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CHAPTER 1

Introduction

In this diploma thesis, we study the problem of optimal noncoherent trellis decoding, that is, the maximiza-

tion of |s(x)Hy| over x, where y is a complex vector, x is a discrete symbol sequence, and s(x) is a vector

that is produced by x through a trellis structure. Two example cases of noncoherent trellis decoding are

noncoherent detection of a minimum-shift keying (MSK) modulated sequence and noncoherent decoding

of convolutionally encoded data.

Specifically, MSK is a modulation scheme that limits problems associated with nonlinear distortion and

is used in a variety of applications, like signal transmission from satellites and broadcasting [1]. Although

the optimal coherent MSK receiver simplifies to constant-complexity symbol-by-symbol detection,

optimal noncoherent reception of MSK takes the form of sequence detection [2–6] (due to channel-

induced memory) which has exponential (in the sequence length) complexity when implemented through

an exhaustive search among all possible sequences. In fact, blind sequence detection may offer significant

performance gains in comparison with conventional single-symbol blind detection [7, 8]. This observation

was first made in [9–12], in the context of M -ary PSK (MPSK), where it was shown that ML blind

sequence detection minimizes the sequence error probability, offering significant error rate performance

gains over the conventional symbol-by-symbol blind detection and attaining nearly-coherent detection

performance for sufficiently long sequences. This is partly due to the fact that sequence detection exploits

the correlation of the received symbols in the entire sequence (due to channel-induced memory), whereas

symbol-by-symbol detection does not. However, optimal sequence detection comes at a high price when

implemented through an exhaustive search among all possible transmitted data sequences; its complexity

is exponential in the sequence length. Convolutional codes are used extensively to achieve reliable data

transfer in numerous applications, such as digital video, radio, and satellite communications. They are

modeled by a trellis structure and optimal (coherent and noncoherent) convolutional decoding also takes

the form of sequence detection.

In this work, we present an algorithm that performs generalized-likelihood-ratio-test (GLRT) optimal

noncoherent sequence detection of MSK signals in flat fading with log-linear (in the sequence length)

complexity. Moreover, for Rayleigh fading channels, the proposed algorithm is equivalent to the maximum-

likelihood (ML) noncoherent sequence detector. Our algorithm utilizes principles that have been used

for polynomial-complexity optimization in [14–18] and complements efficient optimal noncoherent

detection techniques that have been developed for PSK [14, 15], [19], PAM or QAM [17, 20–22], and

FSK [18] signals. We then discuss how the proposed algorithm can be generalized for use on noncoherent

convolutional decoding. To simplify the presentation, we consider a particular convolutional code and
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modify the proposed algorithm to perform optimal noncoherent trellis decoding with empirically low

complexity. Simulation studies indicate that the optimal noncoherent MSK detector attains coherent-

detection performance when the sequence length is on the order of 100, offering a 5–6 dB gain over the

typical single-symbol detector. Similar results are obtained for the generalized algorithm on convolutional

decoding.
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CHAPTER 2

MSK

2.1 Signal Model

We consider a binary information bit sequence x = [x0, . . . , xN−1]
T ∈ {±1}N . During the nth single-bit

period, the lowpass equivalent signal that is modulated according to MSK is given by [23]

s(t) =

√
2E

T
ejφ[n]ejxn

π
2T

(t−nT ), nT ≤ t < (n+ 1)T (2.1)

where E and T denote signal strength and nominal duration, respectively. The phase of s(t) at time nT is

given by φ[n] = φ (nT ) where

φ[0] = 0 and φ[n+ 1] = φ[n] + xn
π

2
. (2.2)

If the modulated waveform is transmitted through a flat-fading channel, then the received signal, after

downconversion, is

r(t) = hs(t) + n(t) (2.3)

where h is a complex number that models signal attenuation and phase change due to the channel, and n(t)

is a zero-mean complex Gaussian process with variance σ2w, modeling noise. From the Gram-Schmidt

procedure, we derive an orthonormal basis for s(t) with x0 = 1 and x0 = −1, given by

ψ1(t) =
1√
T
ej

πt
2T , 0 ≤ t < T, (2.4)

ψ2(t) =
π√

T (π2 − 4)

(
e−j

πt
2T +

2j

π
ej

πt
2T

)
, 0 ≤ t < T.

By correlating s(t) with {ψi(t− nT )}2i=1, we obtain the signal constellation

s1 =

[√
2E

0

]
and s−1 =

 −2j
√
2E
π√

2E(π2−4)
π

 (2.5)

for xn = 1 and xn = −1, respectively. Hence, the nth transmitted signal vector is

sn = sxnejφ[n]. (2.6)

During the nth bit transmission, n = 0, . . . , N − 1, the optimal receiver correlates the received signal

r(t) with {ψi(t− nT )}2i=1 and produces two samples [23]

ri =

∫ nT+T

nT
r(t)ψ∗i (t− nT )dt, i = 1, 2. (2.7)
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Consequently, the nth received vector becomes

rn ,

[
r1

r2

]
= hsn + nn (2.8)

where nn ∼ CN (0, σ2wI2).

