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Abstract

In this thesis, motivated by evidences in psycholinguistics and cognition, we propose an

unsupervised language-agnostic Distributional Semantic Model (DSM), that utilize web

harvested data, for the problem of semantic similarity estimation. Semantic similarity can

be applied to numerous tasks of Natural Language Processing (NLP), such as affective

text analysis and paraphrasing. In the first part of the thesis, the construction of typical

DSMs following the well-established Vector Space Model, is presented. More specifically,

we describe the creation of corpora by harvesting web documents following a query-based

approach, as well as state-of-the-art DSMs used for the computation of semantic similarity

from the corpora. Next, we propose a novel hierarchical distributed semantic model

(DSM), that is inspired by evidence in psycholinguistics and cognition, and consists of

low-dimensional manifolds built on semantic neighborhoods. Each manifold is sparsely

encoded and mapped into a low-dimensional space. Global operations are decomposed into

local operations in multiple sub-spaces; results from these local operations are fused to

come up with semantic relatedness estimates. Manifold DSM are constructed starting from

a pairwise word-level semantic similarity matrix. The proposed model is evaluated against

state-of-the-art/baseline DSMs on semantic similarity estimation task, where the similarity

metrics are evaluated against human similarity ratings. The proposed model significantly

improve performance comparing to the baseline approaches for the task of semantic similarity

estimation between words. Furthermore the proposed model is evaluated in a taxonomy

task achieving achieving state-of-the-art results. Finally, motivated by evidence of cognitive

organization of concepts based on the degree of concreteness, we present the performance

of proposed DSM for abstract and concrete nouns.



Περίληψη

Σε αυτή την μεταπτυχιακή εργασία, εμπνευσμένοι από στοιχεία της ψυχογλωσσολογίας και τη

γνωσιακής επιστήμης, προτείνουμε την κατασκευή ενός κατανεμημένου σημασιολογικού μον-

τέλου (Distributional Semantic Model - DSM) το οποίο μπορεί να εφαρμοστεί με επιτυχία σε

διάφορες γλώσσες και λειτουργεί χωρίς επίβλεψη χρησιμοποιώντας δεδομένα που συλλέγονται

το ίντερνετ. Αυτό το μοντέλο το εφαρμόσαμε στο πρόβλημα της εκτίμησης της σημασιολογι-

κής ομοιότητας μεταξύ λέξεων. Η σημασιολογική ομοιότητα είναι μία μετρική η οποία μπορεί

να χρησιμοποιηθεί σε πολλές εφαρμογές του τομέα της Επεξεργασίας Φυσικής Γλώσσας, (Nat-

ural Language Processing (NLP) όπως η συναισθηματική ανάλυση κειμένου και παράφραση

κειμένων. Στο πρώτο μέρος της διατριβής, παρουσιάζεται η κατασκευή γνωστών σημασιο-

λογικών μοντέλων της βιβλιογραφίας τα οποία κάνουν χρήση διανυσμάτων, Vector Space

Model (VSM). Πιο συγκεκριμένα, αρχικά περιγράφουμε τον τρόπο δημιουργίας μεγάλων αρ-

χείων κειμένου από τη συγκέντρωση εγγράφων από το ίντερνετ και μετέπειτα παρουσιάζουμε

συστήματα DSMs της βιβλιογραφίας που χρησιμοποιούνται για την υπολογισμό της σημασιο-

λογικής ομοιότητας με βάση τα αρχεία κειμένου. Στη συνέχεια της διατριβής, προτείνουμε

ένα νέο ιεραρχικό κατανεμημένο σημασιολογικό μοντέλο (DSM), το οποίο είναι εμπνευσμένο

από στοιχεία της ψυχογλωσσολογίας και τη γνωστική επιστήμης, και αποτελείται από παράλ-

ληλες χαμηλών διαστάσεων σημασιολογικές γειτονιές. Σε κάθε γειτονιά αντιστοιχίζεται μία

αραιή κωδικοποίηση και έπειτα η γειτονία προβάλλεται σε ένα χαμηλών διαστάσεων υποχώρο.

΄Επειτα ο υπολογισμός της σημασιολογικής ομοιότητας μεταξύ λέξεων, αποσυντίθεται αρχικά

σε τοπικές πράξεις πάνω στους πολλαπλούς παράλληλους υποχώρους και τελικά τα αποτε-

λέσματα αυτών συνθέτονται για να καταλήξουμε σε μία γενική απόφαση. Το προτεινόμενο

μοντέλο αξιολογείται έναντι γνωστών αλγορίθμων της βιβλιογραφίας στην εκτίμηση της ση-

μασιολογικής της ομοιότητας σύνολων από ζευγάρια λέξεων τα οποία έχουν βαθμολογήσει

άνθρωποι για την σημασιολογική τους ομοιότητα. Το προτεινόμενο μοντέλο έχει βελτιώσει

σημαντικά τις επιδόσεις σε σύγκριση με άλλα μοντέλα της βιβλιογραφίας που λειτουργούν

χωρίς επίβλεψη στην εκτίμηση της σημασιολογικής ομοιότητας μεταξύ των λέξεων.
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Chapter 1

Introduction

1.1 Representation of Lexical Semantics

From cognitive experiments one can easily deduce that there exist fundamental cognitive

relationships between terms/words [2, 3]. Semantic similarity relationship corresponds

to the degree of likeness of meaning or semantic content between two terms and is a

fundamental relationship of human cognition [4]. Word association is a more low-level

fundamental relationship between terms and expresses the degree of semantic or pragmatic

relatedness, for example, ‘leaf’ is similar to ‘flower’, but is only related to ‘spring’ and

‘autumn’ [5, 6]. Antonyms, e.g. ‘wealth’ and ‘poverty’, constitute an example of words with

low semantic similarity and high association. Another example of words with low semantic

similarity and high association, is the words related by cause and effect, e.g. ‘gun’ and

‘kill’. The main features that humans employ to acquire associations are the co-occurrence

and proximity [5, 6], namely these features, from all of our senses, e.g. from language,

images, music, smells, scripts etc, are behind the cognitive acquisition and organization of

our knowledge. Another important feature, that can be used in spoken language to extract

associations and semantic relations, additively to co-occurrence and proximity, is context

similarity. The motivation behind contextual similarity is that the similarity of context

implies the similarity of meaning, so for the computation of context similarity between

terms/words, the contexts of the words are utilized and thus context similarity captures

both syntactic and pragmatic relations between words. Language engineers have modeled

such associations by using features such as co-occurrence and proximity creating n-gram

models of language [7].

The estimation of semantic similarity between words, sentences and documents is

a fundamental problem for many research fields including computational linguistics [8],

semantic web [9], cognitive science and artificial intelligence [10, 11]. In this work, we study

the geometrical structure of the lexical space in order to extract semantic relations among

words. In [12], the high-dimensional lexical space is assumed to consist of manifolds of

very low dimensionality that are embedded in this high dimensional space. The manifold
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hypothesis is compatible with evidence from psycholinguistics and cognitive science. In [13],

the question “How does the mind work?” is answered as follows: cognitive organization

is based on domains with similar items connected to each other and lexical information

is represented hierarchically, i.e., a domain that consists of similar lexical entries may be

represented by a more abstract concept. An example of such a domain is {blue, red, yellow,

pink, ...} that corresponds by the concept of color. An inspiring analysis about the geometry

of thought, as well as cognitive evidence for the low-dimensional manifold assumption can

be found in [14], e.g., the domain of color is argued to be cognitively represented as an

one-dimensional manifold.

1.2 Thesis Contribution

There has been much research interest on devising data-driven approaches for estimating

semantic similarity between words. DSMs [15] are based on the distributional hypothesis of

meaning [16] assuming that semantic similarity between words is a function of the overlap

of their linguistic contexts. DSMs are typically constructed from co-occurrence statistics

of word tuples that are extracted on existing corpora or on corpora specifically harvested

from the web.1 In [17], general-purpose, language-agnostic algorithms were proposed for

estimating semantic similarity using no linguistic resources other than a corpus created

via web queries. The key idea of this work was the construction of semantic networks and

semantic neighborhoods that capture smooth co-occurrence and context similarity statistics.

The majority of DSMs adopt high-dimensional representations, while the underlying space

geometry is not explicitly taken into consideration during the design of algorithms aimed

for performing several semantic tasks.

Following the low-dimensional manifold hypothesis we propose to extend distributional

semantic models (DSMs) into a hierarchical model of manifolds (or concepts) that contain

related words. Global operations on the lexical space are decomposed into local operations

on the low-dimensional sub-manifolds [18]. Our goal is to exploit this hierarchical low-rank

model to estimate relations between words, such as semantic similarity. The proposed

low-dimensional manifold DSM is constructed in four steps: 1) fragmentation of the lexical

space by identifying domains that correspond to the low-dimensional manifolds, i.e., groups

of words that are related with some kind of relation, for example groups with semantically

similar words, 2) creation of a sparse connectivity graph among words of each manifold 3)

1A corpus is a large text of sentences.
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construction of a DSM for each manifold by representing each manifold as a low dimensional

space, (i.e., run the dimensionality reduction algorithm to each manifold) 4) combine the

manifold DSMs to come up with global measures of lexical relations.

A variety of algorithms can be found in the literature for projecting a set of tokens into

low dimensional sub-spaces, given a token similarity or dissimilarity matrix. Depending

on the nature of the dataset, these projection algorithms may or may not preserve the

local geometry of the original dataset. Most dimensionality reduction algorithms make the

implicit assumption that the underlying space is metric, e.g., Multidimensional Scaling

(MDS) [19] or Principal Component Analysis (PCA) [20] or the ones using non-negative

matrix factorization [21] and typically fail to capture the geometry of manifolds embedded

in high dimensional spaces. A variety of dimensionality reduction algorithms have been

developed that respect the local geometry. Some examples are the Isomap algorithm

[22] that performs the projection based on a weighted neighborhood graph, Local Linear

Embedings (LLE) [23] that assigns neighbors to each data point, Random Projections

[24], [25] that preserves the manifold geometry by executing random linear projections and

others (Hessian Eigenmaps (HLLE) [26]; Maximum Variance Unfolding (MVU) [27]). The

manifold hypothesis has also been studied by the representation learning community where

the local geometry is disentangled from the global geometry mainly by using neighborhood

graphs [28] or coding schemes [29]. For a review see [30].

A fundamental problem with all aforementioned methods when applied to lexical

semantic spaces is that they do not account for ambiguous tokens, i.e., word senses. The

main assumption of dimensionality reduction and manifold unfolding algorithms is that

each token (word) belongs to a single sub-manifold. This in fact is not true for polysemous

words, for example the word ‘green’ could belong both to the domain colors, as well as to

the domain plants. In essence, lexical semantic spaces are manifolds that have singularities:

the manifold collapses in the neighborhood of polysemous words that can be thought of

semantic wormholes that can instantaneously transfer you from one domain to another.

Our proposed solution to this problem is to allow words to live in multiple sub-manifolds.

