they

encode semantic properties, they can be compared to estimate semantic similarity between

the structures they represent. To this end, the similarity layer comprises of similarity met-

3The figure illustrates the case when the semantic distance between the first and the second constituent
is larger than the distance of the second constituent’s neighbors with it; however, all head word neighbors
populate the composed neighborhood, regardless of their semantic distance from it.
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rics that operate over semantic neighborhoods, i.e., it is used to model semantic similarity

between two lexical units, e.g., i and j. In [16, 77], three similarity metrics were proposed

for estimating similarity. These metrics were defined on top of the respective activation

areas of the lexical units i and j, Ni and Nj, computed in the activation layer. The met-

rics adopted network-based approaches that rely on two well-founded hypotheses, namely,

maximum sense [83] and attributional similarity [42]. These metrics are adopted to the

case of longer structures for the bigram use case and are described in detail below.

Maximum Neighborhood Similarity (M). The key idea of this metric, M , is the

computation of similarities between the constituents of lexical unit i and the members

of Nj (i.e., its semantic neighbors). The same is done for the constituents of the other

lexical unit, j, and the members of Ni. The similarity between i and j (e.g., between

Figure 3.5: Maximum neighborhood similarity metric (M): bigram usecase.

“assistant manager” and “board member”, as depicted in Fig. 3.5) is computed by tak-

ing the maximum of the aforementioned similarities (0.50 in Fig. 3.5). The underlying

hypothesis is that neighborhoods encode senses that are shared between the constituents;

selecting the maximum score suggests that similarity between i and j can be approximated

by considering their closest senses [16].

Attributional Neighborhood Similarity (R). In this metric, R, the similarities be-

tween the constituents of i (i1 and i2) and the members of Nj are computed and stored

into a vector. This is also done for the constituents of j (j1 and j2) and the members of Nj.

Then, the correlation coefficient between the two vectors (e.g., the two right-most vectors

in Fig. 3.6) is computed. The process is repeated, using Ni in the place of Nj, which results

into another correlation coefficient (e.g., the two left-most vectors in Fig. 3.6). Similarity

between i and j is then estimated as the maximum between the correlation coefficients.
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Figure 3.6: Attributional neighborhood similarity metric (R): bigram usecase.

The underlying motivation here is attributional similarity, i.e., the hypothesis that neigh-

borhoods encode semantic or affective features; semantically similar phrases are expected

to exhibit correlated similarities with respect to such features [16].

Attributional Squared Neighborhood Similarity (Q). This metric, Q, adheres to the

motivation behind R, in the sense that it utilizes attributional similarity as an indicator for

semantic similarity. However, the similarities among the lexical units and the neighborhood

members (e.g., between i and the members of Nj) are in this case non-linearly weighted

and similarity is computed as

Qr(i, j) =

∑
x∈Nj

Sr (i, x) +
∑
y∈Ni

Sr (j, y)

 1
q

, (3.4)

where S is a defined similarity metric. For instance, for r = 2, similarity between i and j

is computed by summing the squares of the similarities between the members of Ni and j

with those of Nj and i. This is done so that similarities contribute more to the similarity

score, after weighing each member’s semantic proximity with the respective lexical unit.

The metric is illustrated in Fig. 3.7.

The described similarity metrics, proposed and examined in [16, 77], introduced ap-

proaches for estimating similarity via the utilization of neighborhoods. Although based on

valid compositional and similarity hypotheses, these metrics were introduced for similar-

ity estimation merely between unigrams, and were adapted to the case of simple bigram

structures in order to realise a model for future reference and enhancement. Consequently,

these metrics ignore some properties of language creativity, such as word order and syn-
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Figure 3.7: Attributional squared neighborhood similarity metric (Q): bigram usecase.

tax, rendering them ineffective when being applied to more complex and longer structures.

Moreover, encoding meanings in the form of semantics placed in a metric space graph, as

is the case in network-based representations, introduces properties that could be utilized

by the similarity layer, e.g., in order to model similarity as the result of distance between

metric spaces.

In the rest of this section, four network-based similarity metrics are presented, that

attempt to address the aforementioned observations [17]. Specifically, an extension of the

M metric is proposed, along with three novel similarity metrics, that compute similarity

between lexical units by utilizing their activations. The metrics are defined with respect

to two lexical units, i and j, which are represented by their neighborhoods, Ni and Nj, re-

spectively, as computed in the activation layer. In order to consider the syntactic relations

between the constituents, the computation of similarity is weighted in order to shift the

contribution of the arguments for estimating similarity. To this end, let n be a neighbor-

hood member, and let S(.) be a defined similarity metric for estimating similarity between

lexical units. Then, S(i, n) is computed as

S(i, n) = wsimS(i1, n) + (1− wsim)S(i2, n), (3.5)

where wsim defines a weight parameter ranging between 0 and 1. (similarly for S(j, n)).

To this end, the described network-based similarity metrics were a special case of this

generalization where wsim = 0.5.

Average of top-k similarities (Mk). This metric, Mk, extends the M metric described

above, by considering the top k similarity scores across neighborhood members and lexical

units, instead of just the maximum score. Similarity between i and j is then computed
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by taking the arithmetic mean of the k scores. The M metric can, thus, be defined as

a special case of Mk, where k = 1 (M1). The metric is proposed in order to smooth the

similarity between i and j over a distribution of their closest neighbors, instead of relying

on just the maximum similarity, which can produce unstable behavior.

Average of top-k pairwise similarities (Pk). This metric, Pk, estimates similarity

between i and j in an indirect way, by comparing their activation areas. In particular, let

C be a ranked list, including all the pairwise similarities computed between the members

of Ni and Nj as

C = { S
x∈Ni

y∈Nj

(x, y) }, (3.6)

where S(.) stands for a metric of semantic similarity. Similarity between i and j is then esti-

mated as the average of the top k pairwise similarities between the neighborhood members,

which is defined as

Pk(i, j) =
1

k

k∑
l=1

cl, (3.7)

where cl is the l-th member of C.

Hausdorff-based similarity (H). This metric, H, utilizes metric space algebra in order

to compare activation areas according to their structure. The metric is motivated by the

Hausdorff distance [84], defined as

dH(X, Y ) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}, (3.8)

where X and Y are two non-empty subsets of a metric space (M,d), sup is their supremum

and inf is their infimum. Assuming the bigrams i = (i1 i2) and j = (j1 j2), with Ni and

Nj being their respective activation areas, let

h(Ni, Nj) = min
x∈Ni

max
y∈Nj

S(x, y), (3.9)

where S(.) is a semantic similarity metric (similarly for h(Nj, Ni)). Eq. 3.8 can then be

adapted to compute the similarity between i and j as

H(i, j) = max{h(Ni, Nj), h(Nj, Ni)}, (3.10)
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Euclidean-based similarity (E). This metric, E, assumes that neighbor similarities

with their target lexical unit can be encoded into vectorial features. Then, semantic simi-

larity between i and j can be estimated as the semantic divergence between two activation

areas, by computing the euclidean distance of their respective vectorial representations.

