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Summary 

In the present dissertation different models of smart multilayer composite structures 

such as beams and plates with sensors and actuators of piezoelectric materials are 

studied under dynamic external loadings. The discretization of the host structures is 

made by using the finite element method. 

The first purpose of this dissertation is the development of reliable control systems 

and their connection with numerical integration algorithms for the study of dynamic 

systems. For the development of the controllers using fuzzy inference tools and artifi-

cial neural networks are used. 

In the smart structures which are considered here, a significant degree of uncertainty, 

due to imperfections and errors of both the control mechanisms and the model itself, 

is always involved. Especially in multilayer structures, several failures, such as delam-

ination between the different layers, fatigue or other damages, may appear. 

Thus, the second purpose of the present study is the implementation of suitably de-

fined robust controllers which should be able to function well, despite the existence of 

failures and errors not only in the controllers’ components (sensors, inadequate meas-

urements), but in the mechanical model itself (simplifications of the theory, imperfec-

tions, material fatigue).  

For the investigation of these phenomena, as well as for the minimization of the errors 

mentioned above, a generalization of the classical theories in order to include the en-

ergy losses in the various layers with adhesives is attempted. 

With regard to control, classic monitoring tools often encounter several limitations to 

the study of such problems. For this reason, the use of intelligent fuzzy and neuro-

fuzzy control techniques is suggested. Indeed, to maximize the efficiency of the pro-

posed controllers, their characteristics are fine-tuned using global optimization algo-

rithms. 

More specifically, the controllers are first designed and subsequently they are sub-

jected to an optimization process, by using either adaptive neural fuzzy techniques or 

global optimization. 

As a by-product of this work, an exemplary application of the field of micromechanical 

coordinators for energy harvesting is presented. 
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Περίληψη 

Στην παρούσα διδακτορική διατριβή μελετώνται μοντέλα σύνθετων ευφυών πο-

λύφυλλων κατασκευών όπως δοκοί και πλάκες με αισθητήρες και διεγέρτες από 

πιεζοηλεκτρικά υλικά υπό την επίδραση δυναμικών εξωτερικών φορτίσεων. Η 

διακριτοποίηση των φορέων γίνεται με τη μέθοδο των πεπερασμένων στοιχείων. 

Πρώτος στόχος της διατριβής είναι η ανάπτυξη αξιόπιστων συστημάτων ελέγχου 

και η σύνδεσή τους με αλγορίθμους αριθμητικής ολοκλήρωσης για τη μελέτη δυ-

ναμικών συστημάτων. Για την κατασκευή των ελεγκτών γίνεται χρήση εργαλείων 

ασαφούς συνεπαγωγής και τεχνητών νευρωνικών δικτύων. 

Στις κατασκευές που μελετώνται υπεισέρχεται πάντοτε κάποιος σημαντικός βαθ-

μός αβεβαιότητας λόγω ατελειών και σφαλμάτων τόσο των ελεγκτών όσο και του 

ίδιου του μοντέλου. Ειδικά στις πολυστρωματικές κατασκευές, διάφορες αστοχίες, 

όπως για παράδειγμα η αποκόλληση μεταξύ των διαφόρων στρωμάτων, κόπωση 

ή άλλες βλάβες μπορούν να εμφανιστούν και τροποποιούν το μηχανικό μοντέλο 

κατά τη διάρκεια της ζωής του. 

Συνεπώς, δεύτερος στόχος της διατριβής είναι η δημιουργία κατάλληλου εύρω-

στου ελεγκτή ο οποίος μπορεί να λειτουργήσει παρά την ύπαρξη ατελειών και 

σφαλμάτων τόσο στα στοιχεία του ελεγκτή (αισθητήρες, ελλιπείς μετρήσεις) όσο 

και του ίδιου του μοντέλου (απλοποιήσεις της θεωρίας, ατέλειες, κόπωση υλικού). 

Για την μελέτη των φαινομένων αυτών, καθώς και για την ελαχιστοποίηση των 

σφαλμάτων που προαναφέρθηκαν, επιχειρείται μία γενίκευση των κλασικών θε-

ωριών, προκειμένου να συμπεριληφθούν οι απώλειες ενέργειας στα διάφορα 

στρώματα με τα συγκολλητικά υλικά. 

Όσον αφορά στον έλεγχο, τα εργαλεία κλασικού ελέγχου συχνά συναντούν αρ-

κετούς περιορισμούς στη μελέτη τέτοιων προβλημάτων. Για το λόγο αυτό προτεί-

νεται η χρήση ευφυών ασαφών και νευροασαφών διατάξεων. Μάλιστα για την 

μεγιστοποίηση της αποδοτικότητας των προτεινόμενων ελεγκτών, τα χαρακτηρι-

στικά τους ρυθμίζονται με χρήση αλγορίθμων ολικής βελτιστοποίησης. 

Πιο συγκεκριμένα, οι ελεγκτές αρχικά σχεδιάζονται και υπόκεινται σε διαδικασία 

βελτιστοποίησης τόσο με χρήση νευροασαφών συστημάτων, όσο και εργαλείων 

ολικής βελτιστοποίησης. 

Ως παράπλευρο αποτέλεσμα, παρουσιάζεται κάποια ενδεικτική εφαρμογή από το 

πεδίο των μικρομηχανικών συντονιστών για την μάστευση ενέργειας. 
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Contribution to the state of the art 

In the literature, a lot of effort has been put on the static and dynamic analysis and 

control of smart composite structures during the last years. 

Several control schemes, either classic or modern ones, have been proposed and tested 

on structures. However, the use of global optimization for the fine tuning of control 

parameters seems to lag behind. This is the, let say, gap which this study aspires to 

cover. 

More specifically, fuzzy inference systems are developed for use on smart structures. 

The initial setting of the control parameters is done based on engineering intuition and 

data from the literature. The fuzzy rules are of the pendulum-like form, which is 

proved to be reliable in case of simple collocated controllers with two inputs and one 

output. Afterwards, the controllers are applied in relatively complicated composite 

structures such as multilayered beams and plates. 

Furthermore, the fuzzy inference system is optimized, either with the use of global 

optimization techniques, such as genetic algorithms and particle swarm optimization 

or by using the adaptive neuro-fuzzy inference method. 

Subsequently, the robustness of the control is tested for the case of the presence of 

failures correlated with realistic delamination scenarios. 

In other words, the contribution of this dissertation is the incorporation of fuzzy con-

trol with global optimization techniques for the modification, i.e. the fine tuning of the 

control parameters, such as the membership functions and/or the ranges of the fuzzy 

control variables (inputs/outputs).  

This fine tuning is achieved using adaptive neuro-fuzzy inference (ANFIS) techniques, 

genetic algorithms and particle swarm optimization. The outcome of this procedure is 

the formulation of powerful and robust control schemes. 

The performance of the optimization methods under different conditions, in terms of 

vibration suppression of smart structures, i.e. beams and plates with piezoelectric sen-

sors and actuators, is studied. 

It is noteworthy, that the control is applied not only to simple composite structure 

models based on the single layer theory, but also to multilayer structures with adhe-

sive layers, which in turn can be used for the modelling of delamination phenomena 

between the piezoelectric components. 

Last but not least, some good effort is put into the related, and in some sense opposite, 

situation of vibration suppression, namely the energy harvesting, indicating that the 

optimum positioning of the harvesters can be decided with the same tools, and by all 

means with respect to the characteristics of the structure.  
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1 Introduction 

 

Adaptive smart structures are mainly based on the devastating use of piezoelectric 

sensors and actuators for analysis and control. 

A lot of work has been done on structural analysis and control during the last decades. 

Nevertheless, the use of optimization tools for the configuration of the involved pa-

rameters has not been studied extensively. 

The contribution of this dissertation is the incorporation of fuzzy control with global 

optimization techniques for the modification, i.e. the fine tuning of the control param-

eters. The outcome is the formulation of powerful and robust control schemes. More-

over, the application of several optimization methods under different conditions is 

studied. 

More specifically, in the present dissertation the formulation and the application of 

modern control techniques such as fuzzy and neuro-fuzzy control for the vibration 

suppression on smart structures (beams and plates) with piezoelectric sensors and ac-

tuators is considered. The characteristics of the controllers are adjusted (tuned) using 

neural techniques (ANFIS) and global optimization methods inspired by nature, such 

as genetic algorithms and particle swarm optimization. The control is applied not only 

to simple models, but also in multilayer structures with adhesive layers in the presence 

of delamination at the piezoelectric components. Moreover, some related results ap-

plied on energy harvesting are presented. 

The proposed methods for control, optimization and energy harvesting are proved to 

be very efficient and robust as well. 

1.1 Motivation 

The application of active control techniques in smart structures is an area of intensive 

research. The need arises from the ever increasing complexity of modern industrial 

processes, in conjunction with the increasing demands for efficient control schemes. 

Piezoelectric materials are smart materials that are well known for their ability to 

change their shape and produce electric voltage when subjected to mechanical strain. 

For this reason such materials are used for the construction of sensors and actuators. 
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Moreover, the piezoelectric materials provide great advantages in terms of control of 

smart structures, due to their sensitivity to mechanical waves being transferred 

through the solid body of composite structures. 

Thus, smart laminated structures with embedded piezoelectric materials, which are 

used as sensors or actuators, usually incorporate active control schemes which allow 

them to react against disturbances. In mechanics we have in mind suppression of me-

chanical vibrations with possible applications on noise and vibration isolation. 

The use of piezoelectric sensors and actuators in smart structures, such as laminated 

beams and plates, is a very popular and accurate mean for both static and dynamic 

analyses. 

Nevertheless, the results of this work can be transferred (after modification) to other 

smart structures, using different technologies. 

In most cases, instead of three-dimensional models, simplified plane models are stud-

ied. In this particular case some assumptions are made in order to solve the problem. 

For instance, by following simplified theories of technical mechanics, the cross section 

is considered plane and vertical to the deformed axis. Although the use of three-di-

mensional models, in general, can provide more accurate results, due to high side-to-

thickness ratio, standard 3D finite elements are not adequate for the accurate modeling 

of plates. Moreover, effective realization of control requires in general small scale dy-

namical models 

Several different, analytical and numerical approaches have been proposed in the past 

for the investigation of complex, non-linear, heterogeneous structures, like compo-

sites. Analytical methods can be more accurate in the description of the micro struc-

ture, for relatively simple microscopic patterns and constitutive laws. On the other 

hand, numerical methods may be used for the simulation of complex microscopic ge-

ometries, over a statistically defined representative amount of material. 

The major disadvantage of multi-layered composite structures that incorporate piezo-

electric actuators and sensors lies to the fact that they can face several nonlinearities, 

including the presence of damage to the materials, such as delamination and debond-

ing phenomena. Such phenomena are very common in composite materials. 

Recently, sophisticated models for the study of severe failure of composite materials 

have been proposed. According to these efforts, a connection between the size of the 

microscopic and the macroscopic structure is attempted. This connection is necessary, 

when localization phenomena, thus unstable failure patterns with softening traction-

separation laws which are used for the description of delamination or damage in the 

micro scale, appear. 

Delamination phenomenon leads to changes in the quantities of the structures. More 

specifically, it is responsible for the weakening and/or ageing of the materials of a 
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smart structure and modifies in some extend the characteristics of the mechanical sys-

tem, mainly its stiffness. This fact affects the effectiveness of the control methods pro-

posed. Delamination is modeled here by means of a simplified, interface - interlaminar 

model. For this reason, robust control schemes are necessary, in order to work with 

the presence of these deviations. 

In general, lack of knowledge of the structure, due to restricted number of measure-

ments or uncertainty about the structural model itself due, say, to damage or general 

structural degradation, plastification or other sources of nonlinearities, reduce the per-

formance of control. This means that active control methods which are applied to the 

area of smart structures must take into account model as well as excitation uncertain-

ties and nonlinearities. 

Classic mathematical theory of control works well on linear systems, however under 

many, sometimes unrealistic, restrictions. On the other hand nonlinear controllers, 

built with smart computational methods, most times can describe well nonlinear struc-

tures and/or nonlinear feedback. Again some restrictions appear, as assumptions used 

for their derivation do not always cover critical applications.  This gap is filled by 

fuzzy, neural and hybrid neuro-fuzzy control methods. 

One can say that the core advantage of the classical control tools is summarized in the 

existence of a strong mathematical framework. From the other hand, in nonlinear con-

trol, e.g. fuzzy or neuro-fuzzy control, such framework does not exist. However, this 

type of control is proved to be more flexible and feasible for systems with presence of 

nonlinearities. 

Fuzzy inference can provide more systematic tools, while artificial neural networks 

have the ability of training and thus learning. The combination of the core characteris-

tics of these two types of control, can lead to powerful, robust and adaptive neuro-

fuzzy controllers.  

In the case of fuzzy controllers, the control is based on a set of linguistic rules that 

combine the membership functions of the variables of the system, using fuzzy infer-

ence techniques. Fuzzy controllers in general, are known for their robustness. Also, 

from the numerical results presented in several publications, it is demonstrated that 

fuzzy controllers work effectively when applied to different structures either with 

presence or absence of structural failures such as delamination. 

However, the industrial evolution of the last decades has raised dramatically the com-

plexity of systems studied. Thus, plenty of different optimization methods are used in 

order to design and/or fine tune control schemes. Optimization methods inspired by 

nature are very popular due to their simplicity in implementation and effectiveness in 

different problems and situations. 

For instance, the optimization process using genetic algorithms present a great distri-

bution of application in a plethora of different fields and, of course, in structural con-
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trol. PID control, for example, is one of the most common and powerful control meth-

ods in automatic control. In addition, fuzzy and neural control present a large field of 

applications. However, due to the complexity of modern industrial systems, nonline-

arities and other flaws may occur, rendering the controllers less powerful and holding 

back the control process. Thus, the optimization of the parameters of such controllers 

is necessary.  

1.2 Objectives and approach 

Smart composite structures, such as beams and plates with sensors and actuators made 

of piezoelectric materials are investigated. Two different approaches are considered. 

Besides the simplified structures which are examined as one body, a layerwise theory 

which takes into account the existence of adhesive material between layers is also stud-

ied. The discretization of the host structures is done within the finite element method. 

