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ABSTRACT 

Efficient processing over massive data sets has taken an increasing importance in the last few decades 

due to the growing availability of large volumes of data in a variety of applications in computer science. 

In particular, monitoring huge and rapidly changing streams of data that arrive online has emerged as 

an important data management problem. Relevant applications include analyzing network traffic, 

telephone call records, internet advertising and data bases. For these reasons, the streaming model has 

recently received a lot of attention. This model differs from computation over traditional stored data 

sets since algorithms must process their input by making only one pass over it, using only a limited 

amount of working memory. The streaming model applies to settings where the size of the input far 

exceeds the size of the main memory available and the only feasible access to the data is by making one 

pass over it. 

Typical streaming algorithms use space at most polylogarithmic in the length of input stream. Using 

linear space motivates the design for summary data structures with small memory footprints, also 

known as synopses. Algorithms such as Misra Gries, Lossy Counting, Sticky Sampling and Space 

Saving use parameters support, error and probability of failure, which are specified by the user, in order 

to extract the items that exceed some threshold (support) from an unbounded data stream. Accuracy 

guarantees are typically made in terms of those parameters (support, error, probability of failure) 

meaning that the error in extracting those frequent items is within a factor of 1 + 𝑒𝑟𝑟𝑜𝑟 of the true 

items’ frequency with probability at least 1 − 𝛿. The space will depend on these parameters. 

Since we make only one pass over the unbounded data stream we have to use suitable computation 

systems. We introduce Storm and Akka frameworks which are both real-time, distributed, fault-

tolerant models. Those two frameworks have a completely different architecture which are deeply 

explained in the current diploma thesis. The crucial difference is that in Storm framework data stream 

is processed synchronously while in Akka framework data stream is processed asynchronously.  

We execute Misra Gries, Lossy Counting, Sticky Sampling and Space Saving algorithms in those two 

frameworks in a multi node cluster tuning the topologies in order to optimize performance. We 

observe throughput, the number of processed items in input data set per second. Our goal is to 

compare the algorithms’ behavior in two frameworks. 

The data set which is used in order to make our experiments contains two weeks HTTP requests to 

ClarkNet server. ClarkNet is a full Internet access provider for the Metro Baltimore –Washington DC 

area. 

 

 

 

 

 

 

 



 
 

 
 

 ΠΕΡΙΛΗΨΗ 

 

Η επεξεργασία δεδομένων με αποτελεσματικό τρόπο έχει μονοπωλήσει, κατά τις τελευταίες δεκαετίες, το 

ενδιαφέρον των επιστημόνων λόγω του αυξανόμενου όγκου διαθέσιμων δεδομένων που αφορούν ποικίλες 

εφαρμογές της επιστήμης των υπολογιστών. Ειδικότερα, η εποπτεία ταχύτατα μεταβαλλόμενων ροών 

δεδομένων σε πραγματικό χρόνο έχει αναδειχθεί ως ένα σημαντικό ζήτημα στη διαχείριση δεδομένων. 

Σχετικές εφαρμογές αφορούν την ανάλυση της κίνησης στο διαδίκτυο, την καταγραφή τηλεφωνικών 

κλήσεων, τη διαφήμιση στο Internet και τις βάσεις δεδομένων. Για τους παραπάνω λόγους, υπάρχει 

μεγάλο ενδιαφέρον για το μοντέλο streaming. Πρόκειται για ένα διαφορετικό τρόπο διαχείρισης των 

αποθηκευμένων, με παραδοσιακό τρόπο δεδομένων. Το μοντέλο streaming χρησιμοποιεί αλγορίθμους οι 

οποίοι επεξεργάζονται, με ένα μόνο πέρασμα, τα δεδομένα στην πηγή τους καταναλώνοντας λίγη μνήμη, 

ώστε το μοντέλο αυτό να αναδεικνύεται ως μοναδική εφικτή λύση όταν ο όγκος των δεδομένων ξεπερνά 

κατά πολύ το μέγεθος της διαθέσιμης μνήμης . 

Οι τυπικοί αλγόριθμοι που χρησιμοποιούνται στο εν λόγω μοντέλο streaming έχουν πολυλογαριθμική 

χωρική πολυπλοκότητα στην επεξεργασία της ροής δεδομένων. Η γραμμική χωρική πολυπλοκότητα 

αποτελεί κίνητρο για τον σχεδιασμό data synopsis. Ειδικότερα, αντί να αποθηκεύεται ο μεγάλος όγκος 

δεδομένων προς επεξεργασία, αποθηκεύονται μόνο τα γενικά χαρακτηριστικά της ροής δεδομένων σε μια 

δομή. Οι αλγόριθμοι του μοντέλου streaming είναι οι εξής: Misra Gries, Lossy Counting, Sticky 

Sampling, και Space Saving. Οι εν λόγω αλγόριθμοι χρησιμοποιούν κάποιες παραμέτρους όπως support, 

error και probability of failure οι οποίες καθορίζονται απ’ τον χρήστη προκειμένου να παραχθεί το 

υποσύνολο των δεδομένων (από τη μη πεπερασμένη ροή δεδομένων) το οποίο υπερβαίνει κάποιο όριο 

(threshold). Ειδικότερα, το ζήτημα είναι να εξάγουμε τα δεδομένα (items) απ’ την ροή τα οποία 

εμφανίζονται πιο συχνά σε σχέση με τα υπόλοιπα. Η ακρίβεια στην εξαγωγή των δεδομένων αυτών 

σχετίζεται άμεσα με τις παραπάνω παραμέτρους με πιθανότητα λάθους το πολύ 1 − 𝛿 σε σχέση με τη 

πραγματική συχνότητα εμφάνισης των δεδομένων. 

Δεδομένου ότι οι streaming αλγόριθμοι επεξεργάζονται τα δεδομένα της ροής μόνο μια φορά οφείλουμε 

να χρησιμοποιήσουμε ανάλογα υπολογιστικά συστήματα. Τέτοια συστήματα είναι το Storm, καθώς και 

το Akka τα οποία χρησιμοποιούνται για real-time ανάλυση δεδομένων. Ακόμα, είναι κατανεμημένα, και 

έχουν το χαρακτηριστικό ότι έχουν μεγάλη ανοχή λάθους στην ποιότητα και ακρίβεια των αποτελεσμάτων 

που εξάγουν. Τα δύο αυτά συστήματα, τα οποία ονομάζονται αλλιώς frameworks έχουν τελείως 

διαφορετική αρχιτεκτονική από τα συστήματα που χρησιμοποιούνται για την επεξεργασία δεδομένων τα 

οποία είναι ήδη αποθηκευμένα σε κάποια βάση δεδομένων (batch processing). Η αρχιτεκτονική τους 

αναλύεται σε βάθος στη παρούσα διπλωματική εργασία. Η βασική διαφορά των δύο αυτών συστημάτων 

έγκειται στο ότι το Storm επεξεργάζεται τα δεδομένα με σύγχρονο τρόπο σε αντίθεση με το Akka σύστημα 

το οποίο επεξεργάζεται τα δεδομένα με ασύγχρονο τρόπο. 

Στην εργασία αυτή υλοποιούνται και εκτελούνται οι αλγόριθμοι Misra Gries, Lossy Counting, Sticky 

Sampling, και Space Saving και στα συστήματα Storm και Akka σε cluster με πολλούς κόμβους (nodes). 

Στόχος της εργασίας είναι η βελτιστοποίηση της απόδοσης των αλγορίθμων σε σχέση με τον τρόπο που 

εκτελούνται στον cluster. Η απόδοση καταγράφεται με βάση τον ρυθμό προσπέλασης των δεδομένων στη 

μορφή των tuples ανά δευτερόλεπτο (throughput). Ένας ακόμη στόχος της παρούσας εργασίας είναι η 

σύγκριση των δύο αυτών συστημάτων Storm και Akka σε σχέση με την αρχιτεκτονική αλλά και με τη 

συμπεριφορά τους καθώς εκτελούνται στον cluster. 



 
 

 
 

Η ροή δεδομένων που χρησιμοποιείται στην εργασία αυτή, προκειμένου να εκτελεστούν τα πειράματα, 

είναι ένα data set το οποίο περιέχει HTTP requests διάρκειας δύο εβδομάδων στον Server ClarkNet. Ο 

Server ClarkNet είναι ένας provider που χρησιμοποιείται στο Metro της περιοχής Baltimore –

Washington DC. 
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1 

 

1 
Problem to Solve 

 

The frequent items problem is one of the most heavily studied questions in data stream research, 

dating back to the 1980s.  Finding frequent items has played an essential role in many important data 

mining tasks, such as association rule mining, sequential patterns, classification, clustering, etc. The 

main goal of a frequent items application is the analysis of vast amounts of data for discovering useful 

information. The extracted information can generate association rules from large databases of 

transactions for retail industry. Such databases include a huge number of transactions, where each 

transaction contains a set of items together with other information such as transaction time, customer-

id, etc. The market-basket problem is a typical association rule statement, assuming that we have some 

large number of items, e.g. “bread”, “milk”. Customers fill their market baskets with some subset of the 

items, and we get to know what items people buy together. Marketers use this information to position 

items, and control the way a typical customer traverses the store. Significantly, we care about 

association rules or causalities involving sets of items that appear frequently in baskets. Association 

rules can lead to customer profiling. 

 

We could define frequent items phrase as follows.  

A frequent element 휀𝑖  is an element whose frequency, or number of hits, 𝐹𝑖 , in a stream S whose 
current size is N, exceeds a user specified support  φN, where 0 < 𝜑 < 1 

 

 

The challenging part of those applications is the fact that in real life the useful information is extracted 

from data sources that are really huge. Web server logs, twitter logs etc. increase with a significantly 

high rate. This renders the long term storage of data impossible, as it would cost a lot of memory and 

time. We thus need to come up with appropriate mechanisms, so as to avoid storing this vast amount 

of data. Instead, we have to make up algorithms that quickly process each piece of information quickly. 

The data processing can, in general, be divided into batch processing and real-time processing. Batch 

processing is preferred in cases where data are preselected (through scripts or shell) and stored in 

memory. Real-time processing is preferred in cases where data are processed at the 
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time they arrive on the service, making decisions in order to keep the preferred, throwing away the 

useless data. The selection between batch and real-time processing depends on the characteristics and 

requirements of the algorithm that we are going to apply. Some algorithms require multiple passes 

over dataset in order to extract the useful information. So, in this case, batch processing is obligatory. 

Otherwise, if an algorithm needs a single pass, then real-time processing is preferred. 

Unfortunately, frequent items algorithms exhibit significant computational complexity, resulting in 

long processing times. The computational cost of the algorithms is usually influenced by a need to 

perform multiple passes over the source data and to perform a significant number of in memory 

operations. Moreover, the algorithms’ performance is dependent on the nature of the source data. 

More specifically, we care about the characteristics (i.e., skew) of the data set  

The issue we are dealing with is to find all frequent items in a data stream whose frequency exceeds a 

specified fraction of the total number of items processed at some point in time. The essential 

requirement for this problem is to identify frequent items in real time, since the data stream is 

unbounded, with a limited amount of memory. As we mentioned above, in real-time processing we 

have the restriction of making a single pass over the data stream, making a data synopsis for the data 

that we process each time making decisions for the next incoming elements and extracting finally the 

most frequent items. 

We approach this problem with counter-based techniques. Counter-based algorithms track a subset 

of items from the input data stream and monitor their frequency. Every time a new item arrives those 

algorithms decide whether to store this item or not, and if so update its corresponding frequency. The 

prominent counter-based algorithms include Misra Gries, Sticky Sampling, Lossy Counting and Space 

Saving. We can divide those algorithms into probabilistic and deterministic. For example, Sticky 

Sampling is probabilistic though the rest of them are deterministic. More specifically, probabilistic 

algorithm Sticky Sampling decides whether to store an item or not based on sampling of the elements 

seen so far. It fails to provide frequent items that exceed a specified threshold with a not significant 

probability of failure. In other hand, deterministic algorithms such as Misra Gries, Lossy Counting and 

Space Saving are deterministic which means that every time the frequency of an element increases, 

items for which counts drop below some threshold are ignored or decremented depending on the 

exact algorithm. The algorithm analysis is explained in chapter 2. 

