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Abstract

In radar, sonar, and mobile communications, the estimation of the directions from which multi-

ple signals arrive at a point is called the direction of arrival (DoA) estimation problem and, over

the past decades, has been performed often through uniform linear arrays (ULAs) in conjunc-

tion with high-resolution subspace-based algorithms. Such techniques, however, have limited

capability of the number of directions they can estimate; if the ULA consists of N antenna

elements, then high-resolution subspace-based algorithms can estimate the directions of up to

N − 1 signals. To increase this number, a novel structure that consists of N antenna elements

and enables the estimation of O (N2) signal directions has been developed recently. It lies on

specific nonuniform-array structures which are called nested arrays.

In this thesis, we first overviewed the structure and properties of nested arrays and eval-

uated their performance through computer simulations. We observed that the nested arrays

with conventional subspace-based signal-processing algorithms can offer high performance but

require high complexity, which makes them impractical for real-time applications. Then, we

developed novel subspace tracking techniques for nested arrays that have lower complexity,

are proven to converge to the optimal, subspace-based estimator, and are capable of tracking

changes in the directions of the arriving signals (for example, when a source is moving with

respect to the array receiver).
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Chapter 1

Introduction

Direction-of-arrival (DoA) estimation is a fundamental problem in signal processing with impor-

tant applications in radar, sonar, source localization, wireless and mobile communications. Ex-

isting DoA estimation techniques may be broadly categorized into spectral estimation methods,

likelihood maximization methods, and high resolution subspace-based algorithms. Subspace-

based methods enjoy great popularity, mostly due to their favourable trade-off between target-

angle resolution ability and computational simplicity in implementation.

With conventional uniform linear arrays (ULAs), we can estimate the angles of arrival of

O (N) source signals by N antennas at the receiver, using high resolution subspace-based algo-

rithms. Algorithms such as the celebrated MUltiple SIgnal Classification (MUSIC) algorithm

rely on the r (number of targets) principal components of the recorded snapshots. The r prin-

cipal components are obtained either by means of singular-value decomposition (SVD) of the

sensor-array data matrix or eigen-value decomposition (EVD) of the estimated received-signal

autocorrelation matrix.

However, it was recently shown that we can estimate the angles of arrival of O (N2) source

signals by N antennas at the receiver using nested arrays. Nested arrays [2] constitute a novel

structure which is capable to provide a dramatic increase of the degrees of freedom (DoF).

Hence, we resolve significantly more sources than the actual number of physical antennas.

That is, nested arrays are obtained by combining two or more ULAs with increasing intersensor

spacing in order to exploitO (N2) DoF from onlyO (N) physical antennas. The implementation

of high resolution subspace-based algorithms for nested arrays offers a very good performance;

on the other hand, the computation of the principal components by SVD requires a high

complexity.

In this work, we investigate the implementation of subspace tracking techniques for nested

arrays. We develop an algorithm that can estimate the signal subspace avoiding the SVD

method. Our approach is based on the definition of a minimization problem and the use of

Stochastic Approximation Theory [3]. We prove that the solution of the minimization prob-

lem is the subspace of the signal. Hence, high resolution subspace-based algorithms can be

implemented avoiding the use of the SVD method. That is, by combining nested arrays and

Stochastic Approximation Theory, we develop an efficient subspace-tracking algorithm with low

complexity.
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Figure 2.1: Uniform linear array structure. Case about one impinging signal.

Chapter 2

Uniform Linear Arrays

2.1 ULA Structure and Signal Model

In the uniform linear arrays (ULAs), the sensors (antennas) are placed linearly with equal

distance. Consider a ULA consisting of N antennas for impinging signal of one source. The

delay along the array can be defined as a phase shift due to the baseband assumption. Let s (t)

a signal, that is transmitted by a source from angle θ. The baseband received signal vector can

be written as

y (t) = a (θ) s (t) + n (t) (2.1)

where t = 1, . . . , T is the time index, y (t) ∈ CN is the received vector, n (t) ∈ CN is the white

complex Gaussian noise vector with variance 1, and a (θ) ∈ CN is the steering vector whose

elements are the phase shifts experienced by the received signal at the elements of the array.

If the first element of the arrays is considered as a reference point, the steering vector can be

written as

a (θ) =
[
1, φ, . . . , φN−1

]T
where

φ = ejω, ω = j2π
d

λ
sin (θ)

with d, the distance between the antennas. In Figure 2.1, the structure of ULA for one impinging

signal from angle θ and the output y (t) are shown.
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We can generalize the signal model considering K signal sources. The signal model for the

general case can be written as

y (t) =
K∑
i=1

a (θi) si (t) + n (t) . (2.2)

Relation (2.2) can also be written as

y (t) = As (t) + n (t) (2.3)

where A = [a (θ1) , a (θ2) , . . . , a (θk)] ,∈ CN×K is the steering matrix and

s (t) = [s1 (t) , s2 (t) , . . . , sK (t)]T ∈ CK , is the source signal. The structure of the A steering

matrix is shown in (2.4).

A =


1 1 . . . 1

ejω1 ejω2 . . . ejωK

...
...

. . .
...

ej(N−1)ω1 ej(N−1)ω2 . . . ej(N−1)ωK

 . (2.4)

The steering matrix A is a Vandermonde matrix.

Also, it should be noted that the distance d is defined as d ≤ λ
2
, where λ is the wavelength

of received signals.

Proof : We know that

−π ≤ ω ≤ π (2.5)

where

ω = 2π
d

λ
sin (θ) (2.6)

and

−1 ≤ sin (θ) ≤ 1,∀θ ∈ [0, 2π] . (2.7)

From (2.5) and (2.6),

−π ≤ 2π
d

λ
sin (θ) ≤ π ⇒ −1 ≤ 2

d

λ
sin (θ) ≤ 1⇒ −1

2

λ

d
≤ sin (θ) ≤ 1

2

λ

d
. (2.8)

From (2.7) and (2.8), the distance between the antennas must be defined as d ≤ λ
2
.



Chapter 3

High Resolution Subspace-Based

Algorithms

3.1 Background Knowledge, Basic Definitions, and

Theorems

3.1.1 Vector Spaces

Vector Space Definition

The set V is called a vector space over F when the vector addition and scalar multiplication

operations satisfy the following properties [4]

(A1) x + y ∈ V ,∀x,y ∈ V . This is called the closure property for vector addition .