Let N = (Ni ∪Nj −Ni ∩Nj) be a set including all unique neighbors of Ni and Nj, nk ∈ N
being the k-th member of N , and let S(.) be a metric of semantic similarity. Then, vectors

for i and j of |N | size are formed and populated using the similarities of i and j with the

members of N , i.e., S(nk, i) and S(nk, j) similarities are encoded as vectorial features of i

and j, respectively, for each nk ∈ N . The euclidean distance between the two vectors is

then defined as

Edist(i, j) =

√∑
nk∈N

(S(nk, i)− S(nk, j))
2. (3.11)

Based on 3.11, E is computed as

E(i, j) =
1

1 + Edist(i, j)
. (3.12)

An indirect property of this metric is that it encodes neighborhoods into vectorial rep-

resentations, which provides potential use in other applications and tasks. Since VSMs

constitute the most common and typically used implementation for DSMs, many well-

established metrics and theories can be applied to them.

3.3 Fusion of Compositional DSMs

As described in previous parts in the current thesis, linguistic structures differ with respect

to the forces that contain the composition, which derive from linguistic or syntactic proper-

ties and the relations that bind the constituents into a complex structure. Compositional

models that are present in the literature and are described in Section 2.2.6 attempt to

explore different aspects in compositional approaches. Although some may perform better

than others in appropriate tasks, what is actually important for compositional models is

to be able to capture all those different salient forces that drive the functions for each

composition. The Network DSM, presented in the previous section, computes activation

areas for complex phrases, such as phrases, by utilizing variable areas of their constituents’

semantics under a variety of functions. The lexical function (lexfunc) model, defined by

Eq 2.31, also described as a transformational model, utilizes the functional power of a mod-
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ifier over its enclosing phrase, in order to estimate the composed meaning by operating

over its semantics. Both models seem intuitively aligned with the human process of phrase

comprehension, as they are based upon valid theoretical concepts of cognitive research and

linguistic analysis. However, there are cases where one model fits better than the other.

For example, consider two bigram phrases, “successful engineer” and “red triangle”. The

transformational model is expected to perform better for the first bigram, since, in this case,

the composed meaning is derived from the meaning of the word “engineer”, as modified by

the functional influence of the word “successful”. For the second phrase, however, a simple

intersection of word senses, such as an NDSM using an intersection activation scheme (as

defined in Section 3.2.1) or a simple additive model (as defined in Section 2.2.6) seems to

be more appropriate; the composed meaning derives from the overlap of “all that is red”

and “all that is triangle”.

3.3.1 The Transformative Degree of Modifiers

Based on the aforementioned considerations, intuitively, complex structures can be quan-

tified based on the relational types of their constituents, in order to derive the composed

meaning. Given the syntax of the English language, it can be deducted that, at least when

considering bigram structures, the first word can be considered as fitting a modifier role,

while the second as being the head word of the structure, upon which the modifier operates

to form the composed meaning. Such considerations have been proposed in the literature

for the case of adjective-noun [73, 85], noun-noun bigrams [86], or any functional type [8],

so it is safe to propose that any bigram can be defined as a modifier-head composition,

while the transformational properties of the word that resides in the modifier slot of the

structure can be quantified by a defined process. Measuring the transformational power

of the modifier on a given head word would provide a means for detecting the relational

type between the constituents, at least when considering bigram structures. This would

allow for greater flexibility which will eventually benefit performance. To this end, we

propose that the transformative degree of the modifier can be considered as the criterion

for estimating a structure’s type of composition and, subsequently, quantify it between the

range of fully transformational or strictly compositional.

The lexfunc model, described in Section 2.2.6, represents a phrase’s modifier as a func-

tion (represented by a matrix), and employs regression techniques to learn the weights that,

when combined with the head word vector, best approximate the holistic (observed) repre-

sentation of the phrase. The performance of said regression, when training the modifiers,
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can be indicative of the fit of the lexfunc model regarding each modifier and, subsequently,

serves as the criterion for measuring its transformative degree. Regression performance

can be measured using the MSE of training the modifiers. Training MSE can, thus, de-

termine the degree of their transformational properties, on a given head word. Taking the

MSE is a sensible approach, since regression tries to compute a close approximation to the

observed vectorial phrase representations and head nouns by the means of transforming

the head noun vectors. A high training error would indicate that the lexfunc model is a

poor match for this modifier, i.e., that the modifier’s transformative degree is too low to be

salient for semantic tasks, while a low error would indicate that the modifier responds well

to the regression strategy of the model and that its interaction with the head word stems

from the transformation of the latter’s meaning. We extracted modifiers from the [11]

Degree Nouns Adjectives Verbs

High

railway old encourage
labour rural attend
defence elderly remember

personnel efficient satisfy
committee practical suffer

Neutral
company various face

care right need
community better cut

Low

news new like
service great buy

business black help
world general use
state good provide

Table 3.1: Modifier examples of high, neutral, and low transformative degree.

noun-noun (NN), adjective-noun (AN), and verb-object (VO) datasets, which is used in

the literature for semantic similarity tasks, and contains a variety of bigram phrase pairs.

We then ranked these modifiers based on their transformative degree, as estimated from

their training MSE when using the lexfunc model. We employed Ridge Regression as the

regression technique to estimate the MSE for each modifier. Examples of modifiers of high,

neutral, and low transformative degree are presented in Table 3.1. It can be deducted that

modifiers with high transformative degree tend to acquire a functional role, when being

regarded as components of bigram structures. For example, when considering the bigrams

“efficient machine” and “new machine”, the modifier “efficient” has a greater effect on
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the head noun “machine”, rather than the modifier “new”. A “new machine” retains the

same properties of a generic machine, i.e., it is a combination of all that is “machine” and

all that is “new”, nevertheless, regarding bigram “efficient machine”, the word “efficient”

includes all optimization mechanisms of the “machine”, e.g., regarding speed, load, cost,

etc., i.e., the word “efficient” seems to have a greater effect on the properties of the head

word.

3.3.2 The Fusion Model

Based on these considerations, a fusion model is presented [17] for estimating similar-

ity, derived from the combination of the lexical function (lexfunc) model, as defined by

Eq. 2.31, with the NDSMs that are described in Section 3.2. This model provides a novel

approach of combining different means of compositional interpretations into a similarity

metric. Intuitively, a fusion model is expected to be more adaptive and sensitive to word

features and effects, when estimating compositional semantics. The fusion is aimed to

model more accurately the semantic representations of complex structures, by combining

the two models based on their fitness degree on a given phrase structure. The fitness

degree of the structure is measured according to its modifier’s performance, when used

to train the lexfunc model. Specifically, the Mean Squared Errors (MSEs) from training

modifiers with the lexfunc model are used in order to estimate the transformative degree

between two phrases. The transformative degree is subsequently used as a criterion for

deciding whether a strictly compositional or a transformational model is more appropriate

for modeling their similarity. To this end, similarity is estimated by quantifying the model

contributions in order to compute the final score.

