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technical chapters; the first one presents an algorithm for background sub-
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method for material recognition using hyperspectral images.

We approach each one of the aforementioned problems through the levels
of understanding framework. Initially, we formulate in detail the problem at
hand along with its constraints and specifications, explaining what compu-
tations will do and why they will do it. Then, we proceed with proposed
solution design and implementation, where we describe in detail the tools
for developing the proposed solutions, the input and output of the system
as well as, all intermediate representations of visual information. Finally, we
evaluate proposed solutions performance on both synthetic and real-world
data.
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1
I N T R O D U C T I O N

Humans receive the great majority of information about their environment
through sight. But, what is sight or otherwise what does it mean to see?
Physicists merely answer to this question focusing on the surrounding en-
vironment of a seeing organism. They can trace the route of light radiating
outwards from light sources as it is partially absorbed and partially reflected
off of bodies in the environment until it arrives at the light sensitive organs
of an organism. Physiologists are focusing on another part of seeing. They
investigate light’s passage through the pupils and the lens through which it
impacts the rods and cones of the retina, setting off the electronic transmis-
sion of the impact via a set of electrochemical switches by means of which it
ends up in the visual cortex at the back of the brain. Beyond these technical
details, the plain answer (and Aristotle’s too) is to know what is where by
looking. Unfortunately, looking is not some kind of direct perception of re-
ality. Actually, our brains are constantly interpreting, correcting and giving
structures to the visual input from our eyes. In other words, vision is the
information-processing task of discovering from images what is present in
the world, and where it is.

The capability of knowing what is where in the world suggests that
our brains must somehow be capable of representing this information. The
study of vision must therefore include not only the investigation of how
to extract from images the various aspects of the world that are useful to
us, but also an inquiry into the nature of the internal representations by
which we capture this information and thus make it available as a basis for
decisions about our thoughts and actions. This duality – the representation
and the processing of information – lies at the heart of most information-
processing tasks. Perceptual psychologists have spent decades trying to un-
derstand and explore vision process. However, a complete solution to this
puzzle remains elusive (Palmer, 1999; Livingstone, 2002).

Even though there is no a clear picture of how vision works, exploitation
of visual content is a key component for building artificial intelligence sys-
tems, and computer vision is considered as one of the most active research
fields in information technology. Since its infancy, computer vision aroused
great enthusiasm and expectations among the computer scientists and engi-
neers. According to one well-known story, in 1966, Marvin Minsky at MIT
asked his undergraduate student Gerald Jay Sussman to ”spend the sum-
mer linking the camera to a computer and getting the computer to describe
what is saw” (Crevier, 1993). During the early days of artificial intelligence,
it was believed that the cognitive – internal beliefs and knowledge leading
to logic reasoning – parts of intelligence were intrinsically more difficult
than the perceptual – understanding of directional concepts to organize the
surrounding space and discrimination, sorting, organization, storing and re-
calling already presented information – components (Boden, 2006). Since
then, computer vision researchers have developed well-defined mathemat-
ical techniques and robust real-world applications for several computer vi-
sion problems, such as object detection and recognition, motion tracking,
semantic analysis of visual content.
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2 introduction

However, despite these advances, the dream of having a computer inter-
pret an image at the same level as a two-year old remains elusive. Thus,
the crucial question remains; Why is vision so difficult? In part, it is because
vision is an inverse problem, in which we seek to recover some unknown
given insufficient information to fully specify the solution; i.e. to recover the
three-dimensional structure of the world from images and to use this as a
stepping stone towards full scene understanding (Szeliski, 2010).

Considering the aforementioned limitations and restrictions, in this thesis
we adopt a typical engineering approach to the study of vision problems. We
think back from the problem at hand to suitable techniques. In other words,
we propose and develop problem oriented solutions and emphasize the im-
portance of coupling experimental and theoretical work; without close inter-
action with experiments, theory is very likely to be sterile. We follow David
Marr’s philosophy to frame and solve vision problems (Marr et al., 2010).
Firstly, we come up with a detailed problem definition and decide on its
constraints and specifications – problem formulation –, then, we try to figure
out possible approaches to the problem at hand and find out techniques
that are known to work – literature review. Secondly, we design and describe
in detail our approach – our contribution/algorithm. Finally, we select the ap-
propriate tools for developing our solution – algorithm manifestation – and
evaluate its performance on realistic data, both synthetic, which are used to
verify correctness and analyze noise sensitivity, and real-world data typical
of the way the solution will, finally, be used.

The aforementioned approach is related to David Marr’s levels of under-
standing framework (see Section 1.1), which requires the combination of
(i) a careful analysis of the problem specification and known constraints
from image formation and priors – the scientific and statistical approaches
– with (ii) efficient and robust algorithms – the engineering approach – to
design successful vision solutions. This framework laid the foundations for
approaching computer vision problems and it remains as useful as it was
35 years ago, when it was firstly issued.

1.1 levels of understanding

David Marr’s levels of understanding (Marr et al., 2010) is a framework for
studying and understanding visual perception. In this framework, vision is
considered as a process, which proceeds by constructing a set of representa-
tions, starting from a description of the input image, and culminating with
a description of three-dimensional objects in the surrounding environment.
The twin strands of process and representation are both key aspects in this
framework and consist the first level of understanding – computation level.

As a representation considered a formal system for making explicit certain
entities or types of information, together with a detailed specification of how
the system does this. The result of using a representation is a description
of a given entity. Every representation implies a trade-off; makes certain
information explicit at the expense of information that is pushed into the
background and may be quite hard to recover. This is a crucial issue, due
to the fact that entities’ representation can greatly affect how easy it is to
do different things; e.g. it is easy to add, to subtract and even to multiply
if the Arabic numeral representation is used, but it is not at all easy to do
these things with Roman numerals. This is a key reason why the Roman
culture failed to develop mathematics in the way the earlier Arabic cultures
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Computation Level Algorithm Level Hardware Level

What is the goal of the

computation and why it

is appropriate, and what

is the logic of the strategy by

which it can be carried out?

How can these computations

be implemented, what is the

representation of the input

and output, and what is the

algorithm of the transformation?

How can the representation

and the algorithm be realized

physically?

Table 1.1: Levels of understanding framework.

had. The usefulness of a representation depends upon how well suited it is
to the purpose for which it is used. We can only do what is possible and
proceed from there toward what is desirable. Thus we arrive at the idea
of a sequence of representations, starting with descriptions that could be
obtained straight from an image but that are carefully designed to facilitate
the subsequent recovery of gradually more high-level and objective, physical
properties about an object’s properties.

Although, there are several levels at which one can understand a process,
the most abstract one is the level of what the process does and why. Thus
part of this first level is something that might be characterized as what is
being computed, while the other half has to do with the question of why
this computation is performed. The important features of this level of under-
standing are (i) that it contains separate arguments about what is computed
and why and (ii) that the resulting operation is defined uniquely by the
constraints it has to satisfy.

The second level of understanding relies on the description of an algo-
rithm by which the computations may actually be accomplished – algorithm
level. While the computations level specifies what and why, this level speci-
fies how. There are several points that must be addressed here. Firstly, there
is usually a wide choice of candidate representations. Secondly, the choice
of a suitable algorithm often depends rather critically on the particular rep-
resentation that is employed. And, finally, even for a given fixed represen-
tation, there are often several possible algorithms for carrying out the same
process. On the one hand, which one is chosen will usually depend on any
particular desirable or undesirable characteristics that the algorithms may
have, and on the other, this choice is inherently depended on the type of
machinery in which the algorithm is to be embodied physically.

The third level is that of the device in which the process is to be realized
physically – hardware level. When reach to this level it is crucial that, once
again, the same algorithm may be implemented in quite different technolo-
gies. Some styles of algorithm will suit some physical substrates better than
others; e.g. serial and parallel implementations. However, the hardware level
is outside of the scope of this thesis; we focus exclusively on the computa-
tion and algorithm levels.

To summarize, there are three different levels at which an information-
processing device must be understood before one can be said to have under-
stood it completely – see Table 1.1. At the first level, the level of computation,
is the abstract computational theory, in which the performance of the device
is characterized as a mapping from one kind of information to another. The
abstract properties of this mapping are defined precisely, and its appropri-
ateness and adequacy for the task at hand are demonstrated. At the second
level, the algorithm level, is the choice of representation for the input and
output and the algorithm to be used to transform one into the other. And
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at the third level, hardware level, are the details of how the algorithm and
representation are realized physically.

1.2 thesis organization

This dissertation counts in total ten technical chapters, plus a conclusion
chapter. Technical chapters are organized in three parts; each one of them is
dedicated to a different aspect of semantic visual content analysis.

The first part titled ”From Objects to Events”. As the title suggests, in this
part, we investigate how the information about objects in a scene can be
available as a basis for event understanding. There are three technical chap-
ters, in which we try to address three different real-world problems. The
first chapter is dedicated to the development of a supportive vision based
system for detecting in real-time elderly and/or patients fall in indoor en-
vironments. In the second chapter we propose a maritime security vision
based system, while in the third chapter we present a surveillance system
for activity recognition in industrial workflow.

The second part contains two technical chapters and titled ”From Unstruc-
tured Visual Content to Objects”. In this part we investigate how the visual
content that is stored in distributed and heterogeneous Internet databases
can be, initially, organized, and then utilized towards objects documentation.
Specifically, these chapters propose a method for retrieving and dynamically
indexing user generated photographs available over the web. We focus on
photographs that depict cultural heritage assets and we show how our re-
trieval and indexing system can facilitate e-documentation tools, such as 3D
reconstruction.

The third and last part titled ”Beyond the Visual Spectrum” and focuses
on visual content analysis using thermal and hyperspectral data. It consists
of two chapters; the first one presents a background subtraction algorithm,
specifically designed to be applied on thermal video streams, while the sec-
ond one presents a method for material recognition using hyperspectral
images.

We approach each one of the aforementioned problems through the lev-
els of understanding framework – as mentioned before, the hardware level is
outside of the scope of this thesis, thus, we focus exclusively on the first
two levels. Initially, we formulate in detail the problem at hand along with
its constraints and specifications, explaining what computations will do and
why they will do it. Then, we proceed with proposed solution design and
implementation, where we describe in detail the tools for developing the
proposed solutions, the input and output of the system as well as, all in-
termediate representations of visual information. Finally, we evaluate pro-
posed solutions performance on both synthetic and real-world data.



Part I

F R O M O B J E C T S T O E V E N T S

In this part, our main intention is to focus attention on
important aspects of objects and events and their relation-
ship with computer vision, and, then, to investigate how
information about objects in a scene can be available as a
basis for event understanding. The outcome of this inves-
tigation, enable us to analyze three different real-world
problems and propose computer vision solutions for each
one of them. We start with a supportive vision based sys-
tem for detecting humans’ falls in indoor environments.
We continue with a maritime security vision based system,
and finally, we present a surveillance system for activity
recognition in industrial workflow.





2
O B J E C T S A N D E V E N T S

2.1 the notion of object

The notion of ”object” is closely related to human and computer vision.
Cavanagh in (Cavanagh, 1992) states:

”the goal of vision is to inform us of the identity of objects in view and their
spatial positions”,

while Ballard and Brown (Ballard and Brown, 1982), in one of the most
influential works on computer vision, mention:

”computer vision is the construction of explicit, meaningful descriptions of
physical objects from images”.

Although, there is no hint here that vision may consist of more than object
identification, our everyday experience suggests that, behind identifying ob-
jects, vision is also used to track motion, detect changes in a scene, estimate
depth of surfaces and texture. No matter what the visual task is, the notion
of ”object” is always present.

However, the notion of ”object” is so deeply ingrained in our language
that its logical status is rarely questioned. If the question does arise then it
is usually addressed by invoking ”features”. For this reason, the research
interest of computer vision community has been focus, to a great extend,
on encoding the visual content by describing local and global properties of
objects in terms of features.

A local property of an object can be represented by a feature, which is
a single piece of information located on a specific point or a small region,
describing a rather simple, but ideally distinctive property of the object’s
projection to the image plane. Examples for local features of an object are
the average color or intensity value of a pixel or small region. Features de-
scribing the local properties of objects should be invariant to illumination
changes, scale, rotation and noise, but, in general, this cannot be reached
due to the simpleness of the features itself. Therefore, several features of a
single point or a small region are combined and a more complex description
of objects’ local properties referred to as descriptors are obtained.

On the other hand, global properties of objects can be represented by
features that try to cover the visual information of the whole image. This
varies from statistical estimates, such as background subtraction techniques
(Bouwmans et al., 2010), to image projection approaches, i.e., subspace meth-
ods such as Principal Component Analysis (Jolliffe, 2002), Independent Com-
ponent Analysis (Hyvärinen et al., 2004) or Non-negative Matrix Factoriza-
tion (Lee and Seung, 1999). The main idea of such methods is to project the
original data onto a subspace that represents the data optimally according
to a predefined criterion, which is usually depended on the specific applica-
tion at hand.

Feature-based representations of objects, regardless of whether they were
generated by exploiting local and/or global objects’ properties, are used
to learn classifiers capable of discriminating and detecting the presence of
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8 objects and events

objects of interest in a scene. Classifiers can range from simple rule based ap-
proaches to more sophisticated pattern recognition methods such as neural
networks (Rojas, 2013) and kernel machines (Cortes and Vapnik, 1995a).

2.1.1 Local Properties of Objects

The local properties of objects correspond to information located on a spe-
cific point or a small region. Methods that find points or regions of interest
are called detectors. The currently most popular detectors can be roughly di-
vided into two broad categories; i) corner-based and ii) region-based detectors.
Corner-based detectors locate points of interest and regions which contain
a lot of image structure, however they are not suited for uniform regions
and regions with smooth transitions. On the contrary, region-based detec-
tors regard local blobs of uniform brightness as the most salient aspects of
an image and are therefore more suited for the latter.

The most popular detector is the corner-based one of Harris and Stephens
(Harris and Stephens, 1988). It exploits the first derivatives of image inten-
sity to deliver a large number of interest points with sufficient repeatability
(Schmid et al., 2000). The main advantage of this detector is the low compu-
tational cost. However, it determines only the spatial locations of the interest
points without any interesting region properties such as scale or orientation.
Hessian matrix-based detectors (second derivatives of intensity) are region-
based giving strong responses on blobs and ridges. However, they show
only rotational invariance properties (Bay et al., 2008). Lindeberg in (Lin-
deberg, 1998) intensely studied the scale-space properties of blobs. Based
on this work the local extrema of the scale normalized Laplacian (Burt and
Adelson, 1983) can be used as a scale selection criterion allowing the afore-
mentioned Harris and Hessian detectors to have scale invariance proper-
ties. Consequently, in the literature they are often referred as Harris-Laplace
or Hessian-Laplace detectors. Mikolajczyk and Schmid (Mikolajczyk and
Schmid, 2002) proposed an extension of the Harris- and Hessian-Laplace
detectors to obtain invariance against affine transformed images. This ap-
proach is based on the shape estimation properties of the second moment
matrix of intensities. However, the simultaneous optimization of spatial
point location, scale and shape comes at higher computational cost.

A similar idea to Harris-Laplace and Hessian-Laplace is used by Lowe
(Lowe, 1999, 2004) in his Difference of Gaussian (DoG) detector. DoG approx-
imates the scale normalized Laplacian by calculating differences of Gaus-
sian blurred images at several and adjacent local scales. An accurate point
of interest localization procedure, elimination of edge responses by Hessian
based analysis and orientation assignment with orientation histograms com-
pletes the carefully designed detector.

Maximally Stable Extremal Regions (Matas et al., 2004) (MSER) is another
famous detector based on intensity values and connected component anal-
ysis of an appropriately thresholded image. The obtained regions are of
arbitrary shape and they are defined by the border pixels enclosing a re-
gion, where all the intensity values within the region are consistently lower
or higher with respect to the surrounding. The main advantage of this de-
tector is the fact, that the obtained regions are robust against continuous
(an thus even projective) transformations and even non-linear, but mono-
tonic photometric changes. In the case a single interest point is needed, it
is usual to calculate the center of gravity and take this as an anchor point,
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e.g., for obtaining reliable point correspondences. In contrast to the detec-
tors mentioned before, the number of regions detected is rather small, but
the repeatability outperforms the other detectors in most cases.

The detections of points and/or regions of interest is followed by the
development of feature descriptors. Feature descriptors are used to describe
the points/regions or its local neighborhood already identified by the detec-
tors by certain invariance properties. Invariance means that the descriptors
should be robust against various image variations such as affine distortions,
scale and illumination changes or compression artifacts.

Locally Binary Patterns (LBP) is a very simple texture descriptor initially
proposed in (Ojala et al., 1996). LBP is invariant to monotonic gray value
transformations but it is not inherently rotational invariant. Nevertheless
this can be achieved by rotating the regions of interest. Furthermore, scale
invariance can be reached in combination with scale invariant detectors.

Shape context descriptors have been introduced by Belongie et al. (Be-
longie et al., 2002) in 2002. They exploit internal or external contour points
of the investigated object or region. The contour points can be detected by
any edge detector and are regularly sampled over the whole shape curve. A
full shape representation can be obtained by taking into account all relative
positions between two different contour points and their pairwise joint ori-
entations. It is obvious that the dimensionality of such a descriptor heavily
increases with the size of the region. To reduce the dimensionality a coarse
histogram of the relative shape sample points coordinates is computed – the
shape context.

Scale Invariant Feature Transform (SIFT) proposed by (Lowe, 1999, 2004)
is one of the most popular descriptors with excellent performance (Mikola-
jczyk and Schmid, 2005). It combines a scale invariant detector (DoG) and a
rotation invariant descriptor based on gradient orientation histograms. Al-
though, SIFT is not affine invariant, it can be calculated on other type of de-
tectors, so that it can inherit affine invariance from them (e.g. Harris-Laplace
or MSER). Ke and Sukthankar in (Ke and Sukthankar, 2004) proposed a
modified version of SIFT by reducing the dimensionality of the descriptor.
Instead of gradient histograms on point of interest, they applied Principal
Component Analysis to the scale-normalized gradient patches obtained by
the DoG detector. This way the patch of local gradient orientations is de-
scribed with the most significant eigenvectors. Although, following this ap-
proach the dimensionality of the descriptor can be reduced by a factor about
eight, evaluations show that it performs slightly worse than standard SIFT
descriptor (Mikolajczyk and Schmid, 2005).

Speed-Up Robust Features (SURF) was introduced in (Bay et al., 2006). As
the name suggests, it is a speeded-up version of SIFT. The SIFT approach
uses cascaded filters to detect scale-invariant characteristic points, where the
DoG is calculated on rescaled images progressively. In SURF, square-shaped
filters are used as an approximation of Gaussian smoothing. One big advan-
tage of this approximation is that, convolution with square-shape filters can
be easily calculated with the help of integral images. And it can be done in
parallel for different scales. SURF descriptor is scale and rotation invariant
and exploits Haar wavelet responses (again, use of integral images reduces
computational time) in horizontal and vertical direction to describe points
of interest. Analysis (Juan and Gwun, 2009) shows that SURF is three times
faster than SIFT, while its performance is comparable to SIFT. Although,
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SURF is good at handling images with blurring and rotation, it is not good
at handling viewpoint and illumination changes.

Since the appearance of SIFT and SURF a huge variety of local descriptors
has been proposed. However, the performances of SIFT and SURF on object
recognition and image matching tasks are still used as benchmarks for every
newly introduced descriptor.

2.1.2 Global Properties of Objects

In this section we discuss methods that are used to encode the global prop-
erties of objects. The main idea for all this methods is to project the original
input images onto a suitable lower dimensional subspace that represents the
data best for a specific task. By selecting different criteria for the projected
data different methods can be derived.

Principal Component Analysis (PCA) (Jolliffe, 2002) also known as is a
well known and widely used technique in statistics. It was first introduced
by Pearson (Person, 1901) and was independently rediscovered by Hotelling
(Hotelling, 1933). The main idea is to reduce the dimensionality of data
while retaining as much information as possible. This is assured by a pro-
jection that maximizes the variance but minimizes the mean squared recon-
struction error at the same time. PCA was introduced to Computer Vision
by Kirby and Sirovich (Kirby and Sirovich, 1990) and became popular since
Turk and Pentland (Turk and Pentland, 1991) applied it for face recognition.
Non-negative matrix factorization (NMF) was introduced by Lee and Seung
(Lee and Seung, 1999) in computer vision for object representation. In con-
trast to PCA, NMF does not allow negative entries whether in the basis nor
in the encoding. As a result we obtain additive basis vectors mostly repre-
senting local structures. Thus, if the underlying data can be described by
distinctive local information the representation may be sparse.

When the pose or the structure of the objects are of main interest, PCA
and NMF can be proven very useful for encoding object properties. However,
in many tasks, motion information is more important. In such cases PCA
and NMF are useless, and different global descriptors should be developed
capable to encode the presence of motion in a scene.

One of the most common approaches towards motion encoding is by
using background subtraction techniques. Such techniques usually transform
raw images to binary ones, whose zeros correspond to background (objects
of non-interest) and ones to foreground (objects of interest). The task of
background subtraction constitutes a key component for locating moving
objects, facilitating search space reduction, modeling visual attention and,
most important, relating objects to events.

Background subtraction techniques applied on video sequences model
the color properties of depicted objects (Brutzer et al., 2011; Herrero and
Bescos, 2009) and can be classified into three main categories (El Baf et al.,
2009); basic background modeling (McFarlane and Schofield, 1995; Zheng
et al., 2006), statistical background modeling (Elgammal et al., 2000; Wren
et al., 1997) and background estimation (Messelodi et al., 2005; Toyama et al.,
1999). The most used methods are the statistical ones due to their robustness
to critical situations. For statistically representing the background, a proba-
bility distribution is used to model the history of pixel intensities over time.

Another common approach for encoding motion in a scene is called Mo-
tion History Images (MHI) (Davis, 2001b). The MHI is a static image tem-
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plate where pixel intensity is a function of the recency of motion in a se-
quence. MHI automatically performs temporal segmentation, is invariant to
linear changes in speed, and due to its low computational cost can run in
real-time on a standard platforms.

2.2 the notion of event

Literally, an event is an occurrence happening at a determinable time and
place, with or without the participation of human agents and it may be a
part of a chain of occurrences as an effect of a preceding occurrence and as
the cause of a succeeding occurrence. In other words, an event is a seman-
tically meaningful activity taking place within a selected environment and
containing a number of necessary objects.

Therefore, events are inherently related to objects. In computer vision soci-
ety, Zelnik-Manor and Irani in (Zelnik-Manor and Irani, 2001) define events
as long term temporal objects, which are characterized by spatio-temporal
features at multiple levels. Furthermore, Polana and Nelson (Polana and
Nelson, 1994) separate events into three different classes; i) temporal textures,
which are of indefinite spatial and temporal extent, ii) activities, which are
temporally periodic but spatially restricted and iii) motion events, which are
isolated events that do not repeat either in space or in time.

Based on the above, events should be described by their behavioral con-
tent in order to be isolated and discriminated within long continuous video
sequences. By term behavioral content we refer to spatial and temporal fea-
tures of events. Although, spatial features may appear at different scales in
different images (see section 2.1), due to the perspective nature of the pro-
jection in the spatial dimension, temporal features are always characterized
by the same temporal scale. For example, a single step of a walking person,
viewed by two different video cameras of the same frame rate, will extend
over the same number of frames in both sequences, regardless of the internal
or external camera parameters.

Elegant methods have been proposed for analyzing events and captur-
ing their spatial and temporal characteristics by specialized models (Black
and Yacoob, 1997; Cutler and Davis, 2000). Construction of these models
is usually done via an extensive learning phase, where many examples of
each studied action are provided and by exploiting prior knowledge about
the types of events, their temporal and spatial extent and/or their nature
(periodic/non periodic).

In the following we present three different real-world use cases, where
we exploit information about objects as a basis for understanding events.
Specifically, the first use case describes the development of a supportive
vision based system for detecting in real-time elderly and/or patients fall
incidents in indoor environments. In the second use case a maritime security
vision based system is proposed, while in the third use case we present a
surveillance system for activity recognition in industrial workflow. Initially,
we present the motivation for each one of the use cases and then, following
the David Marr’s levels of understanding framework, via literature review we
formulate in detail the problem, along with its constraints and requirements,
we present a solution design and implementation and, finally, we evaluate
the performance of the proposed solution.





3
V I S I O N B A S E D FA L L D E T E C T I O N S Y S T E M

3.1 motivation

According to demographic and epidemiological data, the number of people
over 65 years old is increasing six times faster than the rest population on
earth. Indicatively, about one in eight Americans were elderly in 2000, but
about one in five would be elderly by the year 2050 (Shrestha and Heisler,
2011), (Fallwatch, 2009). People’s ability to live independently with dignity,
without having the need to be attached to any person in order to live a nor-
mal life and fulfill daily living activities, affects greatly their quality of life.
However, emergency department visits, related to falls, are more common
in children less than five years old and adults over 65 years old. Compared
to children, elderly who fall are ten times more likely to be hospitalized and
eight times more likely to die (Runge, 1993), (Fallwatch, 2009). Thus, falls
can be considered as one of the most important problems that hinder these
people ability to live an independent life.

In order to understand the elderly fall problem, and try to prevent fall
incidents, someone needs to examine where they occur. Recent studies show
that 67% of fall incidents take place inside or in close proximity to patients’
home and residential institutions where a medical alert system can be of
immediate assistance. Taking into consideration the importance of humans’
fall problem and the aforementioned statistics, the development of robust
home surveillance systems is necessary. For this reason, a major research
effort has been conducted in the recent years for automatically detecting
persons’ falls.

One common way for automatic fall detection is through the use of spe-
cialized devices, such as accelerometers, floor vibration sensors, barometric
pressure sensors, gyroscopic sensors, or combination/fusion of them (Wang
et al., 2005), (Nyan et al., 2008), (Bianchi et al., 2010), (Zigel et al., 2009) and
(Le and Pan, 2009) or help buttons (Alert, 2015). However, most of these
approaches require specific wearable devices that should be attached to pa-
tients’ body, and thus, their efficiency relies on the persons’ ability and will-
ingness to wear them. External sensors, such us floor vibration detectors,
require a complex setup and are still in their infancy, while in the case of a
help button, it is useless, if the person is unconscious after the fall.

A more challenging alternative is the use of visual sensors, which is how-
ever a prime research issue due to the complexity of visual content, i.e. illu-
mination variations, background changes and occlusions, and the fact that a
fall incident should be discriminated over other ordinary humans’ activities.
The emergence of computer vision systems has allowed researchers to over-
come the aforementioned problems; vision based systems are less intrusive,
can be installed on buildings and are not worn by users.

Furthermore, cameras can provide a vast amount of information about
patients and environment making vision based systems suitable for different
kind of applications, as they are able to detect several events simultaneously.
For example, a vision based system can be used to detect fall incidents, and
at the same time, to check other daily life activities, like medication intake.

13
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Apart form the fact that vision based systems can provide valuable infor-
mation towards falls detection, at the same time, they can preserve persons’
privacy by exploiting an event-based design that triggers alarms and/or en-
ables video recording only after the occurrence of specific predefined events.

In the following we present computer vision based approaches towards
the fall detection problem. A detailed survey of fall detection methodologies
is presented in (Noury et al., 2007).

3.2 computer vision related works

Vision based fall detection systems can be divided into three categories ac-
cording to the number of cameras they use and the nature of visual sensors
– visual spectrum sensors and depth sensors. This way, there are monocular
camera, multi-camera and depth camera fall detection systems.

3.2.1 Monocular Camera Systems

Some works that exploit 2D image data in order to detect fall incidents or
to recognize humans’ activities, including falls, are (Doulamis, 2010), (Fu
et al., 2008), (Doulamis and Makantasis, 2011), (Foroughi et al., 2008b), (For-
oughi et al., 2008a), (Makantasis et al., 2012) and (Debard et al., 2012). These
approaches use image segmentation algorithms to extract the foreground
objects, in order to exploit their shape and produce features suitable for fall
incidents discrimination. For example, in (Rougier et al., 2011b) a method
that uses a shape matching technique to track the person’s silhouette along
the video sequence, is presented. The shape deformation is then quantified
from these silhouettes based on shape analysis methods and falls are de-
tected from normal activities using a Gaussian mixture model.

The most commonly used features are foreground object’s projected height-
width ratio, as well as, its centroid and/or its head 2D vertical motion ve-
locity, which besides fall discrimination can be describe how severe a fall
can be. Methods based on projected height-width ratio estimation are effi-
cient, when the camera is placed sideways and at the height of foreground
object’s center of mass. However, such camera mountings result in fall detec-
tion systems sensitive to objects occlusions. For more realistic situations, the
camera has to be placed higher in the room to avoid occluding objects and
to have a larger field of view. Moreover, 2D velocity has greater value when
a person is near the camera and smaller value when he/she steps away from
it. Consequently, threshold values to discriminate falls than other ordinary
activities can be difficult to define.

The aforementioned approaches are inherently depended on the efficiency
of image segmentation algorithms and assume that all moving objects, cor-
respond to foreground objects, are humans. The authors of (Qian et al., 2008)
overcome this problem by presenting a more sophisticated approach based
on human anatomy. They assume that each part of the human body occu-
pies an almost fixed percentage in length relative to total body height. Based
on this assumption, they train a classifier capable to discriminate six indoor
human activities, including fall incidents.

Although, the aforementioned works present good results, none of these
exploits three dimensional information to increase system’s robustness. Con-
trary to these approaches, our system overcomes the aforementioned prob-
lems by extracting and using real-world three dimensional information, de-
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spite the fact that it uses a single monocular camera. Concretely, it extracts
and uses the actual height and width of foreground objects, which are view
invariant features and provide additional information, sufficient for discrim-
inating, if the moving object is a human or something else (e.g. a cat or a
dog). In addition, vertical motion velocity is represented by the time deriva-
tive of actual height of a foreground object, and thus is not affected by the
distance between a person and the camera.

3.2.2 Multi-Camera Systems

Multi-camera systems have been also proposed for detecting fall incidents.
In the work of (Thome et al., 2008), motion is modelled by a HMM. The
features, used for motion analysis, are extracted from a metric image rec-
tification. Posture classification is performed by a fusion unit, merging the
decision provided by the independently processing cameras in a fuzzy logic
context. Anderson et al. (Anderson et al., 2009) represent a person by a three-
dimensional voxel, called voxel person. They recognize humans’ activities
from linguistic summarizations of temporal fuzzy inference curves repre-
senting the voxel person’s states and detect fall incidents by using a hierar-
chy of fuzzy logic.

Auvinet et al. (Auvinet et al., 2011) use multiple cameras to reconstruct the
3D shape of people and fall incidents are detected by analyzing the shape’s
volume distribution along the vertical axis. A fall alarm is triggered when
the major part of this distribution is abnormally near to the floor during a
predefined period of time. Hazelhoff et al. (Hazelhoff et al., 2008), proposed
a multiple camera system, which detect falls by using the direction of the
principal component and the variance ratio of the human silhouette. To fur-
ther reduce false alarms, it exploits vertical motion velocity of foreground
object’s head.

Nevertheless, an important point about multi-camera systems is that they
require calibrated cameras, synchronized video sequences and employment
of computational demanding stereo-vision mathematics in order to extract
reliable, three dimensional information. The presented system extracts three
dimensional features by using a single monocular calibrated camera and
thus overcomes the problem of video stream synchronization and increased
computational cost due to stereo-vision. Moreover, it uses a self calibration
technique to further reduce installation cost. Furthermore, our system com-
putes three dimensional features without the need of fusing different cam-
era streams, which increases computational cost.

3.2.3 Depth Camera Systems

The use of depth cameras, based on Time-of-Flight technology, is another
convenient way to extract 3D measures to detect fall incidents by using a
single device. In the works of (Diraco et al., 2010), (Grassi et al., 2010) and
(Rougier et al., 2011a) depth cameras are used to extract 3D shape of fore-
ground object and recognize fall incidents based on human centroid height
relative to the ground plane and body velocity. Mastorakis and Makris in
(Mastorakis and Makris, 2012) use a 3D box that bounds the foreground
object to measure its vertical velocity. Fall incidents detection is based on
the value of vertical velocity and inactivity duration. Dubey et al. in (Dubey
et al., 2012) use a depth camera to create 3D Motion History Images that
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contain three channels. For each channel the seven hu-moments are calcu-
lated and the 21 extracted features are used as input to an SVM in order to
discriminate falls than other activities.

Despite the fact that these approaches take into consideration three di-
mensional information, depth cameras use short range sensors, which may
cause various problems. They don’t take into account the orientation of the
moving blob, and measures that are provided could be affected by reflectiv-
ity objects properties and aliasing effects when the camera-target distance
overcomes the non-ambiguity range.

3.3 approach overview

To successfully design a fall detection system, on the one hand we have
to investigate what are the falls characteristics and what features can dis-
criminate a fall than other human activities, and on the other, we have to
define fall detection process steps and identify and overcome the difficulties
associated with them.

3.3.1 Falls Characteristics

As it is mentioned in (Noury et al., 2007), fall incidents can be characterized
by sudden and high speed vertical motion, rapid human posture changes
and, usually, they are followed by lack of significant movement.

3.3.1.1 Vertical Motion Velocity

It is one of the most commonly used motion features to detect fall incidents
and besides falls discrimination it provides useful information about the fall
intensity and thus possible injuries. Vertical motion velocity can be defined
as the time derivative of human height

V = ∇ha(t) (3.1)

where ha(t) stands for the actual height of a human in 3D space at time
instance t.

3.3.1.2 Human Posture Changes

In contrast to ordinary human activities, during which human posture is
changing slowly, during a fall, human posture is changing suddenly. On the
one hand, human posture can be characterized by person’s width-height
ratio, and this is valid as this ratio is bigger in value when a fall event
occurs than the same ratio with the person in standing position, and on the
other by the orientation of person’s body (Foroughi et al., 2008a).

3.3.1.3 Lack of Significant Movement

This feature used to describe how severe a fall can be. It based on the as-
sumption that after a serious fall incident, the person will stay immobile,
at least for some time. This feature is not adequate to discriminate a fall.
Although it can be used along with the aforementioned features to decrease
false positive alarms, it may increase false negative rate.
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Figure 3.1: Proposed fall detection system architecture.

3.3.2 System Architecture

The proposed fall detection mechanism includes tree phases: a) foreground/
background extraction and human detection, b) appropriate feature extrac-
tion and c) the decision mechanism utilization. System overall architecture
is presented in Figure 3.1.

The first step of our algorithm is to detect the persons in a scene for ev-
ery captured frame. This can be done by applying image segmentation and
background subtraction methods. Once the persons have been detected, the
system tracks them and estimates their height in order to calculate vertical
motion velocity and to analyze their posture. Finally, a decision mechanism
uses the aforementioned features, in order to detect falls and trigger the
alarm.

In our approach, we chose to combine the first two features of subsection
3.3.1, in order to detect fall incidents. The use of the third feature would re-
sult in decreasing false positive rates and increasing the false negative ones,
due to the fact that lack of significant movement is not necessarily occurred
after a fall incident. However, the primary concern of a fall detection system
is to achieve low false negative rates, i.e. its goal is to detect all fall incidents
even if some of them are not true (false alarms). Thus, we prefer to exclude
the third feature from our analysis.

3.3.3 Visual Constraints and Challenges

In this work, we focus on two different things. Firstly, we want to develop a
robust and low-cost system, which will use simple low-end web or IP cam-
eras. Secondly, this system has to be capable to operate in real-time. Given
the equipment constraints and the nature of the problem and by knowing
that our system’s performance is inherently depended on the efficiency of
image segmentation, as it is the first step during fall detection process, we
deal with the following challenges:

1. Segmentation algorithms have to be capable to handle cluttered and
textured background.

2. The system has to operate properly in dynamically changing visual
conditions, such as variable illumination.

3. Falls can happen in any direction according to the camera position
and have to be detected, even if humans are partially occluded.
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4. Decision mechanism must be robust to discriminate falls from other
ordinary human activities that may look like falls, but they are not,
such as sitting and bending.

5. Falls are sudden events, so the overall fall detection process has to be
characterized by low computational cost and memory requirements,
in order to operate in real-time.

In the following we describe step by step the fall detection process and we
will show how we handle these challenges.

3.4 image segmentation

The term image segmentation algorithms refer to background subtraction
and foreground extraction techniques. The requirements of image segmen-
tation techniques, for the fall detection system, are defined knowing that
67% of humans’ fall incidents take place inside or in close proximity to
patient’s home. These requirements can be divided into two categories in
regard to the operation mode as: indoor environment operation requirements
and outdoor environment operation requirements.

There are some differences between indoor and outdoor environment op-
eration. Illumination conditions can dramatically and suddenly change in
indoor environments, due to artificial light sources, while in outdoor en-
vironments illumination, usually, changes progressively and slow. Further-
more, outdoor environments present more complicated background with
higher background motion and more moving objects compared to indoor
environments.

Our approach exploits the best possible components to adapt to the needs
of operational requirements. In other words, different segmentation tech-
niques are used for indoor and outdoor environments. The term indoor en-
vironment corresponds to patients’ homes, clinics, elderly nursing homes,
while outdoor environment refers to areas in close proximity to patients’
home (e.g. backyard, garden). Thus, three segmentation techniques were
evaluated. Each of them uses a different approach to segmentation prob-
lem.

We test the following algorithms: (i) Iterative Scene Learning algorithm
(ISL) presented in (Doulamis, 2010), (ii) Adaptive Student-t Mixture Model
background subtraction (ASMM), presented in (Makantasis et al., 2012) and
(iii) non-Parametric Background Generation (nPBG), presented in (Liu et al.,
2007). This choice is justified by the fact that ISL algorithm extracts the
foreground by using motion information in the scene, ASMM subtracts the
background by using a parametric approach to learn background pixels in-
tensities and nPBG learns the same intensities in a non-parametric way.

3.4.1 Iterative Scene Learning algorithm

ISL is a light-weight, foreground extraction algorithm capable to operate
in real-time and in complex, dynamic in terms of visual content, and un-
expected environments. It uses the ”pyramidal” Lucas-Kanade algorithm
(Lucas and Kanade, 1981) to estimate and exploit the intensity of motion
vectors along with their directions in order to identify foreground objects’
movements. Then, it estimates high motion information areas by using a
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binary mask which was obtained by thresholding the absolute difference
between two subsequent frames.

