
1

TECHNICAL UNIVERSITY OF CRETE

SCHOOL OF
ELECTRONIC & COMPUTER ENGINEERING

ELECTRONICS & COMPUTER
ARCHITECTURE DIVISION

A lightweight and secure MQTT implementation

for Wireless Sensor Nodes

by

Sotirios Katsikeas

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DIPLOMA OF ELECTRONIC

AND COMPUTER ENGINEERING

Chania, June 2016

THESIS COMMITTEE
Associate Professor Ioannis Papaefstathiou, Thesis Supervisor

Professor Apostolos Dollas
Associate Professor Antonios Deligiannakis

2

Acknowledgments

With my academic life at the School of Electronic and Computer
Engineering in Technical University of Crete coming to an end, I would like to
express my gratitude to a lot of people for their support throughout my studies.

Firstly, I would like to thank my thesis supervisor, Associate Professor
Ioannis Papaefstathiou, for his trust, guidance, support and cooperation from
the beginning till the end of my thesis and also for offering me the opportunity
to broaden my knowledge on the subject of Information Security.

Additionally, I would also like to specially thank Dr. Konstantinos
Fysarakis, for all his help, guidance and for his patience to support me every
time I “bothered” him.

Last but not least, I would like to thank my family for their continuous
support the entire time of my studies, my life companion Emily for her
unlimited love, emotional support and tolerance during the hard times of my
academic life and of course my friends who are next to me all those years.

3

Abstract

During the past years, with the adoption of the IPv6 protocol which has
provided us with a vast amount of addresses available for use at anything we
might want, together with the need to have every single of our devices and
appliances connected to the Internet in order to be controlled by our mobile
devices, the technological term “Internet of Things”, also abbreviated as IoT,
has resurfaced. That is an indeed very trending topic today and it is estimated
that by 2020, almost 50 billion “things” will be connected to the Internet.
However, having all these devices connected to the Internet, which, as we
already know, is not exactly what one would deem a “safe place”, harbors a
great deal of dangers and vulnerabilities that could render any device accessible
to a malicious user. In order to protect our “things” and our transferred data,
we need to implement security mechanisms. The problem is that due to the
constrained hardware and resources of these devices, not every existing security
mechanism can be successfully implemented on them. In this thesis, the MQTT
protocol was selected, among other IoT communication protocols, as a
foundation, on top of which we will develop different lightweight security
implementations for Wireless Sensors Nodes running the Contiki OS for Internet
of Things. However, given the importance of security in IoT and because of the
many options in relation to where and how to implement security mechanisms
in MQTT, a comparison and an assessment of the performance of these options
will be made in order to designate the best one.

Keywords: Internet of Things, IoT, MQTT, information security, encryption,
authentication, secure communication

4

Table of Contents

Acknowledgments... 2

Abstract ... 3

Table of Contents .. 4

List of Figures .. 6

List of Tables ... 7

1. Introduction ... 8

1.1. Purpose .. 9

1.2. Limitations .. 9

1.3. Method .. 10

2. Technical Background .. 11

2.1. Wireless Sensor Networks (WSNs) .. 11

2.1.1. The WSNs and other IoT communication models 12

2.2. IoT Communications ... 13

2.2.1. IEEE 802.15.4 ... 13

2.2.2. Internet Protocol version 6 (IPv6) .. 14

2.2.3. 6LoWPAN .. 14

2.2.4. TCP.. 14

2.3. IoT Security ... 15

2.3.1. Security on the IEEE 802.15.4 (Data Link layer) 15

2.3.2. Security on the Network Layer ... 16

2.3.3. Security on the Transport Layer .. 16

2.3.4. The Advanced Encryption Standard (AES) 17

2.3.5. Security on the Application Layer .. 18

2.4. IoT Protocols Stack ... 18

2.4.1. Overview of protocols/comparison .. 19

3. The MQTT protocol .. 23

3.1. Security on MQTT .. 25

3.1.1. Authentication on MQTT .. 25

3.1.2. Authorization on MQTT .. 25

3.1.3. Alternative to using TLS .. 26

5

3.1.4. Other notes on MQTT security .. 27

4. Implementation .. 28

4.1. Tools Utilized .. 28

4.1.1. Contiki OS as an Operating System for IoT............................... 28

4.1.2. 6lbr as a 6LowPAN Border Router .. 29

4.1.3. Mosquitto as a MQTT broker .. 31

4.1.4. Zolertia Z1 as a hardware development platform 32

4.2. General notes on implementation .. 33

4.2.1. Testing setup topologies ... 34

4.2.2. Configuration of the WSN motes ... 35

4.2.3. 6lbr configuration ... 35

4.2.4. MQTT client source code ... 36

4.3. Secure and lightweight MQTT implementations 37

4.3.1. Option 1 – Payload encryption with AES 37

4.3.2. Option 2 – Payload encryption with AES-CBC 37

4.3.3. Option 3 – Payload authenticated encryption with AES-OCB ... 38

4.3.4. Option 4 – Link layer encryption with CCM* 38

4.3.5. Implementation diagrams ... 39

5. Performance Assessment/Evaluation ... 40

5.1. Power specifications of Zolertia Z1 .. 42

5.2. Evaluation of option 0 (simple MQTT client) 43

5.3. Evaluation of option 1 (single block AES) ... 45

5.4. Evaluation of option 2 (AES-CBC) ... 47

5.5. Evaluation of option 3 (AES-OCB) ... 49

5.6. Evaluation of option 4 (Link Layer Security) 52

5.7. Comparison .. 54

6. Conclusions and Open Issues.. 60

6.1. Conclusions .. 60

6.2. Problems encountered .. 60

6.3. Open Issues .. 62

Bibliography ... 63

Annex A ... 68

6

Annex B ... 74

List of Figures

Figure 2.1: Example of WSN setup ... 12
Figure 2.2: The IoT stack .. 18
Figure 3.1: A simple MQTT publish/subscribe example 23
Figure 3.2: The End-to-End encryption scenario [31] 26
Figure 3.3: The Client-to-Broker encryption scenario [31] 27
Figure 4.1: 6lbr border router diagram [9] ... 30
Figure 4.2: mqtt-spy (MQTT client) showing broker statistics 31
Figure 4.3: A Zolertia Z1 mote .. 32
Figure 4.4: The topology of the virtual environment 34
Figure 4.5: The topology of the real world environment.............................. 34
Figure 4.6: Real motes deployed during evaluation 35
Figure 4.7: 6lbr deployed on Raspberry Pi .. 36
Figure 4.8: The simple MQTT client running on Cooja 37
Figure 4.9: The MQTT publish action diagram .. 39
Figure 4.10: The publish to a subscriber client action diagram 39
Figure 5.1: The ACK mechanism for latency measurements 41
Figure 5.2: Option 0 – Publishing mote’s consumption graph 44
Figure 5.3: Option 0 – Subscribed mote’s consumption graph 44
Figure 5.4: Option 1 – Publishing mote’s consumption graph 46
Figure 5.5: Option 1 – Subscribed mote’s consumption graph 46
Figure 5.6: Option 2 – Publishing mote’s consumption graph 48
Figure 5.7: Option 2 – Subscribed mote’s consumption graph 48
Figure 5.8: Performance evaluation of AES-OCB on Cooja 49
Figure 5.9: Option 3 – Publishing mote’s consumption graph 50
Figure 5.10: Option 3 – Subscribed mote’s consumption graph 51
Figure 5.11: Option 4 – Publishing mote’s consumption graph 53
Figure 5.12: Option 4 – Subscribed mote’s consumption graph 53
Figure 5.13: Publishing mote’s consumption comparison graph 54
Figure 5.14: Subscribed mote’s consumption comparison graph 55
Figure 5.15: Average message latency comparison graph 55
Figure 5.16: Publishing mote’s program size comparison graph 57
Figure 5.17: Receiving mote’s program size comparison graph 58
Figure 5.18: Average message latency vs payload size comparison graph 59

7

List of Tables

Table 2.1: The different security modes available on IEEE 802.15.4 16
Table 2.2: Feature comparison of the main IoT protocols 21
Table 4.1: OS requirements support comparison [33] 28
Table 4.2: The versions of the tools used in implementation phase 33
Table 5.1: Power specifications of Zolertia Z1 .. 42
Table 5.2: Option 0 - Average power consumptions 43
Table 5.3: Option 0 - Average radio duty cycle ... 43
Table 5.4: Option 0 – Program size ... 43
Table 5.5: Option 1 - Average power consumptions 45
Table 5.6: Option 1 - Average radio duty cycle ... 45
Table 5.7: Option 1 – Program size ... 45
Table 5.8: Option 2 - Average power consumptions..................................... 47
Table 5.9: Option 2 - Average radio duty cycle ... 47
Table 5.10: Option 2 – Program size ... 47
Table 5.11: Option 3 - Average power consumptions................................... 49
Table 5.12: Option 3 - Average radio duty cycle ... 49
Table 5.13: Option 3 – Program size ... 50
Table 5.14: Option 4 - Average power consumptions 52
Table 5.15: Option 4 - Average radio duty cycle ... 52
Table 5.13: Option 4 – Program size ... 52

8

1. Introduction

In today’s highly advanced technological world, every day more and
more devices and appliances are being replaced by their new generation
counterparts that, while, in effect, have the same basic use, they are now
“smart”. The term “smart”, itself, denotes that these devices can now connect to
the user’s other devices and exchange information in order to adjust their
functionality according to the user’s needs or even enable the user to control
and monitor all of them from a single point. All of the above concur to one
thing, that all these “smart” devices/appliances need to be connected to a large
network and be accessible from everywhere. The best network candidate for the
above description is no other than the Internet. At this point one can easily
imagine how the term Internet of Things comes about. There are obviously a
lot of smart things that are connected to the Internet!

A well-known illustration of the Internet of Things

In a more formal way, Internet of Things (IoT) is a technological concept
aiming at connecting all things to the Internet [1]. Another approach from the
Cisco Internet Business Solutions Group (IBSG), describes the IoT as simply
the point in time when more “things or objects” were connected to the Internet
than people [2]. It must be stated, however, that there is no restriction on the
type and complexity of the aforementioned “things”; ranging from simple
devices, such as a coffee maker, for example, to more complex machines like
cars or airplanes. There is also no limit on the amount of them. A recent
research by Cisco on 2011 estimated that the IoT will consist of almost 50
billion objects by the year 2020 [3].

One could easily say that IoT will change our lives the same way as
smartphones did back in 2007. In general, nowadays, smartphones and mobile

9

devices allow us constant and direct access to the Internet and to a plethora of
information from anywhere in the world. IoT, it could be argued, will do the
same for devices, enabling them to be constantly connected to the Internet.
That could be really useful for our everyday lives as it could be the foundation
of autonomous systems that will save us time and energy and could also help
us solve today’s technological problems using its distributed nature.

Unfortunately, there is an important, yet at the same time, simple
problem that comes together with the concept of the Internet of Things:
security! Due to the fact that all these devices will be connected to the internet,
there must be security mechanisms that will not allow malicious access to them,
and simultaneously protect the exchanged data. That is an already solved
problem for modern PCs and mobile devices, we cannot, however, say the same
for the devices that comprise the IoT. Such devices, in their majority, have a
very constrained set of resources (small amounts of RAM, ROM and power)
and capabilities (low processing power) that could not withstand security
implementations used on other more powerful devices such as smartphones and
tablets. For example, the widely used IPsec protocol suite could not be directly
used on many IoT devices because of the above constraints and must be
modified in order to be more lightweight [4, 5]. As a result, new, redesigned or
a mixture of previous security mechanisms must be used for these devices.

1.1. Purpose
The purpose of this thesis is to implement a lightweight and secure

implementation for the MQTT [6] communication protocol on Wireless Sensors
Nodes that are running the Contiki OS [7] for Internet of Things. This shall be
done by evaluating the already available security mechanisms, and, then, by
developing different secure MQTT implementations based on the most
promising of them. Finally, the different implementations will be evaluated
using performance measurement data, and a decision on which one of the
implementations is the best option for such constrained devices will be made.
In more detail, the physical, link, and application layers of the Open Systems
Interconnection model (OSI model) will be examined, in order to find suitable
technologies on the market.

1.2. Limitations
This thesis is focused on the MQTT communication protocol and on

devices running the Contiki OS and will not cover in depth other
communication protocols, such as CoAP and DPWS or other operating systems
such as Tiny OS. In this thesis, a comparison between the features of the major
communication protocols for the IoT will be drawn and the choice of MQTT
will be explained. Furthermore, a final note on the used hardware must be

10

mentioned. For the implementation and testing part of this thesis, only Zolertia
Z1 [8] was used as hardware development platform, because of its availability
at that current time. It must, however, be highlighted that the secure MQTT
implementations developed for this thesis are compatible with other platforms
running the Contiki OS, and only some minor configuration changes should be
needed on some cases. Finally, for real life testing of the developed secure
MQTT mechanisms 6lbr [9] was used as a 6LoWPAN Border Router for
connecting the 802.15.4 network with the IPv6 LAN.

1.3. Method
To make sure that the right security mechanisms were selected and

investigated, the first phase of this thesis was a literature study. The study
served as a foundation when developing and performing the evaluation of the
security methods. After the literature study, a selection process was performed,
where the most promising mechanisms were examined in further detail and
brought into the development phase. At this phase, a research for the best
MQTT client implementation for Contiki OS was also being carried out. This
process included the selection of mechanisms that were already implemented for
use on such constrained devices. In the development phase, the chosen platform
was programmed with the developed code that included the MQTT client, as
well as the security mechanism and was prepared for testing; it was then tested
firstly for stability and then according to energy consumption, latency and
program size on both ROM and RAM of the development platform.

11

2. Technical Background

Before we even begin to dive into the technical background needed for
the Internet of Things, let us first discuss the origins of that term. The term
itself has existed for a long time, despite having only resurfaced during the past
years.

The term “Internet of Things” (IoT) was first used in 1999 by British
technology pioneer Kevin Ashton [10], to describe a system in which objects in
the physical world could be connected to the Internet by sensors. More
specifically, he was occupied with Radio-Frequency Identification (RFID) [11]
tags and its use in corporate supply chains connected to the Internet for tracking
and counting goods without the need of human intervention. Today, the
Internet of Things has become a popular term for describing scenarios in which
Internet connectivity and computing capability extend to a variety of objects,
devices, sensors, and everyday items [12].

But why is the Internet of Things so popular today? That is a direct
result of a recent advance in several fields of technology that have made possible
to interconnect more and smaller devices, cheaply and easily. One characteristic
example of the aforementioned advance in technology, is the widespread
adoption of IP based networking and the use of the newly designed IPv6 [13]
protocol that provides us with a vast amount of available IP addresses. Another
significant advance, that is also described by Moore’s Law [14], is the ability to
produce more powerful and smaller computer hardware electronics that have
lower power consumption approximately every two years. All this, coupled with
the advances in Data Analytics, -with better algorithms and the use of
distributed systems-, and the rise of the Cloud Computing, have made the
Internet of Things a really popular topic that has attracted a great amount of
research. As some last words about the IoT, it must be emphasized that its use
is not restricted to simple scenarios of use, as is, for example, home automation,
or in “smart” devices, but is also used in large scale scenarios in industries, also
known as “Industrial IoT”. For that reason, a great lot of work is currently
underway on standardizing the protocols that are used in IoT by the IEEE SA
[15], the AllSeen [16], the OASIS [17], the IIC [18] and some other organizations.
The problem of the aforementioned standardizing for the IoT is that every
organization proposes different standards which, while similar in many ways,
are not identical, and therefore, incompatible [19].

2.1. Wireless Sensor Networks (WSNs)
Today sensors are everywhere; in our cars, in our mobile devices and

even in our homes. Even though sensors surround us for many years, the concept
of having wireless networks of sensors is relatively new. While research on

12

Wireless Sensor Networks (WSN) started back in the 1980s, a significant
increase in its use has only been noticed from 2001 and onwards [20] due to the
already mentioned advances in technology. Wireless Sensor Networks are used
today as a common foundation for constructing IoT applications and systems
mainly because of its small form factor and low power needs.

A WSN can in general be described as a network of nodes (or otherwise
a group of sensors) that are scattered in a certain area and, cooperatively sense
the environment and send the information to a central node that processes it
and may produce some control commands and/or enable interaction between
persons or computers and the surrounding environment.

WSN nodes (or also called motes) can be placed in the area according to
many different topologies. As one can observe from the above figure, in this
specific WSN topology it is not mandatory that every node has a network link
with the sink node, as it could be reached through other nodes with multiple
hops. This example shows a multi-hop wireless mesh network topology. This
kind offers the greater scalability among other topologies. Every node maintains
a link to other nodes within range (i.e. its neighbors) and the decision on which
one to use is reached by the used routing protocol according to the number of
hops and the latency of every route. The nodes of a WSN cannot always be of
the same type, but they must support the same standards and protocols in order
to be able to communicate with each other.

The border router is the connection link between the Internet and the
WSN mesh network. It converts IPv6 frames into mesh networks frames because
of the differences they have in order for the latter to be as small as possible for
use in constrained devices such as WSN nodes.

2.1.1. The WSNs and other IoT communication models

Wireless Sensor Networks (WSN) are following the Device-to-Gateway
communication model where the devices are the WSN nodes and the gateway
is the combination of the Sink node and the Border Router. That model is used

Figure 2.1: Example of WSN setup

13

in WSNs because of its feature ability to overcome proprietary device
restrictions in connecting IoT devices. This, of course, means that device
interoperability and standards are very important considerations in the design
and development of interconnected IoT systems. According to the Internet
Society, there are three more communications models for the IoT that will only
be mentioned epigrammatically, since the focus of this thesis is only on WSNs
used in IoT. The first one is the Device-to-Device (D2D) communication model
also referred as Machine to Machine (M2M) in industrial use and describes two
or more devices that directly connect and communicate between one another,
rather than through an intermediate application server or base station. Another
one is the Device-to-Cloud communication model where the IoT device connects
directly to an Internet cloud service like an application service provider to
exchange data and control message traffic. Finally, there is the Back-End Data-
Sharing model which is a more complex model that enables multiple
applications to process the shared data coming from IoT devices and produce a
collective result.

2.2. IoT Communications
With only just a quick research a variety of communication standards

and protocols used on the Internet of Things can be found; below follows the
description of the most popular of these, and are the ones that will be used in
this thesis.

2.2.1. IEEE 802.15.4

One of the most widely used mesh network communication standards is
IEEE 802.15.4 [21]. It defines the Physical (Layer 1) layer and the Data-Link
(Layer 2) layer, and more specifically the Medium Access Control (MAC)
sublayer of that layer, of the OSI model. The first revision of the 802.15.4
standard was released in May 2003. Today, several standardized and
proprietary network (or mesh) layer protocols run over 802.15.4 based networks,
including IEEE 802.15.5, ZigBee, 6LoWPAN, WirelessHART, and ISA100.11a.

This standard is designed with one simple target in mind; to achieve the
lowest power consumption. According to this, it is designed for use in low cost,
low speed communication between low power devices. As a result, this standard
describes a slower and smaller range wireless communication method compared
to the IEEE 802.11, which is the Wi-Fi we all use every day, with the tradeoff
of significant lower power consumption. The basic specifications include a 10
meter (maximum 20 meters) communications range with a transfer rate of up
to 250 kbps with other options of 100kbps, 40 kbps, and 20 kbps available as
well. Devices are able to communicate in one of the three possible frequency
bands for operation (868/915/2450 MHz). Finally, it uses CSMA/CA protocol

14

[22] as a MAC mechanism and two addressing modes; 16-bit short and 64-bit
IEEE addressing.

2.2.2. Internet Protocol version 6 (IPv6)

Internet Protocol version 6 (IPv6) [13] is the most recent version of the
Internet Protocol (IP); the communications protocol that provides an
identification and location system for computers on networks, and routes traffic
across the Internet. IPv6 was developed by the Internet Engineering Task Force
(IETF) to deal with the problem of IPv4 address exhaustion. IPv6 uses 128 bit
addresses, theoretically allowing 2128, or approximately 340 trillion addresses.
As a result, it is safe to conclude, that IPv6 is, as one may put it, over satisfying
the need of addresses not only for our computing devices but also for all the
IoT devices that will ever be available. Finally, IPv6 introduces a new set of
features that were not implemented on the previous version (IPv4) that make
the IP protocol more reliable and easy to configure. Two examples are the
simplified address assignment with the use of a mechanism called Stateless
Address Autoconfiguration (SLAAC) and the transfer of the responsibility for
packet fragmentation from routers to the end points.

2.2.3. 6LoWPAN

6LoWPAN is an abbreviation of “IPv6 over Low Power Wireless Personal
Area Networks” [23]. The 6LoWPAN concept comes from the idea that "the
Internet Protocol could and should be applied even to the smallest devices" [24]
and that low-power devices with limited processing capabilities should be able
to participate in the Internet of Things [25]. 6LoWPAN enables constrained
devices that are unable to handle the traditional IP stack to function, and
connect to a IPv6 network, such as the Internet. The mapping from the IPv6
to the IEEE 802.15.4 was not an easy task to carry out, because of the many
differences mainly in terms of packet size, address resolution and maximum
transmission unit (MTU) of the two networks. It was finally achieved by
compressing and encapsulating the IPv6 and UDP headers.

2.2.4. TCP

Due to the fact that on the Transport Layer the common TCP protocol is used,
the author of this thesis deemed it redundant to delve into any further details
about it. Nevertheless, for more information, the reader is advised to consult
Blank (2006) [26].

15

2.3. IoT Security
Now that all the relevant technologies that will be used have been

presented and their main features have been described, it is time to overview
the security options and mechanisms that are available for every one of them,
starting from the lower levels of the OSI and progressing upwards. Before that,
and as an important note, it must be emphasized that the establishment of
security on different layers of the OSI Model inherits different, and sometimes
unique, security features.

2.3.1. Security on the IEEE 802.15.4 (Data Link layer)

In order to be a complete standard, IEEE 802.15.4 was equipped with
some strong security mechanisms that are also able to run on constrained
devices. The main security mechanisms that are present in the IEEE 802.15.4
standard specification are access control; confidentiality; frame integrity (or
otherwise authenticity); and protection against replay attacks (also referred to
as sequential freshness).

The IEEE 802.15.4 security is handled at the MAC sublayer of the Data
Link layer. The security mechanisms to be used are specified at the application
layer by setting some control parameters. The IEEE 802.15.4 specification has
a choice of security modes that control different security levels [28]. Each
security mode has different security properties, protection levels, and frame
formats. The following table (table 2.1) shows the available security suites and
the value of the corresponding parameter (here, the Security Level field
parameter) that corresponds to either one of them. The 0x00 value sets no
encryption, so that neither the data is encrypted (no data confidentiality), nor
the data’s authenticity is validated. From the 0x01 to 0x03, the data is
authenticated using the encrypted Message Authentication Code (MAC), but
not encrypted. The value 0x04 encrypts the payload ensuring only data
confidentiality. And finally, the 0x05 to 0x07 range ensures both data
confidentiality and authenticity. The encryption modes supported by IEEE
802.15.4 are based on the AES (Advanced Encryption Standard) encryption
suite and more specifically on the AES-CBC and AES-CCM* (pronounced
CCM-star) block cipher modes of operation, that will be explained on the last
section of this chapter (i.e. section 2.3.4).

Furthermore, establishing security at this layer comes with two
advantages: i) the whole encryption/decryption and authentication (if exists)
process is much faster than it is in other, higher layers, and ii) it has relatively
easier setup, mainly because it comes pre-developed or, often, as an easy to
enable feature of the data link protocol. As a conclusion, a good security option
is to make use of the security suites provided on IEEE 802.15.4 in order to
establish security in our case.

16

Value Mode name Description
Access
Control

Confide-
ntiality

Frame
Integrity

Seq.
Freshness

0x00 Null No security No No No No

0x01 AES-CBC-MAC-32 32-bit MAC Yes No Yes No

0x02 AES-CBC-MAC-64 64-bit MAC Yes No Yes No

0x03 AES-CBC-MAC-128 128-bit MAC Yes No Yes No

0x04 AES-CTR Encryption
only

Yes Yes No Yes

0x05 AES-CCM-32 Encryption &
32-bit MAC

Yes Yes Yes Yes

0x06 AES-CCM-64 Encryption &
64-bit MAC

Yes Yes Yes Yes

0x07 AES-CCM-128 Encryption &
128-bit MAC

Yes Yes Yes Yes

Table 2.1: The different security modes available on IEEE 802.15.4

2.3.2. Security on the Network Layer

As with the case of IPv6, here, also on 6LoWPAN, security can be
established with the use of IPSec protocol, with the difference that, in order to
work together with 6LoWPAN, modifications, such as compression, must be
also done on the IPSec header [4, 5]. Because this concept is not currently under
active development, it does present some compatibility issues with the version
of Contiki OS and the hardware used on this thesis; (the program for IPSec
does not fit in ROM of the Zolertia Z1, except when using an under development
version of the msp430-gcc compiler that has other bugs). Moreover, due to the
limitations of this study’s timeframe as well as the questionable suitability of
IPSec for use in IoT applications [55], we will not focus on using that security
option for our secure MQTT implementation, but instead will make use of other
security mechanisms on the greater layers of the OSI model.

2.3.3. Security on the Transport Layer

The best way to achieve secure communications on this precise layer is
by using TLS, if using TCP, or, by using DTLS, if using UDP. The choice of
MQTT (which uses TCP) as our Application Layer protocol automatically
deprives us of the option of using DTLS. DTLS, however, can be used over
TCP, but it requires advanced techniques such as tunneling [29] that are not
implementable on such constrained devices. That means that only TLS is left
to be used in our case. There is, nevertheless, yet another problem; namely,
that, neither TLS could be implemented on our setup, again, due to the
constrained nature of such devices. That leaves us with no other choice than to
skip this layer altogether and attempt to establish security on the upper
application layer.