Given two phrases, i = (i1 i2) and j = (j1 j2), let the transformative degree T (i, j) for

estimating similarity between i and j be defined as

T (i, j) =
1

2
(MSE(i1) +MSE(j1)), (3.13)

where MSE(i1) and MSE(j1) is the MSE that corresponds to modifiers i1 and j1, re-

spectively, as measured during training them in the lexfunc model. Since T (i, j) is an

unbounded measure, we apply a sigmoid function in order to smooth and normalize its

values within the range of 0 and 1. This operation results in a quantification measure

(λ), based on T (i, j) and utilized to adjust the contribution degree for the two models as
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defined by

λ(i, j) = α/
(
1 + e−T (i,j)

)
− β, (3.14)

where α and β serve as predefined weight parameters. The proposed fusion metric, Φlf
net,

used for estimating similarity between i and j, can then be defined as

Φlf
net(i, j) = (1− λ(i, j)) Slf + λ(i, j) Snet, (3.15)

where Snet and Slf define the similarity scores computed by the compositional NDSM and

transformational lexfunc models, respectively. We selected models from the NDSM frame-

work in order to provide an alternative approach to the metric and boost its power to

weight towards the appropriate strategy for each phrase pair. It should be noted that the

first component of the equation can be replaced with any compositional model from the

literature. Thus, in addition to the aforementioned fusion, Φlf
net, a fusion metric combining

the transformational model and the widely-used additive [10, 11] model was also imple-

mented. This fusion metric, referred to as Φlf
add, is defined similarly to Eq. 3.15, where, in

this case, Snet is substituted by Sadd, which defines the similarity score computed by the

additive model.
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Chapter 4

Experiments and Evaluation

In this chapter, we describe the experiments that were defined for evaluating the proposed

models. First, the evaluation dataset and metric used for measuring model performances

are described. A description of the approach that was decided follows, regarding the imple-

mentation, configuration and evaluation of the compositional NDSMs and fusion models,

in their respective sections. An overall presentation of the results, including evaluations of

all models, is presented next. We conclude by summarizing the findings at the final section

of the chapter.

4.1 Evaluation Dataset and Metric

All of the models proposed in this thesis were evaluated on the widely-used Mitchell & La-

pata [11] datasets. The datasets comprise of three sets of noun-noun (NN), adjective-noun

(AN), and verb-object (VO) constructions, and have been selected for multiple studies in

the literature regarding the estimation of bigram similarity. Each of the datasets com-

prises of 108 bigram pairs, and each pair is associated with multiple ratings by different

participants. The participants rated the semantic similarity of each phrase pair in a 1 to

7 scale, where a score of 1 defines the phrases of the pair being “least similar”, while a

score of 7 defines them as “most similar”. In the current work, the participants’ scores

were averaged, for each phrase pair, and the resulting score was set to serve as the gold

standard rating for the pair.

Model performance was evaluated against the (averaged) human judgements by utiliz-

ing Spearman’s rank correlation coefficient (ρ), defined as follows: let xk and yk be two

similarity scores that define the semantic similarity of a phrase pair pk = {ik, jk}, and let

~x = (x1, ..., xk, ..., xn) and ~y = (y1, ..., yk, ..., yn) define vectors of n size that hold the scores

that were computed for respective n phrase pairs. ρ estimates the degree of correlation

between the two vectors, ~x and ~y, by converting their raw scores, xk and yk, to ranks, xrk
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and yrk. ρ is then computed as

ρ = 1−
6

n∑
i=0

d2i

n (n2 − 1)
, (4.1)

where di = xri − yri defines the difference between the two ranks for the i-th phrase pair.

In order to evaluate the models, ρ estimates the correlation between the observed scores,

i.e., the scores that were computed by a selected model, and the gold standard, i.e., the

ratings provided by the averaged human judgements.

4.2 Compositional NDSMs

In this section, we describe the experimental procedure that was followed for implementing

and evaluating the compositional NDSM models, proposed in Chapter 3. We present

the followed approach for realising the semantic network, followed by the description of

the appropriate parameters selected for the NDSM models. Then, model evaluations are

presented for the defined experiments, as considered from the following perspectives:

1. Activation layer: we evaluate and compare the proposed activation schemes.

2. Similarity layer: we evaluate and compare the proposed similarity metrics.

3. Similarity smoothing1: we investigate the impact of changing the smoothing range.

4. Asymmetry: we evaluated asymmetry, as considered in both layers, i.e., activation

and similarity asymmetry.

Model evaluations are superseded by discussion on the findings.

4.2.1 Semantic Network

In order to implement the proposed NDSMs, a semantic network is needed, and, to create

the network, a vocabulary first had to be defined. To this end, we defined the vocabulary of

the network by intersecting the English vocabulary of words, found in the dictionary used

by the ASPELL spell checker2, with the Wikipedia dump 3. The result of the intersection

1This perspective only concerns the metrics for which the smoothing parameter applies, i.e., the value
of k for the Mk and the Pk metrics.

2http://www.aspell.net/
3As of the 4th quarter of 2012.
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was an English vocabulary, consisting of approximately 135,000 word entries. The vocabu-

lary entries (in this case, unigrams) were used to represent the network nodes. In order to

compute network edges (vertices), the pairwise similarities among the vocabulary’s entries

were used. To estimate said similarities, a corpus-based approach was followed in order

to gather contextual information about the vocabulary: First, for each vocabulary entry,

approximately 1,000 document snippets were downloaded from the web and merged into a

corpus. Then, word similarities were computed among all the vocabulary entries. This was

realized by utilizing corpus co-occurrence statistics and, specifically, the Google Semantic

Relatedness (SG) metric, described in Eq. 2.19. For computing DG (described in Eq. 2.18),

which serves as a component of estimating SG, we defined the corpus unit D at the sentence

level. This convention was in line with the definition for the co-occurrence of words, which

was also realised at sentence level. The SG metric was selected after considering its good

performance in word-level semantic similarity tasks [16]. As a final step for comprising

the semantic network, only the top 20,000 frequent entries were considered, as a means of

keeping the words for which there is more coherent information and for refining the DSM.

4.2.2 Model Configurations

NDSMs require setting a variety of parameters that relate to both the activation and the

similarity layer. Configurations that were used for the experimental setup of NDSMs are

presented below.

Activation Layer. Regarding the activation layer, an important parameter concerns set-

ting the neighborhood size. Due to its use as a minimum threshold parameter in variable-

size models, as opposed to its use in fixed-size models as the determiner of the constituents’

activation size, the parameter has been set different values for the two variations. Specif-

ically, let θfix define the size for the fixed-size models, i.e., the size of the constituent

neighborhoods before the creation of the composed neighborhood, while, let θvar define the

size for the variable-size models, i.e., the minimum required size for the composed neigh-

borhood. To this end, we defined θfix in the range of {10, 25, 50, 100, 150, 200, 500} and

θvar in the range of {1, 5, 10, 15, 20, 25, 30, 40}. An additional parameter utilized in the ac-

tivation layer is the activation symmetry weight wact, used by the mostsimilar and project

activation schemes. We defined wact in the range of {0.10, 0.25, 0.33, 0.50, 0.67, 0.90}.
Similarity Layer. In the similarity layer, Mk and Pk make use of a smoothing parameter

k. We set k in the range of {1, ..., 5}. The respective similarity symmetry weight, wsim,

utilized by the Mk, Pk, H and E metrics, was defined similarly to wact, i.e., wsim =
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{0.10, 0.25, 0.33, 0.50, 0.67, 0.90}.
Baseline. In order to model the baseline NDSM and use it for comparisons with our

models, we used the interfix activation scheme, for the activation layer. For the similarity

layer, we used the M similarity metric, i.e., the special case of Mk where k = 1, and set

wact = wsim = 0.50. This is one of the models that was used in [77], where the model was

evaluated on noun-noun bigram compositions. This model was selected as it was the best

performing model on those experiments, reaching peak performance when θfix = 150 4.