ISL has the ability to catch large motions by using an image pyramid over-
coming this way the problems that arise by the assumptions of brightness
constancy, temporal persistence and spatial coherence. To surpass the dif-
ficulties caused by the sensitivity of motion vectors to luminosity changes
and camera parameters, the methodology of (Shi and Tomasi, 1994) was ap-
plied to detect salient points on video frames that are considered as "good
features" for estimating motion vectors. The feature points are extracted by
constraining the high motion information areas on the aforementioned bi-
nary mask in previous frames. Then, the initially detected feature points are
spatially sampled by retaining the local maximum feature points within a
neighboring region.

The aforementioned procedure indicates the high motion information ar-
eas of a scene. Then, motion information is used as a computationally effi-
cient background/foreground updating mechanism that updates the back-
ground at every frame instance. In particular, regions which are spatially
far away from the motion activity segments are denoted as background ar-
eas. Based on estimated background area, subtraction techniques provide
estimates of the foreground objects.

More specifically, when background updating takes place, the regions
that are far away from the estimated high motion information areas are de-
noted as background while the ones that are close to high motion informa-
tion areas are considered as ambiguous regions. If motion vectors intensity
in ambiguous regions are greater than a threshold the background values
are being updated since it is assumed that a foreground object has appeared
and covered its parts. Otherwise there is no important variation in the scene
which imposes that there is no need for background updating.

3.4.2 Adaptive Student’s-t Mixture Model

Adaptive Student’s-t Mixture Model (ASMM) was inspired by Gaussian
Mixture Model (Stauffer and Grimson, 1999) (GMM). We choose to use
ASMM instead of GMM since: (i) Student’s t-distribution presents more
concentrated form and, as explained in (Chatzis and Varvarigou, 2009), it
has been proposed as an alternative to GMM to resolve problems related
with outliers, thus making it more robust to artifacts such as shadows, and
(ii) only two factors, pixel value representation and distribution degrees of
freedom (DoF), are needed during the modeling process.

ASMM considers that each image pixel can have two states, background
or foreground. In the beginning, this algorithm subtracts the current frame
for processing by the previous one, in order to find candidate foreground
pixels (pixels with different intensity between two subsequent frames) and
the background modeling technique is applied only on these points. By this
approach for every captured frame there is no need for processing all image
pixels but only a subset of them, reducing this way computational cost. It
has to be mentioned that this algorithm reduces further the computational
cost by working with gray-scale images and using univariate Student-t prob-
ability density function, instead of multivariate.

In details, at any time what is known about a particular pixel, (x0, y0),
is its series of values, {X1, ..., Xk} = {I(x0, y0, i) : 1 ≤ i ≤ k}, where I is
the image sequence. This time series of pixel values can be modeled by K
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Student’s-t distribution mixtures. K is determined by the available memory
and computational power and can be defined between 3 and 5. Each new
pixel value, Xn, is modeled by these mixtures with a probability

P(Xn) = arg max
θ

pθ(xθ) , (3.2)

where pθ(xθ) is

pθ(xθ) =
Γ( vθ+1

2 )
√

vθπ Γ( vθ
2 )

(1 +
x2

θ

vθ
)−

vθ+1
2 . (3.3)

θ = [1, 2, ..., K], vθ stands for the degrees of freedom of θth mixture and xθ is
the absolute difference between Xθ (modeled value of θth mixture) and Xn.
If P(Xn) is bigger than a threshold for ith mixture then Xn is modeled by ith

mixture and this pixel is denoted as background. The degrees of freedom
for every mixture are updated using

vθ =

{
vθ − 1 if θ = i and vθ > 1

vθ + 1 if θ 6= i and vθ < β
(3.4)

and modeled pixel value Xθ is updated as

Xθ =

{
(1− λ)Xθ + λXn if θ = i

Xθ if θ 6= i
. (3.5)

In Eq.(3.4) β is the maximum allowed number of degrees of freedom for a
mixture. In Eq.(3.5) λ = pθ(xθ)/pθ(0).

Eq.(3.4) is used to update the importance of mixtures in modeling process,
while Eq.(3.5) updates the modeled pixel value of mixtures. The importance
of mixtures can be described by their degrees of freedom; a mixture whose
degrees of freedom are decreased is able to model a wider range of pixel
values, and thus its importance is increased.

If none of the mixtures is capable to model a new pixel value Xn, then
the degrees of freedom of each mixture are increased by one and the im-
portance of the less probable mixture is checked. If this mixture has more
degrees of freedom than a threshold β, then this mixture is replaced by a
new mixture whose DoF is the average of maximum and minimum DoF
of K distributions that model the specific pixel. The modeled pixel value
for the new component is set to Xn, and, finally, the corresponding pixel is
denoted as foreground.

3.4.3 Non-Parametric Background Generation

Non-Parametric Background Generation algorithm, in the beginning, con-
verts image color space to YUV and uses Y channel to model, pixel-wise,
scene intensities. For initialization it uses a history of intensity values for
each pixel. Then, it creates the histogram for each pixel’s history, uses Mean-
Shift algorithm to find histogram’s modes and it selects a predefined num-
ber of dominant modes (maxima with most appearing intensity values),
as the most reliable background modes. Each new pixel value is checked
against the pixel’s most reliable background modes and if their difference
is smaller than a predefined threshold the pixel is denoted as background.
Otherwise, the pixel is denoted as foreground, pixel’s history is updated to
include the new value and most reliable modes are re-calculated.
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(a) Original histogram (b) Quantized histogram

Figure 3.2: (a) Histogram for each intensity value and (b) histogram divided
into intensity classes.

We followed this approach, but instead of using computational expensive
Mean-Shift algorithm, we divide each histogram to a predefined number
of classes. Each class covers an intensity range and contains the sum of ap-
peared pixel intensities between its range. This process is shown in Figure
3.2. Following this approach the most reliable background modes are repre-
sented by the largest size classes.

3.5 features extraction for fall detection

In this section, we provide a description for both 2D features and 3D fea-
tures, utilized by the proposed methodology. 2D features include person’s
projected width-height ratio and person’s body orientation, while 3D fea-
tures include vertical motion velocity based on person’s actual height esti-
mation.

All features are extracted using a simple monocular camera. Generally,
there are no limitations regarding the maximum distance of the camera from
the falling scene, neither for the resolution, as long as the human spans
an area of more than 40 pixels in each frame, in order to achieve robust
segmentation of foreground objects.

3.5.1 2D Features

Width-height ratio is determined by person’s projected width and height.
So, the first step for the computation of this ratio is the estimation of these
two measures. Both of these measures can be estimated by the four corners
of a minimum bounding box that includes the person. By using the four
corners of the minimum bounding box the points qbm, qtm, qlm and qrm,
that correspond to foreground object’s bottom-most, top-most, left-most and
right-most points, can be obtained. By using these four points, width-height
ratio can be expressed by Eq.(3.6).

R =
wp

hp
=

qrm − qlm
qtm − qbm

, (3.6)

where wp and hp stand for the projected width and height of the foreground
object.

Orientation of a person’s body can be successfully described by the ori-
entation of an ellipse that best bounds the person. The approximation of
such an ellipse requires to define its center (x̄, ȳ), its orientation, which is
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the angle φ of its major semi-axis and the lengths a and b of its major and
minor semi-axes.

As described in (Foroughi et al., 2008a), a bounding ellipse can be approx-
imated by image moments. Having estimate the bounding box that contains
a foreground object, as shown in (Spiliotis and Mertzios, 1998) the com-
putational cost for computing image moments is linear to the number of
foreground object pixels. Thus, the complexity is independent on the size
of the image, depending only on the size of the foreground objects. For an
image with scalar pixel intensities I(x, y), spatial image moments are given
by Eq.(3.7).

Mij = ∑
x

∑
y

xiyj I(x, y) f or i, j = 0, 1, 2, ... . (3.7)

The center of mass of a person’s body coincides with the center of the ellipse,
and thus it can be obtained by

(x̄, ȳ) = (M10/M00, M01/M00) . (3.8)

After the estimation of ellipse’s center, central moments of second order
can be used to estimate ellipse’s orientation φ. Central moments can be
computed by

µij = ∑
x

∑
y
(x− x̄)i(y− ȳ)j I(x, y) f or i, j = 0, 1, 2, ... (3.9)

and orientation φ by

φ =
1
2

arctan
(

2µ11

µ20 − µ02

)
. (3.10)

Finally, the lengths a and b of ellipse’s major and minor semi-axes can be
obtained by Eq.(3.11) by using the greatest and least, moments of inertia
(Sobottka and Pitas, 1996).

a =

(
4
π

) 1
4
[

Imax
3

Imin

] 1
8

, b =

(
4
π

) 1
4
[

Imin
3

Imax

] 1
8

, (3.11)

where

Imax =
µ20 + µ02 +

√
(µ20 − µ02)2 + 4µ2

11

2

Imin =
µ20 + µ02 −

√
(µ20 − µ02)2 + 4µ2

11

2

(3.12)

correspond to greatest and least moments of inertia.
In Figure 3.3, 2D features extraction is presented. Figure 3.3(a) and Fig-

ure 3.3(b) show the original captured frame along with the extracted fore-
ground and minimum bounding box creation. This minimum bounding box,
as mentioned before, is used to estimate person’s width-height ratio. Figure
3.3(c) and Figure 3.3(d) show the estimated bounding ellipse for two differ-
ent human positions, standing position and after a fall incident respectively.
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(a) Original frame (b) Bounding box

(c) Approximated ellipse (d) Approximated ellipse

Figure 3.3: (a) Original frame, (b) minimum bounding box creation to ex-
tract width-height ratio, (c) approximated ellipse for standing
position and (d) approximated ellipse after a fall incident.

3.5.2 3D Features

3D features include the vertical motion velocity estimation based on the ac-
tual person’s height. We choose to estimate vertical motion velocity by using
the actual person’s height, due to the fact that actual height is a view inde-
pendent measure and thus vertical motion velocity is not affected neither by
the viewpoint nor by the distance between the camera and the person.

By using a pinhole camera an object with actual height ha is represented
on camera’s plane with projected height hp, as shown in Figure 3.4(a). By
examining this representation, it appears that the actual height of the object
is given by

ha = Z
hp

f
(3.13)

if camera’s focal length, f , distance, Z, between the camera and the object
and object’s projected height, hp, are known.

As explained in subsection 3.5.1, object’s projected height is already known.
So, the problem of estimating object’s actual height includes, firstly, the
transformation of our camera to a pinhole-like camera, with known focal
length and distortion-free capturing, and, secondly, the estimation of the
distance between the camera and the object. The first problem is addressed
by using camera calibration techniques, while we overcome the second one
by the construction of a reference plane that is the orthographic view of
the floor, as shown in Figure 3.4(c). On the reference plane the relation be-
tween camera’s natural units (pixels) and the units of the physical world
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(a) Pinhole camera model

(b) Camera plane (c) Reference plane

Figure 3.4: (a) pinhole camera-depiction of an object with actual height ha
to camera’s plane with projected height hp, (b) camera’s plane,
(c) reference plane – the distance between the camera and the
person is linear to the number of pixels.

(cm) is linear and thus the distance between the camera and the person can
be straightforward calculated. At this point it has to be mentioned that we
use a self calibration technique to reduce installation cost.

3.5.2.1 Camera Self-Calibration

Camera calibration is a necessary process, in order to obtain camera’s focal
length, which is required for actual foreground object’s height approxima-
tion. The self calibration technique that we chose to use requires three finite
vanishing points that correspond to three mutually orthogonal planes of the
scene, in order to compute camera’s geometry (principal point and focal
length). Our system uses a single stationary monocular camera, and thus
only a single view of the scene is available. In order to detect three finite
vanishing points that correspond to three mutually orthogonal planes of the
scene the camera has to be placed in a way that its plane is not parallel to
any of the aforementioned planes.

During self-calibration, for vanishing points detection, the unbounded
image plane is chosen as accumulator space since it preserves the original
distances among points and lines (Grammatikopoulos et al., 2007). The in-
tersections of all pairs of line segments are selected as accumulator cells.
These accumulator cells represent potential vanishing points. Since a van-
ishing point in a 3D scene is a point at infinity, the corresponding vanish-
ing point in 2D image cannot lie on a line segment. So, from the initial
set of candidate vanishing points all of them that do not satisfy the afore-
mentioned constraint are removed. For each one of the candidate vanishing
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points the contribution of every line segment is computed by means of a
voting scheme.

Next, all candidate vanishing points along with their corresponding scores
are checked against certain geometrical criteria (Rother, 2002), including or-
thogonality criterion and camera criterion. Every triplet of finite vanishing
points forms a triangle. The intersection point of its heights defines the prin-
cipal point and its size defines the focal length. According to the orthogo-
nality criterion each angle of this triangle has to be smaller than 90

◦. The
camera criterion is fulfilled if the principal point and the focal length are
inside a certain range. So, only triplets of finite vanishing points that form
acute triangles and present “reasonable” values for principal point and fo-
cal length are considered. These triplets are sorted according to their total
score; that with the highest score is chosen as the final triplet of dominant
vanishing points.

To estimate principal point (xo, yo) and camera’s focal length f, each pair
of orthogonal vanishing points, v1 and v2, expressed in homogeneous co-
ordinates, supplies a linear constraint on the entities of conic c of the form

v1
Tcv2 = 0 . (3.14)

By ignoring image aspect ratio and skewness, c may be written as

c =

 1 0 −xo

0 1 −yo

−xo −yo xo
2 + yo

2 + f 2

 . (3.15)

After focal length estimation, captured frame should be rectified by re-
moving radial lens distortions. Radial lens distortion at any image point
(xd, yd) can be modeled by the first two coefficients of a Taylor series around
r = 0, where r is the distance between point (xd, yd) and principal point
(xo, yo). Radial lens distortion is given by

xu = xd + xd(k1r2 + k2r4)

yu = yd + yd(k1r2 + k2r4)
, (3.16)

where (xu, yu) is the undistorted point corresponding to distorted point
(xd, yd). To detect lines we used a straight line detector with increased tol-
erance region, so as segments of curved lines are detected as straight lines
(Thormaehlen et al., 2003). Then, the detected lines are constrained to con-
verge to their corresponding vanishing point (xv, yv) according to the fol-
lowing equation

(x− xv)cosω + (y− yv)sinω = 0 , (3.17)

where (x, y) are the image coordinates of an individual point on a line and
ω is the angle between the line and the vertical image axis. By introducing
the coefficients, k1 and k2, of radial distortion Eq.(3.17) results in (Gram-
matikopoulos et al., 2007):

[x− (x− xo)(k1r2 + k2r4)− xv]cosω +

+ [y− (y− yo)(k1r2 + k2r4)− yv]sinω = 0 , (3.18)

where (xo, yo) are the coordinates of the principal point. Coefficients k1 and
k2 are computed so as the root mean square distance of points (x, y) from
the fitted line is minimized.
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3.5.2.2 Reference Plane Construction

A reference plane that represents the orthographic view of the floor, can
be constructed by applying perspective transformations on the original cap-
tured frame. As described in (Cyganek, 2007), for a projective space ℘n a
projective homography is defined as a nonsingular matrix H(n+1)×(n+1) with
elements belonging to an affine space <n, and defined up to a certain scalar
value, called a scaling coefficient. A point x is projectively transformed to x̂
by

x̂ = Hx, x, x̂ ∈ ℘n , (3.19)

where H is the coordinate transformation matrix (homography matrix).
In perspective transformations that are a specific case of projective homo-

graphies, called planar homographies, Eq.(3.19) can be expressed asx̂1

x̂2

x̂3

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33


x1

x2

x3

 , (3.20)

where x denotes pixel homogeneous coordinates in captured frame and x̂ is
the new position of a pixel in the wrapped output image. By using perspec-
tive transformations any parallelogram can be transformed to any trapezoid,
and vice versa. In our case, we want to transform the camera’s plane to a
reference plane that represents the orthographic view from above of the
camera’s plane. Then according to (Bevilacqua et al., 2008), x̂ and x can be
expressed by the following relations

x̂ = [x̂ ŷ 1] and x = [x y 1] , (3.21)

where x, y, x̂, ŷ represent Cartesian coordinates on image plane and refer-
ence plane respectively and homography matrix H = [hij] can be normal-
ized to have h33 = 1.

The algorithm of (Bevilacqua et al., 2008) finds the inverse perspective
transformation that maps a set of three dimensional points (markers) of the
real world object to the corresponding set of two dimensional points of a
virtual grid, representing objects orthographic view from above. This algo-
rithm uses a single image with a known pattern to extract a set of markers.
To solve Eq.(3.20) at least four non collinear markers is required to be ex-
tracted, but usually a larger set of markers is available and the solution can
be found in a least square method. Finally, the quality of the transformation
is measured by computing the back projection error, E, associated with the
homography matrix H. This error is given by

E = ∑n
i=1 (x̂i −

h11xi + h12yi + h13

h31xi + h32yi + h33
)2 +

+ (ŷi −
h21xi + h22yi + h23

h31xi + h32yi + h33
)2 , (3.22)

where n stands for the number of selected markers.
In our case, this algorithm has to be applied only once for a specific angle

between camera’s plane and floor plane. For a variety of angles, in order
to reduce installation cost, this algorithm can be applied many times offline
and its pre-calculated output can be used directly by the fall detection sys-
tem.
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3.5.2.3 Actual Height Approximation

As mentioned before, person’s actual height can be approximated by Eq.(3.13)
as shown in Figure 3.4(a). In order to use Eq.(3.13), we have to approximate
the distance Z between the camera and the foreground object. This distance
can be approximated by using the bottom-most point, qbm, of foreground
object. On the constructed reference plane the relation between camera’s
natural units (pixels) and the units of the physical world (cm) is linear and
thus Z is straightforward calculated, Figure 3.4(c), while the other parame-
ters of Eq.(3.13), focal length, f , and projected height, hp are already known.

However, the actual height estimation can be affected by the motion of
foreground object, as well as, by the appearance of errors during perspective
transformations, as it depends on distance estimation on reference plane.
Let us denote as h(i) the approximated actual height of foreground object
at the current frame of analysis i. In our approach, to reduce accumulation
of approximation errors at the following frames for processing we use a
heuristic iterative methodology, which updates the foreground height taking
into account previous height information and the current one, h(i). This
methodology yields to a robust approximate solution, which is computed
by

h(i) = κh(i− 1) + (1− κ)h(i) , (3.23)

where κ is a parameter that regulates the importance of h(i) to the iterative
procedure. This iterative procedure requires an initial value of h(i) which in
our case is set to average height of adult males, e.g. 175cm. This initial value
is not restrictive and can be set to any value according to the average height
of potential foreground objects.

After, person’s actual height approximation, vertical motion velocity can
be estimated by Eq.(3.24), which, for a time window of length m frames, can
be approximated by

V =
k

∑
i=k−m

ha(i)− ha(i− 1) , (3.24)

where ha(i) stands for the actual height of a human in 3D space at the ith im-
age frame. Vertical motion velocity is calculated for a sequence m of frames
and is an estimation of the speed of the motion and also an evidence of
how severe a fall can be. Using person’s actual height, measured in physi-
cal world units (e.g., cm, inches), (i) yields a more robust performance not
affected by cases where the person is far away or very close to the camera,
(ii) provides extra information about the moving object, making the system
capable to discriminate if the moving object might be a human or something
else, like a pet, and (iii) improves system’s performance for a wider range
of camera positions and mountings, since this measure is view-invariant.

3.6 fall detection algorithm

In order to discriminate fall incidents than other normal everyday activ-
ities we adopt a supervised learning approach based on Support Vector
Machines (SVM).

The creation of SVM input data is based on the average calculation for
each one of the extracted features, see section 3.5, over a time window of
length m. Average calculation operates as a smoothing filter that reduces
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the effect of noise and errors during features approximation. In our case
m is set to 5 frames (200ms). This value, on the one hand, is sufficient for
features smoothing, and on the other, allows a successful description of a
fall, which lasts 0.9 seconds (Fu et al., 2008), and thus discriminate it than
other activities.

Varying time window can increase misclassification error of falls to other
humans’ activities. Shorter time spans increase false positive rates, while
longer time windows increase false negative rates. The former case triggers
multiple alarms for the same actual incident, while simultaneously normal
activities, which are characterized by sudden changes in features values (e.g.
bending), cannot be also considered as falls. The latter case over smooths the
values of vertical motion velocity, width-height ratio and body orientation.
Thus, it is harder to find an appropriate threshold for discriminating fall
incidents than normal activities.

As input data, the average values over 5 frames of (i) the time derivative
of the angle that describes body orientation, (ii) the time derivative of per-
son’s actual height that represents vertical motion velocity and (iii) the time
derivative of person’s projected width-height ratio, are used. Each one of
the resulted tuples is manually labeled as normal activity or fall.

3.7 experimental results

The proposed system works with a single monocular camera. Foreground
extraction/background subtraction algorithms and feature extraction pro-
cesses are implemented in C++ and Python using OpenCV library and the
semi-supervised fall detection mechanism is done with Matlab. The system
operates in real-time at 23fps for 640× 480 frame dimension on an Intel Du-
alCore T4300 at 2.1 GHz by using, for image segmentation, ISL algorithm
for indoor environments and ASMM for outdoor. This selection is justified
in subsection 7.2. By using these techniques, the fall detection algorithm
detects over 90% of fall incidents while it preserves very low false positive
rate, which is not crucial when post verification video analysis is available.
Its performance and efficiency depends on the quality of extracted features,
which inherently depend on the foreground extraction efficiency and per-
sons actual height approximation.

3.7.1 Data Set Description

The evaluation of the system performance conducted using footage from
a martial arts school in Chania, Greece. The code was implemented in
OpenCV. The system was tested in different cases, including camera posi-

Figure 3.5: Characteristics examples of the environment recorded along
with the background changes.
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Figure 3.6: Examples of different normal humans’ activities tested.

tion (meaning that active cameras scenarios can be also supported), changes
in the illumination conditions, rapid and fluctuations in the background. We
should mention that the results in the martial arts school in Chania were fo-
cused on background, where the sun light reflects on mirrors, making the il-
lumination changes really demanding. Furthermore, video background was
changing dynamically. New objects were appeared in the scene and existing
objects changed position. Below are shown three pictures of background.
Figure 3.5 depicts some examples of background changes. In Figure 3.5(a)
the curtains are closed while in Figure 3.5(b) the curtains are opened and in
Figure 3.5(c) curtains are opened and one bench was appeared in the scene.

Camera calibration approach, described in subsection 3.5.2, is based on
the detection of three finite vanishing points that correspond to three mu-
tually orthogonal planes of the scene. Thus, the camera has to be placed
in a way that its plane is not parallel to any of the aforementioned planes.
Furthermore, in order to calculate 2D and 3D features (subsection 3.5.1 and
subsection 3.5.2) for discriminating falls than normal activities, we mounted
the camera so that frames’ x-axis was almost parallel to the floor. In cases
where frames’ x-axis is not parallel to the floor, the floor plane has to be de-
tected and an affine transformation must be conducted to reverse rotation
effects before the application of the proposed approach. However, comput-
ing such an affine transformation is out of the scope of this work.

Experimental process includes several actions such as (a) falls, (b) appear-
ance/disappearance of objects, and (c) normal activities. Falls were made in
every direction according to the camera. This includes falls to the right, to
the left, with forward and backward motion in regard to the camera position.
In total, the dataset contains 50 fall incidents and many more normal activi-
ties. Several objects were used, such as benches and balls to simulate normal
activities, like sitting or playing with the ball, and falls, like falling from the
bench. Normal activities simulated during the experiment, included leaning
forward to tie the shoelace, laying down on the floor, sitting on the bench,
sitting down on the floor. These normal activities may look like a fall, but
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Figure 3.7: (a) Original captured frame, (b) ISL performance, (c) ASMM per-
formance, (d) nPBG performance and (e) GMM performance.

they are not a real fall, so they used to check false negative and positive
rates and consequently the performance of the system. Examples of normal
activities are shown in Figure 3.6.

3.7.2 Foreground Extraction

During experimentation process three different background subtraction tech-
niques were used: ISL algorithm, ASMM, nPBG. All these algorithm were
compared to Gaussian Mixture Model (GMM) background subtraction in
terms of computational cost, precision and recall. GMM background sub-
traction technique is also implemented in C++ using OpenCV.

Overall Indoor Outdoor

precision recall precision recall precision recall

ASMM 68% 79% 72% 78% 61% 79%

ISL 62% 77% 94% 93% 23% 47%

nPGB 71% 70% 91% 72% 58% 79%

GMM 41% 59% 58% 71% 29% 51%

Table 3.1: Precision and Recall diagrams for indoor-outdoor environments,
only indoor environments and only outdoor environments.

Image segmentation techniques performances, for foreground extraction,
are summarized in Figure 3.7. Figure 3.7(a) shows the original captured
frame and the visual results of ISL, ASMM, nPBG and GMM are presented
in Figure 3.7(b-e). The first two columns present segmentation results for
indoor environment, columns 3 to 6 present segmentation results for two
video sequences from VISOR (http://openvisor.com) and the last two columns
present segmentation results for a very challenging video sequence from
SCOVIS.

As it is easy to be seen, for indoor environment, the ISL algorithm ex-
tracts almost the “perfect” silhouette of foreground object and outperforms
all other algorithms, whose detection is characterized by many “holes” on
the body of foreground object. However, for outdoor environments ISL algo-
rithm’s performance is very weak. This algorithm uses motion information
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Figure 3.8: Computational cost
per frame for different
background subtrac-
tion methods. Cost for
nPBG is not presented
as it depends on the
area of the foreground
object, its average cost
is 70ms for 1000 pixels
foreground.

in the scene to extract the foreground and its weak performance is justified
by the fact that outdoor environments are characterized by high background
motion. For outdoor environments visual results suggest that ASMM and
nPGB algorithms perform better.

However, visual results are not sufficient to compare algorithms’ perfor-
mance. For this reason, we quantified performances’ results in terms of pre-
cision and recall and computational cost. For precision and recall computa-
tion, background algorithm results were compared to a foreground mask,
which was labeled by a human user, was used as the reference silhouette of
foreground object.

A precision recall diagram is presented in the left column of Table 3.1,
for indoor-outdoor environments performance. ISL, ASMM and nPBG algo-
rithms performs quite well with precision rate over 63% and recall rate over
70%. In order to select the more robust algorithm for our system, we have to
examine precision recall diagrams for indoor, Table 3.1 middle column, and
outdoor, Table 3.1 right column, environments separately. For indoor envi-
ronment ISL algorithm outperforms all other algorithms with precision rate
95% and recall rate 94%, while for outdoor environments ASMM presents
the best performance with precision rate 61% and recall rate 78%. nPGB
algorithm’s performance is presented to be independent to operation envi-
ronment.

Besides algorithms’ precision and recall, another requirement is the pro-
posed fall detection system to be capable to operate in real-time. So, an
important factor for the selection of appropriate segmentation techniques is
their computational cost per frame Figure 3.8. Computational cost of nPBG
is not presented in the diagram, as its cost is depended on the size of the
area of foreground object. This algorithm presents average cost of 70ms for
1000 pixels area of foreground and thus is not suitable for real-time opera-
tion (25fps). ISL algorithm requires 27ms to process each frame and ASMM
time requirements vary from 18ms to 29ms depending on the number of
Student’s-t mixtures. Both these algorithms can operate in real-time.

The aforementioned analysis suggests to use ISL for indoor environments
in order to exploit its high precision and recall rates and ASMM for outdoor
environments as it outperforms all other algorithms. The following feature
extraction process is based on the aforementioned setting (ISL for indoor
environments and ASMM for outdoor environments).

3.7.3 Features for Fall Detection

The features that are used to discriminate fall incidents than other ordi-
nary activities are vertical motion velocity, based on actual person’s height,
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person’s projected width-height ratio and body orientation. Firstly, we will
present person’s actual height approximation and then we will show how
this features change during a fall incident.

To approximate person’s actual height we used Eq(23) with an extra con-
straint, which reduces wrong estimations when a fall incident occurs and
height is significantly changing. According to this constraint, the height h(i)
is being updated only if its absolute difference from h(i− 1) is smaller than
a predefined threshold (in our case 30cm). Diagram in Figure 3.9 (b) shows
Root Mean Square Error (RMSE) during person’s actual height approxima-
tion for different values of κ variable. As this figure shows, the system yields
the more robust performance when κ variable is set to 0.8 with RMSE equal
to 4.27%. During experiments the person was 193cm tall, so this RMSE cor-
responds to 8.2cm.

This approximation error caused by the human motion and small errors
during foreground extraction and perspective transformations. However,
this error is very small and doesn’t affect the performance of the system.
Approximation of actual person’s height is presented in Figure 3.9(a). The
horizontal dotted line represents the actual person’s height, while the con-
tinuous line represents the approximation of its height.

In Figure 3.9(c) time derivatives of features’ values are presented. Dur-
ing these frames two fall incidents occurred; one at frame 40 and another
one at frame 132. It is easy to be seen that during a fall incident these fea-
tures present strong time derivatives, which are sufficient to discriminate
falls. Instead of following a heuristic or trial-and-error approach for defin-
ing thresholds for these derivatives in order to identify falls, we used a
supervised learning algorithm. In particular we exploited Support Vector
Machines (SVM). Our choice to use SVM is justified by the fact that; a) we
want to separate events in two different classes (fall and non-fall class), b)
SVM construct a hyperplane that has the largest distance to the nearest train-
ing data point of any class decreasing this way the generalization error of
the classifier and c) in most of cases, SVM generalization performance (i.e.
error rates on test sets) either matches or is significantly better than that of
other competing methods.

For the training of the classifier we randomly selected 60% of fall and non
fall incidents. Furthermore, we used Gaussian Radial Basis Function kernel,
as this configuration leads to the largest functional margin. The training of
the classifier takes place offline. For detecting falls every new example is
mapped into one of the two classes. If a new example is mapped into the
fall class, then a fall alarm occurs.

3.7.4 Fall Detection Algorithm

During the experimentation process on person simulated falls in every direc-
tion according to the camera position, Figure(3.10a), and normal every day
activities, that may look like falls but they are not real falls, Figure(3.10b).
The fall detection algorithm was tested in dynamically changing visual con-
ditions, including illumination changes, cluttered background and occlu-
sions

The overall performance of fall detection scheme is presented in Table
3.2. Its performance is affected by the quality of extracted features and sub-
sequently by foreground extraction. For this reason, our system presents
more robust performance for indoor environments. However, it should be
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Figure 3.9: (a) Actual height approximation for 1000 frames, (b) actual
height approximation RMSE in regard to κ variable and (c) fea-
tures derivatives changes over time.

mentioned that its performance is not affected by humans’ height, because
the threshold for discriminating fall incidents than normal activities, is es-
timated through a learning procedure and, thus, is adapted to individual’s
height. In addition, the impact of occlusions is being reduced as camera’s
height is being increased.

Finally, in Table 3.3 false positive rates are presented with regard to differ-
ent activities. The biggest false positive rate is presented when the human
lies on the floor, however, this activity cannot be thought as ”normal”. False
positive rates, associated with the ”lying on the floor” activity, can decrease
by relaxing vertical velocity threshold, used to discriminate fall incidents
than normal activities. Relaxing this threshold, however, can increase false
negative rates, which are of a primary concern for a fall detection system.

Table 3.2: Proposed System’s Overall Performance.
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(a) Fall incidents

(b) Normal activities

Figure 3.10: Simulated activities during experimentation process (a) Falls,
(b) normal activities.

Activity False Positive

Lie down 62.5%

Sit on the floor 25%

Other 12.5%

Table 3.3: Total false positive rate divided in regard to human activities

3.8 conclusions

This chapter presented a fall detection scheme that uses a single low-cost
monocular camera. Our approach combines the advantages of both monocu-
lar and multi-camera systems. In contrast to other 2D fall detection methods,
the proposed system is very robust for a wider range of camera positions
and mountings and its performance is not affected by the distance between
camera and foreground objects. Moreover, it extracts 3D features without
using computationally expensive stereo-vision mathematics, which are nec-
essary and compulsory for all multiple camera systems.

Specifically, through camera self-calibration and perspective transforma-
tions, our system is capable to exploit 3D measures to increase its robustness.
It operates in real-time and is capable to detect over 90% of fall incidents in
complex and dynamically changing visual conditions, while it presents very
low false positive rate. Furthermore, due to its low computational cost and
memory requirements making it suitable for large scale implementations,
let alone its low financial cost since simple low resolution cameras are used,
making it affordable for a large scale.
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4.1 motivation

Pirate attacks (Onuoha, 2009), unlicensed fishing trailers (Agnew et al., 2009),
human trafficking (Stanslas, 2010) and smuggling are only few, among a
wide range, of criminal activities known to the maritime domain. Addition-
ally, all ships are vulnerable to problems from weather conditions, faulty
design or human errors. Management of such crises and emergency situa-
tions can be supported by advanced surveillance systems suitable for com-
plex environments. Indeed, given the enormous size of coast lines and the
plethora of vehicle types, effective surveillance is considered extremely hard
to obtain, without using the appropriate systems.

The architecture of such systems vary from radar-based to video-based
approaches. Radar technology is commonly used in such systems (Zemmari
et al., 2013) providing accurate detection results. There are, however, two ma-
jor drawbacks; it is quite expensive and its performance is highly affected
by various factors, such as material of objects and echoes returned from tar-
gets, which are out of interest (e.g. the ground, sea, or buildings). Computer
vision is an alternative approach, consisting of various techniques, each one
with specific advantages and drawbacks. Nevertheless, the majority of such
systems are used post-factum and, in most cases, they are controlled by hu-
mans, who are responsible for monitoring and evaluating numerous video
feeds simultaneously.

The challenge of advanced surveillance systems is to process and present
collected sensor data, in an intelligent and meaningful way, to give a suf-
ficient information support to human decision makers (Fischer and Bauer,
2010). Towards this direction, major research effort has been conducted for
automatically detecting and tracking vessels at sea through visual cues. Gen-
erally, in maritime environments, detection and tracking of vessels is in-
herently depended on dynamically varying visual conditions (e.g. varying
lighting and reflections of sea, wind and rain). So, to successfully design a
vision-based surveillance system, we have to carefully define both its opera-
tion requirements and vessels’ characteristics.

On the one hand, concerning operation requirements, as described in (Sz-
pak and Tapamo, 2011), a system should fulfill specific requirements in or-
der to be of practical use. At first, it must determine possible targets within
a scene containing a complex, moving background. Additionally, the system
must not produce false negatives and keep as low as possible the number
of false positives. Since we are talking about surveillance system, it must be
fast and highly efficient, operating at a reasonable frame rate and for long
time periods using a minimal number of scene-related assumptions.

On the other hand, the characteristics of vessels at sea vary greatly, mak-
ing tracking further more difficult. Regardless of variation, there are four
major descriptive categories. First comes the size. Vessels size ranges from
jet-skis to large cruise ships. Secondly, we have the moving speed. Vessels
can be stationary or moving objects with varying speeds. Thirdly, we deal
with angle of view. Vessels move to any direction, according to the camera

35
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position, and thus their angle varies from 0°to 360°. Finally, there is vehicles’
visibility. Some vessels have a good contrast to the sea water while others
are intentionally camouflaged. A robust maritime surveillance system must
be able to detect vessels having any of the above properties.

4.2 literature review

In this work emphasis is given to visual-based surveillance systems. The
main purpose is detection and tracking of targets within camera’s range,
rather than their trajectory patterns’ investigation (Lei, 2013),(Vandecasteele
et al., 2013) or their classification in categories of interest (Maresca et al.,
2010). The system’s main purpose is to support end-user in monitoring
coastlines, regardless of existing conditions.

Sanderson in (Sanderson, 1999) proposed a method for object detection,
based on anisotropic diffusion, which has high computational cost and per-
forms well only for horizontal and vertical edges. Socek et al. (Socek et al.,
2005) presented a method that fuses a foreground object detection tech-
nique with image color segmentation to improve accuracy. In (Albrecht et al.,
2011a),(Albrecht et al., 2010) a maritime surveillance system mainly focuses
on finding regions in images, where is a high likelihood of a vessel being
present, is proposed. In (Albrecht et al., 2011b), the aforementioned system
was expanded by adding a sea/sky classification approach based on His-
togram of Oriented Gradients (HOG). The authors of (Rodriguez Sullivan
and Shah, 2008) proposed a method for securing port facilities by automati-
cally detecting various vessel classes using a trained set of MACH filters.

All of the above approaches adopt offline learning methods that are sen-
sitive to accumulation errors and difficult to generalize for various vessel
types, angles and environmental/visual conditions. Wijnhoven et al. (Wijn-
hoven et al., 2010) utilized an online trained classifier, based on HOG. How-
ever, retraining takes place when a human user manually annotates the new
training set. In (Szpak and Tapamo, 2011) an adaptive background subtrac-
tion technique is proposed for vessels extraction. Unfortunately, when a tar-
get is almost homogeneous is difficult, for the background model, to learn
such environmental changes without misclassifying the target.

More recent approaches are the works of Makantasis et al. (Makantasis
et al., 2013) and Kaimakis et al. (Kaimakis and Tsapatsoulis, 2013). The for-
mer, utilizes a fusion of Visual Attention Maps (VAM) and background sub-
traction algorithm, based on Mixture Of Gaussians (MOG), to produce a
refined VAM. These features are fed to a neural network tracker, which is
capable of online adaptation. The latter, utilized statistical modelling of the
scene’s non-stationary background to detect targets implicitly. Both cases
were based on monocular video data and no a priori knowledge about tar-
gets’ appearance is required

A comparative evaluation of anomaly detection algorithms, for maritime
video surveillance can be found in (Auslander et al., 2011). This work em-
phasizes on algorithms that automatically learn anomaly detection models
for maritime vessels, where the tracks are derived from ground-based opti-
cal video, and no domain-specific knowledge is employed. Some models for
anomaly detection can be created manually, by eliciting anomaly models in
the form of rules from experts (Nilsson et al., 2008), but this may be imprac-
tical if experts are not available, cannot easily provide these models, or the
elicitation cost may be high.