17

2.3.4. The Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES), also known as Rijndael (its
original name), is a specification for the encryption of electronic data established
by the U.S. National Institute of Standards and Technology (NIST) in 2001.
AES is based on a symmetric key block cipher encryption algorithm, and was
designed according to a design principle known as a substitution-permutation
network, where multiple consecutive substitutions and permutations (4 steps in
total) are performed for multiple rounds on the plaintext to be encrypted. AES
has a fixed block size of 128 bits, and a key size of 128, 192, or 256 bits.

Because AES is a fixed block size cipher, in order to be able to encrypt
data of not exactly 128 bits (16 bytes) in size it must be used according to a
specified block cipher mode of operation. Such modes are, among others, the
CBC, CTR and CCM* modes mentioned earlier. Some information about them
will be presented below, but a more detailed explanation can be found in [43].

Cipher Block Chaining (CBC) mode is the most commonly used mode
of operation as it enables encryption of data with any size (with the use of
padding when size is smaller than 128 bits) with the characteristic that each
ciphertext block depends on all plaintext blocks processed up to that point.
That makes this mode secure and strong against replay attacks. Its main
disadvantage is that it cannot be parallelized, due to the fact that it is designed
to run sequentially on the blocks to be encrypted, but that is not a problem
when used in constrained devices that would not benefit from that either way.

Counter (CTR) mode, overcomes the disadvantage of OCB enabling the
encryption to be run in different parallel threads. Counter mode turns a block
cipher into a stream cipher. A stream cipher encrypts each plaintext digit one
at a time with the corresponding digit of the keystream, in order to give a digit
of the ciphertext stream.

Finally, CCM* mode is based on the CCM (Counter with CBC-MAC),
defined in RFC 3610 [44], which is an authenticated encryption algorithm
designed to provide both authentication and confidentiality, and works in an
"authenticate-then-encrypt" manner. CCM* is a variation of CCM designed for
use in 802.15.4 that includes all the features of CCM, and additionally offers
encryption-only and integrity-only capabilities. CCM mode was developed with
the idea to be an alternative to OCB mode (another very similar authenticated
encryption algorithm); the latter although being significantly faster
(approximately two times faster than CCM and has minimal overhead in
comparison with simple encryption modes such as CBC), is patented in the U.S.
However, a special exemption has been granted, so that OCB mode can be used
in software licensed under the GNU General Public License without cost, as
well as for any non-commercial, non-governmental application [45].

18

2.3.5. Security on the Application Layer

Finally, security could also be established on this particular layer, with
this option providing some unique features not encountered on other layers. The
first one of them, is the ability to achieve true end-to-end encryption; namely,
encryption of the transferred packets with the only ones being able to decrypt
them to be either the sender or the recipient. Additionally, end-to-end
encryption does not suffer from compatibility issues, since the
encryption/decryption is carried out on the application layer and therefore, is
platform independent. The second major advantage, is the freedom of security
mechanisms options. Either an already existing security mechanism could be
used, or if there is need into it, a new and custom made mechanism could be
developed.

2.4. IoT Protocols Stack
At this point it should be noted that even though IoT is still under

development in terms of standardizing and protocol adoption, it has a large set
of protocols already available that are actually similar to the ones available for
the Internet. The following table contains the majority of the protocols and
standards that were encountered while going through the literature and can be
described as the IoT stack.

On the above figure the protocols and standards with yellow gradient
background are the ones that this thesis will focus on.

Figure 2.2: The IoT stack

19

2.4.1. Overview of protocols/comparison

Although this thesis will focus on MQTT as an application layer
protocol, for the sake of completeness, a comparison between the different
application layer protocols shall be made at this point. However, the
comparison, will be articulated only between the protocols that use TCP or
UDP as their transport protocol, because the other ones using HTTP as
transport protocol are not suitable for lightweight implementations on
constrained devices due to the overhead introduced by HTTP. As a result, the
HTTP itself, and the SOAP protocol will not be included in the comparison.

The first protocol that will be overviewed is DPWS. The Devices Profile
for Web Services (DPWS) (also called as Web Services on Devices by
Microsoft). was initially introduced in 2004 by Microsoft and the version 1.1
has been an OASIS standard since 2009 [47]. DPWS is very similar to UPnP
(Universal Plug and Play), but is mainly used on large scale enterprise networks
rather than home networks in which UPnP is preferred. DPWS is also natively
built in many versions of Windows. DPWS relies mainly on UDP but also uses
TCP for its transport and is a defined set of minimal implementation constrains
to enable secure Web Service messaging, discovery, description, and
synchronous and asynchronous communication on resource-constrained devices.
Because of its Web Services nature, DPWS describes two types of services:
hosting services and hosted services. A hosting service is associated with a single
device, while a device may accommodate many hosted services. Other services
available from DPWS are: Discovery services, Metadata exchange services and
Publish/Subscribe event services. DPWS was used in the EU Research Project
SOCRADES [48] that focused on implementing, testing and piloting prototypes
of DPWS-enabled devices for use in the industrial automation domain and is
currently under research for use in “smart” cities, “smart” homes and other
applications.

Extensible Messaging and Presence Protocol (XMPP) is another
communications protocol used in IoT and is designed for message-oriented
middleware based on XML (Extensible Markup Language). It was developed in
1999 by the Jabber open source community for near-real time data exchange.
Due to its extensibility it has a lot of uses in Publish/Subscribe and IoT
applications. It is also a standard under the Internet Engineering Task Force
(IETF) with its latest specification being RFC 7622 [49]. XMPP uses a client–
server architecture where clients do not talk directly to each other. Clients have
a unique JID (Jabber IDs) in the form of email (e.g. username@server.com) and
can also log-in to the same server from different locations/devices called
resources. Each resource has a priority among the others and the messages sent
to this specific user will only be delivered to the resource/client with the greater

20

priority. XMPP uses TCP as its native transport protocol with the ability to
maintain long-lived TCP connections between the server and the client.

Constrained Application Protocol (CoAP) is an application layer
protocol designed for use in constrained devices in order to allow them to
communicate interactively over the Internet. CoAP is designed with simplified
integration of WSN nodes into the web, as its target, while also retaining some
basic features such as multicast support, very low overhead, and simplicity. A
mapping of CoAP to HTTP is also defined enabling access to CoAP resources
via HTTP, as simple as loading a website on a browser. It follows the
request/response model, where a client interacts with the server using a subset
of the HTTP methods that are: GET, PUT, POST and DELETE. CoAP is
specified on RFC 7525 [50], while other extensions are currently under the
progress of the standardization process. CoAP is probably the most popular
application layer protocol used in IoT with numerous examples in domains such
as smart homes, mobile IoT deployments, cloud services, healthcare, smart
cities, and industrial WSNs.

The MQTT protocol and its features will be extensively described in a
following chapter but a comparison between the aforementioned protocols
together with MQTT can be found on the below table.

21

 DPWS XMPP CoAP MQTT

Version 1.1 RFC 7622 RFC 7252 3.1.1

Standard
status

Version
1.1, OASIS

(2009)
IETF IETF

Version 3.1.1,
ISO/IEC

20922 (2016),
OASIS (2014)

Type
Service

Oriented
protocol

Message
Oriented
protocol

Resource
Oriented
protocol

Message
Oriented
protocol

Transport TCP &
UDP

TCP

UDP
(TCP

extension
planned)

TCP

Synchronous
Communication

Yes
(Service

Invocation)

Near-real
time

Yes
(Request/re
sponse, via

HTTP
methods)

No

Asynchronous
Communication

Yes
(Publish/S
ubscribe to
Service -

WS-
Eventing)

Yes
(Publish/Sub

scribe)

Yes
(Observe
Resource -
RFC 7641)

Yes
(Publish/Subs

cribe to
Topic)

Discovery
Yes

(WS-
Discovery)

Yes
(XEP-0030)

Yes
(RFC 5785

/ RFC
6990)

No

QoS Not
integrated

Not
integrated

Elementary
support

Yes (3 modes)

Security

Payload
encryption,

WS-
Security,

TLS,
IPSec,

802.15.4

SASL,
TLS,

Non-native
end-to-end
encryption

Payload
encryption,

DTLS,
IPSec,

802.15.4

Payload
encryption,

TLS,
IPSec,

802.15.4

Table 2.2: Feature comparison of the main IoT protocols

22

It is now time to explain why MQTT was chosen as an application layer
protocol for this thesis. Firstly, based on the above comparison table, it is easy
to see that MQTT offers grater QoS options against the other protocols, which
makes it perfect for use on unreliable networks. On top of that, it is based on
TCP instead of the unreliable UDP transport protocol, making it an even more
reliable choice. One of the disadvantages of MQTT is that it has no discovery
capabilities, but that is not a problem in this case, mainly because the scenarios
of use for WSN nodes in IoT assume that all the properties (the sensors that
are available and their names/topics) are already known and therefore there is
no need for discovery. The other drawback of MQTT is that it is not a
synchronous communication protocol. Once again, this is not a problem in our
case, as there is no special need for synchronous communications between the
WSN nodes and it is eventually counterbalanced by the large options of QoS.
Finally, MQTT is the second most popular (after HTTP) IoT messaging
protocol used today for IoT applications according to a recent survey (IoT
Developer Survey 2016 [53]) done by the Eclipse IoT Working Group, IEEE
IoT and Agile IoT on April of 2016 and this is an extra reason why MQTT was
chosen.

23

3. The MQTT protocol

MQTT (formerly known as Message Queue Telemetry Transport) is an
Internet of Things connectivity protocol, that runs on top of the TCP protocol,
developed by IBM for lightweight Machine-to-Machine communications. It
implements a publish/subscribe interaction model where the client devices do
not need to impulsively request for updates; thus, reducing in that way the
drain on resources and on power on the IoT nodes and making it optimal for
use on high-latency or unreliable networks. For the same reason it is also used
on mobile phone applications such as Facebook Messenger [37]. In 2013 IBM
submitted MQTT v.3.1 to the OASIS specification body [27] and successfully
completed the standardization of MQTT. Later, on 2014, the version 3.1.1 of
MQTT was also approved [6] as a standard by OASIS. It is also standardized
as ISO/IEC 20922 [41].

MQTT protocol follows the server/client schema with the server in this
particular case to be called broker. The clients do not communicate directly
with each other and all the messages (publishes) travel through the broker.
Every message, except from its text (from now on referred to as payload), has
a topic and each client can subscribe to various topics. Topics are organized in
a hierarchical manner (called topic levels), with the form of file paths such as
in a computer’s file system; e.g. “home/bedroom/light/status”. The broker
receives the publish message from a client and is then responsible for relaying
the message to every other client that has subscribed to this particular topic. It
is easy to understand that MQTT was designed for one-to-many and many-to-
many communications and with the assumption that a pre-defined relationship
between participating nodes exists, because there are no discovery or content

Figure 3.1: A simple MQTT publish/subscribe example

24

negotiation mechanisms in the protocol. On the figure above (figure 2.3) a
simple publish/subscribe example is depicted. MQTT has five basic
methods/functions described by its specification, and could also have more,
depending on the broker’s implementation; they are: i) Connect, ii) Disconnect,
iii) Subscribe, iv) Unsubscribe and v) Publish.

Another important feature of the MQTT protocol is the support of three
different levels of QoS (Quality of Service). The term “QoS level”, is, in fact, a
form of agreement between sender and receiver of a message regarding the
guarantees of delivering a message. MQTT’s QoS levels are the following: i)
level 0 – at most once (or better described as “fire and forge”), ii) level 1 – at
least once (or “deliver at least once”) and iii) level 2 – exactly once (or “deliver
exactly once”). The assurance of the QoS levels greater than zero is achieved
with the use of ACK (acknowledge) packets between the published and the
broker.

Designed as a lightweight protocol for use on constrained devices, MQTT
has some additional features towards that target. Namely, it has support for
persistent sessions and message queuing for single clients, and the ability to
retain messages on selected topics. The first feature is really helpful on
unreliable networks where clients get often disconnected from the broker, and
also saves a lot of resources on the client because there is no need to re-subscribe
to all the topics after a reconnection. When a persistent session is configured,
during the first connection of a client to the broker, it is ensured that all the
subscriptions to the topics done by that client will be retained if the client gets
unexpectedly disconnected from the broker. Additionally, all the messages that
were published on the retained topics, with QoS greater than zero, will be sent
to the client after it gets reconnected. The ability of the broker to retain the
last message (together with its QoS) on a selected topic on the other hand is
useful for newly connected clients because they are immediately updated about
the status and they do not need to wait for the publishing client to send the
next status update.

Finally, MQTT supports Last Will and Testament (LWT) messages and
a configurable Keep Alive time interval for client-broker connections. The LWT
feature is used in order to notify other clients about an ungracefully
disconnected client by sending them a pre-defined (during the client’s initial
connection to the broker) message to a pre-defined topic (also QoS and retained
flag could be pre-defined). Secondarily, the configurable Keep Alive time
interval is the longest possible period of time, which broker and client can
endure without sending a message, and is really important for mobile networks
due to their peculiar handling of TCP packets [42].

25

3.1. Security on MQTT
On account of the aforementioned difficulties encountered on

implementing security mechanisms for the Transport Layer and the immaturity
of the concept security mechanism for the Network Layer of constrained devices,
our work will focus on establishing security on the Application Layer, as an
alternative option to IEEE 802.15.4 security. At this section, all the security
options available for MQTT (the Application Layer protocol that this thesis
will focus on) will be described and commented.

3.1.1. Authentication on MQTT

“Authentication is the act of confirming the truth of an attribute of a
single piece of data or entity”

When it comes to authentication in MQTT, the protocol provides a
simple authentication through username and password fields in the Connect
packet. Therefore, a client has the ability to send a username and a password
when connecting to an MQTT broker, thus authenticating itself. The
specifications also state that a username without password is possible in case
identification is only needed instead of authentication for the client. The above
option sends the username and password as plaintext to the broker and as a
result it is not safe to use it without some other form of encryption of the sent
packets, such as transport encryption (TLS).

An additional authentication method is by the use of the unique client
identifier that every MQTT client registers at the broker at connection time.
The client id can be up to 65535 characters and it is commonly given the value
of the MAC address of the device or it’s serial number. The use of the simple
username and password combined with this unique client id provides a good
enough authentication method for closed systems such as a MQTT based
implementation for home automation without internet access.

3.1.2. Authorization on MQTT

“Authorization is the function of specifying access rights to a certain
resource”

A MQTT client can do two things after it has been connected to a broker;
it can publish messages, and it can subscribe to topics. In the case when no
authorization is performed, all connected clients could publish and subscribe to
all kinds of topics.

Authorization on MQTT can be ensured by using an Access Control List
(ACL) on the broker side. ACL is a list of permissions that specifies which users
or system processes are granted access to objects, as well as what operations are
allowed on given objects [30]. In the case of MQTT, ACL contains all the
combinations of usernames and passwords and in what topics they have publish

26

and/or subscribe access. For example, when a client publishes to a topic it has
no permission for, the broker has the following two options: a) It can disconnect
the client, because publishing to a restricted topic is disallowed or b) It can
acknowledge the publish to the client but decide not to send the published
message to the subscribers. Additionally, extra broker authorization can be
implemented with the form of plugins (if supported by the broker), or with the
form of an extra web service running on the same machine as the broker.

3.1.3. Alternative to using TLS

Because, as it has already been argued, TLS is not feasible on constrained
devices due to the insufficient resources available, another alternative must be
found in order to ensure that the data sent to the broker are secured against
third parties.

The best alternative to TLS is payload encryption. Payload encryption
is the encryption of application specific data, typically the MQTT Publish
packet’s payload, the LWT data and on more extreme cases the username and
password fields on the Connect packet. All other MQTT packet’s metadata stay
intact and only the payload of the message is encrypted. The encryption can be
done by any of the available encryption algorithms (symmetric or asymmetric)
as long as there is support for constrained devices. In addition, authenticated
encryption algorithms can also be used to furthermore ensure message integrity.
For the payload encryption solution there are two possible encryption scenarios:

i) End-to-End (E2E) encryption

At this scenario, the payload is encrypted on the publisher’s device and is
decrypted on every subscriber that has the right key in order to decrypt, and
is, therefore a trusted subscriber. The broker has no knowledge of the decryption
key or of the payload’s content. This approach ensures that the encrypted data
stays encrypted all the time. The advantage of this scenario is that E2E
encryption is broker independent and can be used on any topic by any MQTT

Figure 3.2: The End-to-End encryption scenario [31]

27

client. As a result, it is very good if, for some reason, the authentication and
authorization mechanisms of the broker cannot be used.

ii) Client-to-Broker encryption

This scenario called Client-to-Broker, ensures that the payload of the message
is encrypted in the communication between one client (the subscriber) and the
broker. This approach requires a custom-developed broker plugin that will
decrypt the encrypted data on the broker side, and should only be used when
trying to protect only the publishing side, while the subscribers are connected
with a secure connection to the broker.

3.1.4. Other notes on MQTT security

On devices that are not restricted from constrained resources there are
of course extra available options that can enhance the provided security. One
commonly used method is the use of X509 client certificates together with TLS,
in order to verify the identity of the client that tries to connect with the broker.
On the other side, the broker also sends its X509 server certificates to all the
clients that try to connect in order for them to validate its identity. Another
option is the use of the OAuth 2.0 authorization framework that enables the
access to a resource without the need of providing unencrypted credentials [32],
and works in a similar way as the well-known Kerberos [46] authentication
protocol.

Figure 3.3: The Client-to-Broker encryption scenario [31]

28

4. Implementation

At this point, all the details about the tools utilized and the implementation
process will be presented and discussed.

4.1. Tools Utilized
As all the technical details about the related technologies and the

security mechanisms that accompany them have been thoroughly described in
the previous sections, it is now time to present the tools that were used in order
to achieve our target of fully implementing a secure and lightweight MQTT
implementation for WSNs.

4.1.1. Contiki OS as an Operating System for IoT

The operating system is the foundation of the IoT devices as it provides
the functions for the connectivity between them and all the necessary
mechanisms needed for establishing security. An operating system designed for
use in IoT devices must, in general, comply to the following requirements [33]:
i) Low Random-Access Memory (RAM) footprint, ii) Low Read-Only Memory
(ROM) footprint, iii) Support of multi-tasking, iv) Support of Power
Management (PM) and v) Is a Soft real-time OS. Low RAM and ROM footprint
are needed because the amount of RAM and ROM provided by that kind of
devices is already limited to a small amount, in order to save energy. Also
needed is the support of multi-tasking, because of the nature of the
communications that take place between the IoT nodes, and are, in general,
asynchronous. A good power management system is among the major aspects
of a IoT OS, since it is imperative to conserve energy on battery powered devices
by turning on and off peripherals such as flash memory, I/O, and sensors, but
also by putting the MCU itself in different power modes. Finally, a soft real-
time OS is needed because on that kind of real-time applications, latency and
execution time cannot be guaranteed. Contiki OS [7] meets all the above
requirements and it is the one we will use on this thesis. For reference, the
below table shows a comparison of the most popular OS for IoT.

Table 4.1: OS requirements support comparison [33]

29

Contiki is an open source and community supported operating system
designed for use in IoT and it is written in C language. It is currently supporting
a large number of different MCUs and radios. As for protocols, its supports the
commonly used TCP/IPv4 and IPv6 with the uIP (micro-IP) stack, and it also
supports the 6LoWPAN stack and its own stack called RIME. The network
stack implemented in Contiki is slightly different than the usual model typically
adopted in TCP/IP. In-between the Physical and the Network layers, where,
usually, the MAC is located, Contiki has three different layers: The Framer,
the Radio Duty-Cycle (RDC) and the Medium Access Control (MAC). All these
layers could be configured at compilation time by using their respective global
variables.

Contiki also has threading capabilities with a thread system called
Protothreads [34]. This type of threads does not use a call stack and therefore
uses only two bytes of memory per thread. However, each thread is bound to
one function and it only has permission to control its own execution. Contiki
includes also libraries for a wide range of popular applications such as HTTP,
Constrained Application Protocol (CoAP), UDP, and FTP servers, as well as
other useful programs and tools, among them a MQTT client. As seen and in
the above figure, a standard system with IPv6 networking capabilities running
Contiki needs about 10 KB RAM and 30 KB ROM.

Built into Contiki is also the Cooja Network Simulator, a simulation
environment that allows developers to see their applications run in large-scale
networks or in extreme detail on fully emulated hardware devices. On the
context of this thesis we will make full use of Cooja for prototype testing and
performance assessment.

4.1.2. 6lbr as a 6LowPAN Border Router

In order to deploy a complete MQTT system, with WSN nodes as clients
and a broker running on Local Area Network (LAN), 6lbr was used as a Border
Router (BR). A Border Router connects the 6LoWPAN devices to the local
area IPv6 network and, therefore, the Internet, and is responsible for handling
traffic to and from the IPv6 and 802.15.4. 6lbr [9] is an open source
6LoWPAN/RPL Border Router deployment-ready solution based on the
Contiki OS. It can be deployed on low-cost, open source embedded hardware
platforms like the RaspberryPi [35], the Econotag and the BeagleBone or even
to a PC running Linux.

30

6lbr can be configured with different network architectures (such as
Bridge, Router or Transparent Bridge) and has a variety of features; some of
them are: network autoconfiguration, synchronization of 6LoWPAN WSNs with
IP network and an enhanced webserver with configuration commands and
monitoring capabilities. Moreover, on its latest version (version 1.4.x - still
under development) it has full 802.15.4 Security Layer support

Figure 4.1: 6lbr border router diagram [9]

31

4.1.3. Mosquitto as a MQTT broker

Mosquitto [36] is an open source and cross-platform message broker that
implements the MQTT protocol versions 3.1 and 3.1.1. It also offers all the
security features mentioned on section 3.4 and is the MQTT broker that was
used on the complete deployment of a MQTT system in this thesis.

Figure 4.2: mqtt-spy (MQTT client) showing broker statistics

32

4.1.4. Zolertia Z1 as a hardware development platform

When it comes to IoT, the second important decision that must be made,
after the choice of OS, is the decision of which hardware platform to use. Today
there are a lot of available options; ranging from ultra-low power and limited
recourses platforms (such as Zolertia Z1, Zolertia ReMote, Wismote, Skymote
and many others), to medium power platforms (such as Arduino), or even more
powerful platforms (such as Raspberry Pi). Except from power consumption
and performance capabilities, extensibility in terms of enough I/O connections
and popular interfaces support, as well as community support, must also been
considered.
Zolertia Z1 [8] is a development platform that builds upon the second generation
ultra-low power 16bit 16 MHz MSP430 RISC MCU [38]. The communication is
managed by the Texas Instruments CC2420 radio transceiver which operates in
the 2.4 GHz band. It is equipped with 8KB of RAM and a 92KB Flash memory,
although only 56KB of it are usable without using the proper configuration. It
also has a very well established support on many open source operating systems,
including Contiki. Additionally, it comes with two built in sensors; the SHT11
temperature and humidity sensor, and the MMA7600Q accelerometer, and
extensibility is ensured with: two standard (and two more available)
connections designed especially for external sensors (called phidgets), an
external connector with USB, Universal asynchronous receiver/transmitter
(UART), SPI, and I2C support. Finally, the board can be powered in many
ways, either from a battery pack (2xAA or 2xAAA batteries), by a coin cell
battery (up to 3.6V), or from the USB connection.

Figure 4.3: A Zolertia Z1 mote

33

4.2. General notes on implementation
To begin with, in the following table are presented the versions of the

aforementioned tools and source codes that were used in the implementation
phase of this thesis.

Tool name Version Notes

Contiki OS 3.0 Using commit 9bdb1f1, 21 January 2016
6lbr 1.3.3 Using commit 3715b49, 8 May 2015

Mosquitto 1.4.8 The latest version at that time

MQTT client No version
Based on the MQTT example on Contiki’s

source code
msp430-gcc
compiler

4.7.0
When using versions < 4.7.2 only 56KB of

ROM can be used on Zolertia Z1

Development OS
Ubuntu

14.04 LTS
Comes as a VM image including Instant

Contiki [39] 3.0 and Cooja simulator
Table 4.2: The versions of the tools used in implementation phase

In more detail, all the source code was developed and compiled inside a
Virtual Machine (VM) running Ubuntu 14.04 LTS, using the msp430-gcc
compiler on its 4.7.0 version. On the same VM, the Cooja simulator, on which
all the testing and assessment was carried out, came preinstalled. It must be
noted that is not always possible to use the latest commit of Contiki because it
gets updated very often and many bugs occur from one version to the next. In
order to avoid problems with unexpected bugs, the above commit on the master
branch from 21 January 2016 was used for all the implementations. On the
other hand, 6lbr does not get updated so often on its master branch (all the
updates under development are done on the develop branch, leaving the master
branch intact until a final release is ready) so the latest stable version, at that
time (version 1.3.3), was used.

It must be also noted that there were two different evaluation
environments configured and used during that phase: i) The virtual
environment and ii) the real world environment. In the first environment, all
the WSN motes programmed as MQTT clients were running inside the Cooja
simulator on virtual Zolertia Z1 motes and were connected to a MQTT broker
running on the VM’s localhost with the use of Contiki’s Native Border Router.
On the second environment, the MQTT clients ran on real Zolertia Z1 motes
and were connected to a MQTT broker running on a Windows machine
connected to the LAN with the use of 6lbr as Border Router that was configured
on a Raspberry Pi Model B. The first setup was used during code development

http://github.com/contiki-os/contiki/commit/9bdb1f1794a47eebb4644487905bd98123ea8d91
http://github.com/cetic/6lbr/commit/3715b49b1121c0770f4a064753680cf315977ae9

34

to find bugs and quickly test the written code, whereas the second setup was
used for further testing the implementations on real world scenarios.

4.2.1. Testing setup topologies

On the below two figures the two different topologies for each one of the two
environments that was used are depicted:

Figure 4.4: The topology of the virtual environment

Figure 4.5: The topology of the real world environment

35

One more thing that should be noted about the real world testing environment
(which is also shown on the above figure), is that the motes were placed close
to each other, in order to eliminate possible problems caused by low signal level
because our only goal was to perform a performance evaluation that is
independent of signal level.