(A2) (x + y) + z = x + (y + z), ∀x,y, z ∈ V .

(A3) x + y = y + x,∀x,y ∈ V.

(A4) ∃ 0 ∈ V such that x + 0 = x,∀x ∈ V.

(A5) ∀x ∈ V , ∃ a vector (−x) ∈ V such that x + (−x) = 0.

(M1) αx ∈ V ,∀α ∈ F and ∀x ∈ V . This is the closure property for scalar multiplication .

(M2) (αβ) x = α (βx) ∀α, β ∈ F and ∀x ∈ V .

(M3) α (x + y) = αx + αy, ∀α ∈ F and ∀x,y ∈ V .

(M4) (α + β) x = αx + βx,∀α, β ∈ F and ∀x ∈ V .

(M5) 1x = x,∀x ∈ V .

Subspaces

Les S ⊆ F . If S is also a vector space over F using the addition and scalar multiplication

operations, then S is said to be a subspace of V . It is not necessary to check all 10 of the

defining conditions in order to determine if a subset is also a subspace.
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A nonempty S ⊆ V is a subspace of V if and only if

(A1) x + y ∈ S ⇒ ∀x,y ∈ S and

(M1) x ∈ S⇒ αx ∈ S,∀α ∈ F .

Range spaces

The range of matrix A ∈ <m×n is defined to be the subspace R (A) of <m that is generated

by the range of f (x) = Ax. That is,

R (A) = {Ax | x ∈ <n} ⊆ <m. (3.1)

Similarly, the R (A) is the subspace of <n defined by

R
(
AT
)

=
{
ATx | x ∈ <m

}
⊆ <n. (3.2)

Null spaces

• For an m× n matrix A, the set N (A) = {xn×1 | Ax = 0} ⊆ <n is called the nullspace

of A. In other words, N (A) is simply the set of all solutions to the homogeneous system

Ax = 0.

• The set N
(
AT
)

=
{
ym×1 | ATyT

}
⊆ <m is called the left-hand nullspace of A

because N
(
AT
)

is the set of all solutions to the left-hand homogeneous system yTA = 0.

3.1.2 Singular-Value Decomposition (SVD)

For each A ∈ <m×r of rank r, where r = min (m,n), there are orthogonal matrices Um×m,

Vn×n and a diagonal matrix Σm×m = diag (σ1, σ2, . . . , σr) such that [4]

A = U

(
Σ 0r×(n−r)

0(m−r)−r 0(m−r)×(n−r)

)
VT , with σ1 ≥ σ1 ≥ . . . ≥ σr ≥ 1. (3.3)

The σi’s are called the nonzero singular values of A. When r ≤ p = min (m,n), A is said to

have p − r additional zero singular values. The columns in U and V are called left-hand and

right-hand singular values for A, respectively.

Also there are some properties that be shown below

i. U:,1:r is an orthonormal basis for R (A).

ii. U:,r+1:m is an orthonormal basis for N
(
AT
)
.

iii. V:,1:r is an orthonormal basis for R (A).

iv. V:,r+1:n is an orthonormal basis for N
(
AT
)
.



3.1. Background Knowledge, Basic Definitions, and Theorems 15

Proof.

i. R (A) = R
(
U:,1:rΣVT

:,1:r

)
⊆ R (U:,1:r) = R (AV:,1:rΣ

−1) ⊆ R (A)⇒ R (A) = R (U:,1:r).

ii. If x ∈ R (U:,r+1:m), then x = U:,r+1:my ⇒ ATx = V:,1:rΣUT
:,1:rU:,r+1:my = 0 ⇒ x ∈

N
(
AT
)
.

Hence,

R (U:,r+1:m) ⊆ N
(
AT
)
, (3.4)

dim (R (U:,r+1:m)) = m− r, (3.5)

dim (N (A)) = m− r. (3.6)

Therefore, from (3.4)–(3.6), we obtain R (U:,r+1:m) = N
(
AT
)
.

(iii) , (iv): Apply (i) and (ii) to AT .

3.1.3 Properties of Eigenvalues and Eigenvectors

∀A ∈ <n×n, scalar λ and vectors xn×1 6= 0 satisfying Ax = λx are called eigen values and

eigen vector of A, respectively, and any such pair, (λ,x), is called an eigenpair for A. The

set of the distinct eigenvalues , denoted by σ (A), is called the spectrum of A [4].

• λ ∈ σ (A)⇔ A− λI is signular ⇔ det (A− λI) = 0.

• {x 6= 0 | x ∈ N (A− λI)} is the set of all eigenvectors associated with λ, whereN {A− λI}
is called an eigenspace for A.

• Nonzero row vectors y∗ such that y∗ (A− λI) = 0 are called left-hand eigenvectors

for A.

3.1.4 Eigen-Value Decomposition (EVD)

∀A ∈ <n×n, ∃ non singular Q with ‖Q:,i‖ = 1, i = 1, . . . , n, and diagonal matrix Λ such that

A = QΛQ−1 (3.7)
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where Q = [q1, . . . ,qn], and Λ =



λ1
. . .

λr

0
. . .

0


.

These are the eigenvectors and the eigenvalues of matrix A, respectively.

Also it should be noted that it is proved the below property.

If A ∈ Cn×n and AH = A (Hermitian matrix), then

λi ∈ <, i = 1, . . . , n,

and

QQH = QHQ = In (Q is a Unitary matrix) .

Hence,

A = UΛUH , where U = Q.

3.2 MUltiple SIgnal Classification (MUSIC) Algorithm

[Schmidt ’79]

Let the signal model that we defined in Chapter 2, relation (2.3). Requirements of MUSIC n <

m, and n white additional noise
(
E
{
nnH

}
= σ2I, E {n} = 0

)
. The autocorrelation matrices

of signal s, and output y are defined as

Rs = E
{
ssH
}
, where E {s} = 0,

Ry = E
{
yyH

}
, where E {y} = 0,

respectively. Also, it is proved that ARsA
H is a positive definite matrix, and rank

(
ARsA

H
)

=

r, where r = min (n,m). Therefore,

ARsA
H = QΛ0Q

H = QsΛ0Q
H
s . (3.8)
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Where, Q =

q1, . . . ,qr︸ ︷︷ ︸
Qs(m×r)

qr+1 . . .qm︸ ︷︷ ︸
Qn×(m−r)

 is a unitary matrix, and

Λ0 =



λ1
. . .