In our experiments, however, we used different values for θfix (defined above), in order to

investigate model performance over a variety of activation sizes.

4.2.3 Evaluation Results

Model performances are presented in this section, on the defined evaluation datasets. Due

to the large set and range of the parameters used, performances are presented from the

following perspectives:

Activation Layer. The performance of each of the proposed activation schemes is dis-

played by composing appropriate models using the similarity metrics, as well as the value

of k (for the similarity metrics it applies to), that best utilize each activation scheme. The

models are defined as symmetrical, i.e., wact = wsim = 0.50, then the effect of shifting

the symmetry of the activation layer (i.e., changing wact) is illustrated for an appropriate

activation scheme.

Similarity Layer. The performances of similarity metrics is presented via two viewpoints:

1. The performance of each similarity metric is illustrated, by composing appropriate

models using the activation schemes, as well as the value of k (for the similarity

metrics it applies to), that best utilize each similarity metric.

2. Specifically for the similarity metrics Mk and Pk, which utilize k to define their

smoothing range, we demonstrate how changing k affects each metric’s performance.

The models are defined as symmetrical, i.e., wact = wsim = 0.50, then the effect of shifting

the symmetry of the similarity layer (i.e., changing wsim) is illustrated for an appropriate

similarity metric.

4It should be noted that the models presented in [77] were evaluated using a subset of the NN evaluation
dataset, i.e., on 92 of the 108 phrase pairs of the NN dataset. However, even when using the full set of
phrase pairs, the model still performed best when θfix = 150.
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Activation Layer

To measure the performance of the proposed schemes in the activation layer, we experi-

mented by combining them with every similarity metric. The models that best fit each

activation scheme were selected for illustrating their performance, in order to compare

among the best utilizations of the activation schemes. Information regarding the similarity

metrics that best fit each activation scheme is displayed in Table 4.1. To this end, model

Activation Scheme
Similarity Metric
NN AN VO

intervar M5 M1 M1

union M5 P1 E
mostsimilar M2 M5 M2

headedge M5 M1 M5

project M2 M5 M2

Table 4.1: Similarity metrics that best fit each activation scheme, regarding model perfor-
mances on NN, AN, and VO phrase pairs.

performances in the activation layer is illustrated in Fig. 4.1 for the case of NN, AN, and

VO phrase pairs. In this case, the models are fully symmetrical, i.e., wact = wsim = 0.5.

Activation schemes. For the case of NNs, the mostsimilar and intervar schemes seem

to perform best in the full range of θvar, with the mostsimilar scheme reaching peak per-

formance during the lowest range of θvar (θvar = 5). However, although the mostsimilar

scheme appears to perform best in the case of NNs, the intervar scheme has the most

robust performance across the evaluation sets. The union scheme seems to perform best

in the NN case, which is consistent with the hypothesis that, in some cases, the meaning

of the whole might activate a larger activation area than the simple overlap of that of its

constituents. Its low performance in AN and VO constructions indicates that NN relations

form conceptual domains that affect a larger activation area, i.e., the meaning of NN con-

structions may diverge from the meaning of their isolated constituents. The performance of

the headedge scheme appears to correlate with neighborhood size, converging towards its

peak as θvar increases. This could indicate that the performance of the scheme is related to

neighbor position on the cartesian space; larger activations provide more members for the

composition that are placed in-between the two constituents, i.e., sharing more semantic

properties with both of them.

Activation asymmetry. Performance of activation asymmetry is illustrated in Fig. 4.2,
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Figure 4.1: Performance of activation schemes on a) noun-noun, b) adjective-noun, and
c) verb-object datasets, using symmetry models (wact = wsim = 0.5) and the similarity
metrics described in Table 4.1.

for the case of the mostsimilar scheme, where the lines represent the values of wact. In

this case, models are only symmetrical in the similarity layer, i.e., wsim = 0.5. It is

confirmed that word order plays an important role for all cases, that syntactic information

activates different features for each constituent and that relations between constituents

adhere to their intrinsic linguistic environment. Also, in general, model performances

are consistent with respect to one another as neighborhood size increases, indicating that

changing the activation area does not affect the impact of word order. Finally, weighing

more the contribution of the first word activation generally leads to better performance,

which provides an indication of the functional influence of the first word as a modifier.
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Figure 4.2: Performance of activation asymmetry (mostsimilar scheme) on a) noun-noun,
b) adjective-noun, and c) verb-object datasets, using similarity symmetry (wsim = 0.5) and
the similarity metrics described in Table 4.1.

Similarity Layer

A similar approach was followed for the evaluation of the proposed similarity metrics.

In particular, in order to measure performance, we composed models by combining each

similarity metric with every activation scheme, using the whole range of k (where appli-

cable). The models that best fit each similarity metric were selected for illustrating their

performance, in order to compare similarity metrics while in their best utilization. The

activation schemes and the k value (where applicable) that best fit each similarity metric,

are displayed in Table 4.2. Model performances in the similarity layer are presented in

Fig. 4.3, regarding each of the proposed similarity metrics, for the case of a) NN, b) AN,

and c) VO phrase pairs. In this case, models are fully symmetrical, i.e., wact = wsim = 0.5.



4.2. Compositional NDSMs 51

Sim. Metric
NN AN VO

k Act. Scheme k Act. Scheme k Act. Scheme
Mk 2 mostsimilar 1 intervar 1 intervar
Pk 3,4,5 mostsimilar 1,2,3 union 2,3 intervar
Q - mostsimilar - intervar - intervar
H - inter - intervar - intervar
E - mostsimilar - intervar - intervar

Table 4.2: Activation schemes and the value of k that best fit each similarity metric,
regarding model performances on NN, AN, and VO phrase pairs.
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Figure 4.3: Performance of similarity metrics on a) noun-noun, b) adjective-noun, and
c) verb-object datasets, using symmetry models (wact = wsim = 0.5) and the activation
schemes described in Table 4.2.
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Similarity metrics. Performance of the M2 metric appears to be the most robust across

the evaluation sets, while at the same time performs best than the rest of the metrics, in

the majority of the experiments. For the case of NNs, both the Q and the P4 perform

almost as well as M2. For the case of ANs, only the M2 seems to perform well, while, for

the case of VOs, the metrics adhere to the same relative performance, with the exception

of the E metric that performs best for large activation sizes, even though it under-performs

when applied to the NNs and ANs data sets. This suggests that vector magnitude plays a

role when modeling similarity between structures that involve verbs.
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Figure 4.4: Performance of smoothing Mk with k = {1, 2, 3, 4, 5} on a) noun-noun, b)
adjective-noun, and c) verb-object datasets, using symmetry models (wact = wsim = 0.5)
and the activation schemes described in Table 4.2.