4.2.2. Configuration of the WSN motes

Contiki has a lot of parameters that can be configured at compilation
time by changing the respective global variables on the project-conf.h file of the
compiled program. In this case the interest is towards the variables that
configure the extra three layers (RDC, MAC and Framer) on the network stack
as described on the section 4.1. More specifically, in our setup, the MAC layer
driver was set to the Contiki’s default one, called “nullmac_driver”, and is
equivalent to not having a MAC mechanism enabled and the RDC layer driver
was set to the “contikimac_driver” [40] which is a RDC mechanism that tries
to keep the radio transceiver in off position in order to save as much energy as
possible. With the above configuration we try to achieve the lower power
consumption together with minimum additional overhead on ROM and RAM
of the mote.

4.2.3. 6lbr configuration

For use in the real world testing environment, 6lbr was installed and
configured as a RPL router on a Raspberry Pi Model B. No changes were done
on the configuration of the WSN network part, but on the Ethernet network
part it was configured to give addresses on the IPv6 subnet that was used in

Figure 4.6: Real motes deployed during evaluation

36

the LAN. The IPv6 LAN was maintained by a xDSL router with IPv6, Router
Advertisement (RA) messages support and unique local addressing (ULA)
capabilities. Then, a Zolertia Z1 was programmed with the slip-radio code from
6lbr (because the one on the Contiki’s source code did not have support for the
Zolertia Z1) and was connected via USB on the Raspberry Pi. Finally, the
Raspberry Pi was connected to the LAN with an Ethernet cable.

4.2.4. MQTT client source code

The source code used for the MQTT client implementation is based on
the MQTT client example (found on mqtt-demo.c file) of the Contiki’s source
code on GitHub, and uses the, also built in, MQTT library. However, the source
code was heavily modified with the removal of redundant lines of code
(including defines, duplicate variables, not used functions and includes) and the
reduction on size of many buffers in order to gain as much extra free space as
possible on the ROM and RAM that will be used for the additional security
implementations. Additionally, the MQTT example had support for the IBM
Quickstart platform (currently called IBM Watson IoT platform) that was
completely removed for the same reason. The resulting source code with some
other additions (such as an extra connection status led support) was used as a
foundation for implementing the security mechanisms for the MQTT client.

Figure 4.7: 6lbr deployed on Raspberry Pi

37

4.3. Secure and lightweight MQTT implementations
On the following sections all the secure and lightweight MQTT client

implementations that were developed in the context of this thesis will be
presented.

4.3.1. Option 1 – Payload encryption with AES

The first implementation ensures the security of the transferred messages
with the encryption of the payload on the MQTT packet using symmetric key
end-to-end (i.e. client-to-client) encryption, and, more specifically, using AES
with a 128-bit key. Instead of using the Contiki’s built in AES implementation
a Texas Instruments AES implementation in C language for the MSP430 MCU
[51] was used. The above choice was justified by the fact that the Contiki’s built
in AES implementation includes only the encryption function (i.e. no decryption
function), since it is only used for signing in the CCM* implementation. This
implementation encrypts messages with only one block size length (the block
size in AES is 16 bytes) and the message must be manually padded if it has
smaller length. Additionally, support for larger payload sizes has been added
with the form of multiple consecutive encryptions/decryptions of 16 bytes, as it
is done in the ECB mode of operation. However, this mode is not the safest one
and it vulnerable to replay attacks because every same block is encrypted in
the same ciphertext.

4.3.2. Option 2 – Payload encryption with AES-CBC

This implementation is an extension of the previous one, enabling the
encryption of messages that have lengths different than one block size with the
use of AES in CBC mode of operation. For this, the AES-CBC implementation
from ContikiSec [52] was used. It must be highlighted that even though there

Figure 4.8: The simple MQTT client running on Cooja

38

is no specific limit on the length of the messages to be encrypted, this
implementation was restricted to lengths up to four block sizes (i.e. 64 bytes)
because of the limited amount of RAM. This size can of course be easily changed
for use in other platforms as it is defined in the start of the source code.

4.3.3. Option 3 – Payload authenticated encryption with AES-
OCB

The third implementation comes with an important addition to the
payload encryption; that is, authentication. In this implementation the AES-
OCB authenticated encryption mode of operation was used in order to
furthermore ensure the integrity of the transferred messages. The AES-OCB
implementation from ContikiSec [52] was used. Together with the encrypted
payload the tag is also appended on the message to be transferred, and is used
from the receiving MQTT client for validation of the encrypted message. Again,
due to the limited RAM on the platform we used, the messages to be sent were
restricted to the length of two block sizes. Another note that must be made for
this implementation, is that due to the size of the compiled program, it was
unable to include both the encryption and the decryption functions on the same
mote. As a result, for testing this implementation two motes are needed; one
publishing the messages, and another one, subscribed to the topic, that receives
and decrypts the messages.

4.3.4. Option 4 – Link layer encryption with CCM*

Finally, the last secure MQTT client implementation has a different
approach than the three previous. For this implementation, Link Layer
encryption (link layer security – LLSec) using AES-CCM-128 was used instead
of payload encryption. This ensures the node-to-node security of all the
transmitted package (including the topic, the client id etc.). This security
mechanism is included in the 802.15.4 as described before, so the only change
on the source code that made was the definitions of the operating system’s
parameters that enable this mechanism. It must be noted that even though this
solution provides complete security, it has a simple drawback; if a group key
(the same key for all nodes) is used then all the nodes would have access on the
data. Another significant disadvantage over the payload encryption is that
every node that receives a publish packet must decrypt it first in order to find
out what the topic is and then discard it if no subscription is done on this topic,
thus consuming extra resources. Finally, LLSec could be used together with
MQTT’s simple username/password authentication capabilities in order to
provide a complete confidentiality and authenticity solution.

39

4.3.5. Implementation diagrams

The two following diagrams show the publish and receive subscribed
publish actions according to the four implementations referred to above.

Figure 4.10: The publish to a subscriber client action diagram

Figure 4.9: The MQTT publish action diagram

40

5. Performance Assessment/Evaluation

In this chapter, the performance evaluation of the four different security
mechanisms that were developed for this thesis will be presented, along with
other useful information about them. In order to have a reference about the
performance of every security mechanism, first will be measured the
performance of the simple MQTT client (called option 0 from now on).

Before we begin presenting the performance evaluation results let us first
describe the way the performance measurements were carried out. Firstly, it
must be noted, that during the performance evaluation, two different (both
virtual or real, according to the environment) motes were used, one as a
publisher (encryption) and another one as a subscriber (decryption) and a
number of 50 MQTT messages were published for every performance evaluation.
For measuring the MCU’s and the radio’s power consumptions a built in power
consumption software measuring tool of Contiki, called Powertrace was used.
Energest is another built in software tool that uses wraparound macros to count
the number of CPU timer ticks in each power state (high and low power CPU
modes, radio RX and TX) the platform wants to keep track. Powertrace uses
Energest along with a periodic difference of the CPU timer ticks to get average
power over a shorter period of time, or for particular network modes. It then
prints out a serial output with the collected data every time its method is called,
or a specified amount of time. More specifically, the energy consumption and
the radio duty cycle can be calculated using the following two formulas:

Energy [mW] =
Energest_Value × current [mA] × voltage [V]

RTIMER_ARCH_SECOND × Time_Duration
 (1)

Where “Energest_Value” is the periodic value printed out by Energest,
“RTIMER_ARCH_SECOND” is the number of ticks performed by the internal
CPU timer per second, that is 32768 in this case and finally, “Time_Duration”
is the time in seconds from the previous Energest measurement.

Radio duty cycle [%] =
Energest_TX + Energest_RX

Energest_CPU + Energest_LMP
 (2)

Where the “Energest_XX” is the corresponding value printed out by Energest.

41

On the other hand, the message latency, more specifically the time
between the publish (including the encryption, if done) of a message and its
processing from the receiving end, was measured with two different methods
according to the testing environment. On the virtual testing environment, the
message latency was easily and more accurately calculated by measuring the
time difference (on the simulator’s serial prints timestamps) between two serial
debug prints; one after the message was successfully published by the publisher,
and the other, after the message was received and decrypted (if it was
encrypted) from the subscribed client. On the real world testing environment,
the latency measurement was not such an easy task because we cannot calculate
the time difference between the two aforementioned debug print, since there are
no (synchronized) timestamps. In order to measure the message latency, we
implemented the following simple mechanism:

This is similar to the previous method (for the virtual environment) but
instead of a debug serial print on the subscriber’s end, an ACK publish message
is used. That is to say, that after the subscriber receives the message and
decrypts it (if it is encrypted), then it performs a MQTT publish on another
topic (“clients/ack” for example). If we assume that every publish (and only the
publish; after the message was encrypted/decrypted) takes time p and every
subscribed publish takes time s then, one can readily see that the message
latency is calculated by performing the addition of s and p and then, adding on
the previous sum, the time needed for the encryption on the publishing mote.
The sum of s and p could easily be calculated from the time difference on the
timestamps of the messages that arrive at the broker, while the time to encrypt
on the publishing mote could be calculated with the use of the internal runtime
clock. As the maximum possible accuracy is needed, the MQTT broker was
running on the same machine (i.e. on localhost), together with a MQTT client
that received all the above messages and then the time difference of their
timestamps was calculated.

Finally, the size of the compiled program was easily obtained with the
use of the “size” command that provides information about the usage of different
parts of the ROM (called “text” and “data”) and the usage of RAM (called “bss”).

Figure 5.1: The ACK mechanism for latency measurements

42

5.1. Power specifications of Zolertia Z1
At this chapter the power specifications of Zolertia Z1, the hardware

platform that was used, will be presented. The following table comes from the
Zolertia Z1 datasheet [38] and displays the power (voltage and current)
consumptions of the most basic power modes, such as, Active Mode (AM) and
standby mode or also called Low Power Mode (LMP). The power specifications
of the CC2420 radio IC are also presented.

IC
Voltage
Range

Current Mode

MSP430f2617 1.8V to 3.6V

0
μA

OFF Mode
0,50 Standby Mode
1

mA
Active Mode @1MHz

< 10 Active Mode @16MHz

CC2420 2.1V to 3.6V

<1

μA

OFF Mode
20 Power Down
426 IDLE Mode
18,8

mA
RX Mode

17,4 TX Mode @ 0dBm
Table 5.1: Power specifications of Zolertia Z1

Although almost all of the above data are very useful, it is not clearly
stated the current consumption of the MCU when running at frequencies lower
than 16MHz. That is needed in our case because Contiki is running at 8MHz.
For this information someone can refer to the detailed datasheet of the
MSP430f261x MCU [54]. On the detailed datasheet the current consumption
per 1MHz is displayed and the total current consumption according to the
system’s frequency can be easily calculated with the following formula:

I(AM) = I(AM) [1MHz] × f(system) [MHz] (3)

In our case the rated typical current at 1MHz when the program is running
from flash memory and with a voltage of 3V is 515 μA. Thus the total rated
current for operation at 8MHz is calculated at 4.12 mA. Also, the maximum
rated current for operation at 8MHz is calculated at 4.48 mA. For the power
consumption calculation, the average of these two values (that is 4.3 mA) will
be used.

43

5.2. Evaluation of option 0 (simple MQTT client)
This is the simplest implementation, as there is no encryption or other

security mechanisms used and the performance assessment is only done for using
it as a reference for the other mechanisms. For this, MQTT messages with
payload length of 32 bytes was used and the following data are from the
performance measurements on the real world environment.

The average power consumptions and the radio duty cycle are presented on the
following tables:

Average power consumption (mW)

 CPU LPM TX RX Total
Publisher 0,251648 0,001470 0,094525 0,680525 1,028170
Receiver 0,270352 0,001468 0,084002 0,678472 1,034295

Table 5.2: Option 0 - Average power consumptions

Average radio duty cycle (%)
 TX RX Total

Publisher 0,18% 1,21% 1,39%
Receiver 0,16% 1,20% 1,36%

Table 5.3: Option 0 - Average radio duty cycle

At this point it should be reminded that the average radio duty cycle values
are this low due to the fact that the RDC mechanism was enabled in order to
save energy.

The average latency of the messages, on the other hand, was 568.44 ms.

Finally, the size of the program on the hardware platform is presented on the
table below.

Program size (bytes)

ROM RAM
text data bss

Publisher 53149 306 6860
Receiver 52993 306 6758

Table 5.4: Option 0 – Program size

44

A more detailed view of the power consumption is shown on the following
graphs:

Figure 5.2: Option 0 – Publishing mote’s consumption graph

Figure 5.3: Option 0 – Subscribed mote’s consumption graph

0

0,5

1

1,5

2

2,5

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

C
on

su
m

pt
io

n
(m

W
)

Number of publishes

Publishing mote's consumption

CPU LPM TX RX Total

0

0,5

1

1,5

2

2,5

3

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

C
on

su
m

pt
io

n
(m

W
)

Number of publishes

Subscribed mote's consumption

CPU LPM TX RX Total

45

5.3. Evaluation of option 1 (single block AES)
This option includes very basic payload encryption with the limitation

of encrypting messages with payload size up to 16 bytes only due to the single
block AES implementation used. It must be emphasized that this option could
not be proposed as a full security solution because of the above limitation but
on the other hand it has research interest as it could be used for comparison
with the more complex encryption mechanisms used on the other options.

The average power consumptions and the radio duty cycle are presented on the
following tables:

Average power consumption (mW)

 CPU LPM TX RX Total
Publisher

(encryption)
0,274662 0,001468 0,118635 0,658590 1,053357

Receiver
(decryption)

0,300105 0,001465 0,083061 0,660250 1,044882

Table 5.5: Option 1 - Average power consumptions

Average radio duty cycle (%)
 TX RX Total

Publisher 0,23% 1,17% 1,40%
Receiver 0,16% 1,17% 1,33%

Table 5.6: Option 1 - Average radio duty cycle

The average latency of the messages when using this mechanism was quietly
larger than before due to the time needed for encryption and decryption of the
messages and was 749.36 ms. Moreover, the average time needed for the
encryption and decryption of the message was calculated on the virtual
evaluation environment to be about 10 ms.

Finally, the size of the program on the hardware platform is presented on the
table below.

Program size (bytes)

ROM RAM
text data bss

Publisher 55035 322 6798
Receiver 55919 322 6768

Table 5.7: Option 1 – Program size

46

A more detailed view of the power consumption is shown on the following
graphs:

Figure 5.4: Option 1 – Publishing mote’s consumption graph

Figure 5.5: Option 1 – Subscribed mote’s consumption graph

0

0,5

1

1,5

2

2,5

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

C
on

su
m

pt
io

n
(m

W
)

Number of publishes

Publishing mote's consumption

CPU LPM TX RX Total

0

0,5

1

1,5

2

2,5

3

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

C
on

su
m

pt
io

n
(m

W
)

Number of publishes

Subscribed mote's consumption

CPU LPM TX RX Total

47

5.4. Evaluation of option 2 (AES-CBC)
This option is the extension of option 1 and is a fully proposed security

solution as it can ensure the confidentiality of messages with a variety of
payload sizes using AES in CBC mode of operation. For the performance
evaluation of this option, payload sizes of 32, 48 and 64 bytes were used.

The average power consumptions and the radio duty cycle for 48 bytes of
payload are presented on the following tables:

Average power consumption (mW)

 CPU LPM TX RX Total
Publisher

(encryption)
0,372097 0,001456 0,195647 0,728457 1,297658

Receiver
(decryption)

0,476729 0,001444 0,218100 0,912204 1,608479

Table 5.8: Option 2 - Average power consumptions

Average radio duty cycle (%)
 TX RX Total

Publisher 0,37% 1,29% 1,67%
Receiver 0,42% 1,62% 2,04%

Table 5.9: Option 2 - Average radio duty cycle

When using such an advanced method of security a reasonable amount of
latency is expected due to the execution time of the encryption and decryption
functions. In this case the average message latency was, not significantly greater
than in the simple AES, at just 764.88 ms. The average radio duty cycle is
also greater in this option as a result of the larger message payload size.

Finally, the size of the program which, as expected is larger, is presented on the
table below.

Program size (bytes)

ROM RAM
text data bss

Publisher 55373 322 7134
Receiver 56747 322 7122

Table 5.10: Option 2 – Program size

48

A more detailed view of the power consumption is shown on the following
graphs:

Figure 5.6: Option 2 – Publishing mote’s consumption graph

Figure 5.7: Option 2 – Subscribed mote’s consumption graph

0

0,5

1

1,5

2

2,5

3

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

C
on

su
m

pt
io

n
(m

W
)

Number of publishes

Publishing mote's consumption

CPU LPM TX RX Total

0

0,5

1

1,5

2

2,5

3

3,5

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

C
on

su
m

pt
io

n
(m

W
)

Number of publishes

Subscribed mote's consumption

CPU LPM TX RX Total

49

5.5. Evaluation of option 3 (AES-OCB)
This is the most advanced payload encryption method offering

additionally authentication capabilities. For the performance evaluation of this
option, payload sizes of 32 and 48 were used, but another 16 bytes were needed
in any case for the Tag used in authentication.

The average power consumptions and the radio duty cycle for 48 bytes of
payload are presented on the following tables:

Average power consumption (mW)

 CPU LPM TX RX Total
Publisher

(encryption)
0,477817 0,001444 0,203536 0,841614 1,524413

Receiver
(decryption)

0,446586 0,001448 0,159210 0,836446 1,443690

Table 5.11: Option 3 - Average power consumptions

Average radio duty cycle (%)
 TX RX Total

Publisher 0,39% 1,49% 1,88%
Receiver 0,31% 1,48% 1,79%

Table 5.12: Option 3 - Average radio duty cycle

When using an authenticated encryption mechanism, a relatively higher amount
of latency is expected due to the execution time not only of the encryption and
decryption functions but also of the hashing function that generates the
authentication tag. In this case the average message latency was 1409.44 ms.

Figure 5.8: Performance evaluation of AES-OCB on Cooja

50

The average radio duty cycle is also greater in this option as a result of the
larger message payload that has an extra overhead of 16 bytes for the Tag. The
average time needed just for the encryption and decryption of the message was
calculated on the virtual evaluation environment to be about 33 ms.

Finally, the size of the program which, is also expected to be larger, is presented
on the table below.

Program size (bytes)

ROM RAM
text data bss

Publisher 55959 338 7008
Receiver 56193 338 6848

Table 5.13: Option 3 – Program size

A more detailed view of the power consumption is shown on the following
graphs:

Figure 5.9: Option 3 – Publishing mote’s consumption graph

0

0,5

1

1,5

2

2,5

3

3,5

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

C
on

su
m

pt
io

n
(m

W
)

Number of publishes

Publishing mote's consumption

CPU LPM TX RX Total

51

Figure 5.10: Option 3 – Subscribed mote’s consumption graph

0

0,5

1

1,5

2

2,5

3

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

C
on

su
m

pt
io

n
(m

W
)

Number of publishes

Subscribed mote's consumption

Σειρά1 Σειρά2 Σειρά3 Σειρά4 Σειρά5

52

5.6. Evaluation of option 4 (Link Layer Security)
This security method is different from the previous ones because is

implemented on the Link Layer instead of the Application Layer. Additionally,
it is built into Contiki and the only adjustment was to enable it from the
configuration parameters of the OS. For the performance evaluation of this
option, payload sizes of 32 and 48 were used.

The average power consumptions and the radio duty cycle for 48 bytes of
payload are presented on the following tables:

Average power consumption (mW)

 CPU LPM TX RX Total
Publisher

(encryption)
0,266438 0,001469 0,128768 0,654116 1,050792

Receiver
(decryption)

0,350747 0,001459 0,160960 0,742848 1,256015

Table 5.14: Option 4 - Average power consumptions

Average radio duty cycle (%)
 TX RX Total

Publisher 0,25% 1,16% 1,41%
Receiver 0,31% 1,32% 1,63%

Table 5.15: Option 4 - Average radio duty cycle

In this case the average message latency was 1036.08 ms which is significantly
lower in comparison with AES-OCB. The main reason for this difference is
probably the level on which the encryption takes place with the Link Layer to
be more effective.

Finally, the size of the program is presented on the table below.

Program size (bytes)

ROM RAM
text data bss

Publisher 54605 332 7026
Receiver 54445 332 6924

Table 5.16: Option 4 – Program size

53

A more detailed view of the power consumption is shown on the following
graphs:

Figure 5.11: Option 4 – Publishing mote’s consumption graph

Figure 5.12: Option 4 – Subscribed mote’s consumption graph

0

0,5

1

1,5

2

2,5

3

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

C
on

su
m

pt
io

n
(m

W
)

Number of publishes

Publishing mote's consumption

CPU LPM TX RX Total

0

0,5

1

1,5

2

2,5

3

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

C
on

su
m

pt
io

n
(m

W
)

Number of publishes

Subscribed mote's consumption

CPU LPM TX RX Total

54

5.7. Comparison
This is the most interesting part of the evaluation process, because a

comparison between the different options will be presented in an easy to
understand way, with the use of bar charts. To begin with, a comparison of all
the encryption options when using the same size of message payload (48 bytes)
will be done. The only exception in this case is the single block AES that is
limited to 16 bytes only. Consequently, a comparison between AES-CBC, AES-
OCB and LLSec with different sizes of payload will be presented. Finally,
additional comparison charts could be found at Annex A (p.68) of this thesis.

The following bar graphs display the average power consumption for every
option as described above in every one of the two MQTT clients used. As a
reminder, all the security mechanisms, with the only exception of single block
AES, were used in order to encrypt 48 bytes of message payload in this case.

Figure 5.13: Publishing mote’s consumption comparison graph

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

CPU TX RX Total

C
on

su
m

pt
io

n
(m

W
)

Publishing (encrypting) mote's consumption comparison

No Encryption AES AES-CBC AES-OCB LLSec

55

Figure 5.14: Subscribed mote’s consumption comparison graph

The average message latency on the same case is also presented on the graph
below:

Figure 5.15: Average message latency comparison graph

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

CPU TX RX Total

C
on

su
m

pt
io

n
(m

W
)

Subscribed (decrypting) mote's consumption comparison

No Encryption AES AES-CBC AES-OCB LLSec

0

200

400

600

800

1000

1200

1400

1600

Average

La
te

nc
y

(m
s)

Average message latency comparison

No Encryption AES AES-CBC AES-OCB LLSec

56

It is easy to see that AES-OCB is the most resource intensive option
when it comes to encryption, as was of course expected due to the complexity
of the security mechanism, with the AES-CBC to follow up second. On the
decryption side, AES-CBC is pretty close to AES-OCB with the latter requiring
smaller CPU time. One thing that is quite unexpected is that LLSec does not
have such a large performance impact. It must be also said that the CC2420
radio IC used in Zolertia Z1 has hardware accelerated AES encryption
capabilities and the hardware AES driver is selected by default from Contiki if
supported by the hardware platform. This is the reason why no huge differences
in the CPU usage and more specifically in message latency was observed when
using single block AES in comparison with AES-CBC and LLSec as both make
use of that capabilities.

When it comes to latency, AES-OCB has unexceptionally the largest
average latency due to the previously mentioned complexity of its mechanism
and LLSec comes second on the largest average latency rank. This is due to the
also complex mechanism used in LLSec; the AES-CCM* which also is an
authenticated encryption mechanism. In general, AES-CCM is more resource
intensive compared to AES-OCB, but there are two parameters that make
LLSec, and therefore AES-CCM*, a lighter option; i) security is established on
the Link Layer which is, generally, faster in comparison with security
established on the Application Layer, and ii) AES-CCM* is a more lightweight
mechanism because it is specially designed for use in constrained devices. On
the other hand, there is one parameter that makes LLSec having such a greater
average message latency in comparison to AES-CBC; that is due to the fact
that it provides node-to-node encryption, thus performing decryption and
encryption on every hop (e.g. first in the publishing mote, then in the slip-radio
mote, and finally, again, in the receiving mote) of its route, extending with that
way the total message latency.

57

The next two graphs show a visual comparison of the program sizes of each
option in both ROM and RAM of the hardware platform:

Figure 5.16: Publishing mote’s program size comparison graph

0

10

20

30

40

50

60

70

ROM RAM

Si
ze

 (
by

te
s)

*1
0^

3
Publishing (encrypting) mote's program size

No Encryption AES AES-CBC AES-OCB LLSec 56K ROM Limit

58

Figure 5.17: Receiving mote’s program size comparison graph

In the above two graphs the 56 Kilobytes limit of the ROM when using the
stable version 4.7.0 of the msp430-gcc compiler is also shown as a reference. It
must be emphasized that the AES-CBC algorithm almost filled up all the
available space on both ROM and RAM in the receiving (decrypting) mote.

0

10

20

30

40

50

60

70

ROM RAM

Si
ze

 (
by

te
s)

*1
0^

3

Receiving (decrypting) mote's program size

No Encryption AES AES-CBC AES-OCB LLSec 56K ROM Limit

59

Finally, another comparison that has some interest is the one between the three
main different security mechanisms when using different message payload sizes.
The results of the above comparison are shown on the next graph:

Figure 5.18: Average message latency vs payload size comparison graph

As it is expected, greater message payload sizes entail greater message latency
times due to both larger encryption/decryption time but also larger packet trip
time. However, in all cases AES-OCB had the largest latency, except when
using AES-CBC with the enormous payload size of 64 bytes, while the AES-
CBC had undoubtedly the best latency-to-payload size ratio. One more
observation is that, when using the single block AES in manual ECB mode
(with consecutive encryptions/decryption), it consumes the most resources on
every case (i.e. 32 bytes and 48 bytes of payload, as seen on the above figure)
and has the greater message latency (due to the continuous
encryptions/decryptions) making it the less suitable option. For more
comparison charts refer to Annex A of this thesis.