λr

0
. . .

0


,Λs =


λ1

. . .

λr

 , λ1 ≥ . . . ≥ λr > 0.

The autocorrelation matrix of output y is estimated as

Ry = E
{
yyH

}
= E

{
(As + n) (As + n)H

}
= ARsA

H + σ2I (3.9)

= QΛQH + σ2QQH = Q
(
Λ0 + σ2I

)︸ ︷︷ ︸
Λ

QH = QΛQH . (3.10)

Where,


Q,



λ1 + σ2

. . .

λr + σ2

σ2

. . .

σ2




= evd (Ry).

R (Qs) and R (Qn) are the signal subspace and the noise subspace , respectively.
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Assume distinct θ1, θ2, . . . , θn and m < n.

Property:

θ ∈ {θ1, . . . , θn} if and only if a (θ) ∈ R (A), if and only if QH
n a (θ) = 0.

Proof. Since θi 6= θj, r = rank (A) = min (m,n) = n.

If θ = θi, then a (θ) = Aei ∈ R (A). If a (θ) ∈ R (A), then

a(θ) = Ax⇒ Ax− a(θ) = 0⇒ [A a(θ)]︸ ︷︷ ︸
m×(n+1)

[
x

−1

]
= 0⇒ R (A) = {0}

⇒ rank ([A a (θ)]) < n+ 1⇒ θ = θi, for some i = 1, . . . , n. (3.11)

Hence, θ ∈ {θ1, . . . θn} ⇔ a (θ) ∈ R (A)⇔ a (θ) ∈ N
(
QH
n

)
, equivalently,

QH
n a (θ) = 0. (3.12)

MUSIC algorithm

If R̂y = 1
N

YYH , where Y = [y1,y2, . . . ,yN ], and the vector yi, is the output for different

samples, and i = 1, . . . , N , then

•
([

Q̂s, Q̂n

]
,Σ,VH

)
= svd

(
R̂y

)
,

• θ̂1, . . . , θ̂n = arg max
θ

{
P̂MUSIC(θ) = 1

‖QH
n a(θ)‖2 = 1

aH(θ)QnQH
n a(θ)

}
,

• θ̂1, . . . , θ̂n = arg max
θ

{
P̂MUSIC(θ) = ‖QH

s a(θ)‖2 = aH (θ) QsQ
H
s a (θ)

}
.

The P̂MUSIC(θ) is named as MUSIC spectrum , and the vector a (θ) is named as the scanner

vector or steering vector, that scan over all possible directions in order to compute the MUSIC

spectrum. The MUSIC algorithm can give a performance optical result, where the estimated

angles present a local maximum in MUSIC spectrum graph, knowing the number of incoming

sources.

3.3 Root-MUSIC Algorithm

The Root-MUSIC algorithm, as the MUSIC, use the autocorrelation matrix of received signal,

and implement SVD to estimate the noise subspace, estimating algebraically the incoming

angles. In MUSIC, primary motivation for computing the null space (noise subspace) was the

fact that QH
n a (θ) = 0 (3.12). Also, it is straightforward to check that the ‘null spectum’

P (a) = ‖QH
n A‖2 = P−m+1a

−m+1 + . . . P0 + · · ·+ Pm−1a
m−1. (3.13)
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Degree m− 1

Degree m

qm1

q1m

Degree 0

Degree 2m− 1

Figure 3.1: Calculation of the coefficients of P (a) based on QnQ
H
n .

where, a = j2π d
λ

sin (θ), and the P−m+1, . . . , Pm−1 are the coefficients of the polynomial in (3.13)

that is occurred using the norm property, has a conjugate symmetry property, i.e. P−i = P ∗i .

Let

ri = ρia
i (3.14)

denote the roots of this polynomial which lie on inside or are the unit circle. Due to the

conjugate symmetry of the polynomial P (a), its roots come in pairs where one root is the

conjugate reciprocal of the other. We select only one of each of these pairs. The coefficients

of the polynomial can be calculated as the sum of the diagonal terms of the matrix QnQ
H
n [5],

according to the diagram in Figure 3.1.

For each root, the incoming agles is found by solving the following equation

θk = sin−1
[
λ

2πd
arg (rk)

]
, k = 1, 2, . . . , r. (3.15)

Hence, to estimate the incoming angles using root-MUSIC algorithm, it calculates 2m − 2

roots of the polynomial P (a), where m represents the number of antennas, then it finds the

roots, which are on or are closest to the unit circle. The roots of the root-MUSIC in the z-plane

are sketched in Figure 3.2, for 2 incoming signals, and 4 antennas at the receiver.

The root-MUSIC algorithm eliminates the need for performing a computationally intensive

search, replacing it with a root-solving problem. The implementation of the root-MUSIC

algorithm is simpler than that of the MUSIC algorithm which requires careful determination

of the search step size, and the interpolation of the array manifold. Therefore it easy to be

understood that the root-MUSIC algorithm has lower complexity than MUSIC.
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Figure 3.2: Root-MUSIC roots in z-plane

3.4 ESPRIT algorithm

ESPRIT properties

Let A ∈ Cm×n, and B ∈ Cr×n.

Property 1:

If rank (A) = n and rank (B) = n, then rank
(
ABH

)
= n.

Proof.

rank
(
ABH

)
= rank

(
BH
)
− dim

(
N (A) ∩R

(
BH
))

(3.16)

= rank (B)− dim ({O} ∩ R (B))

= rank (B)− 0 = n. (3.17)

Property 2:

If rank (A) = n, then rank

([
A

B

])
= n.

Proof.

rank (Am×n) = n⇒ n ≤ m. (3.18)

rank


[

Am×n

Br×n

]
︸ ︷︷ ︸

(m+r)×n

 ≤ n. (3.19)
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A = [a1 . . . an], B = [b1, . . . ,bn].

If rank

([
Am×n

Br×n

])
< n, then

N

([
A

B

])
6= {0} ⇒ ∃ λ 6= 0s.t.