The algorithms proposed in this work are build on recent research work on distributional

semantic models and manifold representational learning. Manifold DSMs can be trained

directly from a corpus and do not require a-priori knowledge or any human-annotated

resources (just like DSMs). We show that the proposed low-dimensional, sparse and

hierarchical manifold representation significantly improves on the state-of-the-art for the

problem of semantic similarity estimation.
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The following paper have been written in relation to this thesis work [18].

1.3 Thesis Outline

The thesis is organized as follows: Chapter 2 gives a brief review of different approaches

of DSMs and of the applications that they apply. Chapter 3 presents the motivation, the

system architecture and the analysis of the different modules of the DSM system proposed

in this work. Chapter 4 displays the experimental procedure and the results. Thesis is

concluded at Chapter 5.



Chapter 2

Distributional Semantic Models

(DSMs)

Semantic similarity metrics can be broadly divided into the following types: (i) metrics

that rely on knowledge resources (e.g., WordNet), and (ii) corpus-based that do not require

any external knowledge source. A detailed review of the major WordNet-based metrics can

be found in [31]. Corpus-based metrics are formalized as Distributional Semantic Models

(DSMs) [15] based on the distributional hypothesis of meaning [16]. A detailed review

about semantic similarity metrics and DSMs can be found in [32]. In this chapter a brief

analysis of corpus-based metrics is presented, that is mainly focused on the methodologies

that are relevant to our work.

2.1 Word Embeddings

Word embeddings constitute a research area of deep learning community, that was introduced

in [33]. Word embeddings refer to the representation of vocabulary words, W, of some

language, with vectors. Actually, a parameterized function maps the words of vocabulary to

high-dimensional vectors (usually 200 to 500 dimensions). So, for example words “university”

and “department” may be represented as:

� “university” → [0.1, -0.0, 0.3, · · · ]

� “department”→ [0.2, 0.1, -0.8, · · · ]

Generally, word embeddings are expected to capture the attributional similarities [34]

between vocabulary items, meaning that words that appear in similar contexts should be

close to each other in the projected space, i.e., words with similar meanings should have

similar vectors.

Methods to generate this mapping include neural networks [35, 36], representations

based on the context in which words appear in text [37] and representations based on
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words co-occurrence statistics from text, [38, 39], For instance, in [33] the embedded word

vectors are trained over large collections of text using variants of neural networks. This

model inspired the creation of other neural language models that eliminate the linear

dependency on vocabulary size [40], a hierarchical linear neural model proposed in [41], a

recurrent neural network for language modeling architecture was investigated in [42]. Such

architectures are trained over large corpora of unlabeled text with the aim to predict correct

representations. Linguists suggested that words occurring in similar contexts tend to have

similar meanings [43]. Thus, the utilization of words co-occurrence statistics is a fair choice

to embed similar words into a common vector space [44]. In such approaches generally

word frequencies are calculated from text, afterwards some transformations may be applied,

such as PPMI, then the dimensionality of word vectors is reduced usually to 200 up to 500

dimensions and finally similarities scores are extracted. Word embeddings resulting from

neural language models have been shown to to improve the performance to various NLP

tasks, such as syntactic parsing [45] and sentiment analysis [46]

Recently, in [47] it was shown that that the embeddings created by a Recursive Neural

Network (RNN) are able to encode both attributional similarities between words and

also similarities between pairs of words. More specifically, they observed regularities

between pairs of words sharing a particular relationship, for example, let the vector of

word wi be denoted as xwi
, then regarding the singular-plural relation, they observed

that xapple − xapples ≈ xapple − xapples or xfamily − xfamilies ≈ xapple − xapples and that this

idea is extended to a variety of semantic relations, such as the male-female relation, i.e.,

xwoman − xman ≈ xqueen − xking. This, denotes that maybe there exist different dimensions

in lexical space for such semantic relations, so probably there exist a gender dimension or

another for singular vs plural. Thus, it is seems that neural networks handle to automatically

and efficiently represent the data and the relationships among the data objects.

2.2 Metrics of Semantic Similarity Using Web

Documents

DSMs can be distinguished into (i) unstructured: use bag-of-words model [48] and (ii)

structured: exploitation of syntactic relationships between words [15, 49]. The Vector Space

Model (VSM) constitutes the main implementation for both unstructured and structured

DSMs. More specifically, a representational vector is built for each word and then various of

metrics can be applied for the computation of similarity between those vectors, for example
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cosine similarity constitutes a measurement of word similarity that is widely used on the

top of VSM, where the similarity between two words is estimated as the cosine of their

respective vectors whose elements correspond to corpus-based statistics. Here, we will

present the methodology of building such unstructured DSMs.

2.2.1 Corpora Creation

For the computation of text-based semantic similarity between words, a corpus (i.e, a large

text) is utilized. There are many corpora that can be directly downloaded from web, such

as the SemCor3 corpus 1, but also one could built new corpora. The creation of new corpora

gives several advantages to the users, most important is the fact that more domain specific

corpora can be built, for example one corpus may contain mainly sentences concerning

medical issues, also it can be built in such a way that it will contain only information that

is relevant to a given vocabulary. Bellow we describe one well known methodology that may

be used for the creation of corpora from web 2. As first step, the definition of a vocabulary

in a specific language is required. Then, for each word of vocabulary an individual query is

formulated that contains only the word itself, where the term query refers to the ‘search

text’ that is sent to a web searching engine, such as, Google 3 or Yahoo! 4. Afterwards, each

query is sent separately to Yahoo! Search API 5 (or another available API for developers),

and then only the top ranked documents/results, e.g., 1000 top documents, are extracted

from each query. Thereafter, from each document, its snippet is extracted, where the

term snippet refers to the small paragraph (usually two lines) under the URL of the result

that usually describes each document. Finally, all snippets from all queries are merged,

resulting a corpus relevant to our vocabulary. In Fig. 2.1 an example of results from Yahoo!

search engine is presented as well as the visualization of terminology. There are many other

techniques that someone could use, for example one could add semantically similar words

to a web query (query expansion) in order to increase the relevance of retrieved documents

or experiment with AND, OR queries or fuse differently the web results [50–52].

1http://www.cse.unt.edu/rada/downloads.html
2This methodology is also used from us in order to create the corpora.
3http://www.google.gr
4http://www.yahoo.com
5http://developer.yahoo.com/search/
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Figure 2.1: Example of results from Yahoo! search engine and visualization of terminology.

Let the following sentences serve as a toy example of a corpus whose lexical content is

assumed to capture the semantics for the target words, where each sentence correspond to

a different snippet.

· TUC is among the 400 world’s top universities according to QS World

University Rankings by Faculty 2014 in Engineering & Technology

· Technical University of Crete consists of the following departments:

Department of Production Engineering & Management

· Welcome to the website of the School of Environmental Engineering,

Technical University of Crete

· University of Crete is one of the top universities in the world,

The Times Higher Education, World University Rankings grades the top

universities in the world

2.2.2 Context-based Statistics

Following the distributional hypothesis of meaning [16], which implies that semantic

similarity between words is a function of the overlap of their linguistic contexts, sentences or

even few words in the left and right context of a target word of vocabulary may be utilized

in order to built its semantic representation [53]. More specifically, the context words of

“crete” in the sentence “university of crete is one of the top universities”, with contextual
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window 2, are the “university”, “of”, “‘is” and “one”. So, when the target vocabulary,

W, is defined, as well as, the ‘context vocabulary’, Wc, that may contain all the corpus

words (or corpus sentences or the top frequent corpus words or other useful contextual

features), then context-based statistics may be computed as follows. For each target word

wi ∈ W , with i = 1, · · · , |W|, a representational vector, ci, is built, with |ci| = |Wc|. This

representational vector may contain various statistical measurements, that concerns the

word wi and the contextual features vk ∈ Wc, with k = 1, · · · , |Wc|, for example the times

that each vk occurs as context of wi in the corpus or an indicator function if vk occurs as

context word of wi or other more complex statistics [32]. An example of context-based

representational vectors built for vocaculary words “technical”, “engineering” using the toy

corpus of Sec. 2.2.1 , with contextual window 3 and the indicator function as statistical

measurement, is presented in Table 2.1.

W
Wc university crete school · · · environmental

technical 1 1 0 · · · 1
engineering 1 0 1 · · · 1

Table 2.1: Example of context-based representational vectors.

Dimensionality Reduction

The DSMs approaches proposed in literature mainly built one high dimensional representa-

tion of lexical space; either by utilizing the representational vectors of vocabulary words as

is or by projecting those vectors to a space of lower dimensions (usually 50 up to to 2000

dimensions may be used) [15, 54–56]. The most widely-used techniques for reducing the

dimensions of such matrices/vectors is the Principal Component Analysis (PCA) [4, 57, 58]

and the MultiDimensional Scaling (MDS) [19, 59, 60]. Thus, a representational vector of

one word wi, ci, that is |Wc|-dimensional may be is transformed to another representational

vector of much lower dimensions. The low-dimensional approximation is considered to (i)

capture the latent meaning of words, (ii) reveal higher-order co-occurrences, (iii) reduce to

the “noise” introduced by non-informative contextual features, and (iv) tackle the sparsity

problem. A detailed analysis regarding the semantic representations and the dimensionality

of semantic VSMs is presented in [44].
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Metrics of Semantic Similarity

Context-based semantic similarity metrics rely on the distributional hypothesis of meaning

according to which the semantic similarity is implied by the paradigmatic relatedness.

Cosine similarity is reported to be the most widely-used similarity metric with respect to

VSM [44, 53]. Let c̃i, c̃j correspond to the representational vectors of two words wi and wj ,

then the similarity is estimated as the cosine of their representational vectors, as follows

[48]:

Sc(wi, wj) =

∑m
k=1 c̃i(k) · c̃j(k)∑m

k=1 c̃i(k)2 ·
∑m

k=1 c̃j(k)2
(2.1)

where m is the dimensionality of representational vectors.

A variety of other metrics or alternatives [61] have been applied for estimating the

semantic similarity between words based on their representational vectors, a more detailed

analysis can be found here [32]. Another approach is to transform the representational

vectors to probability distributions, using n-gram language modeling, and then apply metrics

such as the Kullback–Leibler distance that measures the dissimilarity between the two

distributions, this idea was employed to [62, 63].

2.2.3 Co-occurrence-based Statistics

Co-occurrence-based statistics can also be extracted for the estimation of semantic similarity,

the underlying assumption of co-occurrence-based metrics is that two words that co-exist

in a specified context are semantically related. Thus, this approach utilize the association

ratios between words that are computed using their co-occurrence frequency in a specified

context. The exploitation of direct (i.e., first-order) co-occurrence statistics constitutes the

simplest form of unstructured DSMs. A key parameter for such models is the definition

of the context in which the words of interest co-occur: from entire documents [64] to

paragraphs [65] and sentences [17]. The effect of co-occurrence for the task of similarity

computation between nouns is discussed in [17].