As a last note, it should be stated that the average time needed by a real
environment mote, for establishing its first connection to the MQTT broker was
measured at about 12 seconds while the average reconnection time was
measured at about 20 seconds.

0

200

400

600

800

1000

1200

1400

1600

1800

16 32 48 64

La
te

nc
y

(m
s)

Payload size

Average message latency with different payload sizes

AES AES-CBC AES-OCB LLSec

60

6. Conclusions and Open Issues

6.1. Conclusions
In this work, four different secure and lightweight MQTT client

implementations for the Contiki OS were developed and evaluated on a real IoT
hardware platform. These implementations were based on security mechanisms
on two separate layers of the OSI Model; the Application Layer, and the Link
Layer. Other tools, such as, the 6lbr 6LoWPAN Border Router and the
Mosquitto MQTT broker were also used for deploying a full IoT system that
uses MQTT for communication. Furthermore, a feature comparison of the
various IoT messaging protocols had been carried out during the literature
study phase of this thesis.

The three (options 2 to 4) of the four different secure and lightweight
implementations deployed are ready for use on real IoT applications and could
be used as a basis for future implementation or studies. Moreover, the feature
comparison of the communication protocols could be used as a compass for
selecting the right one according to the application’s needs.

Finally, when it comes to the selection for the better security
implementation for MQTT, both AES-CBC and LLSec are the best two options
with each and every having some advantages over the other. The first one has
the advantage of the best payload-to-latency ratio, according to the evaluation
done, and provides end-to-end encryption while the second one offers node-to-
node encryption, is the less resource consuming option and the easier one to
use.

6.2. Problems encountered
During the development phase some problems were encountered,

especially with the proper configuration of 6lbr and also with some bugs on the
msp430-gcc compiler that prevented us from using the full 92 Kilobytes of flash
memory available on the Zolertia Z1. While the latter was not a major issue for
us, it must be taken care of for future expansion of the above implementations
because some of them have almost reached the ROM usage limit of 56 Kilobytes.
However, having solved the aforementioned problem, we should be able to
evaluate the performance of some mechanisms with even larger message payload
sizes (for example AES-OCB and AES-ECB with 64bytes payload that were
not performed due to limited ROM). The problem with 6lbr on the other hand
has been resolved by deploying it on a Raspberry Pi instead of running it on a
VM. However, 6lbr had some issues with LLSec, that are, hopefully, resolved in
the latest version 1.4.0 which was released some days before. Finally, there are
of course a lot of other simple bugs that prevented us of using the latest commit

61

of Contiki and must be fixed. This is of course expected due to the open source
and community driven nature of the Contiki OS where everyone can contribute
to it.

As an additional note on this chapter, the lessons learned from this work
will be mentioned. Firstly, it should be noted that a slightly large amount of
time was used for researching the available MQTT client implementations for
Contiki as well as the available security mechanisms in Contiki. This, however,
could be bypassed if Contiki had a continuously updated and detailed list of
the built in support of protocols and applications.

 The even greater problem, that consumed a great amount of time, was
the process of reducing the source code of the MQTT client in order to make
enough free space on ROM and RAM for the security mechanism that will be
later added. The Contiki’s MQTT client source code was flawlessly written, but
was probably designed for use as is, without the addition of extra features,
because, in its original version, it consumed enough redundant space in ROM
in the sake of easier configuration and easier reading. A simple workaround on
this issue, was of course, the use of a more powerful hardware platform that has
more flash memory and RAM, but that was not possible in our case. Another
not so fast solution, could be the development of a MQTT client from scratch
based only on the MQTT library of Contiki. This was, though not done due to
the limited time available for this thesis and because the focus was on the many
different secure and lightweight implementations of MQTT in Contiki and not
in developing only one, more lightweight, but not secure MQTT client
implementation.

Finally, a significant amount of time was also spent on trying to deploy
this MQTT system in the real world testing environment, namely in real motes,
and getting them to connect to the MQTT broker running on a LAN connected
machine. For this to succeed, a lot of different network configuration (including
different configurations for the IPv6 stack and the devices addressing) were
tested on both the 6lbr as well as the LAN router used. Finally, but after some
time, the better for our case was found. All this time could have been avoided
if 6lbr had a complete documentation describing all the modes of operation it
supports and how it must be configured in different situations. The current
documentation of 6lbr is unfortunately, not up to date and has many missing
entries.

62

6.3. Open Issues
In the future, we intend to develop more secure MQTT implementations

for use on the IoT by exploiting even more layers of the OSI Model such as the
Network Layer, with the use of the compressed version of IPSec designed for
constrained devices, or the Transport Layer, with the use of, the most popular,
TLS. Furthermore, a more comprehensive comparison of the IoT protocols with
the performance assessment of them could also be done.

On a topic not strictly related to this thesis, a great area of research,
where much work still needs to be done, is the interoperability in IoT. As
already mentioned, IoT contains very different communication, and not only,
protocols. As a result, a method for enabling IoT devices using different
communication protocols to communicate with each other, either by using a
“smart” bridge or by using protocol conversion/translation on the application
layer, would be really groundbreaking.

63

Bibliography

[1] S. C. Mukhopadhyay, “Internet of things: challenges and opportunities”,
vol. 9.; 9, pp. 1{7. Springer, 2014

[2] Cisco IBSG, 2011.
[3] Dave Evans, “The Internet of Things: How the Next Evolution of the

Internet Is Changing Everything”, Cisco, April 2011. [Online]. Accessed:
6 May 2016. Available:
http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBS
G_0411FINAL.pdf.

[4] K. Rantos, A. Papanikolaou, C. Manifavas and I. Papaefstathiou, “IPv6
Security for Low Power and Lossy Networks”, IEEE IFIP Wireless
Days (WD), 2013.

[5] S. Raza, T. Chung, S. Duquennoy, D. Yazar, T. Voigt and U. Roedig,
“Securing Internet of Things with Lightweight IPsec”, SICS Technical
Report, August 2010.

[6] A. Banks, R. Gupta, “OASIS Message Queuing Telemetry Transport
(MQTT), version 3.1.1”, OASIS, 2015. [Online]. Accessed: December
2015. Available: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-
v3.1.1.pdf.

[7] Contiki: The Open Source OS for the Internet of Things. [Online].
Available: http://www.contiki-os.org.

[8] Zolertia Z1 platform, Zolertia. [Online]. Available: http://zolertia.io/z1.
[9] 6lbr: A deployment-ready 6LoWPAN Border Router solution based on

Contiki. [Online]. Available: http://cetic.github.io/6lbr.
[10] Kevin Ashton, “That 'Internet of Things' Thing”, RFID Journal, 22

June 2009.
[11] “Radio-Frequency Identification”, Wikipedia, the Free Encyclopedia.

[Online]. Accessed: May 2016. Available:
http://en.wikipedia.org/wiki/Radio-frequency_identification.

[12] K. Rose, S. Eldridge and L. Chapin, “The Internet of Things: An
Overview Understanding the Issues and Challenges of a More
Connected World”, The Internet Society (ISOC), October 2015.

[13] “RFC 2460: Internet Protocol, Version 6 (IPv6) Specification”, The
Internet Engineering Task Force (IETF). [Online]. Available:
https://tools.ietf.org/html/rfc2460.

http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.pdf
http://www.contiki-os.org/
http://zolertia.io/z1
http://cetic.github.io/6lbr
http://en.wikipedia.org/wiki/Radio-frequency_identification
https://tools.ietf.org/html/rfc2460

64

[14] G. E. Moore, “Moore’s Law”, Wikipedia, the Free Encyclopedia.
[Online]. Available: https://en.wikipedia.org/wiki/Moore's_law.

[15] IEEE Standards Association [Online]. Available:
http://standards.ieee.org/innovate/iot.

[16] AllSeen Alliance [Online]. Available: https://allseenalliance.org.
[17] OASIS consortium [Online]. Available: https://www.oasis-

open.org/committees/tc_cat.php?cat=iot.
[18] Industrial Internet Consortium [Online]. Available:

http://www.iiconsortium.org.
[19] K. Rose, S. Eldridge, L. Chapin “The Internet of Things: An Overview

- Understanding the Issues and Challenges of a More Connected
World”, The Internet Society (ISOC), October 2015. [Online].
Available: http://www.internetsociety.org/sites/default/files/ISOC-
IoT-Overview-20151022.pdf

[20] White Paper, “Internet of Things: Wireless Sensor Networks”,
International Electrotechnical Commission (IEC). [Online]. Available:
http://www.iec.ch/whitepaper/pdf/iecWP-internetofthings-LR-en.pdf.

[21] “IEEE 802.15: Wireless Personal Area Networks (PANs)”, IEEE
Standards Association. [Online]. Available:
http://standards.ieee.org/about/get/802/802.15.html.

[22] “Carrier sense multiple access with collision avoidance”, Wikipedia, the
Free Encyclopedia. [Online]. Available:
https://en.wikipedia.org/wiki/Carrier_sense_multiple_access_with_c
ollision_avoidance.

[23] “IPv6 over Low power WPAN (6lowpan)”, The Internet Engineering
Task Force (IETF). [Online]. Available:
https://datatracker.ietf.org/wg/6lowpan/documents.

[24] Mulligan, Geoff, "The 6LoWPAN architecture", EmNets '07:
Proceedings of the 4th workshop on Embedded networked sensors,
ACM, 2007.

[25] Z. Shelby and C. Bormann, "6LoWPAN: The wireless embedded
Internet - Part 1: Why 6LoWPAN?", EE Times, 23 May 2011.

[26] A. G. Blank, “TCP/IP Jumpstart: Internet protocol basics”. John
Wiley & Sons, 2006.

[27] OASIS. [Online]. Available: https://www.oasis-open.org.

https://en.wikipedia.org/wiki/Moore's_law
http://standards.ieee.org/innovate/iot
https://allseenalliance.org/
https://www.oasis-open.org/committees/tc_cat.php?cat=iot
https://www.oasis-open.org/committees/tc_cat.php?cat=iot
http://www.iiconsortium.org/
http://www.internetsociety.org/sites/default/files/ISOC-IoT-Overview-20151022.pdf
http://www.internetsociety.org/sites/default/files/ISOC-IoT-Overview-20151022.pdf
http://www.iec.ch/whitepaper/pdf/iecWP-internetofthings-LR-en.pdf
http://standards.ieee.org/about/get/802/802.15.html
https://en.wikipedia.org/wiki/Carrier_sense_multiple_access_with_collision_avoidance
https://en.wikipedia.org/wiki/Carrier_sense_multiple_access_with_collision_avoidance
https://datatracker.ietf.org/wg/6lowpan/documents
https://www.oasis-open.org/

65

[28] Y. Xiao, H.H. Chen, B. Sun, R. Wang and S. Sethi, “MAC security and
security overhead analysis in the IEEE 802.15.4 Wireless Sensor
Networks”, EURASIP Journal on Wireless Communications and
Networking, 2006.

[29] J. Reardon and I. Goldberg, “Improving Tor using a TCP-over-DTLS
Tunnel”, USENIX Security Symposium, 2009. [Online]. Available:
https://www.usenix.org/legacy/event/sec09/tech/full_papers/reardon.
pdf.

[30] ACL definition, Wikipedia, the Free Encyclopedia. [Online]. Available:
http://en.wikipedia.org/wiki/Access_control_list.

[31] Figure is courtesy of HiveMQ. [Online]. Available:
http://www.hivemq.com/blog/mqtt-security-fundamentals-payload-
encryption.

[32] Blog post, “MQTT Security Fundamentals: OAuth 2.0 & MQTT”,
HiveMQ blog. [Online]. Available: http://www.hivemq.com/blog/mqtt-
security-fundamentals-oauth-2-0-mqtt.

[33] J. Bregell, “Hardware and software platform for Internet of Things”,
Master of Science Thesis in Embedded Electronic System Design, 2015.

[34] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads:
simplifying event-driven programming of memory-constrained
embedded systems”, pp. 29{42, ACM, 2006.

[35] Raspberry Pi boards, Raspberry Pi Foundation. [Online]. Available:
https://www.raspberrypi.org/products.

[36] Mosquitto Open Source MQTT v3.1/v3.1.1 Broker. [Online]. Available:
http://mosquitto.org.

[37] L. Zhang, “Building Facebook Messenger”, Faceboo, 12 August 2011.
[Online]. Available: https://www.facebook.com/notes/facebook-
engineering/building-facebook-messenger/10150259350998920

[38] Zolertia, “Zolertia Z1 Datasheet”. [Online]. Available:
http://zolertia.sourceforge.net/wiki/images/e/e8/Z1_RevC_Datasheet
.pdf.

[39] Instant Contiki. [Online]. Available: http://www.contiki-
os.org/start.html.

[40] Contiki, “The ContikiMAC Radio Duty Cycling Mechanism”. [Online].
Available: https://github.com/contiki-os/contiki/wiki/Radio-duty-
cycling#The_ContikiMAC_Radio_Duty_Cycling_Mechanism.

https://www.usenix.org/legacy/event/sec09/tech/full_papers/reardon.pdf
https://www.usenix.org/legacy/event/sec09/tech/full_papers/reardon.pdf
http://en.wikipedia.org/wiki/Access_control_list
http://www.hivemq.com/blog/mqtt-security-fundamentals-payload-encryption
http://www.hivemq.com/blog/mqtt-security-fundamentals-payload-encryption
http://www.hivemq.com/blog/mqtt-security-fundamentals-oauth-2-0-mqtt
http://www.hivemq.com/blog/mqtt-security-fundamentals-oauth-2-0-mqtt
https://www.raspberrypi.org/products
http://mosquitto.org/
https://www.facebook.com/notes/facebook-engineering/building-facebook-messenger/10150259350998920
https://www.facebook.com/notes/facebook-engineering/building-facebook-messenger/10150259350998920
http://zolertia.sourceforge.net/wiki/images/e/e8/Z1_RevC_Datasheet.pdf
http://zolertia.sourceforge.net/wiki/images/e/e8/Z1_RevC_Datasheet.pdf
http://www.contiki-os.org/start.html
http://www.contiki-os.org/start.html
https://github.com/contiki-os/contiki/wiki/Radio-duty-cycling#The_ContikiMAC_Radio_Duty_Cycling_Mechanism
https://github.com/contiki-os/contiki/wiki/Radio-duty-cycling#The_ContikiMAC_Radio_Duty_Cycling_Mechanism

66

[41] “ISO/IEC 20922 Information technology -- Message Queuing Telemetry
Transport (MQTT) v3.1.1”, ISO, 2016. [Online]. Available:
http://www.iso.org/iso/catalogue_detail.htm?csnumber=69466

[42] Andy Stanford-Clark, “Why is the keep alive needed?”, Google
Groups.[Online]. Available:
https://groups.google.com/forum/#!msg/mqtt/zRqd8JbY4oM/XrMwl
Q5TU0EJ.

[43] “Block cipher mode of operation”, Wikipedia, the Free Encyclopedia.
[Online]. Available:
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation.

[44] “RFC 3610: Counter with CBC-MAC (CCM)”, The Internet
Engineering Task Force (IETF). [Online]. Available:
https://tools.ietf.org/html/rfc3610.

[45] “OCB: Free licenses”, OCB webpage. [Online]. Available:
http://web.cs.ucdavis.edu/~rogaway/ocb/license.htm.

[46] “Kerberos: The Network Authentication Protocol”, Kerberos website.
[Online]. Available: http://web.mit.edu/kerberos.

[47] T. Nixon and A Regnier, “Devices Profile for Web Services (DPWS),
version 1.1”, OASIS, July 2009. [Online]. Available: http://docs.oasis-
open.org/ws-dd/ns/dpws/2009/01.

[48] “EU Research Project SOCRADES 2006-2009”. [Online]. Available:
http://www.socrades.net.

[49] “RFC 7622: Extensible Messaging and Presence Protocol (XMPP):
Address Format”, The Internet Engineering Task Force (IETF).
[Online]. Available: https://tools.ietf.org/html/rfc07622.

[50] “RFC 7252: The Constrained Application Protocol (CoAP)”, The
Internet Engineering Task Force (IETF). [Online]. Available:
https://tools.ietf.org/html/rfc07252.

[51] U. Kretzschmar, “AES128 – A C Implementation for Encryption and
Decryption (Rev. A)”, Texas Instruments, 2009. [Online]. Available:
http://www.ti.com/mcu/docs/litabsmultiplefilelist.tsp?sectionId=96&t
abId=1502&literatureNumber=slaa397a&docCategoryId=1&familyId=
914.

[52] P. Tsigas and L. Casado, "ContikiSec: A Secure Network Layer for
Wireless Sensor Networks under the Contiki Operating System", 14th

http://www.iso.org/iso/catalogue_detail.htm?csnumber=69466
https://groups.google.com/forum/#!msg/mqtt/zRqd8JbY4oM/XrMwlQ5TU0EJ
https://groups.google.com/forum/#!msg/mqtt/zRqd8JbY4oM/XrMwlQ5TU0EJ
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://tools.ietf.org/html/rfc3610
http://web.cs.ucdavis.edu/%7Erogaway/ocb/license.htm
http://web.mit.edu/kerberos
http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01
http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01
http://www.socrades.net/
https://tools.ietf.org/html/rfc07622
https://tools.ietf.org/html/rfc07252
http://www.ti.com/mcu/docs/litabsmultiplefilelist.tsp?sectionId=96&tabId=1502&literatureNumber=slaa397a&docCategoryId=1&familyId=914
http://www.ti.com/mcu/docs/litabsmultiplefilelist.tsp?sectionId=96&tabId=1502&literatureNumber=slaa397a&docCategoryId=1&familyId=914
http://www.ti.com/mcu/docs/litabsmultiplefilelist.tsp?sectionId=96&tabId=1502&literatureNumber=slaa397a&docCategoryId=1&familyId=914

67

Nordic Conference on Secure IT Systems, 2009. [Online]. Available:
http://www.cse.chalmers.se/research/group/dcs/masters/contikisec.

[53] I. Skerrett, “IoT Developer Survey 2016”, Eclipse IoT Working Group,
IEEE IoT and Agile IoT, April 2016. [Online]. Available:
http://www.slideshare.net/IanSkerrett/iot-developer-survey-2016.

[54] Texas Instruments, “MSP430F261x and MSP430F241x Mixed Signal
Microcontroller Datasheet”, November 2012. [Online]. Available:
http://www.ti.com/lit/ds/symlink/msp430f2417.pdf.

[55] V. Jutvik, “IPsec and IKEv2 for the Contiki Operating System”,
Uppsala University, Master Thesis, June 2014. [Online]. Available:
http://uu.diva-portal.org/smash/get/diva2:736994/FULLTEXT01.pdf

http://www.cse.chalmers.se/research/group/dcs/masters/contikisec
http://www.slideshare.net/IanSkerrett/iot-developer-survey-2016
http://www.ti.com/lit/ds/symlink/msp430f2417.pdf
http://uu.diva-portal.org/smash/get/diva2:736994/FULLTEXT01.pdf

68

Annex A

Extended comparison of all the options

On the bellow two graphs an extended comparison of all the options with
various payload sizes is done

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

CPU TX RX Total

C
on

su
m

pt
io

n
(m

W
)

Publishing (encrypting) mote's consumption comparison

No Encryption (32) AES (16) AES-ECB (32) AES-ECB (48)

AES-CBC (32) AES-CBC (48) AES-CBC (64) AES-OCB (16)

AES-OCB (32) AES-OCB (48) LLSec (16) LLSec (32)

LLSec (48) LLSec (64)

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

CPU TX RX Total

C
on

su
m

pt
io

n
(m

W
)

Subscribed (decrypting) mote's consumption comparison

No Encryption (32) AES (16) AES-ECB (32) AES-ECB (48)

AES-CBC (32) AES-CBC (48) AES-CBC (64) AES-OCB (16)

AES-OCB (32) AES-OCB (48) LLSec (16) LLSec (32)

LLSec (48) LLSec (64)

69

A comparison of the CPU usage has also been made and the results are
displayed on the following graph:

Finally, the following table displays the average radio duty cycle comparison:

0%

1%

2%

3%

4%

5%

6%

7%

8%

Publishing (encrypting) Receiving (decrypting)

C
PU

 u
sa

ge
 (

%
)

Mote's average CPU usage comparison

No Encryption (32) LLSec (32) LLSec (48) AES

LLSec (64) AES-CBC (32) AES-ECB (32) AES-OCB (16)

AES-CBC (48) AES-ECB (48) AES-CBC (64) AES-OCB (32)

AES-OCB (48)

0%

1%

1%

2%

2%

3%

3%

Publishing (encrypting) Receiving (decrypting)

R
D

C
 (

%
)

Mote's average radio duty cycle comparison

No Encryption (32) AES-CBC (32) AES LLSec (48)

AES-OCB (16) AES-ECB (32) AES-CBC (48) AES-OCB (32)

LLSec (64) AES-OCB (48) AES-ECB (48) AES-CBC (64)

70

Option 1b – single block AES used in manual ECB mode

In the following tables and graphs, the performance evaluation of the single
block AES mechanism when used in manual ECB mode (consecutive
encryptions/decryptions) will be presented. The following data are for the
encryption of 48 bytes of message payload.

The average power consumptions and the radio duty cycle are presented on the
following tables:

Average power consumption (mW)

 CPU LPM TX RX Total
Publisher

(encryption)
0,384270 0,001455 0,203498 1,009919 1,599143

Receiver
(decryption)

0,490507 0,001443 0,247990 1,108410 1,848350

Average radio duty cycle (%)
 TX RX Total

Publisher 0,39% 1,79% 2,18%
Receiver 0,48% 1,97% 2,44%

The average latency of the messages when using this mechanism in this mode
was extremely larger than before due to the time needed for the consecutive
encryptions and decryptions of the messages and was 1450,6 ms. Moreover,
the average time needed for the encryption of the message was calculated on
the virtual evaluation environment to be about 32 ms. It must be noted that
this specific implementation (with 48 bytes of message payload) is the worst
one when it comes in performance and power consumption comparison.

Finally, the size of the program on the hardware platform is presented on the
table below.

Program size (bytes)

ROM RAM
text data bss

Publisher 55377 322 6862
Receiver 56265 322 6780

71

A more detailed view of the power consumption is shown on the following
graphs:

0

0,5

1

1,5

2

2,5

3

3,5

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

C
on

su
m

pt
io

n
(m

W
)

Number of publishes

Publishing mote's consumption

CPU LPM TX RX Total

0

1

2

3

4

5

6

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

C
on

su
m

pt
io

n
(m

W
)

Number of publishes

Subscribed mote's consumption

CPU LPM TX RX Total

72

Comparison of the two suggested mechanisms

Finally, a focused comparison of the two suggested mechanisms on this thesis,
namely the AES-CBC and the LLSec, will be presented at this point.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

CPU TX RX Total

C
on

su
m

pt
io

n
(m

W
)

Publishing (encrypting) mote's consumption comparison

LLSec (32) LLSec (48) AES-CBC (32) AES-CBC (48) LLSec (64) AES-CBC (64)

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

CPU TX RX Total

C
on

su
m

pt
io

n
(m

W
)

Subscribed (decrypting) mote's consumption comparison

LLSec (32) LLSec (48) AES-CBC (32) LLSec (64) AES-CBC (64) AES-CBC (48)

73

0%

1%

2%

3%

4%

5%

6%

7%

8%

Publishing (encrypting) Receiving (decrypting)

C
PU

 u
sa

ge
 (

%
)

Mote's average CPU usage comparison

LLSec (32) LLSec (48) LLSec (64) AES-CBC (32) AES-CBC (48) AES-CBC (64)

0%

1%

1%

2%

2%

3%

3%

Publishing (encrypting) Receiving (decrypting)

R
D

C
 (

%
)

Mote's average radio duty cycle comparison

LLSec (32) AES-CBC (32) LLSec (48) AES-CBC (48) LLSec (64) AES-CBC (64)

74

Annex B

The source code used for the implementations is quoted in this final annex. As
a reminder, the source code is based on the MQTT client example of the
Contiki’s source code. The snippets that are highlighted with yellow color
contain the source code for the security implementations.

 Simple MQTT client (option 0):

/*---
* Author: Sotiris Katsikeas *
* Date: April 2016 *
* Simple MQTT client version with status led - REDUCED *
 ---*/
#include "contiki-conf.h"
#include "mqtt.h"
#include "net/ipv6/sicslowpan.h"
#include "net/llsec/noncoresec/noncoresec.c" // Only for llsec
#include "dev/leds.h"
#include <string.h>
/*---*/
/*
 * Publish to a MQTT broker (e.g. mosquitto) running on the host provided by
MQTT_DEMO_BROKER_IP_ADDR
 */
#define DEFAULT_ORG_ID "mqtt-demo"
/*---*/
/*
 * A timeout used when waiting for something to happen (e.g. to connect or to
 * disconnect)
 */
#define STATE_MACHINE_PERIODIC (CLOCK_SECOND >> 1)
/*---*/
/* Provide visible feedback via LEDS during various states */
/* When connecting to broker */
#define CONNECTING_LED_DURATION (CLOCK_SECOND >> 2)

/* Each time we try to publish */
#define PUBLISH_LED_ON_DURATION (CLOCK_SECOND)
/*---*/
/* Connections and reconnections */
#define RETRY_FOREVER 0xFF
#define RECONNECT_INTERVAL (CLOCK_SECOND * 2)

/*
 * Number of times to try reconnecting to the broker.