Similarity smoothing. Model performances, when changing k, are presented in Fig. 4.4,

for the case of NN, AN, and VO phrase pairs. Altering k in Pk has the same effect as
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in Mk, so only performances for the Mk metric are presented. Once again, the presented

models are fully symmetrical, i.e., wact = wsim = 0.5.

Changing the smoothing range for the metrics results in a small increase in perfor-

mance for the case of NNs, confirming that activation areas encode semantic features in

their range that may not be fully captured by just one specific element, and that using a

wider smoothing range may infer semantic properties that are distributed in the activa-

tion that can be utilized to best approximate similarity between phrases. For the case of

ANs and VOs, however, increasing the smoothing range results in an opposite behaviour,

i.e., there is a respectively small deterioration in performance. Even though deterioration

is statistically insignificant, this difference in behavior could be related to the fact that

relations of constituents in “functional” structures, such as ANs and VOs, trigger specific

semantic properties that may not be shared among all members of the composed activa-

tion, i.e., neighbors act as semantic features that are activated according to the usage of

the constituent, with respect to its context.

Similarity asymmetry. Last, model performances on similarity asymmetry are illus-

trated in Fig. 4.5 for the case of the M2 metric, where lines represent different values for

wsim. In this case, models are only symmetrical in the activation layer, i.e., wact = 0.5. It is

clear that word order has an important role, when estimating semantic similarity between

phrases. For the case of NN and AN constructions, models perform best when the first

word semantics contribute more to similarity estimation. For the case of VOs, however,

no clear conclusions can be deducted; applying asymmetry in the similarity layer appears

to have an impact on performance that, however, is not consistent in all compared phrase

pairs. It seems that each phrase pair should be handled with different weights, in order to

fully utilize asymmetry in the layer.

Overall

From the perspective of the activation layer, as is presented in Table 4.1, all activations

schemes utilize best their functions when matched with the Mk metric, with the excep-

tion of union for the case of ANs and VOs (where the Pn and E metrics, respectively,

seem more appropriate). This indicates that the Mk metric provides flexibility, while it is

also quite robust over various activation variations and phrase types. This is confirmed in

Fig. 4.3, where it is illustrated that Mk preserves its relative performance across all evalu-

ated datasets. From the perspective of the similarity layer, as illustrated in Table. 4.2, it

can be seen that there are actually two activation schemes that work best for each similar-
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Figure 4.5: Performance of similarity asymmetry (M2 metric) on a) noun-noun, b)
adjective-noun, and c) verb-object datasets, using activation symmetry (wact = 0.5) and
the activation schemes described in Table 4.2.

ity metric, across all datasets, specifically, the mostsimilar scheme on the NN evaluation

dataset, and the intervar scheme on the AN and VO datasets, with the exception of intervar,

for the case of the H metric on NNs, and union, for the case of Pk on ANs. In Fig. 4.1

it is observed that, although the intervar scheme is more robust across the three datasets

and performs best in the case of ANs and VOs, the mostsimilar scheme over-performs

it for the case of NNs. When considering the models as asymmetrical, performances can

be boosted. However, it should be noted that asymmetry may be utilized better on a

per-phrase basis, instead of an a priori setting. Smoothing the similarity metric range, for

the case of Mk and Pk metrics, can also result in better performance.

In Table 4.2.3, evaluations are presented for the best model configurations, based on
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their performance on the NN data set. In particular, we present model performances on

NNs, ANs, and VOs, regarding the combinations that fit best the NN dataset, i.e., the

selection of a) activation scheme, b) activation asymmetry (i.e., activation weight wact),

c) similarity metric, d) similarity smoothing (for the applicable metrics), and e) similarity

asymmetry (i.e., similarity weight wsim). In Table 4.2.3, the top NDSM performances are

Activation Layer Similarity Layer
NN AN VO

Scheme wact Metric wsim
interfix .50 M1 .50 .56 .46 .37
intervar .50 M1 .50 .58 .57 .46
intervar .50 M∗ .50 .62 .57 .46
intervar * M1 * .58 .57 .46
intervar * M∗ * .65 .57 .46

headedge .50 M5 .50 .54 .47 .34
intervar .50 M5 .50 .62 .52 .41

mostsimilar .50 M2 .50 .66 .46 .41
project .50 M5 .50 .46 .49 .41
union .50 M5 .50 .61 .45 .30

mostsimilar .50 E .50 .54 .21 .28
intervar .50 H .50 .56 .39 .33

mostsimilar .50 Mk .50 .66 .49 .41
mostsimilar .50 Pk .50 .59 .45 .27
mostsimilar .50 Q .50 .63 .36 .31

headedge .50 M5 .75 .60 .48 .26
intervar .50 Q .90 .66 .43 .36

mostsimilar .67 Q .50 .71 .42 .39
project .90 M5 .50 .54 .49 .40
union .50 Q .90 .62 .34 .30

mostsimilar .67 E .67 .59 .28 .40
mostsimilar .67 H .50 .62 .37 .33
mostsimilar * Mk * .70 .52 .43
mostsimilar * Pk .50 .62 .48 .29
mostsimilar .67 Q .50 .71 .42 .39

Table 4.3: Model evaluations on NN, AN, and VO phrase pairs. Displaying models that
perform best on NN evaluations, and categorized depending on performances against a)
baseline models, b) activation schemes, c) similarity metrics, and d) model symmetry.

presented for the case of NNs, ANs, and VOs. Performances for the models described in

[77] are presented alongside, for the purpose of comparing them with the proposed models.

It is seen that using the variable- (intervar) in place of the fixed-size intersection scheme
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Eval. Set
Activation Layer Similarity Layer

Score
Scheme Weight Metric Weight

NN mostsimilar .67 Q .50 .71
AN intervar .50 M1 .50 .57
VO intervar .50 M1 .50 .46

Table 4.4: Top overall model performances on NN, AN, and VO phrase pairs.

(interfix), performance is boosted by an absolute 2%, 11% and 9% increase, for the case of

NNs, ANs, and VOs, respectively, using the M metric. This boost in performance, when

using the variable-size intervar scheme for compositional structures, is consistent with

experimental observations from psycholinguistics [78], and shows that the activation area

for phrases might be adaptive to the degree of relatedness between words. Performance

is further boosted, for the case of NNs, by using the generalized Mk metric, or by using

activation and/or similarity weighting, to reach an increase of 6% and 9%, respectively. The

vast majority of the models perform better than the baseline for the case of NNs; however,

their performance is not as stable for the case of ANs and VOs, and none of the additional

proposed approaches (i.e., using alternate activation schemes, similarity metrics, or via

asymmetry) achieve better performance than the asymmetric model of intervar, combined

with the M metric. Using asymmetry weighting generally improves the performance of

the models. In general, the Mk scheme seems to work best with the proposed similarity

metrics, when only considering symmetrical models; for asymmetrical models, however,

the Q metric seems to gain ground. This can be attributed to the impact that asymmetry

has in the attributional similarities computed by the Q metric, which provides it with more

flexibility.