Identifying frequent items is an important task in online monitoring of data streams over various fields 

of computing such as networking, databases, data mining algorithms and statistics in industry, 

business and science. This is why frequent patterns mining over data stream is a challenging and 

important problem to solve. 

In chapter 1 we analyze some challenging examples where frequent items algorithms are applied in 

order to extract top K items that exceed some user specified threshold. Those examples are coming 

from networks, telecommunications and databases. Also we explain the main idea of frequent items 

algorithms. 

In chapter 2 we analyze each proposed algorithm individually in more detail, while explaining the time 

complexity. 

In chapter 3 we analyze architecture of Storm and Akka frameworks. We explain that those frameworks 

are used for real-time data processing adjusting Misra Gries, Lossy Counting, Sticky Sampling and 
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Space Saving algorithms which need a single pass over the data stream. Also we compare Storm and 

Akka frameworks. 

In chapter 4 we make some experiments in Storm framework where we change some configuration on 

algorithms’ topology. We tune algorithms’ topology switching between the number of workers in 

cluster that are used in topology components. We make some diagrams considering number of used 

machines along with processed tuples per second in order to observe the performance of topologies.  

We also make changes in Akka framework tuning configuration files in Actors’ architecture in order 

each time to use a different thread pool for algorithms. 

Finally we compare two algorithms Lossy Counting, and Sticky Sampling for both frameworks Storm 

and Akka explaining the main idea of synchronous and asynchronous threads. 

 

 

 

1.1 Challenging examples 
 

Frequent items algorithms are very useful in many applications where data synopsis is required.  Here 

are four problems drawn from computer networks, Internet advertisement, telecommunication 

networks, and databases. 

 

[1] Network traffic monitoring. It is of great importance to track IP addresses that generate 

considerable amount of traffic in network. The challenge of this problem is that the total 

number of items could be so large that is impossible to keep exact information for each item. 

Frequent items algorithms make a synopsis of the data stream, extracting items that exceed a 

certain fraction of total traffic. 

[2] Internet Advertisement monitoring. The coordinators in Internet advertising are Internet 

advertising commissioners, Internet publishers and Internet advertisers. Internet advertising 

commissioners are positioned as the brokers between Internet publishers and Internet 

advertisers. An advertiser provides the advertising commissioner with its advertisements, and 

they agree on a commission for each action such as clicking an advertisement. The publishers 

contract with their commissioner to display advertisements on their Web sites. Every time a 

surfer visits a publisher’s Web page, the surfer is referred to the server of commissioner who 

logs the click. To know when advertisements are more likely to be clicked, the commissioner 

has to know whether the surfer is a frequent “clicker” or not. Frequent items algorithms are 

useful in order to extract top K “clickers”. 

[3] Telecommunication call records analysis. A telecommunication network produces daily 

large amounts of call records. It is important for telecommunication operators to see 
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meaningful statistics about the operation of the network. Frequent items algorithms can give 

answers about those call records that generate the most traffic. 

[4] Aggregation queries. In a data stream it is important to find groups whose frequency exceeds 

a certain threshold, usually expressed as percentage of the size of the relation seen so far. For 

example, 

SELECT R.EventType, COUNT(*) 

FROM R 

GROUP BY R. EventType 

HAVING COUNT(*) >  S |R| 

 

Where S is support threshold and R is the length of data stream seen so far. All items whose 
frequency is greater than support threshold will be output of the query. 

Those applications and others like them have led to the formulation of the so-called “streaming 

model”. Algorithms for finding frequent items take only one pass over the data stream, computing 

approximately the list of items that exceed some threshold while using resources, space and time, that 

are strictly sub-linear in the size of the input. The output must be produced at the end of the stream, 

or when queried on the prefix of the stream seen so far. 

 

 

1.2 Frequent items algorithms 
 

One technique for finding the frequent items is counter-based algorithms. Counter-based algorithms 

maintain a synopsis of the data stream. If the data synopsis captures well the essential characteristics 

of the entire data set then algorithms may provide approximate results of frequent items. The 

proposed algorithms are Misra Gries, Lossy Counting, Sticky Sampling and Space Saving. 

Counter-based algorithms keep an individual counter for each monitored element in data stream. In 

order to store monitored elements those algorithms use a data structure like hash map in format 

<Item, Frequency> where each item is unique. Every time a new element is processed in data stream 

we check whether exists or not in our data structure. If the element is monitored we increment its 

frequency counter by one. If the element is not monitored, i.e., there is no counter kept for this 

element, it is either disregarded or it isn’t an active part in the algorithm. 

Each counter based algorithm uses its own pattern in order to decide whether an item’s frequency is 

incremented, or decremented. Some algorithms split the initial data set into buckets while some other 

algorithms apply sampling techniques before collecting the most frequent items.  

Despite the different patterns of each counter based algorithm, all of them satisfy some theory 

properties. First of all, those algorithms accept three parameters which are specified by the user. Those 
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are s, support threshold where s ∈ (0, 1), error parameter ε ∈ (0, 1) such that ε << s, and finally 

probability of failure, δ, where δ ∈ (0, 1). Let N denote the current length of data stream, i.e., the 

number of elements seen so far. At any point of time, those algorithms can be asked to produce a list 

of items along with their estimated frequencies. The answers produced by algorithms will have the 

following guarantees. 

[1] All items whose true frequency exceeds s𝑁 are output. 

[2] No items whose true frequency is less than (s − 휀)𝑁 is output. 

[3] Estimated frequencies are less than the true frequencies by at most 휀𝑁. 

 

 

1.3 Top-K Items 

 

The problem of tracking the top-K items in a data source has also been heavily studied. It is applied in 

different kinds of applications such as Internet advertising, web mining, twitter logs, stock tickers etc. 

This algorithmic problem does not always have always a solution under a memory constraint. The 

reason is that if the elements of a stream S are distinct, then there is a problem in holding all of this 

data in memory in order to find the most frequent items. This is why Charikar, Chen and Farach-

Colton defined the top-K items problem as follows. Let k and ε be two parameters specified by the 

user. K specifies the number of elements that belong to the most frequent, while ε specifies the error.  

An element 𝑒𝑖  belongs to top K items if its guaranteed number of hits exceeds the number of hits for 

the element in position k + 1, 𝑐𝑜𝑢𝑛𝑡𝑖 − 휀𝑖 ≥  𝑐𝑜𝑢𝑛𝑡𝑘+1 (1) 

Charikar, Chen and Farach-Colton devised an interesting data structure that allows us to answer the 

query correctly with probability at least 1 − 𝛿 and it uses space 𝑂(𝑘 (
𝑙𝑜𝑔𝑁

𝛿
)) where N is the length of 

the data source. 

It is mentioned that all of the algorithms in order to exctract top K items, in the worst case, require 

linear space while their performance depends on some assumptions on the input items distribution., 

i.e., zipf distribution, random distribution, skew data. According to some citations the top K items in 

the whole data stream must have linear space complexity. 

In the current diploma thesis we follow definition (1). All of the data is processed applying each 

algorithm. When an item has frequency greater than the above threshold it is tracked as one of the 

most frequent item (top K). 
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2 
Algorithm Analysis 

 

As described in Chapter 1, the frequent items problem can be solved with many techniques which are 

classified into counter-based algorithms and sketch algorithms. In this diploma thesis frequent items 

problem is approached with counter-based algorithms such as Misra Gries, Space Saving, Lossy 

Counting and Sticky Sampling. 

Each algorithm has main aim to extract top k frequent items that are observed in the data set which is 

processed. All algorithms make one pass over the data set, summarizing data and extracting items-

elements with highest frequency depending on support, a parameter which is specified by user. So, any 

time user desires the list with items and corresponding frequencies, the output of each algorithm is a 

list of items that exceed that threshold. 

Beside the fact that each algorithm extract top k values, each of them uses different rules on updating 

elements and their frequencies at the time they are about to be stored in a data structure. 

In next chapters, each algorithm technique is analyzed, as well as there is a description of properties 

that satisfy each algorithm. 

 

2.1 Misra Gries 

 

The underlying idea of Misra Gries algorithm is that stores k-1 pairs in the exact format: (e, f), where 

f is the frequency of element e. Every time an element arrives from data stream we check whether it is 

monitored in some existing data structure S or not. If it is monitored, then we increment element’s 

corresponding frequency. Otherwise, if there is some counter with count zero it is allocated to the new 

item, incrementing the counter by 1. If all k-1 counters are allocated to distinct items, then all items 

are decremented by 1. So the main parameter of this algorithm is the number of counters that is used 

and specified by the user, parameter k. Any item which occurs more than 𝑛/𝑘 times must be stored in 

data structure S. 

Below there is the representation of algorithm, 
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S <- empty hash map; 

n<- 0; 

while not end of stream{ 

 n <- n + 1; 

 if e exists in S{ 

  increment corresponding frequency of e by 1; 

}else if S< k-1{ 

  store e in S; 

  put value 1 in counter of e; 

 }else{ 

  for each element stored in S{ 

   decrement counters of element by 1; 

   if counter of some element is 0{ 

    remove element from S; 

   } 

} 

} 

} 

 

 

Figure 2.1 Misra Gries algorithm. 

 

Misra Gries uses a balanced search tree for data structure in the format (e,f). Each element e requires 

𝑙𝑜𝑔𝑛   bits and each frequency f requires at most 𝑙𝑜𝑔𝑚 bits. Since there are most k-1 key/value pairs 

in data structure at any time, the total space required is 𝑂(𝑘(𝑙𝑜𝑔𝑛 + 𝑙𝑜𝑔𝑚)) .  

This algorithm with 𝑘 = 1/휀, where ε is ERROR parameter specified by user, guarantees that the 

count associated with each item on termination is at most 휀𝑁 below the true frequency. 

 

Properties of Algorithm 

Lemma 1: Algorithm with parameter k uses one pass and 𝑂(𝑘(𝑙𝑜𝑔𝑛 + 𝑙𝑜𝑔𝑚)) bits of space, and 

provides for any element e an estimate 𝑓′𝑒 satisfying: 

𝑓𝑒 −
𝑚

𝑘
≤  𝑓′𝑒 ≤  𝑓𝑒 

If some element e has 𝑓𝑒 >
𝑚

𝑘
 , then its corresponding counter will be positive at the end of Misra Gries 

pass over the data set which is processed. 
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2.2 Space Saving 

 

The underlying idea of Space Saving algorithm is to monitor only a pre-defined number of elements, 

from the data stream, with their corresponding frequencies as counters. The number of counters, 

denoted as m, is specified by user. Counters are related with ERROR parameter, denoted as ε, with the 

following relation: 𝑚 = ⌈
1

휀
⌉. Those counters are responsible for counting the accurate frequencies of 

the significant elements in the data stream. We use a data structure, denoted as S, in order to store 

monitored items, with key/value pairs where key represents distinct items of the data stream, and value 

represent item’s corresponding frequency. Data structure is sorted in descending order.  

For any incoming element, denoted as e, we check whether it is stored in S or not. If so, we increment 

element’s corresponding frequency (𝑐𝑜𝑢𝑛𝑡𝑒 + 1), otherwise we choose from S the element, min, with 

the minimum frequency. Then, we replace min with e, incrementing the frequency of minimum value, 

𝑐𝑜𝑢𝑛𝑡min + 1. Thus, the element e could have actually occurred between 1 and 𝑐𝑜𝑢𝑛𝑡min + 1 times. 

Below is a representation of the algorithm, 

 

begin 

for each element e, in S { 

 if e is monitored{ 

  let 𝑐𝑜𝑢𝑛𝑡𝑖 be the counter of e; 

  increment 𝑐𝑜𝑢𝑛𝑡𝑖by 1 

}else{ 

  Let min be the element in data structure with minimum value of counter; 

  Replace min with e;  

  Increment 𝑐𝑜𝑢𝑛𝑡𝑚𝑖𝑛 by 1; 

} 

} 

end; 

Figure 2.2 Space Saving algorithm. 
 

If data follow skew distribution, the top elements is a minority of the most frequent elements which 

get the majority of the hits. We assign counters to distinct elements and keep monitoring the fast 

growing elements. The elements that are growing more popular will gradually be pushed to the list 

with the top frequencies as they receive more hits. If some of those top elements lose their popularity, 

they will receive less hits. Thus, its relative position will decline as other counters get incremented, and 

it might get dropped from the list. 
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If data don’t follow skew distribution, the errors in the counters are inversely proportional to the 

number of counters. The more counters are kept, the less over-estimation errors in counter’s values 

are occurred, since it eliminates the possibility of replacing elements. 