[
A

B

]
λ = 0⇒

[
Aλ

Bλ

]
=

[
0

0

]
(3.20)

⇒ Aλ = 0⇒ N (A) 6= {0} ⇒ rank (A) < n. (FALSE) (3.21)

Consider:

[
X1

X2

]
=

[
ABH

ADBH

]
where

• X1 (m× r), X2 (m× r) are known,

• A (m× n), B (r × n) are unknown with rank (A) = rank (B) = n,

• D (n× n) is diagonal and unknown matrix with rank (D) = n.

Objective:

Find D from X1, X2.

Solution: [
X1

X2

]
=

[
A

AD

]
BH

rank (Am×m) = n⇒ rank

([
A

AD

])
= n


⇒ rank

([
X1

X2

])
= n.

Compact SVD :

[
X1

X2

]
= U2m×nΣn×nV

H
r×n.

⇒

[
A

AD

]
BH = UΣVH ⇒

[
A

AD

]
BHB︸ ︷︷ ︸

n×n,rank=n

= UΣVHB

⇒

[
A

AD

]
= U ΣVHB

(
BHB

)−1︸ ︷︷ ︸
Pn×n

= UP.

If rank (P) < n, then rank (UP) < n = rank

([
A

AD

])
(FALSE). Hence,

rank (Pn×n) = n⇒ P−1 exists.



3.4. ESPRIT algorithm 22

Then,

U =

[
A

AD

]
P−1 =

[
AP−1

ADP−1

]
=

[
U1

U2

]
, U1︸︷︷︸
(m×n)

= AP−1, U2︸︷︷︸
(m×n)

= ADP−1.

R1 = UH
1 U1 =

(
P−1

)H
AHAP−1 ⇒

(
P−1

)H
AHA = R1P. (3.22)

R2 = UH
1 U2 =

(
P−1

)H
AHADP−1 = R1PDP−1. (3.23)

Therefore,

rank (R1) = rank
(
UH

1 U1

)
= rank (U1) = rank

(
AP−1

)
=

= rank (A) = n⇒ R−11 exists. (3.24)

From (3.22)–(3.24), R−11 R2 = PDP−1 ← EVD.

ESPRIT analysis

Let the signal model that we have defined in Chapter 2, the output y = As+n, equation (2.3),

and the autocorrelation matrix Ry = ARsA
H + σ2I⇒ Ry − σ2 = ARsA

H .

Let X1 = [X]1:m−1,:, X2 = [X]2:m,:, A1 = [A]1:m−1.:, A2 = [A2]2:m,: .

Note that: A2 = A1D, D =


ejω1

. . .

ejωn


n×n

.

Then,

X1 =
[
ARxA

H
]
1:m−1,: = [A]1:m−1,: RsA

H = A1RsA
H (3.25)

and

X2 =
[
ARsA

H
]
2:m,:

= [A]2:m,: RsA
H = A2RxA

H = A1DRsA
H . (3.26)

Set B = ARs. Then, X1 = A1B
H and X2 = A1DBH with rank (A1) = n, rank (D) = n,

rank (B) = rank (ARs) = rank (A) = n.

ESPRIT algorithm

• [U,Σ,V] = compact svd

([
[Ry − σ2I]1:m−1,:
[Ry − σ2I]2:m,:

])
,

• U2(m−1)×n =
[

U1

U2

]
,

• R1 = UH
1 U1, R2 = UH

1 U2,

• [P,D] = evd
(
R−11 R2

)
, from D we get the ω1, . . . , ωr,
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• θk = sin−1
(

arg(ωk)
π

)
, for k = 1, . . . , r.

3.5 Simulations

In this section we provide results for the simulations about high resolution subspace-based

algorithms, using ULA.
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Figure 3.3: Linear arrays, 20 elements, 7 sources, 200 snapshots.
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Figure 3.4: Linear arrays, 40 elements, 7 sources, 200 snapshots.
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Chapter 4

Subspace Tracking for ULA

4.1 Stochastic approximation theorem

f (x,w)

Figure 4.1: Input-Output.

In Figure 4.1, x ∈ <m is the input, y ∈ <l is the output and w ∈ <d. Find the parameter

w, say wo, that makes E {f (x,w)} = 0.

Solution[Robins-Monro ‘51]: If z1, z2, . . . is an iid sequence of inputs, E {f (z, `)} = 0 has a

unique solution, then

`n+1 = `n − cnf (zn, `n) , n = 1, 2, . . .
ω.p.1−−−→
m.s.

`o (4.1)

where `0 is arbitrary and {cn} is a monotonically decreasing sequence of positive numbers s.t.

∞∑
n=1

cn =∞ and
∞∑
n=1

c2n <∞. (4.2)

4.2 Subspace Tracking

Let x ∈ Cn be a complex valued random vector process with the correlation matrix C =

E
[
xxH

]
. As [6],we consider the following scalar function

J (W) =E‖x−WWHx‖2 = E
{

tr
(
x−WWHx

) (
x−WWHx

)H}
=E

{
tr
(
xxH

)
− tr

(
xxHWWH

)
− tr

(
WWHxxH

)
+ tr

(
WWHxxHWWH

)}
=tr

(
E
{
xxH

})
− tr

(
E
{
xxH

}
WWH

)
− tr

(
E
{
xxH

}
WWH

)
+ tr

(
WWHE

{
xxH

}
WWH

)
=tr (C)− 2tr

(
WHCW

)
+ tr

(
WHCWWHW

)
(4.3)
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with a matrix argument W ∈ Cn×r (r < n). Without loss of generality , we assume W to have

full rank r. Otherwise, of the rank of W is r̃ < r, W in (4.3) can always be replaced by a full

rank n× r̃ matrix satisfying W̃W̃H = WWH .

We want to know

• Is there a global minimum of J (W) ?

• What is the relation between this minimum and the signal subspace of C ?

• Are there any other local minima of J (W) ?

These questions are answered by the following theorems.

Theorem 1. W is a stationary point of J (W) if and only if W = QrU where Qr contains

any r distinct eigenvectors of C and U ∈ Cr×r is an arbitrary unitary matrix.