For the design of composite laminated models of beams and plates which are consid-

ered in this dissertation, a generalization of classical technical bending theory to in-

clude the energy losses in the layers with adhesive damageable material is necessary.  

In order to overcome some of the obstacles mentioned in the previous section, it be-

comes clear that the main objective of structural control has to be the construction of 

adaptive and robust controllers which should be able not only to confront the nonlin-

earities involved, but to keep functioning under different conditions as well. 

To achieve this goal, modern non-classical fuzzy and adaptive neuro-fuzzy control 

tools are used. For the initial configuration of fuzzy controllers in a collocated setting, 

simple pendulum-like linguistic rules can be used. Besides the rule base, the fuzzy 

inference system demands the existence of a data base, i.e. a set of membership func-

tions. The definition of these functions can be done based on intuition or with the as-

sistance of algorithms and logical processes. 

Moreover, several global optimization methods, such as genetic algorithms can be 

used for the fine tuning of the control mechanisms. 

In fact, genetic optimization is a very powerful tool, which can be used for the optimal 

design of intelligent fuzzy control mechanisms. Other optimization methods inspired 

by nature, such as particle swarm optimization or differential evolution can be used 

as well in order to increase the performance of the control or to optimize the control-

lers’ parameters. 

Another option for the construction of robust control schemes is the use of adaptive 

neuro-fuzzy inference techniques, especially if manual configuration of the control pa-

rameters is not possible, due to the non-existence of information about the system. In 

this case the controllers adjust their parameters automatically, with respect to a set of 

training data which is obtained from the structural model itself.  

The optimized controllers should be capable of functioning even in structures with 

failures such as delamination, debonding, as well as other nonlinearities. 
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A related application for energy harvesting is also presented. The procedure utilizes 

modal analysis tools. Similarly to the appropriate selection of the control points for 

vibration suppression, suitable positions in order to harvest the maximum amount of 

energy which produced by the vibrations of the host structure can be selected. 

1.3 Dissertation outline 

Chapter 1 is an introduction to the present dissertation. The impulse which led to the 

elaboration of this study, as well as the objectives and the approach which is followed, 

are presented. In the second chapter, an extensive literature review on layerwise mod-

els, structural failures, i.e. delamination, and control mechanisms such as fuzzy, neural 

and neuro-fuzzy control, is carried out. 

In chapter 3, the theory background of structural models is demonstrated. Three dif-

ferent models are considered. A smart beam model with piezoelectric patches, a lami-

nated composite plate model with piezoelectric sensors and actuators based on FSDT 

theory, and a layerwise plate model accounting for adhesive flexibility. A part of this 

chapter is also dedicated to the description of the delamination phenomenon and its 

insertion to the examined layerwise plate. In the last section, a brief presentation of the 

structural dynamics is done. 

In the following chapter 4, the control strategies for the vibration suppression are pre-

sented in detail. Namely, theoretical information on fuzzy logic and fuzzy inference 

systems, on artificial neural networks and their training, as well as on the adaptive 

neuro-fuzzy inference systems is given. Moreover, the basic formulation of the con-

trollers which used in this dissertation is thoroughly presented. More specifically two 

fuzzy controllers, which account the mechanical (controller 1) and the coupled elec-

tromechanical model, (controller 2), as well as a neuro-fuzzy controller (controller 3) 

are proposed. 

The fifth chapter provides the theoretical framework of the optimization methods 

which were used for the tuning of the controllers’ characteristics, which in turn are 

genetic algorithms and particle swarm optimization.  

Chapter 6 presents the numerical results of the present study. The outcome of fuzzy 

control on smart plates, either with or without optimization of the control parameters 

and under various loading and frequency scenarios is demonstrated. The results are 

verified by comparison with the ones from a tested cantilever beam. Consequently, the 

robustness of the controllers is proved by testing their ability to operate also in plates 

under the presence of delamination. Slight, moderate and extensive delamination 

cases, both in the sensor and the actuator piezoelectric layer, are considered. Finally, 

an adaptive neuro-fuzzy controller is tested on a cantilever beam and the results are 

compared to the ones of a classical LQR controller. 

An energy harvesting application is considered in chapter 7. The design of the har-

vester which depends on modal analysis tools is presented, and the results of the en-

ergy harvesting for the first three eigenmodes are calculated. 
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Finally, the conclusions of the dissertation, along with some perspectives for future 

studies are given in the last chapter 8. 
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2 Literature review 

 

In literature, several analytical, numerical, and computational methods have been pro-

posed for the investigation of smart structures either with or without the presence of 

delamination phenomena. For this purpose either two-dimensional, or three-dimen-

sional models have been suggested and presented in detail. Various layerwise models 

with piezoelectric sensors and actuators are briefly reviewed. In addition, a number of 

papers on delamination or other failure phenomena is presented. 

It is well-known that nonlinearities which are caused either by delamination or other 

types of damage, or even by the structural model itself, can significantly reduce the 

performance of any classical control. Thus, suitable control tools are sought. Very pow-

erful control strategies could be either classical tools as H-infinitive control or modern 

control techniques, e.g. fuzzy, neural and hybrid neuro-fuzzy control. A number of the 

numerous investigations on the structural control is reviewed in this chapter (Tairidis, 

et al., 2016b). 

2.1 Modelling of smart structures 

Smart composite structures with piezoelectric sensors and actuators take advantage of 

both mechanical, i.e. stiffness, mass and damping, and other properties occurring from 

the proposed control schemes, e.g. piezoelectric sensors and actuators. Usage of pie-

zoelectricity has a model nature here, and can be replaced by other multiphysics ma-

terials, depending on the available technology. 

The models used for simplified simulation of smart composite structures may consist 

of one or more different layers. These separate layers could be the elastic core, the pi-

ezoelectric sensors, the piezoelectric actuators, as well as the adhesive material used 

for the gluing of the components see Figure 1.  

Multi-layered structures have the advantage that the several layers could be separated 

and studied individually. The major disadvantage of such structures lays on the fact 

that the complexity of the models is dramatically increased. 

Smart composite structures with piezoelectric sensor and actuator layers have been 

extensively studied in the literature. Different models as well as discretization meth-

ods have been proposed. 
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Figure 1: Example of multi-layered smart composite structure 

2.1.1 Single layer models 

It is well known that the concept of adaptive structures in terms of performance, 

weight and control, is based on the vast use of distributed sensors and actuators, such 

as piezoelectric layers. The outcome is hybrid laminated structures, where the let say 

elastic core is adjoined with surface bonded or embedded sensors and actuators made 

of piezoelectric materials. These structures which have the capability of sending and 

actuating, are most commonly referred to as smart structures. The point is that smart 

structures can be modeled either considering the equivalent single layer (ESL) theory, 

which deals with the structure as if it was formulated by a single layer, or layerwise 

theory which studies each layer of the structure separately. 

The ESL theories, in turn, can be divided into three major categories which are the 

classical laminated plate theory (CLPT), the first-order shear deformation theory 

(FSDT), and the higher-order shear deformation theories (HSDTs). 

A simple finite element formulation for a laminated composite plate with piezoelectric 

layers is presented in (Suleman & Venkayya, 1995). The formulation is based on the 

classical laminate theory with electromechanical induced actuation, and the finite ele-

ments which considered was four-node, bilinear displacement elements based on a 

Mindlin plate theory. Numerical results of the coupled electromechanical finite ele-

ment plate model prove the efficiency of the proposed scheme as they are in accord-

ance with experimental data and other formulations suggested in the literature. 

In (Reddy, 1999) a theoretical formulation of the displacements and strains of smart 

plates using the classical laminated plate theory (CLPT) is presented. This theory is 

based on the Kirchhoff assumption that straight lines which are perpendicular to the 

midsurface before deformation, are considered inextensible and remain straight and 

perpendicular to the midsurface after deformation, as well. This theory ignores shear 

deformation effects and provides reasonable results mainly for thin laminates. 
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The FSDT which was proposed by Reissner and Mindlin, takes into consideration 

shear deformation effects by the way of linear variation of in-plane displacements 

through the thickness. 

The effect of transverse shear deformation on the bending of laminated plates is also 

discussed in (Whitney, 1969). Namely, a theory for  laminated  plates  which  includes  

the effect  of  transverse  shear  deformation is presented. Results indicate that shear 

deformation can be significant for highly anisotropic composites. It is also shown that 

the proposed theory can accurately predict gross response characteristics, such as plate 

deflections, buckling loads, etc., of laminated plates. 

Moreover, a refined hybrid plate theory for composite laminates with piezoelectric 

laminae is developed in (Mitchell & Reddy, 1995). The formulation is based on linear 

piezoelectricity, including the coupling between mechanical deformations and the 

charge equations of electrostatics. The theory is considered hybrid due to the fact that 

the mechanical displacement field is studied using an equivalent single-layer theory, 

while piezoelectrics are modeled using a layerwise discretization. 

In (Reddy, 1997), (Reddy, 1999) a generalized third-order shear deformation laminate  

theory  (TSDT), which contains the first-order shear deformation theory (FSDT) as a 

special case, is used to develop the governing equations  of  laminated  plates  with  

actuating  and/or  sensing layers. 

Another simple first-order shear deformation theory for laminated composite plates is 

presented in (Thai & Choi, 2013). The core difference of the presented deformation 

theory to the existing in literature lies to the fact that it takes into account only four 

unknowns. Moreover, it is very similar to the classical plate theory in many aspects, 

i.e. in the equations of motion, boundary conditions, etc. 

2.1.2 Layerwise models 

An adhesive interface element for bonding of laminated plates is presented in (Lin & 

Ko, 1993). More specifically, an isoparametric interface element is used in the analysis 

of adhesive-bonded structures. The proposed model assumes that stresses dominate 

in the adhesive layer. The assumptions made for the elastic analysis include small de-

formations, negligible transverse normal deformation of the plate and overlay, anti-

plane stress state for the adhesive and uniform peel and shear stresses along the thick-

ness direction in the adhesive layer. Eight-node isoparametric plate elements made of 

fiber reinforced composites are used for the formulation of the host structure and 

patches. The model is based on first order shear deformation theory. The resulting 

elements can be properly used in solving adhesive-bonded structures problems as it 

provides realistic assessments of the stress distribution and deformation. 

An extended review on the available literature related to the use of piezoelectric sen-

sors and actuators for the disturbance sensing and control of flexible structures has 

been comprehensively done in the survey (Rao & Sunar, 1994). According to the arti-

cle, piezoelectric materials can be easily used in order to attain an accurate response 
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and effective control of smart flexible structures with integrated control schemes. A 

brief history of piezoelectricity is also included. 

Another finite element model for the analysis of smart piezocomposite plates on de-

flection control is suggested in (Lin, et al., 1996). The proposed model consists of an 

eight-node isoparametric plate element, an actuator element and an adhesive interface 

element used for sticking the two separate layers together. The actuator proposed in 

this investigation relies on first-order shear deformation theory. Some assumptions 

made include among others that piezoelectric elements are sufficiently thin and per-

fectly bonded to the structure, the transverse shear strains are uniform through the 

thickness and the transverse normal strain, as well as the deformations are negligible 

which means that the linear theory can be used. The results of the analysis indicate 

that the use of the adhesive material provides flexibility to the structure making pos-

sible the solution under any type of boundary conditions and geometry configuration. 

A finite-element analysis of strain transfer in an induced strain actuator is presented 

in (Seshu & Naganathan, 1997). Since the proper selection and application of suitable 

adhesive bonds between layers play a significant role in maximizing the strain transfer 

from the actuator layer to the substrate, a detailed finite-element model is necessary in 

order to model the strain transfer from the actuator to the substrate via an adhesive 

layer. For this purpose, a two-dimensional Lagrangian finite element has been pro-

posed. The results of the study are compared with those obtained by one-dimensional 

analytical models in order to show the limitations of the analytical models. In addition, 

an investigation of different values of the shear lag parameter, which indicates the na-

ture of bonding, is done for extension and bending type actuation. It is also shown that 

the analytical results are in agreement with the general finite element results obtained 

by the proposed method. 

The formulation of a finite element model of hybrid active–passive vibration damping 

of multilayer piezoelectric sandwich beams is proposed in (Trindade, et al., 2001). 

Namely, an electromechanically coupled finite element model is formulated in order 

to handle active–passive damped multilayer beam structures, and more specifically a 

viscoelastic core placed between piezoelectric layers which are modeled using the clas-

sical laminate theory. The whole system is formulated using classical three-layer sand-

wich theory, assuming thin faces based on Euler–Bernoulli theory and a Timoshenko 

thick core. The finite elements are based on Lagrange linear shape functions for the 

mean and axial displacements and Hermite cubic ones for the transverse deflection. 

The electric potentials and voltages of the piezoelectric layers are considered as extra 

degrees of freedom for each layer. An anelastic displacement field (ADF) model is used 

for the modeling of the viscoelastic core yielding to an augmented state-space system 

which is capable of time-domain analyses of highly damped beams. In order to im-

prove the efficiency of the proposed method the model is reduced through modal anal-

ysis tools. 
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In (Luo & Tong, 2004) a novel finite element analysis formulation has been considered. 

Namely, piezoelectric elements with four nodes are used. The adhesive element has 

finite thickness with shear and peel stiffness and thus gives the insight into the inter-

active behaviors of the piezoelectric smart plates, which also shows that peel stress is 

important for the flexible smart plate. This element is placed between two collocated 

four node plate elements in order to form an adhesively laminated element of the pie-

zoelectric sandwich smart plate. The displacement filed of the laminated element is 

considered to be continuous and the Reissner–Mindlin plate theory is used. This the-

ory can be accurately applied to a thin or moderately thick host plate with bonded or 

debonded piezoelectric sensors and actuators. According to this investigation, the 

shear stresses are highly concentrated near the edges of the piezoelectric actuators. 

This phenomenon impacts the performance of piezoelectric actuators in smart plates 

as the assumptions made, may be limited to large piezoelectric patches and thick host 

plates. 