4.3 system architecture and problem formulation 37

4.2.1 Our Contribution

A careful examination of the proposed methodologies on visual maritime
surveillance suggests that specific points have to be addressed. Firstly, a
system needs to combine both supervised and unsupervised tracking tech-
niques, in order to exploit all the possible advantages. Secondly, since we
deal with vast amount of available data, we need to reduce, as much as pos-
sible, the required effort for the initialization of the system. Finally, there is
the adaptation problem on constantly varying visual environments.

The innovation of this work lies in the creation of a visual detection sys-
tem, able to overcome the aforementioned difficulties by combining various,
well tested techniques and, at the same time, minimizes effort during the
offline initialization using a Semi-Supervised Learning (SSL) approach, ap-
propriate for large data sets. Thus, the first step, towards the creation of a ro-
bust detection system, would be the utilization of unsupervised techniques.
Collaboration of visual attention maps, that represents the probability of a
vessel being present in the scene, and background subtraction algorithms
further supports image segmentation and excludes any land parts marked
as vessels. Regarding the supervised technique Support Vector Machines
(SVMs) have been used.

Given a set of frames, the manual segmentation requires a lot of effort and
time. In order to facilitate the creation of such training set, SSL graph-based
algorithms need to be involved. Unfortunately, SSL techniques scale badly
as the available data rises. To make matters worse, Nadler et al. (Nadler et al.,
2009) have shown that graph Laplacian methods, and more specific the regu-
larization approach (Zhu et al., 2003) and the spectral approach (Belkin and
Niyogi, 2003), are not well posed in spaces Rd , d ≥ 2, and as the number
of unlabeled points increases the solution degenerates to a non-informative
function. Consequently, a semi-supervised procedure, suitable for large data
sets is exploited for the offline initialization, significantly reducing the effort
required.

The proposed system is able to operate in real-time for long time periods
such as months without any re-initialization. In addition, camera motion
does not affect system’s false negative rate, which is the most important
characteristic in this application domain. Also, the system does not make
any assumptions related to scene, environment and/or visual conditions.
An important aspect is the minimum labeling effort, for the training set cre-
ation, required by the trackers since the semi-supervised technique nullifies
segmentation errors.

4.3 system architecture and problem formulation

In this section we analytically describe the architecture of the maritime secu-
rity system and formulate the problem of detecting and tracking maritime
targets.

4.3.1 System Architecture

The goal of the presented system is the real-time detection and tracking
of maritime targets. Towards this direction, an appearance-based approach is
adopted to create visual attention maps that represent the probability of a
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target being present in the scene. High probability implies high confidence
for a maritime target’s presence.

Visual attention maps creation is based exclusively on each frame’s visual
content. Consequently, they do not take into consideration neither the tem-
poral relationship between subsequent frames, nor any motion information
presented in the scene. Due to this limitation, in many cases, high proba-
bility is assigned to image regions that depict, instead of maritime targets,
stationary land parts, which stand out in relation to their surrounding re-
gions or the entire image, such as port facilities, lighthouses, rocks, etc.

In order to overcome such a drawback, our system exploits the temporal
relationship between subsequent frames. Concretely, video blocks, contain-
ing a predefined number of frames, are used to model the pixels’ intensities.
Thus, the temporal evolution of pixels intensities is utilized to estimate a
pixel-wise background model, capable to denote each one of the pixels of
the scene as background or foreground. By using a background modeling al-
gorithm, the proposed system can efficiently discriminate moving from sta-
tionary objects in the scene. In order to model pixels’ intensities, we use the
background modeling algorithm presented in (Zivkovic, 2004). This choice
is justified by the fact that this algorithm can automatically fully adapt to
dynamically changing visual conditions and cluttered background.

Let us denote as p(i)xy the pixel of a frame i at location (x, y) on image plane.
Having constructed the visual attention maps and applied background mod-
eling algorithm, the pixel p(i)xy is described by a feature vector

f
(i)
xy = [ f (i)1,xy ... f (i)k,xy]

T , (4.1)

where f (i)1,xy, ... , f (i)k−1,xy stand for scalar features that correspond to the prob-

abilities assigned to the pixel p(i)xy by different visual attention maps, while

f (i)k,xy is the binary output of background modeling algorithm, associated
with the same pixel. In order to detect maritime targets, these features are
fed to a binary classifier which classifies pixels into two disjoint classes, CT
and CB.

If we denote as Z(i) = C(i)
T ∪ C(i)

B the set that contains all pixels of frame i,

then the first class, C(i)
T , contains all pixels that depict a part of a maritime

target, while the second class, C(i)
B , equals to Z(i) − C(i)

T . We used SVMs
to transact the classification task for the proposed maritime surveillance
system. Selection of the SVM, over other supervised classification methods,
is justified by its robustness, when handling unbalanced classes.

The overall architecture of the proposed maritime surveillance system is
presented in Figure(4.1). Initially, the original captured frame, Figure(4.1-
i), is processed to extract pixel-wise features using visual attention maps,
Figure(4.1-ii), and background modeling, Figure(4.1-iii). Then the feature
vector of each one pixel, Figure(4.1-iv), is processed by a binary classifier,
Figure(4.1-v), who decides if the pixel corresponds to a part of a maritime
target, Figure(4.1-vi). The classifier’s output in frame-level is shown in Fig-
ure(4.1-vii).

4.3.2 Problem Formulation

Maritime target detection can be seen as an image classification problem.
Thus, we classify each one of the frame’s pixels in one of two classes, CT
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Figure 4.1: System’s architecture illustration. Image in (i), corresponds to
the original captured frame. In (ii), the output of visual atten-
tion maps is presented. High probability is represented with red
color, while low probability with deep blue. The output of back-
ground modeling algorithm is shown in (iii). The column in (iv)
represents a feature vector for a specific pixel, which is fed to a
binary classifier (v). The output of the classifier in pixel level is
presented in (vi) and in frame level in (vii).

and CB. If we denote as l(i)xy the label of pixel p(i)xy , then, for a frame i, the
classification task can be formulated as

l(i)xy =

 1 if p(i)xy ∈ CT for x = 1, ..., w and y = 1, ..., h

−1 if p(i)xy ∈ CB for x = 1, ..., w and y = 1, ..., h
, (4.2)

where h and w stand for frame’s height and width.
Although, a binary classifier, in our case SVM, can successfully transact

the classification task, a classifier training process should precede. Training
process requires the formation of a robust training set composed of pixels,
along with their associated labels. Such a set can be formed by the user,
through a rough segmentation of a frame t into two regions, that contain
positive and negative samples, i.e. pixels that belong to C(t)

T class and la-

belled with 1 and pixels that belong to C(t)
B class and labelled with -1. The

union of C(t)
T and C(t)

B consists the initial training set S.

At this point in the training set S = {(p(t)xy , l(t)xy )} for x = 1, ..., w and
y = 1, ..., h, each pixel is described only by its intensity, which does not
provide sufficient information for separating pixels into two disjoint classes.
Taking into consideration the application domain, which indicates that the
largest part of a frame will depict sea and sky, we exploit low level features
to emphasize man-made structures in the scene.

Based on image low level features, we create visual attention maps that
indicate the probability a pixel to depict a part of a maritime target. In ad-
dition, based on the observation that a vessel must be depicted as a moving
object, we implicitly capture the presence of motion by exploiting a back-
ground modeling algorithm. Using the output of visual attention maps and
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the background modeling algorithm, each pixel is described by the feature
vector of Eq.(4.1) and the training set S can be transformed to

S = {(f (t)
xy , l(t)xy )} for x = 1, ..., w and y = 1, ..., h . (4.3)

Although the elements of S are labelled by a human user, the labelling
procedure may contain inconsistencies. This is mainly caused by the fact
that human centric labelling, especially of image data, is an arduous and
inconsistent task, due to the complexity of the visual content and the huge
manual effort required.

To overcome this drawback, we refine the initial training set by i) selecting
the most representative samples from each class and ii) labelling the rest of
the samples using a semi-supervised algorithm. Selection of the most repre-
sentative samples is taken place by applying simplex volume expansion on
the samples of each class separately. Then representative samples are used
by the semi-supervised algorithm as landmarks, in order to label the rest
of the samples. Using the refined training set, the binary classifier can be
successfully trained to classify the pixels of subsequent frames, addressing
this way the initial classification problem of Eq.(4.2).

4.4 pixel-wise visual description

In this section we describe the procedure for constructing feature vectors,
capable to characterize the pixels of a frame. During feature vectors con-
struction emphasis is put on the application domain and the specific struc-
ture and appearance of maritime objects. The whole process is tuned for
maritime imagery and is guided by the operational requirements that an ac-
curate and robust maritime surveillance system must fulfill. Feature vectors
are created for each pixel.

4.4.1 Scale Invariance

Potential targets in maritime environment vary in sizes, either due to their
physical size or due to the distance between them and the camera. Despite
that, most of the feature detectors operate as kernel based method and thus
they prefer objects of a certain size. As presented in (Alexe et al., 2010) and
(Liu et al., 2011) images must be represented in different scales in order
to overcome this limitation. In our approach, a Gaussian image pyramid is
exploited in order to provide scale invariance and to take into consideration
the relationship between adjacent pixels.

The Gaussian image pyramid is created by successively low-pass filter-
ing and sub-sampling an image. During the stage of low-pass filtering the
Gaussian function can be approximated by a discretized convolution kernel

Gd =
1

256



1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1


. (4.4)

The idea of creating a Gaussian kernel for convolution is to use a 2D
Normal distribution as a point-spread function. Since the image is stored as
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a collection of discrete pixels we need to produce a discrete approximation
of the Gaussian function. In theory, the Gaussian distribution is non-zero
everywhere, which would require an infinitely large convolution kernel, but
in practice it is effectively zero more than about three standard deviations
from the mean, and so we can truncate the kernel at this point. However, it is
not obvious how to pick the values of the kernel to approximate a Gaussian.
One could use the value of the Gaussian at the center of a pixel in the mask,
but this is not accurate because the value of the Gaussian varies non-linearly
across the pixel. For this reason, the value of the Gaussian is integrated over
the whole pixel. Because the integrals are not integers the array is rescaled
so that the corners had the value 1. Finally, 256 is the sum of all values in
the kernel.

During sub-sampling every even-numbered row and column is removed.
If we denote as Io the original captured image and as Iφ the image at pyra-
mid level φ then image at pyramid level φ + 1 is computed as

Iφ+1(x, y) = [Gd ∗ Iφ](2x, 2y) . (4.5)

One must combine the various scales together into a single unified and
scale-independent feature map, to provide scale-independent feature analy-
sis. To do so, image at level φ + 1, firstly, is upsized twice in each dimension,
with the new even rows and columns filled with zeros. Secondly, a convo-
lution is performed with the kernel Gu to approximate the values of the
"missing pixels". Because each new pixel has four non new-created adjacent
pixels, Gu is defined as

Gu = 4 ·Gd . (4.6)

Then, a pixel-wise weighted summation is performed to adjacent images in
pyramid so as the unified image Jφ at level φ is defined as

Jφ =
1
2
· [Iφ + [Gu ∗U(Iφ+1)]] , (4.7)

where U stands for the upsize operation. The final unified image is com-
puted by repeating the above operation, from coarser to finer pyramid im-
age levels.

4.4.2 Low-level Features Analysis

As described in (Albrecht et al., 2010), (Albrecht et al., 2011a) and (Al-
brecht et al., 2011b) different low-level image features respond to differ-
ent attributes of potential maritime targets. Thus, a combination of features
should be exploited in order to reveal targets’ presence. These are edges,
horizontal and vertical lines, frequency, color and entropy.

The density of image edges can successfully describe the overall structure
of an image, horizontal and vertical lines are able to denote man-made struc-
tures, making the system able to suppress large image regions, depicting sea
and sky. Frequency can successfully emphasize objects in noisy conditions,
such as vessels in a wavy sea. Color feature can successfully emphasize ob-
jects colored different than sea and sky and, finally, entropy quantifies the
amount of information coded in an image.

Each one of these features are calculated for all image’s pyramid levels,
independently. Then, image’s pyramid is combined to form a single unified
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Figure 4.2: Original captured frame (a) and feature responses (b)-(f); (b)
edges, (c) frequencies, (d) vertical and horizontal lines, (e) color
and (f) entropy. All feature responded to the land part and the
boat (maritime target).

feature map by using Eq.(4.7). In Figure(4.2) the original captured frame
along with the features responses are presented. All of the features empha-
size the stationary land part and the white boat, which is the actual maritime
target.

4.4.2.1 Edges

In order to successfully exploit images’ edges, the system must be able to
detect them in a very accurate way and, at the same time, preserve their
magnitude. For this reason edge detection is taking place by combining
both Canny and Sobel operators.

Canny operator (McIlhagga, 2010) is a very accurate image edge detec-
tor, which outputs zeros and ones for image edges absence and presence
respectively. Sobel operator (Yasri et al., 2008), although being less accurate,
measures the strength of detected edges by approximating the derivatives
of intensity changes along image rows and columns.

So, by multiplying pixel-wise the output of two operators the system
is able to detect edges in a very accurate way, while at the same time it
preserves their magnitude. If we denote as CI and SI the Canny and Sobel
operators for image I, then the edges E I are defined as

E I = CI · SI . (4.8)

Matrix E I has the same dimensions with image I; its elements E I(x, y) corre-
spond to the magnitude of an image edge at location (x, y) on image plane.
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4.4.2.2 Frequency

Frequency feature is utilized to emphasize regions of high frequency. For
computing the high frequency components of the input frame, I, the follow-
ing relation is used,

F I = ∇2 · I . (4.9)

The matrix F I has the same dimensions with image I and its elements
F I(x, y) correspond to the frequency’s magnitude at location (x, y) on im-
age plane.

While exploitation of frequency features may emphasize (highly) wavy
sea regions, they will suppress image regions that depict sky parts, since
such image parts are dominated by low frequencies. Furthermore, image
frequencies are complementary to image edges emphasizing highly struc-
tured regions within an object and thus improving detection accuracy.

4.4.2.3 Horizontal and vertical lines

The detection of horizontal and vertical lines in an image require an appro-
priate kernel K. Kernel K is tuned to strengthen the response of a pixel if
this consists a part of a horizontal or vertical line and suppress pixels’ re-
sponses in all other cases. In order to emphasize this kind of lines the kernel
K is designed as

K =
1

16



0 0 1 0 0

0 0 2 0 0

1 2 4 2 1

0 0 2 0 0

0 0 1 0 0


(4.10)

and vertical and horizontal lines in a frame I can be computed by

LI =K ∗ I . (4.11)

Again, the matrix LI has the same dimensions with image I and its elements
LI(x, y) indicates the magnitude of an horizontal and/or vertical line at
location (x, y) on image plane.

Line detector works like an edge detector. In coastal regions, captured
frames are likely to contains land parts that will respond to the edge de-
tector, affecting detection accuracy of actual maritime targets. Taking into
consideration that vertical and horizontal lines are more dominant, in man-
made structures than in natural scenes, the aforementioned line detector can
improve detection accuracy of actual targets by suppressing the regions of
the image that depict natural land parts, such as rocks.

4.4.2.4 Color

In maritime environment, no assumptions about the color of vessels can
be made. For this reason instead of focusing on a specific color, differences
in color are more likely to indicate the presence of a potential target. Fur-
thermore, maritime scenes usually contain large regions with similar colors
(sea and sky). This observation as described in (Achanta et al., 2009) and
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(Achanta and Susstrunk, 2010) can be exploited to increase the performance
of visual attention maps by identifying potential targets.

In order to compute the color difference, the captured frame’s colorspace
is converted to CIELab, in which the perceptive color difference between
two different colors corresponds to the Euclidean distance between the vec-
tors (L, a and b channels) that represent these colors. The computation of
color differences takes place by calculating the Euclidean distances between
individual pixels color vectors and the mean color vector of the whole frame.
For a frame I this procedure results in a matrix C I of the same dimensions,
whose element, C I(x, y), at location (x, y) on image plane, indicates the dif-
ference in color between this pixel and the mean color of the rest pixels of
the frame.

4.4.2.5 Entropy

The entropy quantifies the information coded in an image. Images that de-
pict large homogeneous regions, such as sky or sea regions, present low
entropy, while highly textured images will present high entropy. Image en-
tropy can be interpreted as a statistical measure of randomness, which can
be used to characterize the texture of the input image. Thus, entropy can
be utilized to suppress homogeneous regions of sea and sky and highlight
potential maritime targets. Entropy of a region r of an image is defined as

Hr =
k

∑
j=1

P(r)
j · log P(r)

j , (4.12)

where P(r)
j is the frequency of intensity j in image region r. For a grayscale

image, variable k is equal to 256.
In order to compute entropy for a pixel located at (x, y) on image plane,

we apply the relation of Eq.(4.12) on a square window centered at (x, y). In
our case, the size of the window is 5× 5 pixels. The application of Eq.(4.12)
on (x, y) of a frame I, for x = 1, ..., w and y = 1, ..., h, where w and h cor-
respond to frame’s width and height, results in a matrix HI that has the
same dimensions with the frame I. The matrix HI can be interpreted as a
pixel-wise entropy indicator for frame I.

4.4.3 Visual Descriptors

Visual descriptors are computed to encode visual information of captured
images, using the extracted low-level features described in Subsection 4.4.2.
These descriptors are utilized for constructing the visual attention maps.
Their computation, instead of pixel-wise, takes place block-wise, in order to
reduce the effect of noisy pixels during low-level features extraction. In this
work, like (Albrecht et al., 2010), (Albrecht et al., 2011a) and (Albrecht et al.,
2011b), three different descriptors are computed:

a) Local descriptors that take into consideration each one of the image
blocks separately. Local descriptors indicate the magnitude of local
features for each one of image blocks.

b) Global descriptors that are capable to emphasize blocks with high unique-
ness compared to the rest of the image. To achieve this they indicate
how different local features for a specific block are, in relation with
the same features of all other image blocks.
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c) Window descriptors that compare local features of a block with the
same features of its neighboring blocks.

4.4.3.1 Local descriptor

One local descriptor is computed for each one of the extracted low-level
features. Let us denote as F the feature in question, which can correspond
to image edges, frequency, horizontal and vertical lines, color or entropy.
For the feature F, the computation of local descriptor is derived by feature’s
response image. As mentioned before, descriptors are computed block-wise.
So, firstly the feature’s response image is divided into B blocks of size 8×
8 pixels. Then, the local descriptor for a specific block j is defined as the
average magnitude of the feature F in the same block. More formally, for
a block j, with bh height and bw width, the local descriptor of feature F is
computed by

lFj =
1

bh · bw
∑

(x,y)∈j
F(x, y) , (4.13)

where F(x, y) is the response of feature in question at pixel (x, y). This
kind of descriptor is capable to highlight image blocks with high feature
responses.

4.4.3.2 Global descriptor

The local descriptors handle each image block separately and, thus, are in-
sufficient to provide useful information when features’ responses are quite
similar along all image blocks. Consider, for example, an image full of edges,
like a wavy sea. In this case, local descriptor lE , which is associated with the
image edges, is not able to provide useful information about salient objects
in the scene, since all blocks will present high edge responses. The proposed
system can overcome this problem by using global descriptors.

Uniqueness of a block j can be evaluated by the absolute difference of the
feature response between this block and the rest blocks of the image. The
global descriptor for a feature F and image block j is calculated by

gFj =
1
B
·

B

∑
i=1
|lFj − lFi| . (4.14)

As mentioned before a global descriptor is able to emphasize blocks pre-
senting high uniqueness, in term of features’ responses, compared to the
rest blocks of the image.

4.4.3.3 Window descriptor

Local and global descriptors are capable to emphasize image blocks that are
highly distinctive, in terms of features’ responses, or have a unique presence
in the image. However, if potential targets are presented in more than one
blocks the aforementioned descriptors will emphasize the most dominant
target and will suppress the others. In order to overcome this problem, our
system exploits a window descriptor, that compares each image block with
its neighboring blocks.

Window descriptor for an image with N ×M blocks uses an image win-
dow W, which is spanned by the maximum symmetric distance, dh and
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Figure 4.3: Visual attention maps for local, global and window descriptors.
Using five low level features and three descriptor, each one of
the frame’s pixels is described by a 15-dimensional vector. The
presented visual attention maps correspond to the original frame
of Figure(4.2).

dv along horizontal and vertical axes respectively. Symmetric distances are
defined as dh = min(l, kh, N − kh) and dv = min(l, kv, M − kv), where l is
the default symmetric distance, 3 blocks in our case, and kh and kv stands
for block coordinates on image plane along horizontal and vertical axes re-
spectively. The window descriptor for a feature F and image block j with
coordinates (j1, j2) is computed by

wFj =
1

2dh · 2dv
·

dh

∑
k=−dh

dv

∑
l=−dv

|lFj − lFj1+k,j2+l | . (4.15)

By using three descriptors and five low-level image features, each image
block is described by a 1× 15 feature vector. Each feature of this vector corre-
sponds to a different visual attention map. For blocks of size 8× 8 pixels the
visual attention maps are sixty four times smaller than the original captured
frame. In order to create a pixel-wise feature vector, as defined in Eq.(4.1),
visual attention maps must have the same dimensions with the original cap-
tured frame. For this reason they are upsampled, by using Eq.(4.7).

Visual attention maps that correspond to the original frame of Figure(4.2),
for each one of the descriptors and each one of the low level features, are
presented in Figure(4.3). All visual attention maps emphasize the station-
ary land part and the boat, while at the same time they suppress the back-
ground.

4.4.4 Background Subtraction

For the maritime surveillance case, most state-of-the-art background model-
ing algorithms, like (Doulamis and Doulamis, 2012), fail either due to their
high computational cost or due to the continuously moving background,
and moving cameras. However, if the background modeling algorithm out-
put is fused in a unified feature vector with the previously constructed vi-
sual attention maps, our system will be able to emphasize potential threats
and at the same time to suppress land parts that may be appeared in the
scene by implicitly capture motion presence.
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The proposed system uses the Mixtures of Gaussians (MOG) background
modeling technique, presented in (Zivkovic, 2004). This choice is justified
by the fact that MOG is fast, robust to small periodic movements of back-
ground, and easy to parameterize algorithm. By fusing together the outputs
of visual attention maps and the output of a background modeling algo-
rithm, camera motion temporarily increases false positives detections, but
false negatives, that comprises the most important characteristic of a mar-
itime surveillance system, are not affected.

For the sake of completeness, we briefly describe the background model-
ing technique we are using. The goal of any background modeling technique
is to decide if a pixel at time t, x(t), belongs to background (BG) or to fore-
ground (FG). A reliable decision can be made if the probability of pixel x(t)

to belong to BG is bigger than a threshold. This can be expressed as

p(x(t)|BG) > cthr . (4.16)

The probability p(x(t)|BG) consists the background model, which can be
estimated via a training set XT = {x(t), x(t−1), ..., x(t−T)} defined over a time
span T. The estimated background model is denoted as p̂(x(t)|Xt, BG). For
each new pixel sample the training set XT is updated and p̂(x(t)|Xt, BG) is
re-estimated. Fitting the data of XT using a mixture model of M Gaussian
components we have

p̂(x(t)|XT , BG + FG) =
M

∑
m=1

π̂mN (x(t); µ̂m, σ̂2
m I) , (4.17)

where µ̂1, ..., µ̂M are the estimates of the means and σ̂1, ..., σ̂M are the esti-
mates of the variances that describe the Gaussian components. The non-
negative mixing weights are denoted as π̂m and sum up to one. In condi-
tional probability, BG + GF is used because among the samples of XT could
be some values that belong to the foreground objects. The samples of XT ,
which correspond to background, consist the majority in the set and their
values change gradually. Gaussian components associated with background
samples will present larger mixing weight π̂m compared to the samples that
are associated with foreground samples. Therefore, the background model
of Eq.(4.16) can be approximated as

p̂(x(t)|XT , BG) ∼
B

∑
m=1

π̂mN (x(t); µ̂m, σ̂2
m I) . (4.18)

If the components are sorted to have descending weights π̂m, then B is
estimated as

B = arg min
b

(
b

∑
m=1

π̂m > (1− c f )

)
, (4.19)

where c f is a measure of the maximum portion of the data that can belong to
foreground objects without influencing the background model. The output
of background modeling algorithm is presented in Figure(4.4).

4.5 target detection via pixel-wise binary classification

The maritime target detection can be seen as an image segmentation prob-
lem. In our case target detection, is further reduced to a binary classification
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(a) (b)

Figure 4.4: Original frame (a) and the output of background modeling algo-
rithm (b).

problem. For any pixel at location (x, y) of a frame i, the feature extraction
process (see Section 4.4) constructs an 1× 16 feature vector, f (i)

xy . Given f (i)
xy

as input, the classifier will decide if the corresponding pixel depicts some
part of a maritime target or not.

4.5.1 Initial Training Set Formation

In order to be able to exploit a binary classifier, a process of classifier training
should be preceded. Training process requires the formation of a robust
training set which contains pixels along with their associated labels. Let us
denote as Z(t) the set that contains all the pixels of frame t, C(t)

T the set that

contains pixels that depict some part of a maritime target and as C(t)
B the set

Z(t) − C(t)
T .

The creation of a training set S requires from the user to roughly segment
the frame t into two regions, which contain positive and negative samples
(i.e. pixels that belong to C(t)

T and C(t)
B class respectively). This segmentation

results in a set S = {(p(t)xy , l(t)xy )}, and labels

lxy =

 1 if pxy ∈ CT

−1 if pxy ∈ CB

, (4.20)

where pxy is a pixel at location (x, y). By utilizing the feature vector f (t)
xy the

set S takes the form of Eq.(4.3).
However, human centric labeling, especially of image data, is an arduous

and inconsistent task, mainly due to the complexity of the visual content
and the huge manual effort required. To overcome this drawback, we refine
the initial training set through a semi-supervised approach.

4.5.2 Semi-supervised Training Set Refinement

In order to refine the initial user-defined training set, we partition the set S
into two disjoint classes, R and U. The class R contains the most representa-
tive samples of S, i.e. the samples that can best describe the classes CT and
CB, while class U is equal to S− R. Samples of class R are considered as la-
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beled, while samples belonging to U are considered as unlabeled. Then, via
a semi-supervised approach the samples of R are used for label propagation
through the ambiguously labeled data of U. In the following we describe in
detail the aforementioned process.

4.5.3 Representatives Selection through Simplex Volume Expansion

For selecting the most representative samples for each one of the classes CT
and CB, we consider each sample as a point into an µ-dimensional space.
In our case µ is equal to 16, because the dimension of the space is equal to
the dimension of the feature vectors that describe the pixels. The process
for representatives selection is conducted twice, once for class CT and once
for CB. In the following we describe the process for representative samples
selection for one of the classes, let’s say CT . Exactly the same process is
followed for selecting representatives for the other class.

We assume that the µ-dimensional volume formed by a simplex with ver-
tices specified by the most representative points (pixels), belonging to class
CT , should be larger than that formed by any other combination of points of
the same class. Let us denote as ν(i) the ith representative sample, as β the
number of representatives to be generated, as CT,R = {ν(1),ν(2), ...,ν(β)} ⊆
CT the set that contains the representative samples and as w(j) the vector
that equals to ν(j) − ν(1) for j = 2, 3, ..., β. Then the volume, V(CT,R), of the
simplex whose vertices are the points ν(i) for i = 1, 2, ..., β can be computed
by

V(CT,R) =
|det(WW T)|1/2

(β− 1)!
, (4.21)

where W is an (β− 1)× µ matrix whose rows are the row vectors w(j).
The estimation process involves several steps. Initially the set CT,R is con-

structed by randomly selecting β samples from set CT and the volume of
the simplex, formed by the elements of CT,R, is calculated. Then, an itera-
tive approach is adopted to test every sample in the set CT as a candidate
representative. Each one of the samples of CT,R is replaced, one at a time,
with a sample ν̂ from CT that is being tested as candidate representative.
Then, the algorithm evaluates if replacing any of the elements, of CT,R with
the sample being tested, results in a larger simplex volume. If this is true,
let’s say for the point ν(j) ∈ CT,R, then the ν(j) point is replaced by the im-
age point ν̂ and the process is repeated again until each one of the samples
of CT set is evaluated.

The selection method is scalable to large datasets, using an incremental ap-
proach. Let us assume that β representatives are known. Then, the problem
of selecting β + 1 representatives can be reduced to finding β + 1 represen-
tatives given β of them. This way, only the volumes of simplices formed by
the elements of the sets CT,R ∪ x(i) for x(i) ∈ CT need to be evaluated.

4.5.4 Graph-based Semi-supervised Label Propagation

The aforementioned procedure results to two sets of representative sam-
ples, CT,R and CB,R, one for each class. The samples of CT,R and CB,R are
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considered as labeled, while the rest samples of the classes CT and CB are
considered as ambiguously labeled. More formally, we have

R = CT,R ∪ CB,R (4.22)

and

U = S− CT,R − CB,R . (4.23)

At this point, we need to refine the initial training set, S, using a suitable
approach for the label propagation, through the ambiguously labeled data.

Thus, we need to estimate a labeling prediction function g : Rµ 7→ {−1, 1}
defined on the samples of S, by using the labeled data R. Let us denote as
ri the samples of set R such as R = {ri}m

i=1, where m is the cardinality of
the set R. Then, according to (Liu et al.), the label prediction function can be
expressed as a convex combination of the labels of a subset of representative
samples

g(fi) =
m

∑
k=1

Zik · g(lk) , (4.24)

where Zik denotes sample-adaptive weights, which must satisfy the con-
straints ∑m

k=1 Zik = 1 and Zik ≥ 0 (convex combination constraints). By
defining vectors g and α respectively as g = [g(f1), ..., g(fn)]T and α =
[g(r1), ..., g(rm)]T Eq.(4.24) can be rewritten as g = Zα where Z ∈ Rn×m,
where n is the number of samples belonging to S.

The designing of matrix Z, which measures the underlying relationship
between the samples of U and representative samples R (were R ⊂ U),
is based on weights optimization; actually non-parametric regression is be-
ing performed by means of data reconstruction with representative samples.
Thus, the reconstruction for any data point fi, i = 1, ..., n is a convex combi-
nation of its closest representative samples. In order to optimize these coef-
ficients the following quadratic programming problem needs to be solved.

min
zi∈Rs

h(zi) =
1
2
||fi − Rs · zi||2

s.t. 1Tzi = 1, zi ≥ 0 ,
(4.25)

where, Rs ∈ Rµ×s is a matrix containing as elements a subset of R =
{r1, ..., rm} composed of s < m nearest representative samples of fi and
zi stands for the ith row of Z matrix.

Nevertheless, the creation of matrix Z is not sufficient for labeling the en-
tire data set, as it does not assure a smooth function g. As mentioned before,
a large portion of data are considered as ambiguously labeled. Despite the
small labeled set, there is always the possibility of inconsistencies in segmen-
tation; in specific frames the user may miss some pixels that depict targets.
In order to deal with such cases the following SSL framework is employed:

min
A=[α1,...,αc ]

Q(A) =
1
2
||Z ·A− Y||2F +

γ

2
trace(ATL̂A) , (4.26)

where L̂ = ZT · L ·Z is an memory-wise and computationally tractable alter-
native of the Laplacian matrix L. The matrix A = [a1, ...,ac] ∈ Rm×c is the
soft label matrix for the representative samples, in which each column vec-
tor accounts for a class. The matrix Y = [y1, ...,yc] ∈ Rn×c a class indicator
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matrix on ambiguously labeled samples with Yij = 1 if the label li of sample
i is equal to j and Yij = 0 otherwise.

In order to calculate the Laplacian matrix L, the adjacency matrix W needs
to be calculated, since L = D−W, where D ∈ Rn×n is a diagonal degree
matrix such that Dii = ∑n

j=1 Wij. In this case W is approximated as W =

Z ·Λ−1 · ZT , where Λ ∈ Rm×m is defined as: Λkk = ∑n
i=1 Zik. The solution of

the Eq.(4.26) has the form of:

A∗ = (ZT · Z + γL̂)−1ZT · Y . (4.27)

Each sample label is, then, given by

l̂i = arg max
j∈{1,...,c}

Zi ·αj

λj
, (4.28)

where Zi. ∈ R1×m denotes the i-th row of Z, and the normalization factorλj =

1TZαj balances skewed class distributions.

4.5.5 Maritime Target Detection

Having constructed a training set, S = {fi, li}n
i=1, a binary classifier, capable

to discriminate pixels that depict some part of a maritime target from pixels
that depict the background, can be trained. In this work we choose to utilize
Support Vectors Machine (SVM) to transact the classification task.

Let us assume that the classes of negative and positives samples are linear
separable. This means that there exists a hyperplane P = w · f − b = 0 that
separates the two classes (w is the normal vector to the hyperplane). SVM
classifier tries to estimate and maximize the distance between two other
hyperplanes, Pp = w · f − b = 1 and Pn = w · f − b = −1, that separate
the two classes with no sample existing between them. This can be expressed
by the following constraints:

w · fi − b ≥ 1 if li = 1 ,

w · fi − b ≤ −1 if li = −1 .
(4.29)

Exploiting the value of labels the pair of constraints in Eq.(4.29) can be
rewritten as

li(w · fi − b) ≥ 1 for i = 1, ..., n . (4.30)

The equality of constraint of Eq.(4.30) holds for the samples that lie on the
hyperplanes Pp and Pn. These sumples are called support vectors. The dis-
tance between these two hyperplanes is 2/||w||, which implies that SVM try
to solve the following optimization problem:

min
w̄,b

1
2
||w||2

s.t. li(w · fi − b) ≥ 1 for i = 1, ..., n .
(4.31)

This formulation ensures that the maximum margin classifier classifies each
example correctly, which is possible since we assumed that the data is lin-
early separable. In cases where the two classes are not linearly separable,
to allow classification errors, the optimization problem of Eq.(4.31) is trans-
formed to (Cortes and Vapnik, 1995b):

min
w̄,b,ξ

1
2
||w||+ c

n

∑
i=1

ξi

s.t. li(w · fi − b) ≥ 1− ξi for i = 1, ..., n and ξi ≥ 0 ,

(4.32)



52 vision based maritime security system

where ξi ≥ 1 are variables that allow a sample to be in the margin or to be
misclassified and c is a constant that weights these errors.

In the framework of maritime detection, SVM must be able to handle un-
balanced classification problems, due to the fact that maritime target usually
occupy the minority of captured frames’ pixels let alone their total absence
from the scene for large time periods. To address this problem, the misclassi-
fication error for each class is weighted separately. This means that the total
misclassification error of Eq.(4.31) is replaced with two terms:

c
n

∑
i=1

ξi → cp ∑
{i|li=1}

ξi + cn ∑
{i|li=−1}

ξi , (4.33)

where cp and cn are constant variables that weight separately the misclassi-
fication errors for positive and negative examples. The solution of Eq.(4.32)
with the classification error of Eq.(4.33) results to a trained SVM, which is
capable to classify the pixels of new captured frames.

4.5.6 Detector Adaptation to New Visual Conditions

A robust maritime surveillance system must retain high performance for
long time periods. Thus, an SVM adaptation mechanism has to be devel-
oped, allowing the classifier to be adapted to dynamically changing visual
conditions.

Let us denote as V1, ..., V15 the fifteen visual attention maps described in
section 4.4. We define the average visual attention map, Vavg, as

Vavg =
1

15

15

∑
i=1

Vi . (4.34)

The elements’ value of Eq.(4.34) expresses the overall probability a pixel
to depict some part of a maritime target. Then, we define the refined visual
attention map Vr as the outcome of the element-wise multiplication between
Vavg matrix and background modeling algorithm output B.

Classifier adaptation process is triggered by an automated decision mech-
anism. Let us define as Vr,n and Tn the refined visual attention map and
the output of the classifier, respectively, at frame n. When the difference be-
tween Vr,n and Tn exceeds a predefined threshold the decision mechanism
triggers the adaptation process.

During the adaptation process the SVM classifier is retrained. We form a
new training set that contains as elements the support vectors of the previ-
ously trained classifier, the κ elements of Vr that present the highest proba-
bility (positive samples) and have denoted as belonging to the negative class,
and the κ elements of Vavg that present the lowest probability and have been
denoted as background by the background modeling algorithm (negative
samples).

Finally, we assume that visual conditions in a maritime environment are
smoothly and gradually changing. This implies that the values for w, b and
ξ of the adapted classifier should be close to the estimated values, w̄, b̄
and ξ̄, of the previously trained classifier. To reduce the time required for
classifier retraining, the aforementioned assumption, allows us to speed up
the convergence of the optimization algorithm, which seeks for a solution to
the problem defined in Eq.(4.32), by restricting the feasible solutions region
(set the initial values of the under optimization parameters to the values of
w̄, b̄ and ξ̄).
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4.6 experimental results

The research presented in this work is part of POSEIDON project1. Most of
the algorithms were developed exclusively in C++ to achieve high perfor-
mance (as we mention in subsection 4.6.1, the overall system works almost
in real time, 17fps, for frames with dimensions 384× 288 pixels). There is,
also, code in Python, concerning visual attention maps construction, avail-
able to download2. The performance of each system’s component have been
checked separately; extracted features were evaluated in terms of discrim-
inative ability and importance, semi-supervised labeling for the predicting
outcome and, finally, the binary classifier for its performance.

4.6.1 Dataset Description

As mentioned before, our system operates almost in real time, 17fps, for
frames with dimensions 384× 288 pixels, due to the visual attention maps
construction; low level features extraction consists the main computational
bottleneck of our system. However, the proposed approach can be expanded
for video frames of greater resolution, since each feature can be extracted
independently. Thus, feature extraction process can be easily parallelized
using multiple processing units (e.g. multiple CPU threads or GPU imple-
mentation). Yet, pallelization of this process is out of the scope of this work.

The data sets describe real life scenarios, in various weather conditions.
As long as the camera is able to capture a vessel (i.e. spans an area of more
than 40 pixels in the frame) the system will likely detect it, regardless the
weather conditions (e.g. rain, fog , waves etc.). Apparently, system’s perfor-
mance declines badly in cases of low luminosity due to sensor related sen-
sitivity constraints. Better sensors can partially deal with such issues, but
resulting in greater hardware costs.

Data consists of recorded videos from cameras mounted at the Limassol
port, Cyprus and Chania Venetian port, Crete, Greece. Monocular cameras
were recording videos streams depicting maritime traffic for over one year.
Unfortunately, for the vast majority of the video frames, maritime targets
are absent from the scene. In order to deal with such cases, we manually
edited the videos and kept only the tracks that depict intrusion of one or
more targets in the scene. Then, we manually labeled the pixels of key video
frames, keyframes, to create a ground truth dataset for evaluating our system.