 

Properties of Algorithm 

Lemma 1: The minimum counter value, min, is no greater than ⌊εN⌋, where N is the length of the data 

stream. 

Lemma 2: If an incoming element, e, with frequency value 𝑐𝑜𝑢𝑛𝑡e, is not monitored in data structure 

S, we replace the item, min, with minimum frequency, 𝑐𝑜𝑢𝑛𝑡min, with e,  incrementing the frequency 

of minimum value by 1. So, 

1 ≤ 𝑐𝑜𝑢𝑛𝑡e ≤ 𝑐𝑜𝑢𝑛𝑡min + 1. 

Thus, 𝑐𝑜𝑢𝑛𝑡e is overestimated by at most 𝑐𝑜𝑢𝑛𝑡min times. 

 

 

2.3 Lossy Counting 

 

The underlying idea of Lossy Counting algorithm is the division of the incoming data stream into 

buckets. Every bucket has an Id and width 𝑤 = ⌈1/휀⌉, where ε is ERROR, one of the parameters that 

is specified by user. The other parameter is SUPPORT, a threshold which is the minimum fraction 

limit of item’s frequency in order to be specified as frequent item. 

We denote the current bucket id by 𝑏𝑐𝑢𝑟𝑟𝑒𝑛𝑡 whose value is ⌈𝑁/𝑤⌉. For an incoming element e, we 

denote its true frequency in the stream so far by 𝑓𝑒. We also denote parameter Δ which is the maximum 

possible error in 𝑓𝑒. So, we have tuples in the exact format: (e, 𝑓𝑒, Δ) stored in a data structure S. 

Whenever a new element arrives, we check whether is monitored in S or not. If it is monitored, we 

increase its’ frequency by 1. Otherwise, a new entry is created in the same form (e,1, 𝑏𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 1). 

Also, we don’t hold all of the elements, instead we delete some entries which satisfy the exact 

condition: +𝛥 ≤ 𝑏𝑐𝑢𝑟𝑟𝑒𝑛𝑡 . 

 

The representation of the algorithm is shown below, 

S <- empty hash map 

while not end of stream{ 

 e <- next element in data set 
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 if e is monitored{ 

  increment frequency of e by 1 

}else{ 

  insert (e,1, 𝑏𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 1) into S 

} 

 

if 𝑓𝑒 + 𝛥 ≤ 𝑏𝑐𝑢𝑟𝑟𝑒𝑛𝑡 { 

  delete < 𝑒, 𝑓𝑒, 𝛥 > 

} 

} 

 

Figure 2.3 Lossy Counting algorithm. 

 

The output of the algorithm is the data structure S which contains the entries of elements with 

corresponding frequencies with the exact threshold:  𝑓 ≥ (𝑠 − 휀)𝑁 . 

 

Properties of Algorithm 

Lemma 1: Whenever deletions occur, 𝑏𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ≤ 휀𝑁 

Lemma 2: Whenever an entry (e, f, Δ) is deleted, 𝑓𝑒 ≤ 𝑏𝑐𝑢𝑟𝑟𝑒𝑛𝑡  

Proof: When such entry is deleted, satisfying the condition: 𝑓 + 𝛥 ≤ 𝑏𝑐𝑢𝑟𝑟𝑒𝑛𝑡, it happens for some 

𝑏𝑐𝑢𝑟𝑟𝑒𝑛𝑡 > 1 . This entry was inserted when bucket 𝛥 + 1 was being processed. An entry for e could 

possibly have been deleted as late as the time when bucket Δ became full. The frequency of e when 

that deletion occurred was no more than Δ. Further, f is the true frequency of e ever since it was 

inserted. Thus the frequency of e in buckets 1 through  𝑏𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is at most +𝛥 . So, combining f +

𝛥 ≤ 𝑏𝑐𝑢𝑟𝑟𝑒𝑛𝑡, we get 𝑓𝑒 ≤ 𝑏𝑐𝑢𝑟𝑟𝑒𝑛𝑡  . 

Lemma 3: If e doesn’t appear in S, then 𝑓𝑒 ≤ 휀𝛮 

Proof: If the above equation is true for an element e whenever it gets deleted, it is true for all other N 

also. For Lemma 1 and Lemma 2 we infer that the initial equation is true whenever an element gets 

deleted 

Lemma 4: Lossy Counting algorithm has 
1

log (휀𝑁)  space complexity. 
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2.4 Sticky Sampling 

 

The underlying idea of Sticky Sampling algorithm is to create a synopses of items in a data stream and 

afterwards to sample the items in order to find the frequent ones. Sticky Sampling takes as input three 

parameters which are specified by user. Those are SUPPORT as s, ERROR as ε and PROBABILITY 
OF FAILURE as δ. SUPPORT is the minimum value of frequency of an item in order to be reported 

in the output of the algorithm. ERROR is another threshold which guarantees that some items don’t 

have their true frequency. More specifically, some items may have as estimated frequency less than the 

true frequency. It follows the restrictions ε << s. PROBABILITY OF FAILURE indicates that the 

algorithm fails to provide as output the correct items with their estimated frequencies because Sticky 

Sampling is based in sampling. Thus the algorithm is probabilistic. All of the thresholds are in range 

(0, 1). 

Every time an element is fetched from data stream we check whether we have monitored it before. In 

order to achieve this we need to use a data structure, a hash map S, with key-value pairs, in the form 

(e, f) where keys represent distinct elements of the stream and values represent element’s 

corresponding frequencies. So, if an item is monitored in structure S we just increment its 

corresponding frequency. Otherwise, we sample the element with rate r. That means that this element 

is selected with probability 1/𝑟. If item is selected, there is a new entry in structure S as (e, 1). If item 

is not selected we just ignore it moving on next item. 

Sampling rate changes over a lifetime of data stream according to the following formula: 𝑡 =
1

휀
log (

1

𝑠𝛿
) . 

The algorithm starts with rate 𝑟 = 1 for the first 2𝑡 items, continues with 𝑟 = 2 for the next 2𝑡 items, 

and afterwards with 𝑟 = 4 for the next 4𝑡 items and so on. Sampling rate increases geometrically. 

Every time sampling rate changes we toss an unbiased coin for each item contained in structure S, 

decreasing the item’s frequency for each unsuccessful toss until the coin toss is successful. If the 

frequency of an item reach value 0, then we delete the specific entry from structure S. 

The representation of algorithm is shown below, 

 

 

 

 

S <- empty hash map 

r <- 1 

while not end of stream{ 

 e <- next element in data set 

 if e exists in S{ 
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  increment corresponding frequency of e by 1 

}else{ 

  sample e with rate r; 

  if sampled{ 

   add entry (𝑒, 1) to S 

}else{ 

 ignore e 

} 

} 

} 

 

Whenever the sampling rate changes: 

for each entry (𝑒, 𝑓) in S  

repeat{ 

 toss an unbiased coin 

 if toss is unsuccessful{ 

  diminish f by 1; 

} 

 If f ==0 { 

  delete entry from S;  

  break  

} 

} until toss is successful 

 

Figure 2.4 Sticky Sampling algorithm. 

 

When user request the list of items, we output the results according to s (SUPPORT) where 

 𝑓 ≥ (𝑠 − 휀)𝑁 . 

Since the space requirements are 2𝑡 the space complexity is constant. We notice also that space 

complexity is independent of stream length. 

The worst case scenario for Sticky Sampling algorithm is a sequence of items with no duplicates, 

arriving in any order. 

 

Properties of Algorithm 

Lemma 1: All item sets whose frequency exceeds 𝑠𝑁 are output. 

Lemma 2: No item sets whose frequency is less than (𝑠 − 휀)𝑁 is output. 

Lemma 3: Estimated frequencies are less than the frequencies by at most 휀𝑁. 
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Theorem 1:  Let  𝑟 ≥ 2 and let 𝑛 be the number of items in data stream considered when the sampling 

rate is 𝑟. Then  
1

𝑟
 ≥

𝑡

 𝑛
 , where 𝑡 =  

1

휀
log (

1

𝑠𝛿
). 

 

Proof: At the beginning of the phase where sampling rate is 𝑟 = 1 the number of stream items is 𝑛 =

 𝑟𝑡 (relation 1). The data structure S holds exactly 2𝑡 elements. As far the algorithm works, the 

sampling rate increases and 𝑟𝑡 new elements are considered. Thus, when the sampling rate doubles 

𝑟 = 2  at the end of the phase, we have 𝑛 = 2𝑟𝑡 (relation 2) elements.  

From relations 1, 2 we conclude that 𝑛 ≥ 𝑟𝑡.  

 

Theorem 2: Algorithm solves the frequent items problem with probability at least 1 − 𝛿 using at most 
2

log (
1

𝑠𝛿
) expected number of counters.  

 

Proof: We first note that the estimated frequency of a sample element x is an underestimate of the tru 

frequency, that is, 𝑓𝑒(𝑥) ≤ 𝑓(𝑥). Thus, if the true frequency is smaller than (s − ε)n, the algorithm 

will not return x, since it must be 𝑓𝑒(𝑥) < (𝑠 − 휀)𝑛. 

We now prove that there are no false positives with probability greater than 1 − 𝛿. Let k be the number 

of elements with frequency at least σ, and let 𝑦1, … , 𝑦𝑘  be those elements. Clearly, is must be k ≤
1

𝑠
. 

There are no false negatives if and only if all the elements 𝑦1, … , 𝑦𝑘  are returned by the algorithm. We 

now study the probability of the complementary event, proving that it is upper bounded by δ. 

Pr[∃ false negatives] ≤ ∑ Pr[𝑦𝑖 is not returned]

𝑘

𝑖=1

=  ∑ Pr[𝑓𝑒(𝑦𝑖) < (𝑠 − 휀)𝑛]

𝑘

𝑖=1

 

Since 𝑓(𝑦𝑖) > 𝑠𝑛 by definition of 𝑦𝑖, we have 𝑓𝑒(𝑦𝑖) < (𝑠 − 휀)𝑛 if and only if the estimated 

frequency of  𝑦𝑖  is underestimated by at least ε𝑛. Any error in the estimated frequency of an element 

corresponds to a sequence of unsuccessful coin tosses during the first occurrences of the element. The 

length of this sequence exceeds ε𝑛 with probability, 

(1 −  
1

𝑟
) 𝑛 ≤  (1 −  

𝑡

𝑛
)

𝑛

≤ 𝑒−𝑡   , 

Where the first inequality follows from Theorem 1. Hence,  

Pr[∃ false negatives] ≤  𝑘𝑒−𝑡 ≤
𝑒−𝑡

𝑠
= 𝛿 

 

This proves that the algorithm is correct with probability greater than 1 − 𝛿.  



 
 

14 

 

In relation to space usage, the number of stream elements considered at the end of the phase in which 

the sampling rate 𝑟 is used must be at most 2𝑟𝑡 (fromTheorem 1). The algorithm behaves as if each 

element was sampled with probability 
1

𝑟
 . Therefore, the expected number of sampled elements is 2𝑡. 

 

 

2.5 Data Set 

 

The above algorithms process a data set which contains real logs in ClarkNet server, which is a full 

internet access provider for the Metro Baltimore-Washington DC area. More specifically, data set 

contains two week’s HTTP requests to ClarkNet server. 

The format of logs data set is an ASCII file with one line per request with the following columns: 

[1] host making the request. When host is available, there is the name of it, otherwise, there is the 

Internet address if the name could not be looked up. 

[2] timestamp in the format “day-month-year:hour:minute:seconds”. The time zone is -0400. 

[3] request given in quotes. 

[4] Bytes in the reply. 

 

The distribution of log file is skewed data with size 39.1 MB. 
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3 
Framework Utilization 

 

Extracting and handling useful information from data sources measuring in gigabytes, or terabytes is a 

big challenge nowadays. When applying data mining algorithms we are interested in parallel 
processing models for handling data in order to achieve scalability.  