If r0, . . . , rN−1 are the received vectors (per information bit) given by (2.8), then we may form the

received vector for the entire sequence x as

r ,


r0
...

rN−1

 = h


s0
...

sN−1


︸ ︷︷ ︸

s

+w (2.9)

where w ∼ CN (0, σ2wI2N ), s is the column-wise concatenation of the N transmitted signal vectors

s0, . . . , sN−1 defined by (2.6), and r is the column-wise concatenation of the N received signal vectors

r0, . . . , rN−1.

2.2 Optimal Coherent Detection

The ML coherent detector maximizes the conditional probability density function (pdf) f(r|h, s) of the

observation vector given the transmitted symbol sequence s and the channel coefficient h, i.e.,

ŝML
coh = argmax

s
f(r0, . . . , rN−1|h, s) = argmax

s

N−1∑
n=0

<
{
(hsn)

Hrn
}
. (2.10)

The trellis diagram at the receiver is shown in Fig. 2.1.

By the trellis structure, we derive a couple of useful lemmas, the proofs of which are shown in the

appendix.

Lemma 1. The optimal coherent sequence detection is equivalent to symbol by symbol detection. To

optimally decide in favor of the transmitted symbol sn, it suffices to know rn−1, rn, rn+1, and the channel

coefficient h.

Lemma 2. At any given time, the two most likely winning paths originate from the same node.

Due to Lemma 1, the optimal coherent MSK receiver simplifies to constant-complexity symbol-by-symbol

detection.
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Figure 2.1: Trellis diagram at the receiver.

2.3 Optimal Noncoherent Detection

If the actual channel realization is not available to the receiver and is modeled as a random variable, then

this variable appears in consecutive received vectors, hence the channel induces memory in addition to

memory already present due to MSK modulation. As a result, optimal detection requires processing of the

entire sequence of N received vectors.

The ML noncoherent detector maximizes the conditional pdf of r given s, that is, the optimal decision

is given by

ŝML = argmax
s

f(r|s). (2.11)

Note that ‖s‖2 = 2EN for any s. It can be shown that, for Rayleigh fading (i.e., h ∼ CN (0, σ2h)), the

received symbol vector r given the transmitted sequence s follows a proper complex Gaussian distribution

with mean E[r|s] = 0 and covariance matrix

Cr|s , E[rrH |s] = σ2hss
H + σ2wI2N . (2.12)

Hence, the optimization problem in (2.11) can be rewritten as

ŝML = argmax
s

1

π2N |Cr|s|
e
−rHC−1

r|sr. (2.13)

Exploiting identities for the determinant and inverse of a rank-1 update [13] and the fact that ‖s‖2 = 2EN ,

we obtain

|Cr|s| = σ4N−2w

(
σ2w + σ2h‖s‖2

)
(2.14)

and

C−1r|s =
1

σ2w
I2N −

σ2h
σ4w + σ2hσ

2
w‖s‖2

ssH . (2.15)

If we substitute (2.14) and (2.15) in (2.13), then we obtain

ŝML = argmax
s

|sHr|. (2.16)
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Substituting s = [sH0 , s
H
1 , . . . , s

H
N−1]

H in (2.16), the ML rule is rewritten in terms of the information

sequence x as1

x̂ML = argmax
x∈{±1}N

∣∣sH0 r0 + . . .+ sHN−1rN−1
∣∣ . (2.17)

The equivalent expressions (2.16) and (2.17) represent the optimal decision rule for a Rayleigh-distributed

channel.

If, on the other hand, the channel distribution is not Rayleigh or is unknown, then we may consider

joint channel estimation and data detection, i.e., GLRT sequence detection, according to which,

ŝGLRT = argmin
s

{
min
h∈C
‖r− hs‖2

}
= argmin

s

∥∥∥∥r− sHr

‖s‖2 s
∥∥∥∥2 = argmax

s

|rHs|2
‖s‖2

= argmax
s

∣∣sHr∣∣ . (2.18)

Hence, the ML optimization problem in (2.16) and the GLRT optimization problem in (2.18) are equivalent.

This equivalence between noncoherent ML and GLRT has also been demonstrated in the context of equal-

energy signals and uniformly distributed over [0, 2π) channel phase [7,20]. A straightforward approach to

solve (2.16) and (2.18) (or, equivalently, (2.17)) would be an exhaustive search among all 2N sequences

x ∈ {±1}N . However, such a solver would be impractical even for moderate values of N , since its

complexity is on the order of O(2N ), i.e., it grows exponentially with N . In the following, we present an

algorithm that solves the above problems with log-linear complexity O(N logN).

2.3.1 Log-linear optimal noncoherent detection

To present the proposed algorithm, we begin by rewriting the optimal detection rule in (2.17) as

max
x∈{±1}N

∣∣sH0 r0 + . . .+ sHN−1rN−1
∣∣

= max
x∈{±1}N

max
φ∈[0,2π)

<
{
e−jφ

(
sH0 r0 + . . .+ sHN−1rN−1

)}
= max

φ∈[0,2π)
max

x∈{±1}N
<
{
e−jφ

(
sH0 r0 + . . .+ sHN−1rN−1

)}
. (2.19)

That is, to find the optimal sequence x̂ML in (2.17), we may let φ scan the interval [0, 2π) and, for each

value of φ, collect the corresponding vector

x̂ (φ)= argmax
x∈{±1}N

<
{
e−jφ

(
sH0 r0 + . . .+ sHN−1rN−1

)}
(2.20)

that solves the innermost maximization in (2.19). Then,

x̂ML ∈ X ,
{
x̂1, x̂2, . . . , x̂|X |

}
=

⋃
φ∈[0,2π)

{x̂ (φ)} . (2.21)

Interestingly, as we will show below, the size of the set in (2.21) is 2N and can be built with log-linear

complexity.