Keyframes originate from raw video frames, on a constant time span
equals to t frames i.e. frames that correspond to time instances t, 2t, 3t, · · ·
The time span is selected to be 6 seconds, which means that one frame out
of 150 is denoted as keyframe. We followed this approach for practical rea-
sons. Firstly, it would be impossible to manually label all video frames at a
framerate of 25 fps. Also, the time interval of 6 seconds is small enough to
allow the detection of the intrusion of a maritime target in the scene. At this
point it has to be clarified that feature extraction task, as well as the binary
classification are performed for all frames of a video track. Keyframes are
used only for system’s performance evaluation.

1 http://www.poseidonproject.gr/
2 https://github.com/kmakantasis/poseidon_features.git
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Figure 4.5: Positive and negative
samples plotted in
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the dataset. The two
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Figure 4.6: Features importances. The feature that corresponds to output of
background modeling algorithm, which implicitly captures the
presence of motion in the scene, is presented to be he most im-
portant.The rest of the features contribute almost the same to the
classification task, except from the feature that corresponds to
the local descriptor of image entropy, which presents the lowest
importance.

4.6.2 Evaluation of Extracted Features

In this section, we examine if the extracted features are able to describe
appropriately frame’s pixels and, consequently, provide useful information
that will facilitate the classification task. In addition, the extent that each one
of the features affects the classification task (i.e. how important a feature is)
is examined. Results concerning the importance of features, may allow us
to discard some of them, in order to speed up system’s performance.

To evaluate features information, we utilized the keyframes’ ground truth
data. The feature extraction task results in a 16-dimensional feature vector
for each pixel in a frame. The quality of features’ information is evaluated
through dimensionality reduction and samples plotting, in order to visu-
ally examine their distribution in space, see Figure(4.5). The two classes, as
shown in Figure(4.5), are linearly separable, which suggests high quality
features. The small amount of positive samples, that lie inside the region of
the negative class, correspond to maritime targets’ contours and probably
occurred due to segmentation errors during manual labeling.
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Except for the evaluation of the constructed vector as a whole, the impor-
tance of each one of the extracted features is examined separately, in order to
define how much each one of the features affects the classification task. The
importance of features is specified via Forest of Randomized Trees (FRT).
FRT is a non parametric supervised learning method, whose goal is to cre-
ate a model that predicts the value of a target variable by learning simple
decision rules, inferred from the data features. Each node of the trees codes
a decision rule, which is expressed as comparison of the value of a specific
feature with a constant threshold.

The relative rank (i.e. depth) of a feature used as a decision node in a tree
can be used to assess the relative importance of that feature with respect to
the predictability of the target variable. Features used at the top of the tree
contribute to the final prediction decision of a larger fraction of the input
samples. The expected fraction of the samples they contribute to can thus
be used as an estimate of the relative importance of the features.

In Figure(4.6) the relative importance of each one of the extracted fea-
tures is presented (features labeling follows the notation of Section 4.4). The
dominant feature is the one that corresponds to the output of background
modeling algorithm, which, in practice, captures the presence of motion in
the scene. The rest of the features contribute almost the same, except from
the feature that corresponds to the local descriptor of image entropy. This
is mainly caused by the fact that entropy feature of a specific pixel is cal-
culated taking into consideration only its neighboring pixels, emphasizing
this way pixels that are a little bit different than their neighbors, such as
pixels that actually depict small sea waves or clouds in the sky. However,
the importances of global and window descriptors, which are based on the
local descriptor, for the feature of entropy, suggest that the local entropy
information can be effectively used to facilitate classification task.

Our algorithm overcomes possible drawbacks of other related approaches.
Firstly, the combination of low-level image features with foreground extrac-
tion techniques allows our systems to operate with active cameras, some-
thing which is not possible for techniques based only on background sub-
traction (Kaimakis and Tsapatsoulis, 2013). Secondly, contrary to (Socek
et al., 2005), our system exploits not only color information but structural
knowledge as well. Finally, the proposed system extends the work of (Makan-
tasis et al., 2013) by exploiting entropy and frequency features, in order to
increase its robustness.

4.6.3 Evaluation of Semi-supervised Labeling

In order to evaluate semi-supervised labeling, we assume that manual label-
ing of keyframes contains no segmentation errors. The ratio of the represen-
tatives samples in relation with the ambiguously labeled samples is the only
factor that affect the performance of labeling algorithm.

As shown in Figure(4.7), the labeling error is lower than 2% when the
ratio of the representatives samples in relation with the ambiguously labeled
samples is over 40%. When the ratio is smaller than 40% the labeling error
is linearly increasing and it reaches the value of 5.7% when the ratio of
representative samples is 10%.

The choice for an appropriate value for the ratio of representatives is
inherently dependent on the quality of human based labeling. If labeling
is the result of a rough image segmentation, a lot of the labeled pixel will
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carry the wrong label. In such cases the aforementioned ratio must be set to
a small value. The most representative samples from each class is assumed
that carry the right label, while the labels of the rest of the samples must be
reconsidered.

In our case, we required the user to segment the frame in a very careful
way, which implies that the vast majority of the pixels will carry the right
label. For this reason we set the ratio value to 40%. The semi-supervised
labeling algorithm with 40% of representatives is expected to re-label 1.7%
of the samples.

4.6.4 Binary Classifier Evaluation

The performance of the binary classifier is dependent on the values of the
parameters cp and cn of Eq.(4.33). Let us denote as np and nn the number of
samples in positive and negative class respectively. To examine the influence
of parameters cp and cn on classification accuracy we define the parameter

k =
cn · nn

cp · np
. (4.35)

In practice, parameter k assigns different weights to misclassification errors,
which correspond to positive and negative examples. When the value of k is
equal to one, the weights that penalize misclassification sample for each
class are inversely proportional to the cardinalities of the classes. When
k < 1 a bigger penalty is assigned to false negatives, while for k > 1 false
positives are considered more important. False negatives correspond to pix-
els that actually depict some part of a maritime target, but are denoted as
background by the classifier.

However, a maritime surveillance system must emphasize on minimizing
the false negative rate. In other words, it is more important, the system to
detect all potential maritime targets, even if it will raise a small amount of
false alarms, than minimizing false positives at the cost of missing target
intrusions.
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Figure 4.9: Adaptation mechanism. The dotted line represent the time the
scene changes. Before that time both classifiers performs the
same. While at the time the scene changes the performance of
both classifiers collapses, the one that exploits the adaptation
mechanism adapts its operation to new visual conditions and
achieves high performance in the following frames.

Figure(4.8) presents the performance of classifier for different values of
parameter k. The green line represents classification accuracy, while the blue
line the recall of the system. If we denote as pc the set of pixel that denoted
by the classifier as positive samples and as pt the set of pixels that actually
belong to the positive class, then recall ρ is defined as

ρ =
pc ∩ pt

pt
. (4.36)

When ρ is equal to one, all true positive samples have been correctly classi-
fied by the binary classifier. Accuracy is the proportion of correctly classified
samples of the whole dataset. As shown by the green line in Figure(4.8) the
accuracy of the classifier reaches its maximum value, when k is equal to one.
On the other hand, the recall of the system is monotonically decreasing as
the value of k is increasing. In our case we set k = 0.7 to balance between
maximizing classification accuracy and minimizing false negative rate. For
k = 0.7 the accuracy of the classifier is equal to 96.4%, while recall is equal
to 97.1%.

Finally, in Figure(4.9) the importance of the SVM updating mechanism is
illustrated. Two different video sequences were concatenated for evaluating
the updating procedure. The two video sequences were depicting the same
scene under a different perspective and were captured at different time of
day. Variations in perspective affect window and global descriptors, while
the time of recording affects illumination conditions, and thus the values of
all descriptors.

We evaluate the performance of two classifiers; one that supports the
adaptation mechanism and one who does not. The vertical dotted line in
Figure(4.9) denotes the time instant that the scene changes. Before that time
both classifiers perform the same. At the time of a scene change, the perfor-
mance of both classifiers collapses. In the following frames, the operation of
the classifier that exploits the adaptation mechanism is capable to adapt to
the new visual conditions, improving its performance. On the contrary, the
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performance of the non adaptive classifier continues to remain low. By set-
ting the value of κ equal to 100 (see subsection 4.5.6) the adaptation process
takes less than one second (15 frames at 25fps) to be completed.

4.7 conclusions

A vision based system, using monocular camera data, is presented in this
work. The system provides robust results by combining supervised and un-
supervised methods, appropriate for maritime surveillance, utilizing an in-
novative initialization procedure. The system offline initialization is achieved
through a graph based SSL algorithm, suitable for large data sets, support-
ing users during segmentation process. Another advantage is the automated
adaptation of the system to new environments, in real time.

Extensive performance analysis suggest that the proposed system per-
forms well, in real time, for long periods without any special hardware
requirements and without any assumptions related to scene, environment
and/or visual conditions. Such system is expected to significantly support
the local authorities, or anyone interested in maritime surveillance without
any significant additional cost.



5
V I S I O N B A S E D A C T I V I T Y R E C O G N I T I O N I N
I N D U S T R I A L W O R K F L O W

5.1 motivation

Recognizing human activities and behaviors in real-world environment finds
application in a variety of domains including virtual reality, human-computer
interaction and smart video surveillance. Especially when it comes to smart
monitoring of large scale industrial environments, the importance of activ-
ity recognition highly relates to the safety and security of the employees, to
the reduction of costs and the optimization of production scheduling.

5.2 related work

Accurate activity recognition is a highly challenging task due to the diver-
sity of the activities and types of behaviors to be recognized let alone clut-
tered backgrounds, occlusions and viewpoint variations. Therefore, most of
the existing work (Efros et al., 2003; Jhuang et al., 2007; Laptev and Perez,
2007; Veres et al., 2011; Kosmopoulos et al., 2012; Protopapadakis et al., 2013)
follows the typical paradigm of pattern recognition, which consists of two
separate steps; firstly, the computation of complex handcrafted features by
making certain application depended assumptions, and secondly, learning
classifiers based on the obtained features. However, in real-world scenarios,
it is rarely known which features are important for the task at hand. Espe-
cially for human activity recognition and behavior understanding, different
action classes may appear complete different in terms of their appearances.

Contrary to approaches that rely on handcrafted features, deep learning
models (Lecun et al., 1998; Hinton and Salakhutdinov, 2006a; Salakhutdinov
and Hinton, 2009a; Lee et al., 2009) can learn complex inputs representations
by building high-level features from low-level ones, automating the process
of feature construction. A special type of deep models are the Convolu-
tional Neural Networks (CNNs). CNNs alternatively apply trainable filters
and pooling operations on 2D inputs resulting in a hierarchy of increasing
complex features.

Human activities are time varying processes occurred in a sequence of
frames and, thus, described by 3D features, i.e. spatial (2D) information that
is present in the visual content of each frame, plus temporal information
encoded in a sequence of frames. Therefore, utilization of CNNs for human
activity recognition and behavior understanding requires either the applica-
tion of the computationally expensive 3D convolution on raw data (Ji et al.,
2013), in order to take into consideration the temporal dimension, or the
appropriate transformation of each frame’s visual content to incorporate
temporal information into each one of the frames.

In order to avoid the high computational cost of 3D convolution, we trans-
form the raw data to fuse spatio-temporal into each frame visual content.
Specifically, we encode each frame’s information by constructing the Mo-
tion History Image (MHI) using a predefined number of precedent frames.
It has been shown in (Schindler and Van Gool, 2008) that a small number of
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subsequent frames (5 to 7 frames) are enough to achieve an activity recog-
nition performance similar to the one obtainable with the entire video se-
quence. The MHI of each frame is fed as input into a CNN to hierarchically
construct complex features, which, then, are fed as input into a Multi-Layer
Perceptron (MPL) in order to classify the frame under consideration into a
predefined number of activity classes. Using the aforementioned approach,
our system (i) hierarchically constructs spatio-temporal features avoiding
the high computational cost of 3D convolution, and (ii) achieves real-time
predictions due to the feed-forward nature of CNNs and MLPs.

5.3 proposed methodology

We consider the problem of human activity recognition in industrial work-
flows. A workflow is a process that happens repetitively and consists of
a sequence of discrete tasks. The definition of tasks stems from domain
knowledge and each task spans a time interval and is described by a set
of sequential frames. Therefore, the problem of human activity recognition
can be seen as the classification of each frame to one of the available tasks
(classes).

Classification task requires the description of each frame by a set of fea-
tures that fuse spatial and temporal information. However, construction of
handcrafted features is inherently depended on the problem at hand. To
overcome this limitation, we exploit a deep learning architecture to automat-
ically construct high-level features. Feature construction using raw video
frames takes into consideration the spatial information. However, such an
approach does not consider the temporal information encoded in multiple
contiguous frames. In order to incorporate temporal information into con-
structed features, we model the visual content of each frame using its MHI,
which captures the history of a task that is being executed.

CNNs apply trainable filters and pooling operations on their input, result-
ing in a hierarchy of increasingly complex features. Convolving their input
with the trainable filters consists the main bottleneck during training and
prediction phases. In order to achieve a computational efficient architecture,
we split MHI input of CNN into non overlapping windows and keep the
most dominant Discrete Cosine Transform (DCT) coefficients. This way, we
are able to reduce the size of the input, and thus decrease computational
cost, while at the same time we achieve minimal information loss.

The output layer of the CNN in sequentially connected with a MLP,
which carries out the classification task. We choose to use a MLP due to its
global function approximation properties. The unified learning architecture
is trained in a supervised manner using the well-known backpropagation
algorithm.

5.4 task modeling

In the following we describe how we represent the tasks. In subsection 5.4.1
we present how MHI is computed for each frame, while in subsection 5.4.2
we describe the dimensionality reduction of CNN input.
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(a) (b) (c)

Figure 5.1: Task modeling overview. (a) Original captured frame, (b) MHI
for the captured frame and (c) dimension reduction of the cap-
tured frame using DCT transform.

5.4.1 Visual Observations

We encode spatial and temporal information of visual observations using
the MHI. MHI for a specific frame is computed using a sequence of, let’s
say d, precedent frames. For each precedent frame silhouette mask that has
non-zero pixels where the motion occurs is created. Let us denote as ft the
number of frame at time t for which we want to compute the MHI and as
s(x, y) the pixel value for silhouette mask at location (x, y). Then, according
to (Davis, 2001a), the MHI, mt(x, y), for a pixel located at the same position
for frame ft is computed as

mt(x, y) =



ft if s(x, y) 6= 0

0 if s(x, y) = 0

and mt−1(x, y) < ft − d

mt−1(x, y) otherwise

. (5.1)

The MHI captures the essence of the underlying motion pattern in a scene;
in our case motion pattern of a human activity. Both where the motion is
happening and also how the motion is occurring are present in one com-
pact template representation. In an MHI, pixel intensity is a function of the
motion history at that location, where brighter values correspond to more
recent motion.

Using the above definition of MHI it is easy to be seen that the values of
mt are highly related to the ordinal number of frame under consideration. To
facilitate the process of learning architecture training, we use a normalized
version of MHI, whose values are kept into a specific range. Specifically, if
we denote as µt the normalized version of mt, then µt(x, y) is computed as

µt(x, y) =
mt(x, y)−min{m+

t }+ 1
d

(5.2)

where m+
t is the set that contains all positive elements of mt.

5.4.2 Dimension Reduction of the CNN Input

CNNs apply trainable filters and pooling operations on their input. How-
ever, convolving their input with the trainable filters consists the main bot-
tleneck during training and prediction phases. In order to achieve a compu-
tational efficient framework the dimension of the input must be reduced.
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C1: 20x80x64 S1: 20x40x32 C2: 40x32x24 S2: 40x16x12 C3: 60x12x8 S3: 60x6x4
flattened: 1x1440

CNN MLP

Figure 5.2: Overall architecture of the learning model. C1, C2, C3, S1, S2 and
S3 correspond to the three convolutional and max pooling layers
respectively.

The most common approach for reducing the dimension of an image is
through subsampling operations. However, such approaches may discard
valuable information. Therefore, we choose to borrow image compression
means to reduce the dimension of the input. Concretely, we choose to use
2D DCT, which is a widely used technique for lossy image compression, e.g.
JPEG.

In particular, we split the MHI of each frame into 32× 32 non-overlapping
blocks. For each block we compute the DCT transform and keep its most
dominant coefficients. In our case, we keep the 16 dominant DCT coeffi-
cients to encode the visual information of each block. Using 16 coefficients
we achieve very low information loss, due to the fact that MHI are grayscale
images whose the vast majority of pixels are equal to zero (no motion). This
way, each block is described by a 16 dimensional vector, which reshaped to
a 4× 4 matrix in order to preserve 2D input. Following the aforementioned
approach, each 32× 32 block is represented by a 4× 4 matrix, reducing 64

times the dimension of the original input and at the same time preserving
the most important information. The task modeling overview is presented
in Fig. 5.1.

5.5 learning model architecture

As it has been mentioned before, CNNs apply trainable filters and pooling
operations on their input, resulting in a hierarchy of increasingly complex
features. Convolutional Layers (CL) consist of a rectangular grid of neu-
rons (filters), each of which takes inputs from a rectangular section of the
previous layer. For reducing the number of network’s free parameters the
weights for this rectangular section are the same for each neuron in the
convolutional layer. Each convolution layer is followed by a Pooling Layer
(PL). This layer subsamples block-wise the output of the precedent CL and
produces a single output for each block.

Specifically, if we denote the k-th output of a given CL as hk whose filters
are determined by the weights Wk and bias bk then the hk is obtained by

hk
ij = g((Wk ∗ x)ij + bk) , (5.3)

where x stands for the input of the CL and indices i and j correspond to the
location of the input where the filter is applied, (*) stands for the convolution
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operator and g(·) is a non-linear function. PLs simply take some k× k region
and output the maximum value in that region, i.e. if their input layer is a
N × N matrix, they will then output a N/k× N/k matrix.

5.5.1 Deep Learning Model Parameterization

During the validation of our model, we used some very challenging videos
from the production line of a major automobile manufacturer (see (Voulodi-
mos et al., 2011)). The size of video frames for this dataset is 704× 576 pixels.
Following the procedure described in section 5.4 spatial and temporal infor-
mation for each frame is represented by a 88× 72 matrix, which is fed as
input to the first CL of our learning model.

The input is convolved with 20 filters of size 9× 9 and the output of this
layer, a 3D matrix of dimension 20× 80× 64 is fed to the first PL, which
outputs a 3D matrix of dimension 20× 40× 32. The first CL consists of 1640

trainable weights. The output of the first PL is fed to the second CL and
convolved with 40 trainable filters of dimension 9 × 9. The output of the
second CL is fed to the second PL, which outputs a 3D matrix of dimension
40× 16× 12. The second CL consists of 3280 trainable weights. The output
of the second PL is fed to the third CL and convolved with 60 trainable filters
of dimension 5× 5. Again, the output of this layer is fed to the following PL,
which outputs a 3D matrix of dimension 60× 6× 4. The third CL consists
of 1560 trainable weights. The output of the last PL is flattened to form
a 1440 dimensional feature vector, which is fed as input to the MLP. The
MLP contains one hidden layer with 600 neurons and an output layer with
6 neurons (tasks are classified to 6 different classes). MLP contains 868206

trainable weights (see Fig.5.2).

5.6 experimental validation

Validation of our model took place using some very challenging videos from
the production line of a major automobile manufacturer (Voulodimos et al.,
2011). The production cycle includes tasks of picking several parts from
racks and placing them on a designated cell some meters away (see Fig5.3).
Each of these tasks is regarded as a class of behavioral patterns that have
to be recognized. Although, video frames have been divided into 7 differ-
ent classes, the 7-th class is a null class (workers are idle or absent) and
thus frames belonging to 7-th class were not considered for classification
purposes.

5.6.1 Experimentation Setup

We developed our learning model using Theano (Bastien et al., 2012; Bergstra
et al., 2010) library in python. The model was built on a conventional laptop
with i7 CPU and 8GB RAM. The considered dataset consists of 20 scenarios.
We compared the performance of our system to the performance of state-
of-the-art techniques. Specifically, the first method that we used was Echo
State Networks (ESN) (Veres et al., 2011), which exploits handcrafted local
motion grid features. Furthermore, we compared the performance of our
method to Hidden Markov Model exploiting Particle Filters (HMM-PF) and
Hidden Markov Model using a Neural Network rectification scheme (HMM-
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Figure 5.3: Depiction of the work cell along with the position of camera 1

and the racks.

NN) (Kosmopoulos et al., 2012). These methods are also rely on handcrafted
features obtained using Zernike moments of pixel changing history (Xiang
and Gong, 2006). Finally, we evaluated classification performance against
MultiClass Tapped Delay Support Vector Machines (MC-TDSVM) (Protopa-
padakis et al., 2013). This technique exploits the same handcrafted features
as in (Kosmopoulos et al., 2012) along with a user feedback strategy.

In contrast to these approaches, where all 20 scenarios were used to train
the learning models, we make things even harder by using 15 scenarios
to create training, validation and testing sets and keeping the remaining
5 scenarios to test the generalization ability of our system to completely
unknown data. The dataset containing the frames of the 15 scenarios was
divided into three sets, i.e. training, validation and testing data with split
ratio 7 : 1.5 : 1.5. That is, we randomly choose 70% of the whole dataset as
the training set, and 15% and 15% for the validation and testing sets.

5.6.2 Results

Using the aforementioned experimental setup, we created the confusion ma-
trices to quantitatively evaluate the performance of our model (see Fig.5.4).
Furthermore, we computed average precision and recall over all classes (see
Table5.1).

The quantitative performance evaluation in terms of average precision
and recall, presented in Table5.1, shows that our method outperforms all
other techniques. We should note that ESN, HMM and SVM methods were
using data from all 20 scenarios, while for our method only 15 scenarios
were used. Concerning performance on testing set, our method improves
classification accuracy over 10% compared to HMM-NN and over 20% com-
pared to ESN. Generalization capability of our deep learning model is pre-
sented in the last row of Table5.1. Our method performs almost the same
with HMM-NN and MC-TDSVM and better than all other techniques, de-
spite the fact that it is applied on completely unknown data (data form
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Figure 5.4: Confusion matrices presenting the performance of our system
for each class. Classification accuracy (a) on the testing set and
(b) on completely unknown data.

Method precision recall

Echo State Networks 0.777 0.772

HMM-PF 0.797 0.788

MC-TDSVM (40% training set) 0.857 0.857

HMM-NN 0.875 0.863

MC-TDSVM (60% training set) 0.871 0.863

Our Approach (testing set) 0.983 0.978

Our Approach (unknown data) 0.867 0.892

Table 5.1: Quantitative evaluation results. Performance comparison against
state-of-the-art techniques.

the remaining 5 scenarios), which does not stand for other techniques case
(training set contains data from all scenarios).

Fig.5.4(a) presents proposed method’s performance on testing set for each
class in the form of a confusion matrix, while Fig.5.4(b) presents the classi-
fication accuracy of our system on completely unknown data form the re-
maining 5 scenarios. Misclassification errors, concerning the testing set, is
lower than 4.5% for all classes. Such errors may occurred due to cluttered
background, occlusions and image sensor noise.

Concerning the performance on completely unknown data, Fig.5.4(b), we
see that misclassification rate for the 1st and 2nd classes are very low, 8.8%
and 1.3% respectively. However, 18% of the samples that actually belong to
the 3rd task have been assigned to the 5th class and 8% and 15% of the
samples that actually belong to 5th and 6th classes have been assigned to
the 4th class. This mainly happens due to the similarity of motion patterns
presented in tasks 3 to 6. Motion patterns are encoded in MHIs, which then
are used, by our learning model, to hierarchically construct features for dis-
criminating human activities. Therefore, similar motion patterns for differ-
ent tasks can increase misclassification rate. However, as shown in Fig.5.4(a),
our learning model has the capacity to discriminate, even very similar ex-
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amples that belong to different classes, if it is trained using a highly repre-
sentative dataset.

5.7 conclusions

We proposed a deep learning based approach for human activity and behav-
ior understanding in industrial environments. Our system exploits CNNs to
hierarchically construct complex features and a MLP to carry out the clas-
sification task. The validation of our model was conducted using a very
challenging dataset from the production line of a major automobile manu-
facturer. Experimental results show the superior performance of our system
among state-of-the-art techniques.



Part II

F R O M U N S T R U C T U R E D V I S U A L C O N T E N T T O
O B J E C T S

In this part, we investigate how the visual content that
is stored that is stored in distributed and heterogeneous
Internet databases can be, initially, organized, and then
utilized towards objects documentation. There are two dif-
ferent chapters, where we try to address the problem of re-
trieving, based on visual content, and dynamically index-
ing user generated photographs available over the web.





6
U N S T R U C T U R E D V I S U A L C O N T E N T

6.1 the notion of unstructured data

Unstructured data refers to information that either does not have a prede-
fined data model or is not organized in a predefined manner. This results in
irregularities and ambiguities that make it difficult to understand using tra-
ditional programs as compared to data stored in fielded form in databases
or annotated (semantically tagged) in documents.

Software that creates machine-processable structure exploits the linguis-
tic, auditory, and visual structure inherent in all forms of human communi-
cation. Algorithms can infer this inherent structure from text, for instance,
by examining word morphology, sentence syntax, and other small- and
large-scale patterns. Unstructured information can then be enriched and
tagged to address ambiguities and relevancy-based techniques then used to
facilitate search and discovery.

In the context of visual information such software usually referred as Con-
tent Based Image Retrieval (CBIR) system. Such a system relies on the visual
content of images and/or videos in order to organize unstructured visual
data. Towards this direction, CBIR tools that mine relevant images from
large repositories mainly use image filtering and clustering algorithms to
appropriately organize image data into groups of similar visual properties.
Thus, CBIR methods can be considered as suitable tools towards efficient
visual content-based image filtering; especially those ones that are mostly
focused on content organization and image matching.

In the following chapters of this part we describe two different scenarios;
the first one focus on the development of a fully automatic approach for
content-based filtering of Internet stored data used for cultural heritage ap-
plications, while the second one presents the development of an online im-
age indexing structure. For both scenarios we use existing related works for
CBIR systems as a stepping stone for developing a state-of-the-art CBIR, fil-
tering and indexing system, applicable to cultural heritage e-documentation,
that is capable to organize unstructured image data and furthermore dis-
cover those images that are the most appropriate for 3D reconstruction.
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I N T H E W I L D I M A G E R E T R I E VA L A N D C L U S T E R I N G

7.1 motivation

During the Internet era, there are extremely large collections of images and
videos available over distributed web repositories (e.g., Flickr, Picasa, Pho-
tosynth). In 2011 Pingdom enterprise reported that 4.5 millions of photos
uploaded to Flickr every day1. These images cover not only personal events
but also historic incidents and cultural heritage assets. Although such pro-
liferation of millions of shared photographs, which are online available for
free, provides a unique opportunity for cultural heritage e-documentation,
there are limited technological tools and research methods for retrieving,
mining and ultimately exploiting such wide cultural heritage collections for
3D reconstruction applications.

One of the most common approach for cultural heritage e-documentation
is based on 3D scanning (Barone et al., 2012). In (Karaszewski et al., 2012),
a fully automatic approach for 3D measurements is presented as regards
preservation of cultural heritage artifacts. In addition, the work of (Sitnik
and Karaszewski, 2010) develops a software to cope with very large data
volumes obtained using 3D scanning. Finally, examples of creating high res-
olution 3D volumetric maps for e-documentation of cultural heritage assets
are presented in (Bunsch et al., 2012).

In contrast to the aforementioned approaches, where 3D data acquisition
is accomplished in a very constrained environment, using specialized equip-
ment, Web based collections (”wild image collections”) can be exploited for
cultural heritage e-documentation. The main, however, difficulty of using
”wild image collections” is that the Internet stored image content is unstruc-
tured, requiring new tools in the area of content-based filtering. Consider,
for example, a query containing the keywords ”Acropolis, Parthenon”. As a
response to that query, a large set of images are retrieved, which depict not
only the Parthenon monument itself, but also the view of the city of Athens
from the Acropolis hill. These image outliers confuse any e-documentation
algorithm. Although auto-generated geo-location tags can improve visual
content characterization and therefore the retrieval performance, they suffer
from low precision since geo-information does not correctly describe what is
actually depicted. Therefore, content-based filtering algorithms are necessary
for an effective and computationally efficient 3D reconstruction exploiting
distributed Web based image collections. Content-based filtering algorithms,
apart from discarding image outliers, also organize the retrieved unstruc-
tured content into well-structured forms to optimize both 3D reconstruction
performance and computational cost.

Our research exploits User Generated Content (UGC) image collections,
stored on distributed multimedia platforms, such as Flickr and Picasa. The
content-based filtering engine is developed under the framework of a Eu-
ropean research initiative, called ”4D-CH-World: Four Dimensional Cul-
tural Heritage World”2, with the purpose of dynamically creating 3D/4D

1 http://royal.pingdom.com/2012/01/17/internet-2011-in-numbers/
2 http://www.4d-ch-world.eu
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reconstructions of cultural heritage objects from ”wild Internet image col-
lections” (that is, collection from the Web). 4D-Ch-World integrates and val-
idates a multi-disciplinary research agenda of computer vision, multimedia,
databases and photogrammetry tools.

However, the main difficulty in implementing a precise 3D/4D recon-
struction of an object from unstructured Internet image collections, (being
captured for personal use instead of reconstruction purposes), is that there
are several outliers in the set of retrieved data deteriorating both perfor-
mance and computational cost. While there exists 3D reconstruction algo-
rithms, such as the structure from motion (Wu et al., 2011a, 2012, 2011b),
which present robustness against noisy data, their computational complex-
ity significantly increases with respect to the number of input data. This
makes direct implementation of such methods for large image volumes prac-
tically impossible.

To address this difficulty, we propose an efficient content-based filtering
method that operates on two directions; first it filters out (discards) image
outliers, that is it excludes images whose visual content is quite dissimilar
to the majority of the data (which are considered as relevant) and second
it clusters the relevant images into different groups to optimize the perfor-
mance of the 3D reconstruction engine.

7.2 literature review

In a Content Based Image Retrieval (CBIR) scheme, users submit queries to
the system and the system responses relevant visual retrievals. The query
image acts as a reference image whose visual information is encoded, using,
for example a fuzzy representation (Doulamis et al., 2000). Then, images
that present high visual similarity with respect to the reference one (i.e.,
the query image) are retrieved as the most relevant. Towards this direction,
Murthy et al. (Murthy et al., 2010) proposes a two stage image retrieval
process based on the color properties of the reference (query) image. Start-
ing from an initial retrieved image set (first stage), a hierarchical clustering
is applied to filter out image retrievals (second stage) to increase matching
performance. However, the efficiency of the aforementioned approach inher-
ently depends on the color properties of the reference image and therefore
on the shutter speed of the camera, lens aperture and environmental light-
ing conditions of the scene at the time the photo was taken. Based on the
same concept, Chum et al. in (Chum et al., 2007) present a system, with the
objective to retrieve all views (instances) of an object in a large database
upon a query. To achieve this, the authors exploit, apart from visual simi-
larities, a vocabulary tree for indexing and query expansion. Similar to the
previous approaches, the system presented by Philbin et al. in (Philbin et al.,
2007) enables user to select regions of interest within the submitted image
query and then the system returns a ranked list of images that contain the
selected object. To improve computational efficiency, the research of (Philbin
et al., 2007) exploits a fast spatial matching algorithm. Video content based
retrieval have been introduced in (Kosmopoulos et al., 2009; Halkos et al.,
2009), while a mobile agent is presented in (Papadakis et al., 2008). The
main drawback of the aforementioned approaches compared to our method
is that they require a reference (query) image or object to carry out the re-
trieval process. On the contrary, our method eliminates image outliers and



7.2 literature review 73

organizes the retrieved results into representative groups under an unsuper-
vised framework.

In this context, Kekre et al. in (Kekre et al., 2011) use image signatures,
extracted by the color image properties, to create clusters which are then
represented by codebooks and stored in a database. Each new query image
is compared against the existing codebooks according to its color features
in order to estimate the most relevant visual matching. Similar to this ap-
proach, the work of (Min and Cheng, 2009) proposes the dominant color de-
scriptor to encode visual information, while clustering is performed using
fuzzy Support Vectors Machines (fSVMs). The retrieved set of images is fur-
ther refined by a user relevance feedback system (Doulamis and Doulamis,
2006, 2004; Doulamis et al., 2003). Additionally, crowd-sourcing methods
have been investigated for refining the retrieval results (Ntalianis et al., 2010).
However, the performance of the work in (Min and Cheng, 2009) depends
on illumination conditions since color descriptors are used to encode vi-
sual information as in (Murthy et al., 2010). Simon et al. in (Simon et al.,
2007) focus on visual clustering implemented through an optimization ap-
proach that selects a number of canonical image views for constructing a
scene summary. The main limitations of these approaches are that they use
global image features to encode visual content. Thus, these approaches are
not suitable for cultural heritage applications and especially for 3D recon-
struction purposes where we need to select different object views, laying in
the spherical coordinates that surround this object, instead of using images
that they present quite similar content. Global visual representation fail to
describe the different view instances of an object since both the geometry of
the foreground as projected onto the 2D image plane and the content of the
background are quite dissimilar.

Besides this, textual or geo-location information is exploited to filter out
the retrieved results. Towards this direction, the works of (Arampatzis et al.,
2013) and (Papadopoulos et al., 2010) exploit geo-tagging and annotation to
improve the retrieval performance. Particularly, the work of (Papadopoulos
et al., 2010) describes an image analysis algorithm that automates the detec-
tion of landmarks and events from large multimedia databases in order to
improve content-consumption experience. The idea of geo-clustering is also
exploited by the work of (Zheng et al., 2009) for retrieving landmark images.
The engine combines geo-information along with a hierarchical agglomera-
tive visual clustering to obtain dense groups. In particular, in the first stage
of the algorithm, images that share the same geo-tagging information are
extracted. However, the retrieved set contains a lot of image outliers that are
photos of several adjacent landmarks. To eliminate the noisy images, visual
clustering is proposed as a second stage of the algorithm of (Zheng et al.,
2009). The authors in (Agarwal et al., 2009) use geo-tagged datasets from
Flickr and assume multiple different views of the same scene in each of
these datasets. Then, they create a vocabulary tree and use it for indexing,
and query expansion like in (Chum et al., 2007) to cluster together simi-
lar images. Again, the main limitation of the aforementioned approaches is
that they exploit global visual information to detect the true images of a
landmark against the noisy one. Although such approaches are useful for
content-based image retrieval applications, where the aim is to extract simi-
lar images upon a query, they present many shortcomings when they apply
for 3D reconstruction scenarios.



74 in the wild image retrieval and clustering

7.3 approach overview

We aim at describing a fully automatic approach for content-based filtering
of Internet stored data used for cultural heritage applications. The filtering
results are then exploited by 3D reconstruction algorithms, like the struc-
ture from motion scheme (Wu et al., 2011a, 2012, 2011b) in order to achieve
e-documentation of an object or an archaeological site. Instead of the afore-
mentioned state of the art methods, our technique combines a local visual
content representation schema with textual and geo-tagging information.
The adoption of a local visual representation targets our main objective to
select a set of images that are suitable for 3D reconstruction and therefore it
contains the same foreground cultural object at different geometric perspec-
tives. In particular, in our research, the ORB (Oriented FAST and Rotated
BRIEF) is adopted as local descriptor (Rublee et al., 2011). ORB is a combi-
nation of the well-known FAST key-point detector (Rosten and Drummond,
2006) and the recently developed BRIEF descriptor (Calonder et al., 2010),
being rotation invariant and resistant to noise. Compared to conventional
SIFT (Lowe, 2004) and SURF (Bay et al., 2006), ORB keeps the high per-
formance and robustness of SIFT, while simultaneously being two order of
magnitude faster.

The ORB local descriptor is adopted to capture the different geometric
perspectives of an object, requiring for a 3D reconstruction. Then, a two way
pairwise descriptor matching is applied onto all images sharing the same
textual and geo-location information. This way, we construct a similarity
matrix that indicates how close the visual content of two images is. Since
pair-wise matching is computed through local visual descriptors, we are
able to model the different views of the cultural heritage object as projected
onto the 2D image plane.

In order to remove the image outliers from the retrieved image set un-
der an unsupervised framework, each image is considered as a point onto
a multi-dimensional hyperspace manifold. The coordinates of each image
point onto this manifold express the position of the images on the hyper-
space and therefore they constitute a clear indicator of how close the images
are. The distribution of the retrieved images sharing the same textual and
geo-location information onto the multi-dimensional manifold is expected
to form a) a compact hyperspace on which images depicting different views
of a cultural object are located and b) space samples of image points spread-
ing far away from each other and from the compact set. The latter corre-
spond to the image outliers. Thus, a density based spatial clustering algo-
rithm such as DBSCAN – Density-Based Spatial Clustering of Applications
with Noise – (Ester et al., 1996) is applied for removing image outliers. Se-
lection of the DBSCAN than other unsupervised clustering methods is due
to its robustness to identify largely spread outliers.

The coordinates of each image point onto the multi-dimensional manifold
are estimated through the pair-wise similarity distances obtained by the
ORB descriptors. In particular, in our research, the classic multi-dimensional
scaling algorithm (Cox and Cox, 2008) is adopted to relate the space of the
distances (pair-wise similarity matching) with the space of Gram matrices
through which we are able to compute the image coordinates.

Having discriminated image data belonging to the compact subspace
against the image outliers, the next step of the proposed content-based
filtering algorithm is to partition the compact subspace into regions that
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(a) (b) (c)

Figure 7.1: Image retrieval based on images’ title and two-step unsupervised
clustering (a) Initially retrieved image set from Flickr by using
as query the keyword ”Porta Nigra”, (b) outliers removal using
DBSCAN and (c) spectral clustering to discriminate images de-
picting the rear and the front view of the monument.

contain the most representative geometric perspectives of an object. These
representative views are used for a computational efficient 3D reconstruc-
tion without spoiling its performance. Spectral clustering is applied in this
research to find out the most representative image views of a cultural object.
Selection of spectral clustering is due to the fact that it partitions the data
so that the maximum coherence among them is achieved (maximizing intra
clustering coherence) while simultaneously the minimum coherence among
cluster elements (inter cluster) is reached.