Parallel processing is an important model for large-scale data-parallel applications. Usually, it is used 

for arbitrary data in applications such as web indexing and data mining. With this model it is easy to 

break computation into small tasks that run in parallel on multiple machines running across very large 

clusters. It originates the meaning of distributed systems in which many machines are grouped 

together in order to process an application simultaneously extracting the specified data. Some of those 

distributed systems provides scalability, which is the ability to reach out the maximum throughput for 

a given application. This is achieved by resizing the cluster, for instance increasing the number of 

nodes, and optimizing both operational and development perspectives. 

Below, there is a schema showing the basic architecture of parallel processing in a cluster, with any 

data source as input, a load balancer which decides which node or nodes are going to execute the job 

for the algorithm implementation, a distributed system which implements the algorithm and 

configures the jobs to be executed, and a Sink where extracted data are going to be stored. 
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Figure 3.1. Data Source can be data logs, data streams from Web. Load balancer is just a 
configuration which is made in cluster in order to send data in node which is available that moment, 

and isn’t too busy. Nodes are machines of a cluster which are responsible for the algorithm 
implementation which is specified in distributed system. Sink can be a Data Base, files system in 

which aggregated data results are stored. 

 

 

There are many distributed processing models, which are named as frameworks for processing vast 

amounts of data. Frameworks are divided in categories with criteria such as architecture, the 

distribution of data input and of course the nature of the algorithm which is going to be applied in one 

of those frameworks. The most critical criteria, in my opinion, is whether we want to make batch 

processing or real time processing of the data. Whether we are obligated to make one or multiple 

passes over the data set, as it was described in section 1.1. The reason is because at the beginning of 

my diploma thesis, I was trying to implement clustering algorithms such as CLARA, CLARANS and 

BIRCH in Storm framework (it’s described in next chapter) which demand multiple passes over the 

input data source. So, when an algorithm demands multiple passes the proposed framework is 

Hadoop, which processes data which are already stored in distributed file systems. On the other hand, 

when we want to process real time data, data which are not stored somewhere, we still can use batch 

processing frameworks, such as Hadoop, but we can use stronger frameworks such as Storm, S4, 

Spark, Flink, Samza, Samoa, Akka, which are processing data real time and more quickly. 

Each framework has its own ecosystem. For example, Hadoop, the most popular distribution system 

is based on Map Reduce model, has Pig, Hive, Flume and HDFS (Hadoop Distributed File System). 

Spark is beyond Map Reduce model, which has RDD (Resilient Distributed Dataset).  Spark differs 

from Hadoop because it works in memory, speeding up processing times. Also has more flexible 

pipeline construction. Storm is running on YARN which is a hadoop cluster expanding batch-oriented 

data into a multi-purpose platform supporting a wide range of real time processing of data. Akka has 

data 
source 

node 1 

node 2 

node n 

load 
bala
ncer 

distributed 
system Sink 
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an architecture of Actors which communicate each other, following a protocol in order to handle data 

asynchronously.  

It’s obvious that there is a big variety of distributed systems each with specific architecture, and an 

entire ecosystem of tools. There is no wide analysis of those, on purpose, because the essence of the 

diploma thesis is not the comparison between all of them, but the comparison two of them Storm and 

Akka. In the next chapters, Storm and Akka are analyzed in detail. 

 

 

3.1 Proposed Frameworks 

 

The algorithms of diploma thesis are applied on frameworks Storm and Akka. Real time distributed 

systems. The main difference of those is that in Akka framework Actors communicate each other 

according to one or many protocols in order to process data, asynchronously. On the other hand, 

Storm has topologies which define the way that jobs are handled, synchronously.  

In the next chapters, Storm and Akka architecture, and basic concepts of those are analyzed in detail. 

In Storm, there are Topologies, Spouts, Bolts, Streams, Streaming groupings, Tasks, Workers. In 

Akka there are Actors, Dispatchers, Mailboxes, Routing, Futures, Agents, Scheduling.  

After this analysis, the algorithms that described in chapter 2 are applied in both frameworks. There 

is a completely different approach in those two frameworks. 

 

 

3.1.1 Storm 

 

Storm is a distributed real time computation system. It provides a set of general primitives for real 

time processing. The key properties for Storm are described as follows: 

 

[1] Extremely broad set of use cases. Storm’s small sets of primitives satisfy a stunning number 

of use cased. It can be used for processing and updating data bases, doing some queries, 

making decisions over data, on the fly. 



 
 

18 

 

[2] Scalable. Storm can scale to massive number of messages per second. Storm’s topology can 

be easily extended, increasing number of workers that are executing the jobs. The scalability 

is obvious when we increase the number of nodes of a cluster. We can compare results, 

observing the computational time to 5, 10, or 20 nodes. 

[3] Guarantees no data loss. A real time distribution framework is responsible for no data loss. 

When something goes really wrong in cluster. For instance, if we have internet connection 

problems, receiving time outs from a client application, or when a node goes down, Storm 

guarantees that any data is lost. When some data cannot be processed the time requested 

within an application, Storm saves some kind of pointer in order to “know” where to continue 

with processing again these data in order to process them. 

[4] Extremely robust. Because of no data loss guarantee, Storm just works. When a task is not 

executed for the reasons described above, then it is executed again, until job is completed. 

[5] Fault tolerant. Storm is responsible for running until all data is processed or until a task is 

killed manually by the user.  

[6] Programming language agnostic. Storm topologies, and processing components can be 

defined in any language such as Scala, Java, python, etc. 

 

Storm’s main components are nodes, topologies, tasks or jobs. A Storm topology can run locally in a 

machine, or in a cluster, with many nodes. So, in a cluster Storm has two main nodes. The master node, 

which is called Nimbus and workers. Nimbus is responsible for distributing the jobs which are 

configured by user to the nodes of a cluster. Worker nodes are responsible to execute whatever 

Nimbus demand. Worker nodes also, are responsible for reporting the master node the stage of the 

tasks that they are in time. That’s because Nimbus has control of everything and when something goes 

wrong in cluster, Nimbus has to make decisions. For instance, if Nimbus doesn’t receive a report, a 

message from a worker, which means that the specific node may be down, or has big workload, it may 

decide to assign this job to another worker. So, this is why Storm guarantees no data loss. Because 

Nimbus is the controller, controlling everything in a cluster.  

It is mentioned that Nimbus “make decisions” according to user’s configuration files. A user is able to 

make some kind of protocol, in which can define the states of the Nimbus logic. For instance, when 

Nimbus is going to assign a task to a worker, up to a specific workload. What happens when a node 

fail. All this configuration is stored in a centralized service which is known as Zookeeper. Zookeeper 

provides group of services. All these kinds of services are used in some form or another by distributed 

applications. Each time they are implemented there is a lot of work that goes into fixing the bugs and 

race conditions that are inevitable. Because of the difficulty of implementing these kinds of services, 

applications initially usually skimp on them, which make them brittle in the presence of change and 

difficult to manage. Even then done correctly, different implementations of these services lead to 

management complexity when the applications are deployed. 

Zookeeper aims at distilling the essence of those different services into a very simple interface to a 

centralized coordination service. The service itself is distributed and highly reliable. Thus, group 

management, and presence protocols will be implemented by the service so that the applications do 

not need to implement them in their own. Application specific users of these will consist of a mixture 
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of specific components of the Zookeeper and application specific conventions. Zookeeper recipes 

shows how this simple service can be used to build much more powerful abstractions. 

 

 

 

Figure 3.1.1.1. As the schema above shows, Nimbus can connect to more than one Zookeeper and 
each Zookeeper to whichever worker node it is specified from the configuration of the user. Nimbus 

and worker nodes store their stage in Zookeeper. 

 

 

The logic of a real time application is specified in Storm Topology. A topology is a graph of Spouts 

and Bolts that are connected with stream groupings. We should explain Storm’s topology in bottom-

up way, explaining the main components which are Spouts and Bolts. 

 

Bolts 

Bolts, are responsible for the main processing of a real time application. In Bolts can be implemented 

the main algorithm of an application, aggregations, joins, some filtering. Bolts can also do simple 

stream transformations. When we have complex stream transformation we can use multiple Bolts. For 

example, when we want to extract elements with top N frequencies, we need one bolt to count those 

elements, and another bolt to aggregate those frequencies extracting the top N elements with higher 

frequencies. So, we assign to each bolt a specific functionality. It is mentioned that bolts can be 
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Zookeeper  

Zookeeper  
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connected with Data Bases such as HBase, Mongo DB, postgres SQL in order to store the extracted 

information. 

 

Spouts 

A Spout can be any source of streaming data in a topology. Spouts read data from any external Source 

such as transactions from Data Base, messages from one or more Servers, messages from Queues such 

as RabbitMQ or a Spout may connect to twitter API and reading a stream of tweets. While Spouts 

reading data emit them in Storm topology feeding the topology and specifically Bolts, in order Bolts 

fetch data and make the processing that an application requires. Spouts can be either reliable or 

unreliable.  A reliable Spout guarantees to emit data to Bolts. When some tuples doesn’t manage to go 

through Bolts, Spouts are responsible to re-send them until Bolts fetch them. An unreliable Spout 

might read data and forget about the data as soon as data is emitted.  

In Spouts we can also make some transformation of the data input, such as in Bolts. For example, data 

is processed as sequential tuples, so we can change the order of some attributes, transforming the initial 

format of tuples. For example, in a project I had implemented before it was useful to extract userId 

from stackOverflow which initially was the last attribute, and transform it by putting as first attribute, 

reordering the tuple. This change was not demanding but it was helpful for the Bolts which were 

fetching the data. 

 

Topology 

A topology, as we said before, is a graph of Spouts and Bolts. Topology is the main architecture of an 

application. For example, if we want to read data from more than one external sources, we use many 

Spouts, as much as we want. Then, we emit tuples in Bolts, in every way we want, or it is suitable for 

our application. We can emit tuples from many sources to the same bolts.  

We connect Spouts and Bolts with Stream Groupings. Stream Groupings indicate how tuples should 

be passed around Bolts. There are several types of Stream Groupings: 

[1] Shuffle Grouping. Tuples are randomly distributed across the bolt’s tasks in a way such that 

each bolt is guaranteed to get an equal number of tuples. 

[2] Fields Grouping. The stream is partitioned by the fields specified in the grouping. For 

example, if the stream is grouped by some user Id, tuples with same user Id will always go to 

the same task, but tuples with different user Ids may go to different tasks. We say “may” 

because the destination of a tuple depends completely on Storm’s hash functions which are 

responsible to decide where the tuples will be sent. It is mentioned that in Storm, a user is able 

to write his own hash functions in order to send tuples with his completely logic. 

[3] All Grouping. The stream is replicated across all the bolt’s tasks.  

[4] Global Grouping. The entire stream goes to a single one of bolt’s tasks. Specifically, it goes 

to the task with the lowest id. 

[5] None Grouping. This grouping specified that we don’t care how the stream is grouped. 

Currently, none groupings are equivalent to shuffle groupings. Eventually, though, Storm will 

http://stackoverflow.com/
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push down bolts with none groupings to execute in the same thread as the bolt or spout they 

subscribe from, when it’s possible. 

[6] Direct Grouping. This is a special kind of grouping. A stream grouped this way means that 

the producer of the tuple decides which task of the consumer will receive this tuple. Direct 

groupings can only be declared on streams that have been declared as direct streams. Tuples 

emitted to a direct stream must be emitted using one of the emitDirect methods. A bolt can 

get the task ids of its consumers by either using the provided Topology context or by keeping 

track of the output of the emit method in Output collector, which returns the tasks ids that the 

tuple was sent to. 

 

 

Each node (Spouts and Bolts) in a Storm topology executes in parallel as many tasks across the 

cluster. In topology we can specify how much parallelism we want for each node, and then Storm 

spawns that number of threads across the cluster to do the execution job. The schema below shows a 

sample of topology, 
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Figure 3.1.1.2. As we can see from the above topology, one spout can send data to any bolt. Aggregating data 
from any bolt. 

 

 

 

Considering a subset of the above topology Spout 1, bolt 1, bolt 3 and aggregator bolt 1, we could 

write the following code in order to connect those components with some grouping. 