Proof. First we calculate the gradient of J (W) for real parameters. Let W = [w1, . . . ,wr] and

∇ = [∇1, . . . ,∇r]. ∇i is the gradient operator with respect to wr. After some calculations, we

get

1

2
∇iJ =

[
−2C + CWWT + WWHC

]
wi,

1

2
∇J =

[
−2C + CWWT + WWTC

]
W. (4.4)

For complex valued data, we define ∇R,i and ∇I,i to be the gradient operator with respect

to the real and imaginary part of wi. The complex gradient operator is defined as ∇i =
1
2

[∇R,i + j∇I,i]. After some calculations, we obtain from 4.4

∇J =
[
−2C + CWWH + WWHC

]
W. (4.5)

Let W = QrU, Qr contains any r distinct eigenvectors of C, and U is a orthogonal arbitrary

matrix.

∇J =
[
−2C + CWWH + WWHC

]
W

= −2CQrU + CQr UUH︸ ︷︷ ︸
I

QH
r Qr︸ ︷︷ ︸
I

U + Qr UUH︸ ︷︷ ︸
I

QrU

= −CQrU + QQH
r CQrU,

(
QΛQH = evd (C)

)
= −QΛQHQrU + QrQ

H
r QΛQHQrU

= −QΛ

[
Ir×r

O

]
U + Qr [Ir×r O] Λ

[
Λr×r

O

]
U

= −Q

[
Λs

0

]
U + Qr [Ir×r O]

[
Λs

0

]
U

= −Q

[
Λs

0

]
U + QrΛsU = −QsΛsU + QsΛsU = 0.
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Therefore, W = QrU is solution of (4.5).

Theorem 2. All stationary points of J (W) are saddle points except when Ur contains the r

dominant eigenvectors of C.

Proof. See proof of Theorem 2 in [6].

Since (4.3) describes an unconstrained cost function to be minimized, and its gradient has

solution the subspace signal of C, we can apply the stochastic approximation theorem which

we refer in Section 4.1.

Therefore, the subspace update can be written as

Wn = Wn−1 − µ
[
−2Cn + CnWn−1W

H
n−1 + Wn−1W

H
n−1Cn

]
Wn−1 (4.6)

where µ > 0 is a step size to be suitably chosen and Cn is an estimation for the correlation

matrix C at the nth samples that is defined as Cn = xnx
H
n , as used in the least-mean-square

(LMS) for adaptive filtering. The resulting subspace update is given by

yn = WH
n−1xn, (4.7)

Wn = Wn−1 + µ
[
2xny

H
n − xny

H
n ×WH

n−1Wn−1 −Wn−1yny
H
n

]
. (4.8)

We observe that this algorithm has a computational complexity O (Nr).

Also, we can write the above algorithm, approximating WH
n−1Wn−1 = I, as follows

Wn = Wn−1 + µ [xn −Wn−1yn] yHn . (4.9)

Replacing the expectation in (4.3) with the exponentially weighted sum yields

J (Wn) =
n∑
i=1

bn−i‖xi −WnW
H
n xi‖2

= tr [Cn]− 2tr
[
WH

n CnWn

]
+ tr

[
WH

n CnWnW
H
n Wn

]
. (4.10)

The use of the forgetting factor 0 < b ≤ 1 is intended to ensure that data in the distant past

are downweighted in order to afford the tracking capability when the system operates in a

nonstationary environment. Relation (4.10) can be obtained from (4.3) if we use Wn instead

of W and

Cn =
n∑
i=1

bn−ixix
H
i = bCn−1 + xnx

H
n (4.11)

instead of C.



4.3. Simulations 27

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Samples

‖
Q

s
Q

H s
‖
2
−

W
W

H

Figure 4.2: Stochastic Approximation (decreasing µ), 10 elements, 6 sources.

4.3 Simulations

In this section, we provide some results from various simulations for Subspace Tracking in ULA.

Initially, we show how WWH converges to QsQ
H
s , where Qs is the subspace of the received

signal. The Stochastic Approximation Theorem requires decreasing µ. However, stable µ is used

for real applications.In Figure 4.2, the decreasing µ case is showed. We observe that by using

the Subspace Tracking algorithm (iteration (4.6)) we can track the subspace of the received

signal with only a small number of samples. In Figure 4.3 we see the resulting Mean Square

Error (MSE) by applying Subspace Tracking and through the use of decreasing µ, namely

the Stochastic Approximation Theorem. We consider 6 incoming signals impinging on the

array from direction of {−45o,−30o, 0o, 10o, 20o, 45o}. We observe that if we use stable µ, the

algorithm is less efficient but this is true only for stationary environments. We choose a suitable

stable µ intending to track the signal subspace for non-stationary environments. Firstly, we

evaluate the performance of the implementation of iteration (4.6) using the forgetting factor

b. The performance can be shown in Figure 4.6, for different values of b in a stationary

environment. The case of b = 0 implies Stochastic Approximation. As expected, the closer b is

to 1 the better the performance that can be achieved because we have better statistics estimation

of the received signal. Also, the case about a non stationary environment is interesting to be

studied. In Figure 4.7 the position of the target changes in the 400−th sample, from 20o to 25o.

We can observe that the performance of LMS for b = 0.97 is better than both the performance

of Stochastic Approximation (b = 0) and LMS for b = 1.
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Figure 4.3: Stochastic Approximation (decreasing µ), 10 elements, 6 sources.
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Figure 4.4: Subspace Tracking (stable µ), 10 elements, 6 sources.
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Figure 4.5: Linear Arrays (Stochastic Approximation), stable µ vs decreasing µ, 10 elements,
6 sources.
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Chapter 5

Nested Arrays

5.1 Definitions and Signal Model Based on the

Difference Co-array

5.1.1 Signal Model

Consider a N element non-uniform linear antenna array. Let a (θ) ∈ CN×1 be the corresponding

to the θ direction. Let assume D narrowband sources impinging on this array from directions

{θi, i = 1, 2, . . . , D} with powers {σ2, i = 1, 2, . . . , D}, respectively. Hence the received signal

vector is

x (t) = As (t) + n (t) (5.1)

where A = [a (θ1) , a (θ2) , . . . , a (θD)] denotes the steering matrix and s (t) denotes the source

signal vector. We consider that n (t) is a white Gaussian noise, uncorrelated with the sources.