4.3 Fusion Models

We implemented three widely-used models from the literature to compare them with the

proposed NDSM and fusion models, and in order to use them in order to form the latter.

Specifically, we implemented the simple additive (add) and simple multiplicative (mult)

models, proposed in [10, 11], as well as the lexical function (lexfunc) model, proposed in

[73, 74]. These models are described in detail in Section 2.2.6. For the purposes of our

experiments, and due to the strictly compositional approach of the add and mult models

in composing semantics, as opposed to the transformational behavior of the lexfunc model,



4.3. Fusion Models 57

we will refer to them in our experiments as compositional and transformational models,

respectively. To realise the models, the DIStributional SEmantics Composition Toolkit

(DISSECT 5, [87]) was used, which is part of the COMPOSES6 (COMPositional Operations

in SEmantic Space) project. The toolkit can be used for computing semantic spaces from

co-occurrence matrices, while it integrates well known compositional functions to simplify

the use of such models for similarity estimation between words or phrases. DISSECT

also allows for the straightforward application of regression, dimensionality reduction, and

other techniques that are typically used in DSMs.

In this section, we describe the experimental procedure that was followed for imple-

menting and evaluating the literature and the fusion compositional models, proposed in

Section 3.3. First, the approach to create the semantic space utilized by the models is

presented, followed by the description of the selected parameters for realising them. Then,

we display the evaluations of the models, along with the description of the results.

4.3.1 Model Configurations

Semantic space. In order to train lexfunc, a peripheral space was created to serve as

the co-occurrence space for bigrams, since the model operates on observed bigram rep-

resentations to learn the modifier weights. A peripheral space is a semantic space that

extends the word (unigram) space with co-occurrence counts regarding observed bigram

phrases, i.e., it encloses representations for bigrams that are computed in a holistic-based

approach. To this end, in order to compose the peripheral space, co-occurrence counts

were computed for modifier-noun bigrams. The co-occurrence matrix was composed after

selecting all modifier-noun structures that occurred at least 50 times in the corpus, with the

condition that the modifier occurrs in the evaluation datasets. For the input corpus, the

same corpus upon which NDSMs were applied (described in 4.2.2) was used. Predefined,

POS-tagged, content word lists were used for the selection of appropriate modifiers (nouns,

adjectives, verbs), as well as for selecting the head nouns to compose the peripheral space.

It was assumed that all nouns, adjectives, and verbs that precede a noun are considered

as modifiers of the noun. The resulting space was re-weighted using PPMI (described in

2.2.5). Two dimensionality reduction techniques were utilized for the experiments, in par-

ticular a) SVD, and b) NMF (described in 2.2.2), resulting in two spaces that were further

reduced to a) 300, and b) 500 dimensions. This produced four different semantic spaces,

5http://clic.cimec.unitn.it/composes/toolkit/
6http://clic.cimec.unitn.it/composes/

http://clic.cimec.unitn.it/composes/toolkit/
http://clic.cimec.unitn.it/composes/
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upon which we applied the models.

Transformational (lexfunc) model. In order to gather training data for the lexfunc

model, we selected modifier-noun bigrams from the corpus comprising of a modifier that

occurred in the test datasets, and used regression to learn the weights of the modifiers

upon the peripheral space. To this end, two regression techniques from the literature were

used, specifically a) Least Squares Regression (LSR), and b) Ridge Regression (RR). Both

of these regression techniques are described in 2.2.3. This resulted in two variations of the

model. We implemented the lexfunc models via the DISSECT toolkit, and applied them

on all of the four semantic spaces.

Compositional (add, mult) models. In order to realise the add and mult models, the

built-in functions of the DISSECT toolkit were utilized and applied on all four semantic

spaces. We only experimented with the simple additive and simple multiplicative versions

of the models.

Fusion (Φlf
net, Φlf

add) models. In order to implement the fusion models, proposed and

described in 3.3, the best performing configurations for the component models were used.

In particular, regarding Φlf
net, the models that performed best for the case of lexfunc and

NDSMs were combined, by considering their performance on the NN dataset. To this end,

we selected the appropriate compositional component as the NDSM that performed best

for the case of NNs (presented in Table 4.2.3), while the lexfunc model on the NMF space

of 300 dimensions and trained with RR was selected as the transformational component 7.

The same convention was followed for realising Φlf
add, i.e., the best performing add model

on the NN dataset was used as the compositional component, specifically the model on the

NMF space of 300 dimensions 8. For this set of experiments, we set the weights α = 0.5

and β = 1, as, by experimental tuning, we concluded that this set of weights fit best the

model for the task.

4.3.2 Evaluation Results

Evaluation results for the literature add and mult (compositional), and the lexfunc (trans-

formational) models, are presented in Table 4.3.2. For the add model, no significant changes

in performance are observed between the spaces. For the case of the mult model, how-

ever, performance drops significantly when the SVD space is used. This makes sense, as

7The selected lexfunc model was the model that performed best on the NN dataset among the different
lexfunc configurations that were evaluated, as is presented in Table 4.3.2.

8Also, the selected add model was the model that performed best on the NN dataset among the different
add configurations that were evaluated, as is presented in Table 4.3.2.
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Model
NN AN VO

Composition Dim. Reduction Dimensions Regression
add NMF 300 - .67 .61 .53
add NMF 500 - .66 .63 .56
add SVD 300 - .63 .59 .59
add SVD 500 - .66 .63 .59
mult NMF 300 - .59 .38 .36
mult NMF 500 - .59 .36 .42
mult SVD 300 - .36 .23 .21
mult SVD 500 - .36 .23 .21

lexfunc NMF 300 RR .76 .46 .35
lexfunc NMF 300 LSR .38 .24 .21
lexfunc NMF 500 RR .67 .41 .28
lexfunc NMF 500 LSR .30 .17 .06
lexfunc SVD 300 RR .63 .35 .26
lexfunc SVD 300 LSR .36 .25 .09
lexfunc SVD 500 RR .56 .33 .23
lexfunc SVD 500 LSR .36 .24 .10

Table 4.5: Performance of the simple additive (add), simple multiplicative (mult), and lex-
ical function (lexfunc) models on NN, AN, and VO phrase pairs. Evaluations are reported
using Spearman’s correlation coefficient with human judgements.

the mult model is defined by pairwise multiplication and is expected to perform poorly

when the composed vectors contain negative values, as is the case with SVD. Regarding

the lexfunc model, a major impact in performance is caused when using RR for training,

instead of LSR; RR has superior performance over LSR training in all configurations. This

can be attributed to RR’s better handling of the matrix multicollinearity problem, and

the use of generalized cross-validation in order to compute the weight of λ (described in

detail in 2.2.3). The lexfunc model, when using RR learning on the NMF space of 300

dimensions, performs best for the case of NNs, reaching an evaluation score of .76 for

the case of NNs, which is the best among the literature models, It also achieves .46 and