 

Config. setNumWorkers(8); 

TopologyBuilder.setSpout("Spout 1", new Spout(), parallelism_hint) 

TopologyBuilder.setBolt("Bolt 1", new Bolt(), parallelism_hint)       

              .fieldsGrouping("Spout 1",DATA_STREAM, new Fields("id")) 

              .allGrouping("Spout 1",SIGNAL_STREAM); 

Spout 1 

Spout 2 

Bolt 1 

Bolt 2 

Bolt 5 

Bolt 3 

Bolt 6 

Aggregator 
bolt 1 

Aggregator 
bolt 2 

DATA_STREAM TOP_K_STREAM 

SIGNAL_STREAM 
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TopologyBuilder.setBolt("Aggregator Bolt 1", new Bolt(), parallelism_hint) 

                             .shuffleGrouping("Bolt 1", TOP_K_STREAM);  

 

The above configuration is used for both local mode and cluster mode.  Local mode simulates a 

Storm cluster in process by simulating worker nodes with threads. In cluster mode, Storm operates 

as a cluster of machines. When we submit a topology to the master node, master node takes the 

responsibility to assign the tasks in slave nodes. The setNumWorkers parameter specifies the number 

of allocated processes to execute the topology. Each component (Spout, Bolt) will execute as many 

threads. The number of threads allocates to a given component is configured through parallelism_hint 

parameter. It indicates how many threads should execute that component across the cluster. This 

parameter is optional and if is not specified the default value is 1 which means that Storm will 

allocate only one thread for that node. 

Tasks perform the actual data processing. Each Spout or Bolt executes as many tasks across the 

cluster. In topology configuration we specify how tasks are connected with. We achieve this with 

Stream Grouping as we explained previously. In the above example we connect Spout 1 with Bolt 1, 
Bolt 2, Bolt 3 with fields grouping. Actually we send tuples to Bolts grouped by Id. This is indicated 

by DATA_STREAM configuration which reflects the actual data we processed from the source. 

Tuples with same user Id will always go to the same task, but tuples with different user Ids may go to 

different tasks. Storm framework implements fields grouping using mod hash functions in order to 

distribute tuples to tasks of the topology. A Storm user is also able to write his own hash functions 

passing out the tuples to tasks however he wants. Beside DATA_STREAM we have also 

SIGNAL_STREAM configuration with All Grouping connection. With All Grouping we send 

replicated data across the Bolt’s tasks. We usually use this kind of Grouping when we want to send 

signals to Bolts, i.e., an indication that data reading from the source is completed. Another example is 

when we are doing some kind of filtering on data stream, we have to pass the filter parameters to all 

the Bolts. This can be achieved by sending those parameters over a stream that is subscribed by all 

Bolts’ tasks with All Grouping. 

Finally we connect Bolt 1and Bolt 3 with Aggregator Bolt 1 with Shuffle Grouping. With this 

grouping we distribute top K values of the processed data in a uniform random way across the tasks, 

with the guarantee that an equal number of tuples will be processed by each task. It is remarkable to 

mention that if we have only one task for Aggregator Bolt 1 it doesn’t matter which grouping we use 

since tuples will always go to this Bolt. 
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3.1.2 Akka 
 

Akka is another distributed real time computation system. Actor model has a more abstract API than 

Storm. It provides a better platform to build scalable, resilient and responsive applications. As it is 

mentioned in Akka’s documentation it is a “let it crash” model because of the fact that with Akka 

Actors can build applications that are self-healed and systems that never stop. Actor model has some 

key properties, 

 

[1] Responsive. The system responds in a timely manner if it all possible. Responsiveness is the 

cornerstone of usability and utility, meaning that problems may be detected quickly and dealt 

effectively. Responsive systems focus on providing rapid and consistent response times, 

establishing reliable upper bounds so they deliver a consistent quality of service. The 

consistent behavior simplifies error handling, build end user confidence, and encourages 

further interaction. 

[2] Resilient. The system stays responsive in the face of failure. This applies not only to highly- 

available, mission critical systems (any system that is nor resilient wil be unresponsive after a 

failure). Resilience is achieved by isolation, delegation. Isolation means in abstract that sender 

and receiver actors have independent life-cycles, which means that they don’t need to be 

present at the same time for communication to be possible. Delegation means that the 

execution task – job which is going to be executed to a component will take place in the context 

of the component. Failures are contained within each component which is going to be 

executed, isolating components from each other and thereby ensuring that parts of the system 

can fail and recover without the whole application crashes. 

[3] Elastic. The system stays responsive under varying workload. Actor model can react to 

changes in the input rate by increasing or decreasing resources, such as CPU, main memory 

bandwidth, or even external services like data bases. The elasticity and resilience of all these 

resources must be considered carefully, because a lack of those or a wrong configuration may 

lead to misbehavior of the system. 

[4] Message driven. Actor model rely on asynchronous message-passing to establish a boundary 

between components. Message passing enables load management, elasticity and flow control 

by shaping and monitoring message queues in the system.  

 

The essence of Akka actors, beyond asynchronous messages, is the fact that is Non-blocking. This 

means that if threads competing for a resource don’t have their execution indefinitely postponed by 

mutual exclusion protecting that resource. If one actor needs resources it’s going to make a request in 

order to use those resources. If resources are available that moment then the request is successful.  

Otherwise, actor is not going to wait until resources are free to use. Instead, when resources are free to 

use, then a notification is sent to Actor in order to use them. Until the specific actor receive the 

notification for using resources, the rest application is working.  
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Actors, are some entities that execute jobs. Actors communicate each other with messages. Each Actor 

has its mailbox which is some kind of queue with messages to process. Actors have a behavior which is 

specified by a protocol defined by the user. When modeling with Actors in order to make an 

application, Actors are assigned sub-tasks (by protocol) sending messages and waiting for some 

response consisting a whole application. Below there are described the basic components which 

consist an Actor model. 

 

State 

Actors contain some variables which reflect states the actor may be in. Each Actor as mentioned 

previously can send and receive messages. With Actor model, many real threads may execute one or 

more messages of the corresponding Actor. But, there is no guarantee that one thread will execute all 

of the messages of an Actor. This is why the possible states of an Actor must be consistent. Threads 

can be spawned and destroyed with minimal overhead. Thus, a large number of instances can be 

created a running in parallel. There are two kinds of Actors: Thread-based Actors and Event-driven 

Actors. 

 

Thread-based Actors 

There is a basic function in each Actor, the receive method which is responsible for handling a 

receiving message according to the behavior which is described in the possible cases of the specific 

method. When receive method is used, the Actor is backed by one thread. This fact limits scalability 

requiring the thread to suspend and block when waiting for new messages. 

 

Event-driven Actors 

Instead of one thread, there is a pool of threads which is used for a number of Actors. This means that 

when an Actor receives a message then a thread is backed up responsible to handle this messages, but 

it doesn’t mean that the next messages which an Actor receives are going to be processed by the same 

thread. If another thread z is available that moment, some of the next messages are going to be 

processed by thread z. 

 

Behavior 

Every Actor is responsible for having a specific behavior to receiving messages. Behavior means a 

function which defines the actions to be taken in reaction to the message at that point in time. The 

whole behavior of an Actor is specified by its protocol. The user of the application is responsible to 

consider all of the possible states a message may be. The most important fact here is the error handling. 

For example, in current project when I firstly applied the algorithms to Akka Actors I didn’t consider 

all of the possible states that a message may be. So, I was throwing errors or wrong results. 
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Mailbox 

An Actor receives messages from another Actor, from an external service or even from itself. When 

this happens, Actor stores them in a queue ready to be processed. Enqueuing happens in the same time 

of sending operations, which means that messages sent from different actors may not have a defined 

order at runtime due to the apparent randomness of distributing Actors across threads. On the other 

hand, sending multiple messages to the same target from the same Actor is a guarantee that messages 

will be enqueued in the same order. 

 

Supervisor Strategy 

Supervision describes the dependency relationship between actors. One supervisor-Actor may have 

children-Actors delegating sub-tasks to them. Every time a supervisor Actor is resumed, is restarting, 

is terminated then children-Actors have the same state. When a child-Actor detects a failure 

(exception) it suspends itself and sends message to its supervisor. Then supervisor-Actor is 

responsible for error handling. 

 

Below there is a topology of Actors, mailboxes, and messages which are executed asynchronously. 
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Figure 3.1.2. Every Actor is able to send messages to one or many Actors. Those messages are stored in each 
Actor’s mailbox where they are temporarily stored, to be processed later one at a time. 

 

 

3.1.3 Storm Vs Akka 
 

As mentioned previously Storm is a distributed real time computation system. On a Storm cluster 

there are executed topologies which process streams of tuples. Each topology is a graph consisting of 

Spouts which produce tuples and bolts which transform tuples. Storm takes care of cluster 

communication, fail-over and distributing topologies across cluster nodes. 

Akka is also a real-time distributed system for building concurrent, fault tolerant applications. In Akka 

application the basic construct is an Actor. Actors process messages asynchronously and each Actor 

can also be deployed remotely.  

The concept of both frameworks is the same. The basic unit of data in Storm is a tuple. A tuple can 

have any number of elements, each tuple element can be any object. In Akka, the basic unit is a 

message, which can be any object.  
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The basic unit of computation in Storm is bolts and spouts. A bolt can be any piece of code, which 

does arbitrary processing on the incoming tuples. It can also store some mutable data. For example, to 

accumulate results. Moreover, bolts run in a single thread, so unless there are started additional threads 

in bolts, there is no worry about concurrent access to bolt’s data. This is very similar to Actor. Actors 

can receive arbitrary messages, bolts can receive arbitrary tuples. Both are expected to do some 

processing basing on the data received. Both, also, have internal state which is private and protected 

from concurrent thread access. 

One crucial difference is how Actors and bolts communicate. An Actor can send a message to any 

other Actor as long as it has the Actor reference. It can also send back a reply to the sender of the 

message that is being handled. Storm, on the other hand, is one-way. Bolts can’t send back messages 

to spouts. Bolts can send ack (acknowledgement) messages which is also a form of communication to 

other bolts. 

In Storm, multiple copies of bolt’s or spout’s code can be run in parallel, depending on the user’s 

parallelism setting. So this corresponds to a set of potentially remote Actors, with load-balancer Actor 

in front of them. There are couple of choices on how tuples are routed to bolt instances in Storm, 

random, grouping on a field, etc (as they were described in chapter 3.1.1). This roughly corresponds 

to the various options of Akka like round robin, consistent hashing on the message. 

There is also a difference in the “weight” of a bolt and an Actor. In Akka, it is normal to have lots of 

Actors – up to millions. In Storm, the expected number of bolts is significantly smaller. This isn’t any 

case downside of Storm, but rather a design decision. Also, Akka Actors typically share threads, while 

each bolt instance tends to have a dedicated thread for executing each task. 

Storm also has one crucial feature which isn’t implemented in Akka. Storm tracks the whole tree of 

tuples that originate from any tuple produces by a spout. If all tuples aren’t acknowledged, the tuple 

can be replayed, depending on the user’s setting. As mentioned in chapter 3.1.1, spouts are reliable or 

unreliable. 

The layout of the communication in Storm – the topology- is static and defined upfront. In Akka, on 

the other hand, the communication patterns can change over the time and can be totally dynamic. 

Actors can send messages to any other Actors, or can even send addresses. 

 

 

3.2 Applying algorithms in Storm 

 

In this chapter algorithms methodology is described as well as the functions which are implemented 

in Storm framework. As mentioned in chapter 2.5, data set contains two weeks information of all 

HTTP requests to ClarkNet www server. Data set has skewed distribution consist of five columns: 

host making the request, timestamp, request, HTTP reply code and bytes in the reply. The main 
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functionality of all algorithms Misra-Gries, Lossy-Counting, Space-Saving, and Stick-Sampling is the 

extraction of top K host names. More specifically K host names with highest frequencies.  

Below, is the topology of the above algorithms with the extracted information of each component of 

topology. 

 

 

 

Figure 3.2. The topology structure representing all algorithms in Storm framework. Spout 
component emits host name and eof (endo of file) to Storm’s collector. Host name is emited via 

DATA_STREAM and eof message via TICK_STREAM. Host name is emited with fields grouping 
while eof is emited via TICK_STREAM. Each bolt extracts each top K items, via 

TOP_K_STREAM, while aggregator bolt extracts global top K results. It doesn’t matter which 
stream grouping is used between bolts and aggregator bolts since there is only one aggregator bolt. 