Let {M} be a set of such contexts. e.g., sentences, while {M ;wi, . . . , wi+n} stands for

the number of occurrences of words wi, . . . , wi+n within {M}. A widely-used measurement,

proposed in [66, 67] and motivated by Kolmogorov complexity, is the ‘normalized Google

distance’ and is defined as follows:

G0(wi, wj) =
A− log |M ;wi, wj |

log |M | −B
(2.2)
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where A = max{log |M ;wi |, log |M ;wj |} and B = min{log |M ;wi |, log |M ;wj |}
This metric is a dissimilarity measure, i.e., as the semantic similarity between two words

increases the metric takes smaller values. The scores assigned by (2.2) are unbounded,

ranging from 0 to ∞. In [68], a variation of the normalized Google distance was used,

proposing a bounded similarity measure called ‘Google-based semantic relatedness’, defined

as:

G(wi, wj) = e−2·G0(wi, wj) (2.3)

where G0(wi, wj) is computed according to (2.2). The Google-based semantic relatedness is

bounded in [0,1] 6.

Other metrics that can be employed for the computation of co-occurrence similarity are

the ‘Jaccard’ coefficient that can be applied to the specific problem as:

J(wi, wj) =
|M ;wi, wj |

|M ;wi | + |M ;wj | − |M ;wi, wj |
(2.4)

where if wi and wj are the same word then the Jaccard coefficient is equal to 1 (absolute

semantic similarity) and if the two words never co-occur then Jaccard coefficient equals to

0. Also, the ‘Dice’ coefficient that is related to the Jaccard coefficient and is computed as:

C(wi, wj) =
2· |M ;wi, wj |

|M ;wi | + |M ;wj |
(2.5)

Again, one could experiment with random variables, assuming that the number of

documents (or snippets or paragraphs, etc) indexed by wi, wj are random variables and

utilize the the pointwise Mutual Information (MI) to measure the mutual dependence

between the occurrence of words wi, wj [69].

I(wi, wj) = log

|M ;wi,wj|
|M|

|M ;wi|
|M| ·

|M ;wj|
|M|

(2.6)

This measurement quantifies how the knowledge of one variable reduces the uncertainty

about the other.

6In this work, this metric was adopted based on its good performance in word-level semantic similarity
tasks [17], where the co-occurrence of words was defined at snippet-level.
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2.2.4 Network-based Metrics

Very few approaches have been proposed in literature that focus to the creation of more

sophisticated representations of lexical space. Recently, motivated by the graph theory,

several aspects of human languages have been modeled using network-based methods. In

[70, 71] an overview of network-based approaches is presented for a number of NLP problems.

Network-based representations constitute a promising idea that outperformed for the task

of semantic similarity estimation [17].

A brief summary of the network-based DSM proposed in [17] is the following. Firstly, a

web harvested corpus of snippets is built. Afterwards a semantic network is constructed

encoding the semantic relations between words in corpus, where co-occurrence and context

features are used to measure the strength of relations. The network is a parsimonious

representation of the information encoded in corpus. Thus, each word that is included in

lexicon may be represented by a subgraph that is referred as the semantic neighborhood

of word. An example of semantic neighborhoods of words “fruit”, “forest” and “plant” is

depicted in Fig. 2.2. Thereafter, three similarity metrics are proposed that are built on

the top of those graphs and exploit the neighborhoods, namely the ‘maximum similarity

of neighborhoods’, the ‘correlation of neighborhood similarities’ and the ‘sum of squared

neighborhood similarities’.

Figure 2.2: Example of semantic neighborhoods representing words “fruit”, “forest” and
“plant”.
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The DSM proposed in [17] inspired us to focus in the area of representation of lexical

space and not in the area of technical methodologies regarding the estimation of semantic

similarity of words (for example methodologies such as the corpus creation, alternative

methods for counting word frequencies, the exploitation of contexts words or of syntactic

information and other technical aspects). As a result, an alternative top-down hierarchical

manifold representation is proposed in Chapter 3 that respects the cognitive principles and

is an ensemble of parallel, sparse and low-dimensional subspaces.

2.3 Applications

The estimation of semantic similarity between words, sentences and documents is the

building block of many research disciplines, such as computational linguistics [8], semantic

web [9] and artificial intelligence [10, 11]. There exist a variety of applications for semantic

similarity, both at word and sentence level. For example, problems highly related to semantic

similarity is the paraphrasing which is bidirectional and based on semantic equivalence [72],

and the textual entailment which is directional and based on relations between semantics

[73, 74]. Other examples, include machine translation [75], information extraction [76] and

question answering [77].

The recent years affective text analysis is another very hot research area. Based

on hypothesis that “semantic similarity can be translated to affective estimates”, there

have been proposed affective systems [8, 78] that model the mapping between semantic

and affective space and achieve very high performance. More specifically, given a set of

vocabulary words, semantic similarity ratings have been extraxted between vocabulary

words as first step, afterwards given the existance of ground truth affective ratings for a

small subset of vocabulary words (known as “seeds”), a model is trained to compute the

affective score for each word of vocabulary as the algebraic combination of the semantic

similarities and the affective ratings of seed words. The same idea can also be applied for the

estimation of other dimensions of words (besides affective dimension). As described in [79],

semantic similarity can be mapped to other word representations such as, the concreteness

level of a word (i.e., that measures how concrete is one word, for example the term ‘table’

is very concrete while the term ‘liberty’ is totally abstract), the imagability level of a word

(i.e., that qualifies how much the “hearing” of a word triggers us to imagine images), the

familiarity level (i.e., how familiar a word is) and the age of acquisition level (i.e., that

qualifies the age that a human is able to acquire one word, for example ).
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Spoken dialogue systems is another application where the influence of semantic similarity

is significant. Grammar induction is a fundamental part of spoken dialogue systems and is

highly dependent on the availability of semantic classes that correspond to domain concepts,

where examples of domains include the travel domain, the medical domain, the finance

domain and other, and one domain concept correspond to a class that include words or

phrases of similar meaning. The creation of such classes is based on semantic similarity

between the candidate terminals that is usually followed by a clustering algorithm for the

construction of the classes [80].



Chapter 3

LDMS: Manifold-based

Distributional Semantic Model

In this chapter we will describe the Manifold-based Distributional Semantic Model proposed

in this thesis. Firstly, we will present some ideas that motivated us to built this system

and secondly we will present and analyze whole system and its components.

3.1 Motivation

Consider a finite metric space (M, d) and the the power set of M, P(M), which is also

finite. For any A,B ∈ P(M) the common sense set distance is defined as:

ds(A,B) = min
ai∈A, bj∈B

d(ai, bj). (3.1)

It easy to see that we may find triplets A,B, C ∈ P(M) where the triangle inequality

does not hold. Thus, under the “common sense” set distance the power set space P(M) is

not metric, i.e., (P(M), ds) is not a metric space, hence, the nice convergence properties of

metric spaces and the resulting notion of neighborhood are not satisfied. Although these

notions might not exist globally in the power set space, they are satisfied locally under

some assumptions. For instance, if M has n elements, ξ1, ξ2, · · · , ξn, then the set space

Q , {{ξ1}, {ξ2}, · · · , {ξn}} ⊂ P(M) is a metric space under ds.

To demonstrate that the power set space, (P(M), ds), is not metric in general, consider

the set Y , {{ξ1, ξ2}, {ξ3}, · · · , {ξn}} ⊂ P(M), i.e., Y consists of a single set with two

elements A = {ξ1, ξ2} and the single element sets of all the remaining members of M, i.e.,

{ξ3}, {ξ4}, · · · , {ξn}. Then, the triangle inequality is satisfied for all triplets of elements of

Y , with the possible exception of triplets containing set A, where it may not holds.

For instance, an illustrative example is depicted in Fig. 3.1 with n = 4, A = {ξ1, ξ2},
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B = ξ3, and C = ξ4, where we have:

ds(B, C) > ds(A,B) + ds(A, C) (3.2)

The probability of violating the triangle inequality is higher when the two members of A
are far away in the underlying metric space (M, d), i.e., d(ξ1, ξ2) > 2δ and in addition, ξ3

and ξ4 are in the δ-neighborhood of ξ1 and ξ2 , respectively (or vice versa), i.e., d(ξ1, ξ3) < δ

and d(ξ2, ξ4) < δ.

Figure 3.1: Example of non metric power set space, (P(M), ds).

In the context of word semantics, we assume that the conceptual space, M, defined

as the set containing all atomic elements word senses, i.e., M = {ξ1, ξ2, ξ3, ξ4, · · · , ξn},
together with the metric of semantic similarity S(.) (normalized in [0,1]), forms a metric

space with distance 1− S, i.e., (M, 1− S).

Then, words may be considered as sets of word senses. Namely, the set of words, W,

is a subset of the power set of M, i.e., W ⊂ P(M), with word level semantic similarity

defined in space W as follows (maximum sense semantic similarity assumption):

SW(wA, wB) = max
ξi∈wA,ηj∈wB

S(ξi, ηj) (3.3)

where wA, wB two arbitrary words.

More specifically, in Fig. 3.1 let the word wA, represented by the set A, consisting of just

two word senses (or concepts), ξ1 and ξ2, while words wB and wC , two monosemous words

with a single word sense each, ξ3 and ξ4, respectively. For example, let the polysemous

word wA =‘book’ with corresponding word senses ξ1 =‘book with the sense of reservation’

and ξ2 =‘book with the sense of reading’ and the monosemous words wB=‘travel ’ and
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wC=‘author ’. Then, apparently the triangle inequality is violated for the pair (‘travel’,

‘author’).

The above example reveals that the space W = (W , 1− SW) does not form a metric

space because we found an example that does not satisfy the triangle inequality. However,

due to the fact that d(ξ1, ξ2) = 1− S(ξ1, ξ2) > 0, there exists an ε-neighborhood around ξ1,

that contains only word sense ξ1. Namely, there exists ε, such that ξ2 /∈ B(ξ1, ε) = {ξ ∈M :

1− S(ξ1, ξ) < ε}. The same reasoning can be applied to all other words w ∈ W, i.e., for

any word a neighborhood can be found around each sense of the word such that it does not

contain the other senses of the word. Clearly, for any word w ∈ W and any ξi ∈ w, all such

balls B(ξi, εi) are subsets of M and obviously, subsets of the power set of M. However,

B(ξi, εi) may not be subset of W , since w\B(ξi, εi) /∈ W .

It is worth emphasizing that in the case where B(ξi, εi), contains ξi and at most one

word sense from some of the other words ofW , then (B(ξi, εi), 1−SW) forms a metric space.

Thus, in such scenario, W is locally metric but globally non-metric. In essence, what the

above analysis suggests is that for each monosemous word we can hope for metricity in a

neighborhood around this word, while for a polysemous word we can hope for metricity in

a neighborhood around each of its senses.

Regarding the dimensionality of lexical space, the global lexical semantic space is

expected to be high-dimensional, but organized in such a way that the significant semantic

relations can be exported from manifolds of much lower dimensionality embedded in this

high dimensional space [12]. We assume that (at least some of) these sub-manifolds contain

semantically similar words (or word senses). For example, a potential sub-manifold in

the lexical space could be the one that contains the colors (e.g., red, blue, green). But

in fact many words, such as book, green, fruit, are expected to belong simultaneously in

semantically different manifolds because they have multiple meanings. A simple example

of a method to bootstrap the manifold recreation process is to build a manifold around

each word, i.e., the semantic neighborhood of each word defines a manifold. For example, in

Figure 3.2 we show the semantic neighborhood of fruit, where the neighborhood is built

just by selecting the top most similar neighbors of word fruit.