Also we also assume that the sources to be temporally uncorrelated. Therefore, the autocorre-

lation matrix of s (t) is diagonal. Then,

Rx = E
{
xxH

}
= E

{
(As + n) (As + n)H

}
= E

{
AssHAH + AsnH + nsHAH + nnH

}
= AE

{
ssH
}

AH + AsE
{
nH
}

+ E {n} sHAH + E
{
nnH

}
= ARsA

H + σ2I. (5.2)

Vectorizing the autocorrelation matrix of x according to the [7], we have

z = vec (Rxx) = vec

[
D∑
i=1

σ2
i

(
a (θi) aH (θi)

)]
+ σ2

n1n

= (A∗ �A) p + σ2
n1n. (5.3)

Where p = [σ2
1, σ

2
2, . . . , σ

2
D]
T

and 1n =
[
eT1 , e

T
2 , . . . , e

T
N

]T
with ei being a column vector of all

zeros except ith position. Also � denotes the Khatri-Rao (KR) product and can be defined

as follows Let A ∈ Cn×k and B ∈ Cm×k, where A = [a1, a2, . . . , ak], and B = [b1,b2, . . . ,bk],

then

A�B = [a1 ⊗ b1, a2 ⊗ b2, . . . , ak ⊗ bk] (5.4)
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where ⊗ denotes the Kronecker product and be defined as follows

a⊗ b =


a1b

a2b
...

anb

 = vec
(
baT

)
. (5.5)

5.1.2 Difference Co-Array perspective

• Consider an array of N sensors, with di denoting the position of the ith sensor. Define

the difference co-array as

(d1−d1, d1−d2, . . . , d1−dN , d2−d1, . . . , dN−dN) . (5.6)

• Form the set Du from the distinct elements of the co-array.

• The cardinality of Du is (N2 − 2) /2 +N .
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d

(nN1 + n− 1)d
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0d 1d 7d2d 3d 11d

Figure 5.1: Nested arrays with 3 sensors in each level.

−11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11

Figure 5.2: element positions in difference co-array.

5.2 Two Level Nested Array

A two-level nested array is a concatenation of a two ULAs (which we refer in chapter 2): inner

and outer where the inner ULA has N1 elements with spacing d1 and the outer ULA has N2

elements with spacing d2 such that d2 = (N1 + 1) d1. The locations of the sensors are given by

the union of the follows sets

Sinner = {nd1, n = 1, 2, . . . N1} .

Souter = {(nN1 + n− 1) d1, n = 1, 2, . . . N2} .

The Figure 5.1 illustrates the nested arrays for 3 sensors in each level. Also the Figure 5.2

shows the difference co-array of this nested array. There are an important observation. It is a

filled ULA with 2N2 (N1 + 1)− 1, elements whose positions are given by the set Ssa defined as

Ssa = {nd1, n = −M, . . . ,M, M = N2 (N1 + 1)− 1} . (5.7)

The case above, is an example for a specific number of elements. We must define a equation

that can give the optimal distribution of sensors in the two levels in order to find N1, N2 that

maximize the degrees of freedom. Therefore, we must maximize the follows

N2 (N1 + 1) . (5.8)

Relation (5.8) is maximized when

N1 = N2 =
N

2
, for N even (5.9)

and

N1 =
N + 1

2
, N2 =

N − 1

2
, for N odd. (5.10)
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Proof. Let x = N2 and y = (N1 + 1), with constraint N1 +N2 = N .

Objective: max
x+y=N+1

(xy) = max
x+y=N+1

(x (−x+N)) = −x2 + xN + x = f (x) .

Then we get the

f ′ (x) = 0⇒ −2x+N + 1 = 0⇒ x =
N + 1

2
= N2.

Therefore,

N1 = N −N2 = N − N + 1

2
=
N − 1

2

for x =
N

2
,
N

2

(
−N

2
+N + 1

)
=
N

2

(
N

2
+ 1

)
, (5.11)

for x =
N

2
+ 1,

(
N

2
+ 1

)(
−N

2
− 1 +N + 1

)
=

(
N

2
+ 1

)
N

2
.

Therefore,

N optimal N1, N2 DOF

even N1 = N2 = 1
2
N N2−2

2
+N

odd N1 = N−1
2
, N2 = N+1

2
N2−2

2
+N

5.3 Spatial Smoothing

In this section, we apply spatial smoothing to exploit the increased DoFs offered by the co-

array. Note that, we consider a two-level nested array with N sensors, and N
2

sensors in each

level.

We remove the repeated rows from A∗�A and also sort them so that the ith row corresponds

to the sensor location
(
−N2

4
− N

2
+ i
)
d in the difference co-array of the two-level nested array,

giving a new vector

z1 = A1p + σ2ēi (5.12)

where ēi ∈ <((N2−2)/2+N)×1 is a vector of all zeros except a 1 at the (N2/4 +N/2)th position.

The difference co-array of this two-level nested array has sensors located for (−N2/4−N/2 + 1) d

to (N2/4 +N/2− 1) d. We divide this co-array into L = N2/4 + N/2 overlapping subarrays,

each with N2/4 +N/2 elements, where the ith subarray has sensors located at{
(−i+ 1 + n) d, n = 0, 1, . . . ,

N2

4
+
N

2
− 1

}
. (5.13)

The ith subarray corresponds to the (N2/4 +N/2− i+ 1)th to ((N2 − 2) /2 +N − 1)th rows
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of z1, denoted as

z1i = A1ip + σ2ēi. (5.14)

We can check that

z1i = A11Φ
i−1p + σ2

nē (5.15)

where

Φ =


e−jω1

e−jω2

. . .

e−j(L−1)ωD

 . (5.16)

If E {Z} = [z11, z12, . . . , z1L] and R = 1√
L

(
A11PAH

11 + σ2
nI
)
, b constant,

A11 =


1 1 . . . 1

ejω1 ejω2 . . . ejωD

...
...

. . .
...

ej(L−1)ω1 ej(L−1)ω2 . . . ej(L−1)ωD

 and L = N2

4
+ N

2
, then E {Z} = bR.

Proof.

z11 =


1 1 . . . 1

ejω1 ejω2 . . . ejωD

...
...

. . .
...

ej(L−1)ω1 ej(L−1)ω2 . . . ej(L−1)ωD

Φ0


σ2
1

σ2
2
...

σ2
d

+ σ2
nē1 =



D∑
i=1

σ2
i

D∑
i=1

ejωiσ2
i

...
D∑
i=1

ej(L−1)ωiσ2
i


+ σ2

nē1.