Let φ have a fixed value in [0, 2π), say φ = 0. Then, (2.20) can be solved efficiently utilizing the

Viterbi Algorithm (VA). Note that, since φ is fixed (we have, without loss of generality assumed that
1Note that s depends on x, since sn contains xn due to (2.6).
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φ = 0),( (2.20)) is equivalent to performing coherent detection on x, i.e., it is equivalent to (2.10). Due

to (2.21), the decision sequence x̂ (φ = 0) will be equal to x̂m for some m ∈ {1, 2, . . . , |X |}, where

x̂m = [x̂0, . . . , x̂n, x̂n+1, . . . , x̂N−1]
T (2.22)

and x̂i, i = 0, 1, . . . , N − 1, is the decision on the ith information bit xi of the sequence of N consecutive

bits. Based on x̂m given by (2.22), we construct the phase vector

φ̂m =
[
φ̂[0] = 0, . . . , φ̂[n], φ̂[n+ 1], . . . , φ̂[N − 1]

]T
, (2.23)

using the iteration in (2.2).

As φ scans the interval [0, 2π), the decision on x̂ (φ) will change from x̂m to x̂k for some k ∈
{1, 2, . . . , |X |} \ {m}. An important observation is that successive decision sequences (in this case, x̂m
and x̂k) will differ in exactly two consecutive bit decisions x̂n and x̂n+1, i.e.,2

x̂k =
[
x̂0, . . . , x̂n−1, x̂

c
n, x̂

c
n+1, x̂n+2, . . . , x̂N−1

]T
,

φ̂k =
[
φ̂[0], . . . , φ̂[n], φ̂[n+ 1] + π, φ̂[n+ 2], . . . , φ̂[N − 1]

]T
,

(2.24)

for some n = 0, 1, . . . , N − 1, or in the last one (x̂N−1).3 The decision on x changes (from x̂m to x̂k),

according to (2.20) and utilizing (2.6), for some n = 0, 1, . . . , N − 1, only when4,5

N−1∑
i=0

<
{
e−jφ

(
sx̂m[i]ejφ̂m[i] − sx̂k[i]ejφ̂k[i]

)H
ri

}
= 0

⇔
∑

i=n,n+1

<
{
e−jφ

(
sx̂m[i]ejφ̂m[i] − sx̂

c
m[i]ejφ̂k[i]

)H
ri

}
= 0

⇔ cos (φ− v1 − v2) = 0

⇔ φ = ±π
2
+ v1 − v2 (mod 2π)︸ ︷︷ ︸

φ
(1)
n ,φ

(2)
n

(2.25)

where

v1 ,
(
sx̂m[n]ejφ̂m[n]

)H
rn +

(
sx̂m[n+1]ejφ̂m[n+1]

)H
rn+1,

v2 ,
(
sx̂

c
m[n]ejφ̂m[n]

)H
rn +

(
sx̂

c
m[n+1]ejφ̂m[n+1]+jπ

)H
rn+1.

(2.26)

Hence, for n = 0, 1, . . . , N − 1, from (2.25) we collect 2N distinct phases

φ
(1)
0 , φ

(2)
0 , . . . , φ

(1)
N−1, φ

(2)
N−1. (2.27)

Lemma 3. The produced 2N phases among any consecutive pair of sequence decision on x, are identical

to those in (2.27).
2Since the constellation is binary, the notation (·)c is utilized for the relation xc = −x. That is, 1c = −1 and (−1)c = 1.
3In the case where n = N − 1, x̂k = [x̂0, x̂1, . . . , x̂N−2, x̂

c
N−1]

T and φ̂k = φ̂m.
4We use the notation x̂k[i] and φ̂k[i] to refer to the ith element of the N × 1 vectors x̂k and φ̂k, respectively.
5For simplicity purposes, we abuse the notation in the following sense; in the case where n = N − 1, rn+1, φ̂k[n +

1], φ̂m[n+ 1], x̂m[n+ 1], x̂cm[n+ 1], and x̂k[n+ 1] are not defined and hence are assumed to be equal to 0 or 0, depending on
their dimension. Hence, when n = N − 1, (2.26) is simplified since the second term of each summation is equal to 0.
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Lemma 3 (the proof of which is shown at the appendix) implies that it suffices to compute the 2N

phases only once. Hence, if we sort the phases in (2.27) in ascending order, i.e.,

(θ0, θ1, . . . , θ2N−1) = sort
(
φ
(1)
0 , φ

(2)
0 , . . . , φ

(1)
N−1, φ

(2)
N−1

)
, (2.28)

then we partition the entire interval [0, 2π) into 2N disjoint intervals, i.e.,

[0, θ0), (θ0, θ1) , . . . , (θ2N−2, θ2N−1) , (2.29)

in each of which the sequence decision x̂ remains constant. Note that we ignore the last interval

(θ2N−1, 2π) because it produces the same decision sequence x̂ with the interval [0, θ0).