75

 * Can be a limited number (e.g. 3, 10 etc) or can be set to RETRY_FOREVER
 */
#define RECONNECT_ATTEMPTS RETRY_FOREVER
#define CONNECTION_STABLE_TIME (CLOCK_SECOND * 5)
static struct timer connection_life;
static uint8_t connect_attempt;
/*---*/
/* Various states */
static uint8_t state;
#define STATE_INIT 0
#define STATE_REGISTERED 1
#define STATE_CONNECTING 2
#define STATE_CONNECTED 3
#define STATE_PUBLISHING 4
#define STATE_DISCONNECTED 5
#define STATE_NEWCONFIG 6
#define STATE_CONFIG_ERROR 0xFE
#define STATE_ERROR 0xFF
/*---*/
#define RSSI_MEASURE_INTERVAL_MAX 86400 /* secs: 1 day */
#define RSSI_MEASURE_INTERVAL_MIN 5 /* secs */
#define PUBLISH_INTERVAL_MAX 86400 /* secs: 1 day */
#define PUBLISH_INTERVAL_MIN 5 /* secs */
/*---*/
/* A timeout used when waiting to connect to a network */
#define NET_CONNECT_PERIODIC (CLOCK_SECOND >> 2)
#define NO_NET_LED_DURATION (NET_CONNECT_PERIODIC >> 1)
/*---*/
/* Default configuration values */
#define DEFAULT_TYPE_ID "cc2420"
#define DEFAULT_PUBLISH_TOPIC "clients/status"
#define DEFAULT_SUBSCRIBE_TOPIC "test/+"
#define DEFAULT_BROKER_PORT 1883
#define DEFAULT_PUBLISH_INTERVAL (CLOCK_SECOND * 20)
#define DEFAULT_KEEP_ALIVE_TIMER 60
#define DEFAULT_RSSI_MEAS_INTERVAL (CLOCK_SECOND * 30)
/*---*/
/* Payload length of ICMPv6 echo requests used to measure RSSI with def rt */
#define ECHO_REQ_PAYLOAD_LEN 20
/*---*/
PROCESS_NAME(mqtt_demo_process);
AUTOSTART_PROCESSES(&mqtt_demo_process);
/*---*/
/* Maximum TCP segment size for outgoing segments of our socket */
#define MAX_TCP_SEGMENT_SIZE 32
/*---*/
#define STATUS_LED LEDS_GREEN
#define STATE_LED LEDS_BLUE
/*---*/
/*

76

 * Buffers for Client ID
 * Make sure they are large enough to hold the entire respective string
 *
 */
#define BUFFER_SIZE 32 // Reduced that to save space
static char client_id[BUFFER_SIZE];
/*---*/
/*
 * The main MQTT buffers (for MQTT payload)
 * We will need to increase if we start publishing more data.
 */
#define APP_BUFFER_SIZE 100
static struct mqtt_connection conn;
static char app_buffer[APP_BUFFER_SIZE];
/*---*/
static struct mqtt_message *msg_ptr = 0;
static struct etimer publish_periodic_timer;
static struct ctimer ct;
static struct ctimer ct2; // My counter
static char *buf_ptr;
static uint16_t seq_nr_value = 0;
/*---*/
/* Parent RSSI functionality */
static struct uip_icmp6_echo_reply_notification echo_reply_notification;
static struct etimer echo_request_timer;
static int def_rt_rssi = 0;
/*---*/
PROCESS(mqtt_demo_process, "MQTT Demo");
/*---*/
static void
echo_reply_handler(uip_ipaddr_t *source, uint8_t ttl, uint8_t *data,
 uint16_t datalen)
{
 if(uip_ip6addr_cmp(source, uip_ds6_defrt_choose())) {
 def_rt_rssi = sicslowpan_get_last_rssi();
 }
}
/*---*/
static void
publish_led_off(void *d)
{
 leds_off(STATUS_LED);
}
/*---*/
static void
status_led_off(void *d)
{
 leds_off(STATE_LED);
}

77

/*---*/
static void
pub_handler(const char *topic, uint16_t topic_len, const uint8_t *chunk,
 uint16_t chunk_len)
{
 //printf("Pub Handler: topic='%s' (len=%u), chunk_len=%u\n", topic, topic_len,
chunk_len);

 /* If we don't like the length, ignore */
 if(topic_len != 8 || chunk_len != 1) {
 //printf("Wrong topic or chunk len > Ignored\n");
 return;
 }

 /* If the tag != leds, ignore */
 if(strncmp(&topic[0], "test", 4) == 0 && strncmp(&topic[5], "one", 3) == 0) {
 if(chunk[0] == '1') {
 leds_on(LEDS_RED);
 } else if(chunk[0] == '0') {
 leds_off(LEDS_RED);
 }
 return;
 }
}
/*---*/
static void
mqtt_event(struct mqtt_connection *m, mqtt_event_t event, void *data)
{
 switch(event) {
 case MQTT_EVENT_CONNECTED: {
 DBG("APP - Application has a MQTT connection\n");
 timer_set(&connection_life, CONNECTION_STABLE_TIME);
 state = STATE_CONNECTED;
 printf("Connected!\n");
 leds_on(STATE_LED);
 ctimer_set(&ct2, 20*PUBLISH_LED_ON_DURATION, status_led_off, NULL);
 break;
 }
 case MQTT_EVENT_DISCONNECTED: {
 DBG("APP - MQTT Disconnect. Reason %u\n", *((mqtt_event_t *)data));

 state = STATE_DISCONNECTED;
 process_poll(&mqtt_demo_process);
 printf("Disconnected :O\n");
 leds_off(STATE_LED);
 break;
 }
 case MQTT_EVENT_PUBLISH: {

78

 msg_ptr = data;

 /* Implement first_flag in publish message? */
 if(msg_ptr->first_chunk) {
 msg_ptr->first_chunk = 0;
 printf("*** Received PUB on '%s'. Payload "
 "size: %ib. Content: %s\n\n",
 msg_ptr->topic, msg_ptr->payload_length, msg_ptr->payload_chunk); // ***
DEBUG ONLY !
 }

 pub_handler(msg_ptr->topic, strlen(msg_ptr->topic), msg_ptr->payload_chunk,
 msg_ptr->payload_length); // Call the pub handler for led action!
 break;
 }
 case MQTT_EVENT_SUBACK: {
 DBG("APP - Application is subscribed to topic successfully\n");
 break;
 }
 case MQTT_EVENT_UNSUBACK: {
 DBG("APP - Application is unsubscribed to topic successfully\n");
 break;
 }
 case MQTT_EVENT_PUBACK: {
 DBG("APP - Publishing complete.\n");
 break;
 }
 default:
 DBG("APP - Application got a unhandled MQTT event: %i\n", event);
 break;
 }
}
/*---*/
static int
construct_client_id(void)
{
 snprintf(client_id, BUFFER_SIZE, "d:%s:%s:%02x%02x%02x%02x%02x%02x",
 DEFAULT_ORG_ID, DEFAULT_TYPE_ID,
 linkaddr_node_addr.u8[0], linkaddr_node_addr.u8[1],
 linkaddr_node_addr.u8[2], linkaddr_node_addr.u8[5],
 linkaddr_node_addr.u8[6], linkaddr_node_addr.u8[7]);

 return 1;
}
/*---*/
static void
update_config(void)
{

79

 if(construct_client_id() == 0) {
 /* Fatal error. Client ID larger than the buffer */
 state = STATE_CONFIG_ERROR;
 return;
 }
 /* Reset the counter */
 seq_nr_value = 0;

 state = STATE_INIT;

 /*
 * Schedule next timer event ASAP
 *
 * If we entered an error state then we won't do anything when it fires.
 *
 * Since the error at this stage is a config error, we will only exit this
 * error state if we get a new config.
 */
 etimer_set(&publish_periodic_timer, 0);

 return;
}
/*---*/
static void
subscribe(void)
{
 /* Publish MQTT topic in IBM quickstart format */
 mqtt_status_t status;

 status = mqtt_subscribe(&conn, NULL, DEFAULT_SUBSCRIBE_TOPIC,
MQTT_QOS_LEVEL_0);

 DBG("APP - Subscribing!\n");
 if(status == MQTT_STATUS_OUT_QUEUE_FULL) {
 DBG("APP - Tried to subscribe but command queue was full!\n");
 }
}
/*---*/
static void
publish(void)
{
 /* Publish MQTT topic in IBM quickstart format */
 int len;
 int remaining = APP_BUFFER_SIZE;
 //int16_t value;

 seq_nr_value++;

 buf_ptr = app_buffer;

80

 len = snprintf(buf_ptr, remaining,
 "{"
 "\"d\":{"
 "\"myName\":\"%s\","
 "\"Seq #\":%d,"
 "\"Uptime (sec)\":%lu",
 BOARD_STRING, seq_nr_value, clock_seconds());

 if(len < 0 || len >= remaining) {
 printf("Buffer too short. Have %d, need %d + \\0\n", remaining, len);
 return;
 }

 remaining -= len;
 buf_ptr += len;

 len = snprintf(buf_ptr, remaining, ",\"RSSI (dBm)\":%d", def_rt_rssi);

 if(len < 0 || len >= remaining) {
 printf("Buffer too short. Have %d, need %d + \\0\n", remaining, len);
 return;
 }
 remaining -= len;
 buf_ptr += len;

 len = snprintf(buf_ptr, remaining, "}}");

 if(len < 0 || len >= remaining) {
 printf("Buffer too short. Have %d, need %d + \\0\n", remaining, len);
 return;
 }

 mqtt_publish(&conn, NULL, DEFAULT_PUBLISH_TOPIC, (uint8_t *)app_buffer,
 strlen(app_buffer), MQTT_QOS_LEVEL_0, MQTT_RETAIN_OFF);
 DBG("APP - Publish!\n");
}
/*---*/
static void
connect_to_broker(void)
{
 /* Connect to MQTT server */
 mqtt_connect(&conn, MQTT_DEMO_BROKER_IP_ADDR,
DEFAULT_BROKER_PORT,
 DEFAULT_PUBLISH_INTERVAL * 3);

 state = STATE_CONNECTING;
}
/*---*/

81

static void
ping_parent(void)
{
 if(uip_ds6_get_global(ADDR_PREFERRED) == NULL) {
 return;
 }

 uip_icmp6_send(uip_ds6_defrt_choose(), ICMP6_ECHO_REQUEST, 0,
 ECHO_REQ_PAYLOAD_LEN);
}
/*---*/
static void
state_machine(void)
{
 switch(state) {
 case STATE_INIT:
 /* If we have just been configured register MQTT connection */
 mqtt_register(&conn, &mqtt_demo_process, client_id, mqtt_event,
 MAX_TCP_SEGMENT_SIZE);

 /*
 * If there is a username and password defined in configuration file
 */
 if(strncasecmp(MQTT_AUTH_USERNAME, "NULL",
strlen(MQTT_AUTH_USERNAME)) != 0 && strlen(MQTT_AUTH_USERNAME) > 1)
{
 if(strncasecmp(MQTT_AUTH_PASSWORD, "NULL",
strlen(MQTT_AUTH_PASSWORD)) == 0) {
 printf("Username set, but no auth password\n");
 state = STATE_ERROR;
 break;
 } else {
 mqtt_set_username_password(&conn, MQTT_AUTH_USERNAME,
 MQTT_AUTH_PASSWORD);
 printf("Will authenticate at connection...\n");
 }
 }

 /* _register() will set auto_reconnect. We don't want that. */
 conn.auto_reconnect = 0;
 connect_attempt = 1;

 state = STATE_REGISTERED;
 DBG("Init\n");
 /* Continue */
 case STATE_REGISTERED:
 if(uip_ds6_get_global(ADDR_PREFERRED) != NULL) {
 /* Registered and with a public IP. Connect */

82

 DBG("Registered. Connect attempt %u\n", connect_attempt);
 ping_parent();
 connect_to_broker();
 } else {
 leds_on(STATUS_LED);
 ctimer_set(&ct, NO_NET_LED_DURATION, publish_led_off, NULL);
 }
 etimer_set(&publish_periodic_timer, NET_CONNECT_PERIODIC);
 return;
 break;
 case STATE_CONNECTING:
 leds_on(STATUS_LED);
 ctimer_set(&ct, CONNECTING_LED_DURATION, publish_led_off, NULL);
 /* Not connected yet. Wait */
 DBG("Connecting (%u)\n", connect_attempt);
 break;
 case STATE_CONNECTED:
 /* Continue */
 case STATE_PUBLISHING:
 /* If the timer expired, the connection is stable. */
 if(timer_expired(&connection_life)) {
 /*
 * Intentionally using 0 here instead of 1: We want RECONNECT_ATTEMPTS
 * attempts if we disconnect after a successful connect
 */
 connect_attempt = 0;
 }

 if(mqtt_ready(&conn) && conn.out_buffer_sent) {
 /* Connected. Publish */
 if(state == STATE_CONNECTED) {
 subscribe();
 state = STATE_PUBLISHING;
 } else {
 leds_on(STATUS_LED);
 ctimer_set(&ct, PUBLISH_LED_ON_DURATION, publish_led_off, NULL);
 publish();
 }
 etimer_set(&publish_periodic_timer, DEFAULT_PUBLISH_INTERVAL);

 DBG("Publishing\n");
 /* Return here so we don't end up rescheduling the timer */
 return;
 } else {
 /*
 * Our publish timer fired, but some MQTT packet is already in flight
 * (either not sent at all, or sent but not fully ACKd).
 *

83

 * This can mean that we have lost connectivity to our broker or that
 * simply there is some network delay. In both cases, we refuse to
 * trigger a new message and we wait for TCP to either ACK the entire
 * packet after retries, or to timeout and notify us.
 */
 DBG("Publishing... (MQTT state=%d, q=%u)\n", conn.state,
 conn.out_queue_full);
 }
 break;
 case STATE_DISCONNECTED:
 DBG("Disconnected\n");
 if(connect_attempt < RECONNECT_ATTEMPTS ||
 RECONNECT_ATTEMPTS == RETRY_FOREVER) {
 /* Disconnect and backoff */
 clock_time_t interval;
 mqtt_disconnect(&conn);
 connect_attempt++;

 interval = connect_attempt < 3 ? RECONNECT_INTERVAL << connect_attempt :
 RECONNECT_INTERVAL << 3;

 DBG("Disconnected. Attempt %u in %lu ticks\n", connect_attempt, interval);

 etimer_set(&publish_periodic_timer, interval);

 state = STATE_REGISTERED;
 return;
 } else {
 /* Max reconnect attempts reached. Enter error state */
 state = STATE_ERROR;
 DBG("Aborting connection after %u attempts\n", connect_attempt - 1);
 }
 break;
 case STATE_CONFIG_ERROR:
 /* Idle away. The only way out is a new config */
 printf("Bad configuration.\n");
 return;
 case STATE_ERROR:
 default:
 leds_on(STATUS_LED);
 /*
 * 'default' should never happen.
 *
 * If we enter here it's because of some error. Stop timers. The only thing
 * that can bring us out is a new config event
 */
 printf("Default case: State=0x%02x\n", state);
 return;
 }

84

 /* If we didn't return so far, reschedule ourselves */
 etimer_set(&publish_periodic_timer, STATE_MACHINE_PERIODIC);
}
/*---*/
PROCESS_THREAD(mqtt_demo_process, ev, data)
{

 PROCESS_BEGIN();

 printf("-MQTT Client-\n");

 update_config();

 //def_rt_rssi = 0x8000000;
 uip_icmp6_echo_reply_callback_add(&echo_reply_notification,
 echo_reply_handler);
 etimer_set(&echo_request_timer, DEFAULT_RSSI_MEAS_INTERVAL);

 /* Main loop */
 while(1) {

 PROCESS_YIELD();

 if((ev == PROCESS_EVENT_TIMER && data == &publish_periodic_timer) ||
 ev == PROCESS_EVENT_POLL) {
 state_machine();
 }

 if(ev == PROCESS_EVENT_TIMER && data == &echo_request_timer) {
 ping_parent();
 etimer_set(&echo_request_timer, DEFAULT_RSSI_MEAS_INTERVAL);
 }
 }

 PROCESS_END();
}
/*---*/

85

 MQTT client with AES payload encryption (option 1):

/*---
 * Author: Sotiris Katsikeas *
 * Date: May 2016 *
 * Version notes: Adjustable AES-ECB encryption on MQTT payload - REDUCED *
 * Hint: removed multi thread publishing *
 ---*/
#include "contiki-conf.h"
#include "mqtt.h"
#include "net/ipv6/sicslowpan.h"
#include "dev/leds.h"
#include <string.h>
#include "TI_aes.c"
#include "powertrace.h" // Used for powertrace print
/*---*/
/*
 * Publish to a MQTT broker (e.g. mosquitto) running on the host provided by
MQTT_DEMO_BROKER_IP_ADDR
 */
#define DEFAULT_ORG_ID "mqtt-demo"
/*---*/
/*
 * A timeout used when waiting for something to happen (e.g. to connect or to
 * disconnect)
 */
#define STATE_MACHINE_PERIODIC (CLOCK_SECOND >> 1)
/*---*/
/* Provide visible feedback via LEDS during various states */
/* When connecting to broker */
#define CONNECTING_LED_DURATION (CLOCK_SECOND >> 2)

/* Each time we try to publish */
#define PUBLISH_LED_ON_DURATION (CLOCK_SECOND)
/*---*/
/* Connections and reconnections */
#define RETRY_FOREVER 0xFF
#define RECONNECT_INTERVAL (CLOCK_SECOND * 2)

/*
 * Number of times to try reconnecting to the broker.
 * Can be a limited number (e.g. 3, 10 etc) or can be set to RETRY_FOREVER
 */
#define RECONNECT_ATTEMPTS RETRY_FOREVER
#define CONNECTION_STABLE_TIME (CLOCK_SECOND * 5)
static struct timer connection_life;
static uint8_t connect_attempt;
/*---*/
/* Various states */

86

static uint8_t state;
#define STATE_INIT 0
#define STATE_REGISTERED 1
#define STATE_CONNECTING 2
#define STATE_CONNECTED 3
#define STATE_PUBLISHING 4
#define STATE_DISCONNECTED 5
#define STATE_NEWCONFIG 6
#define STATE_CONFIG_ERROR 0xFE
#define STATE_ERROR 0xFF
/*---*/
#define RSSI_MEASURE_INTERVAL_MAX 86400 /* secs: 1 day */
#define RSSI_MEASURE_INTERVAL_MIN 5 /* secs */
#define PUBLISH_INTERVAL_MAX 86400 /* secs: 1 day */
#define PUBLISH_INTERVAL_MIN 5 /* secs */
/*---*/
/* A timeout used when waiting to connect to a network */
#define NET_CONNECT_PERIODIC (CLOCK_SECOND >> 2)
#define NO_NET_LED_DURATION (NET_CONNECT_PERIODIC >> 1)
/*---*/
/* Default configuration values */
#define DEFAULT_TYPE_ID "cc2420"
#define DEFAULT_PUBLISH_TOPIC "clients/text"
#define DEFAULT_SUBSCRIBE_TOPIC "clients/text"
#define DEFAULT_BROKER_PORT 1883
#define DEFAULT_PUBLISH_INTERVAL (CLOCK_SECOND * 5)
#define DEFAULT_KEEP_ALIVE_TIMER 60
#define DEFAULT_RSSI_MEAS_INTERVAL (CLOCK_SECOND * 30)
/*---*/
/* Payload length of ICMPv6 echo requests used to measure RSSI with def rt */
#define ECHO_REQ_PAYLOAD_LEN 20
/*---*/
PROCESS_NAME(mqtt_demo_process);
AUTOSTART_PROCESSES(&mqtt_demo_process);
/*---*/
/* Maximum TCP segment size for outgoing segments of our socket */
#define MAX_TCP_SEGMENT_SIZE 32
/*---*/
#define STATUS_LED LEDS_GREEN
#define STATE_LED LEDS_BLUE
/*---*/
/*
 * Buffers for Client ID
 * Make sure they are large enough to hold the entire respective string
 *
 */
#define BUFFER_SIZE 32 // Reduced that to save space
static char client_id[BUFFER_SIZE];
/*---*/
/*

87

 * The MQTT connection
 */
static struct mqtt_connection conn;
/*---*/
static struct mqtt_message *msg_ptr = 0;
static struct etimer publish_periodic_timer;
static struct ctimer ct;
static struct ctimer ct2; // My counter
//static char *buf_ptr;
static uint16_t seq_nr_value = 0;
int subscribeCnt = 0;
/*---*/
/* Parent RSSI functionality */
static struct uip_icmp6_echo_reply_notification echo_reply_notification;
static struct etimer echo_request_timer;
static int def_rt_rssi = 0;
/*---*/
/*
 * The main AES buffers for encryption and publish
 */
#define NUM_OF_BLOCKS 3 // Number of block to encrypt/decrypt in ECB mode -
SUPPORTS UP TO 4 BUT WORKS UP TO 3 !!!
static char ciphertext[NUM_OF_BLOCKS*16*2+1]; // Ciphertext buffer
static char *buf_ptr2; // Pointer for ciphertext buffer
static int pubCnt = 0;
/*---*/
// AES encryption symetric key
unsigned char aes_key[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f};
/*---*/
PROCESS(mqtt_demo_process, "MQTT Demo");
/*---*/
static void
echo_reply_handler(uip_ipaddr_t *source, uint8_t ttl, uint8_t *data,
 uint16_t datalen)
{
 if(uip_ip6addr_cmp(source, uip_ds6_defrt_choose())) {
 def_rt_rssi = sicslowpan_get_last_rssi();
 }
}
/*---*/
static void
publish_led_off(void *d)
{
 leds_off(STATUS_LED);
}
/*---*/
static void
status_led_off(void *d)

88

{
 leds_off(STATE_LED);
}
/*---*/
static void
pub_handler(const char *topic, uint16_t topic_len, const uint8_t *chunk,
 uint16_t chunk_len)
{
 //printf("Pub Handler: topic='%s' (len=%u), chunk_len=%u\n", topic, topic_len,
chunk_len);

 // Publish with encrypted payload detected on topic with tag = text
 if(strncmp(&topic[0], "clients", 7) == 0 && strncmp(&topic[8], "text", 4) == 0) {
 //printf("Got encrypted @ topic='%s', chunk='%s' (len=%u)\n", topic, chunk,
chunk_len);
 printf("Got encrypted (%lu)\n", clock_time());
 int i;
 int j = 0;
 // For first 16 bytes
 unsigned char ciphertext[16];
 static char hexstring[4];
 static char *hexstr_ptr;
 hexstr_ptr = hexstring;

 // For second 16 bytes - Comment out for only 16 bytes
 unsigned char ciphertext2[16];
 static char hexstring2[4];
 static char *hexstr_ptr2;
 hexstr_ptr2 = hexstring2;

 // For third 16 bytes - Comment out for only 32 bytes
 unsigned char ciphertext3[16];
 static char hexstring3[4];
 static char *hexstr_ptr3;
 hexstr_ptr3 = hexstring3;

 // For fourth 16 bytes - Comment out for only 48 bytes
 unsigned char ciphertext4[16];
 static char hexstring4[4];
 static char *hexstr_ptr4;
 hexstr_ptr4 = hexstring4;

 for (i=0; i<chunk_len;i+=2){
 if (j<16)
 {
 snprintf(hexstr_ptr, 2, "%c", chunk[i]);
 snprintf(hexstr_ptr+1, 2, "%c", chunk[i+1]);
 int number = (int)strtol(hexstring, NULL, 16); //Convert string hex value to integer

89

 ciphertext[j] = number;
 }
 else if (j>=16 && j<32)
 {
 snprintf(hexstr_ptr2, 2, "%c", chunk[i]);
 snprintf(hexstr_ptr2+1, 2, "%c", chunk[i+1]);
 int number = (int)strtol(hexstring2, NULL, 16); //Convert string hex value to
integer
 ciphertext2[j-16] = number;
 }
 else if (j>=32 && j<48)
 {
 snprintf(hexstr_ptr3, 2, "%c", chunk[i]);
 snprintf(hexstr_ptr3+1, 2, "%c", chunk[i+1]);
 //printf("\nStr3: %s\n", hexstring3);
 int number = (int)strtol(hexstring3, NULL, 16); //Convert string hex value to
integer
 ciphertext3[j-32] = number;
 }
 else if (j>=48 && j<64)
 {
 snprintf(hexstr_ptr4, 2, "%c", chunk[i]);
 snprintf(hexstr_ptr4+1, 2, "%c", chunk[i+1]);
 //printf("\nStr4: %s\n", hexstring4);
 int number = (int)strtol(hexstring4, NULL, 16); //Convert string hex value to
integer
 ciphertext4[j-48] = number;
 }
 j++;
 }
 //ciphertext[chunk_len] = 0; //Null terminate the string
 aes_decrypt(ciphertext,aes_key);
 printf("Decrypted text:=");
 for (i=0; i<16 && ciphertext[i]!=0 ; i++)
 printf("%c",ciphertext[i]);
 printf("'\n");

 // Second 16 bytes
 if (NUM_OF_BLOCKS >=2)
 {
 aes_decrypt(ciphertext2,aes_key);
 printf("Decrypted text2:=");
 for (i=0; i<16 && ciphertext2[i]!=0 ; i++)
 printf("%c",ciphertext2[i]);
 printf("'\n");
 }
 // Third 16 bytes
 if (NUM_OF_BLOCKS >=3)

90

 {
 aes_decrypt(ciphertext3,aes_key);
 printf("Decrypted text3:=");
 for (i=0; i<16 && ciphertext3[i]!=0 ; i++)
 printf("%c",ciphertext3[i]);
 printf("'\n");
 }
 // Fourth 16 bytes
 if (NUM_OF_BLOCKS == 4)
 {
 aes_decrypt(ciphertext4,aes_key);
 printf("Decrypted text4:=");
 for (i=0; i<16 && ciphertext4[i]!=0 ; i++)
 printf("%c",ciphertext4[i]);
 printf("'\n");
 }
 // FOR EVALUATION
 powertrace_print(""); // PRINT ENERGEST AFTER RECEIVE

 mqtt_publish(&conn, NULL, "clients/ack", (uint8_t *)"ACK",
 strlen("ACK"), MQTT_QOS_LEVEL_0, MQTT_RETAIN_OFF);
 //END
 }
 return;
}
/*---*/
static void
mqtt_event(struct mqtt_connection *m, mqtt_event_t event, void *data)
{
 switch(event) {
 case MQTT_EVENT_CONNECTED: {
 DBG("APP - Application has a MQTT connection\n");
 timer_set(&connection_life, CONNECTION_STABLE_TIME);
 state = STATE_CONNECTED;
 printf("Connected!\n");
 leds_on(STATE_LED);
 ctimer_set(&ct2, 20*PUBLISH_LED_ON_DURATION, status_led_off, NULL);
 break;
 }
 case MQTT_EVENT_DISCONNECTED: {
 DBG("APP - MQTT Disconnect. Reason %u\n", *((mqtt_event_t *)data));

 state = STATE_DISCONNECTED;
 process_poll(&mqtt_demo_process);
 printf("Disconnected :O\n");
 leds_off(STATE_LED);
 break;
 }