 

 

In Spout is processed every single tuple of the data set emiting it to bolts. In bolts it is implemented 

the main algorithm extracting the top k host names. The stream grouping which is used is fields 

grouping in which is guaranteed that tuples with same host names will always go to the same bolt, but 

tuples with different host names go to different bolts. So, each bolt extracts top K host names of the 

tuples that are emited. Eof message is emited and replicated to all of bolts in order each bolt is informed 

when reader reach the end of file. So, all grouping is used in stream grouping configuration. In 

aggregator bolt are emited groups of top K host names extracting the global top K items. It is 
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mentioned that it doesn’t matter which stream grouping is used between bolts and aggregator bolt 

since we have only one aggregator bolt. 

 

Functions 

Since Storm is a framework it contains specific functions which have to be overridden in order to be 

specified the behavior of the topology. Of course, except the following functions there are 

implemented helper functions which are needed in order to handle the tuples such as transformations, 

serialization of objects, etc. 

In Spout there are implemented the functions below: 

 declareOutputFields. The fields which are declared are the host name and the indication that 

the entire data set is processed named as eof.  
 open. It is specified the way that the file of the data set is opened. 

 nextTuple. This is the main function in which is configured the possible states when reading 

the tuples from the file. Tuples with host names are emited to output collector of Storm and 

when the reader of file reach the end of it, the eof message is emited also to output collector. 

 createTuple. In this function there are made transformations in order to extract the desired 

information which is host name of each tuple. 

 

In Bolt there are implemented the functions below: 

 declareOutputFields. The fields which are declared are top K items. 

 prepare. In this function it is initialized each algorithm with parameters such as support, max 

error, number of counters (in space saving algorithm). 

 execute. This is the main function in which there are three states. If is tick tuple, there are 

loged to a file just the statistics of each bolt. For instance the rate in which tuples are processed. 

If a host name is received the algorithm handles the specific item, updating its counter. If is a 

message from TICK_STREAM, top K results are emited to collector of Storm after they have 

been serialized to a single object. 

 

In Aggregator Bolt there are implemented the functions below: 

 prepare. This function is responsible for receiving each bolt’s top K items. 

 execute. This function is responsible for logging top K items when all of them have been 

received. When this is achieved the global top K results are extracted, after they have been 

deserialized.  
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3.3 Applying algorithms in Akka 

 

In this chapter algorithms methodology is described as well as the functions which are implemented 

in Akka framework. It is mentioned that it is used the same data set with host names in order to extract 

the top K items. The algorithms that are implemented in Akka framework are Lossy-Counting and 

Sticky-Sampling.  

Below is the architecture of Actors as well as the communication of each other with messages. 

 

 

 

Figure 3.3. The topology structure representing Lossy-Counting and Sticky-Sampling algorithms in 
Akka framework. Processor Actor has two possible messages to receive. Either to process values or 

indicate that the entire data set is processed by Data Feeder Actor. When Processor Actor process all 
of the data applying the algorithm, it sends one message to Aggregator bolt in order to extract global 

top K items. 
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Every Actor communicate with each other via messages. Messages are declared and described in a 

protocol which is defined by me. Each message is a state in which Actor obtains a behavior. Data 

Feeder Actor processes every single tuple of the data set and indicates whether the reading of file is 

completed. Those two messages are send to Processor Actor asynchronously. That means that 

Processor Actor doesn’t know apriori which message is going to receive and when. For that reason, 

Processor Actor is responsible to handle appropriately each message. This Actor also handles the 

values applying the main algorithm. Finally, Aggregator Actor receives a message when all of the items 

have been processed from all processors in order to extract the top K results. 

 

Functions 

Below there are described functions that were implemented in order to Actors have desirable behavior 

and implement properly each algorithm. Of course, except the following functions there are 

implemented helper functions which are needed in order to handle the tuples such as transformations, 

serialization of objects, etc. 

In Data Feeder Actor there are implemented the functions below: 

 prestart. This function is called after the Actor is started. The resources are initialized 

connecting all the Actors: DataFeeder Actor, Processor Actor and Aggregator Actor. 

 receive. This method contains two states, reading the data set, and indicating the eof(end of 

file). 

 

In Processor Actor there are implemented the functions below: 

 prestart. In this function it is described the way in which periodic messages are scheduled. 

Scheduled periodic messages send are restarted when the Actor is restarted. This means that 

the time period that elapses between two tick messages during a restart may drift off based 

on when the scheduled messages are restarted. It is also specified the initial delay is going to 

be. 

 receive. Three states are proposed here. If there is a processValue message, then the logic of 

the algorithm is applied in every tuple of the data set. If it is a request for eof, a message is 

send to DataFeeder Actor. The third state is sending the top K items to Aggregator Actor, 

when all of the data is processed. 

In this Actor the logic of each algorithm is implemented. 

In Aggregator Actor there are implemented the functions below: 

 prestart. This function just logs statistics for Aggregator Actor. 

 receive. There is only one possible state in this function. If there is a message from some 

Processor Actor that holds top K items, then top K items are collected in a 

Map[hostname, frequency]. When all the Processor Actors send their top K items, then 

the global top K items are calculated from Map. 
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There is also the Protocol class in which are declared and defined all the possible messages of the 

Actor’s topology. This messages are shown below: 

 startFeeder. Message that indicated the start of reading from source and sending data for 

further processing. 

 processValue. Message that indicates the item should be processed by the Processor Actor. 

 isEOFRequest. Message to request if end of input or not. 

 topKData. Message that holds the top K results from some Processor Actor. 
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4 
Performance Tuning 

 

It is mentioned in chapter 3 that Misra-Gries, Space-Saving, Lossy-Counting and Sticky-Sampling are 

implemented based on Storm architecture and furthermore that Lossy-Counting and Sticky-Sampling 

are implemented in Akka Actors logic. After running and testing all of the algorithms in local mode, 

the next step was to run those algorithms in multi-node cluster. It is mentioned that a Storm cluster 

architecture is some kind of different of Akka cluster architecture. Thus, we explain individually those 

two frameworks in cluster mode. 

 

Storm Cluster 

As it is described in chapter 3.1.1, Storm architecture consists the master node (Nimbus) followed by 

worker nodes (Supervisors). Master node is responsible for assigning tasks to worker nodes 

monitoring the cluster for failures. Worker nodes are executing the tasks that are assigned to them, 

starting and stopping whenever Nimbus tells them to. Each worker process runs a subset of Storm 

topology and may run one or more executors for one or more components such as Lossy-Counting-

Spout, Lossy-Counting-Bolt, Lossy-Counting-Aggregator-Bolt. An executor is a thread that is 

spawned by a worker and it may run one or more tasks for the same components described previously. 

Tasks execute the actual data processing. 

So, for our topology architecture for all algorithms we have two Spouts and two Bolts bind them as 

follows, 
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Config. setNumWorkers(numOfWorkers); 

TopologyBuilder.setSpout("lcFileSpout1", new LossyCountingSpout(), parallelism_hint_lcSpout1); 

               .setNumTasks(numTasks_lcSpout1) 

TopologyBuilder.setSpout("lcFileSpout2", new LossyCountingSpout(),parallelism_hint_ lcSpout2); 

              .setNumTasks(numTasks_ lcSpout2) 

 

TopologyBuilder.setBolt("lcBolt", lcBolt, parallelism_hint)       

              .setNumTasks(numTasks_lcBolt) 

                             .fieldsGrouping("lcFileSpout1", StreamConfig.DATA_STREAM, new Fields("hostName")) 

             .fieldsGrouping("lcFileSpout2", StreamConfig.DATA_STREAM, new Fields("hostName ")) 

             .allGrouping("lcFileSpout1", StreamConfig.TICK_STREAM); 

             .allGrouping("lcFileSpout2", StreamConfig.TICK_STREAM); 

 

TopologyBuilder.setBolt("lcAggregator", new LossyCountingAggregatorBolt(), parallelism_hint) 

                             .shuffleGrouping("lcBolt", StreamConfig.TOP_K_STREAM); 

 

Figure 4.1. The topology structure for Lossy-Counting algorithm with parallelism level. 

 

 

For our experiments in Storm cluster we configured the parameters above considering the total 

number of nodes that exist and they are active in the cluster. The total number of nodes is 12. So, we 

configured numOfWorkers with the following restriction  1 ≤ 𝐧𝐮𝐦𝐎𝐟𝐖𝐨𝐫𝐤𝐞𝐫𝐬 ≤ 12. The main goal 

of experiments below is to optimize the performance of each topology in cluster. 

Performance of Storm topology can be measured in many ways such as monitoring the throughput of 

each algorithm and CPU time that it takes in order to process and execute the tuples that are emited 

and transferred. In this diploma thesis we are going to consider only the throughput of each algorithm, 

which is the rate of total processed tuples per second. According to this, we are concerned only for 

number of workers, number of executors and number of tasks that run for each topology. More 

specifically, the first category of our experiments is increasing the number of workers that run each 

time, and the second category is increasing and/or decreasing the parallelism level for one or more 

Spouts or one or more Bolts, defining the number of executors and tasks that execute each component 

of our topology but having a fixed number of workers running in topology. At the end of experiment 

results we compare all algorithms for a specific behavior. For instance, which is the bottleneck for each 

algorithm topology? Which is the best performance (best throughput) for each algorithm?  
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Akka Cluster 

Comparing Storm to Akka Cluster, there is a leader node which is similar to Nimbus and nodes which 

are similar to Supervisors. A leader node is responsible for load balancing, that is an Actor that apply 

default hash functions to messages in order to “decide” which tuples are processed by specific simple 

Actors. As described in chapter 3.1.2 Actors receive arbitrary messages asynchronously. This is the 

main difference between those two frameworks. Spouts and bolts have dedicated threads that run. In 

contrast, Akka Actors share threads. Also, the layout of Storm topology is static compared with Akka 

architecture which is dynamic because communication patterns between Actors may change over 

time. In Akka Actors parallelism level is defined in configuration file within project by specifying the 

minimum and the maximum threads that run in cluster. This configuration is declared as follows, 

parallelism-min = numOfThreads 

parallelism-max = numOfThreads 

 

In Akka cluster we run Lossy-Counting and Sticky-Sampling algorithms considering that there were 5 

nodes active. The only experiment that we made was configuring different values for minimum and 

maximum number of threads that run tasks. 

 

 

4.1 Tuning the Performance of Algorithms in Storm 

 

As we described in intro of this chapter, we are considering two types of experiments in Storm cluster. 

Firstly, we increase number of workers in order to observe throughput (tuples/sec) of each topology 

algorithm. Secondly we have a fixed number of workers switching over the parallelism level of each 

topology’s component such as Spout, Bolt and Aggregation Bolt. The aim of the second experiment 

which is the most important is to figure out which components are the “heavy” workers. In other words 

we have to observe the workload progress of each topology.  

 

 

4.1.1 Tuning the Performance of Misra Gries 

Topology 
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Below we show the results of the first category of experiments, 

 

 

The number of executors and tasks for all components is the same as the number of worker is 

increased. As the number of workers increases the rate also increases between 38-47 tuples/sec. We 

can consider that when we increase the number of workers we actually increase the number of worker 

processes across machines in the cluster. So, when we use more machines the workload is distributed. 

The most important hint here is the fact that for each component we set number of tasks multiple to 

number of executors. That means that each machine has the same number of threads and roughly the 

same amount of work. 

For example, if we consider the third case, we are using 8 machines, for Spout we are using 2 executors 

and 4 tasks, for Bolt we are using 4 executors and 8 tasks and for Aggregator Bolt we are using 2 

executors and 4 tasks. That means that we available: 8 executors/8 nodes => 1 thread per machine. 

So, if we consider that they are running 2 tasks/executor for Spout, 2 tasks/executor for Bolt and 2 

tasks/executor for Aggregator Bolt, the workload is distributed as follows, 
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4 2 4 4 8 2 4 38 
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Figure 4.1.1.1 Misra Gries workload distribution in cluster’s machines. Each machine uses 1 thread. 
All components need 2 tasks per executor. Spout in yellow has 2 executors running in 2 machines, 

Bolt in blue has 4 executors running in 4 machines and Aggregator Bolt has 2 executors running in 2 
machines. Each machine has the same number of threads as well as the same amount of work to 

execute. 