All the above lead to the following algorithm.

1. Set φ = 0 and identify x̂ = [x̂0, x̂1, . . . , x̂N−1]
T by (2.10) with h = 1. This step has complexity

O(N).

2. For any n = 0, 1, . . . , N − 1, based on x̂n, construct φ[n] through (2.2). Then, x̂n and φ[n] are

used to construct sn through (2.6). Once s0, s1, . . . , sN−1 are available, calculate the metric of

interest in (2.17) with complexity O (N).

3. Set the current x̂ as the best sequence, i.e., x̂ML = x̂, and store its metric from Step 2 as the

ML_value.

4. For each n = 0, 1, . . . , N − 1, use x̂n and φ[n] from Step 1 and evaluate (2.26) to obtain v1 and v2
which are plugged into (2.25). As a result, from (2.25), obtain the 2N phases φ0, φ1, . . . , φ2N−1.

5. Sort the 2N phases from Step 4 in ascending order to obtain θ0, θ1, . . . , θ2N−1.

6. For each i = 0, 1, . . . , 2N − 1, repeat the following Steps 7–9.

7. Move to θi, get the index k for which θi = φk and set it equal to k (mod N). Update the current

x̂ by setting x̂k and x̂k+1 equal to x̂ck and x̂ck+1, respectively. Also set φ[k + 1] = φ[k + 1] + π

(mod 2π).

8. Update sk and sk+1 through (2.6) using the modified x̂ and φ[k + 1] from Step 7. Then, evalu-

ate (2.17) and store the new metric as value_x̂.

9. Compare value_x̂ with ML_value. If value_x̂ is greater than ML_value, then set the current vector

x̂ as x̂ML and set the ML_value to value_x̂.

The pseudo-code of the proposed ML/GLRT noncoherent MSK sequence detection algorithm is illustrated

in Fig. 2.2. The overall complexity of the proposed algorithm is dominated by the computational cost of

the phase sorting at line 19, which is O (N logN).
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Algorithm 1 Optimal Blind MSK Detection in Time O(N logN)

Input: r, s1, s−1

1: Get x̂ = [x̂0, x̂1, . . . , x̂N−1]
T
for φ = 0.

2: φ[0] = 0
3: for n = 1 : N − 1 do

4: φ[n] = φ[n− 1] + x̂n−1
π
2 .

5: end for

6: value x̂ =
∑N−1

n=0

(

sx̂nejφ[n]
)H

rn
7: ML value = |value x̂|
8: x̂ML = x̂

9: for n = 0 : N − 1 do

10: if n < N − 1 then

11: v1 =
(

sx̂nejφ[n]
)H

rn +
(

sx̂n+1ejφ[n+1]
)H

rn+1

12: v2 =
(

sx̂
c
nejφ[n]

)H
rn +

(

sx̂
c
n+1ejφ[n+1]+jπ

)H
rn+1

13: else

14: v1 =
(

sx̂nejφ[n]
)H

rn

15: v2 =
(

sx̂
c
nejφ[n]

)H
rn

16: end if

17: (φn, φn+N ) = ±π
2 + v1 − v2 (mod 2π)

18: end for

19: (θ0, θ1, . . . , θ2N−1) = sort (φ0, φ1, . . . , φ2N−1)
20: for i = 0 : 2N − 1 do

21: Let k be the index for which θi = φk at line 19.
22: k = k (mod N)
23: if k < N − 1 then

24:

value x̂ = value x̂−
(

sx̂kejφ[k]
)H

rk −
(

sx̂k+1ejφ[k+1]
)H

rk+1

+
(

sx̂
c

kejφ[k]
)H

rk +
(

sx̂
c

k+1ejφ[k+1]+jπ
)H

rk+1

25: x̂(k : k + 1) = x̂c(k : k + 1)
26: φ[k + 1] = φ[k + 1] + π (mod 2π)
27: else

28: value x̂ = value x̂−
(

sx̂kejφ[k]
)H

rk +
(

sx̂
c

kejφ[k]
)H

rk

29: x̂(k) = x̂c(k)
30: end if

31: best value = |value x̂|
32: if best value> ML value then

33: ML value=best value
34: x̂ML = x̂

35: end if

36: end for

Output: x̂ML

Figure 2.2: ML/GLRT noncoherent sequence detection of MSK.