Piezolaminated plates can also be modeled using layerwise mixed finite elements 

(Garcia Lage, et al., 2004). The finite element model of this work is formulated using a 

Reissner mixed variational principle. The primary variables of the mixed functional 

include transverse stresses, transverse electrical displacement, displacement compo-

nents and electrical potential. Contrary to typical layerwise models, the proposed 

mixed model ensures the necessary continuity of the primary variables throughout the 

interface between neighboring layers. Although this approach works well with struc-

tures of medium and high thickness, it is rather insufficient for the analysis of thin 

composite piezoelectric structures, as its performance decreases when the plate be-

comes thinner. This is due to the fact that its use in the case of highly distorted ele-

ments, may lead to locking phenomena, such as the formulation of an over-stiffened 

structure. However the proposed mixed finite element model is a proper alternative 

to traditional displacement layerwise finite element models, as it assures the continu-

ity of transverse stresses and electrical displacement and simulates the three-dimen-

sional behavior of plate structures in an accurate way, and at the same time with re-

spect to mechanical and electrical quantities. 

An adaptive sandwich piezoelectric composite beam with a foam core is studied in 

(Plagianakos & Saravanos, 2005). More specifically a coupled high-order layerwise 

beam model, discretized with finite elements is considered in order to predict the elec-

trostatic response of beams with bonded piezoelectric layers. The stiffness matrix, 

along with the piezoelectric and the permittivity matrices are formulated from ply to 

structural level. The results of the work show the capability of the proposed method 

to capture the local electric and shear stress response of the piezo-composite structure 

in an efficient and accurate way, including, among others, thick structures and struc-

tures with compliant shear layers. The high-order layerwise theory (HOLT) is used in 

(Plagianakos & Saravanos, 2005) for the calculation of the electrostatic response of 

thick piezoelectric beams. The numerical results are compared to the ones provided 

by a linear layerwise theory (LLT). The use of high-order terms both in the elastic, as 
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well as the electric field of the discrete layers with the form of additional degrees of 

freedom (DoFs) provide more accurate results for each individual discrete layer of the 

total structure. 

In (Erturk & Tekinalp, 2005) a layerwise approach is used in order to capture the flex-

ibility of the adhesives of a smart piezoelectric plate at delaminated regions. The for-

mulation is done by using the finite element method. Namely, a sort of special finite 

elements which use both linear Lagrange, as well as conforming Hermite type inter-

polation functions, are developed and used instead of integration and transfer matrix 

methods. The adhesive layers are modeled as distributed normal and shear springs. 

They are also assumed to be very thin, without mass and with linear deformation.  

Another, higher-order layerwise laminate theory for the prediction of interlaminar 

shear stresses in thick composite and sandwich composite plates is presented in 

(Plagianakos & Saravanos, 2005b). The proposed theory is used for the prediction of 

the static response of composite structures. The total displacements of each separate 

layer are given through the thickness of the laminate and include quadratic and cubic 

polynomial distributions of the in-plane displacements, in addition to linear approxi-

mations given by linear layerwise theories. The results of the proposed theory are com-

pared with the ones obtained by a linear layerwise theory which is based on kinematic 

assumptions with a variable distribution of the transverse displacement through-

thickness. The proposed higher-order formulation has two significant benefits com-

pared to linear layerwise theories. The first and very important is that only a small 

number of different layers is needed in order to model the composite laminate struc-

ture which makes the theory efficient. The second, also important advantage of the 

theory lies to the fact that it provides accurate predictions for the parabolic through-

thickness distributions of displacements, strains and stresses both at the interfaces, as 

well as at the free edges, which makes the theory robust as well. 

Another efficient layerwise finite element model for dynamic analysis of laminated 

hybrid piezoelectric beams is presented in (Kapuria & Alam, 2006). This model con-

sists of a one-dimensional structure which takes into account the electric potential of 

the piezoelectric components as degrees of freedom. The analysis uses the coupled 

efficient layerwise (zigzag) theory developed in (Kapuria, et al., 2005). The formulation 

proposed in (Kapuria & Alam, 2006) can be used for both open and closed circuit 

boundary conditions which are necessary either for sensory, as well as for active re-

sponse. The finite element model and the algorithm used for the dynamic analysis 

have been validated in comparison to the results of hybrid beams solved with analyt-

ical Navier-type theory. The finite element model which is used for the analysis is free 

of shear locking. The comparison between the two theories shows that the proposed 

layerwise zigzag theory is accurate for both free and forced vibration response of hy-

brid piezoelectric composites as well as sandwich beams of moderate thickness. 
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An approach of the use of mixed finite elements for the formulation of layerwise pie-

zoelectric anisotropic plate models is considered in (Carrera & Fagiano, 2007). The fi-

nite elements used in this investigation take into account a priori continuous trans-

verse electric displacements. The analysis of the smart structure is performed assum-

ing the unified formulation and the Reissner mixed variational theorem. First, a partial 

form of the theorem which takes as parameters the displacements, the electric poten-

tial and the transverse stresses is considered. Subsequently, a full form of the Reissner 

mixed variational theorem is considered, which adds the transverse electric displace-

ment as independed variable. The superiority of the latter consideration is shown 

through examples that demonstrate its effectiveness for the evaluation of interlaminar 

continuous transverse electric displacement fields. It is also shown that the imple-

mented finite element model can provide very accurate descriptions of both mechani-

cal and electrical fields which makes unified formulation a valuable tool in the hierar-

chical analysis of smart piezoelectric plates. 

The adhesive elements can be formulated in various ways. In (Klug & Sun, 1996) a 

very efficient analytical model for bonded composite patches to cracked aluminum 

plates is considered. In this model, the host structure, as well as the composite patches 

are modeled separately using the Mindlin plate theory. The adhesive layer is formu-

lated with effective springs which are used as joints between the patch and host plate. 

However, this finite element formulation has the major disadvantage of being appli-

cable to flat elements, which means that it does not consider curvature effects. 

It is possible that the size, as well as the thickness of bonded patches can affect the peel 

stresses, making necessary the optimal design of the adhesive layers in curved sur-

faces. In (Tong & Sun, 2003) a finite element formulation for developing adhesive ele-

ments for conducting quick stress analysis of bonded patch to curved thin-walled 

structures is presented. The local stiffness matrices for the adhesive elements consist 

of two shell elements and one pseudo brick element yielding to 8-node, 16-node and 

18-node adhesive elements. These elements are assumed to be 2.5D adhesive elements 

and can be used for the calculation of stresses in the adhesive layer of curved struc-

tures. The loading vectors follow the standard finite element analysis procedure. The 

final elements are suitable to be used as bonded repairs in thin-walled structures. 

2.2 Delamination 

Delamination is a very common failure for composite materials. In fact, materials of 

different mechanical properties are bonded and must stay together by following the 

deformation of the continuum, so that stress concentrations appear. 

In laminated composite structures, when delamination occurs, either the sensor and/or 

the actuator can peel off. The level of abruption could be limited or more extensive. Α 

suitable multilayer formulation of a piezocomposite plate allows us to investigate de-

lamination effects including partial delamination near to reality. 
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In (Cantwell & Morton, 1991) the impact resistance of fibre-reinforced composite ma-

terials is reviewed. As a result, serious concerns regarding this impact are found. 

Namely, the strain energy capacity of the fibres determines the impact resistance of 

the whole structure. Moreover, the fibre stacking sequence determines both the elastic 

energy absorbing capability of the material, along with the failure mode. For decent 

damage restriction, laminates with abrupt changes in the orientation of the fibres 

should be avoided. 

In laminated materials, such as the ones used in laminated structures, the repeated 

applied stresses, impact the layers of the structures and can lead them to separate. This 

phenomenon can form a less tough structure. Prediction of failure in composite lami-

nates can be accomplished using computational methods based on material strength 

and fracture toughness, as it is presented in (Dávila, et al., 2005). 

In (Nikishkov, et al., 2016) a measurement of fracture toughness properties in compo-

site laminates is presented. Namely, the prediction of the matrix failure is accom-

plished using computational methods based on material strength and fracture tough-

ness. Accurate three-dimensional measurements of crack progression under loading 

suggest that crack features are strongly related to a mixture of fracture modes. The 

results obtained suggest that accurate fracture-based predictions of the intralaminar 

matrix crack propagation should be based on appropriate fracture criteria. 

Delamination can also be observed in reinforced concrete structures through the phe-

nomenon of reinforcement corrosion. A review of research literature in this area shows 

that insufficient theoretical work on corrosion induced concrete delamination has been 

undertaken, see (Alonso, et al., 1998), or (Maslehuddin, et al., 1990). However, various 

investigations propose a theoretical framework for the prediction of delamination 

caused by steel reinforcement corrosion. These methods are based on mechanics and 

mainly use crack opening in concrete as delamination criterion (Li, et al., 2007). 

In (Mahieddine, et al., 2010) a mathematical model for partially delaminated Euler–

Bernoulli beams that allows the appearing of delamination anywhere in the structure 

is presented. It is shown that when the layers become thicker, the axial displacement 

increases. The results agree with the ones of the exact solution indicating that the pro-

posed method is efficient, as well as that the assumptions made are valid. 

In general, the study of delamination or other failure phenomena in structures attracts 

some interest. For example in (Okafor, et al., 1996) and (Greco, et al., 2015) the effect of 

delamination on laminated composite beams is examined.  

In (Kuo, 1984) a continuous two-dimensional shear spring element was used in order 

to calculate the stress intensity in smart structures bonded with adhesive materials. 

The stiffness of the structure is formulated using quadratic quadrilateral isoparametric 

elements which take into account the continuity of the adhesive layers. The simple 

two-dimensional model provides an accurate solution in terms of stress intensity, 
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which makes the proposed formulation a convenient tool for modeling adhesive lay-

ers. 

In (Okafor, et al., 1996) the prediction of delamination in smart composite piezoelectric 

beams is examined. The host structure is equipped with built-in piezoelectric sensor 

and actuator patches, while modal analysis tools and neural networks are employed 

for the analysis. The results indicate that the proposed techniques provide successful 

predictions of the delamination size. 

In (Erturk & Tekinalp, 2005) the deformation of the adhesive layers in multilayer pie-

zoelectric plates is considered with finite elements. The investigation shows that even 

if partial delamination between the piezoelectric and non-piezoelectric layers does not 

affect the maximum deformation significantly, however it affects the local stresses 

near the delaminated regions of the smart cantilever plate. Another outcome from this 

investigation is that the more flexible the adhesive layer, the less it deforms when an 

electric field is applied. It is also notable that the finite elements which are developed 

in this study are suitable for modeling interlaminar stresses and modeling delamina-

tion as well. 

Greco et al. propose a novel approach for the prediction of delamination of multi-

layered composite beams in (Greco, et al., 2015). To be more specific, a model based 

on the first-order shear deformable laminated beam theory is considered. In addition, 

arbitrary Lagrangian–Eulerian formulation is used for the development of moving 

mesh strategy. The proposed model is capable of avoiding complexities in bi-dimen-

sional structures. A comparison with experimental results indicates that the results of 

the analysis are valid and that the proposed formulation can be used in more complex 

structures and/or excitation scenarios. 

However, except for delamination, for a given distribution of stresses on a structure, 

several violations at critical points could be observed. These violations include among 

others, debonding, penetration, sliding, etc. 

Some serious work is done regarding debonding in composite structures. For example 

in (Parı́s, et al., 2003) the failure of the matrix in fibrous composite materials is investi-

gated from the micromechanical view. The numerical analysis is performed using the 

Boundary Element Method, allowing contact between the debonded surfaces of fibre 

and matrix. The numerical results of the investigation prove that stresses not associ-

ated to the macromechanical plane of failure play significant role in the mechanism of 

failure of fibrous composites in the microscopic scale. 

Other works deal with progressive debonding. In (Hsueh, 1995) the criteria for pro-

gressive debonding at the fiber/matrix interface with friction along the debonded in-

terface for the case of fiber-reinforced ceramic composites are considered. In (Kushch, 

et al., 2011) a numerical simulation of progressive debonding in fiber reinforced com-

posite under transverse loading has been performed. Namely, the effect on debonding 
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progress of local stress redistribution due to interaction between the fibers is studied. 

The finite element model is developed based on the cohesive-zone model of interface. 

In (Caporale, et al., 2006) a micromechanical analysis of interfacial debonding in uni-

directional fiber-reinforced composites is performed. Namely, extensive analysis on 

fiber-matrix debonding phenomena in unidirectional composites with homogeneous, 

isotropic and linearly elastic constituents is carried out. The failure is given by normal 

and tangential brittle-elastic springs which are used for the connection between the 

matrix and the fibers at the interface. The micromechanical analysis which evaluates 

the first failure loci has been developed using the finite element method. 

In (Kumar, et al., 2007) an active vibration control of smart plates with partially 

debonded multilayered PZT actuators is considered. Namely, a simple modeling 

scheme for multiple debonding is proposed, which can also idealize multiple delami-

nation in the host laminate. The total influence of the damage of the actuator on the 

performance of the closed loop control is evaluated. The results of the investigation 

show that the debonding phenomena in actuators influence both active damping and 

active stiffening effects. 

A multi-scale computational homogenization scheme is proposed in (Drosopoulos, et 

al., 2014) for the study of debonding in composite materials. A classical unilateral con-

tact law has been incorporated in the microscopic level, for the investigation of the 

contact between the constitutive materials. By using contact mechanics, non-penetra-

tion between the constituent materials of the microscopic structure is taken into ac-

count. The influence of microscopic debonding in the macroscopic level of the compo-

site is finally captured. 

It is noteworthy that with homogenization techniques, an equivalent anisotropic (e.g. 

orthotropic) plate can contain the information of the overall possibly damaged micro-

structure. 

2.3 Three-dimensional models 

Although the increased complexity, three-dimensional models have been proposed by 

several investigators due to their higher accuracy in studying delamination phenom-

ena. 

For instance, delamination and buckling in three-dimensional composites are exam-

ined in (Cox, 1994). Namely, 3D stitched laminates and woven composites containing 

delamination cracks with some assumptions are considered. A relation for the mini-

mum density of through thickness reinforcement required for the buckling of the de-

lamination layer is given. In this work it is proven that if the length of the delamination 

crack exceeds a critical length, then buckling will not span the whole delamination. In 

addition, for normal densities of through-thickness reinforcement, this critical length 

will rarely exceed the thickness of the delaminated layer. 
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A stress analysis of multilayered plates, which incorporate induced-strain actuators is 

presented in (Icardi & Di Sciuva, 1996). Namely, a detailed study of the 3D stress field 

of multilayered smart plates based on the von Karman strain–displacement relations 

is developed. The presented third-order zigzag layerwise theory allows for geometri-

cally nonlinear effects. Numerical results indicate that the active control of deflections 

is rather effective. 