 

 

 

 

 

Figure 4.1.1.2 Misra Gries throughput increasing number of workers. Rate of executed tuples/sec is 
increased as number of workers is increased. 

 

 

Executing the second category experiments we use 6 workers modifying the parallelism level each time 

we run Misra Gries topology. The results are shown below, 
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 Observing lines (3, 4) we see that although we increase number of Aggregator Bolt’s executors 

the rate has no significant difference. That means that the “heavy work” isn’t in the specific 

Bolt. But, if we increase Spout’s executors (line 5) rate is increased by 35 %.  

 Observing lines (2, 3) we see that increasing Spout’s executors from 1 to 2, rate is increased 

approximately by 24%. 

 Observing lines (1, 3, 6) we see that decreasing Bolt’s executors from 8 to 4 rate is decreased 

by 44% and increasing Bolt’s executors from 8 to 16 rate is increased by 44%. 

 Observing lines (1, 6) we see that increasing Bolt’s executors from 4 to 16 rate is increased by 

85%. 

Thus, we come to a conclusion that the most “heavy work” is on Spout’s and Bolt’s executors. Bolt’s 

tasks execute the actual Job of Misra Gries algorithm. Every time a new tuple is emited to Bolts we 

apply algorithm in order to handle each element individually. Aggregator Bolt, on the other hand, 

receives top K batched elements, this is why we don’t have a large workload. 

 

4.1.2 Tuning the Performance of Space Saving 

Topology 

 

Below we show the results of the first category of experiments, 
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Spout 
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Bolt 
Executors 

Bolt 
Tasks 

Aggr. 
Executors 

Aggr. 
Tasks 

Rate 
(tuples/sec) 

1 6 2 4 4 8 2 4 30 
2 6 1 2 8 16 2 4 37 
3 6 2 4 8 16 2 4 47 
4 6 2 4 8 16 4 8 49 
5 6 4 8 8 16 4 8 67 
6 6 2 4 16 32 2 4 74 
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Rate 
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4 2 4 4 8 2 4 35 
6 2 4 4 8 2 4 38 
8 2 4 4 8 2 4 41 

10 2 4 4 8 2 4 44 
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The number of executors and tasks for all components is the same as the number of worker is 

increased. As the number of workers increases the rate also increases between 35-44 tuples/sec.  

For example, if we consider the fourth case, we are using 8 machines, for Spout we are using 2 executors 

and 4 tasks, for Bolt we are using 4 executors and 8 tasks and for Aggregator Bolt we are using 2 

executors and 4 tasks. That means that we available: 8 executors/10 nodes => 1 thread per machine. 

So, if we consider that they are running 2 tasks/executor for Spout, 2 tasks/executor for Bolt and 2 

tasks/executor for Aggregator Bolt, the workload is distributed as follows, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.2.1 Space Saving workload distribution in cluster’s machines. Each machine uses 1 thread. 
All components need 2 tasks per executor. Spout in yellow has 2 executors running in 2 machines, 

Bolt in blue has 4 executors running in 4 machines and Aggregator Bolt has 2 executors running in 2 
machines. Each machine except the last two has the same number of threads as well as the same 

amount of work to execute. We notice that two machines have no jobs to execute. 
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Figure 4.1.2.2 Space Saving throughput increasing number of workers. Rate of executed tuples/sec is 
increased as number of workers is increased. 

 

 

Executing the second category experiments we use 6 workers modifying the parallelism level each time 

we run Space Saving topology. The results are shown below, 

 

 

 

 Observing lines (3, 4) we see that although we increase number of Aggregator Bolt’s executors 

the rate has no significant difference. That means that the “heavy work” isn’t in the specific 

Bolt. But, if we increase Spout’s executors (line 5) rate is increased by 31 %.  

 Observing lines (2, 3) we see that increasing Spout’s executors from 1 to 2, rate is increased 

by 28 %. 

 Observing lines (1, 3, 6) we see that decreasing Bolt’s executors from 8 to 4 rate is decreased 

by 45 % and increasing Bolt’s executors from 8 to 16 rate is increased by 39 %. 
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6 6 2 4 16 32 2 4 73 



 
 

42 

 

 Observing lines (1, 6) we see that increasing Bolt’s executors from 4 to 16 rate is increased by 

81%. 

Thus, we come to a conclusion that the most “heavy work” is on Spout’s and Bolt’s executors. Bolt’s 

tasks execute the actual Job of Space Saving algorithm. Every time a new tuple is emited to Bolts we 

apply algorithm in order to handle each element individually. Aggregator Bolt, on the other hand, 

receives top K batched elements, this is why we don’t have a large workload. 

 

 

4.1.3 Tuning the Performance of Lossy Counting 

Topology 

 

Below we show the results of the first category of experiments,  

 

As we can see, the number of executors and tasks for all components is the same as the number of 

worker is increased. As the number of workers increases the rate also increases between 32-40 

tuples/sec. We can easily explain this considering that when we increase the number of workers we 

actually increase the number of worker processes across machines in the cluster. So, when we use more 

machines the workload is distributed. The most important hint here is the fact that for each 

component we set number of tasks multiple to number of executors. That means that each machine 

has the same number of threads and roughly the same amount of work. 

For example, if we consider the first case, we are using 4 machines, for Spout we are using 2 executors 

and 4 tasks, for Bolt we are using 4 executors and 8 tasks and for Aggregator Bolt we are using 2 

executors and 4 tasks. That means that we available: 8 executors/4 nodes => 2 threads per machine. 

So, if we consider that they are running 2 tasks/executor for Spout, 2 tasks/executor for Bolt and 2 

tasks/executor for Aggregator Bolt, the workload is distributed as follows, 
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Figure 4.1.3.1 Lossy-Counting workload distribution in cluster’s machines. Each machine uses 2 
threads. All components need 2 tasks per executor. Spout in yellow has 2 executors running in 2 

machines, Bolt in blue has 4 executors running in 4 machines and Aggregator Bolt has 2 executors 
running in 2 machines. Each machine has the same number of threads as well as the same amount of 

work to execute. 

 

 

 

 

Figure 4.1.3.2 Lossy-Counting throughput increasing number of workers. Rate of executed 
tuples/sec is increased as number of workers is increased. 
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Executing the second category experiments we use 6 workers modifying the parallelism level each time 

we run Lossy Counting topology. The results are shown below, 

 

 

 

 

 

 Observing lines (3, 4) we see that although we increase number of Aggregator Bolt’s executors 

the rate is the same. That means that the “heavy work” isn’t in the specific Bolt. But, if we 

increase Spout’s executors (line 5) rate is increased by 32.5 %.  

 Observing lines (2, 3) we see that increasing Spout’s executors from 1 to 2, rate is increased 

by 30.5%. 

 Observing lines (1, 3, 6) we see that decreasing Bolt’s executors from 8 to 4 rate is decreased 

by 51% and increasing Bolt’s executors from 8 to 16 rate is increased by 40%. 

 Observing lines (1, 6) we see that increasing Bolt’s executors from 4 to 16 rate is increased by 

86%. 

Thus, we come to a conclusion that the most “heavy work” is on Spout’s and Bolt’s executors. Bolt’s 

tasks execute the actual Job of Lossy Counting algorithm. Every time a new tuple is emited to Bolts we 

apply algorithm in order to handle each element individually. Aggregator Bolt, on the other hand, 

receives top K batched elements, this is why we don’t have a large workload. 

 

 

4.1.4 Tuning the Performance of Sticky Sampling 

Topology 
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Rate 
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2 6 1 2 8 16 2 4 36 
3 6 2 4 8 16 2 4 49 
4 6 2 4 8 16 4 8 49 
5 6 4 8 8 16 4 8 68 
6 6 2 4 16 32 2 4 73 
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Below we show the results of the first category of experiments,  

 

As we can see, the number of executors and tasks for all components is the same as the number of 

worker is increased. As the number of workers increases the rate also increases between 33-43 

tuples/sec.  

For example, if we consider the second case, we are using 4 machines, for Spout we are using 2 

executors and 4 tasks, for Bolt we are using 4 executors and 8 tasks and for Aggregator Bolt we are 

using 2 executors and 4 tasks. That means that we available: 8 executors/6 nodes => 2 threads per 
machine. So, if we consider that they are running 2 tasks/executor for Spout, 2 tasks/executor for Bolt 

and 2 tasks/executor for Aggregator Bolt, the workload is distributed as follows, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.4.1 Sticky Sampling workload distribution in cluster’s machines. Each machine uses 2 
threads. All components need 2 tasks per executor. Spout in yellow has 2 executors running in 2 

machines, Bolt in blue has 4 executors running in 4 machines and Aggregator Bolt has 2 executors 
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running in 2 machines. Each machine, except the last two, has the same number of threads as well as 
the same amount of work to execute. 

 

 

 

 

Figure 4.1.4.2 Sticky Sampling throughput increasing number of workers. Rate of executed tuples/sec 
is increased as number of workers is increased. 

 

 

Executing the second category experiments we use 6 workers modifying the parallelism level each time 

we run Sticky Sampling topology. The results are shown below, 
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Executors 
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Tasks 

Bolt 
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Bolt 
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Executors 

Aggr. 
Tasks 

Rate 
(tuples/sec) 
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2 6 1 2 8 16 2 4 36 
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4 6 2 4 8 16 4 8 50 
5 6 4 8 8 16 4 8 55 
6 6 2 4 16 32 2 4 67 
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 Observing lines (3, 4) we see that although we increase number of Aggregator Bolt’s executors 

the rate is almost the same. That means that the “heavy work” isn’t in the specific Bolt. But, if 

we increase Spout’s executors (line 5) rate is increased by 14 %.  

 Observing lines (2, 3) we see that increasing Spout’s executors from 1 to 2, rate is increased 

by 28 %. 

 Observing lines (1, 3, 6) we see that decreasing Bolt’s executors from 8 to 4 rate is decreased 

by 53% and increasing Bolt’s executors from 8 to 16 rate is increased by 33 %. 

 Observing lines (1, 6) we see that increasing Bolt’s executors from 4 to 16 rate is increased by 

82%. 

Thus, we come to a conclusion that the most “heavy work” is on Spout’s and Bolt’s executors. Bolt’s 

tasks execute the actual Job of Sticky Sampling algorithm. Every time a new tuple is emited to Bolts we 

apply algorithm in order to handle each element individually. Aggregator Bolt, on the other hand, 

receives top K batched elements, this is why we don’t have a large workload. 

 

 

4.2 Tuning the Performance of Algorithms in Akka 

 

In order to compare Storm and Akka frameworks we have to follow the same categories of experiments 

in Akka framework. In the first category of experiments we increase the number of available machines 

on cluster for Lossy Counting and Sticky Sampling algorithms. In the second category of experiments 

we use a fixed number of machines switching the number of threads that handle the workload of 

algorithm architecture. In both categories we observe the throughput which mean that we focus on 

the rate: messages/sec that arrive and processed by Actors. 

There are two types of performance problems: throughput is too slow which means that the arrival 

rate of messages is too slow, and the other is that latency is too slow which means that each message 

takes too long to be processed by the processing unit (Actor). We can deal with the first problem 

increasing the number of available active machines (scaling technique) on cluster, while we deal with 

the second problem modifying the design patterns of our implementation architecture. In the current 

diploma thesis we are interested in switching the number of machines in cluster, increasing and 

decreasing the number of threads that we use to process our messages, in other words the tuples of our 

data set. 

Dealing with the throughput of architecture we have to detect which Actor has a significant workload, 

which means that “does all the work”, we have also to consider how we use threads in order to check 

how problems arise running an algorithm in multi node cluster. 
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Firstly we find the critical point when running both Lossy Counting and Sticky Sampling Akka Actors 

technique in which the mailbox queue of each Actor can handle up to a number of messages, otherwise 

messages can’t be processed by the next Actor. Thus, the last Actor is waiting to process messages and 

does no jobs at all. This is what we call bottleneck of a system. 

In order to specify our metrics we implemented a module in both algorithms, a trait in Scala language 

that handles the statistics of each Actor’s mailbox. Thus, we hold three parameters: 

 t1: time parameter in which a message is received in mailbox 

 t2: time parameter in which a message was removed from mailbox and handled by another 

Actor 

 t3: time parameter in which a message was processed. 