7.3.1 System Architecture

We propose a new content-based visual filtering algorithm suitable for cul-
tural heritage objects e-documentation and 3D reconstruction. The main re-
search challenge we address is that the reconstruction process is performed
using unstructured image data remotely located and distributed over het-
erogeneous Web platforms. This implies that large portion of image outliers,
(objects irrelevant from the cultural asset monument or archaeological site
needed to be processed) are encountered in such collections. For instance,
in Figure 7.1, we depict some images retrieved from the Flickr multimedia
repository as response of the query ”Porta Nigra”. It is clear that together
with the visual data depicting the Porta Nigra monument, several image
outliers have been also returned (see Figure 7.1(a)).

Though a 3D reconstruction engine, such as the structure from motion
algorithm, can exclude image outliers, the respective computational cost is
quadratically increasing with respect to the number of input images. This
makes 3D reconstruction process practically impossible to be implemented
for real-time application scenarios. To solve this problem, a content-based
filtering is required to ”sort” the retrieved data according to "their contri-
bution" to the 3D reconstruction. Thus, we first need to discriminate the
relevant/irrelevant image data as depicted in Figure 7.1(b) and then, within
the relevant image set to localize those images that represent as much as pos-
sible the different canonical views (geometric perspectives) of the cultural
object as shown in Figure 7.1(c).

Figure 7.2 presents a block diagram of the proposed methodology. The
emphasis is given on content-based filtering of cultural heritage objects as
clearly depicted with the dotted line framework in Figure 7.2. Initially, a
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Figure 7.2: The pipeline of the proposed methodology for efficient 3D re-
construction of cultural heritage objects. The dotted framework
illustrates the approach being covered by this work.

text-based and geo-tagged based content search algorithm is applied on in-
ternet located multimedia databases such as, Flickr, Picasa, Photosynth, etc,
upon a user’s query for a cultural object of interest. The goal is to retrieve
a set of images that can potentially depict the cultural object. As we have
stated above, many of these retrieved data are noisily corrupted. This is due
to several reasons. For instance, (i) users have generated photos for a mon-
ument overlaid with personal content (friends and family being positioning
in front of the object), or (ii) they annotate the image content for what they
think it depicts (e.g., Parthenon temple is often confused with the Acropolis
hill on which it is located), or (iii) they may refer to different salient parts
of the site being captured from such location (the Athenian view from the
Acropolis hill is often annotated as Acropolis), or (iv) they annotate different
objects under the same name (a tavern named Porta Nigra may be retrieved
upon submission of such a query to the multimedia databases).

To overcome these problems and to accelerate the reconstruction process,
two main objectives should be incorporated. The first removes image out-
liers while the second discriminates characteristics regions within the rele-
vant image data so that all different geometric views for an object are de-
tected and then fed to the 3D engine. i) Image outliers are excluded using
a dense-based clustering algorithm. Conventional clustering algorithms us-
ing center-based grouping techniques or spectral analysis, fail to discrim-
inate the outliers from the relevant images since the latter are spread far
away from each other and far from the rest of relevant images. ii) The de-
tected compact set of relevant images is then processed to select the M most
appropriate elements that maximize 3D reconstruction accuracy. This is per-
formed by selecting as much as ”uncorrelated” image data that forms differ-
ent canonical geometric views of the object. Spectral clustering is adopted to



7.3 approach overview 77

carry out this task due to its efficiency to define subgraphs with maximum
intra cluster and minimum inter-cluster coherency.

7.3.2 Problem Formulation

Let us denote as Z a set of images retrieved from distributed located multi-
media databases upon a text/geo-tagged based user’s query as for a cultural
heritage object of interest. As we have stated above, set Z is decomposed into
two mutually exclusive sets, Z = C ∪O, with C ∩O = ∅. The set C includes
the relevant retrieved images, i.e., those ones whose visual content depicts
the object of interest or part of it. Instead, set O stands for image outliers, i.e.,
images whose content is different than the relevant object. In the proposed
automatic content-based filtering algorithm, set Z is known, whereas sets C
and O are unknown and should be estimated. Then, our goal is to select,
within the relevant set C, a number of M representative images that maxi-
mize 3D reconstruction accuracy. It is clear that as number M increases, 3D
reconstruction accuracy also increases with, however, a quadratic increase
of computational complexity. Thus, for a given number M, we are able to
constrain the computational complexity of 3D reconstruction, and then by
selecting the M most appropriate images to maximize the respective accu-
racy.

One way to select the M most representative images is to partition the
relevant set C into M mutually exclusive clusters, Cr, r = 1, 2, ..., M each of
which is i) as much as ”uncorrelated” with samples belonging to different
clusters and ii) as much as coherent with samples of the same cluster. This is
mainly due to the fact that 3D reconstruction accuracy is maximized in cases
that the M selected images present different canonical views of the same
object; therefore, the selected M images present no significant redundant
information. The aforementioned requirement is mathematically formulated
as

Ĉr = min
M

∑
i=1

Pr = ∑
i∈Cr ,j/∈Cr

di,j and max
M

∑
i=1

Qr = ∑
i∈Cr ,j∈Cr

di,j . (7.1)

In Eq.(7.1), Ĉr is the optimal r-th partition of the relevant set C among the
M requested, while di,j is a metric distance between the images i, j ∈ C. The
left-hand of Eq.(7.1) minimizes the overall correlation among the M clusters,
making their samples as much as ”uncorrelated”. On the contrary, the right
hand of Eq.(7.1) maximizes the coherence within a class.

The main difficulty in solving Eq.(7.1) is that the distances di,j should
be calculated as well as the set C which contains the images i and j. For
this reason, we initially need to construct a multi-dimensional manifold on
which each image is represented as a point. Then, we exploit the classical
Multi-Dimensional Scaling (cMDS) algorithm [(Cox and Cox, 2008) to estab-
lish a connection between the distances of image coordinates and the visual
matching of different images (see Theorem 1 (Cayton, 2006)). The idea is
to relate the visual similarities between two images, as Euclidean distance
between two points onto a multidimensional manifold over which the two
images are projected.

Then, to estimate set C, we exploit the reasoning that image outliers are
spread far away from each other and far from the rest of the relevant images.
Thus, center-based clustering algorithms will fail to estimate sets C and
O since partitioning on Z will result in many different outliers’ clusters
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rather than excluding them from the relevant set. For this reason, a density-
based clustering algorithm is suitable to perform such clustering, since it
is expected that the set C of relevant images will be much denser than the
outliers’ set O. In this work, a modification of the DBSCAN algorithm (Ester
et al., 1996), called Core Sample Partitioning (CSP), is adopted for outliers’
detection. The goal of the new approach is to set more strict criteria for
partitioning the dataset so that only the most confident image inliers will be
included in the relevant dataset. In our case the focus is to create a compact
relevant set that contains all different geometric views of an object. Thus, it
is more important to exclude all the outliers, which increase computational
cost and confuse representative views selection algorithm, from the compact
relevant set. On the other hand, considering few relevant objects as outliers
cannot affect 3D reconstruction performance if we assume that a sufficient
number of relevant images are available.

7.4 geometric invariant visual modeling

Initially, we assume that a set of N images are extracted from the Web,
forming the set Z. In our experimentation we have selected multimedia
repositories to retrieve image datasets, such as the Flickr, Picasa, etc. These
initially N image data are selected using geo-location information as well
as textual metadata, meaning that the initially retrieved images share the
same textual and geo-location information. Then, a visual based filtering
algorithm is applied to select from the set of N initially retrieved images the
ones that maximize the performance of the 3D reconstruction engine while
keeping as minimum as possible its computational complexity.

This section presents our approach to visually represent the initially re-
trieved image dataset. In particular, in subsection 7.4.1, we describe the
adopted local visual descriptors used to model image content, while in sub-
section 7.4.2 we formulate the similarity distance between pairs of images.
Finally, Subsection 7.4.3 describes the multidimensional scaling algorithm
adopted in our research to relate the space distances, expressed through the
pair-wise similarity matching, with the space of Gram matrices. The Gram
matrices space is used to compute image coordinates onto a multidimen-
sional manifold over which each image is represented.

7.4.1 ORB-based Visual Content Representation

Local visual descriptors are used to capture the different geometric perspec-
tives of an object requiring for a 3D reconstruction. The reason of using
visual descriptors is to find visual similarity among different images being
invariant in affine transformations. This way, we can estimate the distance
between two images upon their visual content. We choose to use ORB de-
scriptor (Rublee et al., 2011). Our choice is justified by the fact that, on the
one hand, ORB performs better than SURF (Bay et al., 2006) and, on the
other, it performs as well as SIFT (Lowe, 2004), while being almost two
orders of magnitude faster. ORB descriptor builds on the FAST keypoint de-
tector (Rosten and Drummond, 2006) and the BRIEF descriptor (Calonder
et al., 2010) and addresses their limitations: a) it adds a fast and accurate
orientation component to FAST, b) it efficiently computes oriented BRIEF
features and c) it incorporates a learning method for de-correlating BRIEF
features under a rotation invariant framework. For the sake of completeness
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and clarity, we briefly describe in the following the ORB descriptor. ORB
takes as input an image, it finds image’s keypoints, that are image’s corners,
and then associates each one these keypoints with a description vector.

Let us assume that for each image pixel pc which have been detected
by FAST as corner pixel, a bit-string description is adopted from a set of n
binary tests T = {τ1, τ2, ..., τn}, where n is a pre-defined scalar parameter of
the algorithm. The n binary tests take place in an image patch l(pc) around
the pixel pc. In particular, we have that τi(l(pc); q, r) equals one when I(q) <
I(r) and zero otherwise. The variables q and r stand for two pixels within
the patch l(pc), while I(q) and I(r) correspond to the image intensities at
pixels q and r respectively. Then, a feature is constructed that includes all
the n binary tests

f (I)
n (l(pc)) = ∑

1≤i≤n
2i−1τi(l(pc); q, r) . (7.2)

By utilizing the intensity centroid corner orientation measure Rosin (1999)
the orientation of a patch l(p) around a pixel p is estimated as

θ(l(pc)) = arctan(m01(l(pc)), m10(l(pc))) , (7.3)

where m01(l(pc)) and m10(l(pc)) stand for the raw moments of the patch
l(pc).

The projection of the feature vector f (I)
n (l(pc)) onto the angle θ(l(pc))

results in a rotation invariant binary representation vector, f (I)
n (l(pc)), of

patch l(pc). Then, the visual content of an image I is represented by a matrix

F (I) = [f
(I)
n (l(p1)) f

(I)
n (l(p2)) · · · f

(I)
n (l(pK))]

T ∈ {0, 1}K×n . (7.4)

7.4.2 Visual Similarity Degree

For estimating visual similarity between two different images, A and B, their
correspondent points have to be computed. This way, we are able to find im-
ages that depict the same cultural heritage object from different geometric
perspective point of view. Correspondences can be estimated by performing
a nearest-neighbor keypoints matching algorithm between every pair of im-
ages. Due to the fact that ORB keypoints are described by a binary pattern,
multi-probe Locality Sensitive Hashing (Lv et al., 2007) is used for nearest-
neighbor search exploiting the Hamming distance, DH . Let us denote as
k(A)

i the i-th keypoint of the image A (extracted via the ORB algorithm)

which is described by the vector f (A)
n (l(pi)). Then, the most relevant key-

point k(B)
ji

of the image B with respect to a i-th keypoint of image A, is
obtained by the following minimization,

ji = argmin
j=1,...,K

(
DH

(
f
(A)
n (l(pi)),f

(B)
n (l(pj))

))
. (7.5)

Then keypoints k(A)
i and k(B)

ji
are considered as correspondent points.

Having detected all correspondent points between two images A and B
we can form a set

M(A→B) =

{(
k(A)

i , k(B)
ji

)
|i = 1, 2, ..., k

}
(7.6)
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that contains all keypoints from the first image A, along with their corre-
spondent keypoints from image B.

For every pair of images in the dataset, a two-way matching is performed
by following the aforementioned procedure. The set of final matches

M(A,B) = M(A→B) ∩M(B→A) (7.7)

between images A and B is defined to be the intersection of the sets M(A→B)

and M(B→A).
The choice for using a two-way matching is justified by the fact that the

nearest neighbor of an extracted keypoint in image A may be different from
the nearest neighbor of the correspondent keypoint in image B. The two
way matching compensates such inconsistencies.

Due to the fact that the number of extracted keypoints for each image is
equal to K, we define a visual similarity metric between images i = A and
j = B as

si=A,j=B =

∣∣∣M(A,B)
∣∣∣

K
, (7.8)

where |M(A,B)| refers to the cardinality of M(A,B) set.
The output of the aforementioned process for N images is an N × N

symmetric matrix S whose elements si,j ∈ [0, 1], i, j = 1, 2, ..., N. Variable si,j
takes value of zero in case that the visual content of image i has no relation
with the content of image j. Instead, for two similar images variable si,j takes
value equal to one. In the following, we denote by

D = [di,j] = − log(S) (7.9)

the log version of matrix S so as to similar images receive close to zero while
quite dissimilar very high value. D is a square N × N symmetric matrix
with non-negative elements and zeros on the main diagonal. In Eq.(7.9), di,j
stands for an element of matrix D.

7.4.3 Image Representation onto Multi-dimensional Manifolds

By examining the constructed similarity matrix D, it is easy to be observed
that the distance between the visually similar images is small. This means
that if images are represented as points onto a multidimensional manifold,
then visually similar images will belong to high spatial density subspaces,
instead of image outliers which will be spread out onto the space. Let us
define as x(i) ∈ <µ the coordinates of i-th image in the µ-dimensional space.
We define the multi-dimensional space in a way so that the norm (distance)
between two points (images) of the space represented by the coordinates
x(i) and x(j) should be equal to the their respective image distance di,j =
− log(si,j) defined by Eq.(7.9), i.e.

||x(i) − x(j)|| = di,j, ∀i, j . (7.10)

The coordinates of all N images in the dataset can be compactly represented
by a matrix

X =


(x(1))T

(x(2))T

...

(x(N))T

 ∈ <N×µ . (7.11)
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(a) (b)

Figure 7.3: (a) ORB descriptors matching for two similar and two dissimi-
lar images. (b) Based on ORB descriptors matching a distance
metric between every pair of images is estimated. Using pair-
wise image distances, images can be represented as points on a
multi-dimensional manifold, enabling the exploitation of learn-
ing algorithms. For visualization purposes, in this figure, images
A, B and C are projected on a 2-dimensional space. Actually our
method estimates the number of dimensions directly from the
data.

If we define the Gram matrix B = X ·XT of images’ coordinates, then
classical Multi-Dimensional Scaling (cMDS) (Cox and Cox, 2008) can be
used to establish a connection between the space of the distances and the
space of Gram matrix B with respect to Eq.(7.10), based on Theorem 1 (Cay-
ton, 2006).
Theorem 1. A non-negative symmetric matrix D ∈ <N×N , with zeros on the
diagonal, is an Euclidean distance matrix if and only if B := − 1

2HDH , where
H := I − 1

N11T , is positive semidefinite. Furthermore, this B will be the Gram
matrix for a mean centered configuration with interpoint distances given by D.

In cases where dissimilarity matrix D is not Euclidean the matrix B as
described by the above theorem will not be positive semidefinite, and thus
will not be a Gram matrix. To handle such cases, cMDS projects the Gram
matrix B onto the cone of positive semidefinite matrices by setting its neg-
ative eigenvalues to zero. In order to get matrix X , the Gram matrix B is
spectrally decomposed into U ·V ·UT and thenX = U ·V 1/2. If we denote
as qi and λi for i = 1, 2, ..., N the eigenvectors and eigenvalues of B, then
matrix U is the square N × N matrix whose i-th column is the eigenvector
qi of B and V = [vii] is the diagonal matrix whose diagonal elements vii are
the corresponding eigenvalues, i.e. vii = λi . Finally, the dimension µ of the
multidimensional space is equal to the multiplicity of non-zero eigenvalues
of matrix B.

Figure 7.3(a) describes an example of visual matching for two images de-
picting Porta Nigra monument (Image A and B) and two dissimilar images
(Image A and C). Based on visual matching, a distance metric between every
pair of images is estimated and then, using Theorem 1 these images are pro-
jected onto a multidimensional manifold [see Figure 7.3(b)]. (Although Fig-
ure 7.3(b) depicts images as points on a 2-dimensional manifold, our method
estimates the number of manifold dimensions directly from the data. In Fig.
7.3(b) we used 2-dimensional manifold for visualization purposes). It is clear
that the points of the two similar images A and B are located close enough in
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(a) (b) (c)

Figure 7.4: Representation of images in a 2-dimensional space. Red dots and
blue dots represent image outliers and visually similar images
respectively. Points that lie inside the yellow area depict the front
view of Porta Nigra monument, while the points that lie inside
the green area depict the rear view of the monument. Outliers are
scattered and isolated in low density areas, while visually similar
images are concentrated in high spatial density areas. For this
reason, density partitioning methods are used to isolate image
outliers and therefore estimate the compact subset of visually
compact images. Instead, conventional clustering methods, such
as k-means or spectral clustering fail to remove image outliers
since their goal is to partition the high-space into disjoint subsets.
For the sake of visualization, in this figure, images are projected
on a 2-dimensional space.

the coordinates space, while the points of two dissimilar images A and C far
away. Thus, the proposed visual content matching also indicates a ”relation
degree” among the image points.

7.5 density-based partitioning for excluding outliers

By using the representation of images as points onto a multidimensional
manifold, we are able to remove image outliers. More specifically, we can
intuitively note that outliers reside to areas of low spatial density, due to
their large distance from the other images in the dataset. On the contrary,
visually similar images form high spatial density areas as depicted in Figure
7.4. Due to this property, partitioning of the multi-dimensional manifold
into two disjoint subspaces C (the set of relevant images) and O = C̄ (the
set of image outliers) cannot be accomplished using conventional center-
based clustering techniques (e.g., k-means) or more sophisticated spectral
clustering techniques.

For estimating a compact subset of images by exploiting density variations
in space (we focus on the variation of density of the data-points instead of
their positioning in the space), partitioning should take place by utilizing a
density-based method like the one presented in the following section.

7.5.1 Estimation of Image Spatial Density

The density of an area can be defined as the number of points u existed
within a specified radius r on the hyperspace manifold. We should men-
tion that r parameter is associated with inter-images distance computed
by Eq.(7.9). Estimation of these parameters is crucial for utilizing a density
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(a) (b)

Figure 7.5: Estimation of r variable of DBSCAN in regard to u variable. r can
be estimated by the best trade-off point of the curve in blue in
diagram (a). For finding the best trade-off point the distance of
between every curve’s point and the straight line defined by the
first and the last points of the curve is computed. The point that
presents the biggest distance represents the best trade-off point,
diagram in (b).

based partitioning algorithm. As no prior knowledge about the dataset is
available, these parameters cannot be set to any predefined value. For this
reason, we need a procedure to automatically estimate both r and u parame-
ters. In the following, we describe such an algorithm, a visual representation
of which is depicted in Figure 7.5.

For a given image A, let us assume that there exists a non-linear rela-
tionship, g(A)(·) that relates parameter u with the radius r. Thus, we have
that r = g(A)(u). Function g(A)(·) indicates the distance required to be de-
fined for a space in order to contain u points within radius r from image A.
This function is plotted in Figure 7.5(a) by the blue line. Function g(A)(u) is
monotonically increasing, meaning that as variable u increases the radius r
increases too.

Then, to estimate the best trade-off point between u and r of g(A)(·) we
adopt the following procedure. First, we define a line segment l that con-
nects the points c1 = (u = 1, r = g(A)(1)) and cN = (u = N, r = g(A)(N))
onto the (u, r) plane (the green line of Figure 7.5(a)). The farthest point of
the curve defined by g(A)(·) (blue line of Figure 7.5(a)) from the straight line
l (green line Figure 7.5(a)) corresponds to the best trade-off point (Satopaa
et al., 2011). To detect this point, initially we define a unit vector as

u =
cN − c1

||cN − c1||2
. (7.12)

It is clear that vector u is parallel to line segment l (see Figure 7.5(a) for
clarification). Then, we define as vi a vector that connects points ci = (u =
i, r = g(A)(i)) and c1 = (u = 1, r = g(A)(1)). A geometric clarification of the
vector vi is presented in Figure 7.5(a). The inner product between vector vi
and u, i.e., pi = u · v, projects vector vi onto the line segment l.

Having estimated the vectors vi and pi, we are able to compute a distance
between vector vi and its projected version onto the line segment l by

ei = ||vi − pi|| . (7.13)

Figure 7.5(b) plots the distances ei between curve’s points and the straight
segment l versus u parameter.
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In the following, we denote as e(A)
max the maximum value of all ei that is

e(A)
max = max{e1, e2, ..., eN} for a given image A. It is clear that for another

image a different value of e(·)max is obtained since the non-linear relationship
g(·)(·) changes for different images. The aforementioned procedure is re-
peated for every image of the dataset. Then, the most appropriate image
point, say î is given by the following equation

î = argmax
i=1,2,...,N

(e(i)max) . (7.14)

Then, the most appropriate values of r and u, named r̂ and û respectively
are given by the following equation

û = argmax
i=1,2,...,N

(
e(î)k

)
and r̂ = g(î)(û) . (7.15)

7.5.2 Core Samples Partitioning

The Core Sample Partitioning (CSP), modification of the DBSCAN algorithm
(Ester et al., 1996), is used for outliers’ detection. Conventional DBSCAN
algorithm partitions the dataset using the spatial density of images onto the
multidimensional space. Initially, let us define as Nr(p) a neighborhood of
a point p ∈ <µ (image in our case) on the multidimensional manifold. Then
Nr(p) contains all points q ∈ Θ , whose distance with respect to p is smaller
than or equal to radius r,

Nr(p) = {q ∈ Θ | dp,q < r} , (7.16)

where Θ is the set that contains all the N image points onto the multidimen-
sional manifold and dp,q is the distance between two image points p and
q, see Eq.(7.10). A point p whose cardinality of neighborhood |Nr(p)| ≥ u
is called core sample. If a point q ∈ Nr(p) and |Nr(p)| ≥ u then points p
and q are considered directly density-reachable, while two points p and q are
considered density-reachable if there exists a chain of points p1, ..., pn with
p1 = p and pn = q such that pi is directly density-reachable from p1+1.
Then, the conventional version of DBSCAN creates a compact subset SDB
by including all points of the multidimensional manifold that are density
reachable from a core sample using the optimized parameters r̂ and û es-
timated in Eqs.(7.14)-(7.15). However, creating the subset SDB from points
that are density reachable from a core sample, we minimize the probability
of an image that contributes to the 3D reconstruction engine (i.e., it depicts a
view of the cultural object) to be considered as an outlier. This, however, im-
plies that some of the outliers are included in the target subspace, increasing
reconstruction cost.

An alternative approach, named Core Sample Partitioning (CSP), is to
set more strict criteria in creating the compact subset SDB of DBSCAN. In
particular, CSP exploits the notion of direct density-reachability, creating a set
say SCSP that minimizes the probability of an image outlier to belong to
the partitioned compact subset. In particular, first we define the set Ccs that
contains all core sample points pi. Then, based on the set Ccs the set SCSP
that contains visually similar images is defined as

SCSP = {q ∈ Θ | dpi ,q < r} , ∀pi ∈ Ccs . (7.17)
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(a) DBSCAN (b) CSP

Figure 7.6: Conventional DBSCAN (a) and CSP partitioning (b). Using DB-
SCAN all density reachable points from a core sample are consid-
ered as inliers. Contrary, by using CSP only the directly density
reachable points are denoted as inliers. The large red triangles in
(b) correspond to images that were denoted as inliers by using
DBSCAN and as outliers by using CSP.

The effect of enabling more strict criteria in creating the compact subset
SCSP is shown in Figure 7.6. In this example the parameters r and u have
been set to 1 and 4 respectively. Conventional DBSCAN algorithm denotes
as inliers twelve points and as outliers four points. When CSP algorithm is
applied on the same data, ten points were denoted as inliers and six points
as outliers. The two additional outliers that they are detected by CSP and not
by DBSCAN are depicted in Figure 7.6(b) as large red triangles. Although,
these two points are density reachable from the core samples, they are not
directly density reachable and thus they are denoted as outliers using CSP
algorithm.

Although CSP partitioning, through the employment of more strict crite-
ria, increases false positive rate during outliers’ removal, it minimizes the
false negative rate. This means that, on the one hand, it eliminates outliers
that will confuse the algorithm which is responsible for selecting the most
appropriate views for 3D reconstruction, and on the other it results in a
more compact set of visually similar images reducing this way the time
required for reconstructing an object. In other words, assuming that a suf-
ficient large set of images depicting a cultural heritage object of interest is
available, the proposed modified DBSCAN approach selects images for the
3D reconstruction process that yield low computational complexity, while
its precision performance remains almost the same.

7.6 representative object geometric perspectives

The density based clustering, such as the DBSCAN described in the previ-
ous section, discards image outliers through its ability to detect sparse image
samples spreading far away from the compact subspace of the ”relevant im-
ages” onto the multidimensional manifold. Then, we need to partition the
detected compact subset of relevant images into different groups that con-
tains the most representative geometric perspectives of the cultural heritage
object. This is the goal of this section; to separate image data within this
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”relevant region” so that the most representative views of the object, around
a sphere that surround it, are determined and then these views are fed as in-
put to a 3D reconstruction algorithm to improve computational complexity
while simultaneously keeping the same reconstruction performance. This is
presented in Figure 7.4(c).

Spectral clustering is adopted in this approach to achieve such discrimi-
nation. The advantages of the spectral clustering algorithm is that it treats
clustering as a graph partitioning problem without making specific assump-
tions on the form of the created clusters. For this reason, let us assume
a graph G = (V, E), where V denotes the vertices of the graph, while E
the respective edges. In our representation, the vertex set V coincides with
the images of the detected compact subset as it has been extracted by the
density based clustering algorithm. Thus, the cardinality R of set V equals
R = N −O, where we recall that N is the total number of images being
retrieved based on textual and geo-location criteria, while O is the number
of image outliers as they have been detected by the clustering algorithm. We
also denote as wi,j the weight of the edge connecting the i-th with the j-th
vertex. In our case, the edge weight

wi,j = di,j = − log(si,j) (7.18)

equals with the similarity distance between the descriptors of the images
corresponding to the vertices i and j. Variable si,j is the similarity matching
between the images i and j respectively. Since wi,j = wj,i, our graph G is
undirected.

Let us recall that the problem we need to solve is given in Eq.(7.1). The
main bottleneck of Eq.(7.1) is that creation of small partitions is favored due
to the fact that as the number of graph partitions increases, the similarity
degree among the partition vertices is expected to increase, while, on the
contrary, the similarity among the vertices of different partitions is expected
to decrease. To avoid such non-acceptable solution, normalization factors
have to be added to Eq.(7.1) (Shi and Malik, 2000). Therefore, considering
an M-partitioning problem, we need to estimate clusters that optimize the
following quantities

Ĉr : max Q =
M

∑
r=1

NQr =
M

∑
r=1

∑i∈Cr ,j∈Cr di,j

∑i∈Cr ,j∈C di,j
and

min P =
M

∑
r=1

NPr =
M

∑
r=1

∑i∈Cr ,j/∈Cr di,j

∑i∈Cr ,j∈C di,j
,

(7.19)

where Q and P is the normalized quantities of Qr and Pr respectively, while
C denotes the union of all partitions Cr, r = 1, ..., M, C = ∪M

r=1Cr.
It can be easily proven, however, that the quantities P and Q are related

using the following relationship

P + Q = M . (7.20)

The previous equation implies that maximization of Q simultaneously
yields a minimization of P and vice versa. Therefore, it is enough to optimize
only one of the two criteria. In the following, we select to minimize the
quantity of P.
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7.6.1 Matrix Representation

In order to minimize Eq.(7.19), we first re-write this equation as a matrix
representation form. For this reason, let us denote an index vector ar =
[· · · au

r · · · ]T whose the u-th entry equals to unity whether the respective u
image is assigned to the r-th partition Cr, and zero otherwise;

au
r =

1, if the u-th image is assigned to r-th prtition

0, otherwise
. (7.21)

We also denote as E the adjacent matrix of the graph G. Therefore, we
have that the matrix E is expressed as E = [wi,j], where the elements of
wi,j are modeled through the Eq.(7.18). Let as also denote as Z the degree
matrix of the graph G. The matrix Z is given as a diagonal matrix Z =
diag(· · · zi · · · ), with

zi = ∑
j∈C

wi,j . (7.22)

Using the degree matrix Z, we define the Laplacian matrix of the graph
G, L = Z −E. Based on the Laplacian matrix, we formulate the numerator
of quantity P as a matrix form

aT
r ·L · ar = ∑

i∈Cr ,j/∈Cr

wi,j . (7.23)

In the similar way, the denominator of quantity P, (second part of Eq.(7.19)),
is formulated as

aT
r ·Z · ar = ∑

i∈Cr ,j∈C
wi,j . (7.24)

Therefore, the minimization problem is given in a matrix form as the follow-
ing equation

âr : min P = min
M

∑
r=1

aT
r ·L · ar

aT
r ·Z · ar

. (7.25)

7.6.2 Optimization in the Continuous Domain

In order to solve the aforementioned optimization problem, we need to re-
lax the index vector of ar to take continuous values instead of binary ones
as presented in Eq.(7.21). This means that we assume that each image is
possible to be assigned to all potential clusters but of different degree of
membership. Let us denote in the following as IR the relaxed indicator ma-
trix, IR = [· · ·aR

r · · · ] where aR
r are the relaxed continuous values of ar. The

idea is to first find the optimal choice of the relaxed matrix IR , and then
discretize somehow the real values to obtain an approximately optimal inte-
ger solution. It can be proven (Bach and Jordan, 2003) that the right part of
Eq.(7.25) can be rewritten as

P = M− trace(Y T ·Z−1/2 ·E ·Z−1/2 · Y )

subject to

Y TY = I ,

(7.26)
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where matrix Y is related to matrix IR through the equation Z−1/2 · Y =
IR ·Λ, where Λ is an arbitrary M×M matrix.

Minimization of Eq.(7.26) is obtained through the Ky-Fan theorem (Fan,
1951), which states that the maximum value of trace(Y T ·Z−1/2 ·E ·Z−1/2 ·
Y ) with respect to matrix Y , subject to the constraint Y T · Y = I is given
by the sum of the M largest eigenvalues of matrix Z−1/2 ·E ·Z−1/2. Thus, we
have that

max{trace(Y T ·Z−1/2 ·E ·Z−1/2 · Y )} =
M

∑
i=1

λi , (7.27)

where λi refers to the i-th largest eigenvalue of matrix Z−1/2 · E · Z−1/2.
The Ky-Fan theorem also states that this minimum value is obtained for the
matrix

Y = U ·R , (7.28)

where U is the matrix whose columns are the eigenvectors corresponding to
the M largest eigenvalues of matrix Z−1/2 ·E ·Z−1/2 and R is an arbitrary
rotation matrix (i.e., orthogonal with determinant of one). Thus, the optimal
choice of IR is (see the aforementioned relations)

ÎR = Z−1/2 ·U . (7.29)

In the previous equation, we have assumed that there exists a rotation matrix
such that R ·Λ−1 = I .

7.6.3 Solution Discretization

The optimal matrix ÎR, given by Eq.(7.29), does not have the form of the
indicator matrix I , since its entries are non-integer, while I’s entries are
binary. Consequently, the problem is how to round the continuous values of
ÎR in a way that approximates matrix I . A simple rounding process is to set
the maximum value of each row of ÎR equal to 1 and the remaining values
equal to 0. However, this approach yields unsatisfactory performance when
there is no dominant maximum value for each row of ÎR. Furthermore, it
handles the rounding process as R independent problems (we recall that
R stands for the number of retrieved images excluding the partitions or in
other words as the number of rows of ÎR).

An alternative approach, which we adopt in this work, is to treat the R
rows of ÎR as M-dimensional feature vectors. The algorithm clusters the
rows of matrix ÎR to M groups (the number of clusters or the different
geometric perspective of the object). Each row of ÎR indicates the degree
of ”fitness” (the association degree) of the corresponding image to each of
the M clusters. Therefore, the goal of the algorithm is to find the cluster to
which an image with a specific feature vector fits best.

It has been shown in (Bach and Jordan, 2003) that such an approach pro-
vides the minimum Frobenius distance between the continuous and the dis-
crete solution. Thus, this is the closest approximate solution to the continu-
ous optimum provided by the Ky-Fan theorem. Other methods recursively
update the rotation matrix in a way the continuous solution to be as close
as possible to the discrete one (Yu and Shi, 2003). However, we avoid ap-
plying this method in our case to keep computational complexity as low as
possible.
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In our case, discretization is achieved via the use of the k-means algorithm
on the rows of ÎR. In particular, we initially normalize the rows of matrix ÎR
to take values between 0 and 1. Then, we apply the k-means clustering algo-
rithm to these N vectors to form the indicator matrix I . The parameter k of
k-means algorithm, i.e. the number of clusters, is set equal to the parameter
M. We recall that M is the number of estimated partitions of graph G. Fig-
ure 7.4 presents the partitioning of the compact subset into two disjoint sets.
In this case the points that lie inside the yellow area correspond to images
depicting the front view of the Porta Nigra monument, while the points that
lie inside the green area correspond to images depicting monument’s rear
side. In this case M was set equal to two.

Parameter M is an application defined parameter of the spectral cluster-
ing algorithm and it highly affects the accuracy of the following reconstruc-
tion method. To be more specific, increment of the value of M leads to the
selection of a bigger set of appropriate images for 3D reconstruction, increas-
ing this way the accuracy of the reconstruction algorithm. However, creating
a bigger set of representative views for the under reconstruction object, im-
plies that more data are fed to the 3D reconstruction algorithm, increasing
this way its computational time requirements.

The estimation of an appropriate value for parameter M takes place in
regard to application scenarios. Different scenarios suggest different con-
straints in regard to devices’ computational power and available memory as
well as the desired reconstruction time. As mentioned before reconstruction
accuracy is monotonically increasing in regard to the value of M. Based on
this observation, the parameter M is set to the maximum potential value that
satisfies the aforementioned constraints. Consider for example, a tourism
application, which is executed on a mobile device. This kind of application
imposes strict constraints in regard to computational power and memory
requirements as regards 3D reconstruction, resulting in small values of M.
The effect of the number of clusters M in the 3D reconstruction accuracy is
shown in Figure 7.15. For a given number M, the proposed content based
filtering algorithm selects the M most appropriate images to maximize the
respective 3D accuracy.

7.6.4 Selection of the most Representative Images

The aforementioned algorithm extracts M optimized clusters in a way that
each cluster contains images representing a specific geometric perspective of
the object of interest. In this way, extracting the most representative images
for each cluster, denoted as Ir,i, i = 1, 2, ..., M, we are able to retrieve the
most representative geometric views of the under 3D reconstruction cultural
heritage object.

In case that we wish to improve the 3D reconstruction accuracy, we should
increase the number of retrieved images. One simple way is to re-perform
spectral clustering by increasing the number of the extracted partitions M.
This, however, implies a high computational cost. An alternative approxi-
mate solution is to estimate within each created cluster the most dissimilar
image with respect to the most cluster representative. Then, this dissimilar
image is selected to be retrieved as the most appropriate.

In particular, let us define as Ci a created cluster using the aforementioned
methodology. We recall that as Ir,i we denote the most representative image
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of this cluster. This image is selected as the one that satisfies the following
equation

Ir,i : min D(Ir,i, Īi) = min dIr,i , Īi
, (7.30)

where function distance D(Ir,i, Īi) = dIr,i , Īi
resembles the distance given

through Eq.(7.9) and Īi is the average image of the cluster Ci produced as the
averaging of all images within the cluster. Then, the most dissimilar image
is the one that presents the highest distance with the representative image
of the cluster;

Id
r,i : max

Ii∈Ci
D(Ii, Ir,i) = max

Ii∈Ci
dIi ,Ir,i . (7.31)

We select as the next retrieved image from cluster Ci the one that yields the
maximum value of dissimilarity from the previously selected image Id

r,i.

7.7 experimental results

7.7.1 Evaluation Metrics and Image Dataset Description

For the evaluation of the proposed algorithm we use the objective criteria
of Precision, Recall and F1 Score. If we denote as Cvs the set of ground truth
visually similar images and as Cret the set of images that our algorithm
denotes as similar then Precision pr , Recall re and F1 Score f1 metrics are
defined as:

pr =
|Cvs ∩ Cret|
|Cret|

, re =
|Cvs ∩ Cret|
|Cvs|

, f1 = 2
pr · re

pr + re
. (7.32)

In the framework of this research, we have collected from Internet image
repositories, (i.e., from ”wild image collections”),like Flickr, Picasa, 31,000

images depicted different cultural heritage monuments, archaeological sites,
historic places and churches, such as Porta Nigra in Germany, Parthenon
in Athens and Descobrimentos in Lisbon, etc. All these images have been
gathered with respect to their textual annotation and geo-information re-
gardless of the actual type of content they depict. Thus, for each cultural
heritage object category, a large number of image outliers (noise) are en-
countered (see characteristics examples in Figure 7.1). For example, in the
case of Parthenon, noise consists of images that depict anything except the
monument.

Using expert’s assessment, we have initially annotated this large collec-
tion of 31,000 images into two categories; (i) the one of ”relevant image set”
and (ii) the one of image outliers. The density-based image partitioning al-
gorithm is then applied to discriminate the relevant visual data from the
outliers. This way, we create the ground truth set Cvs , while the set Cret is
constructed by performing the proposed density-based partitioning method.
We also exploit the above mentioned metrics of precision, recall and F1 score
to evaluate the efficiency of our algorithm and compared it against other ap-
proaches. For the evaluation, we range the noise, the percentage of image
outliers, in the created datasets from 5% to 60%.