Delamination growth in laminated structures is discussed in (Sprenger, et al., 2000). 

Continuum-based 3D shell elements and a viscoplastic softening model for the simu-

lation of delaminations in composite structures are considered. More specifically, an 

eight-node brick element with the assumption that its modification is based on natural 

strain is presented. An inelastic material model with softening, along with a visco-

plastic regularization are introduced. Numerical results indicate that 3D shell elements 

are suitable for the description of the delamination concept. 

In (Bruno, et al., 2005) a 3D delamination modeling technique for analyzing mixed 

mode delamination problems in laminated structures is proposed. The technique, 

which can be used for very thin adhesive layers, is based on first-order shear deform-

able plate and interface theories for laminated structures. Delamination phenomena 

may occur along these interfaces. For the simulation of adhesion and contact effects, 

Lagrange and other penalty methods are considered. Tests with full 3D finite element 

models indicate the accuracy and the efficiency of the procedure. 

A computational technique for flexural effects in textile reinforced composite shells is 

presented in (Piezel, et al., 2012). The procedure is used for the in-plane and the out-

of-plane behavior of 3D composite shells. The aim of this technique is to analyze the 

bending effect on the risk for delamination at the interface of 3D woven fabric compo-

sites employing shell-like representative volume elements. It is shown that the pro-

posed method is general and can be used for various types of composites. 

Finally, 3D delamination in encapsulated silicon devices is discussed in (Ho, et al., 

2012). More specifically, an experimental validation using pattern recognition tech-

niques is done for the investigation of delamination characteristics and especially the 

viability of the cohesive zone. The analysis indicates that a 3D numerical model pro-

vides a delamination pattern very close to the one observed through the experiments. 

An interesting work on the evaluation of inter-laminar stresses in the adhesive layer 

of bonded lap shear joints is presented in (Pradhan & Parida, 2013). The non-linear 

analysis consider three-dimensional finite elements and contact elements in order to 

avoid penetration phenomena in the area of the delaminated surfaces. The analysis 

indicate that the use of three-dimensional elements is mandatory due to the existence 

of 3D state of stress near the delamination region. Moreover, it is shown that the adop-

tion of 3D finite elements diminishes errors that may appear in 2D analyses. 

Another 3D finite element analysis of buckling delamination in laminated smart struc-

tures is briefly described in (Akbarov, et al., 2014). More specifically, the analysis of a 
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rectangular plate with an inner rectangular crack under a biaxial compressive force is 

considered. One critical assumption made in this investigation is that the plate is 

simply supported at all its lateral sides. A failure criterion is considered for the deter-

mination of the critical buckling. Three-dimensional finite elements and the boundary-

form perturbation technique are used for the solution of the boundary problem. The 

results extracted indicate the impact of the topology of the structure and the properties 

of the materials to the analysis.  

In (Liu, et al., 2014) an optical coherence tomography system for the characterization 

of glass fiber composites is presented. In this work 3D crack surfaces during delami-

nation growth are considered. 

A novel three-dimensional computational model is proposed in (Benvenuti, et al., 

2016). Namely, an experimentally stable extended finite element model for studying 

single-lap shear tests in order to simulate delamination in reinforced concrete plates is 

suggested. The analysis includes regularized three-dimensional elements which can 

be used for either design or experimental purposes. 

Typically, the investigation of delamination phenomenon in smart structures can be 

based on a simplified model. For further information see (Mistakidis & Stavroulakis, 

1998). 

2.4 Model uncertainty and control 

In general, mathematical theories of control demand the whole information of the 

studied dynamical system. Even a slight divergence from the nominal values may 

cause a drastic reduction in the effectiveness of control. This means that, either the 

system studied must be first reconstructed through the use of some filtering tech-

niques and then controlled, or the adoption of robust controllers, which are insensitive 

to modification of nominal values, must be considered. 

As for vibration control in general, control system can be either active, passive or hy-

brid i.e. semi active. According to this classification, active control incorporates a set 

of sensors and actuators in order to apply real-time feedback. From the other hand in 

passive control there is absolute absence of any kind of feedback, while hybrid systems 

combine the characteristics of the two distinct types of control. 

Piezo-actuator delamination can also affect the performance of active noise and vibra-

tion control systems. In (Kim & Jones, 1996) an analytical, as well as an experimental 

investigation for the identification of the effects of inner and edge delamination phe-

nomena on the performance of surface-mounted piezoelectric actuators on a smart 

cantilever beam is carried out. From the analysis, it is shown that in case of edge de-

lamination there is an unpropitious effect on the performance of the control system, 

whereas in case of inner delamination the impact on the performance is negligible. 
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Vibration control in systems with presence of delamination is studied in (Tylikowski, 

2001). More specifically, the effects of piezoactuator delamination on the transfer func-

tions of vibration control systems are considered. The host structure consists of a 

simply supported laminated piezoelectric beam, which is subjected to excitation by 

non-symmetric actuator elements. The numerical results indicate the influence of de-

lamination phenomenon on the characteristics of the vibration. In this investigation is 

shown that the edge delamination has a negative impact to the performance of the 

piezoelectric actuators. It is also proved that delamination at the edges of the structure 

decreases the magnitude of transfer functions between the voltage of the actuators and 

the displacements of the beam. 

Active control is also widely used for the vibration suppression of smart structures 

either with (Kumar, et al., 2007) or without presence of structural failures (Zabihollah, 

et al., 2007). 

For example in (Kumar, et al., 2007) the performance of a linear quadratic Gaussian 

(LQG) based active vibration control system is tested. The numerical results obtained 

by the active control simulation suggest that it is necessary to take into account possi-

ble failures as uncertainty parameters while designing the controller, in order to make 

the control system not only effective, but damage-tolerant as well. 

The work presented in (Zabihollah, et al., 2007) deals with active vibration suppression 

of smart beams. The analysis is based on a layerwise theory and an optimal control 

strategy. The host structure is a smart laminated composite beam, while the actuation 

and sensing elements are made of piezoceramics. For the design of the control scheme, 

the state-space representation is considered. Subsequently, a linear quadratic regulator 

(LQR) controller is designed and tested in order to achieve vibration suppression of 

the smart beam. The results are compared with those obtained by experiments and 

show that the controller is accurate and efficient for the reduction of the vibrations of 

the structure. 

An experimental model identification and vibration control of a smart cantilever beam 

using piezoelectric actuators and sensors is presented in (Nestorovic, et al., 2012). More 

specifically, the concept of an active vibration control for piezoelectric light weight 

structures is introduced. The study focuses on structural control with piezoelectric ma-

terials as active elements. The efficiency of the proposed model, as well as the control 

are proven based on experimental verification. 

One critical point is that the simulation of smart multi-layered composite structures 

have to deal with high levels of uncertainty in the proposed models. 

In fact, the given parameters that can be measured include the mass and the dimen-

sions of the structure. All the rest parameters need to be computed. Stiffness and 

damping present a low level of uncertainty. However, serious questions arise for some 

critical parts of a composite, such as the adhesive materials. 
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In order to reduce these levels of uncertainty we need to measure the deviation of the 

nominal terms. This could be done in various ways: 

i. One possibility could be the use of non-mechanical methods, such as for in-

stance interval analysis (Pons, et al., 2008), (Neduncheliyan, et al., 2009). This 

type of control considers trials and/or combinations within a given interval. 

This method is known for the simplicity of the output feedback controllers and 

can demonstrate good closed loop performance, however it is not very accurate 

due to the assumptions made. 

ii. The other option is to use robust optimal design in order to build robust con-

trollers (Damle, et al., 1994), (Marinova, et al., 2005). For this purpose, a damage 

parameter is considered, which means that a sustainable way in which the pro-

posed control scheme will continue to work, even with a mismatch of its pa-

rameters, is sought. 

Thus, the objective is to propose a control model in order to ensure that the structure 

will remain functional in an optimal way. It is not expected that the structure functions 

perfectly, but, as a compromise, it remains functional in a satisfactory level. In such 

cases H-infinitive, fuzzy or adaptive neuro-fuzzy control may be useful. 

2.4.1 H-infinitive control 

Control usually deals with smooth functions as for instance quadratic functions, linear 

functions, etc. However, when we deal with peculiar features such as eigenmodes or 

frequency peaks the use of robust control, e.g. H-infinitive control is necessary.  

In a few words, an H-infinitive controller takes the response for all the excitations 

given, it extracts the peak of them and tries to apply the control at this peak. This could 

be for example the first eigenmode. Once the control is properly applied, the controller 

moves to the next mode and so on. 

For example in (Crassidis, et al., 2000) the control of active damping using the H-infin-

ity control strategy is presented. Namely, two different configurations of the resulting 

hybrid treatment are considered. The first assumes that active and passive control act 

separately, while in the second configuration proposed the two different types of con-

trol operate together in order to maximize the energy dissipation. The objective of this 

investigation is the design and the implementation of robust controllers for different 

control strategies. The robustness of the proposed controller is demonstrated by the 

comparison between the H-infinitive control scheme and a classical PD controller. Fi-

nally, the effectiveness of the H-infinitive scheme in controlling structural vibration is 

tested. 

In (Iorga, et al., 2008) a review of H-infinitive control on smart piezoelectric actuated 

structures has been done. In this work, the main problems that need to be addressed 

for the optimal design of robust control laws, which include among others structural 

modeling techniques, uncertainty modeling, controller order reduction, and robust-

ness validation, are reviewed. The objective of this work is to provide a comprehensive 
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methodology for the design and the validation of robust H-infinitive controllers for 

active structures. For this purpose a step-by-step example application for a cantilever 

piezoelectric actuated smart plate is presented. 

In another work (Moutsopoulou, et al., 2014) an active control system for a flexible 

laminated smart beam with bonded piezoelectric sensors and actuators is developed 

and studied. The dynamics are formulated using the finite elements method. The the-

ory of robust H- infinitive control is used due to the present of uncertainty in the sys-

tem. The objective of the control design is to find the optimal control forces in order to 

reduce the external excitations. The robustness analysis includes the mathematical ex-

pression of the uncertainty, the investigation of the robust stability of the system, as 

well as the confirmation of the robust performance. The numerical simulations verify 

the effectiveness of the proposed control strategy. 

Another investigation on robust active vibration control of smart structures is pre-

sented in (Oveisi & Gudarzi, 2012). In this work a comparison between two robust 

control designing approaches in smart structures is made.  The controllers are de-

signed using on the one hand the μ-Synthesis approach and on the other hand the 

LMI-based design approach based on the augmented plant which consists of the 

model along with uncertainties. From the results obtained, it is shown that the LMI-

based design approach presents higher performance in rejection of random disturb-

ances. 

2.4.2 Fuzzy control 

The key advantage of classical control theories is the availability of strong mathemat-

ical tools for the design of the controllers. However, the fact that a linear feedback is 

adopted, is considered to be a serious drawback. On the other hand, nonlinear control, 

e.g. fuzzy control, is more flexible and more suitable to handle nonlinearities. This is 

due to the fact that the feedback of such controllers is nonlinear and could be of vary-

ing intensity in different areas of operation. This is not only expected, but desirable as 

well, as a nonlinear controller can serve different needs, e.g. slight or more extensive 

displacements, with the same initial settings. 

Specifically for the fuzzy inference systems, the presence of verbal rules can systema-

tize the experience of an advanced user of a system or a process, and can be used for 

the construction of nonlinear controllers. The control output could be nonlinear and 

complicated. 

An introductory survey of fuzzy control has been conducted in (Sugeno, 1985). The 

theoretical framework, as well as some industrial and other fuzzy applications are cov-

ered. Subsequently, the major advantages and drawbacks of fuzzy control are ad-

dressed. The most important features of a controller based on fuzzy logic are, among 

others, the ability to function under multiple objectives and the adaptiveness to differ-

ent problems. Another significant advantage of fuzzy control is the robustness. The 
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major disadvantage seems to be the absence of a complete mathematic framework for 

the description of such systems. 

Fuzzy control offers an efficient interface for the translation of the knowledge of one 

system into the nonlinearities which are necessary for the control. An introduction to 

fuzzy control is made in (Driankov, et al., 1996), where all the necessary tools for build-

ing robust fuzzy controllers are presented in detail. 

A control paradigm for smart structures using fuzzy control is presented in (Mayhan 

& Washington, 1998). In this study, fuzzy control techniques and smart piezoelectric 

materials are combined in order to form a robust and adaptive control system. The 

proposed model is capable of learning and thus of improving its performance over 

time in presence of uncertainties in the host plant, so as to be adaptive. The robustness 

is proved by changing the properties of the beam i.e. by adding some extra masses to 

the host beam. 

Fuzzy control is widely used for vibration suppression of smart composite structures 

as well. In (Cohen, et al., 2002) an active control law for the vibration suppression of 

smart flexible beams is developed. The control is achieved via collocated pairs of sen-

sors and actuators. The control scheme consists of a closed-loop algorithm based on 

fuzzy inference.  The results of the simulation indicate that the proposed controller can 

be configured easily and quickly, while the control is effective and robust as well. In 

this case, the robustness of the controller is examined by altering the dynamic charac-

teristics of the host structure. 

A modal control law of cantilever piezoelectric beams using fuzzy logic is presented 

in (Sharma, et al., 2005). The inputs of the controller are the modal displacements and 

modal velocities of the modes to be controlled. The performance of the proposed 

method is proved for the first two modes of the host structure. The results obtained, 

indicate that the implementation of fuzzy controllers for active vibration control is not 

only feasible, but effective as well. 

In (Tairidis, et al., 2007) and (Tairidis, et al., 2009) the vibration suppression of a smart 

beam model with embedded piezoelectric sensors and actuators using fuzzy control 

is considered. Vibration suppression is achieved by using active control. The design of 

the nonlinear controller is based on pendulum-like fuzzy inference rules. Two differ-

ent schemes are implemented. First, a collocated controller that takes as input the dis-

placement and the velocity of the free end and gives back the control force to be ap-

plied at the same point is considered. The second fuzzy controller consists of two in-

dependent fuzzy mechanisms, which can be tuned separately, placed at the middle 

and at the free end of the cantilever beam. The numerical results which presented in-

dicate that vibration reduction in terms of displacements is accomplished, thus the 

control is considered to be effective. 