.35 for the case of ANs and VOs, respectively, which is the top performance among all

lexfunc configurations. Best overall performances for ANs and VOs are obtained by the

add model, with scores of .63 and .59, respectively. Next, evaluation results are presented

for the Φlf
net and Φlf

add models in Table 4.3.2, along with the respective performances of

the component models that compose them, i.e., lexfunc and net, for the Φlf
net, or add, for

the Φlf
add. Detailed descriptions for the aforementioned models and their configurations are
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Model NN AN VO
lexfunc .76 .46 .35

add .67 .61 .53

fusion Φlf
add .76 .60 .44

lexfunc .76 .46 .35
net .71 .37 .32

fusion Φlf
net .81 .51 .33

Table 4.6: Performance of the fusion Φlf
net and Φlf

add models, along with their component
models (lexfunc, net, and add) on NN, AN, and VO phrase pairs. Evaluations are reported
using Spearman’s correlation coefficient with human ratings.

provided in Section 4.3.1. Φlf
add yields no relative improvements over the best performances

of the separate models. Specifically, for the case of NNs, Φlf
add merely achieves the same

score with lexfunc (.76), while, for ANs and VOs, it fails to improve over its component

add model. Φlf
net has an improved score, for the case of NNs, with a score of .81 which is

also the best observed performance overall and provides an absolute increase of 5% when

compared to the score of its component lexfunc model, which is the best performance of

all models in isolation. Φlf
net also improves over its components’ performances for the case

of ANs, reaching a score of .51, which is an improvement over the scores of .46 and .37 of

lexfunc and net, respectively. Φlf
net also fails to improve performance over its components,

for the case of VOs, lying in-between the performances of its components, however such

differences reside within the range of statistical insignificance.

4.4 Summary

In this chapter, we presented the experimental setup and evaluations of the proposed

network-based and fusion models described in Chapter 3. The use of a variable-size intervar

activation scheme improved performance over the baseline interfix for the case of NNs at

an absolute 2%, 11%, and 9% for the case of NNs, ANs, and VOs, respectively, proposing

that an adaptable scheme can better handle semantics for complex phrases when such

meanings are encoded as a network graph. The mostsimilar scheme performed best for the

case of NNs. The ability of the scheme to selectively compute the composed neighborhood

renders it able to be used for structures of arbitrary length without scalability issues.

We investigated the use of k as a smoothing factor for Mk and showed that it also has

a significant effect on the performance of the models. We evaluated model asymmetry,
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showing that performance can be boosted when appropriately shifting the contribution

degree of each phrase constituent. Combining merely compositional with transformational

models under a fusion scheme can have positive effects on performance. This has been

underlined by the top performance of .81 for the case of NNs, when combining lexfunc with

the network-based models. The latter model also improved over the constituent models’

performances for the case of ANs. The aforementioned suggest that a fusion scheme that

combines different strategies for estimating compositional semantics is a sensible approach

for handling the different functions encoded within complex structures.
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Chapter 5

Discussion

In the previous chapters, we described strategies for semantic composition and similarity

estimation via the utilization of extrinsic, at word level, or intrinsic, at phrase level, con-

text. Specifically regarding the phrase level, various approaches from the literature were

presented for deriving semantics for complex structures via the semantic composition of

the meanings their parts. Next, a variety of models were proposed, based on the uti-

lization of semantic neighbors, that handle semantics through the notion of activational

priming. Specifically, we presented activation-based techniques for composing such areas

as a function of the neighborhoods of the (complex) structures’ constituents, as well as

various metrics, motivated by psycholinguistics and metric space algebra, that estimate

similarity by utilizing these activations. We also presented a novel approach that exploits

the transformational properties of phrases, as those are defined by their modifiers, in or-

der to reduce similarity estimation to a fusion metric that combines different models that

estimate semantics from different perspectives. Finally, we evaluated some of the most

widely used models along with those presented in this thesis, i.e., the proposed activation

schemes and similarity metrics, as well as the fusion model. Results of the evaluation

of the fusion models, along with the respective performances of their component models,

were displayed in Table 4.3.2. The performance of the fusion model provides an insight

concerning the variability that exists regarding the established relational type between the

constituents that form a complex linguistic expression; compositional semantics manifest

themselves in a variety of ways that is based on their constituents and the fashion in which

these constituents affect the meaning of the whole. Related work on bigram structures

[8, 73, 85, 86] has shown that the meaning of such a structure can be affected by the func-

tional influence of its modifier, with respect to the other components, while other structures

have proven to be semantically represented more accurately via a direct composition of the

meanings of their parts. Words that act as functions on their linguistic context have at-

tracted much interest, and have successfully been handled by computational models. It

has been shown [88] that such modifications can be successfully modeled by distributional

semantics and that, at least for some cases, where the modifier has strong transformational
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properties, higher-order predication fares better than a simple composition of senses. It

has also been shown that modifiers are activated by specific properties of their immediate

preceding context. In Section 3.3.1, we took a closer look on modifiers, defined a measure

that estimates their transformative degree, and attempted to detect the types of phrases

that express high transformational properties, as a means to typify their behaviour and

prerequisites, when using them to derive semantics or to estimate similarities. We believe

that, through the detection of such properties on the structure modifier, a decision can

be deducted with respect to the nature of the compositionality type that best describes

said structure, i.e., whether the phrase has mainly a transformational or a strictly com-

positional effect. For example, consider the phrases “normal cat”, and “dead cat”: the

modifier “normal” has a much less transformational effect on the meaning of “cat” than

the modifier “dead” has. It can be inferred that, since structure semantics depend on

the semantic properties that are activated via the interaction between the components,

modifiers can exhibit different functional behaviors, based on their immediate context, i.e.,

a modifier can affect the meaning of its encompassing phrase in varying degrees, based

on its other constituents. Notwithstanding, the modifier itself plays an important role

in modifying a structure’s meaning. Another point to consider it that the effect of the

modifier may vary, depending on the modifier’s grammatical category, i.e., whether the

modifier is, e.g., a verb, an adjective or a noun. However, these grammatical types are

also further categorized: for example, nouns can be abstract or concrete, adjectives can

be intensional or not, and verbs can be transitive or intransitive [88, 89]. The appropriate

compositional method that will form and utilize the semantics for such complex structures

should be adaptive to the transformational degree residing within the phrase, as well as to

the functional behaviour of the modifier.

5.1 NDSM Application on Longer Structures

One of the complications related to a large portion of the compositional models, proposed in

the literature, is their lack of flexibility, when considering them for estimating semantics of

longer structures; scaling them to n-grams of increased word length is inversely proportional

to their utilization. In Chapter 3, we described compositional NDSMs, as adapted to the

use case of bigrams. In this section, we investigate the application of NDSMs, as described

in this thesis, to the case of structures of arbitrary length, as are sentences. To this end, an

experiment was realised in order to observe the performance of the proposed NDSM to the
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case of said structures. To evaluate the experiment, we used the SICK (Sentences Involving

Compositional Knowledge) dataset [90], which has been selected as the standard evaluation

dataset for Semeval 2014 Task 1 1 and other work that is related with this task. The dataset

consists of 10,000 English sentence pairs, containing rich lexical, syntactic and semantic

aspects that compositional DSMs should by able to detect, while it ignores sentential

phenomena that are not within the scope of compositional distributional semantics, such

as idiomatic multi-word expressions, named entities, etc. Each pair is annotated a score

regarding the semantic relatedness and the entailment relation between them; we only

considered semantic relatedness for the experiment. As the semantic network, we used

the semantic network described in Section 4.2.1, and used for the experiments on NDSMs.