Then, within the annotated relevant image set, we have again categorized
the visual data with respect to different geometric views they represent.
Our goal is to indicate the number of views (front, back, lateral side of
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Figure 7.7: F1 Score regarding
partitioning perfor-
mance for outliers’
removal using the DB-
SCAN and CSP along
with the k-means and
Mean Shift.
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an object) required for an acceptable 3D reconstruction process. The con-
structed ground truth data are used to evaluate the efficiency of the image
clustering algorithm applied to estimate the most representative geometric
views of an object. This way, we point out a minimum set of representative
images needed as input in the 3D reconstruction process so as to achieve
maximum reconstruction performance with the minimum possible cost. If
we need more images in the reconstruction process the heuristic technique
of subsection 7.6.4 can be applied. Then, we evaluate and assess the spec-
tral clustering algorithm for finding out the most representative geometric
views of a cultural object/monument as regards cost efficiency and perfor-
mance. Finally, the impact of the proposed algorithm on 3D reconstruction
accuracy and the respective cost needed is shown.

7.7.2 Evaluation of Partitioning

For removing the outliers images are placed onto a multidimensional man-
ifold and the spatial density is exploited for partitioning the space into two
disjoint subspaces containing the visually similar and non-similar (outliers)
images. Obviously, the percentage of outliers in the initial retrieved dataset
determines the spatial density of the multidimensional space and thus it
affects the performance of the algorithm.

Figure 7.7 presents the F1 Score for two density-based image partitioning
approaches for outliers’ removal that is, of conventional DBSCAN and its
modified method called CSP. The conventional DBSCAN yields better re-
sults for small number of outliers (less than 30%) while CSP is more robust
in case that the initially retrieved dataset is mostly corrupted with many
image outliers. This is due to the fact that the CSP partitioning approach is
more prone to false negatives, while DBSCAN is more prone to false pos-
itives. The results have been obtained by averaging the values on cultural
heritage objects retrieved from Internet collections.

The precision and recall metrics versus the percentage of noise for the
two proposed outliers removal methods, i.e., of conventional DBSCAN and
of CSP, are shown in Figure 7.8. We observe that precision as regards the
CSP approach is higher than the conventional DBSCAN while the oppo-
site is valid as regards the recall metric. These results verify the fact that
CSP partitioning is more robust to false positives while less tolerate to false
negatives. Again, we average precision, recall values on different cultural
heritage objects retrieved from Internet collections in the wild.

Figure 7.9 confirms the aforementioned analysis. In this figure, we depict
the percentage of reduction of the initially retrieved image dataset on the use
of only textual descriptions and geo-information being available in Internet
image databases. Again, the results are figured out against the two proposed
outliers’ removal techniques, i.e., of conventional DBSCAN and its modified
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Figure 7.8: Precision and recall di-
agrams for the two
different proposed ap-
proaches used for re-
moving outliers.

version of CSP. Conventional DBSCAN results to smaller reduction of the
initial retrieved dataset. This is justified by the fact that this approach ex-
ploits the notion of density connectivity to form the clusters. Conceptually,
partitioning based on density connectivity between images minimizes the
number of false negatives but is more prone to false positives and thus it
results to larger sets of visually similar images. In addition the percentage
of reduction when DBSCAN is used, presents high variations in regard to
the percentage of noise, in contrast to the reduction caused by using the CSP
method which is less varying with respect to noise fluctuation.

Both conventional DBSCAN partitioning and CSP are compared to k-
means and Mean Shift algorithms in Figure 7.7, in terms of F1 Score. The
k-means is a center-based clustering algorithm, while Mean Shift is a den-
sity based one. In the k-means case, we need to define the number of clus-
ters. In this research, we set this value equal to the value that maximizes the
silhouette coefficients for different partitions. That is, if we define as a the
mean distance between a sample and all other points in the same cluster
and as b the mean distance between a sample and all other points in the
next nearest cluster, then silhouette coefficient sc is defined as

sc =
b− a

max{a, b} (7.33)

Variable a measures how dissimilar is a sample to its own cluster. That
is, small values for a means that the respective sample is well matched.
Furthermore, a large value for b implies that the sample is badly matched
to its neighboring cluster. Thus a silhouette value sc close to one means
that the respective datum is appropriately clustered. Instead, if sc is close to
negative one, then we conclude that the respective sample would be more
appropriate to be assigned to its neighboring cluster. A silhouette coefficient
value close to zero implies that the sample is on the borders of two clusters.

As shown in Figure 7.7 both conventional DBSCAN and CSP approaches
outperform, in terms of F1 score, k-means algorithm. This comparison is
aligned with our initial argument that center-based algorithms are inappro-
priate for identifying outliers. On the other hand, Mean Shift (a density-
based algorithm) behaves better, especially for small values of noise (which
is not the usual case for Internet based retrieved image collections), while as
the noise increases even for intermediate values its performance is severely
deteriorates. This is due to the probabilistic nature of Mean Shift which
makes it arduous to capture largely spread samples such as the ones being
highly corrupted. Hence, when the ratio of noise increases the performance
of Mean Shift collapses.
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Figure 7.9: Percentage of initial
set reduction after
the application of
outliers’ removal
approaches, conven-
tional DBSCAN and
CSP.

7.7.3 Evaluation of Image Clustering

For image clustering, the spectral clustering algorithm is applied on the
relevant dataset, i.e., on the dataset obtained having removed the outliers. To
evaluate the algorithm performance, we exploit visual data categorization as
being obtained with respect to different geometric views. This way, the goal
of the algorithm is to extract a limited but characteristic number of images
for the cultural object of interest so as to maximize image reconstruction
quality, while simultaneously keeping computational cost as low as possible.
Figure 7.10 presents spectral clustering performance being measured on the
use of precision, recall and F1 Score versus noise percentage.

The noise is corresponded to the percentage of image outliers in the ini-
tially retrieved image dataset, i.e., on the use of textual descriptions and
geo-information from Internet collections. However, the spectral clustering
and the precision, recall values are computed on the relevant, reduced set C,
that is, the one obtained after excluding the outliers. This is done because
noise images, i.e. image outliers, are denoted as such based exclusively on
their visual content. Therefore, the ratio of noise in the initial set affects the
performance of all components of the system, including local visual descrip-
tors matching, images pairwise distance estimation and thus images repre-
sentation in a multidimensional space, outliers removal and, finally, spectral
clustering, since as noise ratio increases, more outliers are presented in the
relevant image set affecting the selection of the most representative views
for the under reconstruction object.

This is verified in Figure 7.10 where we observe that precision, recall and
F1 score achieve their ideal values for noise less than 40%. Instead, if the ini-
tially retrieved data are mostly corrupted there is a deterioration of the met-
rics being however kept on relatively high values for such high corrupted
initially retrieved data. In addition, the most important feature of the spec-
tral clustering algorithm is its ability to identify subclasses in the relevant
dataset that depict different geometric views of the same object. This way,
we can minimize the computational cost needed for a 3D reconstruction
while simultaneously keeping the performance as high as possible. Again,
the results have been obtained by averaging on cultural heritage objects of
our ”wild” image dataset.

Figure 7.11, Figure 7.12 and Figure 7.13 visually depict the clustering re-
sults of the spectral approach for three monuments, Porta Nigra, Parthenon
and Descobrimentos. In all cases, in order to estimate the number of sub-
classes, we employ the number of connected components in the graph rep-
resented by the Laplacian matrix. This estimation takes place by using the
eigengap criterion, in order to set M parameter in a fully automatic way, as
there is no application specific scenario. This criterion is based on the prop-
erty of Laplacian matrix, according to which the multiplicity λ of its zero
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Figure 7.10: Precision, recall and
F1 score diagram for
spectral clustering al-
gorithm versus the
noise of the initially
retrieved image col-
lections.

(a)

(b)

Figure 7.11: Clustering results for Porta Nigra monument. The set of rele-
vant images partitioned by using spectral clustering into two
disjoint subsets. The first subset (a) includes images that depict
the rear side of the monument, while the second subset (b) in-
cludes images that depict the front side.

eigenvalues equals to the number of connected components in the graph.
Then, we set the number of subclasses equal to the number of connected
components in the graph.

Following the aforementioned approach, the relevant images sets for Porta
Nigra, Figure 7.11, and Descobrimentos, Figure 7.13, were partition into two
disjoint subsets. In the case of Porta Nigra the first subset includes images
that depict its front side, Figure 7.11(b), while the second includes images
that depict its rear side, Figure 7.11(a). Similar, in the case of Descobrimen-
tos the two disjoint sets contain images that depict its left, Figure 7.13(a),
and rear side, Figure 7.13(b). In the case of Parthenon, the relevant images
dataset was partitioned into three disjoint sets, each one containing images
that depict its front, Figure 7.12(a), rear, Figure 7.12(b) and left-rear, Figure
7.12(c) views. These partitions occurred due to the fact that the vast majority
of images, that are not outliers in the initially retrieved dataset, depict these
views of the corresponding monuments. Figure 7.13(c) presents an example
of an image that was retrieved from the subset of images depicting the rear
side of Descobrimentos monument. This image actually shows the same rear
view of the monument but, it is as dissimilar as possible to the majority of
images belonging to the same subset. For this reason, it can contribute to 3D
reconstruction accuracy improvement, by providing the 3D reconstruction
method a different perspective of the rear view of the monument.
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(a)

(b)

(c)

Figure 7.12: Clustering results for Parthenon monument. The set of relevant
images partitioned into three disjoint subsets. The first subset
(a) includes images that depict the front side of the monument,
the second subset (b) includes images that depict its rear side
and the third subset (c) includes images that depict the rear and
the left side of the monument.

7.7.4 Impact on 3D Reconstruction Time

The accuracy of 3D reconstruction in regard to a given image dataset is in-
herently depended on the number of images that will be fed as input to
the Structure from Motion (SfM) scheme. Given an image dataset the best
3D reconstruction accuracy is achieved when all visually similar images are
fed into a SfM method. One way to exploit all visually similar images is to
give as input to the SfM method the entire image dataset. However, the time
complexity for a typical incremental SfM method is of order O(N4) where
we recall that N stands for the number of images. This complexity makes
SfM not scalable to large photo collections. In order to decrease computa-
tional time required for 3D reconstruction, the initial image dataset can be
pruned by removing outliers. When outliers’ removal process is very pre-
cise (presents recall equal to one), reconstruction accuracy is not affected
by dataset reduction, since the relevant (reduced) dataset will contain only
all visually similar images. So, the metric that can be associated with recon-
struction accuracy is the metric of recall. On the other hand, decrement of
SfM computational time is depended on the percentage of reduction of the
initial image dataset, which implicitly can be computed by using the metric
of precision. When precision metric is equal to one, the cluster of visually
similar images contains no outliers, achieving this way the most accurate
dataset reduction.
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(a)

(b) (c)

Figure 7.13: Clustering results for Parthenon monument. The set of relevant
images partitioned into three disjoint subsets. The first subset
(a) includes images that depict the front side of the monument,
the second subset (b) includes images that depict its rear side
and the third subset (c) includes images that depict the rear and
the left side of the monument.

Figure 7.14 presents the recall vs precision diagram when image cluster-
ing has been applied on the relevant (reduced) dataset, after removing the
outliers utilizing both the conventional DBSCAN and the CSP algorithm.
The results have been obtained by averaging on cultural heritage objects of
our ”wild” image dataset assuming 20% and 30% noise. As this diagram
shows both algorithms achieve recall over 90% while at the same time they
preserve high precision (almost 90% for DBSCAN and over 95% for CSP).
CSP algorithm seems to outperform DBSCAN due to the fact that CSP
achieves larger reduction to the initial retrieved image dataset. However, a
larger reduction to the initial image dataset may increase the false negative
rate of partitioning and consequently affect the accuracy of 3D reconstruc-
tion.

Table 7.1 presents a quantitative analysis of the performance of the pro-
posed workflow in terms of precision and recall, percentage of reduction of
the initial dataset, reconstruction accuracy and computational time.

We assume that reconstruction accuracy is 100% when all visually similar
images of the initial dataset are used. The set of all visually similar images
may include redundant information. However, redundant information does
not affect 3D reconstruction accuracy. Furthermore, we denote as T the time
required for 3D reconstruction when all images of the initial dataset Z are
used by a 3D engine. The column titled ”Reconstruction accuracy” of Table
7.1 corresponds to the reconstruction accuracy achieved when our approach
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is applied on set Z for a given number of M estimated through the eigengap
criterion described previously. The column, titled ”Computational time on
initial set” of the same Table 7.1 corresponds to the time, (also expressed as a
portion of T), that our method requires for reconstructing an object, when all
images from the whole initial retrieved dataset Z are considered. Finally, the
ultimate column, titled ”Computational time on ground truth” expresses the
time our method requires for reconstructing an object, in comparison with
a 3D engine applied on a ground truth dataset (smaller than the initially
retrieved image set). Ground truth corresponds to the ideal case, i.e., a set of
visually similar images that depict different perspective views of the under
reconstruction object.

When the total reduction of the initial dataset is large the computational
time for 3D reconstruction is very low. For reduction over 50% the recon-
struction process can be 20 times faster. When the reduction of the initial
dataset is large (larger than the percentage of noise) the recall metric is low
and thus reconstruction accuracy is also low. However, if we constrain recall
to be over 90% the system achieves high reconstruction accuracy, while at
the same time it achieves more than 4 times faster 3D reconstruction.

For evaluating the representatives selection algorithm, we used expert’s
assessment in order to select from the set C that contains the visual similar
images the n most appropriate for 3D reconstruction: i.e. images correspond
to different views of the under reconstruction object. We denote this set as
Cn . Then, we asked from our representatives’ selection algorithm to extract
n/5, 2n/5, 3n/5, 4n/5 and n images from the set C. The set of extracted
images are denoted as Ce,i, where i ∈ {n/5, 2n/5, 3n/5, 4n/5, n}. The car-
dinalities of the sets Ce,i correspond to different application scenarios. The
case where n/5 images are selected corresponds to an application scenario
that set strict constraints in regard to computational cost, memory require-
ments and reconstruction time. On the contrary, in the case where n images
are selected, corresponds to an application scenario that mainly focuses on
reconstruction accuracy, regardless the reconstruction time and/or compu-
tational cost.

In this framework reconstruction accuracy is defined as A = |Cn ∩Ce,i|/|Cn|
where | · | represents the cardinality of a set. By the definition of reconstruc-
tion accuracy is obvious that for the cases of n/5, 2n/5, 3n/5, 4n/5 and n ex-
tracted images, the maximum reconstruction accuracy that can be obtained
is 20%, 40%, 60%, 80% and 100% respectively. Furthermore, we compared
our representative selection algorithm with k-Means algorithm and spectral
clustering using min cut. We request from these algorithms to partition the
set C into n/5, 2n/5, 3n/5, 4n/5 and n clusters. Then, from each one of the
clusters we selected as representative image, the image that is farther from
the cluster centroid than the rest images of the same cluster. Evaluation re-
sults are shown in Figure 7.15. As the number of clusters is getting larger,
the performances of all algorithms are increasing. This is justified by the
fact that as the number of clusters is increasing, each one of them contains
fewer elements and thus the probability to select the true representative is
increasing. Min cut spectral clustering presents the worst performance be-
cause it favors unbalanced partitioning. In all cases, our approach based on
normalized cut spectral clustering outperforms both k-Means and min cut
spectral clustering. Finally, Figure 7.16, presents a 3D reconstruction for the
Porta Nigra monument. For this reconstruction 30 images dataset was used
that contained 20% of outliers.
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Figure 7.14: Recall vs Precision
diagram when initial
image set reduction
has been performed
by using the conven-
tional DBSACN and
CSP algorithms.

Figure 7.15: :Reconstruction accu-
racy in regard to the
number of selected
representatives.

7.8 conclusions

The rapid progress in technology regarding visual capturing accompanying
with respective progress in respective software tools has stimulated the gen-
eration of millions of image content being nowadays stored onto distributed
and heterogeneous Internet repositories, like Flickr, Picasa, Photosynth, etc.
This content provides a unique opportunity for cultural heritage documenta-
tion, like for 3D reconstruction, through the fact that the overwhelming ma-
jority of these images have been captured for personal use and thus they are
not suitable for such documentation process. Thus, many of these images
contain irrelevant material like views of other objects, or of the city instead
of the monument itself. This constitutes one of the main innovations of this
research, i.e., to allow for reliable and cost effective e-documentation on the
use of ”wild image collections”, that is, data being stored in the Internet un-
der an unstructured way. Therefore, content-based filtering algorithms are
necessary for an effective and computationally efficient e-documentation
process that exploits the ”wild Internet image collections”. The main goal of

Table 7.1: Algorithms performance in terms of precision and recall, images’
set reduction, reconstruction accuracy and computational time for
3D reconstruction .
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Figure 7.16: 3D reconstruction of rear and front view sides of Porta Nigra.
For this reconstruction 30 images were used that contained 20%
of outliers.

the proposed content-based image filtering is to discard image outliers that
are often retrieved from such Internet collections selecting few but appropri-
ate images needed to be fed as input in the 3D reconstruction process. This
way, we minimize computational complexity while keeping performance as
high as possible.

Initially, local visual descriptors are extracted to capture different geo-
metric properties and perspectives of an object. In this research, the Ori-
ented FAST and Rotated BRIEF (ORB) descriptor is adopted as a proper
combination of the well-know FAST key-point detector and the recently de-
veloped BRIEF descriptor, which is rotation invariant and noise resistant.
Then, a two-way pair-wise matching is applied resulting in a construction
of a similarity matrix. In order to unsupervised remove the image outliers
from the retrieved image set (that is, without any knowledge), each image
is considered as a point onto a multidimensional hyperspace manifold, the
coordinates of which express the position of the images on the hyperspace
indicating how close the images are. We estimate the coordinates of these
images from their distances calculated via the similarity matrix. In partic-
ular, the classical multidimensional scaling algorithm is adopted to relate
the space of the image distances with the space of Gram matrices through
which we are able to compute the image coordinates. Then, the density-
based DBSCAN is applied to remove the outliers and construct a relevant
image dataset that includes visual data depicting the object of interest. Then,
we partition this ”relevant” dataset to find images that contain the most rep-
resentative geometric perspectives of an object. These representative views
are used for a computational efficient 3D reconstruction without spoiling
its performance. Spectral clustering is exploited to estimate these represen-
tative views.

The system was evaluated by using about 31,000 images mostly retrieved
from Flickr, Picasa concerning different cultural heritage objects. Experimen-
tal results showed that the system is capable to eliminate outliers from the
initial retrieved datasets, even if they contain a large percentage of noise
(more than 50%). In addition, the spectral clustering algorithm can define
different geometric views of an object reducing the cost of 3D reconstruction
without spoiling its performance. We can conclude that for a reduction over
50% the reconstruction process can be 20 times faster.

As for future work, we will investigate new results on accelerating the
performance of spectral clustering using incremental learning theory and
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Markovian random walk processes. In addition, the effect of different visual
descriptors can be further surveyed.



8
O N L I N E I N D E X I N G F O R U N S T R U C T U R E D I M A G E D ATA

8.1 motivation

The volume of the existing image repositories is continuously increasing
– users generate new content every day. Thus, the output of a CBIR sys-
tem that focuses on cultural heritage applications, like the one presented
in Chapter 8, after a short time period can be considered obsolete. Further-
more, producing a new updated output requires processing the newly gen-
erated data and re-processing the initially retrieved ones. For this reason,
it is an imminent need to index image data in a efficient way and provide
integrated CBIR and indexing systems capable of dynamically adapting to
the continuously evolving nature of image repositories.

We propose an incremental structure scheme able to online index, through
the calculation of the visual distance, each new incoming image datum with
respect to already indexed image volumes in a fast and accurate way. In this
way, we are able to online organize retrieved image data under a compu-
tationally efficient manner. The proposed online indexing structure allows
for an efficient implementation of meta-algorithms that can incrementally
process big and varying image volumes. A content-based filtering approach
is presented suitable for selecting appropriate geometric varying images for
3D reconstruction purposes. In particular, our approach exploits the online
structure indexing mechanisms to appropriately organize new incoming im-
age data and then adopts geometric properties in a multi-dimensional image
manifold (maximize the geometric volume of image points) to select those
data that optimize 3D reconstruction operation.

8.2 approach overview

The online indexing structure is constructed with the aim to scale large im-
age volumes. For this reason, a pre-defined number of landmark images are
selected to represent as much as possible the initially retrieved image data
points. We followed the procedure described in Chapter 7 to project images
onto a multidimensional manifold and relate their pairwise visual similar-
ity with respect to Euclidean distances. In this multidimensional manifold,
image landmarks guarantees that the distance of the newly retrieved image
with respect to the remaining indexed ones is able to be computed both com-
putationally efficient under a constant time of operations and effectively.

The position of initially retrieved images on the manifold is a clear indi-
cator of how close the visual content of two images is, see Figure 8.1. The
distribution of the retrieved images on the manifold is expected to form i) a
compact hyperspace on which images depicting the same object are located
and ii) low density areas containing image outliers. In order to develop a ro-
bust indexing structure image outliers must be eliminated. This can be done
either by following the procedure presented in Chapter 7, or through the ex-
ploitation of a density based clustering algorithm. In this work we choose
Stochastic Outlier Selection (SOS) Janssens et al. (2012) due to its property
to compute the probability that a data point is an outlier. Outlier probabili-
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Figure 8.1: Example of two images that were retrieved by using the textual
query "Porta Nigra" and their projection on a 2D manifold. Their
coordinates were computed by using the distance between them,
which was established by local descriptor pair-wise similarity
matching. Image A that depicts the monument is positioned in
a high density area, while Image B, which is an outlier, is posi-
tioned in a low density area.

ties are favorable to unbounded outliers scores and to hard classification of
data, because they allow to select an appropriate and rational threshold for
outliers selection.

Having discriminated image data to the compact subspace against the im-
age outliers, the next step of the proposed method is to create an appropri-
ate structure capable to index new image samples online. Online indexing
aims to a dynamic system capable to scale on large datasets. The indexing
structure is constructed by using a predefined number of images, denoted
as landmarks, belonging to the compact subspace. Landmarks are used, on
the one hand for projecting new image samples on the multidimensional
manifold and on the other for denoting new samples as inliers or outliers,
see Figure 8.2.

After the indexing of newly retrieved images we must be able to incre-
mentally extract a set of images that are most suitable for 3D reconstruction.
A 3D reconstruction engine exploits different geometric perspectives of an
object. For this reason, redundant information can be considered as those
images presenting similar geometric views of the object to be reconstructed.
The incremental set creation enables us to feed the 3D reconstruction en-
gine with the minimum required number of appropriate geometric views of
an object so as to achieve a targeted precise reconstruction at a given scale.
The selection technique is based on the fact that the volume contained by a
simplex formed by the most representative images is larger than any other
simplex volume formed by any other combination of images (Winter, 1999).

8.3 the online image indexing structure

The number of available images stored on Internet multimedia repositories
is continuously increasing. For this reason, the proposed method focuses
on creating an indexing structure capable to process online new retrieved
images other than those included in the initial dataset. However, in order to
develop a robust indexing structure, we must eliminate image outliers and
form a set that will contain only the visually similar images.

By using the representation of images as points onto an µ-dimensional
space, we can intuitively note that outliers must reside to low spatial den-
sity areas, whereas visually similar images must form areas of high spatial
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(a) (b) (c)

Figure 8.2: (a) Images projected in a 2D manifold. Their coordinates were
computed by using their pair-wise distances. (b) Inliers were se-
lected as landmarks and defined a new 2D subspace. (c) New
samples (red triangles and green circles) are indexed/projected
according to landmarks. Green circles correspond to new sam-
ples denoted as inliers, while red triangles correspond to new
samples denoted as outliers. New samples that fall into the re-
gion of influence of centroid or a landmark are denoted as inliers.
In the first case the indexing structure remains as it is, while in
the second it is updated.

density. Exploiting the density property, or in other words, the affinity be-
tween image points, the µ-dimensional manifold must be partitioned into
two disjoint subspaces, C and C̄, such as all visually similar images belong
to C and all outliers to C̄.

8.3.1 Affinity-based Partitioning

An affinity-based approach for selecting outliers is the SOS algorithm (Janssens
et al., 2012). This algorithm employs the concept of affinity to quantify the
relationship from one image point to another. Based on this relationship an
image point is denoted as outlier when all other points have insufficient
affinity with it.

By using the distance, dij defined in Eq.(7.9), between image points x(i)

and x(j), the affinity between these points can be defined as:

αij =

e−(d
2
ij/2σ2

i ) i f i 6= j

0 i f i = j
, (8.1)

where σ2
i is scalar variance associated with image point x(i). As shown by

Eq.(8.1) an image point has no affinity with itself and the affinity that the
point x(i) has with point x(j) is proportional to the probability density at x(j)

under a Gaussian distribution N (x(i), σ2
i ). For determining the variance σ2

i
for each image point, SOS uses an adaptive approach. Concretely, it employs
the perplexity parameter h, which is used to set adaptively the variances in
such a way that each point has h effective neighbors (Hinton and Roweis,
2002). At this point it has to be mentioned that h is the only parameter that
SOS algorithm requires to be pre-defined.

Unlike to distance matrixD, the affinity matrixA = [αij] is not symmetric.
By using the affinity distribution αi = [αi1 αi2 ... αiN ] for the point x(i), a



104 online indexing for unstructured image data

discrete probability distribution bi that shows the probability that point x(i)

chooses any one of the other points as its neighbors, is defined as

bi = [bi1 bi2 ... biN ] where bij =
αij

∑N
k=1 αik

. (8.2)

The probability distribution bi corresponds to the normalized affinity αi.
After the estimation of probability distribution bi the probability the im-

age point x(i) to be denoted as outlier can be estimated by the following
theorem (the proof can be found in (Janssens et al., 2012)).
Theorem 1. If αij is the affinity that data point x(i) has with data point x(j) and
bij is the normalized affinity between these two points, then the probability that data
point x(i) belongs to the outliers class, C̄, is given by:

p(x(i) ∈ C̄) = ∏
j 6=i

(1− bji). (8.3)

The above theorem states that the probability that an image point x(i)

belongs to the outliers class, Ĉ, is the probability that this point is never
chosen as a neighbor of the other image points.

For N images, the output of SOS algorithm can be compactly represented
by a vector ρ ∈ RN .

ρ = [p(x(1) ∈ C̄) ... p(x(N) ∈ C̄)]T . (8.4)

Using Eq.(8.4) the set Q that will contain the coordinates of the inlier images
can be defined as

Q = {x(i) | ρi < θ} for i = 1, 2, ...N. (8.5)

In Eq.(8.5) ρi stands for the ith element of ρ and θ is a probability threshold
to discriminate image outliers than inliers.

8.3.2 Indexing Structure Initialization

Let us define the set L = {x(i) | x(i) ∈ Q}, which contains visual similar
images’ coordinates onto the multi-dimensional space. The image points
x(i) ∈ L act as landmarks that determine if a new image Î must be denoted
as inlier or outlier. The elements of L define a space with a centroid, c, whose
coordinates are x(c). Regions of influence are defined around the centroid
and each one of the landmarks. The region of influence of centroid, Rc, is
defined as

Rc(x
(c), rc) = {x | (x− x(c))T(x− x(c)) ≤ rc}, (8.6)

where rc = max{‖x(c) − x(i)‖2 | x(i) ∈ L}. In a similar way is defined the
region of influence of a landmark x(i)

Ri(x
(i), ri) = {x | (x− x(i))T(x− x(i)) ≤ ri}. (8.7)

In this case ri is defined as

ri = min{‖x(i) − x(j)‖2 | x(i),x(j) ∈ L and i 6= j}. (8.8)

Regions of influence are used, as described in the next subsection, for clas-
sifying new retrieved images as inliers or outliers.
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8.3.3 Online Image Indexing

Let us assume that a new image, Î is retrieved. We define the set QI as:

QI = {I(i) | x(i) ∈ Q} (8.9)

The distances between Î and each one of the images I(i) ∈ QI are computed
by the method described in Section 2.

In order to index the new image Î, it has to be projected onto the multi-
dimensional geometric space defined by images belonging to QI . Let x̂( Î)

be the coordinates of image Î after its projection onto the multidimensional
space. The objective of assigning coordinates to image Î is to minimize the
distance distortion given by the following relation:

e(I(i), Î) = | d(I(i), Î)− ‖x̂( Î) − x(i)‖2 | (8.10)

d(I(i), Î) is the distance between images I(i) and Î computed by Eq.(7.9) and
‖ · ‖2 refers to the L2-norm of a vector. Eq.(8.10) measures distance distortion
by the absolute error.

The problem of assigning coordinates to image Î can be seen as a typical
optimization problem where the following objective function is minimized.

argmin
x̂( Î)

√√√√ L

∑
i=1

e(I(i), Î)2 (8.11)

For estimating the optimal coordinates x̂( Î) we used simplex downhill method.
The time for projecting a new image onto an µ-dimensional space is deter-
mined by the simplex downhill method. In general simplex downhill with
an objective function g takes O(mD× f (g)) time, where f (g) is the cost to
evaluate g, D is the number of dimensions and m the number of iterations.
In our case, we have D = µ and f (g) = L · µ, where L stands for the car-
dinality of QI . The second equation holds because we need to calculate the
distances between image Î and each one of the images I(i) ∈ QI in an µ-
dimensional space. In all, the time complexity for indexing a new image is
O(mLµ2).

Having defined the regions of influence for the centroid and each one
of the landmarks (Subsection 3.2), a new image, Î with coordinates x̂( Î), is
denoted as inlier only if x̂( Î) ∈ Rc or x̂( Î) ∈ Ri for some i = 1, 2, ..., |L|,
where |L| stands for the cardinality of set L.

If x̂( Î) ∈ Rc the L set remains as it is, while Q and QI sets are updated
according to the following relation:

Q := Q∪ x̂( Î) and QI := QI ∪ Î (8.12)

If x̂( Î) ∈ Ri for some i = 1, 2, ..., |L| and x̂( Î) 6∈ Rc the sets Q and QI are
updated according Eq.(8.12), but in this case the set L is also updated as:

L := L ∪ x̂( Î) −min{‖x(i) − x(c)‖2 | x(i) ∈ L} (8.13)

This adaptation takes place for taking into consideration new images visual
content, while at the same time keeping constant the number of landmarks.
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8.4 representative object geometric perspectives

After the creation of Q and QI , we need to select the most representative
images corresponding to different geometric perspectives of the cultural her-
itage object under 3D reconstruction. The representative images are fed as
input to a 3D reconstruction algorithm to improve computational time while
simultaneously keeping the same reconstruction accuracy.

8.4.1 Representatives Selection through Simplex Volume Expansion

We assume that the µ-dimensional volume formed by a simplex with ver-
tices specified by the points of the most representative images should be
larger than that formed by any other combination of image points. Let us
denote as ν(i) the ith representative image point, as β the number of repre-
sentative images required to generate, as QR = {ν(1),ν(2), ...,ν(β)} ⊆ Q the
set that contains the representative images’ points and asw(j) the row vector
that equals to ν(j) − ν(1) for j = 2, 3, ..., β. Then the volume, V(QR), of the
simplex whose vertices are the points ν(i) for i = 1, 2, ..., β can be computed
as:

V(QR) =
|det(WW T)|1/2

(β− 1)!
(8.14)

where W is an (β− 1)× µ matrix whose rows are the row vectors w(j).
For estimating the most representative images, initially the set QR is con-

structed by randomly selecting β images from set Q and calculate the vol-
ume of the simplex formed by the elements of QR. Then, an iterative ap-
proach is adopted to test every image in the set Q as a candidate represen-
tative. To be more specific, each one of the image points of QR is replaced,
one at a time, with an image point ν̂ from Q that is being tested as can-
didate representative. Then, the algorithm evaluates if replacing any of the
elements of QR with the image point being tested results in a larger simplex
volume. If this is true, let’s say for the point ν(j) ∈ QR, then the ν(j) point is
replaced by the image point ν̂ and the process is repeated again until each
image from Q set is evaluated.

For making the selection method scalable to large datasets, we follow an in-
cremental approach. Let us assume that β representatives are known. Then,
the problem of selecting β + 1 representatives can be reduced to finding
β + 1 representatives given β of them. This way, only the volumes of sim-
plices formed by the elements of the sets QR ∪ x(i) for x(i) ∈ Q need to be
evaluated.

8.5 experimental results

In the framework fo this research, we have collected from Internet image
repositories images depicting different cultural heritage monuments, such
as Porta Nigra in Germany, Parthenon in Athens and Descobrimentos in Lisboa.
All these images have been gathered with respect to their textual annotation
and geo-information regardless of the actual type of content they depict.
Thus, for each cultural heritage category, a large number of image outliers
are encountered.

The evaluation of the presented approach took place in regard to index-
ing, in terms of accuracy and time complexity, as well as to 3D reconstruc-
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(a) Right predictions (b) New image indexing

(c) Projection error (d) New image projection

Figure 8.3: Diagram (a) shows the ratio of right denotations of new images
as inliers or outliers in regard to the number of landmarks, while
diagram (b) presents the time required to classify a new image.
Diagram (c) shows the projection error when assigning coordi-
nates to new images in regard to the number of dimensions of
the space onto which the images are projected. The time required
to project a new image onto the multi-dimensional space is pre-
sented in (d).

tion accuracy after the selection of the most representative images. The al-
gorithm was developed in Python and executed on a conventional i5 CPU
laptop.

8.5.1 Indexing Evaluation

In order to evaluate indexing mechanism, we created an indexing structure
using a varying number of landmarks. Then, we manually selected one hun-
dred outlier images and one hundred inlier images. These images are fed to
the indexing mechanism in order to be classified. Two different versions of
the algorithm were tested; using a fixed indexing structure and an adaptive
indexing structure. In the first case, the indexing structure remains fixed,
while in the latter the adaptation mechanism is enabled and the set of land-
marks is updated in order to include new images visual information.

Diagram (a) of Fig.(8.3) presents the ratio of right denotations of new
images as inliers or outliers in regard to the number of landmarks, while
diagram (b) at the same figure shows the time required to classify a new
image. The version that uses the adaptive indexing structure is presented
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Figure 8.4: This figure presents reconstruction accuracy in regard to the
number of selected representatives.

to outperform the one that uses the fixed structure, due to the fact that it
exploits visual information of new images. However it requires more time to
classify a new image, as it needs extra time to adapt the indexing structure.

Diagrams (c) and (d) of Fig.(8.3) present the projection error when assign-
ing coordinates to new images and the time required to project a new image
in regard to the number of dimensions of the space onto which the images
are projected. The parameter n in x-axis refers to the number of dimensions
of the space. In this case parameter n was set to 100 at the same value was
set and the number of landmarks used by indexing structure. As shown in
diagram (c) the projection error is constantly decreasing as the number of
space dimensions is increasing. In diagram (d) the time required to project
a new image onto a multi-dimensional space is increasing as the number of
space’s dimensions is getting larger. This is aligned with the time complexity
analysis presented in subsection 8.3.3.

8.5.2 Representatives Selection Evaluation

For evaluating our representatives selection approach, we used expert’s as-
sessment in order to select from the set Q that contain the visual similar
images the n most appropriate for 3D reconstruction: i.e. images correspond
to different views of the under reconstruction object.

The set of visually similar images contained N elements, and we selected
n = N/5 of them as the most representatives, set Qr. Then, we asked from
our representatives selection algorithm to extract n/5, 2n/5, 3n/5, 4n/5
and n images from the set Q. The set of extracted images are denoted as Q̂i,
where i ∈ {n/5, 2n/5, 3n/5, 4n/5, n} In this framework reconstruction accu-
racy is defined as A = |Qr ∩ Q̂i|/|Qr|, where | · | represents the cardinality
of a set. By the definition of reconstruction accuracy is obvious that for the
cases of n/5, 2n/5, 3n/5, 4n/5 and n extracted images, the maximum re-
construction accuracy that can be obtained is 20%, 40%, 60%, 80% and 100%
respectively.

Furthermore, we compared our representative selection algorithm with
two well known algorithms; K-Means and spectral clustering using normal-
ized cut and min cut. We request from K-Means and spectral clustering
algorithms to partition the set Q into n/5, 2n/5, 3n/5, 4n/5 and n clusters.
Then, from each one of the clusters we selected as representative image, the
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(a) (b) (c)

(d) (e) (f)

Figure 8.5: (a) - (e) show reconstruction results for ”Porta Nigra” by selecting
n/5, 2n/5, 3n/5, 4n/5 and n images using our representatives
selection approach. (f) shows reconstruction when all images se-
lected by an expert were used.

image that belongs to Q and is closer to centroid than the rest images of the
same cluster.

Evaluation results are shown in Fig.(8.4). As the number of cluster is get-
ting larger, the performances of K-Means and spectral clustering is increas-
ing. This is justified by the fact that as the number of clusters is increasing,
each one of them contains fewer elements and thus the probability to select
the true representative is increasing. However, our approach outperforms
both algorithms in all cases. Fig.(8.5) shows reconstruction results for "Porta
Nigra" by selecting n/5, 2n/5, 3n/5, 4n/5 and n images using our represen-
tatives selection approach.

8.6 conclusions

We presented an image indexing approach with application to 3D recon-
struction, which is capable to index new images in a fast and accurate way.
Given a set of images, local descriptors are used to encode images’ visual
content, which, then, is used for estimating a similarity metric between im-
ages. This results in the construction of a similarity matrix. Using this sim-
ilarity matrix images are represented as points into a multi-dimensional
space. Exploiting images’ coordinates the indexing structure is initialized
by eliminating outliers and forming a set of visually similar images. Then,
based on the indexing structure, each new retrieved image can be denoted
online as inlier or outlier. Furthermore, an accurate algorithm is described
for selecting the most appropriate images for 3D reconstruction; i.e. images
that depict different views of the same object.





Part III

B E Y O N D T H E V I S U A L S P E C T R U M

In this part we focus on visual contne analysis using ther-
mal and hyperspectral data. We investigate how informa-
tion beyond the visual spectrum can be used as a basis for
objects detection and event understanding. This investiga-
tion takes place in two chapters; the first one presents an
algorithm for human detection and tracking, specifically
designed to be applied on thermal video streams, while
the second one presents a method for material recognition
using hyperspectral images.
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C O M P U T E R V I S I O N B E Y O N D T H E V I S U A L S P E C T R U M

9.1 thermal and hyperspectral data

High level computer vision applications, ranging from video surveillance
and monitoring to intelligent vehicles, utilize information that corresponds
to visible spectrum. However, under certain environmental conditions, this
type of sensing can be severely impaired, which emerges the necessity for
imaging beyond the visible spectrum.