Fuzzy logic controllers are also used for active vibration control of smart plates. In 

(Shirazi, et al., 2011) a simply supported rectangular plate, made from functionally 



 Chapter 2   23 

graded materials, is considered. For the extraction of the equations of motion, classical 

plate theory is used. The control scheme, which consists of a fuzzy controller, is for-

mulated by considering the conditions of a real physical problem. Numerical results 

indicate that fuzzy control provides satisfactory suppression of the vibrations of the 

host structure. 

In (Muradova & Stavroulakis, 2013) the vibration control of a smart plate is considered. 

The model consists of a thin elastic rectangular plate, while the controller is designed 

using fuzzy inference techniques. In this investigation two different computational 

procedures are proposed. In the first approach a local controller is considered, while 

in the second algorithm the controller is distributed. From the numerical results, both 

methods seem to achieve the desired vibration suppression of the host plate. 

A general design method of hedge-algebras-based fuzzy controllers and an applica-

tion for structural active control is proposed in (Bui, et al., 2015). The method uses 

inherent order relationships between words instead of using fuzzy sets. Thus the anal-

ysis is realized in a word-domain, in order to express the semantics of words. Hedge 

algebras theory provides an appropriate formal basis to define the fuzziness of vague 

terms, although the difficulties which come from the high level of abstraction. The 

definition is achieved by taking advantage of the shape of the fuzzy sets which, in turn, 

represent the meaning of the variables. Results taken by the simulation, indicate that 

the proposed method is simple, transparent and efficient in reducing the pick storey 

drift, as well as the pick absolute acceleration of the structure. 

A hybrid control scheme, based on fuzzy techniques, for the suppression of vibrations 

of a smart von Karman plate is presented in (Muradova & Stavroulakis, 2015). Namely, 

the suppression of large vibrations of a smart thin elastic rectangular von Kármán 

plate is studied. The considered nonlinear problem is spatially discretized by means 

of the time spectral method. As for the time integration, the implicit Newmark-β iter-

ative method is employed. The nonlinear controllers are designed, considering the 

fuzzy inference techniques. The numerical results presented indicate the efficiency of 

control.  

Moreover, it is shown that the characteristics of fuzzy controllers can be easily tuned 

by using global optimization methods, such as genetic algorithms (Lu, et al., 2003)   

particle swarm optimization (Marinaki, et al., 2011), (Marinaki, et al., 2011b), etc. 

For example in (Lu, et al., 2003) a genetic algorithm is used for the design of fuzzy 

controllers for smart structures. The effectiveness of the proposed optimization algo-

rithm is demonstrated by testing on a cantilever piezoelectric beam. 

Another example of the use of genetic algorithms for the optimal tuning of control is 

studied in (Mahmoodabadi & Jahanshahi, 2016). Namely, a multi-objective algorithm 

for the optimization of the characteristics of controllers for fourth order nonlinear sys-

tems is presented. The results demonstrates that the proposed methodology can be 

effectively applied for the optimization of control of nonlinear systems. 
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In (Marinaki, et al., 2011) the particle swarm optimization (PSO) method is used for 

the fine tuning of fuzzy controllers. More specifically, three different variants of the 

Particle Swarm Optimization are tested, namely, the simple Particle Swarm Optimiza-

tion, the inertia Particle Swarm Optimization and the Constriction Particle Swarm Op-

timization. From the numerical results the effectiveness of the proposed methods is 

shown. 

Moreover, in (Marinaki, et al., 2011b) a multi-objective particle swarm optimization 

algorithm for the optimization of a fuzzy controller used for the vibration suppression 

of a smart beam. The mathematical formulation of the beam model is based on the 

Timoshenko beam theory. The sensors and the actuators are formulated considering 

the linear theory of piezoelectricity. The proposed PSO method takes into account a 

combination of continuous and discrete variables. In the present investigation, the 

break points of the membership functions of the fuzzy variables are optimized. 

Another multi-objective particle swarm optimization algorithm for the optimum de-

sign of fuzzy controllers for nonlinear systems is presented in (Mahmoodabadi, et al., 

2016). More specifically, a multi-objective particle swarm optimization algorithm is 

used in order to obtain the Pareto frontiers of the different commensurable and con-

flicting objective functions which are used for the optimum design of fuzzy controllers. 

In order to illustrate the equitable solutions, the Lorenz dominance method is used. 

The comparison of the obtained results with those in the literature demonstrates the 

efficiency of the proposed method. 

For the optimal design and/or the fine tuning of fuzzy controllers other methods can 

be used as well. In (Marinaki, et al., 2015) a new multi-objective differential evolution 

(DE) algorithm is proposed and tested on smart beams. More specifically a mixed-

variable differential evolution method is used for the optimal design of a fuzzy con-

troller. The results obtained show the efficiency of the proposed method, as significant 

vibration suppression in terms of both displacement and velocity is achieved. 

It is worth mentioning that global optimization methods, such as genetic algorithms, 

can be used for the optimal placement of piezoelectric elements on smart structures.  

One approach for the optimal placement of piezoelectric sensors and actuators for vi-

bration control of a composite plate using genetic algorithms is presented in (Han & 

Lee, 1999). More specifically, genetic algorithms have been used to find efficient loca-

tions of piezoelectric sensors and actuators with consideration of controllability, ob-

servability and spillover prevention. In the proposed scheme, some modifications of 

genetic algorithms have been suggested to improve searching efficiency. 

In another study (Nestorovic, et al., 2015), a multi-objective genetic algorithm for the 

optimal placement of piezoelectric actuators and sensors on a smart beam and a smart 

plate is considered. 
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Among the plethora of applications covered by fuzzy control, the use of such control-

lers in structures with presence of delamination has been also investigated. Fuzzy con-

trol is also applicable in structures with failures either for the deterioration of vibra-

tions or the detection of possible damages. 

In (Sawyer & Rao, 2000) a methodology for the identification of damage in structures 

is proposed.  In this investigation, fuzzy techniques combined with continuum dam-

age mechanics are used to recognize both the location and the extent of the failure. The 

suggested methodology is a new approach which monitors static and dynamic re-

sponses and can be used for the damage detection of various civil structures. The nu-

merical examples presented in this paper indicate that the performance of fuzzy sys-

tems are vigorous under conditions of noise or high uncertainty. See also the related 

paper (Hadjigeorgiou, et al., 2006). 

Finally, in (Latha & Senthilkumar, 2009) a fuzzy rule based model for the prediction 

of delamination in drilling of glass fiber reinforced plastic composites has been intro-

duced. The results of the analysis are verified with experimental ones, indicating the 

efficiency of the proposed method. 

2.4.3 Neural and neuro-fuzzy control 

An artificial neural network is a machine learning system with inputs and outputs 

based on biological neural networks. The learning process is based on a set of para-

digms i.e. available learning examples and can be either supervised or unsupervised. 

Neural networks are widely used in control. This is due to the fact that they are very 

powerful in solving nonlinear control problems of high complexity.  

Neural networks can be used for self-learning control systems. In (Nguyen & Didrow, 

1990) it is shown that a nonlinear control problem can be addressed using neural net-

works. The proposed method demonstrates that neural controllers can be used in solv-

ing complex control problems where analytical methods may fail. The characteristics 

of the network can be the outcome of a self-learning procedure. The controller is 

trained using the error back-propagation method. At each step the network starts from 

an initial state and terminates at a final state, while the objective of the whole process 

is the minimization of an error function between the measured and the desired values. 

Artificial neural networks provide better solutions to some problems due to their ca-

pability of parallelism and learning. More specifically, the use of neural networks in 

control is considered as a natural step in the evolution of control methodology. A short 

review on neural networks for control systems is done in (Antsaklis, 1990). This work 

deals among others with the mathematical framework of the neural networks, the 

learning process, the system modeling, etc. 

A novel methodology for on-line structural damage detection and identification using 

neural networks is presented in (Tsou & Shen, 1994). The presence of damage can be 

identified considering the changes in the dynamic properties of the structure. A back 

propagation three-layered neural network is used for the recognition of the location 
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and the severity of the failure. The proposed network is tested on a spring-mass 

damper system with three degrees of freedom for the identification of both single and 

multiple damages. The results show that the use of neural networks is feasible with 

some limitations. The proposed network is capable of recognizing the locations and 

the severity of failures for either single or multiple damages. The training process is 

easy and suitable for implementation using parallel processors. In addition, the proce-

dure takes place at the design stage, which makes the neural network suitable for on-

line structural health monitoring in real-time.  

Adaptive neural controllers are also widely used. In (Youn, et al., 2000) a neuro-adap-

tive scheme for the vibration control of composite beams subject to sudden delamina-

tion is implemented within the MATLAB®-SIMULINK environment. Namely, the 

variations in natural frequencies and the characteristics of the actuators according to 

delaminations in the bonding layer are investigated. Numerical simulations using 

neural controllers at delaminated piezoelectric actuators have been performed for the 

vibration control of the composite structure. The results obtained indicate that the pro-

posed control scheme is robust and efficient. 

In (Abdeljaber, et al., 2016) a methodology for active vibration control of flexible can-

tilever plates using piezoelectric materials and artificial neural networks is proposed. 

A smart controller based on neural networks is designed in order to control the 

amount of voltage applied to the piezoelectric patches of the plates. The training pro-

cedure is based on predictions of the future response of the host structure. The trained 

controller is tested for different types of dynamic loadings. The results suggest that the 

proposed control scheme is robust and efficient. Namely, the proposed neurocontrol-

ler provide a significant suppression of the accelerations of the cantilever plate under 

several types of excitations. 

Hybrid approaches incorporate the best characteristics of neural networks and other 

methods. For example the combination of artificial neural networks and fuzzy logic 

provides powerful and effective neuro-fuzzy controllers. This amalgamation is possi-

ble due to the similarities between the two techniques, as they both are capable of han-

dling extended nonlinearities and in the same time they both allow interpolative rea-

soning. 

Neural networks and fuzzy logic in intelligent control are examined in (Berenji, 1990). 

In this investigation, the core characteristics of fuzzy, as well as neural network con-

trollers are presented, along with the available tools for the unification of their capa-

bilities in order to design hybrid neuro-fuzzy controllers. The proposed hybrid 

schemes are compared with individual neural and fuzzy controllers through several 

examples. The models presented in this work are capable of modeling nonlinear con-

trol systems. 

Thus, the usage of adaptive fuzzy controllers could be a more systematic approach. 

The adaption can be achieved by embedding the fuzzy controller into a suitable net-

work architecture using neural network training techniques. 
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A well-established implementation of the adaptive neuro-fuzzy system is the adaptive 

neuro fuzzy inference system (ANFIS) of MATLAB®, as presented in (Stavroulakis, et 

al., 2011). The procedure followed, may be summarized in a number of steps as fol-

lows. Firstly, a detailed mechanical model of the total system is constructed. Subse-

quently, the dynamics of the system are calculated and saved. These data are used for 

the optimization and training of the neuro-fuzzy controller by using the ANFIS proce-

dure. The resulting controller can be used for the control of the total system. The nu-

merical results indicate the efficiency of the proposed control scheme for the vibration 

suppression on a cantilever beam under sinusoidal and ramp-type excitations. The 

control is not only efficient, but smooth as well. 

Adaptive neuro fuzzy inference system can be used for structural damage identifica-

tion as well. In (Hakim & Razak, 2013), techniques based on neural networks and on 

the ANFIS method in order to identify possible damages in a steel girder bridge dy-

namic model are developed. The data used for training obtained from modal analysis 

of the structure. The numerical results obtained from the analysis indicate that the 

ANFIS, which is trained using the hybrid learning algorithm, presents very accurate 

results and can be used for the identification of a failure in a bridge girder, as well as 

for the severity of the damage. Moreover, the results of the ANFIS model are more 

accurate compared to those occurred from a back-propagation neural network, indi-

cating that the use of neuro-fuzzy techniques for the prediction of delamination is fea-

sible. 

Finally, a neural fuzzy analysis of delaminated composites using shearography imag-

ing is presented in (Nyongesa, et al., 2001). In this paper, a combination of the neural 

networks classification and the fuzzy inference is used for the construction of an auto-

mated system for the identification of damage in laminated composite structures using 

shearograms. From the analysis is concluded that the use of a neural network, when 

combined with a fuzzy decision-making system, is very efficient for the classification 

of the shearograph images and thus for the damage detection in laminates. 

2.5 Conclusions 

Modern computational mechanics’ tools allow us to accurately model structures and 

their degradation along service. Therefore, model uncertainty can be estimated in most 

cases. This is outlined with the example of study smart multilayered structures with 

uncertainties due to the presence of adhesive materials.  

Classical control suffers from degradation in its efficiency in the presence of nominal 

structure’s uncertainty. Besides classical robust control theory, which has many limi-

tations, we are able to build and test efficient soft controllers, i.e. controllers that can 

work in various modes. A thorough comparison between the two approaches, as well 

as study of various test cases in more complicated structures, like shells, is still missing 

from the literature. 
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The main areas of contribution of the present dissertation to the state of the art can be 

concluded to the following: the estimate of structural modification due to delamina-

tion which is based on nonlinear computational methods and the testing of fuzzy and 

adaptive, i.e. optimized, fuzzy controllers on the modified structure to demonstrate 

robustness.
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3 Structural models 

 

In the present dissertation, in order to check the robustness of the proposed control 

schemes, three different models are used. The core characteristic of the proposed mod-

els is the coupling of the mechanical with electric field which is implemented through 

the use of piezoelectric sensors and actuators. 

The first one consists of a smart beam with surface bonded piezoelectric sensor and 

actuator layers. The model is based on Timoshenko theory and on induced strain ac-

tuation theory. Next, the finite element formulations for the smart beam have been 

performed. It is worth to mention that this model, besides control, is also used for an 

energy harvesting application. 