91

 case MQTT_EVENT_PUBLISH: {
 msg_ptr = data;

 /* Implement first_flag in publish message? */
 if(msg_ptr->first_chunk) {
 msg_ptr->first_chunk = 0;
 printf("*** Received PUB on '%s'. Payload "
 "size: %ib. Content: %s\n\n",
 msg_ptr->topic, msg_ptr->payload_length, msg_ptr->payload_chunk); // ***
DEBUG ONLY !
 }

 pub_handler(msg_ptr->topic, strlen(msg_ptr->topic), msg_ptr->payload_chunk,
 msg_ptr->payload_length); // Call the pub handler for led action!
 break;
 }
 case MQTT_EVENT_SUBACK: {
 DBG("APP - Application is subscribed to topic successfully\n");
 break;
 }
 case MQTT_EVENT_UNSUBACK: {
 DBG("APP - Application is unsubscribed to topic successfully\n");
 break;
 }
 case MQTT_EVENT_PUBACK: {
 DBG("APP - Publishing complete.\n");
 break;
 }
 default:
 DBG("APP - Application got a unhandled MQTT event: %i\n", event);
 break;
 }
}
/*---*/
static int
construct_client_id(void)
{
 snprintf(client_id, BUFFER_SIZE, "d:%s:%s:%02x%02x%02x%02x%02x%02x",
 DEFAULT_ORG_ID, DEFAULT_TYPE_ID,
 linkaddr_node_addr.u8[0], linkaddr_node_addr.u8[1],
 linkaddr_node_addr.u8[2], linkaddr_node_addr.u8[5],
 linkaddr_node_addr.u8[6], linkaddr_node_addr.u8[7]);
 return 1;
}
/*---*/
static void
update_config(void)
{

92

 if(construct_client_id() == 0) {
 /* Fatal error. Client ID larger than the buffer */
 state = STATE_CONFIG_ERROR;
 return;
 }
 /* Reset the counter */
 seq_nr_value = 0;

 state = STATE_INIT;

 /*
 * Schedule next timer event ASAP
 *
 * If we entered an error state then we won't do anything when it fires.
 *
 * Since the error at this stage is a config error, we will only exit this
 * error state if we get a new config.
 */
 etimer_set(&publish_periodic_timer, 0);

 return;
}
/*---*/
static void
subscribe(char *topic)
{
 /* Subscribe MQTT topic in IBM quickstart format */
 mqtt_status_t status;

 status = mqtt_subscribe(&conn, NULL, topic, MQTT_QOS_LEVEL_0);

 DBG("APP - Subscribing!\n");
 if(status == MQTT_STATUS_OUT_QUEUE_FULL) {
 DBG("APP - Tried to subscribe but command queue was full!\n");
 }
}
/*---*/
static void
publish(void)
{
 if(1){
 // Publish on subject 'clients/text' in order to test AES

 unsigned char state[16];
 char plaintext[17]; // +1 to hold the string termination char
 static const char text[] = "EncryptedText-#";

 // Buffers for the second 16 bytes - Comment out for only 16 bytes
 unsigned char state2[16];

93

 char plaintext2[17];
 static const char text2[] = "Text2StartsHere2";

 // Buffers for the third 16 bytes - Comment out for only 32 bytes
 unsigned char state3[16];
 char plaintext3[17];
 static const char text3[] = "Text3StartsHere3";

 // Buffers for the fourth 16 bytes - Comment out for only 48 bytes
 unsigned char state4[16];
 char plaintext4[17];
 static const char text4[] = "Text4StartsHere4";

 printf("Encrpyting...(%lu)\n", clock_time());

 // First 16 bytes
 snprintf(plaintext, sizeof(plaintext), "%s%d", text, pubCnt++%10);

 if (strlen(plaintext)>16)
 printf("ERROR: Plaintext > 16!\n");
 // Convert char (plaintext) to hex
 int i;
 for (i=0; i<16 ;i++){
 if (plaintext[i]!=0)
 state[i] = (int) plaintext[i];
 else
 state[i] = 0x00;
 }

 aes_encrypt(state,aes_key);

 // Second 16 bytes - Comment out for only 16 bytes
 if (NUM_OF_BLOCKS >=2)
 {
 snprintf(plaintext2, sizeof(plaintext2), "%s", text2);

 if (strlen(plaintext2)>16)
 printf("ERROR: Plaintext2 > 16!\n");
 // Convert char (plaintext) to hex
 for (i=0; i<16 ;i++){
 if (plaintext2[i]!=0)
 state2[i] = (int) plaintext2[i];
 else
 state2[i] = 0x00;
 }
 aes_encrypt(state2,aes_key);
 }

94

 // Third 16 bytes - Comment out for only 32 bytes
 if (NUM_OF_BLOCKS >=3)
 {
 snprintf(plaintext3, sizeof(plaintext3), "%s", text3);

 if (strlen(plaintext3)>16)
 printf("ERROR: Plaintext3 > 16!\n");
 // Convert char (plaintext) to hex
 for (i=0; i<16 ;i++){
 if (plaintext3[i]!=0)
 state3[i] = (int) plaintext3[i];
 else
 state3[i] = 0x00;
 }
 aes_encrypt(state3,aes_key);
 }

 // Fourth 16 bytes - Comment out for only 48 bytes
 if (NUM_OF_BLOCKS == 4)
 {
 snprintf(plaintext4, sizeof(plaintext4), "%s", text4);

 if (strlen(plaintext4)>16)
 printf("ERROR: Plaintext4 > 16!\n");
 // Convert char (plaintext) to hex
 for (i=0; i<16 ;i++){
 if (plaintext4[i]!=0)
 state4[i] = (int) plaintext4[i];
 else
 state4[i] = 0x00;
 }
 aes_encrypt(state4,aes_key);
 }
 // Now transfer to output buffer
 int len;
 i = 0;
 int j = 0;
 int k = 0;
 int l = 0;
 int remaining = sizeof(ciphertext);
 buf_ptr2 = ciphertext;
 if (NUM_OF_BLOCKS == 1)
 {
 j=16;
 k=16;
 l=16;
 }
 else if (NUM_OF_BLOCKS == 2)

95

 {
 k=16;
 l=16;
 }
 else if (NUM_OF_BLOCKS == 3)
 {
 l=16;
 }

 // Convert the output in a hexadecimal string in order to publish it (1st)
 while((i+j+k+l) < (sizeof(state)+sizeof(state2)+sizeof(state3)+sizeof(state4)))
 {
 if(i<sizeof(state))
 {
 len = snprintf(buf_ptr2, remaining, "%02x", state[i++]);
 remaining -= len;
 buf_ptr2 += len;
 }
 else if(i>=sizeof(state) && j<sizeof(state2)) // Comment out for only 16 bytes
 {
 len = snprintf(buf_ptr2, remaining, "%02x", state2[j++]);
 remaining -= len;
 buf_ptr2 += len;
 }
 else if(j>=sizeof(state2) && k<sizeof(state3)) // Comment out for only 32 bytes
 {
 len = snprintf(buf_ptr2, remaining, "%02x", state3[k++]);
 remaining -= len;
 buf_ptr2 += len;
 }
 else if(k>=sizeof(state3) && l<sizeof(state4)) // Comment out for only 48 bytes
 {
 len = snprintf(buf_ptr2, remaining, "%02x", state4[l++]);
 remaining -= len;
 buf_ptr2 += len;
 //printf("\nchar:%02x", state4[l-1]);
 }
 }
 //printf("\nPayload:%s",ciphertext);
 mqtt_publish(&conn, NULL, "clients/text", (uint8_t *) ciphertext,
 strlen(ciphertext), MQTT_QOS_LEVEL_0, MQTT_RETAIN_OFF);
 //printf("Published encrypted!);
 // Code for EVALUATION
 powertrace_print(""); // PRINT ENERGEST AFTER PUBLISH
 //END
 }
}
/*---*/

96

static void
connect_to_broker(void)
{
 /* Connect to MQTT server */
 mqtt_connect(&conn, MQTT_DEMO_BROKER_IP_ADDR,
DEFAULT_BROKER_PORT,
 DEFAULT_PUBLISH_INTERVAL * 3);

 state = STATE_CONNECTING;
}
/*---*/
static void
ping_parent(void)
{
 if(uip_ds6_get_global(ADDR_PREFERRED) == NULL) {
 return;
 }

 uip_icmp6_send(uip_ds6_defrt_choose(), ICMP6_ECHO_REQUEST, 0,
 ECHO_REQ_PAYLOAD_LEN);
}
/*---*/
static void
state_machine(void)
{
 switch(state) {
 case STATE_INIT:
 /* If we have just been configured register MQTT connection */
 mqtt_register(&conn, &mqtt_demo_process, client_id, mqtt_event,
 MAX_TCP_SEGMENT_SIZE);

 /*
 * If there is a username and password defined in configuration file
 */
 if(strncasecmp(MQTT_AUTH_USERNAME, "NULL",
strlen(MQTT_AUTH_USERNAME)) != 0 && strlen(MQTT_AUTH_USERNAME) > 1)
{
 if(strncasecmp(MQTT_AUTH_PASSWORD, "NULL",
strlen(MQTT_AUTH_PASSWORD)) == 0) {
 printf("Username set, but no auth password\n");
 state = STATE_ERROR;
 break;
 } else {
 mqtt_set_username_password(&conn, MQTT_AUTH_USERNAME,
 MQTT_AUTH_PASSWORD);
 printf("Will authenticate at connection...\n");
 }
 }

97

 /* _register() will set auto_reconnect. We don't want that. */
 conn.auto_reconnect = 0;
 connect_attempt = 1;

 state = STATE_REGISTERED;
 DBG("Init\n");
 /* Continue */
 case STATE_REGISTERED:
 if(uip_ds6_get_global(ADDR_PREFERRED) != NULL) {
 /* Registered and with a public IP. Connect */
 DBG("Registered. Connect attempt %u\n", connect_attempt);
 ping_parent();
 connect_to_broker();
 } else {
 leds_on(STATUS_LED);
 ctimer_set(&ct, NO_NET_LED_DURATION, publish_led_off, NULL);
 }
 etimer_set(&publish_periodic_timer, NET_CONNECT_PERIODIC);
 return;
 break;
 case STATE_CONNECTING:
 leds_on(STATUS_LED);
 ctimer_set(&ct, CONNECTING_LED_DURATION, publish_led_off, NULL);
 /* Not connected yet. Wait */
 DBG("Connecting (%u)\n", connect_attempt);
 break;
 case STATE_CONNECTED:
 /* Continue */
 case STATE_PUBLISHING:
 /* If the timer expired, the connection is stable. */
 if(timer_expired(&connection_life)) {
 /*
 * Intentionally using 0 here instead of 1: We want RECONNECT_ATTEMPTS
 * attempts if we disconnect after a successful connect
 */
 connect_attempt = 0;
 }

 if(mqtt_ready(&conn) && conn.out_buffer_sent) {
 /* Connected. Publish */
 if(state == STATE_CONNECTED) {
 subscribe(DEFAULT_SUBSCRIBE_TOPIC); // Subscribe on default topic
 subscribeCnt++;
 state = STATE_PUBLISHING;
 }
 else if (subscribeCnt == 1){
 subscribe("leds/red");

98

 subscribeCnt++;
 }
 else {
 leds_on(STATUS_LED);
 ctimer_set(&ct, PUBLISH_LED_ON_DURATION, publish_led_off, NULL);
 publish();
 }
 etimer_set(&publish_periodic_timer, DEFAULT_PUBLISH_INTERVAL);

 DBG("Publishing\n");
 /* Return here so we don't end up rescheduling the timer */
 return;
 } else {
 /*
 * Our publish timer fired, but some MQTT packet is already in flight
 * (either not sent at all, or sent but not fully ACKd).
 *
 * This can mean that we have lost connectivity to our broker or that
 * simply there is some network delay. In both cases, we refuse to
 * trigger a new message and we wait for TCP to either ACK the entire
 * packet after retries, or to timeout and notify us.
 */
 DBG("Publishing... (MQTT state=%d, q=%u)\n", conn.state,
 conn.out_queue_full);
 }
 break;
 case STATE_DISCONNECTED:
 DBG("Disconnected\n");
 if(connect_attempt < RECONNECT_ATTEMPTS ||
 RECONNECT_ATTEMPTS == RETRY_FOREVER) {
 /* Disconnect and backoff */
 clock_time_t interval;
 mqtt_disconnect(&conn);
 connect_attempt++;

 interval = connect_attempt < 3 ? RECONNECT_INTERVAL << connect_attempt :
 RECONNECT_INTERVAL << 3;

 DBG("Disconnected. Attempt %u in %lu ticks\n", connect_attempt, interval);

 etimer_set(&publish_periodic_timer, interval);

 state = STATE_REGISTERED;
 return;
 } else {
 /* Max reconnect attempts reached. Enter error state */
 state = STATE_ERROR;
 DBG("Aborting connection after %u attempts\n", connect_attempt - 1);
 }

99

 break;
 case STATE_CONFIG_ERROR:
 /* Idle away. The only way out is a new config */
 printf("Bad configuration.\n");
 return;
 case STATE_ERROR:
 default:
 leds_on(STATUS_LED);
 /*
 * 'default' should never happen.
 *
 * If we enter here it's because of some error. Stop timers. The only thing
 * that can bring us out is a new config event
 */
 printf("Default case: State=0x%02x\n", state);
 return;
 }

 /* If we didn't return so far, reschedule ourselves */
 etimer_set(&publish_periodic_timer, STATE_MACHINE_PERIODIC);
}
/*---*/
PROCESS_THREAD(mqtt_demo_process, ev, data)
{

 PROCESS_BEGIN();

 printf("-MQTT Client-\n");

 update_config();

 //def_rt_rssi = 0x8000000;
 uip_icmp6_echo_reply_callback_add(&echo_reply_notification,
 echo_reply_handler);
 etimer_set(&echo_request_timer, DEFAULT_RSSI_MEAS_INTERVAL);

 // Start powertracing, once every 15 seconds
 //powertrace_start(CLOCK_SECOND * 15);

 /* Main loop */
 while(1) {

 PROCESS_YIELD();

 if((ev == PROCESS_EVENT_TIMER && data == &publish_periodic_timer) ||
 ev == PROCESS_EVENT_POLL) {
 state_machine();
 }

100

 if(ev == PROCESS_EVENT_TIMER && data == &echo_request_timer) {
 ping_parent();
 etimer_set(&echo_request_timer, DEFAULT_RSSI_MEAS_INTERVAL);
 }
 }

 PROCESS_END();
}
/*---*/

101

 MQTT client with AES-CBC payload encryption (option 2):

/*---
* Author: Sotiris Katsikeas *
* Date: April 2016 *
* Version notes: Includes AES-CBC encryption on MQTT payload - REDUCED *
* ->PROBLEM: Needs enough free RAM to work continuously. *
* Hint: removed multi thread publishing
 ---*/
#include "contiki-conf.h"
#include "mqtt.h"
#include "net/ipv6/sicslowpan.h"
#include "dev/leds.h"
#include <string.h>
 #include "aes.h"
/*---*/
/*
 * Publish to a MQTT broker (e.g. mosquitto) running on the host provided by
MQTT_DEMO_BROKER_IP_ADDR
 */
#define DEFAULT_ORG_ID "mqtt-demo"
/*---*/
/*
 * A timeout used when waiting for something to happen (e.g. to connect or to
 * disconnect)
 */
#define STATE_MACHINE_PERIODIC (CLOCK_SECOND >> 1)
/*---*/
/* Provide visible feedback via LEDS during various states */
/* When connecting to broker */
#define CONNECTING_LED_DURATION (CLOCK_SECOND >> 2)

/* Each time we try to publish */
#define PUBLISH_LED_ON_DURATION (CLOCK_SECOND)
/*---*/
/* Connections and reconnections */
#define RETRY_FOREVER 0xFF
#define RECONNECT_INTERVAL (CLOCK_SECOND * 2)

/*
 * Number of times to try reconnecting to the broker.
 * Can be a limited number (e.g. 3, 10 etc) or can be set to RETRY_FOREVER
 */
#define RECONNECT_ATTEMPTS RETRY_FOREVER
#define CONNECTION_STABLE_TIME (CLOCK_SECOND * 5)
static struct timer connection_life;
static uint8_t connect_attempt;

102

/*---*/
/* Various states */
static uint8_t state;
#define STATE_INIT 0
#define STATE_REGISTERED 1
#define STATE_CONNECTING 2
#define STATE_CONNECTED 3
#define STATE_PUBLISHING 4
#define STATE_DISCONNECTED 5
#define STATE_NEWCONFIG 6
#define STATE_CONFIG_ERROR 0xFE
#define STATE_ERROR 0xFF
/*---*/
#define RSSI_MEASURE_INTERVAL_MAX 86400 /* secs: 1 day */
#define RSSI_MEASURE_INTERVAL_MIN 5 /* secs */
#define PUBLISH_INTERVAL_MAX 86400 /* secs: 1 day */
#define PUBLISH_INTERVAL_MIN 5 /* secs */
/*---*/
/* A timeout used when waiting to connect to a network */
#define NET_CONNECT_PERIODIC (CLOCK_SECOND >> 2)
#define NO_NET_LED_DURATION (NET_CONNECT_PERIODIC >> 1)
/*---*/
/* Default configuration values */
#define DEFAULT_TYPE_ID "cc2420"
#define DEFAULT_PUBLISH_TOPIC "clients/text"
#define DEFAULT_SUBSCRIBE_TOPIC "clients/+"
#define DEFAULT_BROKER_PORT 1883
#define DEFAULT_PUBLISH_INTERVAL (CLOCK_SECOND * 20)
#define DEFAULT_KEEP_ALIVE_TIMER 60
#define DEFAULT_RSSI_MEAS_INTERVAL (CLOCK_SECOND * 30)
/*---*/
/* Payload length of ICMPv6 echo requests used to measure RSSI with def rt */
#define ECHO_REQ_PAYLOAD_LEN 20
/*---*/
PROCESS_NAME(mqtt_demo_process);
AUTOSTART_PROCESSES(&mqtt_demo_process);
/*---*/
/* Maximum TCP segment size for outgoing segments of our socket */
#define MAX_TCP_SEGMENT_SIZE 32
/*---*/
#define STATUS_LED LEDS_GREEN
#define STATE_LED LEDS_BLUE
/*---*/
/*
 * Buffers for Client ID
 * Make sure they are large enough to hold the entire respective string
 *
 */
#define BUFFER_SIZE 32 // Reduced that to save space
static char client_id[BUFFER_SIZE];

103

/*---*/
/*
 * The MQTT connection
 */
static struct mqtt_connection conn;
/*---*/
static struct mqtt_message *msg_ptr = 0;
static struct etimer publish_periodic_timer;
static struct ctimer ct;
static struct ctimer ct2; // My counter
static uint16_t seq_nr_value = 0;
int subscribeCnt = 0;
/*---*/
/* Parent RSSI functionality */
static struct uip_icmp6_echo_reply_notification echo_reply_notification;
static struct etimer echo_request_timer;
static int def_rt_rssi = 0;
/*---*/
/* Defines for encryption */
/*#define PRINTU8(text, orig, len) do { \
 printf(text); int i = 0; \
 while(i<len) { printf("%x", orig[i++] & 0xff); } \
 printf("\n"); \
 } while(0)
*/
/*---*/
/*
 * The main buffers for encryption and publish
 */
#define CIPHER_BLOCKS_NUMBER 4 // Increase this for longer message but also more
RAM!
static unsigned char *buf_ptr2; // Pointer for ciphertext (in hex format) buffer
static unsigned char app_buff2[2*CIPHER_BLOCKS_NUMBER*N_BLOCK+2];
static uint8_t key1[16] = { 0x00 , 0x01 , 0x02 , 0x03 ,
 0x04 , 0x05 , 0x06 , 0x07 ,
 0x08 , 0x09 , 0x0A , 0x0B ,
 0x0C , 0x0D , 0x0E , 0x0F };
static unsigned char iv[N_BLOCK], iv1[N_BLOCK];
static aes_context ctx[1];
/*---*/
PROCESS(mqtt_demo_process, "MQTT Demo");
/*---*/
static void
echo_reply_handler(uip_ipaddr_t *source, uint8_t ttl, uint8_t *data,
 uint16_t datalen)
{
 if(uip_ip6addr_cmp(source, uip_ds6_defrt_choose())) {
 def_rt_rssi = sicslowpan_get_last_rssi();
 }

104

}
/*---*/
static void
publish_led_off(void *d)
{
 leds_off(STATUS_LED);
}
/*---*/
static void
status_led_off(void *d)
{
 leds_off(STATE_LED);
}
/*---*/
static void
pub_handler(const char *topic, uint16_t topic_len, const uint8_t *chunk,
 uint16_t chunk_len)
{
 //printf("Pub Handler: topic='%s' (len=%u), chunk_len=%u\n", topic, topic_len,
chunk_len);

 /* If the tag != leds, ignore */
 if(strncmp(&topic[0], "leds", 4) == 0 && strncmp(&topic[5], "red", 3) == 0) {
 if(chunk[0] == '1') {
 leds_on(LEDS_RED);
 } else if(chunk[0] == '0') {
 leds_off(LEDS_RED);
 }
 }
 // Publish with encrypted payload detected on topic with tag = text
 else if(strncmp(&topic[0], "clients", 7) == 0 && strncmp(&topic[8], "text", 4) == 0) {

 //printf("Got encrypted @ topic='%s', chunk='%s' (len=%u)\n", topic, chunk,
chunk_len);
 static unsigned char in[CIPHER_BLOCKS_NUMBER*N_BLOCK],
res[CIPHER_BLOCKS_NUMBER*N_BLOCK];
 int i;
 static char hexstring[4];
 static char *hexstr_ptr;
 hexstr_ptr = hexstring;
 int j = 0;
 for (i=0; i<chunk_len-1;i+=2){
 snprintf(hexstr_ptr, 2, "%c", chunk[i]);
 snprintf(hexstr_ptr+1, 2, "%c", chunk[i+1]);
 //printf("Str: %s\n", hexstring);
 int number = (int)strtol(hexstring, NULL, 16); //Convert string hex value to integer
 in[j] = number;
 j++;

105

 }
 //PRINTU8("in: ", in, sizeof(in));
 //printf("#in: %s\n", in);

 aes_cbc_decrypt(in, res, sizeof(in)/N_BLOCK, iv1, ctx);
 //printf("#decrypt_return: %d\n",c);
 //PRINTU8("res: ", res, sizeof(res));
 res[CIPHER_BLOCKS_NUMBER*N_BLOCK]=0; // Null terminate the buffer to stop
printf after the plaintext
 printf("Plaintext: %s\n", res);
 }
 return;
}
/*---*/
static void
mqtt_event(struct mqtt_connection *m, mqtt_event_t event, void *data)
{
 switch(event) {
 case MQTT_EVENT_CONNECTED: {
 DBG("APP - Application has a MQTT connection\n");
 timer_set(&connection_life, CONNECTION_STABLE_TIME);
 state = STATE_CONNECTED;
 printf("Connected!\n");
 leds_on(STATE_LED);
 ctimer_set(&ct2, 20*PUBLISH_LED_ON_DURATION, status_led_off, NULL);
 break;
 }
 case MQTT_EVENT_DISCONNECTED: {
 DBG("APP - MQTT Disconnect. Reason %u\n", *((mqtt_event_t *)data));

 state = STATE_DISCONNECTED;
 process_poll(&mqtt_demo_process);
 printf("Disconnected :O\n");
 leds_off(STATE_LED);
 break;
 }
 case MQTT_EVENT_PUBLISH: {
 msg_ptr = data;

 /* Implement first_flag in publish message? */
 if(msg_ptr->first_chunk) {
 msg_ptr->first_chunk = 0;
 printf("*** Received PUB on '%s'. Payload "
 "size: %ib. Content: %s\n\n",
 msg_ptr->topic, msg_ptr->payload_length, msg_ptr->payload_chunk); // ***
DEBUG ONLY !
 }

106

 pub_handler(msg_ptr->topic, strlen(msg_ptr->topic), msg_ptr->payload_chunk,
 msg_ptr->payload_length); // Call the pub handler for led action!
 break;
 }
 case MQTT_EVENT_SUBACK: {
 DBG("APP - Application is subscribed to topic successfully\n");
 break;
 }
 case MQTT_EVENT_UNSUBACK: {
 DBG("APP - Application is unsubscribed to topic successfully\n");
 break;
 }
 case MQTT_EVENT_PUBACK: {
 DBG("APP - Publishing complete.\n");
 break;
 }
 default:
 DBG("APP - Application got a unhandled MQTT event: %i\n", event);
 break;
 }
}
/*---*/
static int
construct_client_id(void)
{
 snprintf(client_id, BUFFER_SIZE, "d:%s:%s:%02x%02x%02x%02x%02x%02x",
 DEFAULT_ORG_ID, DEFAULT_TYPE_ID,
 linkaddr_node_addr.u8[0], linkaddr_node_addr.u8[1],
 linkaddr_node_addr.u8[2], linkaddr_node_addr.u8[5],
 linkaddr_node_addr.u8[6], linkaddr_node_addr.u8[7]);

 return 1;
}
/*---*/
static void
update_config(void)
{
 if(construct_client_id() == 0) {
 /* Fatal error. Client ID larger than the buffer */
 state = STATE_CONFIG_ERROR;
 return;
 }
 /* Reset the counter */
 seq_nr_value = 0;

 state = STATE_INIT;