Computer vision beyond the visual spectrum focuses on processing data
from many different types of sensors, including infrared, far infrared, mil-
limeter wave, microwave, radar and synthetic aperture radar sensors. It in-
volves the creation of new and innovative approaches to the field of signal
processing and artificial intelligence. It is a fertile area for growth in both
analysis and experimentation. The availability of ever improving computer
resources and continuing improvement in sensor performance has given
great impetus to this field of research. The dynamics of technology ”push”
and ”pull” in this field of endeavor have resulted from increasing demand
from potential users of this technology. Although there are many different
sensors capable of capturing information beyond the visual spectrum, in
this part we focus on thermal and hyperspectral data processing.

Pixel values of infrared images correspond to the relative differences in
the amount of thermal energy emitted or reflected from objects in the scene.
Due to this fact, infrared cameras are equally applicable for both day and
night scenarios, while at the same time, compared to visual-optical cameras,
are less affected by illumination changes. Furthermore, infrared imagery
eliminates any privacy issues as people being depicted in the scene can not
be identified (Gade et al., 2013). These features, along with the dramatically
reduced cost of thermal sensors in the past decades, make infrared cameras
prime candidate for persistent video surveillance systems.

Hyperspectral imaging, like other spectral imaging, collects and processes
information from across the electromagnetic spectrum. The goal of hyper-
spectral imaging is to obtain the spectrum for each pixel in the image of a
scene, with the purpose of finding objects, identifying materials, or detect-
ing processes based on their spectral signature.

In the following chapters we present the development of a background
subtraction algorithm for infrared video sequences, and a deep learning
based classification method for hyperspectral data.
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B A C K G R O U N D S U B T R A C T I O N I N I N F R A R E D I M A G E RY

10.1 motivation

Infrared imagery can alleviate several problems associated with visual-optical
videos, however, it has its own unique challenges. Although, less sensitive
to lighting conditions than visible spectrum imaging, thermal emission due
to the sun illumination as well as the thermal non-homogeneity of objects
in the scene add complexity to the visual content (Davis and Sharma, 2004;
Pham et al., 2007). Furthermore, the lack of color and texture information
hinders low level image processing and impacts on the quality of visual
content interpretation (Wang et al., 2010). Finally, low signal-to-noise ratio
(noisy data) complicates pixel responses modeling. An example of raw ther-
mal responses is presented in Fig.10.1. Oscillations of pixels’ responses wit-
ness the presence of noise. Due to these peculiarities most of conventional
computer vision techniques, that successfully used for data that correspond
to visible spectrum, can not be applied straightforward on infrared imagery.

For many high-level vision based applications, either they use visual-
optical videos (Cheung and Kamath, 2005; Porikli, 2006; Tuzel et al., 2007,
2008) or infrared data (Jungling and Arens, 2009; Latecki et al., 2005; Wang
et al., 2010), the task of background subtraction constitutes a key component,
as this is one of the most common methods for locating moving objects, facil-
itating, for example, search space reduction and visual attention modeling.
Under this scope, the purpose of this work, on the one hand, is to present
a novel and high accurate background subtraction algorithm for infrared
imagery.

10.2 related work

Background subtraction techniques applied on visual-optical videos model
the color properties of depicted objects (Brutzer et al., 2011; Herrero and
Bescos, 2009) and can be classified into three main categories (El Baf et al.,
2009): basic background modeling (McFarlane and Schofield, 1995; Zheng
et al., 2006), statistical background modeling (Elgammal et al., 2000; Wren
et al., 1997) and background estimation (Messelodi et al., 2005; Toyama et al.,
1999). The most used methods are the statistical ones due to their robust-
ness to critical situations. In order to statistically represent the background,
a probability distribution is used to model the history of pixel values in-
tensity over time. Towards this direction, the work of Stauffer and Grimson
(Stauffer and Grimson, 1999), is one of the best known approaches. It uses
a Gaussian Mixture Model (GMM), with fixed number of components, for
a per-pixel density estimate. Similar to this approach, Makantasis et al. in
(Makantasis et al., 2012) propose a Student-t mixture model for background
modeling, taking advantage of Student-t distribution compactness and ro-
bustness to noise and outliers. The works of (Zivkovic, 2004) and (Zivkovic
and van der Heijden, 2006) extend the method of (Stauffer and Grimson,
1999) by introducing a rule based on a user defined threshold to estimate
the number of components. However, this rule is application dependent and
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Figure 10.1: Thermal responses for three different points. In contrast to
visual-optical videos, where pixels take integer values, thermal
responses are floating point numbers, corresponding to objects’
temperature.

not directly derived from the data. All of the aforementioned techniques
present the drawback that objects’ color properties are highly affected by
scene illumination, making the same object to look completely different un-
der different lighting or weather conditions.

Although, thermal imagery can provide a challenging alternative for ad-
dressing the aforementioned difficulty, there exist few works for thermal
data. The authors of (Davis and Sharma, 2005, 2004, 2007) exploit contour
saliency to extract foreground objects. Initially, they utilize a unimodal back-
ground modeling technique to detect regions of interest and then exploit
the halo effect of thermal data for extracting foreground objects. However
unimodal background modeling is not usually capable of capturing back-
ground dynamics. Baf et al. in (El Baf et al., 2009) present a fuzzy statisti-
cal method for background subtraction to incorporate uncertainty into the
mixture of Gaussians. However, this method requires a predefined number
of components making this approach to be application dependent. Elgue-
baly and Bouguila in (Elguebaly and Bouguila, 2013) propose a finite asym-
metric generalized Gaussian mixture model for object detection. Again this
method requires a predefined maximum number of components, present-
ing therefore limitations when this technique is applied on uncontrolled en-
vironments. Dai et al. in (Dai et al., 2007) propose a method for pedestrian
detection and tracking using infrared imagery. This method consists of a
background subtraction technique that exploits a two-layer representation
(one for foreground and one for background) of infrared frame sequences.
However, the assumption made is that the foreground is restricted to mov-
ing objects, a consideration which is not sufficient for dynamically changing
environments.

One way to handle the aforementioned difficulties is to introduce a back-
ground model, the parameters and the structure of which are directly es-
timated from the data, while at the same time it takes into account the
special characteristics of infrared imagery. Furthermore, most of the afore-
mentioned approaches tackle the problem of background subtraction from
a theoretical point of view without taking into consideration the computa-
tional cost of the algorithm.
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10.2.1 Our Contribution

This work presents a background modeling method able to provide a per
pixel density estimate, taking into account the special characteristics of in-
frared imagery, such as low signal-to-noise ratio. Our method exploits a
Gaussian mixture model with unknown number of components. The advan-
tage of such a model is that its own parameters and structure can be directly
estimated from data, allowing dynamic model adaptation to uncontrolled
and changing environments.

An important issue using such a model concerns learning its parame-
ters. In our method, this is addressed using a Variational Inference (VI)
framework that associates the functional structure of the model with real
data distributions obtained from infrared images. Then, the Expectation-
Maximization (EM) algorithm is adopted to fit the outcome of VI to real
measurements. Updating procedures are incorporated to allow dynamic
model adaptation to the forthcoming infrared data. Our updating method
avoids of using heuristics by considering existing knowledge accumulated
from previous data distributions and then it compensates this knowledge
with current measurements.

Our overall strategy exploits a Bayesian framework to estimate all the
parameters of the model and thus avoiding over/under fitting issues. To
compensate computational challenges arising from the nature of the mixture
model (unknown number of components), we utilize conjugate priors and
thus we derive analytical equations for model estimation. In this way, we
avoid the need of any sampling method, which are computationally and
memory inefficient.

10.3 variational inference for gaussian mixture modeling

In this section we formulate the Bayesian framework adopted in this work
to analytically estimate all the parameters of the background model. For this
reason, in section 10.3.1 we briefly describe the basic theory behind Gaussian
mixture modeling, while in section 10.3.2 we describe the the variational
inference framework that assist us in yielding analytical model estimations
as in Section 10.4

10.3.1 Gaussian Mixture Model Fundamentals

The Gaussian mixture distribution can be seen as a linear superposition of
Gaussian functional components,

p(x|$,µ, τ ) =
K

∑
k=1

vkN (x|µk, τ−1
k ), (10.1)

where the parameters {vk}K
k=1 must satisfy 0 ≤ vk ≤ 1 for every k and

∑K
k=1 vk = 1 and K is the number of Gaussian components. By introducing

a K-dimensional latent variable z, such as ∑K
k=1 zk = 1 and p(zk = 1) = vk,

the distribution p(x) can be defined in terms of a marginal distribution p(z)
and a conditional distribution p(x|z) as follows

p(x|$,µ, τ ) = ∑
z

p(z|$)p(x|z,µ, τ ), (10.2)
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where p(z|$) and and p(x|z) are in the form of

p(z|$) =
K

∏
k=1

v
zk
k , (10.3)

p(x|z,µ, τ ) =
K

∏
k=1
N (x|µk, τ−1

k )zk , (10.4)

where µ = {µk}K
k=1 and τ = {τk}K

k=1, correspond to the mean values and
precisions of Gaussian components. By introducing latent variables and
transforming the Gaussian mixture distribution into the form of (10.2), fit-
ting of the model to the observed data can be achieved through the exploita-
tion of an iterative procedure, such as EM algorithm.

If we have in our disposal a set X = {x1, ..., xN} of observed data we
will also have a set Z = {z1, ...,zN} of latent variables. Each zn will be a K-
dimensional binary vector, such as ∑K

k=1 znk = 1, and, in order to take into
consideration the whole dataset of N samples, the distributions of (10.3) and
(10.4) will be transformed to

p(Z|$) =
N

∏
n=1

K

∏
k=1

v
znk
k , (10.5)

p(X |Z,µ, τ ) =
N

∏
n=1

K

∏
k=1
N (xn|µk, τ−1

k )znk . (10.6)

10.3.2 Distribution Approximation through Variational Inference

In the framework of VI the model parameters as well as the latent vari-
ables are grouped together and are treated as unobserved variables. VI tech-
niques aim to provide an exact analytical solution to an approximation of
the posterior probability of unobserved variables given the data (i.e. ob-
served variables) and are utilized when the exact estimation of the posterior
is intractable.

Let us denote as Y = {Z,$,µ, τ} the set which contains all model latent
variables and parameters and as q(Y ) its distribution. The distribution q(Y )
is restricted to belong to a family of distributions of simpler form than the
true posterior p(Y |X). The objective is to make q(Y ) similar to p(Y |X).
The lack of similarity can be measured by evaluating the quantity

KL(q||p) =
∫

q(Y ) ln
q(Y )

p(Y |X)
dY , (10.7)

which corresponds to Kullback-Leibler divergence. KL(q||p) is a non nega-
tive quantity, which equals to zero only if q(Y ) is equal to p(Y |X). Thus,
attain the aforementioned objective is equivalent to minimizing KL(q||p).

In the framework of the most common type of VI, known as mean-field
variational Bayes, the variational distribution is assumed to factorize over M
disjoint sets such as q(Y ) = ∏M

i=1 qi(Yi). Then, as shown in (Bishop, 2007),
the optimal solution q∗j (Yj) that corresponds to the minimization of KL(q||p)
is given by

ln q∗j (Yj) = Ei 6=j[ln p(X ,Y )] + C, (10.8)
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where Ei 6=j[ln p(X ,Y )] is the expectation of the logarithm of the joint dis-
tribution over all variables that do not belong to the jth partition and C is
a constant. Equation (10.8) indicates the presence of circular dependencies
between the variables that belong to different partitions. Thus, estimating
the optimal distribution over all variables suggests the exploitation of an
iterative process such as EM algorithm (see Section 10.5).

10.4 optimal distributions over model parameters

In this section, we present the analytical form for the optimal distributions
q∗j (Yj) for model parameters and latent variables, i.e. the optimal distribu-
tions q∗(Z), q∗($), q∗(τ ) and q∗(µ|τ ), as well as the factorized form of the
joint distribution over all random variables.

10.4.1 Factorized Form of the Joint Distribution

The joint distribution p(X ,Y ) depends on the distribution form of all model
parameters, latent variables and observed data. According to (10.5) and
(10.6) the joint distribution can be factorized as follows:

p(X ,Y ) = p(X |Z,µ, τ )p(Z|$)p($)p(µ, τ ). (10.9)

For estimating the form of the factorized distribution, we need to define the
form of the prior distribution over $ as well as the joint distribution over
µ and τ . To avoid computational problems in estimating the parameters
and the structure of our model, we introduce conjugate priors, over $, µ
and τ that allow us to yield analytical solutions and avoid the utilization of
computationally expensive sampling methods.

We start our analysis by estimating the form of the prior distribution
over $. The distribution p(Z|$), presented in (10.5), has the form of a
Multinomial distribution. Thus, its conjugate prior

p($) =
Γ(Kλ0)

Γ(λ0)K

K

∏
k=1

vλ0−1
k (10.10)

is a Dirichlet distribution over the mixing coefficients $. In (10.10), Γ(·)
stands for the Gamma function. Furthermore, parameter λ0 has a physi-
cal interpretation; the smaller the value of this parameter is, the larger is
the influence of the data rather than the prior on the posterior distribution
p(Z|$). In order to introduce uninformative priors and not prefer a spe-
cific component against the other, we choose to use a single parameter λ0
for the Dirichlet distribution, instead of a vector with different values for
each mixing coefficient.

Similarly, p(µ, τ ) is the prior of p(X |Z,µ, τ ) presented in (10.6). The
conjugate prior of (10.6) takes the form of a Gaussian-Gamma distribution,
since both µ and τ are unknown. Subsequently, the joint distribution of
parameters µ and τ can be modeled as

p(µ, τ ) = p(µ|τ )p(τ ) (10.11a)

=
K

∏
k=1
N (µk|m0, (β0τk)

−1)Gam(τk|a0, b0), (10.11b)

where Gam(·) denotes the Gamma distribution. In order to not express any
specific preference about the form of the Gaussian components through the
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Figure 10.2: Thermal responses for three different points. In contrast to
visual-optical videos, where pixels take integer values, thermal
responses are floating point numbers, corresponding to objects’
temperature.

introduction of priors, we use uninformative priors by setting the values of
hyperparameters m0, β0, a0 and b0 to appropriate values (see Section 10.5).

The graphical probabilistic model that represents (10.9) is presented in
Fig.10.2. Directed arrows represent conditional dependencies, the box de-
notes a set of N independent and identically distributed observations and
the shaded circle represents variables that have been set to their observed
values.

In the following, the parametric form of (10.9) along with (10.8) are uti-
lized to estimate the optimal variational distributions for model parameters
and latent variables 1.

10.4.2 Optimal q∗(Z) Distribution

Using (10.8) and the factorized form of (10.9) the distribution of the opti-
mized factor q∗(Z) is given by a Multinomial distribution of the form

q∗(Z) =
N

∏
n=1

K

∏
k=1

(
ρnk

∑K
j=1 ρnj

)znk

= (10.12a)

=
N

∏
n=1

K

∏
k=1

rznk
nk , (10.12b)

where ρnk we have denote the quantity

ρnk = exp
(

E
[

ln vk
]
+

1
2

E
[

ln τk
]
− 1

2
ln 2π−

− 1
2

Eµ,τ
[
(xn − µk)

2τk
])

.
(10.13)

Due to the fact that q∗(Z) is a Multinomial distribution we have that its
expected value E[znk] will be equal to rnk

10.4.3 Optimal q∗(v) Distribution

Using (10.9) and (10.8) the variational distribution of the optimized factor
q∗($) is given a Dirichlet distribution of the form

q∗($) =
Γ(∑K

i=1 λi)

∏K
j=1 Γ(λj)

K

∏
k=1

v
λk−1
k . (10.14)

1 The derivation of optimal variational distributions over all variables are given in
Appendix 10.9.
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Variable λk is equal to Nk + λ0, while Nk = ∑N
n=1 rnk represents the propor-

tion of data that belong to the k-th component.

10.4.4 Optimal q∗(µk|τk) distribution

Similarly, the variational distribution of the optimized factor q∗(µk, τk) is
given by a Gaussian distribution of the form

q∗(µk|τk) = N (µk|mk, (βkτ)−1), (10.15)

where the parameters mk and βk are given by

βk = β0 + Nk, (10.16a)

mk =
1
βk

(
β0m0 + Nk x̄k

)
. (10.16b)

Variable x̄k is equal to 1
Nk

∑N
n=1 rnkxn and represents the centroid of the data

that belong to the k-th component.

10.4.5 Optimal q∗(τk) distribution

After the estimation of q∗(µk|τk), the variational distribution of the opti-
mized factor q∗(τk) is given by a Gamma distribution of the following form

q∗(τk) = Gam(τk|ak, bk), (10.17)

while the parameters ak and bk are given by the following relations

ak = a0 +
Nk
2

, (10.18a)

bk = b0 +
1
2

(
Nkσk +

β0Nk
β0 + Nk

(
x̄k −m0

)2
)

, (10.18b)

where σk =
1

Nk
∑N

n=1(xn − x̄k)
2.

10.5 distribution parameters optimization

After the approximation of random variables distributions, we will use the
EM algorithm in order to find optimal values for model parameters, i.e.
minimize (10.7). In order to use the EM algorithm, we have to initialize
priors hyperparameters λ0, a0, b0, m0 and β0 and the model parameters vk,
µk, τk, βk, ak, bk and λk (see Section 10.4).

The parameter λ0 can be interpreted as the effective prior number of
observations associated with each component. In order to introduce an un-
informative prior for $, we set the parameter λ0 equal to N/K, suggesting
that the same number of observations is associated to each component. Pa-
rameters a0 and b0 (positive values due to Gamma distribution) were set to
the value of 10−3. Our choice is justified by the fact that the results of updat-
ing equations (10.18a) and (10.18b) are primarily affected by the data and
not by the prior when the values for a0 and b0 are close to zero. The mean
values of the components are described by conditional Normal distribution
with means m0 and precisions β0τk. We introduce an uninformative prior by
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setting the value for m0 to the mean of the observed data and the parameter
β0 = b0

a0v0
, where v0 is the variance of the observed data.

The convergence of EM algorithm is facilitated by initializing the param-
eters vk, µk, τk and βk using the k-means. To utilize k-means, the number
of clusters, corresponding to the Gaussian components, should be a priori
known. Since we create an infinite mixture model, the number of Gaussian
components should be less or equal to the number of observed data. For
this reason we set the number of clusters Kmax to a value smaller or equal to
the number of observations. If we have no clue about the number of classes
we can set Kmax to equal N. If we denote as N̂k the number of observation
that belong to k-th cluster, then we can set the value of parameter µk to
equal the centroid of k-th cluster, the parameter vk to equal the proportion
of observations for the k-th cluster, the parameter τk to equal v̂−1

k , where
vk stands for the variance of the data of the k-th cluster and the parameter
βk to equal N̂−1

k . Having initialized the parameters vk, µk, τk and βk, we
can exploit the formula for the expected value of a Gamma distribution to
initialize the parameters ak and bk to values τk and one respectively. Finally,
the initialization of vk allows us to initialize the parameter λk, which can
be interpreted as the effective number of observations associated with each
Gaussian component, to the value Nvk.

After the initialization of model parameters and priors hyperparameters,
the EM algorithm can be used to minimize KL(q||p) presented in (10.7).
During the E step, rnk is calculated given the initial/current values of all the
parameters of the model. Using (10.12b) rnk is given by

rnk ∝ ṽkτ̃k
1/2 exp

(
− ak

2bk

(
xn −mk

)2 − 1
2βk

)
. (10.19)

Due to the fact that q∗($) is a Dirichlet distribution and q∗(τk) is a Gamma
distribution, ṽk and τ̃k will be given by

ln ṽk ≡ E
[

ln vk
]
= Ψ(λk)−Ψ

( K

∑
k=1

λk

)
, (10.20a)

ln τ̃k ≡ E
[

ln τk
]
= Ψ(ak)− ln bk, (10.20b)

where Ψ(·) is the digamma function.
During the M step, we keep fixed the value for variables rnk (the value

that was calculated during the E step), and we re-calculate the values for
model parameters using (10.14), (10.16) and (10.18). The steps E and M are
repeated sequentially until the values for model parameters are not chang-
ing anymore. As shown in (Boyd and Vandenberghe, 2004) convergence of
EM algorithm is guaranteed because bound is convex with respect to each
of the factors q(Z), q($), q(µ|τ ) and q(τ ).

During model training the mixing coefficient for some of the components
takes value very close to zero. Components with mixing coefficient less than
1/N are removed (we require each component to model at least one ob-
served sample) and thus after training the model has automatically deter-
mined the right number of Gaussian components.

10.6 online updating mechanism and background subtraction

In the previous sections we described in detail the fitting procedure of the
proposed model to N observed data. In this section we present the mecha-
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nism that permits our model to automatically adapt to new observed data.
The proposed updating mechanism use no heuristic rules, but statistics
based exclusively on observations.

10.6.1 Updating Mechanism using Stored Observed Data

Let us denote as xnew a new observed sample. Then, there are two cases; ei-
ther the new observed sample is successfully modeled by our fitted model,
or not. To estimate if the new sample is successfully modeled, we find the
closest component to the new sample. As a distance metric between com-
ponents and the new sample, we used Mahalanobis distance, since this is a
reliable distance measure between a point and a distribution.

The closest component, let us denote it with c, to the new sample is the
one that presents the minimum Mahalanobis distance Dk

c = arg min
k

Dk = arg min
k

√
(xnew − µk)2τk, (10.21)

where µk and τk stand for the mean and precision of k-th component. Then,
the new sample belongs to c with probability

p(xnew|µc, τc) = N (xnew|µc, τ−1
c ), (10.22)

where µc and τc stand for the closest component mean value and precision
respectively.

Let us denote as Ω the initially observed dataset, i.e. the pixel responses
over a fixed time span. Then, we can assume that the probability to observe
the new sample xnew is given by

p(xnew|e) =
Ne

N
U (xnew|xnew − e, xnew + e), (10.23)

where Ne =
∣∣{xi ∈ Ω : xnew− e ≤ xi ≤ xnew + e}

∣∣ is the cardinality of the set
contains samples e-close to xnew and U (xnew|xnew − e, xnew + e) is a Uniform
distribution with lower and upper bounds to equal xnew − e and xnew + e
respectively.

Equation (10.23) suggests that the probability to observe xnew is related
to the proportion of data that have already been observed around xnew. By
increasing the neighborhood around xnew, i.e. increasing the value of e, the
quantity U (xnew|xnew − e, xnew + e) is decreasing, while the value of Ne is
increasing.

Upon arrival of a new sample xnew, we can estimate the range ε around
xnew that maximizes (10.23)

ε = arg max
e

p(xnew|e). (10.24)

Then, by comparing p(xnew|µc, τc) to p(xnew|ε) we can conclude if the
new sample can be modeled by our fitted model, or not. Concretely, if
p(xnew|µc, τc) ≥ p(xnew|ε) the new observed sample xnew can sufficiently
represented by our model, or in other words, the value of the new observed
sample is sufficiently close to an emerged Gaussian component. Otherwise,
a new Gaussian component must be created, since the value of xnew will be
no close to what the model has already known.
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For model updating, either the new sample is modeled or not by the
already fitted model, the binary variable o, called ownership and associated
with the Gaussian components, is needed to be defined

ok =

1, if k = c

0, otherwise
, (10.25)

where we recall that c represents the index of the closest component and k
is the index of k-th component.

When the new observed sample is successfully modeled, the parameters
for the Gaussian components are updated using the following the leader (Das-
gupta and Hsu, 2007) approach described as

vk ← vk +
1
N
(
ok −vk

)
, (10.26a)

µk ← µk + ok

(
xnew − µk
vk N + 1

)
, (10.26b)

σ2
k ← σ2

k + ok

(
vk N(xnew − µk)

2

(vk N + 1)2 −
σ2

k
vk N + 1

)
, (10.26c)

where σ2
k is the variance of k-th components and equals τ−1

k . After the
adaptation of existing components mixing coefficients $ are normalized to
sum to one.

When the new observed sample cannot be modeled by the existing com-
ponents, a new component is created with mixing coefficient vnew, mean
value µnew and standard deviation σnew, the parameters of which are given
as

vnew =
1
N

, (10.27a)

µnew = xnew, (10.27b)

σ2
new =

(2ε)2 − 1
12

. (10.27c)

Variable σ2
new is being updated using the formula for variance of the Uni-

form distribution. From (10.27), we see that the mixing coefficient for the
new component is equal to 1/N since it models only one sample (the new
observed one), its mean value equals the value of the new sample and its
variance the variance the Uniform distribution, whose the lower and upper
bounds are xnew − ε and xnew + ε respectively. When a new component is
created the values for the parameters for all the other components remain
unchanged except from the mixing coefficients {vk}K

k=1 which are normal-
ized to sum N−1

N . Then, the components whose mixing coefficient is less
than 1

N , they model less than one sample, are removed, and the mixing co-
efficients of the remaining components are re-normalized. This procedure
guarantees that after each adaptation of the system to new observed sam-
ples, either they modeled by the trained model or not, the sum of the mixing
coefficients of the components equals one.

10.6.2 Updating Mechanism without Keeping Observed Data

Based on the aforementioned formulation (10.23) of adaptation mechanism,
and on the already trained Gaussian mixture model, we can estimate p(xnew|ε)
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without the need of storing observations. This is a crucial step towards im-
plementing our proposed system on low-end hardware devices.

We recall that we have denoted as c the closest component, in terms of
Mahalaobis distance, to the new observed datum xnew. This component is
a Gaussian distribution with mean value µc, precision τc and mixing coeffi-
cient vc. Therefore, the quantity Ne can be approximated as

Ne ≈ Ñe = Nvc

∫ xnew+e

xnew−e
N (t|µc, τ−1

c )dt. (10.28)

Denoting as

Gc(x) =
∫ x

−∞
N (t|µc, τ−1

c )dt (10.29)

the cumulative distribution of the closest Gaussian component, Ñe is equal
to

Ñe = Nvc
(
Gc(xnew + e)− Gc(xnew − e)

)
(10.30)

and p(xnew|ε) is approximated as

p(xnew|e) ≈ p̃(xnew|e) =

=
Ñe

N
U (xnew|xnew − e, xnew + e).

(10.31)

p̃(xnew|ε) is a continuous and unimodal function with a global maximum.
Therefore, ε can be found by setting the first derivative of (10.31) equal to
zero:

ε =
∣∣

∂ p̃(xnew |e)
∂e =0

. (10.32)

After the estimation of ε, we can compute p̃(xnew|ε). Then, we are able
to update the mixture model by comparing p̃(xnew|ε) to p(xnew|µc, τc) and
following the same procedure that was described in the previous subsection.

10.6.3 Background Subtraction

Let us denote as bg and f g the classes of background and foreground pix-
els respectively. The density distribution of the fitted mixture model cor-
responds to the probability p(x|bg). However, our goal is to calculate the
probability p(bg|x), hence the Bayes rule is applied;

p(bg|x) = p(x|bg)p(bg)
p(x|bg) + p(x| f g)

. (10.33)

The probability p(bg) corresponds to the prior probability of background
class and can be considered as a parameter. The probability p(x| f g) is un-
known and hard to estimate, so the uniform distribution over the range of
pixels’ responses is used (Haines and Xiang, 2014). Using Bayes rule (10.33)
the output of the proposed background subtraction algorithm corresponds
to the probability a pixel to belong to the background class. The overview
of the proposed scheme is shown in Algorithm 1.
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Algorithm 1: Overview of Background Subtraction

1: capture N frames

2: create N-length history for each pixel

3: initialize parameters (see Section 10.5)

4: until convergence (training phase: Section 10.5)

5: compute rnk using (10.19)

6: recompute parameters using (10.14), (10.16) and (10.18)

7: for each new captured frame

8: classify each pixel as foreground or background (see subsection

10.6.3)

9: update background model (see subection 10.6.2)

10.7 experimental validation

In this section we evaluate and experimentally validate the proposed model.
We evaluate the capability of VI Mixture Model (VIMM) to fit the observed
data and compare it to conventional GMM and Dirichlet Process Mixture
Model (DPMM). Then, the performance of the proposed updating mech-
anism and is compared against the GMM updating process presented in
(Zivkovic, 2004). We demonstrate the efficiency of the background subtrac-
tion process using real-world datasets and, finally, we examine the hardware
cost.

10.7.1 VI Mixture Model Fitting Capabilities

During experimental validation, we evaluated our model in terms of fitting
accuracy and computational cost. We compared our algorithm to conven-
tional GMM with fixed number of components and with DPMM, which fits
the data using collapsed Gibbs sampling. We examined the performance
of conventional GMM under three different settings, that is, use of GMM
equipped with the right number of components, and GMMs with more and
less components than the underlying distribution.

For experimentation purposes we created three different datasets, each
one contains 200 samples. The first dataset contains samples from two dif-
ferent well separated Gaussian distributions, with mean values 15 and 35,
variance 1.5 and 2.0 and proportions 8/15 and 7/15 of data respectively. The
second dataset contains samples from three different well separated Gaus-
sian distributions, with mean values 15, 35 and 55, variance 1.5, 2.0 and
2.5 and proportions 4/15, 4/15 and 7/15 of data respectively. Finally, the
third dataset contains samples from three different Gaussian distributions,
but two of them are not well separated, with mean values 15, 21 and 40,
variance 1.5, 1.5 and 1.5 and proportions 7/15, 2/15 and 6/15 of data re-
spectively.Regarding data fitting, the results are shown in Figures 10.3, 10.4
and 10.5.

In all cases the initial value for the number of components for our method
was set to the value of 10, and let the fitting procedure to estimate the appro-
priate number of components that characterize the underlying distribution.
In order to compare our method to conventional GMMs with fixed number
of components we created one GMM with 10 components and one with 2.
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Figure 10.3: Fitting performance - two well separated Gaussian distribu-
tions.
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Figure 10.4: Fitting performance - three well separated Gaussian distribu-
tions.

Figure 10.3 presents the fitting performance for all four models on the
first dataset. Our method correctly estimates the number of components,
the same happens for the DPMM. However, the DPMM seems to under-fit
the data. The GMM with 10 components fits well the data that come from
the first distribution, but under-fits the data that come from the second. Fur-
thermore, the GMM with 10 components seems to estimate two Gaussian
distributions, but actually uses 10 components with 30 parameters; mean
value, standard deviation and proportion of data for each component. The
GMM with 2 components fits well the data. However, the number of com-
ponents was known a priori.

Figure 10.4 presents the fitting performance for all four models on the
second dataset. In this dataset the two conventional GMMs with fixed num-
ber of components under-fit the data. The same happens for the DPMM,
although ti estimates correctly the number of components. On the contrary
to the aforementioned models, our model correctly estimates the number of
components that describe the underlying distribution and neither underfits
nor overfits the data.

Figure 10.5 presents the fitting performance for all four models on the
third dataset. The GMM that uses 2 components under-fits the data,while
the GMM that uses 10 components highly over-fits the data. Our method
fails to discriminate overlapping distributions and results to 2 components.
Finally, the DPMM correctly estimates the number of components and fits
the data better than all other methods.

Finally, Table 10.1 presents time performance of the different models. It
has to be mentioned that all presented times were computed in Python and
not in hardware implementation. The conventional GMMs present the best
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Figure 10.5: Fitting performance - three non separated Gaussian distribu-
tions.

VIMM GMM-
10

GMM-2 DPMM

First dataset 0.154 0.052 0.008 23.94

Second dataset 0.156 0.034 0.011 21.35

Third dataset 0.124 0.067 0.031 30.19

Table 10.1: Time performance of the different models in seconds.

time performance due to their simplicity. Our method is 2 to 5 times slower
than conventional GMMs. However, it is much faster than the DPMM that
uses collapsed Gibbs sampling to fit the data. The DPMM model is more
than 135 times slower than our model.

10.7.2 Updating Mechanism Performance

In this section we evaluate the quality of the proposed updating mechanism
with and without the exploitation of observed data by comparing it against
the updating mechanism presented in (Zivkovic, 2004).

Fig. 10.6 presents the adaptation of our model to new observations (Fig.
10.6(a) and Fig. 10.6(b)) and the model presented in (Zivkovic, 2004) (Fig.
10.6(c)). To evaluate the quality of the adaptation of the models, we used a
toy dataset with 100 observations. Observed data were generated from two
Gaussian distributions with mean values 16 and 50 and standard deviations
1.5 and 2.0 respectively. The initially trained models are presented in the left
column. Then, we generated 25 new samples from a third Gaussian distri-
bution with mean value 21 and standard deviation 1.0. Our model, either
it uses the observed data or not, creates a new component and successfully
fits the data. On the contrary, the model of (Zivkovic, 2004) is not able to
capture the statistical relations of the new observations and fails to separate
the data generated from distributions with mean values 16 and 21 (middle
column). The quality of presented updating mechanism becomes more clear
in the right column, which presents the adaptation of the models after 50

new observations.
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(a) Proposed adaptation process using observed data.
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(b) Proposed adaptation process without using observed data.
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(c) Adaptation process presented in (Zivkovic, 2004).

Figure 10.6: Performance evaluation of model updating mechanisms.

10.7.3 Background Subtraction Algorithm Evaluation

For evaluating our algorithm, we used the Ohio State University (OSU) ther-
mal datasets and an dataset captured at Athens International Airport (AIA)
during a European funding project. OSU datasets contain frames that have
been captured using a thermal camera and have been converted to grayscale
images. In contrast, the AIA dataset contains raw thermal frames whose
pixel values correspond to the real temperature of objects.

OSU datasets (Davis and Sharma, 2005, 2004, 2007) are widely used for
benchmarking algorithms for pedestrian detection and tracking in infrared
imagery. Videos were captured under different illumination and weather
conditions. AIA dataset was captured using a Flir A315 camera at different
Airside Corridors and the Departure Level. Totally, 10 video sequences were
captured, with frame dimensions 320× 240 pixels of total duration 32051

frames, at 7.5fps, that is, about 1h and 12mins.
We compared our method with method presented by Zivkovic in (Zivkovic,

2004) (MOG), which is one of the most robust and widely used background
subtraction technique, and with the method for extracting the regions of
interest presented in (Davis and Sharma, 2004, 2007) (SBG) used for ther-
mal data. To conduct the comparison we utilized the objective metrics of
recall, precision and F1 score on a pixel wise manner. Figures 10.7 visually
present the performance of the three methods. As is observed, our method
outperforms both MOG and SBG on all datasets. While MOG and SBG per-
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Original              Our approach               MOG                         SBG

(a) OSU 1 dataset

Original              Our approach               MOG                         SBG

(b) OSU 2 dataset
Original              Our approach               MOG                         SBG

(c) AIA dataset

Figure 10.7: Visual results for all datasets.

form satisfactory on grayscale frames of OSU datasets, their performance
collapses when they applied on AIA dataset, which contains actual thermal
responses. Regarding OSU datasets, MOG algorithm while presents high
precision it yields very low recall values, i.e. the pixels that have been clas-
sified as foreground are indeed belong to the foreground class, but a lot of
pixels that in fact belong to background have been misclassified. SBG algo-
rithm seems to suffer by the opposite problem. Regarding AIA dataset, our
method significantly outperforms both methods. In particular, while MOG
and SBG algorithms present relative high precision, their recall values are
under 0.2. Figure 10.8(a) presents average precision, recall and F1 score per
dataset and per algorithm for all frames examined to give an objective evalu-
ation. In Figure 10.8(b) presents the best and worst case in terms of precision,
recall and F1 score among all frames examined.

Regarding computational cost, the main load of our algorithm is in the
implementation of EM optimization. In all experiments conducted, the EM
optimization converges within 10 iterations. Practically, the time required to
apply our method is similar to the time requirements of Zivkovic’s method
making it suitable for real-time applications.

10.8 conclusions

In this work a novel algorithm for background subtraction was presented
which is suitable for in-camera acceleration in thermal imagery. The pre-
sented scheme through an automated parameter estimation process, takes
into account the special characteristics of thermal data, and gives highly
accurate results without any fine-tuning from the user.
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   OSU 1 OSU 2 AIA 

Our approach 

Precision 
Worst 0.49 0.75 0.42 

Best 0.88 0.97 0.84 

Recall 
Worst 0.54 0.65 0.25 

Best 0.96 0.95 0.98 

F1 score 
Worst 0.60 0.74 0.31 

Best 0.88 0.94 0.87 

MOG 

Precision 
Worst 0.52 0.92 0.44 

Best 0.99 0.99 0.84 

Recall 
Worst 0.12 0.46 0.12 

Best 0.39 0.78 0.21 

F1 score 
Worst 0.20 0.62 0.19 

Best 0.56 0.87 0.33 

SBG 

Precision 
Worst 0.41 0.23 0.42 

Best 0.66 0.75 0.90 

Recall 
Worst 0.56 0.78 0.02 

Best 0.96 0.99 0.10 

F1 score 
Worst 0.53 0.36 0.05 

Best 0.78 0.59 0.16 

 

(b) Best/worst cases

Figure 10.8: Algorithms performance per dataset.

10.9 appendix :derivation of optimal variational distributions

Using (10.8) and (10.9) the logarithm of q∗(Z) is given by

ln q∗(Z) =E$ [ln p(Z|$)]+

+ Eµ,τ [ln p(X |Z,µ, τ )] + C
(10.34)

substituting (10.5) and (10.6) into (10.34) we get

ln q∗(Z) =
N

∑
n=1

K

∑
k=1
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(
E
[

ln vk
]
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1
2

E
[

ln τk
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2τk
])

+ C ⇒

Using (10.9) and (10.8) the logarithm of q∗($,µ, τ ) is

ln q∗($,µ, τ ) = EZ
[

ln p(X |Z,µ, τ )+

+ ln p(Z|$)+

+ ln p($) + ln p(µ, τ )
]
+ C = (10.36a)
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ln p(µk, τk) + C (10.36b)

Due to the fact that there is no term in (10.36b) that contains parameters
from both sets {$} and {µ, τ}, the distribution q∗($,µ, τ ) can be factor-
ized as q($,µ, τ ) = q($)∏K

k=1 q(µk, τk). The distribution for q∗($) is de-
rived using only those terms of (10.36b) that depend on the variable $.
Therefore the logarithm of q($) is given by

ln q∗($) = EZ
[

ln p(Z|$)
]
+ ln p($) + C = (10.37a)

=
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∑
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ln v
(∑N

n=1 rnk+λ0−1)
k + C = (10.37b)

=
K

∑
k=1

ln v
(Nk+λ0−1)
k + C (10.37c)
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We have made use of E[znk] = rnk, and we have denote as Nk = ∑N
n=1 rnk.