In order to analyse thicker laminated composite plates, a coupled electromechanical 

model has been developed based on first order shear deformation theory, incorporat-

ing both the displacement and the electric potentials as the state variable in the formu-

lation. It should be noted that, compared to the uncoupled (induced strain) models, 

the coupled electromechanical models provide more consistent representation of both 

the sensor and actuator response of the piezoelectric materials. 

Both previous models are based on equivalent single layer (ESL) theory, where layers 

in the structure are assumed to be one equivalent single layer. However, layerwise 

theories (in which separate degrees of freedom are defined within each layer) simulate 

more accurately the mechanical behaviour of laminated composite structures with rel-

atively large thickness, which consists of various plies with different material proper-

ties and/or stacking sequences. Furthermore, it provides the ability to model disconti-

nuities in the displacement field, hence enabling study of the delamination of the lay-

ers at some points. 

On the other hand, the research on the area of smart structures has been mostly dealing 

with composite thin-walled structures, in which the adhesive material between the 

structural elements and the piezoelectric sensors and actuators must be taken into ac-

count, since the adhesive material layer affects the dynamic behaviour of the structure.  
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Therefore, a layerwise model that considers the adhesive layer flexibility is used to 

describe the electromechanical behaviour of a three-layered composite plate contain-

ing piezoelectric sensors and actuators and adhesive layers between them. 

However, before we move to the models, a simple reference to piezoelectric materials 

and their properties is appropriate. 

3.1 Piezoelectricity and piezoelectric materials 

Piezoelectricity or piezoelectric effect was discovered in 1880 by French physicists 

Jacques and Pierre Curie (Curie & Curie, 1880). It is based on the ability of certain solid 

materials, mainly crystals (Figure 2) and certain ceramics, to produce an electric volt-

age in response to an applied mechanical stress. Etymologically, the word piezoelec-

tricity is of Greek origin and means electricity obtaining from pressure. It is derived 

from the Greek word piezo (πιέζω), which means to press, and electron (ήλεκτρον), 

which stands for amber.  

 

Figure 2: Piezoelectric crystal (http://leafcutterjohn.com/?p=1548) 

There are two forms of the piezoelectric effect, which are the direct and the reverse 

effect. In the first case an electric voltage occurs when an external pressure is applied 

to the piezoelectric material. In the reverse effect, a mechanical strain results from an 

applied electric field. It is notable that materials which exhibit the direct effect, also 

exhibit the reverse piezoelectric effect and vice versa. 

Generally, the piezoelectric effect is anisotropic, i.e. occurs in materials with a crystal 

structure without a center of symmetry. At some ceramic materials, below a critical 

temperature, known as the Curie temperature, electric dipoles with random orienta-

tion are generated within the crystal, which macroscopically are zero. During the po-

larization process, in the presence of a strong electric field, these dipoles tend to align 
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leading macroscopically to an electric dipole. After the cooling process and the re-

moval of the polarizing field, the electric dipoles cannot return to their original posi-

tions and the material becomes permanently piezoelectric, with the ability to convert 

mechanical energy into electrical energy and vice versa. This status is lost only when 

the temperature exceeds the Curie temperature, or when the transducer is subjected 

to a very strong electric field. 

The most important international standards for piezoelectricity are the following: 

 ANSI-IEEE 176 (1987) (Standard on piezoelectricity) 

 IEC 302 (1969) (Standard definitions and methods of measurement for piezoe-

lectric vibrators operating over the frequency range up to 30MHz) 

 IEC 444 (1973) (Basic method for the measurement of resonance frequency and 

resistance of quartz crystal units by zero-phase technique in a pi-network) 

 IEEE 177 (1976) (Standard definitions and methods of measurement for piezo-

electric vibrators) 

Materials with piezoelectric properties are, among others, the Quartz crystal (SiO2), 

the Rochelle or Seignette salt (Potassium Sodium Tartrate), the Ammonium Dihydro-

gen Phosphate (NH4H2PO4), the Lithium Sulphate (Li2SO4), the Tourmaline, the poly-

mer PVDF (Polyvinylidene Difluoride (CH2CF2)n) and the ceramic PZT (Lead Zir-

conate Titanate). 

The PZT or Lead Zirconate Titanate is a ceramic material and its molecular formula is 

given as PbZrxTi1-xO3 for 0 <x< 1 which means that x is defined into the interval (0, 1). 

It was developed by the physicists Gen Shirane, Etsuro Sawaguchi and Yutaka Takagi 

at Tokyo Institute of Technology in 1951 (Shirane, et al., 1951). 

Among the most popular piezoelectric materials are the PVDF and the PZT. Especially 

for use in structural control, one of the most suitable material for the construction of 

the sensors and actuators devices is PZT. 

This is due to the fact that the PZT material is also pyroelectric, which means that it is 

capable of producing an electric voltage in case of change of its temperature, as well 

as ferroelectric, i.e. it has a spontaneous electric polarization (electric dipoles) that can 

be reversed by the application of an external electric field. 

Moreover, the PZT is characterized by its high dielectric constant which is near the 

morphotropic phase boundary when x ≈ 0.52 i.e. when the molecular formula is given 

as PbZr0.52Ti0.48O3. Due to this fact, the Lead Zirconate Titanate is considered to be one 

of the most important and useful electroceramic materials which is used for the con-

struction of sensors, actuators, ultrasonic converters, ceramic capacitors, ferroelectric 

random access memory (FRAM) circuits, etc. 

In control system applications with piezoelectric materials, the objective is the reduc-

tion of bending phenomena. The process is extremely simple. The electric stimulation 

in which the material is subjected, is translated into bending moments. These moments 

are used as control forces to the system. Some examples of different shapes of elec-

trodes with respectively piezoelectric loads are shown in Figure 3. 
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Figure 3: Examples of piezoelectric electrodes: rectangular, triangular and parabolic (Preumont, 2006) 

The rectangular electrode of Figure 3(a) is equivalent to a pair of bending moments Mp 

applied to its ends. The triangular electrode of Figure 3(b) is equivalent to a pair of 

forces P and a bending moment Mp. If the beam is supported at the left end, the loads 

arise from the support reaction and the unique power remaining, i.e. the loading at the 

right end. Finally, a parabolic electrode, such as that of Figure 3(c), is equivalent to a 

uniformly distributed load p and a pair of forces P at the two ends. In each case the 

piezoelectric loads are self-balanced (Preumont, 2006). 

3.2 Piezoelectric constitutive equations 

For the formulation of the constitutive equations of a smart piezoelectric structure sev-

eral assumptions must be made. Firstly, both mechanical and electrical forces in the 

piezoelectric materials are considered to be balanced at any given time instance due to 

the existence of oscillations. As a result, the piezoelectric equations can be decoupled, 

which means that finally, a quasi-static approximation is used in the analysis. It is also 

assumed that in case of fast oscillating piezoelectrics the temperature variation is neg-

ligible, i.e. the pyroelectric effect is not taken into account in the analysis.  

Under these assumptions, the linear piezoelectric constitutive equations coupling the 

elastic and the electric field can be expressed as the direct and converse piezoelectric 

effect equations. These equations are given in simple matrix form as: 

 {𝐷} = [𝑒]{휀} + [𝜉]{𝐸} (1) 

 {𝜎} = [𝑐]{휀} − [𝑒]𝑇{𝐸} (2) 

where {D} is the electric displacement vector, [e] is the piezoelectric stress constant 

matrix, {ε} is the strain vector, [ξ] is the dielectric constant matrix at constant mechan-

ical strain, {E} is the electric field vector, {σ} is the stress vector and [c] is the plane-

stress reduced elastic matrix for a constant electric field. However, for piezoelectric 

laminate structures that are used in this dissertation, it is sufficient to use the simpli-

fied form of the formulation. 
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Indeed, for a piezoelectric laminated2 plate that consists of a number of layers (includ-

ing the piezoelectric layers) and each layer possesses a plane of material symmetrically 

parallel to the x-y plane the constitutive equations of the kth layer can be derived by the 

3D equations (1)-(2) by assuming plane stress approximation (Reddy, 2004), (Elshafei 

& Alraiess, 2013). 
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The elastic coefficients cij of the reduced matrix c (see Equation (2)) can be found for 

example in (Reddy, 2004). The reduced stiffness coefficients Qij in the material axes of 

the layer are related to the engineering constants as follows (Reddy, 2004):  

Case I. Isotropic plate. 
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where E, v and G are the isotropic material properties. 

Case II. Orthotropic plate. 
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The electric field components are related to the electrostatic potential φ by the equa-

tion (IEEE Standard 1978): 

                                                      

2 A laminate is formed from several layers bonded together to act as a single layer material; the 

bond between two layers is assumed to be perfect, so that the displacements remain continuous 

across the bond (see (Reddy, 2004)) 
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 , i iE  (5) 

The constitutive equations for layer k in the global axes of coordinates read (Reddy, 

2004): 
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where ijQ  and ije  are the transformed reduced stiffness coefficients, and piezoelectric 

modules, respectively (Reddy, 2004). 

In order to derive the constitutive equations for one−dimensional beam, additional as-

sumptions are used: (i) the width in the y direction is stress free and the plane stress 

assumption is used. Therefore, it is possible to set 0        yy yz xy yz xy , and 

0 yy  in equation (7).  (ii) The polarization axis z is aligned with the thickness direc-

tion of the beam, thus only Dz in equation (6) is taken into consideration. (iii) By intro-

ducing Ez applied across the actuator thickness and the other components of the elec-

tric fields are zeros. (iv) The coefficients 15e and 11  are neglected. 

Therefore the constitutive relations equations (6) and (7) are reduced to: 

 11 31 55 31 33, ,x x z xz xz z x zQ e E Q D e E           (8) 

where the coefficients in relations (8) are given by: 

Case I. Isotropic beam. 
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In smart structures, there are several issues that need to be addressed such as the mod-

elling, placement of actuators and sensors, and controller design. The modelling of 

smart structures does not just involve the modelling of flexible structures, but also 

includes the modelling of the smart materials used as actuators and sensors. For pie-

zoelectric laminate structures, the derivations of equations of motion involve the mod-

elling of forces or moments generated by the bonded piezoelectric actuators. 

3.3 Beam model 

A smart composite beam with bonded piezoelectric sensors and actuators, is consid-

ered. Namely, the model consists of a slender uniform elastic beam with rectangular 

cross-section having length L, width b and thickness h. A pair of piezoelectric layers 

with thickness hS and hA is symmetrically attached at the top and the bottom surfaces 

of the beam serving as sensors and actuators, as shown in Figure 4. In the simplified 

beam model, the piezoelectric sensors and actuators are used for the measurements 

and application of control forces, respectively.  

 

Figure 4: Schematic representation of the smart beam 

The longitudinal and thickness axes are along x- and z-directions. The xy-plane is cho-

sen to be the plane which is the midplane of the beam. In developing this model, the 

piezoelectric patch is assumed to be perfectly bonded to the structure with zero glue 

thickness. This implies that the displacements remain continuous across the bond. 

It is assumed that the geometrical parameters of the beam permit the use the Timo-

shenko beam approximation. The displacement field equations for the beam at any 

point through the thickness are presented by:  

          , , , , , , , , 0, , , , ,x y zu x y z t z x t u x y z t u x y z t w x t    (9) 

where t denotes time; w denotes the transverse displacements of the beam’s mid-plane, 

and ψ is the rotation of normal to the x-axis about the y-axis. Assuming a small defor-

mation, the strain-displacement relation can be expressed as: 

 ,x xz

w
z

x x


  

 
  

 
 (10) 

It is noted that in Euler-Bernoulli theory the rotation   is the negative of the beam 

slope: w
x

  


, and so the transverse shear deformation xz is equals to zero. 
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The stress-strain relations for the smart beam are given by the constitutive equations 

(8), which are rewritten here for convenience:   

 11 31 55 31 33, ,x x z xz xz z x zQ e E Q D e E           (8) 

The elastic core beam is assumed to be insulated and is obtained by annulling the pie-

zoelectric constants. The electric field intensity Ez can be expressed as: 

 z

p

V
E

h
  (11) 

where V is the applied voltage across the thickness direction of the actuator and hp is 

the thickness of the actuator layer. 

3.3.1 Sensor Equation 

In the case that the piezoelectric patch acts as a sensor, the sensor equation can be 

derived from the third equation of the electro-elastic relation of a piezoelectric material 

(Equation (8)3). Only strains produced by the host beam, act on the piezoelectric patch, 

thus the output charge from the sensor is given by: 

  

2 2

1

2
ef ef

p

z z

S Sh hz z h

q t D dS D dS

  

     
     
        

   (12) 

where Sef  is the effective surface electrode of the patch. The effective surface electrode 

of the patch is the portion of the patch that is covered by electrodes on both sides. The 

electric charge generated due to the external mechanical disturbance will be detected 

only if the charge is collected through the effective surface electrode. In this work, it is 

assumed that the entire piezoelectric patch serves as effective surface electrode. Using 

the direct piezoelectric equation (Equation (8)3) and taking into account that no electric 

field applied to the sensor layer, we get 

   31 31
2

ef ef

p

x

S S

h h
q t e dS e dS

x




  
   

 
   (13) 

The current on the surface of the patch can be calculated by differentiating the charge 

with respect to time. 

  
 dq t

i t
dt

  (14) 

The current is converted into open-circuit voltage output by: 

    SV t G i t  (15) 

where GS is the gain of the current amplifier. 
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3.3.2 Equations of motion for the beam  

The equations of motion for the beam with surface bonded piezoelectric patches, are 

derived by the Hamilton’s principle: 

  
0

0
T

dtT U W      (16) 

The total strain energy U and the kinetic energy T are calculated using the expressions: 

  
0

1

2

L

x x xz xz z z

A

U E D dAdx       ,    
2 2

0

1

2

L

x z

A

T u u dAdx       (17) 

where dA is the area of cross-section of the beam. 

If the only loading consists of moments induced by piezoelectric actuators and since 

the structure has no bending-twisting couple then δW is given as: 

 
0

L

AW b M dx
x


 

 
  

 


 

(18) 

where MA is the moment per unit length induced by the actuator and expressed as: 

 

2 2

11 31

2 2A A

h h

A A A

x z

h hh h

M z dz zQ d E dz

 

   

  
 

(19) 

and 

 z

A A

A

V
E

h


 
(20) 

3.3.3 Finite element formulation 

Two-node finite elements with two mechanical degrees of freedom, w and ψ, per node 

are used (see Figure 5). Using standard discretization techniques, 

           ,
TT

wu w N X N N X          (21) 

where    1 1 2 2, , ,
T

X w w  and  wN , N
    are Lagrange linear shape functions. 