The connections between words indicate high semantic similarity, i.e., this is a pruned

semantic similarity graph of all words in the semantic neighborhood of the word ‘fruit’.
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Figure 3.2: Visualization of the semantic neighborhood of the word ‘fruit’.

It is clear from this example that in a typical neighborhood there exist word pairs that

should be ‘connected’ to each other because they have close semantic relation, like {flower,

plant} and others that should not be ‘connected’ because they are semantically apart, like

{garden, salt}. A sparse encoding of the semantic similarity relations in a neighborhood is

needed in order to achieve (via multi-dimensional scaling) a parsimonious representation

with good geometric properties1.

3.2 System Architecture

The proposed end-to-end Low-dimensional manifold DSM (LDMS) system is depicted in

Figure 3.3. and is composed from the following parts:

1. Construction of manifolds: This step constitutes the identification of manifolds,

V = {V1,V2, ...,V|V|}. Basically each manifold is a set of items/words connected

to each other with some kind of relation, for example one could utilize semantic

similarity as relational function and construct different manifolds with semantically

similar words. Note that one word may belong to many manifolds, thus the ambiguity

property of the lexical space may be implicitly imported to the model. We propose

1Compare for example with Isomap [22] were a short- and long-distance metric is used. When using
sparse encoding the long-distance metric is set to a very large fixed number (similarity set to 0). In
both cases, the underlying manifold is unfolded and low-dimensional representation with (close to) metric
properties are discovered.
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two different methods for constructing the manifolds, that are described in Sec. 3.2.1,

but many other ideas could also be implemented.

2. Sparse encoding of manifolds: In lexical space the connections between words

are assumed to be very sparse, even if we are dealing with very small sets, such as

the neighborhood of word fruit in Fig. 3.2. In order to model this property of lexical

space, this step deals with the automatic construction of a sparse connectivity graph

among items/words in each manifold, resulting a set of sparse connectivity matrices

each one corresponding to one manifold S̃ = {S̃1, S̃2, ..., S̃|V|}. The graph connectivity

or sparseness matrix identifies the word pairs that should be encoded in a manifold

and is defined as S̃k ∈ Bn×n, with k = 1, ..., |V|, where value 1 indicates that the

word pair is encoded and 0 indicates that the pair is ignored. Note that one could

ignore the sparsity modeling just by assigning 1 to all connections. The methods

that we propose for the construction of sparse connectivity matrices are described in

Sec. 3.2.2.

3. Low dimensional representation of manifolds: The lexical space is assumed to

consists from manifolds of very low dimensionality. Thus, in this step all the manifolds

are projected in a low-dimensional space. In Sec. 3.2.3 we propose a dimensionality

reduction algorithm that encounters the sparse connectivity matrices in order to

perform the projection of the manifolds and constitutes an alternation of MDS.

4. Fusion from different subspaces: After this hierarchical low-rank model is built,

one could exploit those representations to estimate relations between words. In this

work, we estimated the semantic similarity as described in Sec. 3.2.4.
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Figure 3.3: System architecture of LDMS.

Note that the proposed representation could be applied and to other spaces with

complex properties, like the lexical space. More specifically, the aspects that are implicitly

or explicitly modeled in this system are: a manifold based space, sparse, global non metric

but local metric and ambiguous.

3.2.1 Construction of Manifolds

In this section we will describe two methods for the construction of manifolds, namely the

neighborhoods and the hierarchical categories, where the first approach is unsupervised,
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i.e., no manually annotated data are required and the second approach requires a manually

annotated resource.

Construction of Manifolds: Neighborhoods

This method requires the availability of a global proximity matrix 2, among items, i.e.,

vocabulary words, W, in our case. The manifolds V = {V1,V2, ...,V|V|} are created as

follows: for each word of vocabulary a corresponding manifold is created, so in this approach

the vocabulary size is equal to the cardinality of manifold set, i.e., |W| = |V|. More

specifically, for each wk ∈ |W|, with k = 1, ..., |V|, Vk will consists of words that are highly

similar to wk, i.e., the kth manifold will be the semantic neighborhood of word wk. Thus,

each manifold Vk is created by selecting the top n most semantically similar words of

wk based on the (global) similarity matrix S ∈ R|W|×|W|, where S can be estimated by

using any of the baseline semantic similarity metrics presented in Section 2.2.2. We have

experimented with various manifold sizes n ranging between 20 and 200 neighbors; note

that each word wk may belong to multiple domains, for example wk may belong to Vk
and to other manifolds constructed from other words. Afterwards, for each manifold Vk a

separate DSM will be built. This approach is completely unsupervised and does not require

any manually annotated recourse, thus it can be easily ported to many languages.

Construction of Manifolds: Hierarchical Categories

The main idea behind this method is the exploitation of a hierarchal information regarding

the vocabulary set, W, in order to built the manifolds. Here the hierarchy provided by

WordNet is utilized, where WordNet is a large lexical database of English words, where

nouns, verbs, adjectives and adverbs are grouped into sets of cognitive synonyms (synsets),

each expressing a distinct concept. In Fig. 3.4 a toy example of hierarchy structure provided

by WordNet is depicted. Actually, it corresponds to a tree-like structure where the top

category of everything is the ‘entity’ and thereafter the tree expands to lower levels into

other sub-categories and words. For example, in the figure two sub-categories are the

’physical entity’ and ’abstract entity’ which are also expanded to lower levels. Note that,

ambiguous words will be assigned to different parts (or and different levels) of the tree

structure for example the word ‘state’ is mapped under the ‘region’ and also under the

2Proximity denotes either similarity or distance. Let’s assume that a global semantic similarity matrix
is provided, by using for example one of the methods described in Chapter. 2. In our experiments, the
Google-based Semantic Relatedness was employed using a web-harvested corpus of document snippets.
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‘attribute’.

Figure 3.4: Example of the structure of WordNet hierarchy.

The manifolds V = {V1,V2, ...,V|V|} are created as follows: for each word of W , we have

marked the categories, the super-categories, the super-super-categories, etc., assigned to

the word, until we reach the root category ‘entity’. For example, let the vocabulary word

‘dog’, then the categories that are marked from word ‘dog’ until the root category ‘entity’,

are the ‘canine’,‘carnivore’,‘placental’,‘mammal’, ‘animal’,..., ‘entity’. Thus, we are able to

extract a set of different categories, C, from all vocabulary words as well as the information

of which words of W are assigned to each one of the categories, in the example above the

word ‘dog’ is assigned to all the aforementioned categories. Thereafter we are able to built

one manifold for each category, by adding to each manifold the words that are assigned to

the corresponding category. Thus, the number of manifolds will equal to the number of the

corresponding categories, while the size of the different manifolds will not be equal.

3.2.2 Sparse Encoding of Manifolds

Here, we propose different approaches for the automatic construction of sparse connectivity

matrices among words of each manifold, S̃ = {S̃1, S̃2, ..., S̃|V|}. Given a global similarity

matrix S ∈ R|W|×|W|, and the manifolds, Vk with k = 1, ..., |V|, the corresponding sub-

similarity matrices, S = {S1,S2, ...,S|V|}, of the manifolds can be easily build since the

words included in each manifold are subset of vocabulary |W|. So, let i, j, z = 1, · · · , |Vk|
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correspond to the indexing of words contained in manifold Vk, then the methods for

constructing the connectivity graph are the following:

1. Similarity 0: Let assume that the global similarity values of S ∈ R|W|×|W| range in

[0, 1], then the word pairs (wki , w
k
j ) with corresponding similarity value equal to zero

are penalized. More specifically, if similarity of pair (wki , w
k
j ) is zero, then the pair

will not be ‘connected’ in the graph of Vk manifold and 0 will be assigned to S̃k(i, j),

else the pair will be ‘connected’ and 1 will be assigned to S̃k(i, j).

2. Percentage: We define the degree of sparseness as the percentage of 0’s in matrix

S̃k. Word pairs (wki , w
k
j ) with small similarity values (or equivalently large semantic

distance) are penalized and zero values are assigned to their corresponding position

(i, j) in S̃k matrix. In essence, the matrix S̃k(i, j) is obtained by hard thresholding

on the similarity matrix Sk: all values that are under a threshold are set to 0, while

all values equal or greater to the threshold are set to 1. Let n = |Vk| be the number

of words under investigation, then the number of word pairs is q = n·(n−1)
2

, also let

0 ≤ p ≤ 1 be a given percentage score, then the sparseness is defined by penalizing

all the p · q less similar word pairs of manifold.

3. Triangle inequality: All the word pairs (wki , w
k
j ) that do not respect the triangle

inequality are identified and 0 is assigned to the corresponding position of connectivity

matrix, S̃k. More specifically, the penalized pairs are those for which the following

statement is true: Sk(i, j) < Sk(i, z) + Sk(z, j) or Sk(i, j) = 0, where wkz is another

word in manifold Vk.

4. Triangle inequality target word: This approach is an extension of the previous

one and can be applied only to the case where the the manifolds are build as

neighborhoods of words in W, described in Sec. 3.2.1. All the word pairs (wki , w
k
j )

that do not respect the triangle inequality regarding only the target word from which

the manifold/neighborhood was build are penalized, so if wkz correspond to the target

word then 0 is assigned to S̃k(i, j) if Sk(i, j) < Sk(i, z) + Sk(z, j) or Sk(i, j) = 0.

5. Cliques: The first step of this method includes the construction of the graph’s

boolean adjacency matrix Ak ∈ Bn×n, which is defined based on similarity matrix S̃k,

where if Sk(i, j) > 0 then Ak(i, j) = 1 and if Sk(i, j) = 0 then Ak(i, j) = 0. Given

the graph’s boolean adjacency matrix, Ak we are able to find all maximal cliques on

Ak using the Bron-Kerbosch algorithm in a recursive manner [81, 82]. Thereafter,
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the connectivity matrix is defined as follows, if a pair (wki , w
k
j ) belong to a maximal

clique, then the pair is ‘connected’ and S̃k(i, j) = 1, else S̃k(i, j) = 0.

3.2.3 Low Dimensional Representation of Manifolds

In this section, the Sparse Projection (SP) algorithm is described (see also Algorithm 1).

SP is the core algorithm for constructing the manifold DSM depicted in Fig. 3.3 and is a

dimensionality reduction algorithm that projects a set of n objects/words into a vector

space of d dimensions Note that, in the proposed system, SP algorithm is applied to the

word manifolds, Vk with k = 1, ..., |V|, so the notation is formed based on this assumption,

but the algorithm could easily be applied to an arbitrary set of objects. The inputs to the

algorithm are the dissimilarity or semantic distance matrix Pk ∈ Rn×n where each element

Pk(i, j) encodes the degree of dissimilarity between words wi and wj, the connectivity

graph of manifold words, S̃k ∈ Bn×n and the projection dimension d. The output of SP

are the d-dimensional coordinate vectors of the n projected words that form a matrix

Xk ∈ Rn×d. Each row of matrix Xk, Xk(i) ∈ R1×d, corresponds to the coordinates of the

ith word, wki . Once Xk is estimated, the dissimilarity matrix can be reconstructed from the

low-dimensional space and be transformed to similarity matrix, so the second output of SP

is the re-estimated, bounded, sparse, semantic similarity matrix P̂k ∈ Rn×n of the manifold.