2.4 Simulation Results

We consider MSK transmissions through a Rayleigh flat-fading channel with σ2h = 1. In Fig. 2.3, we plot

the bit error rate (BER) of the optimal noncoherent sequence detector as a function of the transmitted

signal-to-noise ratio (SNR), for sequence lengthN = 1, 2, 4, 100. We include the BER of the conventional

ML coherent detector, as a reference. We observe that, as the sequence length increases, the noncoherent

detector approaches the coherent one in terms of BER. Moreover, the BER of the conventional noncoherent

detector (i.e.,N = 1) is 5–6dB far from the coherent one; as the sequence lengthN increases, the BER gap
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Figure 2.4: Noncoherent MSK detection BER and cost versus sequence length (SNR=15dB).

decreases to zero. To demonstrate the rate of convergence to coherent detection performance, in Fig. 2.4,

we set the SNR to 15dB and plot the BER of the optimal noncoherent detector and the computational cost

of the proposed algorithm and the conventional exhaustive-search approach as a function of the sequence

length N . We note that the BER of the noncoherent scheme with N = 100 is nearly equal to the BER of

the coherent one with perfect channel knowledge. Interestingly, this is achieved with complexity on the
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order of 100log2100 ' 700 computations while the conventional exhaustive search would require 2100

computations.

15





xn

+ c3n+2

+

c3n+1

c3n

Figure 3.1: (K = 3, k = 1, n = 3) convolutional encoder.

CHAPTER 3

Convolutional Coding

3.1 Signal Model

We consider an information bit sequence x =
[
x0, x1, . . . , xN−1

]T
∈ {0, 1}N which undergoes convolu-

tional encoding according to the encoder shown in Fig. 3.1 [23]. The convolutional encoder actually

encodes the information sequence x̃ =
[
xT , 0, 0

]T
in order to empty the register of the encoder in Fig. 3.1.

The sequence to be transmitted is the resulting encoded vector c ,
[
c0, c1, . . . , cL−1

]T
∈ {0, 1}L where

L = 3N + 6. If we define the encoded subvector cn ( that corresponds to the information bit xn) as

cn =

 c3n

c3n+1

c3n+2

 ∈ {0, 1}3 , n = 0, 1, . . . , N + 1, (3.1)

then we may rewrite the encoded sequence c as

c =


c0

c1
...

cN+1

 . (3.2)
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For the transmission of vector c, we consider binary phase-shift keying (BPSK) [23]. During the lth

coded-bit period, l = 0, 1, . . . , L− 1, the low-pass equivalent BPSK signal is given by

s(t) =

√
2E

T
(1− 2cl)p(t− lT ) , lT ≤ t < (l + 1)T, (3.3)

where E and T represent signal energy and nominal duration, respectively, and p(t) is a shaping pulse

with duration from 0 to T , normalized to unit energy. If the modulated waveform is transmitted through a

flat-fading channel, then the received signal, after downconversion, is

r(t) = hs(t) + n(t) (3.4)

where h is a complex number that models signal attenuation and phase change due to the channel and n(t)

is a zero-mean complex Gaussian process with variance σ2w modelling noise. The signal space can be

represented from the single basis function p(t).

During the lth coded-bit transmission, the optimal receiver correlates the received signal r(t) with the

basis function p(t) and produces the received symbol

rl =

∫ lT+T

lT
r(t)p(t− lT )dt, l = 0, 1, . . . , L− 1. (3.5)

Consequently, the lth received symbol becomes

rl = h(1− 2cl)
√
2E + nl =

 h
√
2E + nl , cl = 0,

−h
√
2E + nl , cl = 1,

(3.6)

where nl ∼ CN (0, σ2w).

From the received symbols (per coded bit) r0, r1, . . . , rL−1 given by (3.6), we may form the received

vector for the entire received coded sequence c as

r =


r0

r1
...

rL−1

 = h
√
2E(1− 2c) +w (3.7)

where w ∼ CN (0, σ2wIL) and r is the column-wise concatenation of the L received signal symbols

r0, r1, . . . , rL−1. If we define the received vector per information sequence bit

rn ,

 r3n

r3n+1

r3n+2

 , n = 0, 1, . . . , N + 1, (3.8)

then we may rewrite the received vector r in correspondence to the information bit sequence (x0, x1, . . . , xN−1, 0, 0)

as

r =


r0

r1
...

rN+1

 . (3.9)
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Figure 3.2: Trellis diagram at the receiver.

3.2 Optimal Coherent Decoder

The ML coherent decoder maximizes the conditional probability density function (pdf) f(r | h, c) of the

observation vector given the transmitted coded symbol sequence c and the channel coefficient h, i.e.,

ĉML
coh = argmax

c
f(r0, . . . , rN+1 | h, c) = argmax

c

{
(1−2c)T <{h∗r}

}
= argmax

c

N+1∑
n=0

(1−2cn)T <{h∗rn} .
(3.10)

Note that c depends on x, since cn contains xn due to the convolutional encoder and thus, we can acquire

x̂ML
coh from ĉML

coh . This is illustrated in Fig. 3.2. The above problem can be easily solved with linear

complexity utilizing the Viterbi Algorithm. The trellis diagram at the receiver is shown in Fig. 3.2 [23].

3.3 Optimal Noncoherent Decoding

If the actual channel coefficient is not available at the receiver and is modelled as a random variable, then

this variable appears in consecutive received vectors, hence the channel induces memory. As a result,

optimal decoding requires processing of the entire sequence of N + 2 received vectors.