 

Figure 5: Finite element modeling using standard techniques 

From Hamilton's Principle (Equation (16)) and collecting the common coefficients and 
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the contribution of all finite elements, the total stiffness [Kuu] and mass [M] matrices of 

the beam are derived similarly to Ref. (Hadjigeorgiou, et al., 2006), while the 

generalized displacement {X(t)} is provided by the following equations: 

          uu m elM X K X F F    (22) 

where {Fm} is the global mechanical force and {Fel}=-[Kuφ]V is the electrical force vector 

due to the actuation. 

This latter Equation (22) represents the dynamic equations of motion for a mechanical 

structure including piezoelectric stiffness. 

Similar models can be used in various applications including, among others, the de-

sign of smart piezocomposite structures (Hadjigeorgiou, et al., 2006), (Stavroulakis, et 

al., 2005), in structural control as can be found in review articles (Irschik, 2002), (Song, 

et al., 2006) or energy harvesting applications as considered, among others, in (Cook-

Chennault, et al., 2008), (Sodano, et al., 2004), (Priya & Inman, 2009), (Tairidis, et al., 

2015c). 

3.4 Laminated composite plate model with piezoelectric sensors 

and actuators based on FSDT 

One of the most widely used theories for plate analysis is the Mindlin-Reissner theory. 

An extension of this theory to laminate structures is the first-order shear deformation 

theory for laminated composite plates (FSDT) which is known simply as Mindlin the-

ory. In this section, we present a smart composite laminated plate model using the 

FSDT theory.  

A laminated plate with integrated piezoelectric sensors/actuators, as shown in Figure 

6, is considered. 

 

Figure 6: Layerwise plate model with adhesive material 

The length, width and thickness of the whole structure are denoted by L, b and hc, 

respectively. Two piezoelectric layers of thickness hp are symmetrically bonded per-

fectly on the top and bottom surface of the host composite plate. The top layer acts like 

an actuator and the bottom one as a sensor. The poling direction of the piezoelectric 
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actuator is assumed to be along the z-axis. The stress–strain relationships, accounting 

for transverse shear deformation and piezoelectric effect, are given by Equations (6) 

and (7). 

3.4.1 Strain and electric fields 

The FSDT theory is very common for the analysis of laminated plates. It is a displace-

ment based theory, i.e. it depends on the displacement field according the following 

equations: 

 𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) + 𝑧𝜃𝑥(𝑥, 𝑦) (23) 

 𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) + 𝑧𝜃𝑦(𝑥, 𝑦) (24) 

 𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) (25) 

where (u, v, w) denote the displacements of a single point (x, y, z) in the laminate, (u0, 

v0, w0) are the displacements of a midplane point and (θx, θy) are the rotations of the 

transverse normal about the y and x axes, respectively. Note that the form of the dis-

placement field of Equations (23)-(25) allows reduction of the 3D problem to one of 

studying the deformation of the reference plane z = 0 (or midplane). Once the midplane 

displacements and rotations are known, the displacements at any arbitrary point (x, y, 

z) in the 3D continuum can be determined using Equations (23)-(25).  

The bending strain εb and the shear strain εs are given as: 

 b

 
 

 
 

  
 

  
 

  

u

x
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u v
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and  
s







 
  

  


 
  

x

y

w

x

w

y

 (26) 

The electric field E in the pth piezoelectric layer is expressed as: 

      1, , 0 0 ,  
 

        
 

T

p p p p p

x y zp p p

E E E E B x t
h

 (27) 

where ph  is the thickness and 
p

is the electrical voltage of the pth piezoelectric layer, 

respectively. 

3.4.2 Variational form of the equations of motion 

In order to derive the equations of motion for the laminated composite plate with sur-

face bonded sensor and actuator layers, Hamilton’s principle is used: 

  
0

0
T

dtT U W      (28) 
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The kinetic energy Τ, the potential energy U and the total work done due to virtual 

displacements δu are given as follows: 

 

   
T

V

T u u dV             T T

V

U D E dV    
 

               

p

T T T T

c S V

S V S

W u F u f dS u f dV E q dS           
(29) 

where  cF  is the concentrated force vector,
 
 Sf  is the surface force vector,  Vf  

is 

the body force vector,  q
 
is the surface charge vector, S is the surface area where 

external force is acting, and Sp is the surface area of piezoelectric layer where applied 

electric charge is acting. 

Substituting relations (29) in Hamilton's principle (28), we obtain: 

 

                

           

0

0
p

T T T T

V

V

T T T

c S

S S

T

u u D E u f dV

u F u f dS E q dS dt

    

  


  




   





 


 (30) 

Equation (30) is a good starting point for finite element approximations using inde-

pendent variables {u} and
p

. 

3.4.3 Finite element formulation  

For the discretization of the composite plate the finite element method is used. 

Namely, four-node rectangular bilinear isoparametric elements with five degrees of 

freedom per node, i.e. {u0, v0, w0, θx, θy}, are used. The first three degrees of freedom of 

each node correspond to the displacements in directions x, y and z respectively, while 

the last two the rotations around the axes x and y.  

Next we use the notations: 

   , ,
T

u u v w
,   
   0 0 0, , , ,

T

x yu u v w  
 

where  u  are the nodal degrees of freedom. Using theses relations, the kinematic 

relations (23)-(25) can be written as: 

     Zu L u  (31) 

where: 
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1 0 0 0

0 1 0 0

0 0 1 0 0

Z

z

L z

 
 

 
 
  

 (32) 

Next, the displacement field is approximated by: 

       , , Z eu x y t L N d  (33) 

where  N  is the matrix of shape functions and  ed  is the vector of nodal variables 

given by: 

 

      1 2 3 4N N N N N       
5 , 1,2,3,4j jN N I j      

          1 2 3 4, , ,
T

T T T T

ed d d d d

   , , , , , 1,2,3,4
T

j j j j xj yjd u v w j    

(34) 

where 5I  is a 5 5  identity matrix and , 1,2,3,4jN j   are the bilinear shape functions  

    
1

, 1 1 , 1,2,3,4
4

j j jN j          

Substituting equation (33) in the strain-stress relations (26), we obtain: 

         , , ,
T

b s ee
x y t B d     (35) 

where  
e

B  is the derivative operator between the corresponding strain and the gener-

alized nodal displacements. 

Substituting (31)-(35) into the variational principle (30) and allowing arbitrary varia-

tions of  ed and {φ}, the governing equations of an element can be written as: 

 

            

      

e uu e u mee e e e
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M d K d K F
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 (36) 

where the element mass matrix  
e

M , the element elastic stiffness matrix  uu e
K  and 

the element mechanical load vector  m e
F  are given by: 
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At the pth piezoelectric layer, the electromechanical coupling matrix and the 

permittivity matrix are given by: 

   
p

TT

u ue e
V

K B e B dV K  
             

              
p

T

e k
V

K B B dV  

The global equations can be obtained by assembling the elemental equations (36) as: 

 

         

     

uu u m

u q

M d K d K F

K d K F



 





    

       

 (37) 

where  d  and    are the global mechanical and electrical DoFs vectors,  M  is the 

global mass matrix,  uuK , 
T

u uK K 
        and K

    are the global mechanical stiff-

ness, mechanical–electrical coupling stiffness and dielectric stiffness matrices respec-

tively.  mF  and  qF  are the respective global mechanical and electrical loads vec-

tors.  

Next we assume that the electrical DoFs vector in Equation (37) can be divided into 

the actuating and sensing DoFs,    ,
T

a se
   , where the subscripts ‘a’ and ‘s’ de-

note the actuating and sensing capabilities. Hence, considering open-circuit electrodes, 

and in that case  qF = {0}, the non-specified potential differences in Equation (37) can 

be statically condensed and the equations of motion and charge equilibrium become: 

 

         

   
1

uu m u aa

us s s

M d K d F K

K K d



 






     

        

 (38) 

where 
1*

uu uu u us s s
K K K K K  


                    . 

Equations (38) can be used in smart structures applications such as vibration control, 

static or dynamic shape control, etc. 

3.5 A layerwise approach to piezo-electric plates accounting for 

adhesive flexibility 

The models presented in previous sections are based on equivalent single layer theo-

ries. A more accurate and efficient plate model for investigating the dynamics of com-

posite smart structures is presented in this section based on a layerwise theory taking 

into account adhesive layer flexibility.   

The layerwise theories which are used to simulate the dynamic behavior of composite 

smart structures are very important because they give a more accurate modeling of 

the dynamic behavior of structures of large thickness that are made of several plies 
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with different properties and / or stacking sequence. Furthermore, these theories pro-

vide the possibility to study problems of delamination of the layers in some regions.  

Most research on the area deals with composite structures that are flexible and thin 

(thin-walled structures). In these cases, models that take into account the adhesive 

layer are very important, since this layer is not so thin compared to the piezoelectric 

ones and thus can affect the mechanical behavior of the structure, with direct conse-

quences on the control process.  

A laminated composite plate bonded with piezoelectric sensor and actuator layers and 

adhesive layers between them is considered as shown in Figure 7. The length, width 

and thickness of the whole plate are denoted by L, b and h, respectively. As it becomes 

evident in the following subsections, the theory is able to handle plates with an arbi-

trary number of actuators, sensors, and elastic layers, including the adhesive layers 

between them. 

 

Figure 7: A three-layered composite plate with adhesive materials 

3.5.1 Piezoelectric constitutive equations 

For simplicity of the notation, all the non-adhesive layers will be considered as piezo-

electric layers. Elastic layers are then obtained by making their piezoelectric constants 

vanish. The linear constitutive equations coupling the elastic and the electric fields in 

a piezoelectric medium are expressed as:  

 
                 

   

T
i i i i i

Q e E  (39) 

 
                 

  
i ii i i

D e E  (40) 

where   
i  is the stress tensor,   

i  is the strain tensor,   i
D is the electric displace-

ment,   i
E is the electric field,  i

Q 
 

is the elastic stiffness matrix,  i
e 
   is the piezoe-

lectric matrix,  i
 
   is the permittivity matrix of the ith layer and the superscript T de-

notes the transpose of a matrix. Equation (39)describes the inverse piezoelectric effect 

and Equation (40) describes the direct piezoelectric effect. 
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Next, we assume that the piezoelectric material exhibits orthorhombic 2mm sym-

metry. Making use of the plane strain approximation and separating the bending and 

shear related variables, Equations (39) and (40) become: 
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(43) 

In Equations (43),  i
klQ  are the reduced elastic constants,  i

kle  are the reduced piezoelec-

tric constants and  
i

kk  are the reduced permittivity constants of the ith layer. The de-

tailed expressions for these constants can be obtained from (Reddy, 1999).  In Equa-

tions (41) and (42), a layer can be either a piezoelectric or an elastic one. In the latter 

case, material constants  i
kle  and  

i

kk  should be zero.  

3.5.2 Displacement-strain relation 

The kinematic assumption is based on a first order shear theory of small strains. As-

suming that the mid-planes of the individual layers are parallel to each other and em-

ploying a common coordinate system  , ,x y z given in Figure 7, the displacements of 

the non-adhesive layers can be written as: 

 

       
      1 , , , , , , , ,  
ii i i

xu x y z t u x y t z z x y t  

       
      2 , , , , , , , ,  
ii i i

yu x y z t v x y t z z x y t  

       3 , , , , , ,
i i

u x y z t w x y t  

(44) 

where    
,

i i
u v  and  i

w  are the mid-plane deformations of the ith layer,  i
x  and  i

y  are 

rotation angles of the normal to the mid-plane about the y and x axes, respectively and 
 i

z  is the thickness of the mid-plane of the ith layer.  

The bending and shear strains of the ith layer can be written as: 
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                 00 ,
i i ii i i

s sb b z z         (45) 

where 
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(46) 

3.5.3 Electric field-electric voltage relations 

A constant transverse electrical field is assumed for the piezoelectric layers and the 

remaining in-plane components are supposed to vanish. Consequently, the electric 

field intensity can be expressed as: 

 
        

  

i i i
EE B  (47) 

where  
 

1
0,0,
           

T

i

E i
B

h
and  i

h ,  
i

 are the thickness and the electric voltage of the 

i-th piezoelectric layer. 

3.5.4 The adhesive layer 

The adhesive layers between the host plate and the piezoelectric layers are assumed 

to be very thin, and their deformation is linear. Only transverse normal stress  a

z  and 

strains  a

z , and in-plane shear stress    
, 

a a

yz xz  and strains    
, 

a a

yz xz  are taken into ac-

count. The in-plane stretching of the adhesive layer is neglected, since its stiffness in 

that direction is quite small.  

The linear deformations of the adhesive layers are written in terms of the deformations 

of the adjacent structural layers as follows (see Figure 8). 
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(48) 

where superscripts ‘t’ and ‘b’ refer to the top or bottom surface of the related layer. For 

example, 
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In addition, since transverse displacement is independent from the vertical coordinate: 

     , ,

3 3 
i t i b i

u u w . 

Then Equations (48) can be rewritten into the following compact form: 
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Using these displacements and taking into account that the adhesive layer is much 

thinner than the adherents, the shear and peel strains of the adhesive layers can be 

written as (Erturk & Tekinalp, 2005): 
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(50) 

Equations (50) can be written into the following compact form: 
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where          , ,i i i i
T

a a a a
zz yz xz    and: 
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The peel and shear stresses in the adhesive layer can be written as: 

 
       i i ia a a
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(52) 

or in the more detailed form: 
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  (53) 

where  ia
E ,  ia

G  are the elastic and shear moduli of the adhesive layer ia . 

 

Figure 8: The displacement field of the adhesive layer 

3.5.5 Finite Element Formulation 

Hamilton’s variational principle is used to derive the equations of the plate, i.e. 
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T U W dt       (54) 

where T is the total kinetic energy, U is  the total strain energy and W is the work done 

by the loads. 