(5.17)

z12 =



D∑
i=1

e−jωiσ2
i

D∑
i=1

σ2
i

...
D∑
i=1

ej(L−2)ωiσ2
i


+ σ2

nē2. (5.18)



5.3. Spatial Smoothing 36

Hence,

z1i =



D∑
k=1

ej(1−i)ωkσ2
k

D∑
k=1

ej(2−i)ωkσ2
k

...
D∑
k=1

ej(L−i)ωkσ2
k


+ σ2

nēi, ∀i ∈ {1, 2, . . . , L}. (5.19)

Therefore,

E{Z} =



D∑
i=1

σ2
i

D∑
i=1

σ2
i e
−jωi . . .

D∑
i=1

σ2
i e
−j(L−1)ωi

...
D∑
i=1

σ2
i . . .

...

...
...

. . .
...

D∑
i=1

σ2
i e
j(L−1)ωi

D∑
i=1

σ2
i e
j(L−2)ωi . . .

D∑
i=1

σ2
i


+ σ2

nI. (5.20)

Also,

A11ΛAH
11 =



D∑
i=1

σ2
i

D∑
i=1

σ2
i e
−jωi . . .

D∑
i=1

σ2
i e
−j(L−1)ωi

...
D∑
i=1

σ2
i . . .

...

...
...

. . .
...

D∑
i=1

σ2
i e
j(L−1)ωi

D∑
i=1

σ2
i e
j(L−2)ωi . . .

D∑
i=1

σ2
i


. (5.21)

and

R =
1√
L

(
A11PAH

11 + σ2
nI
)
. (5.22)

From (5.20) and (5.22), we have

E {Z} = bR. (5.23)

Therefore, we can apply high resolution subspace-based algorithms as MUSIC, root-MUSIC,

and ESPRIT in E {Z} in order to estimate the angles of the impinging signals. Also it should

be noted that the E {Z} is a positive definite matrix.

The matrix E {Z} ∈ CL×L has rank = L (full − rank), therefore we can apply SVD

method in E {Z} in order to estimate the subspace of the signal. It also should be noted that

L = N2

4
+ N

2
≥ N , where N is the number of the physical elements. Therefore, using Nested-
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Figure 5.3: Nested arrays, 6 elements, 5 sources, 50 snapshots.

Arrays we can estimate more targets than the number of physical antennas as be used to linear

arrays.

5.4 Simulations

In this section, we provide numerical examples to illustrate the performance of nested arrays.

In Figure 5.3 we observe that by using a nested array we need only a small number of samples

for the estimatation of the incoming angles. In Figures 5.4 and 5.5, the number of the source

signals is greater than the number of elements. We observe that the nested array can estimate

7 incoming signals, but for 9 source signals it needs a larger number of snapshots, as shown

in Figure 5.3. Also, an interesting example is shown in Figure 5.2. We observe that using

a nested array with 10 elements at the receiver allows us to estimate 24 incoming angles by

having collected 16000 samples.
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Figure 5.4: Nested arrays, 6 elements, 7 sources, 500 snapshots.
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Figure 5.5: Nested arrays, 6 elements, 9 sources, 500 snapshots.
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Figure 5.6: Nested arrays, 6 elements, 9 sources, 1000 snapshots.
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Figure 5.7: Nested arrays, 10 elements, 25 sources, 16000 snapshots.
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Figure 5.8: Nested arrays, 20 elements, 25 sources, 600 snapshots.
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Chapter 6

Subspace Tracking for Nested Arrays

6.1 Definintion of The Problem

Let Z ∈ CL×L, non positive definite (pd) or positive semi definite (psd) matrix, that is an

estimation of the correlation matrix E {Z} (equation 5.23) at the time instant t. Our goal is

to modify the matrix Z suitably in order to be a positive definite matrix. We define

λ = max
i=1,2,...,L

(∑
j 6=i

|zij| − zii

)
(6.1)

where zij, i, j ∈ {1, . . . , L} are the entries of the matrix Z, s.t. Z′ = Z + λI to be Hermitian

diagonally dominant matrix.

Gershogorin Circle Theorem
Let A, complex n × n matrix with entries aij. ∀i ∈ {1, 2, . . . , n}, let Ri =

∑
j 6=i
|aij| be the

sum of the absolute values of the non-diagonal entries in the i-th row. Let λ eigenvalue of A

and x = (xi) corresponding eigenvector. ∀i ∈ {1, 2, . . . , n}, s.t. |xi| = maxj |xi| ⇒ |xj| > 0,

therefore Ax = λx, and∑
j 6=i

aijxj = λxi − aiixi

⇒ λ− aiixi =

∑
j 6=i

aiixi

xi

⇒ |λ− aii| =
|
∑
j 6=i

aijxi|

|xi|
≤
∑
j 6=i

|aijxi|
|xi|

≤
∑
j 6=i

|aij| = Ri.

Where the last inequality is valid because
|xj |
|xi| ≤ 1 , for i 6= j. Therefore

λ− aii ≤
∑
j 6=i

|aij|

or

λ− aii ≥ −
∑
j 6=i

|aij|.
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Hence,

λ ∈

[
aii −

∑
j 6=i

|aij|, aii +
∑
j 6=i

|aij|

]
. (6.2)

The Z′ is a hermitian diagonally dominant matrix, therefore zii ≥
∑
j 6=i
|zij|,∀i ∈ {1, 2, . . . , L},

hence from (6.2), λi > 0. Therefore Z′ is a positive definite matrix. The positive definite

matrices has the follows properties

Let positive definite matrix A, ∈ Cn×, then

1. xTAx > 0 for every non zero x ∈ <n×1.

2. All eigenvalues of A are positive.

3. A = TTH for some nonsingular T.

Following the 3th property of positive definite matrices, we consider that exists T, such that

Z′ = TTH and E {Z′} = E
{
TTH

}
.