 /*

107

 * Schedule next timer event ASAP
 *
 * If we entered an error state then we won't do anything when it fires.
 *
 * Since the error at this stage is a config error, we will only exit this
 * error state if we get a new config.
 */
 etimer_set(&publish_periodic_timer, 0);

 return;
}
/*---*/
static void
subscribe(char *topic)
{
 /* Subscribe MQTT topic in IBM quickstart format */
 mqtt_status_t status;

 status = mqtt_subscribe(&conn, NULL, topic, MQTT_QOS_LEVEL_0);

 DBG("APP - Subscribing!\n");
 if(status == MQTT_STATUS_OUT_QUEUE_FULL) {
 DBG("APP - Tried to subscribe but command queue was full!\n");
 }
}
/*---*/
static void
publish(void)
{
 /* Publish MQTT */
 printf("Encrpyting...\n");

 uint8_t data[] = "A message long enough to test encryption and decryption! 1234567";
 unsigned char out[CIPHER_BLOCKS_NUMBER*N_BLOCK],
res[CIPHER_BLOCKS_NUMBER*N_BLOCK];
 int i=0;

 //PRINTU8("Key: ", key1, sizeof(key1));
 //PRINTU8("Data: ", data, sizeof(data));
 //printf("#Data: %s\n", data);

 // Randomly initialize the IV with Contiki's random function
 for(i=0;i<N_BLOCK;i++){
 iv[i] = random_rand();
 iv1[i] = iv[i];
 }
 aes_cbc_encrypt(data, out, sizeof(data)/N_BLOCK , iv, ctx);
 //PRINTU8("out: ", out, sizeof(out));
 //printf("#out: %s\n", out);

108

 int len;
 int j = 0;
 int remaining = sizeof(app_buff2);
 buf_ptr2 = app_buff2;

 // Convert the output in a hexadecimal string in order to publish it
 while(j<sizeof(out))
 {
 len = snprintf(buf_ptr2, remaining, "%02x", out[j++]);
 remaining -= len;
 buf_ptr2 += len;
 }

 mqtt_publish(&conn, NULL, DEFAULT_PUBLISH_TOPIC, (uint8_t *) app_buff2,
 sizeof(app_buff2), MQTT_QOS_LEVEL_0, MQTT_RETAIN_OFF);
 printf("Published encrypted!\n");
}
/*---*/
static void
connect_to_broker(void)
{
 /* Connect to MQTT server */
 mqtt_connect(&conn, MQTT_DEMO_BROKER_IP_ADDR,
DEFAULT_BROKER_PORT,
 DEFAULT_PUBLISH_INTERVAL * 3);

 state = STATE_CONNECTING;
}
/*---*/
static void
ping_parent(void)
{
 if(uip_ds6_get_global(ADDR_PREFERRED) == NULL) {
 return;
 }

 uip_icmp6_send(uip_ds6_defrt_choose(), ICMP6_ECHO_REQUEST, 0,
 ECHO_REQ_PAYLOAD_LEN);
}
/*---*/
static void
state_machine(void)
{
 switch(state) {
 case STATE_INIT:
 /* If we have just been configured register MQTT connection */
 mqtt_register(&conn, &mqtt_demo_process, client_id, mqtt_event,

109

 MAX_TCP_SEGMENT_SIZE);

 /*
 * If there is a username and password defined in configuration file
 */
 if(strncasecmp(MQTT_AUTH_USERNAME, "NULL",
strlen(MQTT_AUTH_USERNAME)) != 0 && strlen(MQTT_AUTH_USERNAME) > 1)
{
 if(strncasecmp(MQTT_AUTH_PASSWORD, "NULL",
strlen(MQTT_AUTH_PASSWORD)) == 0) {
 printf("Username set, but no auth password\n");
 state = STATE_ERROR;
 break;
 } else {
 mqtt_set_username_password(&conn, MQTT_AUTH_USERNAME,
 MQTT_AUTH_PASSWORD);
 printf("Will authenticate at connection...\n");
 }
 }

 /* _register() will set auto_reconnect. We don't want that. */
 conn.auto_reconnect = 0;
 connect_attempt = 1;

 state = STATE_REGISTERED;
 DBG("Init\n");
 /* Continue */
 case STATE_REGISTERED:
 if(uip_ds6_get_global(ADDR_PREFERRED) != NULL) {
 /* Registered and with a public IP. Connect */
 DBG("Registered. Connect attempt %u\n", connect_attempt);
 ping_parent();
 connect_to_broker();
 } else {
 leds_on(STATUS_LED);
 ctimer_set(&ct, NO_NET_LED_DURATION, publish_led_off, NULL);
 }
 etimer_set(&publish_periodic_timer, NET_CONNECT_PERIODIC);
 return;
 break;
 case STATE_CONNECTING:
 leds_on(STATUS_LED);
 ctimer_set(&ct, CONNECTING_LED_DURATION, publish_led_off, NULL);
 /* Not connected yet. Wait */
 DBG("Connecting (%u)\n", connect_attempt);
 break;
 case STATE_CONNECTED:
 /* Continue */

110

 case STATE_PUBLISHING:
 /* If the timer expired, the connection is stable. */
 if(timer_expired(&connection_life)) {
 /*
 * Intentionally using 0 here instead of 1: We want RECONNECT_ATTEMPTS
 * attempts if we disconnect after a successful connect
 */
 connect_attempt = 0;
 }

 if(mqtt_ready(&conn) && conn.out_buffer_sent) {
 /* Connected. Publish */
 if(state == STATE_CONNECTED) {
 subscribe(DEFAULT_SUBSCRIBE_TOPIC); // Subscribe on default topic
 subscribeCnt++;
 state = STATE_PUBLISHING;
 }
 else if (subscribeCnt == 1){
 subscribe("leds/red");
 subscribeCnt++;
 }
 else {
 leds_on(STATUS_LED);
 ctimer_set(&ct, PUBLISH_LED_ON_DURATION, publish_led_off, NULL);
 publish();
 }
 etimer_set(&publish_periodic_timer, DEFAULT_PUBLISH_INTERVAL);

 DBG("Publishing\n");
 /* Return here so we don't end up rescheduling the timer */
 return;
 } else {
 /*
 * Our publish timer fired, but some MQTT packet is already in flight
 * (either not sent at all, or sent but not fully ACKd).
 *
 * This can mean that we have lost connectivity to our broker or that
 * simply there is some network delay. In both cases, we refuse to
 * trigger a new message and we wait for TCP to either ACK the entire
 * packet after retries, or to timeout and notify us.
 */
 DBG("Publishing... (MQTT state=%d, q=%u)\n", conn.state,
 conn.out_queue_full);
 }
 break;
 case STATE_DISCONNECTED:
 DBG("Disconnected\n");
 if(connect_attempt < RECONNECT_ATTEMPTS ||
 RECONNECT_ATTEMPTS == RETRY_FOREVER) {

111

 /* Disconnect and backoff */
 clock_time_t interval;
 mqtt_disconnect(&conn);
 connect_attempt++;

 interval = connect_attempt < 3 ? RECONNECT_INTERVAL << connect_attempt :
 RECONNECT_INTERVAL << 3;

 DBG("Disconnected. Attempt %u in %lu ticks\n", connect_attempt, interval);

 etimer_set(&publish_periodic_timer, interval);

 state = STATE_REGISTERED;
 return;
 } else {
 /* Max reconnect attempts reached. Enter error state */
 state = STATE_ERROR;
 DBG("Aborting connection after %u attempts\n", connect_attempt - 1);
 }
 break;
 case STATE_CONFIG_ERROR:
 /* Idle away. The only way out is a new config */
 printf("Bad configuration.\n");
 return;
 case STATE_ERROR:
 default:
 leds_on(STATUS_LED);
 /*
 * 'default' should never happen.
 *
 * If we enter here it's because of some error. Stop timers. The only thing
 * that can bring us out is a new config event
 */
 printf("Default case: State=0x%02x\n", state);
 return;
 }

 /* If we didn't return so far, reschedule ourselves */
 etimer_set(&publish_periodic_timer, STATE_MACHINE_PERIODIC);
}
/*---*/
PROCESS_THREAD(mqtt_demo_process, ev, data)
{

 PROCESS_BEGIN();

 printf("-MQTT Client-\n");

 update_config();

112

 //def_rt_rssi = 0x8000000;
 uip_icmp6_echo_reply_callback_add(&echo_reply_notification,
 echo_reply_handler);
 etimer_set(&echo_request_timer, DEFAULT_RSSI_MEAS_INTERVAL);

 // Initialize the Contiki's random number generator
 random_init(518);
 // Initialize the AES context and set key
 memset(ctx->ksch, '\0', 240); //(N_MAX_ROUNDS + 1) * N_BLOCK =
(14+1)*16=240
 ctx->rnd = 0;
 aes_set_key(key1,N_BLOCK,ctx);
 //printf("#Set_key_return: %d\n",a);

 /* Main loop */
 while(1) {

 PROCESS_YIELD();

 if((ev == PROCESS_EVENT_TIMER && data == &publish_periodic_timer) ||
 ev == PROCESS_EVENT_POLL) {
 state_machine();
 }

 if(ev == PROCESS_EVENT_TIMER && data == &echo_request_timer) {
 ping_parent();
 etimer_set(&echo_request_timer, DEFAULT_RSSI_MEAS_INTERVAL);
 }
 }

 PROCESS_END();
}

113

 MQTT client with AES-OCB payload encryption – Publishing
(encrypting) mote (option 3):

/*---
* Author: Sotiris Katsikeas *
* Date: April 2016 *
* Version notes: Includes OCB encryption on MQTT payload - REDUCED *
* Hints: Removed multi thread subscribe and publishing + ONLY PUBLISH (TX) *
 ---*/
#include "contiki-conf.h"
#include "mqtt.h"
#include "net/ipv6/sicslowpan.h"
#include "dev/leds.h"
#include <string.h>
#include "ocb.h"
/*---*/
/*
 * Publish to a MQTT broker (e.g. mosquitto) running on the host provided by
MQTT_DEMO_BROKER_IP_ADDR
 */
#define DEFAULT_ORG_ID "mqtt-demo"
/*---*/
/*
 * A timeout used when waiting for something to happen (e.g. to connect or to
 * disconnect)
 */
#define STATE_MACHINE_PERIODIC (CLOCK_SECOND >> 1)
/*---*/
/* Provide visible feedback via LEDS during various states */
/* When connecting to broker */
#define CONNECTING_LED_DURATION (CLOCK_SECOND >> 2)

/* Each time we try to publish */
#define PUBLISH_LED_ON_DURATION (CLOCK_SECOND)
/*---*/
/* Connections and reconnections */
#define RETRY_FOREVER 0xFF
#define RECONNECT_INTERVAL (CLOCK_SECOND * 2)

/*
 * Number of times to try reconnecting to the broker.
 * Can be a limited number (e.g. 3, 10 etc) or can be set to RETRY_FOREVER
 */
#define RECONNECT_ATTEMPTS RETRY_FOREVER
#define CONNECTION_STABLE_TIME (CLOCK_SECOND * 5)
static struct timer connection_life;
static uint8_t connect_attempt;
/*---*/

114

/* Various states */
static uint8_t state;
#define STATE_INIT 0
#define STATE_REGISTERED 1
#define STATE_CONNECTING 2
#define STATE_CONNECTED 3
#define STATE_PUBLISHING 4
#define STATE_DISCONNECTED 5
#define STATE_NEWCONFIG 6
#define STATE_CONFIG_ERROR 0xFE
#define STATE_ERROR 0xFF
/*---*/
#define RSSI_MEASURE_INTERVAL_MAX 86400 /* secs: 1 day */
#define RSSI_MEASURE_INTERVAL_MIN 5 /* secs */
#define PUBLISH_INTERVAL_MAX 86400 /* secs: 1 day */
#define PUBLISH_INTERVAL_MIN 5 /* secs */
/*---*/
/* A timeout used when waiting to connect to a network */
#define NET_CONNECT_PERIODIC (CLOCK_SECOND >> 2)
#define NO_NET_LED_DURATION (NET_CONNECT_PERIODIC >> 1)
/*---*/
/* Default configuration values */
#define DEFAULT_TYPE_ID "cc2420"
#define DEFAULT_PUBLISH_TOPIC "clients/text"
#define DEFAULT_SUBSCRIBE_TOPIC "clients/+"
#define DEFAULT_BROKER_PORT 1883
#define DEFAULT_PUBLISH_INTERVAL (CLOCK_SECOND * 20)
#define DEFAULT_KEEP_ALIVE_TIMER 60
#define DEFAULT_RSSI_MEAS_INTERVAL (CLOCK_SECOND * 30)
/*---*/
/* Payload length of ICMPv6 echo requests used to measure RSSI with def rt */
#define ECHO_REQ_PAYLOAD_LEN 20
/*---*/
PROCESS_NAME(mqtt_demo_process);
AUTOSTART_PROCESSES(&mqtt_demo_process);
/*---*/
/* Maximum TCP segment size for outgoing segments of our socket */
#define MAX_TCP_SEGMENT_SIZE 32
/*---*/
#define STATUS_LED LEDS_GREEN
#define STATE_LED LEDS_BLUE
/*---*/
/*
 * Buffers for Client ID
 * Make sure they are large enough to hold the entire respective string
 *
 */
#define BUFFER_SIZE 32 // Reduced that to save space
static char client_id[BUFFER_SIZE];
/*---*/

115

/*
 * The MQTT connection
 */
static struct mqtt_connection conn;
/*---*/
static struct mqtt_message *msg_ptr = 0;
static struct etimer publish_periodic_timer;
static struct ctimer ct;
static struct ctimer ct2; // My counter
static uint16_t seq_nr_value = 0;
/*---*/
/* Parent RSSI functionality */
static struct uip_icmp6_echo_reply_notification echo_reply_notification;
static struct etimer echo_request_timer;
static int def_rt_rssi = 0;
/*---*/
/* Defines for encryption and authentication */
#define HEADER_LEN 16
#define NONCE_LEN 16
#define TAG_LEN 16
#define MAX_TXT_LEN 3*16 // Reduce it to save RAM
#define KEY_LEN 16

#define PRINTU8(text, orig, len) do { \
 printf(text); int i = 0; \
 while(i<len) { printf("%x", orig[i++] & 0xff); } \
 printf("\n"); \
 } while(0)

/*---*/
/*
 * The main buffers for encryption and publish
 */
//static char *buf_ptr2; // Pointer for ciphertext buffer
static unsigned char key[KEY_LEN];
static unsigned char *buf_ptr2; // Pointer for ciphertext+tag (in hex format) buffer
static unsigned char app_buff2[2*MAX_TXT_LEN+2*TAG_LEN+2];
static uint8_t data[MAX_TXT_LEN];
static ocb_state *OCBstate;
static byte ciphertext[MAX_TXT_LEN];
static byte plain[MAX_TXT_LEN];
static byte tag[TAG_LEN];
static byte nonce[NONCE_LEN] = { 0x3F , 0xC4 , 0xE0 , 0xD8 ,
 0x6A , 0x7B , 0x04 , 0x30 ,
 0xD8 , 0xCD , 0xB7 , 0x80 ,
 0x70 , 0xB4 , 0xC5 , 0x5A };
static int pubCnt;
/*---*/
PROCESS(mqtt_demo_process, "MQTT Demo");

116

/*---*/
static void
echo_reply_handler(uip_ipaddr_t *source, uint8_t ttl, uint8_t *data,
 uint16_t datalen)
{
 if(uip_ip6addr_cmp(source, uip_ds6_defrt_choose())) {
 def_rt_rssi = sicslowpan_get_last_rssi();
 }
}
/*---*/
static void
publish_led_off(void *d)
{
 leds_off(STATUS_LED);
}
/*---*/
static void
status_led_off(void *d)
{
 leds_off(STATE_LED);
}
/*---*/
static void
pub_handler(const char *topic, uint16_t topic_len, const uint8_t *chunk,
 uint16_t chunk_len)
{

// THIS IS INTENTIONALLY LEFT BLANK ;)
}
 return;
}
/*---*/
static void
mqtt_event(struct mqtt_connection *m, mqtt_event_t event, void *data)
{
 switch(event) {
 case MQTT_EVENT_CONNECTED: {
 DBG("APP - Application has a MQTT connection\n");
 timer_set(&connection_life, CONNECTION_STABLE_TIME);
 state = STATE_CONNECTED;
 printf("Connected!\n");
 leds_on(STATE_LED);
 ctimer_set(&ct2, 20*PUBLISH_LED_ON_DURATION, status_led_off, NULL);
 break;
 }
 case MQTT_EVENT_DISCONNECTED: {
 DBG("APP - MQTT Disconnect. Reason %u\n", *((mqtt_event_t *)data));

 state = STATE_DISCONNECTED;

117

 process_poll(&mqtt_demo_process);
 printf("Disconnected :O\n");
 leds_off(STATE_LED);
 break;
 }
 case MQTT_EVENT_PUBLISH: {
 msg_ptr = data;

 /* Implement first_flag in publish message? */
 if(msg_ptr->first_chunk) {
 msg_ptr->first_chunk = 0;
 //printf("*** Received PUB on '%s'. Payload "
 // "size: %ib. Content: %s\n\n",
 // msg_ptr->topic, msg_ptr->payload_length, msg_ptr->payload_chunk); // ***
DEBUG ONLY !
 }

 pub_handler(msg_ptr->topic, strlen(msg_ptr->topic), msg_ptr->payload_chunk,
 msg_ptr->payload_length); // Call the pub handler for led action!
 break;
 }
 case MQTT_EVENT_SUBACK: {
 DBG("APP - Application is subscribed to topic successfully\n");
 break;
 }
 case MQTT_EVENT_UNSUBACK: {
 DBG("APP - Application is unsubscribed to topic successfully\n");
 break;
 }
 case MQTT_EVENT_PUBACK: {
 DBG("APP - Publishing complete.\n");
 break;
 }
 default:
 DBG("APP - Application got a unhandled MQTT event: %i\n", event);
 break;
 }
}
/*---*/
static int
construct_client_id(void)
{
 snprintf(client_id, BUFFER_SIZE, "d:%s:%s:%02x%02x%02x%02x%02x%02x",
 DEFAULT_ORG_ID, DEFAULT_TYPE_ID,
 linkaddr_node_addr.u8[0], linkaddr_node_addr.u8[1],
 linkaddr_node_addr.u8[2], linkaddr_node_addr.u8[5],
 linkaddr_node_addr.u8[6], linkaddr_node_addr.u8[7]);
 return 1;

118

}
/*---*/
static void
update_config(void)
{
 if(construct_client_id() == 0) {
 /* Fatal error. Client ID larger than the buffer */
 state = STATE_CONFIG_ERROR;
 return;
 }
 /* Reset the counter */
 seq_nr_value = 0;

 state = STATE_INIT;

 /*
 * Schedule next timer event ASAP
 *
 * If we entered an error state then we won't do anything when it fires.
 *
 * Since the error at this stage is a config error, we will only exit this
 * error state if we get a new config.
 */
 etimer_set(&publish_periodic_timer, 0);

 return;
}
/*---*/
static void
subscribe(char *topic)
{
 /* Subscribe MQTT topic in IBM quickstart format */
 mqtt_status_t status;

 status = mqtt_subscribe(&conn, NULL, topic, MQTT_QOS_LEVEL_0);

 DBG("APP - Subscribing!\n");
 if(status == MQTT_STATUS_OUT_QUEUE_FULL) {
 DBG("APP - Tried to subscribe but command queue was full!\n");
 }
}
/*---*/
static void
publish(void)
{
 /* Publish MQTT */
 //printf("Encrpyting...\n");

 int i;

119

 // Initialize the key
 for(i=0;i<KEY_LEN;i++){
 key[i] = random_rand();
 }
 //strcpy(data, "A message long enough to test! 12345678-%");
 static const char plaintext[] = "A message long enough to test! 12345678-";
 snprintf(data, MAX_TXT_LEN, "%s%d", plaintext, pubCnt++%10);
 //PRINTU8("Key: ", key, sizeof(key));
 //PRINTU8("Data: ", data, sizeof(data));
 //printf("#Data: %s\n", data);

 if(!ocb_encrypt(OCBstate,nonce,data,sizeof(data),ciphertext,tag)) printf("ERROR
encrypt\n");
 else{
 //PRINTU8("ciphertext: ", ciphertext, sizeof(ciphertext));
 //printf("Ciphertext: %s\n", ciphertext);
 }

 int len;
 int j = 0;
 int remaining = sizeof(app_buff2);
 buf_ptr2 = app_buff2;
 // Convert the Ciphertext in a hexadecimal string in order to publish it
 while(j<sizeof(ciphertext))
 {
 len = snprintf(buf_ptr2, remaining, "%02x", ciphertext[j++]);
 remaining -= len;
 buf_ptr2 += len;
 }

 // Convert the Tag in a hexadecimal string in order to publish it
 j=0;
 while(j<sizeof(ciphertext))
 {
 len = snprintf(buf_ptr2, remaining, "%02x", tag[j++]);
 remaining -= len;
 buf_ptr2 += len;
 }

 mqtt_publish(&conn, NULL, DEFAULT_PUBLISH_TOPIC, (uint8_t *) app_buff2,
 sizeof(app_buff2), MQTT_QOS_LEVEL_0, MQTT_RETAIN_OFF);
 printf("Published encrypted!\n");
 PRINTU8("ciphertext: ", ciphertext, sizeof(ciphertext));
 PRINTU8("Tag: ", tag, sizeof(tag));
}
/*---*/
static void
connect_to_broker(void)

120

{
 /* Connect to MQTT server */
 mqtt_connect(&conn, MQTT_DEMO_BROKER_IP_ADDR,
DEFAULT_BROKER_PORT,
 DEFAULT_PUBLISH_INTERVAL * 3);

 state = STATE_CONNECTING;
}
/*---*/
static void
ping_parent(void)
{
 if(uip_ds6_get_global(ADDR_PREFERRED) == NULL) {
 return;
 }

 uip_icmp6_send(uip_ds6_defrt_choose(), ICMP6_ECHO_REQUEST, 0,
 ECHO_REQ_PAYLOAD_LEN);
}
/*---*/
static void
state_machine(void)
{
 switch(state) {
 case STATE_INIT:
 /* If we have just been configured register MQTT connection */
 mqtt_register(&conn, &mqtt_demo_process, client_id, mqtt_event,
 MAX_TCP_SEGMENT_SIZE);

 /*
 * If there is a username and password defined in configuration file
 */
 if(strncasecmp(MQTT_AUTH_USERNAME, "NULL",
strlen(MQTT_AUTH_USERNAME)) != 0 && strlen(MQTT_AUTH_USERNAME) > 1)
{
 if(strncasecmp(MQTT_AUTH_PASSWORD, "NULL",
strlen(MQTT_AUTH_PASSWORD)) == 0) {
 printf("Username set, but no auth password\n");
 state = STATE_ERROR;
 break;
 } else {
 mqtt_set_username_password(&conn, MQTT_AUTH_USERNAME,
 MQTT_AUTH_PASSWORD);
 printf("Will authenticate at connection...\n");
 }
 }

 /* _register() will set auto_reconnect. We don't want that. */

121

 conn.auto_reconnect = 0;
 connect_attempt = 1;

 state = STATE_REGISTERED;
 DBG("Init\n");
 /* Continue */
 case STATE_REGISTERED:
 if(uip_ds6_get_global(ADDR_PREFERRED) != NULL) {
 /* Registered and with a public IP. Connect */
 DBG("Registered. Connect attempt %u\n", connect_attempt);
 ping_parent();
 connect_to_broker();
 } else {
 leds_on(STATUS_LED);
 ctimer_set(&ct, NO_NET_LED_DURATION, publish_led_off, NULL);
 }
 etimer_set(&publish_periodic_timer, NET_CONNECT_PERIODIC);
 return;
 break;
 case STATE_CONNECTING:
 leds_on(STATUS_LED);
 ctimer_set(&ct, CONNECTING_LED_DURATION, publish_led_off, NULL);
 /* Not connected yet. Wait */
 DBG("Connecting (%u)\n", connect_attempt);
 break;
 case STATE_CONNECTED:
 /* Continue */
 case STATE_PUBLISHING:
 /* If the timer expired, the connection is stable. */
 if(timer_expired(&connection_life)) {
 /*
 * Intentionally using 0 here instead of 1: We want RECONNECT_ATTEMPTS
 * attempts if we disconnect after a successful connect
 */
 connect_attempt = 0;
 }

 if(mqtt_ready(&conn) && conn.out_buffer_sent) {
 /* Connected. Publish */
 if(state == STATE_CONNECTED) {
 subscribe(DEFAULT_SUBSCRIBE_TOPIC); // Subscribe on default topic
 //subscribeCnt++;
 state = STATE_PUBLISHING;
 }
 /*else if (subscribeCnt == 1){
 subscribe("leds/red");
 subscribeCnt++;
 }*/
 else {

122

 leds_on(STATUS_LED);
 ctimer_set(&ct, PUBLISH_LED_ON_DURATION, publish_led_off, NULL);
 publish();
 }
 etimer_set(&publish_periodic_timer, DEFAULT_PUBLISH_INTERVAL);

 DBG("Publishing\n");
 /* Return here so we don't end up rescheduling the timer */
 return;
 } else {
 /*
 * Our publish timer fired, but some MQTT packet is already in flight
 * (either not sent at all, or sent but not fully ACKd).
 *
 * This can mean that we have lost connectivity to our broker or that
 * simply there is some network delay. In both cases, we refuse to
 * trigger a new message and we wait for TCP to either ACK the entire
 * packet after retries, or to timeout and notify us.
 */
 DBG("Publishing... (MQTT state=%d, q=%u)\n", conn.state,
 conn.out_queue_full);
 }
 break;
 case STATE_DISCONNECTED:
 DBG("Disconnected\n");
 if(connect_attempt < RECONNECT_ATTEMPTS ||
 RECONNECT_ATTEMPTS == RETRY_FOREVER) {
 /* Disconnect and backoff */
 clock_time_t interval;
 mqtt_disconnect(&conn);
 connect_attempt++;

 interval = connect_attempt < 3 ? RECONNECT_INTERVAL << connect_attempt :
 RECONNECT_INTERVAL << 3;