Since the SP algorithm uses as input a dissimilarity or semantic distance matrix, the

pairwise manifold word similarity matrix S ∈ R|W|×|W| is transformed to a semantic distance

(or dissimilarity) matrix Pk ∈ Rn×n as:

Pk(i, j) = c1 · e−c2·S(i,j) (3.4)

where c1, c2 ∈ R are constants and the i, j indexes run from 1 to n. In this work, we

experimentally chosen c1 = c2 = 20. The transformation defined by (3.4) was selected in

order to non-linearly scale and increase the relative distance of dissimilar words compared

to similar ones3. As discussed in Section 3.2.2, given a set of words only a small subset of

lexical relations should be explicitly encoded between pairs of these words. Therefore, the

SP algorithm should only take into account strongly related word pairs and ignore the rest.

This is the main difference between our approach compared to the generic MDS algorithm

proposed in [19] 4. Each paragraph that follows corresponds to a module of Algorithm 1.

3Similar nonlinear scaling function from similarity to distance can be found in the literature, e.g., [60]
4The SP algorithm with 0% degree of sparseness in input connectivity is equivalent to the MDS algorithm.
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Random Walk SP: In function MoveWordToDirection(·) of Algorithm 1, the pseudo-

variable direction z refers to a direction from a standard set of perturbations of each word

in the d-dimensional space. For example, if the dimension of the projection is d = 2 then

the coordinates of each word are modeled as (k1, k2), where k1, k2 ∈ R. A potential set of

perturbations are the following: (k1, k2 + s), (k1, k2− s), (k1 + s, k2) and (k1− s, k2), where

s is the perturbation step parameter of the algorithm, an example is also depicted in the

following figure. For coordinates systems normalized in [0, 1]d we chose a value of s equal

to 0.1. Good convergence properties to global maxima have been experimentally shown for

this algorithm setup for multiple runs on (noisy) randomly generated data.

Figure 3.5: Perturbations of an object in R2.

Error Criterion: The algorithm employs a local and a global error criterion defined as

follows:

1. The local error corresponds to the projection error of each individual word wki , where

i = 1...n and is defined as the sum of the dissimilarity matrix errors before and after

projection computed only for the words that are ‘connected’ to wi. Let Dk ∈ Rn×n

correspond to the dissimilarity matrix between coordinate vectors, defined as the

Euclidean norm 5:

Dk(i, j) = ‖Xk(i)−Xk(j)‖2 (3.5)

where Xk(i), Xk(j) are the vectors corresponding to words wki , w
k
j , respectively,

i, j = 1, .., n. The local projection error of word wki is defined as:

ComputeLocalError(S̃k,Pk,Xk,i) =
n∑
j=1

S̃k(i, j) · (Dk(i, j)−Pk(i, j))
2 (3.6)

5Other metrics, e.g., cosine similarity, have also been tested out but Euclidean distance performed
somewhat better.
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2. The global error of the projection is simply the sum over local errors for all words:

etot =
n∑
i=1

ComputeLocalError(S̃k,Pk,Xk,i) (3.7)

Algorithm 1 Sparse projection (SP)

Require: Vk // manifold set of n words
Require: Pk // n×n dissimilarity matrix
Require: S̃k // n×n connectivity graph
Require: d // projection dimension

1: for each word wki ∈ Vk do
2: Xk(i)← RandomInitialization(i)
3: end for
4: c = 0 // Iteration counter: initialization
5: ectot = inf // Global error: initialization
6: repeat
7: c = c+ 1
8: for each word wki ∈ Vk do
9: for each direction z do

10: Xk(i)← MoveWordToDirection(Xk(i), z)
11: e(z)← ComputeLocalError(S̃k,Pk,Xk,i)
12: end for
13: ẑ ← FindDirectionOfMinLocalError(e)
14: Xk(i) = MoveWordToDirection(Xk(i), ẑ)
15: end for
16: ectot ← UpdateGlobalError(S̃k,Pk,Xk)
17: until ec−1tot < ectot // Stopping condition
18: P̂k ← SparseSimilarityReestimationNormalizedRanges(Xk,S̃k)
19: return Xk // n×d matrix with coordinates;
20: return P̂k // n×n sparse-normalized similarities;

Sparse Similarity Re-estimation Normalized Ranges: Given the matrix Xk ∈ Rn×d

containing the vector projections of words in the d-dimensional space, the dissimilarity

matrix, Dk ∈ Rn×n, is re-estimated using the Euclidean distance as defined in Eq. 3.5. For

another research area, one could directly use the distances Dk either as is or normalized,

but regarding the lexical space the embodiment of sparsity in proximities seems straight

forward. Let d correspond to the maximum distance of connected word pairs:

d = max
i,j
{S̃k(i, j) ·Dk(i, j)} (3.8)
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then P̂ ∈ Rn×n is simply the sparse distances normalized in [0,1] and transformed to

similarities:

P̂k(i, j) = S̃k(i, j) · (1−
Dk(i, j)

d
) (3.9)

In Fig. 3.6 an illustrative example is depicted from the projection of a small neighborhood

of word ‘book’, using sparse percentage 70%. It is interesting to observe the inter-connected

clusters that correspond to the two senses of ‘book’, i.e., book as read and book as reservation

that are represented under the same space. Another interesting point is that although the

low-dimensional representations of relatively dissimilar words ‘publication’ and ‘reservation’

is close enough, they are not ‘connected’ in the graph, so the representation of one word is

‘unseen’ to the other.
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Figure 3.6: Example of projection of neighborhood of word ‘book’ using SP algorithm with
sparsity 70% and projection to 2 dimensions.

3.2.4 Fusion from different subspaces

To reach a decision on the strength of the semantic relation between words wi and wj the

sparse semantic similarity matrices from each domain P̂k must be combined. Only domains

were both words wi and wj appear are relevant in this fusion process. This procedure is

described next.
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Motivation: Given a set of words L = {w1, w2, ...wn} we assume that their corresponding

set of word senses6 is M = {s11, s12, .., s1n1 , ..., sn1, sn2, .., snnn}. The set of senses is defined

as M = ∪ni=1Mi, where Mi = {si1, si2, ..., sini
} is the set of senses for word wi. Let S(.)

be a metric of semantic similarity, e.g., the metric defined in Eq. 2.3, which is symmetric,

i.e., S(x, y) ≡ S(y, x). The notations Sw(.) and Ss(.) are used in order to distinguish the

similarity at word and sense level, respectively. According to the maximum sense similarity

assumption [83], the similarity between wi and wj, Sw(wi, wj), is defined as the pairwise

maximum similarity between their corresponding senses Ss(sik, sjl):

Sw(wi, wj) ≡ Ss(sik, sjl), where (k, l) = argmax
(p∈Mi,r∈Mj)

Ss(sip, sjr) (3.10)

Note that the maximum pairwise similarity metric (or equivalently the minimum pairwise

distance metric) is also known as the “common sense” set similarity (or distance) employed

by human cognition when evaluating the similarity (or distance) between two sets.

Fusion of local dissimilarity scores: Next we describe a manifold fusion model that

follows the maximum pairwise similarity principle motivated by human cognition. The

steps for the re-computation of the (global) similarity between words wi and wj are:

1. Search for all the manifolds where wi and wj co-exist.

2. Let U be the indexes of the subset of manifolds from the previous step. The similarities

between words wi and wj are retrieved from domain similarity matrices P̂u for all

u ∈ U . The similarities are stored into vector d ∈ R|U|×1.

3. Motivated by the maximum sense similarity assumption (see above) the global

similarity between wi and wj is defined as7:

P̂(i, j) = max
m=1..|U|

{dm} (3.11)

4. If words wi and wj do not co-exist in any domain then 0 is assigned as their similarity

score.

For example, let one pair of words (w1, w2) co-exists in |U| = 3 different domains with

corresponding local similarities d = [0.43 0.67 0.55] then the global similarity (w1, w2) is

6This is a simplification. In reality, some of the word senses will be the same, so strictly speaking this is
not a set definition.

7Other fusion methods have also been evaluated, e.g., (weighted) average. Maximum pairwise similarity
fusion outperformed other fusion schemes.
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0.67.

3.2.5 Extension of LDMS System

In this section an extension of LDMS System is presented that is depicted in Fig. 3.7.

Figure 3.7: Extension of LDMS system.

The main purpose of this architecture is to allow multiple types of representations

to co-exist in parallel. For example, in LDMS representation type 1 manifolds may be

built based on semantic similarity relations among words, in LDMS representation type

2 manifolds may be built based on affective relations among words. Another example

where the extension of LDMS system can be applied is the construction of manifolds of one

representation type with the method ‘Neighborhoods’ and the construction of the second

representation type with the method ‘Hierarchical Categories’ (both described in Sec. 3.2.1).

Thereafter, in global level much different kind of relations can be fused in order to reach a

global decision. Note that the fusion method is the same as described in Sec. 3.2.4 with the

difference that the search of co-existance of a pair of words is performed to all different

representation types.
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Chapter 4

Evaluation

In this chapter, we describe the experimental procudure and the evaluation results; we

present the methodology of corpus creation, the datasets that are utilized for evaluation

purposes and we analyse all the evaluation tasks. First, we will describe the creation of the

vocabulary set and its corresponding corpus, and then we will present two evaluation tasks

that will be used in order to measure the performance of various DSMs approaches, namely:

(i) similarity judgment between nouns (see Section 4.2), and (ii) creation of a taxonomy

consisting of nouns (see Section 4.4).

4.1 Vocabulary, Corpus Description and Baseline

Similarities

One English vocabulary was utilized for evaluation purposes, that contains mainly nouns of

English language. The English nouns were extracted from the SemCor3 corpus 1 ,resulting

a vocabulary set of 8752 words. This vocabulary was used for the creation of a big

corpus, based on the methodology described in Sec. 2.2.1, resulting a corpus consisting

of approximately 8752000 snippets, since 1000 snippets were acquired for each word of

vocabulary.

Thereafter, based on this corpus, a set of baseline similarity metrics were applied for the

computation of similarity between words of vocabulary. Namely, the ‘Google-based semantic

relatedness’ described in Sec. 2.2.3, the ‘Context-1’ and ‘Context-5’ that correspond to

the context based similarity computation method described in Sec. 2.2.2 using Eq. 2.1 as

similarity metric and contextual window size 1 word and 5 words respectively and the ‘Dice

coefficient’ described in Sec. 2.2.3.