 

 

4.2.1  Tuning the Performance of  Lossy Counting 

Architecture 
 

We made the first category of experiments specifying the minimum and maximum threads to use in 

application.conf  file while we increase number of processors. 

worker-dispatcher{ 

 parallelism-min = 8 

 parallelism-factor = 3.0 

parallelism-max = 64 } 

 

The above configuration means that we have at least 8 threads in our system, and at most 64 threads. 

The parallelism factor is used in order to calculate the number of threads from the available processors 

(for 4, 6, 8, 10 processors). For example for 4 processors we have 4*3.0 = 12 threads, for 6 processors 

we have 6*3.0 = 18 threads, etc. 

Below we use the following metrics: rate of each Actor which represents the tuples/sec that each Actor 

processes and utilization which is the percentage of time in which an Actor is busy processing 

messages. 
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Firstly we observe that increasing the number of processors, the number of messages per second also 

increases. While increasing the number of machines, that is the number of threads, the workload is 

distributed to more threads. 

Beside, observing line 4 the utilization metric for Data Feeder Processor we notice that it reaches 78 % 

which is very close to 100 %, the bottleneck of topology. The same metric for Lossy Counting 

Processor as well as for Lossy Counting Aggregator Processor is 39 % and 18 % which is significant 

lower. That happens because Data Feeder Actor cannot handle the receiving messages correctly, 

because this Actor doesn’t have enough threads in order to process and send them to Lossy Counting 

Processor which is going to process and send some those messages to Lossy Counting Aggregator 

Processor. Aggregator Processor has to wait until Lossy Counting Processor has finished before it can 

process the waiting messages. We come to a conclusion that certainly the workload is in Data Feeder 

Processor. 

Below we observe throughput for each processor while the number of processors increases. 
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Figure 4.2.1.1 Lossy Counting throughput for each processor increasing number of processors. Rate 
of executed messages/sec is increased as number of workers is increased. 

 

 

In order to fix the problem of insufficient number of threads, we execute the second category of 

experiments, modifying the previous configuration file (application.conf) as follows: 
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worker-dispatcher{ 

 core-pool-size-min = 8 

core-pool-size-factor = 3.0 

core-pool-size-max = 64 

 

max-pool-size-min = 8 

max-pool-size-factor = 3.0 

max-pool-size-max = 64 

 

keep-alive-time = 60 sec } 

 

At first block we set the minimum and the maximum thread pool size same with the first category of 

experiments. At second block we set the maximum thread pool size. Core pool size specifies the 

number of available threads for work, while max pool size defines an outer bound for the available 

threads. For example, if a new task is submitted and the available threads are less than the core pool 

size (3.0*4 = 12 threads) a new thread will be created as long as the maximum thread pool size is not 

exceeded. The minimum, maximum and factor settings for core and max pool size provide a way to 

dynamically size those pools based on the number of processors available. 

With the above configuration Actors share a pool of threads which are dynamically assigned to 

Actors when the Actors have a big workload, in other words when they have to send many messages 

(e.g. send the tuples with host in order to calculate their frequency). When a message has been 

processed threads are returned back to the pool and the Actor is idle until new messages arrive. 

Thus, the dynamic thread pool increases the size to the number of active workers when the number 

of workers increases, but decreases when the threads are idle too long. In this way, threads that are 

unused are cleaned-up in order not to waste resources. For this action, the responsible parameter is 

keep-alive-time which means that 60 seconds is idle time before a thread will be cleaned up. 

The essential difference between those two experiments is the fact that with dynamic thread pool the 

Actor that is busy than others “picks” a thread from thread pool when it needs it without waiting for 

an upcoming thread. 
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Firstly we observe that increasing the number of processors, the number of messages per second is 

increased. 

Beyond this, we observe that the utilization of Data Feeder, lossy counting and lossy counting 

aggregator processors has decreased, while the rate has been increased. That means that each 

processor processes much more messages than the previous experiment while it is less busy.  The load 

of the processors changes during the operation time. Data feeder processes the tuples from data set, 

which means that firstly has many messages to process, but after a while the workload of lossy counting 

processor increases drastically since the specific processor is responsible for applying the logic of the 

algorithm. In this point of time, the dynamic thread pool increases creating more and more threads in 

order to handle the heavy workload. While lossy counting processor has processed the top K items 

calculating their corresponding frequency the workload is now on lossy counting aggregator processor 

which means that threads created for the last processor, while the threads for lossy counting processor 

are idle until they cleaned-up (60 seconds). Thus, we save more resources than the previous 

experiment, while we have better throughput, better performance of the whole system. 

Below we can observe throughput for each processor, comparing throughput of previous experiment, 
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 Figure 4.2.1.2 Lossy Counting throughput for each processor using a fixed number of threads 
and a dynamic thread pool size. Rate of executed messages/sec when we use a dynamic number of 

threads is greater than a fixed number of threads. 
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4.2.2 Tuning the Performance of Sticky Sampling 

Architecture 
 

Following the same steps with Lossy Counting algorithm in Akka framework, we made the first 

category of experiments specifying the minimum and maximum threads to use in application.conf  file 

while we increase number of processors. 

worker-dispatcher{ 

 parallelism-min = 8 

 parallelism-factor = 3.0 

parallelism-max = 64 } 

 

Below we use the following metrics: rate of each Actor which represents the tuples/sec that each Actor 

processes and utilization which is the percentage of time in which an Actor is busy processing 

messages. 

 

 

Also in Sticky Sampling algorithm we observe that increasing the number of processors, the number 

of messages per second also increases. While increasing the number of machines, that is the number 

of threads, the workload is distributed to more threads. 

Beside, observing line 4 the utilization metric for Data Feeder Processor we notice that it reaches 78 % 

which is very close to 100 %, the bottleneck of topology. The same metric for Sticky Sampling 

Processor as well as for Lossy Counting Aggregator Processor is 38 % and 25 % which is significant 

lower.  

Below we observe throughput for each processor while the number of processors increases. 
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Figure 4.2.2.1 Sticky Sampling throughput for each processor increasing number of processors. Rate 
of executed messages/sec is increased as number of workers is increased. 

 

 

In order to fix the problem of insufficient number of threads, we execute the second category of 

experiments, modifying the previous configuration file (application.conf) as follows: 
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0

20000

40000

60000

80000

100000

120000

4 6 8 10

m
es

sa
ge

s/
se

c

processors

Sticky Sampling Aggregator Processor
throughput



 
 

57 

 

cleaned-up in order not to waste resources. For this action, the responsible parameter is keep-alive-

time which means that 60 seconds is idle time before a thread will be cleaned up. 

The essential difference between those two experiments is the fact that with dynamic thread pool the 

Actor that is busy than others “picks” a thread from thread pool when it needs it without waiting for 

an upcoming thread. 

 

 

 

 

Firstly we observe that increasing the number of processors, the number of messages per second is 

increased. 

Beyond this, we observe that the utilization of Data Feeder, Sticky Sampling and Sticky Sampling 

aggregator processors has decreased, while the rate has been increased. That means that each 

processor processes much more messages than the previous experiment while it is less busy.  The load 

of the processors changes during the operation time. Data feeder processes the tuples from data set, 

which means that firstly has many messages to process, but after a while the workload of Sticky 

Sampling processor increases drastically since the specific processor is responsible for applying the 

logic of the algorithm. In this point of time, the dynamic thread pool increases creating more and more 

threads in order to handle the heavy workload. While Sticky Sampling processor has processed the top 

K items calculating their corresponding frequency the workload is now on Sticky Sampling aggregator 

processor which means that threads created for the last processor, while the threads for Sticky 

Sampling processor are idle until they cleaned-up (60 seconds). Thus, we save more resources than 

the previous experiment, while we have better throughput, better performance of the whole system. 

Below we can observe throughput for each processor, comparing throughput of previous experiment, 
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 Figure 4.2.2.2 Sticky Sampling throughput for each processor using a fixed number of threads 
and a dynamic thread pool size. Rate of executed messages/sec when we use a dynamic number of 

threads is greater than a fixed number of threads. 

 

 

 

Conclusion 

We come to the conclusion that the tuning of the performance of an algorithm in both frameworks is 

a trade-off. Giving one task more resources means that other tasks get less. We can optimize the 

performance of an algorithm in two major steps. Firstly, we can detect the components, such as Spouts, 

Bolts, Actors that handle the heavy workload. Secondly, we can direct the resources that are available 

in the cluster to those components. That means that we direct resources to the most critical tasks for 

our system from tasks that are less critical and can wait.  We can achieve this, assigning threads to those 

tasks in order to execute them. There are two considerable approaches in order to accomplish the 

assignment of threads in tasks. The first one is changing the thread pool statically and the other one is 

using a dynamic thread pool size. 

When we change the thread pool of a system statically, that actually means that we should increase the 

number of threads up to the maximum number of threads that are available in each node of a cluster. 

If we increase the number of threads exceeding that threshold, the performance will decrease. So, there 

is always an optimum number of threads for each node in cluster. We can figure out when to increase 

the number of threads observing the parameter utilization, explained in sections 4.2.1, 4.2.2 in Akka 

implementation. This parameter indicates the percentage of the time a node is busy processing 

messages. For example, when utilization of a process is 30%, the process is processing 30% of the time 
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and is idle 70% of the time. When utilization parameter amount approximately to 80% then we assume 

that our system has reached bottleneck. So, even if we increase the number of threads wouldn’t help 

increasing the performance of the system. This is exactly what we did in Storm and Akka experiments 

when we held a fixed number of workers, while rebalancing the whole topology (for Storm) or 

Architecture (for Akka) directing the available resources from one component to another. 

In static thread pool we are able to direct resources from one tasks to another because we know how 

many available workers we have. But when the number of workers depends on the system’s workload, 

we don’t know how many threads we need. Therefore, we used a dynamic thread pool size in Akka 

framework. We changed the application.conf file many times in order to observe the minimum and 

the maximum number of threads that are assigned to tasks. When we create a small thread pool our 

performance is slow, while when we create and use a big thread pool we are wasting resources. This is 

again a trade-off between resources and performance. But when the size of thread pool is low or stable 

and sometimes increases drastically, a dynamic thread pool can improve the performance without 

wasting resources. The dynamic thread pool increases the size to the number of active workers when 

the number of workers increases, but decreases when the threads are idle for too long. In this way, 

unused threads are cleaned up. In Storm cluster, we changed dynamically the size of thread pool 

rebalancing the algorithms’ topology in Storm UI when we noticed the system’s bottleneck. In 

contrast, in Akka cluster we just configured the size of threads in the configuration file in order to let 

Akka framework to handle this for us. Thus, in Akka cluster was much easier for us to increase the 

performance of the system. 

Monitoring the system’s performance was much easier in Akka cluster than the Storm cluster. Another 

crucial difference between those two frameworks is the fact that in Storm framework topology 

structure is predefined by the user. In our case, we have one Spout to read the data from the data stream 

with HTTP requests emit them in Bolt which is responsible for the update of items’ counter. Finally 

we have another Bolt which takes as input batch items with their counters extracting the top K items. 

This topology structure cannot be changed when we run the topology in Storm cluster. In contrast, in 

Akka framework we have a data feeder Actor which does the exact same job as Spout, a data processor 

which is corresponding to Bolt responsible for the update of items’ frequency. Finally we have an 

aggregator processor Actor in order to extract the top K items. In Akka Actors model, where Actors 

communicate with messages, this structure changes over time since the message sending is 

asynchronous. Actors may maintain state and may change their behavior as needed.  

Storm and Akka are both real-time, distributed and fault tolerant frameworks. Both guarantee that jobs 

will be executed but in different way. If something goes wrong, i.e., some tuples (or messages) cannot 

be emitted to other components (or Actors), then tasks are executed again. In this occasion, in Storm 

framework the master node is responsible for re-assigning the tasks to worker nodes. In contrast, Akka 

framework, message sending is asynchronous. So, in this occasion an Actor waits for the tuple in order 

to process it. In general, Akka Actors model is more lightweight than Storm, since it can send even a 

serialized Java Object as a message. Akka Actor framework is built with Scala libraries while Storm is 

built with Java libraries. 
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