 DBG("Disconnected. Attempt %u in %lu ticks\n", connect_attempt, interval);

 etimer_set(&publish_periodic_timer, interval);

 state = STATE_REGISTERED;
 return;
 } else {
 /* Max reconnect attempts reached. Enter error state */
 state = STATE_ERROR;
 DBG("Aborting connection after %u attempts\n", connect_attempt - 1);
 }
 break;
 case STATE_CONFIG_ERROR:
 /* Idle away. The only way out is a new config */

123

 printf("Bad configuration.\n");
 return;
 case STATE_ERROR:
 default:
 leds_on(STATUS_LED);
 /*
 * 'default' should never happen.
 *
 * If we enter here it's because of some error. Stop timers. The only thing
 * that can bring us out is a new config event
 */
 printf("Default case: State=0x%02x\n", state);
 return;
 }

 /* If we didn't return so far, reschedule ourselves */
 etimer_set(&publish_periodic_timer, STATE_MACHINE_PERIODIC);
}
/*---*/
PROCESS_THREAD(mqtt_demo_process, ev, data)
{

 PROCESS_BEGIN();

 printf("-MQTT Client OCB_TX-\n");

 update_config();

 //def_rt_rssi = 0x8000000;
 uip_icmp6_echo_reply_callback_add(&echo_reply_notification,
 echo_reply_handler);
 etimer_set(&echo_request_timer, DEFAULT_RSSI_MEAS_INTERVAL);

 // Initialize the Contiki's random number generator and j
 random_init(518);
 int j = 0;
 // Initialize OCB
 OCBstate = ocb_init(key,TAG_LEN,NONCE_LEN,AES256);
 /* if(OCBstate == NULL){
 printf("Can't init OCB!\n\n");
 }*/

 /* Main loop */
 while(1) {

 PROCESS_YIELD();

 if((ev == PROCESS_EVENT_TIMER && data == &publish_periodic_timer) ||
 ev == PROCESS_EVENT_POLL) {

124

 state_machine();
 }

 if(ev == PROCESS_EVENT_TIMER && data == &echo_request_timer) {
 ping_parent();
 etimer_set(&echo_request_timer, DEFAULT_RSSI_MEAS_INTERVAL);
 }
 }

 PROCESS_END();
}
/*---*/

125

 MQTT client with AES-OCB payload encryption – Receiving
(decrypting) mote (option 3):

/*---
* Author: Sotiris Katsikeas *
* Date: April 2016 *
* Version notes: Includes OCB encryption on MQTT payload - REDUCED *
* Hints: Removed multi thread subscribe and publishing
 ---*/
#include "contiki-conf.h"
#include "mqtt.h"
#include "net/ipv6/sicslowpan.h"
#include "dev/leds.h"
#include <string.h>
#include "ocb.h"
/*---*/
/*
 * Publish to a MQTT broker (e.g. mosquitto) running on the host provided by
MQTT_DEMO_BROKER_IP_ADDR
 */
#define DEFAULT_ORG_ID "mqtt-demo"
/*---*/
/*
 * A timeout used when waiting for something to happen (e.g. to connect or to
 * disconnect)
 */
#define STATE_MACHINE_PERIODIC (CLOCK_SECOND >> 1)
/*---*/
/* Provide visible feedback via LEDS during various states */
/* When connecting to broker */
#define CONNECTING_LED_DURATION (CLOCK_SECOND >> 2)

/* Each time we try to publish */
#define PUBLISH_LED_ON_DURATION (CLOCK_SECOND)
/*---*/
/* Connections and reconnections */
#define RETRY_FOREVER 0xFF
#define RECONNECT_INTERVAL (CLOCK_SECOND * 2)

/*
 * Number of times to try reconnecting to the broker.
 * Can be a limited number (e.g. 3, 10 etc) or can be set to RETRY_FOREVER
 */
#define RECONNECT_ATTEMPTS RETRY_FOREVER
#define CONNECTION_STABLE_TIME (CLOCK_SECOND * 5)
static struct timer connection_life;
static uint8_t connect_attempt;
/*---*/
/* Various states */

126

static uint8_t state;
#define STATE_INIT 0
#define STATE_REGISTERED 1
#define STATE_CONNECTING 2
#define STATE_CONNECTED 3
#define STATE_PUBLISHING 4
#define STATE_DISCONNECTED 5
#define STATE_NEWCONFIG 6
#define STATE_CONFIG_ERROR 0xFE
#define STATE_ERROR 0xFF
/*---*/
#define RSSI_MEASURE_INTERVAL_MAX 86400 /* secs: 1 day */
#define RSSI_MEASURE_INTERVAL_MIN 5 /* secs */
#define PUBLISH_INTERVAL_MAX 86400 /* secs: 1 day */
#define PUBLISH_INTERVAL_MIN 5 /* secs */
/*---*/
/* A timeout used when waiting to connect to a network */
#define NET_CONNECT_PERIODIC (CLOCK_SECOND >> 2)
#define NO_NET_LED_DURATION (NET_CONNECT_PERIODIC >> 1)
/*---*/
/* Default configuration values */
#define DEFAULT_TYPE_ID "cc2420"
#define DEFAULT_PUBLISH_TOPIC "clients/text"
#define DEFAULT_SUBSCRIBE_TOPIC "clients/+"
#define DEFAULT_BROKER_PORT 1883
#define DEFAULT_PUBLISH_INTERVAL (CLOCK_SECOND * 20)
#define DEFAULT_KEEP_ALIVE_TIMER 60
#define DEFAULT_RSSI_MEAS_INTERVAL (CLOCK_SECOND * 30)
/*---*/
/* Payload length of ICMPv6 echo requests used to measure RSSI with def rt */
#define ECHO_REQ_PAYLOAD_LEN 20
/*---*/
PROCESS_NAME(mqtt_demo_process);
AUTOSTART_PROCESSES(&mqtt_demo_process);
/*---*/
/* Maximum TCP segment size for outgoing segments of our socket */
#define MAX_TCP_SEGMENT_SIZE 32
/*---*/
#define STATUS_LED LEDS_GREEN
#define STATE_LED LEDS_BLUE
/*---*/
/*
 * Buffers for Client ID
 * Make sure they are large enough to hold the entire respective string
 *
 */
#define BUFFER_SIZE 32 // Reduced that to save space
static char client_id[BUFFER_SIZE];
/*---*/
/*

127

 * The MQTT connection
 */
static struct mqtt_connection conn;
/*---*/
static struct mqtt_message *msg_ptr = 0;
static struct etimer publish_periodic_timer;
static struct ctimer ct;
static struct ctimer ct2; // My counter
static uint16_t seq_nr_value = 0;
/*---*/
/* Parent RSSI functionality */
static struct uip_icmp6_echo_reply_notification echo_reply_notification;
static struct etimer echo_request_timer;
static int def_rt_rssi = 0;
/*---*/
/* Defines for encryption and authentication */
#define HEADER_LEN 16
#define NONCE_LEN 16
#define TAG_LEN 16
#define MAX_TXT_LEN 3*16 // Reduce it to save RAM
#define KEY_LEN 16

#define PRINTU8(text, orig, len) do { \
 printf(text); int i = 0; \
 while(i<len) { printf("%x", orig[i++] & 0xff); } \
 printf("\n"); \
 } while(0)

/*---*/
/*
 * The main buffers for encryption and publish
 */
static unsigned char key[KEY_LEN];
static ocb_state *OCBstate;
static byte ciphertext[MAX_TXT_LEN];
static byte plain[MAX_TXT_LEN];
static byte tag[TAG_LEN];
static byte tag2[TAG_LEN];
static byte nonce[NONCE_LEN] = { 0x3F , 0xC4 , 0xE0 , 0xD8 ,
 0x6A , 0x7B , 0x04 , 0x30 ,
 0xD8 , 0xCD , 0xB7 , 0x80 ,
 0x70 , 0xB4 , 0xC5 , 0x5A };
static int j;
/*---*/
PROCESS(mqtt_demo_process, "MQTT Demo");
/*---*/
static void
echo_reply_handler(uip_ipaddr_t *source, uint8_t ttl, uint8_t *data,
 uint16_t datalen)

128

{
 if(uip_ip6addr_cmp(source, uip_ds6_defrt_choose())) {
 def_rt_rssi = sicslowpan_get_last_rssi();
 }
}
/*---*/
static void
publish_led_off(void *d)
{
 leds_off(STATUS_LED);
}
/*---*/
static void
status_led_off(void *d)
{
 leds_off(STATE_LED);
}
/*---*/
static void
pub_handler(const char *topic, uint16_t topic_len, const uint8_t *chunk,
 uint16_t chunk_len)
{
 //printf("Pub Handler: topic='%s' (len=%u), chunk_len=%u\n", topic, topic_len,
chunk_len);

 // Publish with encrypted payload detected on topic with tag = text
 if(strncmp(&topic[0], "clients/text", 12) == 0) {
 printf("Got encrypted on topic='%s', chunk='%s' (length=%u)\n", topic, chunk,
chunk_len);

 static unsigned char in[MAX_TXT_LEN]; //This has incorrect size! => Tag works
only this way...
 int i,j;
 static int number;
 static char hexstring[4];
 static char *hexstr_ptr;
 hexstr_ptr = hexstring;
 j=0;
 for (i=0; i<chunk_len-1; i+=2){
 if(j<sizeof(in)+TAG_LEN){ // Prevent massive overflow of in[]
 snprintf(hexstr_ptr, 2, "%c", chunk[i]);
 snprintf(hexstr_ptr+1, 2, "%c", chunk[i+1]);
 number = (int)strtol(hexstring, NULL, 16); //Convert string hex value to integer
 in[j] = number;
 j++;
 }
 }
 //PRINTU8("Ciphertext: ", in, sizeof(in));

129

 //printf("#Ciphertext: %s\n", in);

 ocb_decrypt(OCBstate,nonce,(byte*) in,MAX_TXT_LEN,tag,plain);
 //if(!ocb_decrypt(OCBstate,nonce,(byte*) in,sizeof(in),tag,plain)) printf("ERROR
decrypt\n");
 //PRINTU8("Decrypted text: ", plain, sizeof(plain));
 printf("Decrypted text: %s\n", plain);
 PRINTU8("Tag: ", tag, sizeof(tag));

 // Evaluation of Tag should be done here (skipeed due to limited RAM…)
 }
 return;
}
/*---*/
static void
mqtt_event(struct mqtt_connection *m, mqtt_event_t event, void *data)
{
 switch(event) {
 case MQTT_EVENT_CONNECTED: {
 DBG("APP - Application has a MQTT connection\n");
 timer_set(&connection_life, CONNECTION_STABLE_TIME);
 state = STATE_CONNECTED;
 printf("Connected!\n");
 leds_on(STATE_LED);
 ctimer_set(&ct2, 20*PUBLISH_LED_ON_DURATION, status_led_off, NULL);
 break;
 }
 case MQTT_EVENT_DISCONNECTED: {
 DBG("APP - MQTT Disconnect. Reason %u\n", *((mqtt_event_t *)data));

 state = STATE_DISCONNECTED;
 process_poll(&mqtt_demo_process);
 printf("Disconnected :O\n");
 leds_off(STATE_LED);
 break;
 }
 case MQTT_EVENT_PUBLISH: {
 msg_ptr = data;

 /* Implement first_flag in publish message? */
 if(msg_ptr->first_chunk) {
 msg_ptr->first_chunk = 0;
 //printf("*** Received PUB on '%s'. Payload "
 // "size: %ib. Content: %s\n\n",
 // msg_ptr->topic, msg_ptr->payload_length, msg_ptr->payload_chunk); // ***
DEBUG ONLY !
 }

130

 pub_handler(msg_ptr->topic, strlen(msg_ptr->topic), msg_ptr->payload_chunk,
 msg_ptr->payload_length); // Call the pub handler for led action!
 break;
 }
 case MQTT_EVENT_SUBACK: {
 DBG("APP - Application is subscribed to topic successfully\n");
 break;
 }
 case MQTT_EVENT_UNSUBACK: {
 DBG("APP - Application is unsubscribed to topic successfully\n");
 break;
 }
 case MQTT_EVENT_PUBACK: {
 DBG("APP - Publishing complete.\n");
 break;
 }
 default:
 DBG("APP - Application got a unhandled MQTT event: %i\n", event);
 break;
 }
}
/*---*/
static int
construct_client_id(void)
{
 snprintf(client_id, BUFFER_SIZE, "d:%s:%s:%02x%02x%02x%02x%02x%02x",
 DEFAULT_ORG_ID, DEFAULT_TYPE_ID,
 linkaddr_node_addr.u8[0], linkaddr_node_addr.u8[1],
 linkaddr_node_addr.u8[2], linkaddr_node_addr.u8[5],
 linkaddr_node_addr.u8[6], linkaddr_node_addr.u8[7]);

 return 1;
}
/*---*/
static void
update_config(void)
{
 if(construct_client_id() == 0) {
 /* Fatal error. Client ID larger than the buffer */
 state = STATE_CONFIG_ERROR;
 return;
 }
 /* Reset the counter */
 seq_nr_value = 0;

 state = STATE_INIT;

 /*

131

 * Schedule next timer event ASAP
 *
 * If we entered an error state then we won't do anything when it fires.
 *
 * Since the error at this stage is a config error, we will only exit this
 * error state if we get a new config.
 */
 etimer_set(&publish_periodic_timer, 0);

 return;
}
/*---*/
static void
subscribe(char *topic)
{
 /* Subscribe MQTT topic in IBM quickstart format */
 mqtt_status_t status;

 status = mqtt_subscribe(&conn, NULL, topic, MQTT_QOS_LEVEL_0);

 DBG("APP - Subscribing!\n");
 if(status == MQTT_STATUS_OUT_QUEUE_FULL) {
 DBG("APP - Tried to subscribe but command queue was full!\n");
 }
}
/*---*/
static void
publish(void)
{
 // THIS IS INTENTIONALLY LEFT BLANK ;)
}
/*---*/
static void
connect_to_broker(void)
{
 /* Connect to MQTT server */
 mqtt_connect(&conn, MQTT_DEMO_BROKER_IP_ADDR,
DEFAULT_BROKER_PORT,
 DEFAULT_PUBLISH_INTERVAL * 3);

 state = STATE_CONNECTING;
}
/*---*/
static void
ping_parent(void)
{
 if(uip_ds6_get_global(ADDR_PREFERRED) == NULL) {
 return;
 }

132

 uip_icmp6_send(uip_ds6_defrt_choose(), ICMP6_ECHO_REQUEST, 0,
 ECHO_REQ_PAYLOAD_LEN);
}
/*---*/
static void
state_machine(void)
{
 switch(state) {
 case STATE_INIT:
 /* If we have just been configured register MQTT connection */
 mqtt_register(&conn, &mqtt_demo_process, client_id, mqtt_event,
 MAX_TCP_SEGMENT_SIZE);

 /*
 * If there is a username and password defined in configuration file
 */
 if(strncasecmp(MQTT_AUTH_USERNAME, "NULL",
strlen(MQTT_AUTH_USERNAME)) != 0 && strlen(MQTT_AUTH_USERNAME) > 1)
{
 if(strncasecmp(MQTT_AUTH_PASSWORD, "NULL",
strlen(MQTT_AUTH_PASSWORD)) == 0) {
 printf("Username set, but no auth password\n");
 state = STATE_ERROR;
 break;
 } else {
 mqtt_set_username_password(&conn, MQTT_AUTH_USERNAME,
 MQTT_AUTH_PASSWORD);
 printf("Will authenticate at connection...\n");
 }
 }

 /* _register() will set auto_reconnect. We don't want that. */
 conn.auto_reconnect = 0;
 connect_attempt = 1;

 state = STATE_REGISTERED;
 DBG("Init\n");
 /* Continue */
 case STATE_REGISTERED:
 if(uip_ds6_get_global(ADDR_PREFERRED) != NULL) {
 /* Registered and with a public IP. Connect */
 DBG("Registered. Connect attempt %u\n", connect_attempt);
 ping_parent();
 connect_to_broker();
 } else {
 leds_on(STATUS_LED);
 ctimer_set(&ct, NO_NET_LED_DURATION, publish_led_off, NULL);

133

 }
 etimer_set(&publish_periodic_timer, NET_CONNECT_PERIODIC);
 return;
 break;
 case STATE_CONNECTING:
 leds_on(STATUS_LED);
 ctimer_set(&ct, CONNECTING_LED_DURATION, publish_led_off, NULL);
 /* Not connected yet. Wait */
 DBG("Connecting (%u)\n", connect_attempt);
 break;
 case STATE_CONNECTED:
 /* Continue */
 case STATE_PUBLISHING:
 /* If the timer expired, the connection is stable. */
 if(timer_expired(&connection_life)) {
 /*
 * Intentionally using 0 here instead of 1: We want RECONNECT_ATTEMPTS
 * attempts if we disconnect after a successful connect
 */
 connect_attempt = 0;
 }

 if(mqtt_ready(&conn) && conn.out_buffer_sent) {
 /* Connected. Publish */
 if(state == STATE_CONNECTED) {
 subscribe(DEFAULT_SUBSCRIBE_TOPIC); // Subscribe on default topic
 //subscribeCnt++;
 state = STATE_PUBLISHING;
 }
 else {
 leds_on(STATUS_LED);
 ctimer_set(&ct, PUBLISH_LED_ON_DURATION, publish_led_off, NULL);
 publish();
 }
 etimer_set(&publish_periodic_timer, DEFAULT_PUBLISH_INTERVAL);

 DBG("Publishing\n");
 /* Return here so we don't end up rescheduling the timer */
 return;
 } else {
 /*
 * Our publish timer fired, but some MQTT packet is already in flight
 * (either not sent at all, or sent but not fully ACKd).
 *
 * This can mean that we have lost connectivity to our broker or that
 * simply there is some network delay. In both cases, we refuse to
 * trigger a new message and we wait for TCP to either ACK the entire
 * packet after retries, or to timeout and notify us.
 */

134

 DBG("Publishing... (MQTT state=%d, q=%u)\n", conn.state,
 conn.out_queue_full);
 }
 break;
 case STATE_DISCONNECTED:
 DBG("Disconnected\n");
 if(connect_attempt < RECONNECT_ATTEMPTS ||
 RECONNECT_ATTEMPTS == RETRY_FOREVER) {
 /* Disconnect and backoff */
 clock_time_t interval;
 mqtt_disconnect(&conn);
 connect_attempt++;

 interval = connect_attempt < 3 ? RECONNECT_INTERVAL << connect_attempt :
 RECONNECT_INTERVAL << 3;

 DBG("Disconnected. Attempt %u in %lu ticks\n", connect_attempt, interval);

 etimer_set(&publish_periodic_timer, interval);

 state = STATE_REGISTERED;
 return;
 } else {
 /* Max reconnect attempts reached. Enter error state */
 state = STATE_ERROR;
 DBG("Aborting connection after %u attempts\n", connect_attempt - 1);
 }
 break;
 case STATE_CONFIG_ERROR:
 /* Idle away. The only way out is a new config */
 printf("Bad configuration.\n");
 return;
 case STATE_ERROR:
 default:
 leds_on(STATUS_LED);
 /*
 * 'default' should never happen.
 *
 * If we enter here it's because of some error. Stop timers. The only thing
 * that can bring us out is a new config event
 */
 printf("Default case: State=0x%02x\n", state);
 return;
 }

 /* If we didn't return so far, reschedule ourselves */
 etimer_set(&publish_periodic_timer, STATE_MACHINE_PERIODIC);
}

135

/*---*/
PROCESS_THREAD(mqtt_demo_process, ev, data)
{

 PROCESS_BEGIN();

 printf("-MQTT Client OCB_RX-\n");

 update_config();

 //def_rt_rssi = 0x8000000;
 uip_icmp6_echo_reply_callback_add(&echo_reply_notification,
 echo_reply_handler);
 etimer_set(&echo_request_timer, DEFAULT_RSSI_MEAS_INTERVAL);

 // Initialize the Contiki's random number generator and j
 random_init(518);
 j = 0;
 // Initialize OCB
 OCBstate = ocb_init(key,TAG_LEN,NONCE_LEN,AES256);
 /* if(OCBstate == NULL){
 printf("Can't init OCB!\n\n");
 }*/

 /* Main loop */
 while(1) {

 PROCESS_YIELD();

 if((ev == PROCESS_EVENT_TIMER && data == &publish_periodic_timer) ||
 ev == PROCESS_EVENT_POLL) {
 state_machine();
 }

 if(ev == PROCESS_EVENT_TIMER && data == &echo_request_timer) {
 ping_parent();
 etimer_set(&echo_request_timer, DEFAULT_RSSI_MEAS_INTERVAL);
 }
 }

 PROCESS_END();
}

136

 MQTT client with LLSec (option 4):

In this case, the code of option 0 was used but with the following project-
conf.h file parameters:

/*---
* Author: Sotiris Katsikeas *
* Date: April 2016
 ---*/
/**
 * cc2420-mqtt-demo (Zolertia Z1)
 *
 * Project specific configuration defines for the MQTT demo
 */
/*---*/
#ifndef PROJECT_CONF_H_
#define PROJECT_CONF_H_
/*---*/
/* User configuration */
//#define MQTT_DEMO_BROKER_IP_ADDR "fd4a:c00:3660:2:211:32ff:fe26:4119" //
NAS LUA IPv6 Address
//#define MQTT_DEMO_BROKER_IP_ADDR "fd4a:0c00:3660:2:7c08:bde2:3fa2:b695" //
Windows IPv6 Address
#define MQTT_DEMO_BROKER_IP_ADDR "aaaa::1" // For use with Cooja and NBR
#define MQTT_AUTH_USERNAME ""
#define MQTT_AUTH_PASSWORD ""
#define BOARD_STRING "Sotiris"
/* Configuration for the network driver */
#undef NETSTACK_CONF_MAC
#define NETSTACK_CONF_MAC nullmac_driver
#undef NETSTACK_CONF_RDC
//#define NETSTACK_CONF_RDC nullrdc_driver // Use this RDC driver only on
testing as it keeps radio always ON
#define NETSTACK_CONF_RDC contikimac_driver // Is the default RDC driver
/* Enable link layer security! */
#undef NETSTACK_CONF_LLSEC
#define NETSTACK_CONF_LLSEC noncoresec_driver
//#undef NETSTACK_CONF_FRAMER
//#define NETSTACK_CONF_FRAMER noncoresec_framer

#define LLSEC802154_CONF_SECURITY_LEVEL 6

#undef LLSEC802154_CONF_ENABLED
#define LLSEC802154_CONF_ENABLED 1

#undef NONCORESEC_CONF_SEC_LVL
#define NONCORESEC_CONF_SEC_LVL 6

137

#define NONCORESEC_CONF_KEY { 0x00 , 0x01 , 0x02 , 0x03 , \
 0x04 , 0x05 , 0x06 , 0x07 , \
 0x08 , 0x09 , 0x0A , 0x0B , \
 0x0C , 0x0D , 0x0E , 0x0F }

/* END OF LLSEC */
/*---*/
#endif /* PROJECT_CONF_H_ */
/*---*/

	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1. Purpose
	1.2. Limitations
	1.3. Method

	2. Technical Background
	2.1. Wireless Sensor Networks (WSNs)
	2.1.1. The WSNs and other IoT communication models

	2.2. IoT Communications
	2.2.1. IEEE 802.15.4
	2.2.2. Internet Protocol version 6 (IPv6)
	2.2.3. 6LoWPAN
	2.2.4. TCP

	2.3. IoT Security
	2.3.1. Security on the IEEE 802.15.4 (Data Link layer)
	2.3.2. Security on the Network Layer
	2.3.3. Security on the Transport Layer
	2.3.4. The Advanced Encryption Standard (AES)
	2.3.5. Security on the Application Layer

	2.4. IoT Protocols Stack
	2.4.1. Overview of protocols/comparison

	3. The MQTT protocol
	3.1. Security on MQTT
	3.1.1. Authentication on MQTT
	3.1.2. Authorization on MQTT
	3.1.3. Alternative to using TLS
	3.1.4. Other notes on MQTT security

	4. Implementation
	4.1. Tools Utilized
	4.1.1. Contiki OS as an Operating System for IoT
	4.1.2. 6lbr as a 6LowPAN Border Router
	4.1.3. Mosquitto as a MQTT broker
	4.1.4. Zolertia Z1 as a hardware development platform

	4.2. General notes on implementation
	4.2.1. Testing setup topologies
	4.2.2. Configuration of the WSN motes
	4.2.3. 6lbr configuration
	4.2.4. MQTT client source code

	4.3. Secure and lightweight MQTT implementations
	4.3.1. Option 1 – Payload encryption with AES
	4.3.2. Option 2 – Payload encryption with AES-CBC
	4.3.3. Option 3 – Payload authenticated encryption with AES-OCB
	4.3.4. Option 4 – Link layer encryption with CCM*
	4.3.5. Implementation diagrams

	5. Performance Assessment/Evaluation
	5.1. Power specifications of Zolertia Z1
	5.2. Evaluation of option 0 (simple MQTT client)
	5.3. Evaluation of option 1 (single block AES)
	5.4. Evaluation of option 2 (AES-CBC)
	5.5. Evaluation of option 3 (AES-OCB)
	5.6. Evaluation of option 4 (Link Layer Security)
	5.7. Comparison

	6. Conclusions and Open Issues
	6.1. Conclusions
	6.2. Problems encountered
	6.3. Open Issues

	Bibliography
	Annex A
	Annex B