1http://www.cse.unt.edu/rada/downloads.html
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4.2 Similarity Judgment

Similarity judgment constitutes the first and most essential evaluation task, where the

performance of similarity metrics is evaluated against human judgments. More specifically,

there have been constructed a set of datasets containing word pairs, for example one pair

may be the (“tiger”, “animal”), and humans have rated the semantic similarity of those

pairs based on their own judgment. Thus, the developed similarity metrics should be

correlated as much as possible to the human judgments. Note that, when the data collection

is not conducted in the controlled lab environment, e.g., data is collected via web forms

or from web tasks such as crowd-sourcing, subjects tend to rate the degree of semantic

relatedness rather than similarity. In essence, the ‘natural’ task that comes with little effort

to humans is to rate associations rather than similarity. In order to rate similarity, subjects

have to exert higher-cognitive (semantic) effort and be carefully instructed to do so. The

datasets that will be used for evaluation have been developed in much diverse environments,

so it is expected to observe diversity to the performance of each metric to the different

datasets. Another issue of the diversity of the datasets is that the creation of each dataset

may have been focused to a specific issue, for example to rare words. The description of

the different evaluation datasets is presented bellow:

1. WS353 [84]: WordSimilarity-353 is a widely used dataset for evaluation of semantic

similarity and is a set of 353 English word pairs along with human-assigned similarity

judgments. WS353 is a collection of pairs for measuring both word similarity and

relatedness, so it has been splitted into two subsets, one for evaluating similarity, and

the other for evaluating relatedness, according to the procedure described in [85],

resulting to the two following datasets.

2. WSsim [85]: Subset of 202 pairs for evaluating similarity.

3. WSrel [85]: Subset of 252 pairs for evaluating relatedness.

4. RG [86]: Rubenstein and Goodenough (RG) is a set of 65 noun pairs with human

similarity ratings, that is also widely used.

5. MC [87]: Miller and Charles (MC) is an also known set of 30 noun pairs with human

similarity ratings.

6. RW [88]: Stanford Rare Word (RW) similarity dataset consists of 2034 pairs with the

corresponding human judgments, that is computed as the average similarity rating
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using up to 10 individuals.

7. MEN [89]: MEN is a recently developed dataset containing 3000 word pairs of

randomly selected words from corpora, where the ground truth judgments were

obtained based on crowd-sourcing.

8. MTurk287 [90] The human ratings of MTurk-287 collection were obtained through

the Amazon’s Mechanical Turk workers, resulting in a set of 287 word pairs labeled

overall. Up to 30 workers were assigned per pair, with an average of 23 MTurk workers

rating each word pair.

9. MTurk771 [91]: The Mturk-771 set was recently created and contains 771 English

word pairs along with human-assigned relatedness judgments.

The Pearson’s correlation coefficient was used as evaluation metric to compare estimated

similarities against the ground truth. Let x = [x1, x2, ..., xm]T and y = [y1, y2, ..., ym]T be

the vectors that contain the similarity scores given by human subjects and the computational

metric, respectively, if m is the number of word pairs of the dataset then, Pearson correlation

coefficient is defined as follows:

ρxy =

∑m
i=1(xi − x̃)(yi − ỹ)√∑m

i=1(xi − x̃)2
∑m

i=1(yi − ỹ)2
(4.1)

where x̃ and ỹ are the sample means of x and y, for i = 1, 2, ...,m. This coefficient was

selected instead of Spearman’s rank correlation coefficient to retain the initial scaling of

similarities in the evaluation metric, as opposed to the alternation of this scaling through

the transformation of similarities into ranks.

4.2.1 Performance of Various DSMs

For this evaluation experiment the lexicon of 8752 nouns is utilized, that is described in

Sec. 4.1. Thus, all the evaluated datasets are filtered according to the lexicon, resulting 280

pairs for WS353, 156 pairs for WSsim, 206 for WSrel, 57 for RG, 28 for MC, 151 for RW,

1477 for MEN, 126 for MTurk287 and 592 for MTurk771. In Table 4.1 the performance of

some well known unsupervised similarity estimation algorithms is reported as well as the

performance of the proposed LDMS system, more specifically:

1. Google Rel, correspond to the co-occurrence metric ‘Google-based semantic relatedness’

described in Sec. 2.2.3.
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2. Context-1 correspond to the context based method described in Sec. 2.2.2 using

Eq. 2.1 as similarity metric and contextual window size 1 word.

3. Context-5 is the same with previous method with contextual window size 5 words,

4. Dice, correspond to the co-occurrence metric ‘Dice coefficient’ described in Sec. 2.2.3.

5. Word2vec [35, 92, 93], tool was used. We applied the CBOW approach (as being

more computationally efficient) for context window 3. The dimensions of the resulting

words-features matrix was set to 300.

6. WikiRelate! includes various taxonomy-based metrics that are typically applied to

the WordNet hierarchy; the basic idea behind WikiRelate! is to adapt these metrics

to hierarchy extracted from the links between the pages of English Wikipedia [94].

7. TypeDM is a well known structured DSM [15], i.e., employs syntactic information

from corpus.

8. AAHKPS1 constitutes an unstructured paradigm of DSM development using four

billion web documents that were acquired via crawling [85]

9. SEMNET is the alternative implementation of unstructured DSMs based on the idea

of semantic neighborhoods and networks, described in Sec. 2.2.4 and the reported

results are for neighborhood size equal to 100.

10. LDMS is the manifold based distributional semantic model proposed in this work.

The reported performance correspond to the following parameters set, construction

of manifolds: 160 neighbors of each word (descriped in 3.2.1), sparsity method

‘triangle inequality target word’ (descriped in Sec. 3.2.2) and projection dimension 5

dimensions.
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Algorithm Datasets

WS353 WSsim WSrel RG MC RW MEN MTurk287 MTurk771

Google Rel 0.61 0.65 0.64 0.81 0.85 0.46 0.74 0.61 0.61

Context-1 0.30 0.34 0.27 0.52 0.51 0.21 0.46 0.50 0.39

Context-5 0.13 0.01 0.18 0.29 0.21 0.10 0.25 0.42 0.20

Dice 0.22 0.23 0.32 0.60 0.60 0.25 0.45 0.36 0.39

Word2Vec 0.58 0.57 0.67 0.79 0.79 0.48 0.72 0.66 0.62

WikiRelate! 0.48 - - 0.53 0.45 - - - -

TypeDM - - - 0.82 - - - - -

AAHKPS1 - - - - 0.89 - - - -

SEMNET 0.64 - - 0.87 0.91 - - - -

LDMS 0.73 0.75 0.74 0.84 0.95 0.48 0.74 0.73 0.67

Table 4.1: Performance of different DSMs to various datasets for the task of similarity
judgment.

The metrics Google Rel, Context-1, Context-5, Dice, Word2Vec are computed based

on the corpus of 8752 nouns described in Sec. 4.1. The performance of the other metrics

is retrieved from the corresponding papers, thus their performance is not reported for all

datasets.

In the task of semantic similarity estimation against human judgments, baseline metric

‘Google-based semantic relatedness’ perform well to all datasets, compared to the other

baseline metrics, Context-1, Context-5 and Dice. The AAHKPS1 also reported good

performance for the MC dataset, this can be attributed to the fact that too many documents

were analyzed in the specific DSM. The network based method SEMNET, performed pretty

well to all datasets, this can be attributed to the fact that in SEMNET a more sophisticated

representation of lexical space is utilized and the similarities are computed on the top of those

representations. The LDMS approach outperformed all the reported (and unsupervised)

DSMs in all datasets, except the RG dataset, where the performance is close enough to

the best reported performance, i.e. 0.84 vs 0.87, but as we will show subsequently, 0.87

correlation is also achieved from LDMS using another parameter set.



4.2. Similarity Judgment 36

4.2.2 LDMS System: Analysis of Different Scenarios

In this section, we analyze the performance of LDMS approach to different scenarios for

similarity judgment task, more specifically, we will evaluate two different methods for the

construction of manifolds. In Sec. 4.2.2, the manifolds are built as the neighborhoods

of words in vocabulary, while in section Sec. 4.2.2 we present an attempt of addition of

manifolds with categorical relations along with the neighborhood-manifolds. The similarities

computed by Google-based Semantic Relatedness (defined by Eq. (2.2)) are used as baseline

and as bootstrap similarity measures of LDMS system.

Construction of Manifolds: Semantic Neighborhoods

The performance (Pearson correlation) of the LDMS approach is presented, as a function

of neighborhood size and sparseness method (with fixed 5 projection dimensions), in the

following figures: Fig. 4.1 for WS353 and RG datasets, Fig. 4.2 for MC and MEN datasets

and Fig. 4.3 for MTurk287 and MTurk771 datasets. The baseline performance is also

plotted (dotted line) and noted as ‘Base’. The analyzed sparseness methods, described

in Sec. 3.2.2, are the following: 1) ‘percentage’ where a degree of sparseness is fixed and

used to all manifolds, here we will present the degrees 0%, 80% and 90% and 2) ‘triangle

inequality target word’, where the sparseness of each manifold is defined as function of the

metric properties of the manifold, noted as ‘trInTar’.

For all six datasets, we see a clear relationship between neighborhood size, sparseness

method and performance. Sparse representations achieve peak performance for larger

neighborhood sizes. High degree of sparseness, between 80% and 90%, achieves high results

for manifold/neighborhood sizes between 100 and 200. The abrogation of sparseness, i.e.

0% degree of sparseness or equivalently the usage of MDS algorithm for the projection of

manifolds, performs poorly to all datasets, this is a strong indication of the importance of

sparseness property to representations dealing with the modeling of lexical space. Another

interesting point is that, the sparse method ‘triangle inequality target word’, which consti-

tutes a more sophisticated approach, is the best performing method. The low performance of

LDMS using small neighborhood sizes, is somewhat expected because as the neighborhood

size decreases, so the probability of a random word pair to co-exist in a manifold decreases.

Thus too many pairs of the datasets are considered as ‘sparse’, i.e., with 0 corresponding

similarity, when small neighborhoods are used. Finally, it is clear that LDMS outperformed

the baseline metric in all datasets.
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Figure 4.1: Performance as a function of manifold size, n, and sparseness method for the
(a) WS353 dataset and (b) RG dataset.
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Figure 4.2: Performance as a function of manifold size, n, and sparseness method for the
(a) MC dataset and (b) MEN dataset.
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Figure 4.3: Performance as a function of manifold size, n, and sparseness method for the
(a) MTurk287 dataset and (b) MTurk771 dataset.

In Fig. 4.4 we present the performance of LDMS system to WSsim and WSrel datasets.

These datasets constitute the categorization of pairs of WS353 dataset to pairs with

similarity connections and pairs with relatedness connections. The performance is presented

as a function of manifold size, n, and sparseness method, with 5 projection dimensions.

It is interesting to observe that LDMS system manage to capture both similarity and

relatedness connections and improve significantly the baseline. Neighborhood sizes between

140 and 180 along with high sparse percentages lead to high performance. Once again, the

peak performance is achieved through the sparse method ‘triangle inequality target word’

for both datasets; while 0% sparsity, leads to very low performance.
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Figure 4.4: Categorization of dataset pairs based on similarity and relatedness connections:
Performance as a function of manifold size, n, and sparseness method for the (a) WSsim
dataset evaluating similarity and (b) WSsim dataset evaluating relatedness.