The ML noncoherent decoder maximizes the conditional pdf of r given c, that is, the optimal decision

is given by

ĉML = argmax
c

f(r | c). (3.11)

Note that ‖1− 2c‖2 = L for any c. It can be shown that, for Rayleigh fading (i.e., h ∼ CN (0, σ2h)), the

received symbol vector r given the transmitted coded sequence c follows a proper complex Gaussian

distribution with mean E[r | c] = 0 and covariance matrix

Cr|c , E[rrH | c] = 2Eσ2h(1− 2c)(1− 2c)T + σ2wIL. (3.12)

Hence, the optimization problem in (3.11) can be rewritten as

ĉML = argmax
c

1

πL|Cr|c|
e
−rHC−1

r|cr. (3.13)
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Exploiting identities for the determinant and inverse of a rank-1 update [13] and the fact that ‖1−2c‖2 = L,

we obtain

|Cr|c| = |σ2wIL|
(
1 + 2E

σ2h
σ2w

(1− 2c)T (1− 2c)

)
= σ2L−2w

(
σ2w + 2Eσ2h‖1− 2c‖2

)
(3.14)

and

C−1r|c = σ−2w IL −
2Eσ2h

σ4w + 2Eσ2hσ
2
w‖1− 2c‖2 (1− 2c)(1− 2c)T . (3.15)

If we substitute (3.14) and (3.15) in (3.13), then we obtain

ĉML = argmax
c

|(1− 2c)T r|. (3.16)

Substituting c =
[
cT0 , c

T
1 , . . . , c

T
N+1

]T
in (3.16), the ML rule is rewritten in terms of the information

sequence x̃ =
[
xT 0 0

]T
as

ˆ̃xML = argmax
x̃∈{0,1}N+2

|(1− 2c0)
T r0 + (1− 2c1)

T r1 + . . .+ (1− 2cN+1)
T rN+1| (3.17)

from which we can acquire the optimal information sequence xML which is the N first elements of ˆ̃xML.

The equivalent expressions (3.16) and (3.17) represent the optimal decision rule for a Rayleigh-distributed

channel.

If, on the other hand, the channel distribution is not Rayleigh or is unknown, then we may consider

joint channel estimation and data decoding, i.e., GLRT sequence decoding according to which,

ĉGLRT = argmin
c

{
min
h∈C
‖r−

√
2Eh(1− 2c)‖2

}
= argmin

c

∥∥∥∥r− (1− 2c)T r

‖1− 2c‖2 (1− 2c)

∥∥∥∥
= argmax

c
|(1− 2c)T r|.

(3.18)

Hence, the ML optimization problem in (3.16) and the GLRT optimization problem in (3.18) are equivalent.

This equivalence between noncoherent ML and GLRT has also been demonstrated in the context of equal-

energy signals and uniformly distributed over [0, 2π) channel phase [7,20]. A straightforward approach to

solve (3.16) and (3.18) (or, equivalently, (3.17)) would be an exhaustive search among all 2N information

sequences x ∈ {0, 1}N . However such a solver would be impractical even for moderate values of N ,

since its complexity is on the order of O(2N ), i.e., it grows exponentially with N . In the following we

present an algorithm that solves the above problems with empirically low complexity.

3.3.1 Noncoherent decoding with empirically low complexity

To present the proposed algorithm, we begin by rewriting the optimal decoding rule in (3.17) as

ˆ̃xML = max
x̃∈{0,1}N+2

|(1− 2c0)
T r0 + (1− 2c1)

T r1 + . . .+ (1− 2cN+1)
T rN+1|

= max
x̃∈{0,1}N+2

max
φ∈[0,2π)

<
{
e−jφ

(
(1− 2c0)

T r0 + . . .+ (1− 2cN+1)
T rN+1

)}
= max

φ∈[0,2π)
max

x̃∈{0,1}N+2
<
{
e−jφ

(
(1− 2c0)

T r0 + . . .+ (1− 2cN+1)
T rN+1

)}
.

(3.19)
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That is, to find the optimal sequence x̃ML in (3.17), we may let φ scan the interval [0, 2π) and, for each

value of φ, collect the corresponding vector

x̃(φ) = argmax
x̃∈{0,1}N+2

<
{
e−jφ

(
(1− 2c0)

T r0 + . . .+ (1− 2cN+1)
T rN+1

)}
(3.20)

that solves the innermost maximization in (3.19). Then,

ˆ̃xML ∈ X , {ˆ̃x1, ˆ̃x2, . . . , ˆ̃x|X |} =
⋃

φ∈[0,2π)

{
ˆ̃x(φ)

}
. (3.21)

The size of the set in (3.21) is not fixed and varies according to the received data. Although the size of the

set is not fixed, it is, in most cases small and can be built with significantly lower complexity as compared

to O(2N ).
Let φ have a fixed value in [0, 2π), say φ = 0. Then, (3.20) can be solved efficiently utilizing the VA.