Once more, we evaluated the experiments using Spearman’s correlation coefficient, defined

in Eq. 4.1. To this end, the mostsimilar scheme was utilized for the activation layer, based

on its ability to scale to structures of arbitrary length. For the similarity layer, the H metric

was selected, due to its better relative performance with respect to the other metrics 2.

We only experimented with the symmetrical version of the model, i.e., no weighting biases

were considered at the activation or the similarity layer (i.e., wact = wsim = 0.5).

The model achieved a .27 score when correlated with human judgements. Although

being a poor performance, it indicates that the model can be applied to sentences of

arbitrary length and provides a reference for future experiments. Moreover, it should

be mentioned that much of the configuration used for this simple experiment does not

adhere with the linguistic, syntactic, and semantic properties of such complex structures.

Based on predefined configurations, the model encodes in the same way every possible

relation between the constituents of a sentence, using a fixed activation and similarity

layer approach, which is not a sensible approach for the case of sentential structures.

The various activation schemes proposed in Section 3.2.1 serve as functions that describe

a variety of relational phenomena between the constituents that are encoded within a

complex structure and are based on syntactic, semantic and grammatical constraints. We

intuitively believe that semantics for structures of arbitrary length can be computed by

forming a general NDSM model that utilizes its compositional schemes under a function

that considers the relational types between the structure’s constituents, and appropriately

select the most fit scheme (e.g., through a supervised learning way). The semantics could

1http://alt.qcri.org/semeval2014/task1/
2We also experimented with other similarity metrics, such as the Mk and the Q metrics, but those

metrics failed to produce any mentionable performance. A more conclusive evaluation of the models could
be realised in future work that could investigate the relative performance between the models.
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then be formed by a recursive bottom-up procedure that considers increasingly convoluted

structures. This approach has also been adopted by other work related with the estimation

of such semantics [50, 75].

5.2 Conclusions

In this thesis, a network-based approach was presented that operates on neighborhoods of

variable size in order to compose semantics and model similarity of compositional struc-

tures. We investigated and presented five activation schemes, motivated by semantic prim-

ing, for composing activation areas for complex structures, and four similarity metrics,

motivated by psycholinguistics and metric space algebra, for estimating similarity via the

utilization of those areas. It was shown that, by employing variable size activation, per-

formance for the task of semantic similarity can be boosted, and each bigram structure

can exhibit different behaviour that should be handled respectively, in order to success-

fully imprint it in activations, i.e., each structure can be assigned to a specific type of

compositional function. The fusion model state-of-the-art performance of 81% Spearman

correlation with human judgements, when combining the proposed NDSM with the lexfunc

model for the case of NN, suggests that combining different means of semantic models is a

sensible way to measure the contribution of different similarity metrics in order to adapt

similarity computation to the compositional type for each structure. Using the modifier’s

transformative degree can serve to quantify the transformational properties of the structure

and, thus, contribute to the utilization of its semantics for the task of semantic similarity.

The fusion scheme failed to improve on the case of VOs, however, for the case of ANs, it

achieved improved performance when network-based models were used. This can be at-

tributed to the behavior of verbs and adjectives in a phrase: verbs have a fully functional

effect on the constituents, while adjectives base their behavior on context. We leave it to

future work to further investigate how compositional semantics for such syntactic types

may be handled more appropriately using these schemes.

Investigation of the modifiers, after ranking them according to their transformative

degree, provided an insight to the modifier types that associate with a high or low trans-

formative degree and, subsequently, their role as mostly compositional or transformational.

Our observations suggest that modifiers affect the structure in which they are observed in

different ways. Some modifiers have a stronger effect on the meaning of the head word,

while others act merely as constituents of simple compositions. The proposed fusion of
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the transformational, lexfunc model, with NDSMs or simple compositional models, as is

described in Section 3.3, indicates that combining different models can yield improved

performance when the transformative degree of modifiers is used as a fusion criterion.

5.3 Contributions and Future Directions

An activation-based approach of modeling compositional semantics was presented by using

cognitively-motivated ideas from psycholinguistics and semantic priming. The availability

of different compositional schemes for computing activations results in a model that can be

flexible to the intrinsic relations between the constituents for each phrase, and can thus be

used to adaptively model semantics for said structures. Our proposal of different similarity

metrics introduces a variety of approaches that depend on well-founded theories from

psycholinguistics and metric space algebra, in order to model the task of semantic similarity

by reducing it to comparisons between metric spaces. The current thesis also presents

a measure that defines the transformative degree as an indicator of the transformational

properties of a phrase modifier, as well as a fusion model that can regulate the contribution

of a transformational and a compositional model for similarity estimation, based on said

measure. Compositional structures behave in a variety of ways, based on the composition

itself and the relational types among their constituents, and the transformational degree

serves as a fit criterion for the compositional type of the phrase and for deciding on the

approach of utilizing its semantics.

We aim at building on these contributions in order to improve the models proposed in

this thesis. In future work, the role of modifiers can be further investigated, as well as their

utilization in the presented activation composition approaches. The criteria for deriving

and choosing activations is also a matter of further research. In the proposed schemes,

we only experimented with activations of the same size between the constituents, while

constituents could merely utilize sub-areas of their neighborhoods, based on their adjacent

intrinsic context. Moreover, the application of NDSMs on longer semantic structures needs

to be further investigated. In Section 5.1 we presented a very basic strategy for porting the

proposed models to estimating semantics for such structures. Although the performance

of the sentence-level model is poor (.27), we believe that this first attempt could serve

as a stepping stone for further experiments. Strong improvements could be achieved by

exploiting the flexibility offered by the various proposed schemes and metrics to address

the various functions encountered withing a sentence. For example, the activation schemes
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and similarity metrics proposed in this thesis could be utilized for computing activations

and similarity on structures of arbitrary length and for detecting the variability of the

relational types that exist within these structures. This could be realised by combining

them in a way that considers the various lexical, syntactic and semantic phenomena that

emerge at that level. The proposed fusion model can also be further enhanced and further

investigated. Ideas from machine learning could be integrated for training the involved

parameters in a supervised way. For example, α and β are predefined parameters in the

proposed fusion model; training the weights using a training set would be sensible, in order

find the optimal values. The smoothing function that acts on the transformative degree T

can also be replaced, by experimenting with others suggested from the literature (e.g., log,

tanh, exp, etc.). Finally, modifier behavior should be further investigated, especially when

considering different types of associated head words; modifiers are expected to behave

differently, based on the head word that precedes them, and such behavior should be

modeled in order to accurately estimate the composed meaning of the structure.
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