In Fig. 4.5 we present the performance of LDMS system to WS353 and MTurk287

datasets, where the pairs of each dataset have been categorized based on their abstraction

level. More specifically, following the methodology described in [79], we assigned a concrete-

ness score, ranging in [-1,1], to all 8752 words. Thus, words with corresponding concreteness

score in [0,1] are considered concrete, while words with concreteness score in [-1,0) are

considered abstract. Thereafter, we were able to categorize the pairs of each dataset, to

abstract-abstract pairs, abstract-concrete pairs and concrete-concrete pairs and create 3

corresponding subsets of the dataset. The performance of WS353 and MTurk287 datsets

along with their corresponding subsets is presented as a function of manifold size, n, using

as sparseness method the ‘triangle inequality target word’ and 5 projection dimensions.

LDMS system manage to capture very well the relations of abstract-concrete pairs, since

the best performing subset is the abstract-concrete for both datasets. An overall observation

is that the subsets that contain concrete words, i.e., abstract-concrete and concrete-concrete,

achieve high performance for both cases. On the other hand, LDMS performs poorly for

abstract-abstract pairs. The peak performance is achieved for neighborhood sizes between

100 and 200 for all pairs of each dataset and their corresponding subsets.



4.2. Similarity Judgment 40

40 60 80 100 120 140 160 180 200
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
WS353

0.73

0.68

0.75

0.73

Neighborhood size

C
o
rr

e
la

ti
o
n

 

 

all pairs
abstract−abstract

abstract−concrete
concrete−concrete

40 60 80 100 120 140 160 180 200
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
MTurk287

0.73

0.58

0.750.74

Neighborhood size

C
o
rr

e
la

ti
o
n

 

 

all pairs
abstract−abstract

abstract−concrete
concrete−concrete

Figure 4.5: Categorization of dataset pairs based on abstraction: Performance as a function
of manifold size, n, with sparseness method ‘Triangle inequality target word’, for the (a)
WS353 dataset (b) MTurk287 dataset.

The performance of LDMS is shown in Fig. 4.6 as a function of the projection dimension d,
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for WS353, WSsim, WSrel, RG, MC, MEN, MTurk287 and MTurk771 datasets. The method

of sparseness is the ‘triangle inequality target word’ while the manifold/neighborhood size

equals to 160 for all experiments.

It is interesting to observe that the performance of LDMS system remains relatively

constant when at least d = 3 is used, for all eight datasets . The results suggest that even

a 3D sub-space is adequate for accurately representing the semantics of each underlying

manifold.
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Figure 4.6: Performance of the WS353, WSsim, WSrel, RG, MC, MEN, MTurk287 and
MTurk771 datasets as a function of projection dimension d.

Construction of Manifolds: Semantic Neighborhoods and Hierarchal

Categories

Here, we will present the performance of extended LDMS system, described in Sec. 3.2.5.

More specifically, additively to the manifolds build from semantic neighborhoods of each

word we have added manifolds that are build based on hierarchical relations among words,

as described in Sec. 3.2.1. To built the manifolds based on hierarchical relations we have

utilized the hierarchical tree structure of WordNet.

For each word of 8752 vocabulary nouns, we have marked the categories, the super-

categories, the super-super-categories, etc., assigned to the word, until we reach the root

category of WordNet, i.e., the category ‘entity’ that is root of every vocabulary word. Thus,
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we extracted a set of 5800 different categories from all vocabulary words and the information

of which words are assigned to each one of the 5800 categories. Then, for each category we

built one manifold containing the words that are assigned to the category, resulting a new

set of 5800 manifolds.

Since, these categories belong to different hierarchical levels, the size of manifolds that

correspond to higher level of hierarchy will contain much more words than the manifolds that

correspond to lower levels of hierarchy, for example the manifold that correspond to category

‘entity’ will contain all the vocabulary words. Thus, we threw the top 60 manifolds that

correspond to categories of top level of hierarchy because their size was too large and whole

idea of LDMS system is the construction of relatively small manifolds containing words

with strong relations. Also, we threw manifolds of too low level of hierarchy containing

less than 3 words. Thus, the new set contained in total 2917 manifolds. In Fig. 4.7 the

distribution of size of manifolds built from hierarchical relations is presented. The size of

almost 80 manifolds range between 100 and 240, while the size of almost 210 manifolds

range between 40 and 100 and the size of most manifolds is less than 40.
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Figure 4.7: Distribution of size of manifolds built from hierarchical relations.

The new manifolds built from hierarchical relations are utilized from LDMS system

additively with the manifolds built from semantic neighborhoods. In Figs. 4.8, 4.9 the

performance of WS353, MTurk287, WSsim and WSrel datasets is presented as function

of neighborhood size and sparseness method. Note that, while the manifolds built from

neighborhoods change as function to neighborhood size, the manifolds built from hierarchal
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relations are the same for all experiments. Since size of most manifolds built from hierarchal

relations are very small, there is no need for extra sparseness, so the sparse method that will

be utilized for the hierarchical representation is the ‘Similarity 0’ described in Sec. 3.2.2. The

sparse methods that are utilized to manifolds built from neighborhoods are the percentage

’0%’, ’80%’, ’90%’ and the triangle inequality target word, described in Sec. 3.2.2. The

baseline metric, reported as ‘Base’, is the ‘Google-based semantic relatedness’.
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Figure 4.8: Performance as a function of manifold size, n, and sparseness method for the
(a) WS353 dataset and (b) MTurk287 dataset.
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Figure 4.9: Performance as a function of manifold size, n, and sparseness method for the
(a) WSsim dataset evaluating similarity and (b) WSsim dataset evaluating relatedness.

The performance of WS353, MTurk287 and WSrel datasets have not changed (not for

better or for worst) regarding the approach where only the representation of neighborhoods

was used. But, a very interesting finding is that the performance of WSsim has been

considerably improved when the hierarchal relations have been utilized. More specifically

the best performance has increased from 0.75 to 0.80 when hierarchal relations have been

utilized. This, is a strong indication that more sophisticated hierarchal representations are

needed in order to capture the semantic similarity relations among words, rather than just

the relatedness.

4.3 Comparison With Other Representation

Algorithms

Two well-established dimensionality reduction algorithms (Isomap and LLE) that support

the manifold hypothesis, were applied to the task of semantic similarity computation and

their performance is presented in Table 4.2. Note that, LDMS is not directly comparable

with Isomap-LLE algorithms because it represents only the manifolds in low-dimensional

spaces and not the whole dataset. LDMS, Isomap and LLE were given as input the global

similarity matrix ‘Google-based semantic relatedness’ of 8752 words. Isomap and LLE

used dimensionality reduction down to d = 5 and neighborhood size equal to 120. While
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LDMS run for dimensionality down to d = 5, manifold/neighborhood size equal to 160 and

sparseness method ‘triangle inequality target word’, described in Sec. 3.2.2.

Datasets Algorithm

Baseline Isomap LLE LDMS

WS353 0.61 0.14 0.04 0.73

RG 0.81 0.04 0 0.84

MC 0.85 -0.04 -0.04 0.95

Table 4.2: Performance Isomap and LLE representation algorithms for the task of similarity
judgment for WS353, RG and MC datasets.

The proposed LDMS system surpassed the performance of the other systems for all

three datasets. Both Isomap and LLE dimensionality reduction algorithms are shown to

perform poorly for this particular task. The poor performance of Isomap and LLE can be

attributed to the nature of the specific application, i.e., word semantics. A key characteristic

of this application is the ambiguity of word senses. These algorithms assume only one sense

for each word (i.e., a word is represented as a single point in a high-dimensional space).

Although the disambiguation task is not explicitly addressed, LDMS approach handles the

ambiguity of words by isolating each word’s senses in different manifolds.

4.4 Taxonomy Creation

In this section, the evaluation task of the creation of simple taxonomy of nouns is presented.

In particular, the ESSLLI dataset [1] was used, which constitutes a three-level taxonomy

depicted in Figure 4.10.



4.4. Taxonomy Creation 46

Figure 4.10: Taxonomy of ESSLLI dataset [1]

The lowest level of the taxonomy consists of (instances of) the following six concepts:

(i) “birds”, (ii) “land animals”, (iii) “greens”, (iv) “fruits”, (v) “tools”, and (vi) “vehicles”.

The middle level includes the concepts (i) “animals”, (ii) “vegetables”, and (iii) “artifacts”,

while the upper level is distinguished into “living beings” and “objects”.

The original ESSLLI dataset consists of 44 nouns (instances). Given the similarity

matrix between those nouns, for each taxonomic level the K-means clustering algorithm is

incorporated, in order to separate the nouns to different clusters. The purity of clusters, r,

was used as evaluation metric, defined as [15]:

r =
1

c

K∑
i=1

max
j

(cji ), (4.2)

where cji is the number of nouns assigned to the ith cluster that belong to the jth groundtruth

class. The number of clusters is denoted by K, while c is the total number of nouns included

in the dataset. Purity expresses the fraction of nouns that belong to the true class, which

is most represented in the cluster [15], taking values in the range [0, 1], where 1 stands for

perfect clustering.

4.4.1 Performance of Various DSMs

For this evaluation experiment the lexicon of 8752 nouns will be utilized, described in

Sec. 4.1. We used a subset of ESSLLI dataset’s nouns that was covered by the lexicon

of 8752 nouns, resulting 31 nouns instances. The performance of the proposed LDMS

approach (dimensionality d = 5, manifold/neighborhood size equal to 160 and sparseness
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method ‘triangle inequality target word’, described in Sec. 3.2.2) vs the baseline, as well

as of other similarity estimation algorithms, that are described in Sec. 4.4, is presented in

Table 4.3

Algorithm Top Middle Low

Google Rel 0.68 0.55 0.48

Context-1 0.58 0.55 0.48

Context-5 0.61 0.58 0.48

Dice 0.55 0.55 0.55

TypeDM 0.61 0.58 0.54

LDMS 0.71 0.58 0.77

Table 4.3: Performance of various algorithms to the taxonomy task for all three levels (top
- middle - low).

LDMS yields better results than the other baseline metrics for the top and low taxonomic

levels. Interestingly, for the low level of the taxonomy where results are rather poor for

the baseline system, LDMS is shown to perform the best (better than the middle and top

levels of the taxonomy).
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Chapter 5

Conclusions

5.1 Conclusions

In this work, we proposed a novel, hierarchical DSM that was applied to semantic relation

estimation task obtaining very good results. The proposed representation consists of low-

dimensional manifolds operating in parallel that are derived from sparse projections of

semantic neighborhoods. The core idea of low dimensional subspaces was motivated by

cognitive models of conceptual spaces.

More specifically, the proposed system is composed from the following parts: 1. Con-

struction of manifolds: this step constitutes the identification of manifolds, where each

manifold is a set of items/words connected to each other with some kind of relation. In this

thesis we experimented with two different methodologies for the construction of manifolds,

the semantic neighborhoods of words and the manifolds created from hierarchal relations

among words. 2. Sparse encoding of manifolds: this step is deals with the automatic

construction of a sparse connectivity graph among items/words in each manifold, where

the connection of two words in a graph indicates that those words are connected with

some kind of relation, for example similarity relation. In this thesis we experimented with

different methodologies for the construction of sparse connectivity mapping among words.