(10.37c) suggests that q∗($) is a Dirichlet distribution with hyperparame-
ters λ = {Nk + λ0}K

k=1.
Using only those terms of (10.36b) that depend on variables µ and τ , the

logarithm of q∗(µk, τk) is given by
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For the estimation of q∗(µk|τk), we use (10.38) and keep only those factors
that depend on µk.
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q∗(µk|τk) = N (µk|mk, (βkτ)−1) (10.39c)

where x̄k =
1

Nk
∑N

n=1 rnkxn, βk = β0 + Nk and mk =
1
βk
(β0m0 + Nk x̄k).

After the estimation of q∗(µk|τk), logarithm of the optimized the distribu-
tion q∗(τk) is given by

ln q∗(τk) = ln q∗(µk, τk)− ln q∗(µk|τk) = (10.40a)
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q∗(τk) = Gam(τk|ak, bk) (10.40c)
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The parameters ak and bk are given by
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2

(10.41a)
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D E E P L E A R N I N G B A S E D H Y P E R S P E C T R A L D ATA
C L A S S I F I C AT I O N

11.1 motivation

Recent advances in optics and photonics have allowed the development of
hyperspectral imaging sensors with higher spectral and spatial resolution
onboard various satellite, aerial, UAV and ground acquisition platforms.
The efficient exploitation of finer spatial and spectral information can ame-
liorate significantly material detection and object recognition applications
by revealing and modeling the subtle differences in spectral signatures of
various objects.

Recognizing various materials, objects and terrain land cover classes based
on their reflectance properties can be viewed as a classification task i.e., clas-
sify image pixels based on their spectral characteristics. Although, hyper-
spectral imaging have been used in a wide variety of applications, such as
agriculture, surveillance, astronomy and biomedical imaging (Chang, 2013),
it has its own unique challenges including; i) high dimensional data, ii) lim-
ited number of labeled samples and iii) large spatial variability of spectral
signatures (Camps-Valls and Bruzzone, 2005).

Most of the existing work towards the classification of hyperspectral data,
follow the conventional paradigm of pattern recognition, which consists of
two separate steps. Firstly, complex handcrafted features are computed from
the raw data. Then, the obtained features are used to learn classifiers, such
as Support Vector Machines (SVM) (Li and Du, 2015; Camps-Valls and Bruz-
zone, 2009), Gaussian Process models (Ying Yang et al., 2015), superpixel
graphical probabilistic models (Zhan et al., 2015) and Neural Networks (NN)
(Chen et al., 2014). In particular, for high dimensional data and when few
training samples are available statistical learning methods have been em-
ployed to tackle the high dimensionality and heterogeneity of hyperspectral
data (Camps-Valls et al., 2014).

However, due to the high diversity of depicted materials, it is rarely
known which features are important for the classification task. In contrast
to the conventional paradigm of pattern recognition, deep learning models
(LeCun et al., 1998; Hinton and Salakhutdinov, 2006b; Hinton et al., 2006;
Bengio et al., 2007) are a class of machines that can learn hierarchies of fea-
tures by building high level features from low level ones, thereby automat-
ing the process of feature construction. Furthermore, for bigger datasets and
quite large images with very high spatial and spectral resolution, deep learn-
ing frameworks seems to fit and address more effectively the classification
problem (Chen et al., 2014; Makantasis et al., 2015). Techniques based on
deep learning have already shown promising results both for the detection
of particular objects, like man-made ones (Mnih and Hinton, 2012) or vehi-
cles (Orr and Müller, 2003) and for the classification of hyperspectral data
(Chen et al., 2014; Makantasis et al., 2015).

More specifically, a deep learning framework was employed in (Chen
et al., 2014) for the classification of hyperspectral data with quite promising
results. In particular, Stacked Autoencoders (SAEs) have been used as build-
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ing blocks and the concept of greedy layer-wise pre-training is adopted to
construct a deep architecture that hierarchically builds high level spectral
features for each pixel. Spectral features were combined in a separate step
with spatially-dominated information and are fed as input to a logistic re-
gression classifier.

11.2 our contribution

We propose a deep learning framework for the classification of hyperspec-
tral data into multiple classes. In particular, we propose the exploitation of a
modified Convolutional Neural Network (CNN)(LeCun et al., 1998), which
conducts the task of high level features construction and a Multi-Layer Per-
ceptron (MLP), which is responsible for the classification task. We call the
proposed deep learning model as DL-CNN.

In contrast to (Chen et al., 2014), where two separate are adopted as ex-
plained above, our approach is based on a unified framework combining
spectral and spatial information in a single step to reduce the computational
cost. Furthermore, our model requires no pre-training for hierarchically con-
structing high level features. The drawback of pre-training, as adopted in
SAEs (this is also the case of (Chen et al., 2014)), is that the model can learn
the identity function and thus to potentially propagate the same features
from layer to layer resulting in a failure of hierarchical feature construction
process. On the contrary, CNNs construct such features during the train-
ing phase when their parameters are being fine-tuned. By overpassing the
requirement for pre-training, CNNs overcome this drawback.

To summarize, by exploiting CNNs and MLPs, the developed system (DL-
CNN) i) hierarchically constructs high level spectral-spatial features at once,
in a single step, ii) avoids the propagation of features from layer to layer and
iii) achieves low cost predictions due to the feed forward nature of CNNs
and MLPs.

11.3 the deep learning paradigm cnns

11.3.1 Deep Learning

Artificial Neural Networks (ANN) are rooted in a classical theorem by Kol-
mogorov (Kolmogorov, 1963), which states that every continuous function f
on [0, 1]d can be written as summands of continuous functionals whose form
depends on f . ANNs utilize bounded, continuous and increasing function-
als and allow the number of tunable parameters to be high enough such
that any continuous function is approximated.

Despite its theoretical importance, this theorem is very hard to be ap-
plied on real world problems. The approximation accuracy of an unknown
function; i.e., performance on training set, is proportional to the number of
tunable parameters. However, the more relevant measure is the performance
of the system on a set of unseen examples, which is called the test set; i.e.,
generalization ability of the learning machine. Unfortunately, the general-
ization ability of ANNs to unseen examples is inversely proportional to the
number of network’s tunable parameters (Vapnik, 1995, 1998).

Due to this fact, people could not harness powerful ANNs with multiple
hidden layers, i.e., deep networks, until, the publication of the seminal paper
by Yann LeCun et al. (LeCun et al., 1998), which introduces the idea of
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tied weights in order to implement a deep network and keep the number of
tunable parameters low, and the introduction by Hinton and Salakhutdinov
of layer-wise network initialization via the unsupervised pre-training concept
(Hinton and Salakhutdinov, 2006b).

Till then, deep learning models have been widely used in a variety of ap-
plications and seem to outperform conventional swallow machines (Sutskever
and Hinton, 2008; Le Roux and Bengio, 2010). Typical deep learning archi-
tectures include Deep Belief Networks (Hinton et al., 2006), Convolutional
Neural Networks (CNN) (Krizhevsky et al., 2012; Simard et al., 2003), Deep
and Restricted Boltzmann Machines (Salakhutdinov et al., 2007; Salakhutdi-
nov and Hinton, 2009b) and networks based on Stacked Autoencoders (SAE)
(Vincent et al., 2008, 2010; Shin et al., 2013). All these architectures, by prop-
agating input information from one layer to another are able to hierarchically
construct high level features in a fully automated way.

11.3.2 Convolutional Neural Networks

CNNs consist a type of deep learning machine that relies as much as pos-
sible on learning in the feature constructor itself. In other words, CNNs
hierarchically construct high level features, in a automated way, that are
appropriate for a specific classification task.

The architecture of CNNs employs three concrete ideas; a) local receptive
fields, b) tied weights and c) spatial sub-sampling. Based on local receptive field,
each unit in a convolutional layer receives inputs from a set of neighboring
units belonging to the previous layer. This way neurons are capable of ex-
tracting elementary visual features such as edges or corners. These features
are then combined by the subsequent convolutional layers in order to detect
higher order features.

Furthermore, the idea that elementary feature detectors, which are use-
ful on a part of an image, are likely to be useful across the entire image, is
implemented by the concept of tied weights. The concept of tied weights
constraints a set of units to have identical weights. Concretely, the units of
a convolutional layer are organized in planes. All units of a plane share
the same set of weights. Thus, each plane is responsible for constructing a
specific feature. The output of planes are called feature maps. Each convolu-
tional layer consists of several planes, so that multiple feature maps can be
constructed at each location.

During the construction of a feature map, the entire image is scanned by
a unit whose states are stored at corresponding locations in the feature map.
This construction is equivalent to a convolution operation, followed by an
additive bias term and sigmoid function

y(d) = σ(Wy(d−1) + b), (11.1)

where d stands for the depth of the convolutional layer, W is the weight
matrix, b is the bias term. For fully connected neural networks, the weight
matrix is full, i.e. connects every input to every unit with different weights.
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For CNNs, the weight matrix W is very sparse due to the concept of tied
weights. Thus, W has the form of

W =


w 0 · · · 0

0 w · · · 0
...

...
. . .

...

0 · · · 0 w

 , (11.2)

where w are matrices having the same dimensions with the units’ receptive
fields. Employing a sparse weight matrix reduces the number of network’s
tunable parameters and thus increases its generalization ability. Multiplying
W with layer inputs is like convolving the input with w, which can be seen
as a trainable filter. If the input to d− 1 convolutional layer is of dimension
N × N and the receptive field of units at a specific plane of convolutional
layer d is of dimension m × m then the constructed feature map will be a
matrix of dimensions (N − m + 1)× (N − m + 1). Specifically, the element
of feature map at (i, j) location will be

y
(d)
ij = σ(x

(d)
ij + b) (11.3)

with

x
(d)
ij =

m−1

∑
a=0

m−1

∑
b=0

waby
(d−1)
(i+a)(j+b) , (11.4)

where the bias term b is scalar. Using equations (11.4) and (11.3) sequentially
for all (i, j) positions of input, the feature map for the corresponding plane
is constructed.

11.4 cnns for hyperspectral data classification

We consider the exploitation of a deep learning architecture for the classifica-
tion of hyperspectral data, i.e. the classification of each pixel to a predefined
number of classes based on their spectral and spatial properties. The spec-
tral characteristics are associated with the reflectance properties at every
pixel for every spectral band, while spatial information is derived by taking
into consideration its neighbors.

Towards this direction, high-level features that encode pixels’ spectral and
spatial information, are hierarchically constructed using a CNN. Although,
it has been shown that CNNs can achieve superior performance on visual
recognition tasks without relying on handcrafted features, they are suitable
for pixel-based classification tasks due to the fact that they produce global
image features.

A hyperspectral image is represented as a 3D tensor of dimensions h×
w× c, where h and w correspond to the height and width of the image and
c to its channels (spectral bands). In order to be aligned with the specific
nature of CNNs (global image feature construction), we have to decompose
the captured hyperspectral image into patches, each one of which contains
spectral and spatial information for a specific pixel.

More specifically, in order to classify a pixel pij at location (i, j) on image
plane and successfully fuse spectral and spatial information, we use a square
patch of size s× s centered at pixel pij . Let us denote as lij the class label of
the pixel at location (i, j) and as wij the patch centered at pixel pij. Then, we
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can form a dataset D = {wij, lij} for i = 1, 2, · · · , w and j = 1, 2, · · · , h. Patch
wij is also a 3D tensor with dimension s× s× c, which contains spectral and
spatial information for the pixel located at (i, j).

Moreover, tensor wij is divided into c matrices of dimensions s× s which
are fed as input into a CNN to hierarchically build high-level features that
encode spectral and spatial characteristics of pixel pij. Then, these features
are fed to a Multi Layer Perceptron (MLP), which is responsible for the clas-
sification task. At this point, it has to be mentioned that after the comple-
tion of the training phase our deep learning model is capable of classifying
patches and not pixels. We assume that the label of the patch centered at
location (i, j) on image plane must be the same with the pixel at the same
location. Although, it is a strong assumption, for this specific problem at
hand, it is valid for the vast majority of the pixels due to the fact that neigh-
boring pixels is very probable to belong to the same class.

In the following, we describe the architecture of the proposed system.
Firstly, the proposed approach for the dimensionality reduction of the raw
input data is presented and then the structures of the CNN and the MLP
are given.

11.4.1 Reducing the Dimension of Raw Input Data

In contrast to RGB images that consist of three color channels, the hundreds
of channels (network inputs) along the spectral dimension of a hyperspec-
tral image may increase the computational cost of training and prediction
phases to non acceptable levels. However, the spectral signature of a mate-
rial is very specific. Through a simple statistical analysis of pixels’ spectral
responses we observed two different things. Firstly, the variance of spectral
responses of pixels that depict the same material is very small, and secondly,
pixels that depict different materials, either they respond to different spec-
tral bands or when they respond to the same spectral bands the values of
their responses is very divergent. These observations suggest that redun-
dant information is present along the spectral dimension of a hyperspectral
image. Therefore, a dimensionality reduction technique can be employed to
reduce the dimensionality of the raw input data in order to speed up the
training and prediction processes.

For dimensionality reduction, Randomized Principal Component Analy-
sis (R-PCA) (Halko et al., 2009) is introduced along the spectral dimension
to condense the whole image. Principal Component Analysis (PCA) projects
data to a lower dimensional space that preserves most of the variance by
dropping components associated with lower eigenvalues. R-PCA limits the
computation to an approximate estimate of principal components to per-
form data transformation. Thus, it is much more computationally efficient
than PCA and suitable for large scale datasets, like hyperspectral images.
Due to the approximate estimation of principal components, R-PCA is less
accurate than PCA, however, the authors of (Halko et al., 2009) prove strong
bounds on the quality of this approximation suggesting no significant dete-
rioration of the quality.

It should be noted that the aforementioned step does cast away spectral
information, but since R-PCA is applied along the spectral dimension, the
spatial information remains intact. The number of principal components
that are retained after the application of R-PCA, is appropriately set, in or-
der to keep at least 99.9% of initial information. This is very important, since
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Figure 11.1: Overall system architecture.

dimensionality reduction is conducted by taking into consideration the max-
imum allowed information loss and not a fixed number of principal com-
ponents. During the experimentation process on widely used hyperspectral
datasets, due to the correlations of pixels’ spectral responses, 99.9% of initial
information is preserved by using the first 10 to 95 principal components,
reducing this way up to 20 times the dimensionality of the raw input.

11.4.2 Parameter Selection for the DL-CNN

After dimensionality reduction, each patch is a tensor of dimensions s ×
s × cr. Parameter cr corresponds to the number of principal components
that preserve at least 99.9% of initial information, while the parameter s
determines the number of neighbors of each pixel that will be taken into
consideration during the classification task.

During experimentation process we set the parameter s to be equal to 5,
in order to take into consideration the closest 24 neighbors of each pixel.
By increasing the value of s, the number of neighbors that are taken into
consideration is increased and thus the computational cost of classification
is increased, also. However, setting the parameter s to a value larger than
5, no further improvement on classification accuracy was reported in all ex-
periments. On the contrary, increasing the value of s over 13, deteriorates
classification accuracy. This is justified by the fact that our previous assump-
tion, which states that the label of the patch centered at location (i, j) on
image plane must be the same with the label of the pixel at the same loca-
tion, is not valid for large s.

Having estimate the values of the parameters s and cr , we can proceed
with the CNN structure design. The first layer of the proposed CNN is a
convolutional layer with C1 = 3 × cr trainable filters of dimension 3 × 3.
This layer delivers C1 matrices (feature maps) of dimensions 3× 3 (during
convolution we don’t take into consideration the border of the patch). In
contrast to conventional CNNs, we do not use a sub-sampling layer after
the convolution layer, since we don’t take into account any translation and
scale invariance. The first convolutional layer employs (cr × C1 × 3× 3) +
(C1 × 3× 3) connections and (C1 × 3× 3) + C1 weights.

The first convolutional layer is followed by a second convolutional layer
with C2 = 3× C1 trainable filters. Again, the filters are 3× 3 matrices. The
second convolutional layer delivers a vector with C2 elements, which is fed
as input to the MLP classifier. The second convolutional layer employs (C1×
C2 × 3× 3) + C2 connections and (C2 × 3× 3) + C2 weights.

The number of MLP hidden units is smaller than the dimensionality of its
input. In particular, we set the number of hidden units Ch to equal 6× cr. The
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MLP employs (C2 × 6× cr) + (6× cr) connections and weights between the
input and the hidden layer. Finally, if we denote as Cl the number of classes
(number of output units), the MLP employs (6× cr × Cl) + Cl connections
and weights between the hidden layer and the output layer. The overall
system architecture is presented in Fig.11.1.

11.4.3 Fine-tuning and Classification

For training the deep learning architecture the standard back propagation
algorithm (Rumelhart et al., 1985) was employed, in order to learn the opti-
mal model parameters, i.e., minimize the negative log-likelihood of the data
sets under the model parameterized by MLP weights and filters elements.

Although back propagation is a well known algorithm, for the sake of
completeness, we briefly describe its application on the proposed learning
model. Our description regards the error propagation from one convolu-
tional layer to a previous one. We do not describe the error propagation for
the MLP part of our learning model, because the application of back propa-
gation on feed forward fully connected networks is a well studied problem
(Chauvin and Rumelhart, 1995; Phansalkar and Sastry, 1994; Van Ooyen and
Nienhuis, 1992).

Let’s denote as L the error at the last convolutional layer, whose depth is d.
What we want to estimate is the error at the previous layer and the gradient
for each weight. The gradient of weight wab located at position (a, b) on local
receptive field is

∂L
∂wab

=
m−1

∑
i=0

m−1

∑
j=0

∂L

∂x(d)ij

∂x(d)ij

∂wab
=

=
m−1

∑
i=0

m−1

∑
j=0

∂L

∂x(d)ij

y(d−1)
(i+a)(j+b),

(11.5)

we recall that m×m is the size of the local receptive field. In order to com-
pute the gradient of weight wab we need to estimate the gradient ∂L/∂x(d)ij .
This gradient is equal to

∂L

∂x(d)ij

=
∂L

∂y(d)ij

∂y(d)ij

∂x(d)ij

=

=
∂L

∂y(d)ij

∂
(
σ(x(d)ij )

)
∂x(d)ij

=
∂L

∂y(d)ij

σ′(x(d)ij ) .

(11.6)

Due to the fact that ∂L/∂y(d)ij is already known by applying error propa-
gation on the feed forward fully connected part of the proposed learning
model the gradient ∂L/∂x(d)ij can be easily computed using (11.6).
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In order to propagate the error at the previous convolutional layer, whose
depth is d− 1, we need to estimate the gradient ∂L/∂y(d−1)

ij . This gradient
can be computed as

∂L

∂y(d−1)
ij

=
m−1

∑
i=0

m−1

∑
j=0

∂L

∂x(d)
(i−a)(j−b)

∂x(d)
(i−a)(j−b)

∂y(d−1)
ij

=

=
m−1

∑
i=0

m−1

∑
j=0

∂L

∂x(d)
(i−a)(j−b)

wab .

(11.7)

Using recursively the equations (11.5), (11.6) and (11.7) the error can be
propagated to all convolutional layers and the gradients for all network’s
weights can be computed. For learning the most appropriate network’s
weights for the given classification task, a gradient based optimization ap-
proach is followed exploiting Stochastic Gradient Descent (SGD) (Bottou,
2010; Zinkevich et al., 2010).

After the completion of training phase, the classification takes place by
using a soft-max activation function for the output layer of the MLP. The
output of the soft-max function can be interpreted as the conditional prob-
abilities of an example to belong to a specific class given the input and
network parameters. Mathematically the soft-max function is defined as

P(l = i|yD−1,W out) =
eW

out
i yD−1

∑Cl
j=1 eW

out
j yD−1 , (11.8)

where D denotes the maximum depth of the network. The bias term has
been concatenated with output layer’s weights into a single unified matrix
W out. The soft-max function ensures that 0 ≤ P(l = i|yD−1,W out) ≤ 1 and
∑i P(l = i|yD−1,W out) = 1 for i = 1, 2, ..., Cl .

A flowchart which describes the main algorithmic steps of the developed
deep learning classifier (DL-CNN) is given in CL-CNN Algorithm.

11.5 experimental results and validation

11.5.1 Dataset Description and Experimental Setting

The proposed deep learning classifier was evaluated using six widely used
and public available hyperspectral datasets acquired from the AVIRIS and
ROSIS sensors. In particular, we employed the

• Indian Pines dataset, which depicts a test site in North-western Indiana
and consists of 145× 145 pixels and 224 spectral reflectance bands in
the wavelength range 0.4 to 2.5 × 10−6 meters. This dataset depicts
materials that belong to 16 different classes.

• Salinas Valley, California, 224-band hyperspectral image, which con-
sists of 512× 217 pixels that belong to 16 different classes.

• Pavia Centre and Pavia University datasets, whose number of spectral
bands are 103 and 102 respectively. Pavia dataset consists of 1096×
1096 pixels, while Pavia University dataset consists of 610× 610 pixels.
Both datasets depict pixels that belong to 9 different classes.
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DL-CNN Algorithm: Deep Learning-based hyperspectral

data classification with CNN

1: load hyperspectral data

2: reduce dimension using R-PCA (Section 11.4.1))

3: split hyperspectral data into overlapping windows

form dataset for training (Section 11.4)

4: initialize network architecture (Section 11.4.2)

number of feature maps at each convolutional layer

size of receptive fields for each feature map

number of units of MLP hidden layer

number of classes

learning rate

number of mini batches

number of training epochs

5: initialize network parameters

6: start training phase

while current epoch ≤ number of epochs

while current mini batch ≤ number of mini batches

if stopping criteria are satisfied

stop training

else

use back propagation to compute network’s

weights and biases gradients

use SGD to update biases and weights

• Kennedy Space Center (KSC) dataset, which consists of 224 spectral
bands. After removing water absorption and low SNR bands, 176

bands were used for analysis. KSC dataset consists of 512× 614 pixels
and depicted materials belong to 13 different classes.

• Botswana dataset, which consists of 242 spectral bands. After the re-
moval of the uncalibrated and noisy bands (UT Center for Space
Research) 145 bands were used, while the size of each image was
256× 1476 pixels and the ground truth indicated 14 different classes.

Experiments were organized into two parts. The first part aims at ana-
lyzing the effectiveness of the developed (DL-CNN) deep learning architec-
ture. The performance of the proposed model was compared against deep
learning architectures based on the exploitation of Stacked Autoencoders
(DL-SAE), like the one presented in (Chen et al., 2014), and against SVM-
based methods that utilize linear and RBF kernels. In order to compare
and quantify the performance of the developed model, several comparisons
were conducted in terms of classification accuracy and time requirements.
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The second part aims at evaluating the performance of the developed sys-
tem against state-of-the-art hyperspectral data classification techniques that
employ swallow architectures.

For evaluating the classification performance of the proposed system, we
split each one of the datasets into three parts; i.e. training, validation and
testing sets. The assessment of the classification performance was based on
the calculated overall accuracy, which corresponds to the number of misclas-
sified examples. Furthermore, we investigate the generalization capabilities
of the developed system to unseen examples and varying size datasets. For
this reason, we used different splitting ratios for creating training, validation
and testing sets. Specifically, we used five different splitting ratios, letting
the training set to vary from 5% to 80% of the size of the entire dataset. Fi-
nally, training, validation and testing sets were created by randomly selecting
the appropriate number of examples from the whole dataset.

Last but not least, during the second part of the experiments we compared
our method (DL-CNN) against state-of-the-art techniques based on Gaus-
sian Process Models (Ying Yang et al., 2015), Multilayer Superpixel Graph
and Loopy Belief Propagation (Zhan et al., 2015) and Adaptive Sparse Rep-
resentation (Li and Du, 2015).

11.5.2 Assessing the performance of the developed DL-CNN

During the first step of the developed method the application of R-PCA on
raw hypercubes is performed in order to condense the raw data along the
spectral dimension (Section 11.4.1). These principal components retain the
99.9% of the initial information. Their number along with the number of
classes of each dataset, determine the architecture of the DL-CNN classifier
(Section 11.4.2). Table 11.1 presents the number of the calculated principal
components cr for each dataset along with the number of feature maps (C1
and C2) of each convolutional layer and the numbers of units (Ch and Cl) of
the hidden and output layers of the MLP.

We compared our model against another deep learning classifier, which
is based on the exploitation of Stacked Autoencoders DL-SAE (Chen et al.,
2014). To develop an architecture based on Autoencoders we followed the
approach presented in (Chen et al., 2014). According to this approach the
spectral information of each pixels remains intact and corresponds to raw
pixels’ spectral signatures, while pixels’ spatial information is derived by

cr C1 C2 Ch Cl

Pavia Univesrity 10 30 90 60 9

Pavia Centre 15 45 135 90 9

KSC 95 285 855 570 13

Botswana 45 135 405 270 14

Indian Pines 70 210 630 420 16

Salinas 10 30 90 60 16

Table 11.1: Number of principal components and learning architecture pa-
rameters
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extracting the first several principle components of their neighbors (the au-
thors of (Chen et al., 2014) suggest to use the closest 24 neighbors of each
pixel). For classification purposes each pixel is described by a feature vector,
which is created by concatenating pixel’s spectral signature and spatial in-
formation, which has been flattened to one dimension. In order to conduct
a fair comparison, the number of principal components that were used to
encode spatial information is set to be the same as the number of compo-
nents that were used by the developed method (DL-CNN). For all datasets
we used four auto-encoders i.e. four hidden layers, while the number of
units at each hidden layer was sequentially decreasing, in order to hierar-
chically construct high level features and at the same time to avoid learning
the identity function during pre-training.

Furthermore, the developed method was compared against SVM-based
approaches that use Radial Basis Function (RBF) and linear kernels. In or-
der to conduct a fair comparison the employed SVM classifier should have
been able to exploit pixels’ spectral and spatial information during the train-
ing phase. For this reason each pixel was represented by its own spectral
responses as well as the responses of its 24 closest neighbors. To this end,
a pixel at location (i, j) on image plane was represented by the spectral
responses of a patch centered at the same location. Although this represen-
tation is a 3D tensor, it was flattened to form a 1D vector, in order to be
utilized for training the SVMs.

Table 11.5 summarizes the performance of all classifiers for all datasets.
Both classifiers (DL-CNN and DL-SAE) that follow the deep learning paradigm
outperform conventional SVM-based classifiers almost for all datasets and
all splitting ratios. This emphasize the importance of hierarchical high level
feature construction through deep learning architectures.

The developed DL-CNN classifier presented the higher classification ac-
curacy rates in all datasets and splitting ratios against the DL-SAE and the
SVM-based ones. In particular, for the Pavia University, KSC, Botswana and
Indian Pines datasets with small ratios (e.g., 5%) the developed DL-CNN
method managed to increase the overall accuracy rates by more than 7%
surpassing by a significant margin the recently proposed DL-SAE algorithm
(Chen et al., 2014). When the size of the training set is small, due to the em-
ployed concept of tied weights that limits the total number of network’s
tunable parameters, our model presents much higher classification accu-
racy. This fact highlight the robust generalization abilities of the developed
method to unseen examples, even for small datasets and training samples.

In Fig. 11.2, we examine the classification accuracy from a visual per-
spective. Pixels, corresponding to annotated and not-annotated regions, for
each one of the datasets where classified using the developed DL-CNN deep
learning approach. The resulted classification maps for 5% (left) and 80%
(middle) splitting ratios along with the ground truth (right) are shown for
all datasets. After a close look, one can observe that by fusing spectral and
spatial information the classification process results to the detection of com-
pact areas, eliminating noisy scatter points. Moreover, in most cases (apart
from the Indian Pines and KSC) datasets even with a small number of train-
ing samples (e.g., 5%) the DL-CNN algorithm managed to approximate the
classification map of the one resulting with an 80% splitting ratio. This ob-
servation is also verified by the quantitative evaluation (Table 11.5) which
indicates that for these particular cases the increase in the OA rates is less
than 7% for splitting ratios from 5% to 80%.
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Botswana Indian Pines

Salinas KSC

Pavia Uni. Pavia Cen.

Figure 11.2: Visualization of classification accuracy for al datasets and split-
ting ratios 5% and 80%. The right image for each dataset rep-
resents its ground truth, the middle 80% splitting ratio and left
5% splitting ratio.

Finally, in Fig.11.3 the misclassification error is presented in regard to the
number of training epochs for the Pavia Centre and Indian Pines datasets.
During the training process we used Stochastic Gradient Descent (SGD)
with 500 mini batches. These two diagrams suggest that the training pro-
cess for the proposed system converges in almost 20 epochs. Therefore,
early stopping criteria can be consider during the training procedure, in
order to reduce computational cost, without deteriorating classification per-
formance.

11.5.3 Comparison against Gaussian Process Models (Ying Yang et al.,
2015)

Recently in (Ying Yang et al., 2015) Gaussian Process Models were intro-
duced employing different kernel function to tackle hyperspectral data clas-
sification. More specifically, linear, polynomial, RBF, ARD, rational quadratic
and NN kernels were employed. For the validation authors utilized Indian
Pines, Pavia Centre and Pavia University datasets using 200 examples of each
class to form the training set, while in the case that the amount of points of
any class was less than 200, 50% of its points were selected as training data.
In order to conduct a fair comparison we formed the training set in the same
way and we compared our model, in terms of overall accuracy. The results
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Figure 11.3: Misclassification error on test set in regard to the number of
training epochs for Pavia Centre and Indian Pines dataset.

Indian Pines Pavia Centre Pavia Univ.

DDL-CNN 91.56% 99.39% 96.60%

GPMs 87.06% 98.32% 90.87%

Table 11.2: Comparison against Gaussian Process Models of (Ying Yang
et al., 2015)

of this comparison are presented in Table 11.2. Our method outperforms
the method of (Ying Yang et al., 2015) for all datasets, regardless the kernel
function that is used by the Gaussian Process Model. In particular, for the
Indian Pines and Pavia University datasets the increase in the resulting OA
after the application of the developed DL-CNN is more than 5%.

11.5.4 Comparison against Multilayer Superpixel Graph and Loopy Belief
Propagation (Zhan et al., 2015)

The developed classifier was, also, compared with the recently proposed
classification approach of (Zhan et al., 2015) which is based on multilayer
superpixel graph and loopy belief propagation MSG-LBP. Authors proposed
a graph-based representation and exploited a merging algorithm to generate
multiscale superpixels for hyperspectral data. Then, they tackle the classifi-
cation problem using loopy belief propagation for message passing between
superpixels. For validating their method, they utilize Indian Pines and Pavia
University datasets. The training set was formed by setting the splitting ra-
tio equal to 6.7%. For conducting a fair comparison, we formed the set for
training our model in the same way and compared both models in terms of
overall classification accuracy. The results of this comparison are presented
in Table 11.3. The MSG-LBP method of (Zhan et al., 2015) outperforms our
method for the Indian Pines dataset, due to the fact that this dataset contains
in the reference/ground truth data many classes with less than 50 pixels.
Therefore, by setting the splitting ratio equal to 6.7% certain classes were
represented with less than 3 pixels in the training set. For such cases the
provided training information is not sufficient for constructing high level
features capable to describe such classes. In contrast to Indian Pines, the
Pavia University dataset contains sufficient examples even with low splitting
ratios at each class. In this case the developed DL-CNN method outperforms
the MSG-LBP of (Zhan et al., 2015) for more than 5%.
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Indian Pines Pavia University

DL-CNN 86.54% 97.46%

MSG-LBP 93.06% 92.32%

Table 11.3: Comparison against MSG-LBP (Zhan et al., 2015)

Indian Pines Pavia University

DL-CNN 88.32% 92.36%

ASR ' 85.00% ' 86.00%

Table 11.4: Comparison against the adaptive sparse representation (ASR)
classifier of (Li and Du, 2015)

11.5.5 Comparison against the Adaptive Sparse Representation Classifier
(Li and Du, 2015)

Recently, an adaptive sparse representation (ASR) for generating discrimi-
native sparse codes was proposed (Li and Du, 2015) which can efficiently
represent and contribue to hyperspectral data classification. The validation
of the proposed in (Li and Du, 2015) model was performed by utilizing In-
dian Pines and Pavia University datasets using 110 examples of each class to
form the training set. In order to conduct a fair comparison we form the
training set in the same way and we compared both models in terms of
overall accuracy. The results of this comparison are presented in Table 11.4.
For both datasets, our method outperforms adaptive sparse representation
(ASR) classifier. In particular, the developed DL-CNN algorithm managed
to increase the resulting overall accuracy rates by approximately 4% and 7%
for the Indian Pines and Pavia University datasets, respectively.

11.6 conclusions

We designed, developed and validated a novel deep learning-based approach
for hyperspectral data classification. Following deep learning paradigm, via
the exploitation of CNNs and MLPs, our approach hierarchically constructs
high-level features that encode pixels spectral and spatial information. Thanks
to the developed deep learning architecture the computed high level fea-
tures were capable to outperformed the state-of-the-art in several exper-
iments and hyperspectral datasets. The developed DL-CNN method was
qualitatively and quantitatively compared with SVM-based classifiers (RBF-
SVM and Linear SVM), deep learning models based on autoencoders (DL-
SAE, (Chen et al., 2014)), and classification approaches based on Gaussian
Process models (GPMs, (Ying Yang et al., 2015)), multilayer superpixel graph
(MSG-LBP, (Zhan et al., 2015)) and adaptive sparse representations (ASR, (Li
and Du, 2015)). The comprehensive experimental results and quantitative
evaluation indicated the very high potentials of the developed approach.
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Pavia University

Splitting ratio 5% 10% 20% 40% 80%

DL-SAE 90.55 92.67 94.32 96.17 97.58

DL-CNN 97.13 97.88 98.73 99.51 99.88

RBF-SVM 88.79 91.13 92.50 93.45 93.68

Linear SVM 81.04 82.24 82.38 82.75 83.07

Pavia Centre

Splitting ratio 5% 10% 20% 40% 80%

DL-SAE 99.30 99.46 99.56 99.60 99.73

DL-CNN 99.64 99.74 99.85 99.95 99.98

RBF-SVM 98.05 98.42 98.56 98.68 98.83

Linear SVM 97.22 97.29 97.34 97.39 97.48

KSC

Splitting ratio 5% 10% 20% 40% 80%

DL-SAE 41.79 70.88 73.36 88.61 92.65

DL-CNN 64.07 75.13 86.41 91.47 96.25

RBF-SVM 52.22 60.47 61.60 62.29 64.33

Linear SVM 49.66 59.65 63.70 68.83 72.96

Botswana

Splitting ratio 5% 10% 20% 40% 80%

DL-SAE 87.92 94.66 97.75 99.07 99.37

DL-CNN 94.19 97.84 98.92 99.69 99.91

RBF-SVM 75.13 87.78 90.80 94.35 96.61

Linear SVM 66.51 79.64 87.02 92.04 94.14

Indian Pines

Splitting ratio 5% 10% 20% 40% 80%

DL-SAE 70.62 75.96 81.08 87.13 92.87

DL-CNN 81.76 87.34 93.19 96.82 99.20

RBF-SVM 57.61 64.98 74.39 78.98 82.60

Linear SVM 63.60 71.45 74.87 77.06 79.33

Salinas

Splitting ratio 5% 10% 20% 40% 80%

DL-SAE 94.41 96.85 98.04 98.75 99.07

DL-CNN 95.76 97.47 98.24 98.81 99.47

RBF-SVM 91.61 92.35 92.81 93.23 93.74

Linear SVM 89.83 89.96 90.27 90.41 90.58

Table 11.5: Quantitative evaluation results for all datasets in terms of overall
classification accuracy (%).
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A F T E RW O R D

Throughout this dissertation, we presented application and/or scenario spe-
cific approaches for (i) detecting and identifying objects based exclusively
on visual information, content and context and (ii) exploiting information
and knowledge about objects in a scene as a basis for event understanding.
All approaches follow the levels of understanding framework proposed by
David Marr and they treat visual perception as an information processing
problem.

Visual information processing and representation are both key aspects in
every technical chapter of this thesis. As a representation considered a for-
mal system for making explicit certain entities or types of information, while
processing can be considered as the specification of how this representation
takes place. The result of information processing and representation is a for-
mal description of a given entity. Since each representation makes certain
information explicit at the expense of information that is pushed into the
background and may be quite hard to recover, it is inherently affects the
performance and accuracy of vision algorithms. Therefore, the construction,
selection and exploitation of highly descriptive features for representing vi-
sual information, according to the problem at hand, is a crucial step towards
the development of intelligent vision-based systems.

However, the problem of intelligence – of how intelligence is created by
the brain and of how to make intelligent machines – is one of the greatest
problems in science, possibly the most fundamental of all. The realization
that the brain is a computer is old. Alan Turing wrote about it and seeds
of the idea can be found in centuries-old writings. However, we still do
not understand the brain, of course this is not a surprise, and, thus, we are
not able to develop machines able to conduct reasonable inference under a
variety of real-world problems – generalization problem.

In this thesis, what we tried to do is to study a variety of vision problems
at different levels of information organizations – from signal flows to logic
reasoning. This way insights gained on higher levels helped us to ask reason-
able questions and conduct valuable experiments at lower levels. We used
realistic data, both synthetic, which are used to analyze noise sensitivity,
and real-world data, in order to evaluate the performance of the proposed
methodologies, in terms of objective criteria, and verify their validity.

Finally, under the perspective of generalization problem, computer vision
is highly related to learning theory. It is important to study and understand
the processing and representations of visual information, but it is also im-
portant to study and understand how an individual organism learns them.
One could even argue that a description of the learning process and its a
priori assumptions is deeper and more useful than a description of the de-
tails of what is actually learned. The problem of learning is at the core of
the problem of intelligence and, thus, at the core of the problem of vision.
For this reason, in this thesis, most of the presented methodologies conduct
inference or make decisions by borrowing techniques from the learning the-
ory. Not surprisingly, the language of statistical learning, including SVMs,
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graphical models, neural nets, Bayesian inference, regularization, is perme-
ating various areas of computer science.

To conclude, we need not only to understand the computational, algorith-
mic and hardware levels of vision problems, but also the way an individual
could learn them. Only then may we be able to build intelligent machines
that could learn to see.
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