We consider the following scalar function

E
{
‖T−WWHT‖2F

}
= E

{
tr
[(

T−WWHT
) (

T−WWHT
)H]}

= E
{

tr
(
TTH

)
− tr

(
TTHWWH

)
− tr

(
WWHTTH

)
+ tr

(
WWHTTHWWH

)}
= tr

(
E
{

Z
′
})
− 2tr

(
E
{

Z
′
}

WWH
)

+ tr
(
WHE

{
Z
′
}

WWHW
)

. (6.3)

According to the (4.5), the gradient of J (W) respect to W is

5J(W) =
(
−2E{Z′}+ E{Z′}WWH + WWHE{Z′}

)
W. (6.4)

Let Qs subspace of E{Z} and E{Z′}1, U ∈ Cr×r orthogonal arbitrary matrix, and

W = QsU. (6.5)

1if E{Z} = QΛQH then E{Z′} = Q (Λ + E {λ} I)QH .

Proof. Let,

E
{

Z
′
}
= Q (Λ + E {λ} I)QH = QΛQH + QE {λ} IQH

= QΛQH + E {λ}QQH = QΛQH + E {λ}Λ. (true)

Therefore, E
{

Z
′
}
= Q (Λ + E {λ} I)QH .
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From (6.4) and (6.5),

− 2E
{

Z
′
}

QsU + E
{

Z
′
}

QsUUHQH
s QsU + QsUUHE{Z′}QsU

= −Q (Λ + λI)

[
Ir×r

0(L−r)×r

]
U + Qs

[
Ir×r 0r×(L−r)

]
(Λ + λI)×

[
Ir×r

0(L−r)×r

]
U

= −Q

[
Λs + λIr×r

0(L−r)×r

]
U + Qs

[
Ir×r 0r×(L−r)

] [ Λs + λIr×r

0(L−r)×r

]
U

= −Qs (Λs + λIr×r) U + Qs (Λs + λIr×r) U = 0L×r.

Therefore QsU is a solution of (6.4) and a stationary point of the scalar function (6.3).

Hence, according to the Theorem 2 in Section 4.2, the scalar function (6.3) is minimized for

W = QsU.

Since (6.3) describes an unconstrained cost function to be minimized and its gradient has

solution the signal subspace of E {Z}, we can apply the stochastic approximation theorem

which we refer in section 4.1. Therefore, the subspace update can be written as

Wn = Wn−1 − µ
[
−2Z

′

n + Z
′

nWn−1W
H
n−1 + Wn−1W

H
n−1Z

′

n

]
Wn−1 (6.6)

where µ > 0 is a step size to be suitably chosen and Z
′
n is an estimate of the correlation

matrix E
{
Z
′}

at the nth sample. Also, we can write the above algorithm, approximating

WH
n−1Wn−1 = I, as follows

Wn = Wn−1 + µ
[
Z
′

nW
H
n−1 −Wn−1W

H
n−1Z

′

nWn−1

]
. (6.7)

We observe that the complexity of above algorithm is O (L2r). Comparing with the complexity

of SVD method which is O (L3), we can apply the above algorithm achieving high performance

with low complexity. Also as the Chapter 4 we can replace the expectation in (6.3) with

J (Wn) =
n∑
i=1

bn−i‖Ti −WnW
H
n Ti‖2. (6.8)

Relation (6.8) can be obtained from (6.3), if we use Wn instead of W and

Z′n =
n∑
i=1

bn−iTiT
H
i = bZ′n−1 + TnT

H
n

= bZ′n−1 + Z′n (6.9)

instead of E {Z′}.
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Figure 6.1: Stochastic Approximation (decreasing µ), 10 elements, 6 sources.

6.2 Simulations

In this section, we provide results from simulations about Subspace Tracking in nested arrays.

Initially, it is important to show an example of how WWH converges to QsQ
H
s . In Figure 6.1

we show a case about 7 incoming signals at the receiver from direction {−45o,−30o, 0o, 10o,

20o, 45o}, where Qs is the subspace of the received signal, and W is the estimated subspace

using the iteration (6.6) for decreasing b.

Also, the case about stable µ is shown in Figure 6.2. As expected, we observe that using

decreasing µ we can achieve better performance, as in the case of ULA. Subsequently, we

evaluate the performance of iteration (6.6) using the forgetting factor b, where 0 ≤ b ≤ 1

Figure 6.4. For b = 1, we have the Stochastic Approximation theorem. However, we are also

interested in the case about non stationary environments. In Figure 6.5 results are provided

for a change of target position from 20o to 25o for different values of b. From our simulations,

we see that the algorithm provides better results for b = 0.97 . We compare our algorithm

with SVD and provide results from simulations in Figure 6.6. According to our simulations, we

observed that the SVD method is efficient only for b = 1 and b = 0.99, therefore we decide to

use these values for the rest of the simulations. Also, we observe that using Subspace Tracking

with a forgetting factor we can achieve similar performance with the SVD method. We see that

the SVD method (for b = 0.99) can re-estimate the angle of arrival of a source signal that moves

faster than Subspace Tracking (ST), but after having collected more samples the performance

of ST becomes more efficient compared to the the first. Also, we compare Subspace Tracking

for nested arrays with Subspace Tracking for linear arrays, Figure 6.9.
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Figure 6.2: Stochastic Approximation (stable µ), 10 elements, 6 sources.
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6 sources.



6.2. Simulations 46

0 100 200 300 400 500 600 700 800 900 1000
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Samples

M
S
E

 

 

b=1

b=0.99

b=0.97

b=0.8

b=0.6

b=0.4

b=0.2

b=0

Figure 6.4: LMS for different values of b, 10 elements, 6 sources.

0 100 200 300 400 500 600 700 800 900 1000
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Samples

M
S
E

 

 

b=1

b=0.99

b=0.97

b=0.8

b=0.6

b=0.4

b=0.2

b=0

Figure 6.5: LMS for different values of b, 10 elements, 6 sources, non stationary environment.
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Figure 6.6: SVD vs Subspace Tracking, 10 elements, 6 sources, stationary environment.

0 100 200 300 400 500 600 700 800 900 1000
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Samples

M
S
E

 

 

b=1 (ST)
b=0.99(ST)
b=0.97(ST)
b=1(SVD)
b=0.99(SVD)
b=0.97(SVD)

Figure 6.7: SVD vs Subspace Tracking, 10 elements, 6 sources, non stationary environment.
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Figure 6.8: Subspace Tracking, Nested Vs Linear, stationary environment.
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Figure 6.9: Subspace Tracking, Nested vs Linear, non stationary environment.
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