3. Low dimensional representation of manifolds: in this step each manifold is projected into

a low-dimensional sub-space. Here, we proposed a dimensionality reduction algorithm, that

constitutes an alternation of MDS, which that encounters the sparse connectivity matrices

in order to perform the projection of the manifolds. 4. Fusion from different subspaces:

Global operations are decomposed into local operations in multiple sub-spaces; results from

these local operations are fused to come up with semantic relatedness estimates. Manifold

DSM are constructed starting from a pairwise word-level semantic similarity matrix.

The validity of this motivation was experimentally verified via the estimation of semantic

similarity between nouns. The proposed approach was found to be (at least) competitive

with other state-of-the-art DSM approaches that adopt flat feature representations and

do not explicitly include the manifolds, the sparsity and the dimensionality as key design
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parameters.

Two other representation algorithms, Isomap and LLE, that respect the manifold

hypothesis, were evaluated in the task of semantic similarity estimation. For each algorithm,

firstly, a global representation of lexical space was constructed and thereafter semantic

similarity estimations between word pairs were extracted based on this representation.

The poor performance of Isomap and LLE can be attributed to the fact that one sense is

assumed for each word (i.e., a word is represented as a single point in a high-dimensional

space) and that sparsity is not a design system parameter. Hence, these algorithms are able

to handle only one of from the three properties of lexical space. LDMS approach implicitly

handles the ambiguity of words by isolating each word’s senses in different manifolds.

Our initial intuition regarding the semantic fragmentation of lexical neighborhoods due

to singularities introduced by word senses was supported by the high performance when

large (i.e., 80% - 90%) degree of sparseness was imposed. The hypothesis of low-dimensional

representation was validated by the finding that as little as three dimensions are adequate

for representing domain/neighborhood semantics. It was also observed that the parameters

of the LDMS model, i.e., number of dimensions, neighborhood size and degree of sparseness,

are interrelated: very sparse projections achieve best results with very low dimensionality

when large neighborhood sizes are used.

Also another property that proved to be a relevant and useful tool for the representation

of lexical spaces was the triangle inequality. The triangle inequality was utilized as a method

for building sparse connectivity matrices of the low dimensional spaces and this method

produced the best results of our model for most evaluated datasets.

Afterwards, noun pairs have been categorized based on their abstraction level and

the performance of abstract-abstract, abstract-concrete and concrete-concrete pairs was

evaluated. LDMS system manage to capture very well the relations of abstract-concrete

pairs, also an overall observation is that the subsets that contain concrete words, i.e.,

abstract-concrete and concrete-concrete, achieve high performance for both cases. On the

other hand, LDMS performs poorly for abstract-abstract pairs.

Another interesting finding was that semantic similarity relations were considerably

boosted when hierarchal relations were included in the system. Contrary semantic relat-

edness relations were not influenced. This indicates that more sophisticated hierarchal

representations are probably needed in order to capture the semantic similarity relations

among words.



5.2 Future Work

This is only a first step toward using ensembles of low-dimensional DSMs for semantic

relation estimation. As future work we plan to develop algorithms designed to perform a

more adaptive fragmentation of semantic space, i.e., further investigation of the creation

of manifolds based on more complex geometric properties of the underlying space [95] is

needed. The creation of multi-level hierarchical representations that are consistent with

cognitive organization is an important challenge that can further improve manifold DSM

performance.

A first approach of induction of hierarchical relations in the model has already been

introduced that better captured the semantic similarity relations, hence the creation of

hierarchal representations constitutes a very interesting research area for DSMs. Of course,

another area that is very interesting for further investigation is the fusion from the different

subspaces, especially when the hierarchical multi-level representations will be included in

the system.

Currently, the proposed representation has been used only for the ‘decision’ of re-

estimating the semantic similarity among words, proving to be very competitive from other

DSMs. Additionally we could develop and other fusion schemes aiming to much different

tasks (and not the similarity computation), such as the word sense disambiguation.

Finally, it would be very interesting to apply the proposed system to other languages

and to various NLP applications, such as language modeling.
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Appendix A

Definitions

In this chapter we present some useful definitions for this thesis. For a detailed analysis the

reader is referred to [95].

A.1 Metric Space

Definition 1 (Metric Space). LetM be a set and d(.) be a distance function defined on

M×M.1 A metric space is a pair of (M, d) such that for all ξ1, ξ2, ξ3 ∈M we have:

1. d is real-valued, finite and nonnegative

2. ξ1 = ξ2 if and only if d(ξ1, ξ2) = 0

3. d(ξ1, ξ2) = d(ξ2, ξ1) (Symmetry)

4. d(ξ1, ξ2) ≤ d(ξ1, ξ3) + d(ξ3, ξ2) (Triangle Inequality)

and it is defined as (M, d).

H

Geometrically the triangle inequality states that the sum of lengths of any two sides of a

triangle must be greater than the length of the third side, as depicted in the figure below.

Figure A.1: Triangle inequality.

1The symbol × indicates the Cartesian product of sets.
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A.2 Ball and Sphere

Definition 2 (Ball and Sphere). Let (M, d) be a metric space, ξ0 ∈M and r be a real

number where r > 0. Below we define three type of sets:

1. B(ξ0; r) , {ξ ∈M : d(ξ, ξ0) < r} (Open ball)

2. B(ξ0; r) , {ξ ∈M : d(ξ, ξ0) ≤ r} (Closed ball)

3. S(ξ0; r) , {ξ ∈M : d(ξ, ξ0) = r} = B(ξ0; r)\B(ξ0; r) (Sphere)

H

A.3 Neighborhood

Definition 3 (Neighborhood). Let (M, d) be a metric space and ξ0 ∈M, the open ball

B(ξ0; ε) is often called an ε-neighborhood of ξ0. Neighborhood of ξ0 is any subset of M
which contains an ε-neighborhood of ξ0.

H

A.4 Power Set

Definition 4 (Power Set). Let M be any set. The power set, P(M), of M is the set of

all subsets of M including the empty set and M itself, i.e.,

P(M) , {A : A ⊆M} (A.1)

H
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[75] M. R. Costa-Jussà and M. Farrús, “Statistical machine translation enhancements

through linguistic levels: A survey,” Computing Surveys (CSUR), vol. 46, no. 3, p. 42,

2014.

[76] J. Berant, N. Alon, I. Dagan, and J. Goldberger, “Efficient global learning of entailment

graphs,” Computational Linguistics, 2015.

[77] S. Harabagiu and A. Hickl, “Methods for using textual entailment in open-domain

question answering,” in Proceedings of the 21st International Conference on Computa-

tional Linguistics and the 44th annual meeting of the Association for Computational

Linguistics. Association for Computational Linguistics, 2006, pp. 905–912.

[78] E. Palogiannidi, E. Iosif, P. Koutsakis, and A. Potamianos, “Valence, arousal and

dominance estimation for english, german, greek, portuguese and spanish lexica using

semantic models,” in Proceedings of Interspeech, Sixteenth Annual Conference of the

International Speech Communication Association, 2015.

[79] N. Malandrakis and S. Narayanan, “Therapy language analysis using automatically

generated psycholinguistic norms,” in companion submission to Interspeech, 2015.

[80] E. Iosif and A. Potamianos, “A soft-clustering algorithm for automatic induction of

semantic classes.” in INTERSPEECH, 2007, pp. 1609–1612.

[81] C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of an undirected graph,”

Communications of the ACM, vol. 16, no. 9, pp. 575–577, 1973.

[82] F. Cazals and C. Karande, “A note on the problem of reporting maximal cliques,”

Theoretical Computer Science, vol. 407, no. 1, pp. 564–568, 2008.

[83] P. Resnik, “Using information content to evaluate semantic similarity in a taxanomy,”

in Proc. of International Joint Conference for Artificial Intelligence, 1995, pp. 448–453.

[84] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolfman, and

E. Ruppin, “Placing search in context: The concept revisited,” in Proceedings of the

10th international conference on World Wide Web. ACM, 2001, pp. 406–414.



Bibliography 60

[85] E. Agirre, E. Alfonseca, K. Hall, J. Kravalova, M. Paşca, and A. Soroa, “A study

on similarity and relatedness using distributional and wordnet-based approaches,”

in Proceedings of Human Language Technologies. Association for Computational

Linguistics, 2009, pp. 19–27.

[86] H. Rubenstein and J. B. Goodenough, “Contextual correlates of synonymy,” Commu-

nications of the ACM, vol. 8, no. 10, pp. 627–633, 1965.

[87] G. A. Miller and W. G. Charles, “Contextual correlates of semantic similarity,” Lan-

guage and cognitive processes, vol. 6, no. 1, pp. 1–28, 1991.

[88] Sofia, B.

[89] E. Bruni, N. Tran, and M. Baroni, “Multimodal distributional semantics.” Journal of

Artificial Intelligence Research (JAIR), vol. 49, pp. 1–47, 2014.

[90] K. Radinsky, E. Agichtein, E. Gabrilovich, and S. Markovitch, “A word at a time:

Computing word relatedness using temporal semantic analysis,” in Proceedings of the

20th International Conference on World Wide Web, 2011, pp. 337–346.

[91] G. Halawi, G. Dror, E. Gabrilovich, and Y. Koren, “Large-scale learning of word

relatedness with constraints,” in Proceedings of the 18th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 2012, pp. 1406–1414.

[92] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word represen-

tations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[93] T. Mikolov, Q. V. Le, and I. Sutskever, “Exploiting similarities among languages for

machine translation,” arXiv preprint arXiv:1309.4168, 2013.

[94] M. Strube and S. P. Ponzetto, “Wikirelate! computing semantic relatedness using

wikipedia,” in AAAI, 2006, pp. 1419–1424.

[95] E. Kreyszig, Introductory functional analysis with applications. Wiley. com, 2007.


	Table of Contents
	List of Figures
	List of Abbreviations
	Notation
	Introduction
	Representation of Lexical Semantics
	Thesis Contribution
	Thesis Outline

	Distributional Semantic Models (DSMs)
	Word Embeddings
	Metrics of Semantic Similarity Using Web Documents
	Corpora Creation
	Context-based Statistics
	Co-occurrence-based Statistics
	Network-based Metrics

	Applications

	LDMS: Manifold-based Distributional Semantic Model
	Motivation
	System Architecture
	Construction of Manifolds
	Sparse Encoding of Manifolds
	Low Dimensional Representation of Manifolds
	Fusion from different subspaces
	Extension of LDMS System


	Evaluation
	Vocabulary, Corpus Description and Baseline Similarities
	Similarity Judgment
	Performance of Various DSMs
	LDMS System: Analysis of Different Scenarios

	Comparison With Other Representation Algorithms
	Taxonomy Creation
	Performance of Various DSMs


	Conclusions
	Conclusions
	Future Work

	Definitions
	Metric Space
	Ball and Sphere
	Neighborhood
	Power Set

	Bibliography