Note that, since φ is fixed (we have, without loss of generality assumed that φ = 0), 3.20 is equivalent to

performing coherent decoding on x̃, i.e., it is equivalent to (3.10). Due to (3.21), the decision sequence
ˆ̃x(φ = 0) will be equal to ˆ̃xm for some m ∈ {1, 2, . . . , |X |}, where

ˆ̃xm =
[
x̂0, . . . , x̂N−1, 0, 0

]T
(3.22)

and x̂i, i = 0, 1, . . . , N − 1, is the decision on the ith information bit xi of the sequence of N consecutive

bits. Moreover, if we (without loss of generality) assume that h = ejφ in (3.10), then, at φ = 0 we

have two paths arriving at each node on the trellis diagram for n ≥ 2. We choose an arbitrary node at

an arbitrary time n ≥ 2 on the trellis diagram. We define the winning (w) and the failing (f ) coded bit

vectors arriving at node state s at time n as

cw,s,n ,


cw,s,n0

...

cw,s,nn

 , cf,s,n ,


cf,s,n0

...

cf,s,nn

 , (3.23)

respectively. The corresponding complex-valued metrics of each path arriving at the node state s at time n

are defined as

Wn
s ,

n∑
i=0

(1− 2cw,s,ni )T ri , Fns ,
n∑
i=0

(1− 2cf,s,n)T ri (3.24)

The decision on the winning path arriving at node state s at time n changes only when

n∑
i=0

<
{
e−jφ

(
(1− 2cw,s,ni )− (1− 2cf,s,ni )

)T
ri

}
= 0

⇔ cos(φ− Wn
s − Fns ) = 0

⇔ φ = ±π
2
+ Wn

s − Fns︸ ︷︷ ︸
φn

(1)
s ,φn

(2)
s

(mod 2π)

(3.25)

The complex-valued metrics Wn
s , F

n
s can be calculated on the fly during the Viterbi algorithm run. Hence,

for n = 2, 3, . . . , N + 1 and for s = 1, 2, 3, 4, from (3.25) we collect 8N − 10 distinct phases

φ2
(1)

1 , φ2
(2)

1 , φ2
(1)

2 , φ2
(2)

2 , . . . , φN+1(1)

1 , φN+1(2)

1 . (3.26)
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The first decision change on a node will happen at φ1 = min{φ2(1)1 , φ2
(2)

1 , φ2
(1)

2 , φ2
(2)

2 , . . . , φN+1(1)

1 , φN+1(2)

1 }.
If we perform coherent decoding at φ = φ1 and we repeat the above process we will get a new set of

8N − 10 distinct phases

φ̃2
(1)

1 , φ̃2
(2)

1 , φ̃2
(1)

2 , φ̃2
(2)

2 , . . . , φ̃N+1(1)

1 , φ̃N+1(2)

1 .. (3.27)

Thus, we can repeat the above process until we build the set in (3.21).

All the above lead to the following algorithm.

1. Set φcur = 0.

2. For h = 1 in (3.10) acquire ĉ and for s ∈ {1, 2, 3, 4}, n ∈ {2, 3, . . . , N + 1} calculate Wn
s , F

n
s

according to 3.24.

3. Set best_value = |WN+1
1 | .

4. Set x̂ML = x̂.

5. Repeat

a) For all Wn
s , F

n
s calculate the distinct phases φ2

(1)

1 , φ2
(2)

1 , φ2
(1)

2 , φ2
(2)

2 , . . . , φN+1(1)

1 , φN+1(2)

1

and discard all φs less or equal to φcur. This step has complexity O(N).

b) If all phases are discarded in (a) stop, else set φcur as the minimum of the remaining φs in (a)

and save node state and time for which φcur was obtained. This step has constant complexity.

c) For h = ejφcur in (3.10) acquire ĉ and for s ∈ {1, 2, 3, 4}, n ∈ {2, 3, . . . , N + 1} calculate

Wn
s , F

n
s according to (3.24). To avoid ambiguity on the node for which φcur was obtained

the decision on this node should not be the same as in the previous iteration. This step has

complexity O(N).

d) If |Wn
s | > best_value

i. Set best_value = |Wn
s | .

ii. set x̂ML = x̂.

This step has complexity O(N).

The pseudo-code of the proposed ML/GLRT noncoherent trellis/convolutional decoding algorithm is

illustrated in Fig. 3.3.
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Algorithm 2 Optimal Noncoherent Trellis/Convolutional Decoding

Input: r

1: φcur = 0.
2: Acquire ĉ, x̂ for h = 1 according to (3.10) and calculate on the fly Wn

s ,Fns
for n ∈ {2, 3, . . . , N + 1} and s ∈ {1, 2, 3, 4}.

3: best value = |WN+1
1 |.

4: x̂ML = x̂.
5: while True do
6: for n = 2 to N + 1 do
7: for s = 1 to 4 do
8:

(
φn

(1)

s , φn
(2)

s

)
= π

2 ± Wn
s − Fns mod (2π).

9: end for
10: end for
11: Φ = {φ2(1)1 , φ2

(2)

1 , φ2
(1)

2 , φ2
(2)

2 , . . . , φN+1(1)

1 , φN+1(2)

1 }
12: Φ̂ = {φ ∈ Φ | φ > φcur}
13: if Φ̂ is empty then
14: break
15: else
16: [φcur, s, n] = min{Φ̂}
17: end if
18: Acquire ĉ, x̂ for h = ejφcur according to (3.10) and calculate on the fly

Wn
s ,Fns for n ∈ {2, 3, . . . , N+1} and s ∈ {1, 2, 3, 4}. To avoid ambiguity

on the node for which φcur was obtained the decision on this node should
not be the same as in the previous iteration.

19: if |WN+1
1 | > best value then

20: best value = |WN+1
1 |.

21: x̂ML = x̂.
22: end if
23: end while

Output: x̂ML

Figure 3.3: ML/GLRT noncoherent trellis/convolutional decoding algorithm.

3.4 Simulation results

We consider BPSK transmissions of coded-bit vectors for fixed SNR through a Rayleigh flat-fading

channel with σ2h = 1. In Fig. 3.4, we plot the cost of the optimal noncoherent convolutional decoder as

a function of the information sequence length N for N = 1, 2, 4, 10, 20, 40, 60, 80, 100. For 1000 runs

of the algorithm per sequence length we plot the worst case line cost, the average case line cost and the

best case line cost. We include the lines 11N2 and 13N2, as a reference. We observe that the cost of the

proposed noncoherent convolutional decoding algorithm follows a complexity trend of O(N2).
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Figure 3.4: Optimal noncoherent convolutional decoding cost (order of number of operations) versus
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Figure 4.1: Portion of Trellis diagram at a receiver

CHAPTER 4

Appendix

4.1 Proof of Lemma 1

Proof. Fig. 4.1 represents a portion of a trellis diagram at a receiver after a random sequence has been

transmitted, where we assume that n is odd and we define

an ,

<{(hs1ej0)Hrn}, n = odd

<{(hs1ej π2 )Hrn}, n = even,

bn ,

<{(hs−1ej0)Hrn}, n = odd

<{(hs−1ej π2 )Hrn}, n = even.

(4.1)

In addition we define f1(r0, . . . , rn−2, s1, s−1, h) ∈ R as the metric of the path priori to node 1,

f2(r0, . . . , rn−2, s
1, s−1, h) ∈ R as the metric of the path priori to node 3, g1(rn+2, . . . , rN−1, s

1, s−1, h) ∈
R as the metric of the path posteriori to node 14, and, g2(rn+2, . . . , rN−1, s

1, s−1, h) ∈ R as the metric

of the path posteriori to node 16. We choose an arbitrary winning path. The winning path passes through

node 1 and node 16. Somehow the nodes of the path at times n, n+ 1 are lost and we need to retrieve
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Figure 4.3: Potential winning path #2.

them. Based on the knowledge available there are four potential paths from which we must choose.

Path {1, 6, 11, 16}, path {1, 6, 9, 16}, path {1, 8, 11, 16} and path {1, 8, 9, 16}. The metrics of all four

potential paths have the factors f1, g2 in common and hence, the factors f1, g2 do not affect the decision

we want to make. Ultimately, we conclude that in order to optimally coherently decide for symbol n, we

can either perform sequence detection, or decide based on the received vectors rn−1, rn, rn+1 of the time

window n− 1, n, n+ 1. The proof is concluded.

4.2 Proof of Lemma 2

Proof. Using Fig. 4.1 as a reference, we arbitrary consider the path of nodes 1, 6, 11, 16 as a portion of

the winning path of the sequence as a whole. By this knowledge we know that f1 + an−1 > f2 − bn−1.

The last inequality is equivalent to f1+ bn−1 > f2−an−1, or in others words, the most likely path ending

up to node 8, is also passing through node 1. Ultimately, we infer that at any given moment the two most

likely paths originate from the same node. The proof is concluded.

4.3 Proof of Lemma 3

Proof. The paths (solid lines) in Fig. 4.2 and Fig. 4.3 represent two potential winning paths. If we desire

to find the φ’s for which the decision changes on the node which is filled with white, based on Fig. 4.2,

then we may calculate the 2 φ’s according to (2.25) as

(φ1, φ2) = ±
π

2
+ (s−1ej

3π
2 )Hr1 + (s1ejπ)Hr2 − (s1ej

3π
2 )Hr1 − (s−1ej0)Hr2

= ±π
2
+ j(s−1)Hr1 − (s1)Hr2 − j(s1)Hr1 − (s−1)Hr2

= ±π
2
+ j

(
s−1 − s1

)H
r1 −

(
s1 + s−1

)H
r2.

(4.2)

If on the other hand, we desire to find the φ’s for which the decision changes on the node which is filled

with white, based on Fig. 4.3, then we may calculate the 2 φ’s according to (2.25) as

(φ1, φ2) = ±
π

2
+ (s1ej

π
2 )Hr1 + (s1ejπ)Hr2 − (s−1ej

π
2 )Hr1 − (s−1ej0)Hr2

= ±π
2
+ −j(s1)Hr1 − (s1)Hr2 + j(s−1)Hr1 − (s−1)Hr2

= ±π
2
+ j

(
s−1 − s1

)H
r1 −

(
s1 + s−1

)H
r2.

(4.3)
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We then observe that the 2 φ’s produced by (4.2), are identical to those produced by (4.3). In a similar

manner it can be shown that, no matter which is the winning path passing through a node, the φ’s for

which the decision changes on that node will always be the same. The proof is concluded.
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