The total kinetic energy and the total strain energy of the system is the sum of the 

corresponding energies of the individual layers. 
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The kinetic energy of the ith layer and the kinetic energy of the 
ia  adhesive layer, re-

spectively, are given by: 
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where: 
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The strain energy for the ith layer is given by: 
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The strain energy for the 
ia  adhesive layer is given by: 
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The total work is the sum of the work done by the electrical forces  i
EW  and the work 

done by the mechanical forces  i
W , where: 
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In Equation (61),   i
cF  denotes the concentrated forces,   i

sf  and   i
vf denote the 

surface and volume force vectors, respectively and   i
q denotes the surface charge 

vector. 

From the Hamilton’s principle given in Equation (54), a finite element model has been 

developed for the three layered adhesively bonded plate. The elements are rectangular 

and have four nodes in each layer. Thus, a finite element for a three-layered plate has 

4 × 3 = 12 nodes with five degrees of freedom at each node. 

The generalized displacement vector   i
u  is interpolated as: 

 
         , ,
i i

eu x y t H d   (62) 

where  H is the interpolation matrix and   i

ed  is the nodal variable vector given by: 

      1 2 3 4H H H H H    , 5 , 1,2,3,4j jH H I j        

               1 2 3 4, , ,
T

T T T T
i i i i i

ed d d d d ,              , , , , , 1,2,3,4
T

i i i i i i

j j j j xj yjd u v w j     
(63) 

, 1,2,3,4jH j  are bilinear isoparametric shape functions and 
5I  is the unit matrix.  

Substituting Equation (62) into (57), gives: 
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where       1 2 3 4B B B B B    , 
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Applying Hamilton's Principle Equation (54), the Equations (65) for each element can 

be obtained: 
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where          1 2 3
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Detailed expressions of the submatrices appearing in Equations (64)-(69) are given be-

low: 

Element mass and stiffness matrices of the ith layer: 
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Element mass and stiffness matrices of the adhesive layer ai: 
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Element matrices related to the external mechanical excitation: 
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Element matrices related to the electrical excitation: 
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T
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Element piezoelectric coupling matrix and element dielectric stiffness matrix of the ith 

layer: 
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We note here that special care is needed in the numerical integration of   
 

i

eK . The el-

ement stiffness matrix can be considered to be composed of a bending stiffness part

 
  

 
i

e b
K and a transverse shear stiffness part

 
  

 
i

e s
K . Exact, or full integration is then 

used for computing
 
  

 
i

e b
K , but reduced integration (one order lower) is used for eval-

uating
 
  

 
i

e s
K . 

Following the routine of the assembly procedure, the global equations for the smart 

composite plate can be obtained. 

3.6 Delamination 

Delamination is one of the most common failures for composite materials, i.e. the ones 

used in laminated composite structures. This is due to the fact that the repeated ap-

plied stresses impact the layers of the structures and can lead to separation. It is nota-

ble that in smart structures, in case of delamination, either the sensor and/or the actu-

ator can peel off in a limited or a more extensive grade. 

Moreover, this phenomenon leads to changes in the morphology and the characteris-

tics of the mechanical system of the structure, mainly its stiffness, as it is responsible 

for the weakening or the ageing of the materials. 

The purpose of this section is the insertion of a non-linear delamination law, in the 

existing composite piezoelectric finite element model of a plate. The finite element 

model, with the non-linear delamination law, includes the possibility of applying both 

mechanical and electrical load and the possibility of simulating static and dynamic 

problems. 

3.6.1 Description of the delamination model 

For the simulation of delamination, the following non-linear stress-strain law is used: 
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Figure 9: Delamination law 

The above law leads to appropriate modification of the existing stiffness matrix of the 

structure in order to take into account the differences in the behavior before and after 

the delamination (Mistakidis & Stavroulakis, 1998).  

For each finite element of the adhesive layer subjected to delamination, the element 

average strain εzz is calculated as follows: 
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   (70) 

where w is the vertical displacement of layers, whose behavior in delamination is in-

vestigated, and ha is the thickness of the adhesive layer. If the strain is less than εo, no 

delamination appears in the element. Otherwise, delamination takes place. The delam-

ination can occur between the lower-middle and the middle-upper plate layer. 

3.6.2 Numerical simulations of delamination 

For the implementation of the non-linear delamination law, the Newton-Raphson in-

cremental-iterative procedure has been used, as follows: 

Incremental step 

Load enforcement 

  Start iterations 

 -Loop to the whole of elements 

 -Calculate the mean strain of each element 

 -Compare with εo 

 -Appropriate estimation of the tangential stiffness matrix  

 -Estimation of the internal force vector 

 -Solving equilibrium equations and finding incremental  

    and global displacements 

 -Error control and continuation iteration  

    or continue the incremental step 
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It is worth noting that the existing composite piezoelectric model of the plate, fully 

facilitate the above iterative process of finding the tangential stiffness of the structure, 

by appropriately changing members from the initial stiffness matrix. 

Therefore we have the following four cases: 

a) No delamination 

b) Delamination between lower-middle layers 

c) Delamination between middle-upper layers 

d) Delamination between both lower-middle and middle-upper layers 

The numerical scheme is applied to a composite plate with dimensions 100x100 mm, 

fixed on the left side. Each element consists of 12 nodes: 4 nodes belong to the lower 

layer, 4 nodes to the middle and 4 nodes to the upper layer. Every node has 5 degrees 

of freedom (three translational and two rotational). Therefore, the structure has 363 

nodes and 1815 degrees of freedom. 

 

Figure 10: Mesh of the structure 

In the structure, a nodal mechanical load is applied to the right side, on the upper 

piezoelectric layer. First, a force mechanical load is used and a force control procedure 

is followed. However, for the improved monitoring of the phenomenon of delamina-

tion, a displacement mechanical load is then used (displacement control). 

At the first example a small mechanical load is applied to the structure. According to 

the results, no delamination appears and the behavior of the material is linear, as 

shown by the shape of the displacement of the structure and the load-displacement 

diagram (see Figure 11 and Figure 12). 

 

Figure 11: Displacement of the structure, when no delamination appears 
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Figure 12: Force – displacement diagram for the structure, when no delamination appears 

When the mechanical load is increased, the behavior of the structure changes thus, 

delamination and non-linear behavior appear. According to the shape of the displace-

ment which is shown in Figure 13, the delamination occurs across the upper layer, 

which at the end of the analysis operates completely independently of the underlying 

layers. As a result, large displacements occur in this layer. The change of the slope of 

the load-displacement diagram, which is nonlinear, expresses the phenomenon of de-

lamination, which is accompanied by a decrease in the stiffness of the system (see 

Figure 14). 

 

Figure 13: Displacement of the structure, when delamination in the whole middle-upper layer interface 

appears 

 

Figure 14: Force – displacement diagram for the structure with delamination (load control) 
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As already mentioned above, the delamination in the last example happens simulta-

neously to all elements of the interface (Fremond, 2002). The gradual appearance of 

delamination only to certain parts of the interface, cannot be illustrated by a force me-

chanical load (load control), due to the numerical instability which is introduced by 

the iterative Newton-Raphson procedure up to the point of failure. Consequently, the 

softening behavior cannot be depicted by the load control procedure (Mistakidis & 

Stavroulakis, 1998). 

For this reason, the code has been changed, so that the applied mechanical force is a 

displacement control. As seen from Figure 15 and Figure 16, it is possible then to dis-

play gradual delamination. At the same time, the load-displacement diagram shows a 

softening branch similar to the stress-strain diagram. 

 

Figure 15: Displacement of the structure, when partial delamination in the whole middle-upper layer 

interface appears 

 

Figure 16: Force – displacement diagram for the structure with delamination (displacement control) 

Further information on delamination modelling can be found in (Wriggers, et al., 

1998), (Drosopoulos, et al., 2014). 

3.7 Structural dynamics 

As already noted in the previous sections, the derived set of the equations of motion 

of the dynamic system, is of the form: 
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 𝑀 ∙ �̈� + 𝐶 ∙ �̇� + 𝐾 ∙ 𝑢 = 𝑃 + 𝑍 (71) 

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, P is the 

loading vector, Z is the control force vector, and with 𝑢, �̇� and �̈� are denoted the dis-

placement, the velocity and the acceleration respectively. 

The damping matrix C is given in the sense of Rayleigh assumption by: 

 
𝐶 = 0.01 ∙ (𝑀 + 𝐾) (72) 

Finally, the external loading P is given by: 

 𝑃 = 𝑃0 ∙ 𝑠𝑖𝑛(𝜔 ∙ 𝑡) (73) 

where 𝑃0 and ω are the excitation’s amplitude and frequency respectively. 

For the integration of the differential equations of motion (1), the Houbolt numerical 

integration method was chosen. Houbolt factors were set to: 

 𝛽 = 0.25,  𝛾 = 0.5 (74) 

The integration time was set to 3 seconds, while the time step Δt was chosen equal to 

0.01 seconds. 

Integration constants are given as: 

 c1 =
1

β∙(Δt)2, c2 =
1

β∙Δt
 ,c3 =

1

2β
 , c4 =

γ

β∙Δt
 ,c5 =

γ

β
,c6 = Δt (

γ

2β
− 1) (75) 

The controller returns a control force Z(t) in each time-step (t) of the integration, taking 

as inputs the displacement 𝑢 and the velocity �̇�. The total force, that is the control force 

plus the external loading, give the next step’s (t + Δt) values of displacement and ve-

locity. 

Houbolt integration algorithm pseudocode can be written as follows: 

Step 1: Initialization of variables 

u, �̇� , �̈� , Fm , M, C , Κ , β , γ , c1 , c2 , c4 , c5 , c6   

Step 2: Calculation of intermediate matrix F*: Κ*=Κ+c1M+c4C                                           

Inversion of matrix Κ*: F* = (K*)T 

Start of loop for t0 to tf 

Step 3: Calculation of intermediate matrix P* 

Calculation of difference of loadings: dFm=Fm(t+1)-Fm(t) 

Calculation of difference of control force z 

Aggregation to the quantity dFm: dFm=dFm+z 
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Calculation of matrix P* using mass matrix M and damping matrix C of the system: 

P*=dFm+M[c2�̇�(t)+c3�̈�(t)]+C[c5 �̇� (t)+c6�̈�(t)] 

Step 4: Calculation of response step du 

                           du=F*P* 

Step 5: Solution for the next step (t +Δt) 

Calculation of acceleration: �̈�(t+1)= �̈�(t)+c1du-c2�̇�(t)-c3�̈�(t) 

Calculation of velocity: �̇�(t+1)= �̇�(t)+c4du-c5�̇�(t)-c6�̈�(t) 

Calculation of displacement: u(t+1)=u(t)+du 

end for 

end 
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4 Fuzzy and neuro-fuzzy control 

strategies 

 

As mentioned in previous chapters, vibration suppression on smart structures can be 

achieved using active control. It was also said that classical mathematical control tools 

usually provide satisfactory results for linear feedback laws under given assumptions. 

However, the design of nonlinear controllers based on fuzzy inference systems and/or 

artificial neural networks, or even hybrid neuro-fuzzy controllers can provide satisfac-

tory results when the system is partially known. 

In this chapter, the main tools of the proposed control strategy, which was applied for 

the reduction of the oscillations in the smart structures presented above, are presented. 

4.1 Fuzzy logic 

Fuzzy inference systems are a part of the fuzzy theory with applicability to control. 

The recurring systems can be used for the control of various processes, from many 

scientific fields that may vary. The whole idea is based on a quite modern science of 

reasoning which in turn is called fuzzy logic. 

Operators use common sense to solve complex problems. Fuzzy logic is a set of math-

ematical principles that is used to represent an experienced operators’ knowledge to a 

computer system. 

In essence, fuzziness is not a part of the logic. In fact, a set of logical expressions is used 

to describe the fuzziness that exists in most systems. The representation is based on 

the membership level of the involved parameters that interact with each other through 

a set of verbal rules. 

According to Boolean logic, concepts and variables are divided in a loose manner. For 

instance, if we divide men in groups according to their height, setting the limit of 1.80 

m as the minimum height for the tall ones, someone with 1.79 m height is considered 

short, while a man of 1.81 m height is considered tall. 

Fuzzy logic is based on the principle that all parameters or concepts of a system does 

not have a single meaning, but are subjected to ratings. Distance, speed, temperature, 
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height, weight, service, etc. can be described using scales. For example, George is very 

tall. Service is below average, and so on.  

In other words fuzzy logic reflects how people think, avoiding generalization errors 

verbalizing variables and simulating the human sense. In that meaning, it does not 

face things in a black and white scale, but includes many intermediate states (grey 

scale) see Figure 17. This property leads to the construction of smart control systems.  

 

Figure 17: Boolean vs fuzzy logic 

The forefather of Fuzzy Logic was the probability theory, according to which each pa-

rameter could belong in a set with a percentage from 0 to 1. 

For example we can say that if someone has a height of 1.81 m. is tall with probability 

1, very tall with probability 0.8 and short with probability 0. 

However, the father of fuzzy logic, as we know it today, is L. Zadeh, who in 1965 in 

his article entitled “Fuzzy sets” introduced the concept of fuzzy sets using the mathe-

matical tools of the probability theory, introducing a totally new logic which was based 

in verbal terms which he called “fuzzy logic” (Zadeh, 1965). 

4.1.1 Fuzzy sets 

In crisp sets, a space element is considered part of the set under examination when 

taking the value 1. In other case, the element takes the value 0 and is not considered 

part of the set. In fuzzy sets this is not true. Each space element can receive its value 

from a range of values and be part of the under examination set with this value which 

depicts the participation (membership) rate of the element in the set. The higher the 

value is, the greater the participation of the element is in the set. This function is called 

membership function while the set is called fuzzy set.  

Therefore, in order for an element to belong in a fuzzy set, full participation is not 

required like in the crisp sets. The dipole 0 or 1 of crisp sets is replaced by a range of 

values between [0, 1]. Additionally, every element of the space may simultaneously 

participate in more than one fuzzy sets with different degree of membership. 

Fuzzy sets accept all the operators (union, intersection, complement) and all the prop-

erties (distributivity, associativity, commutativity) of crisp sets. The only exception is 

the law of the excluded middle (see Figure 18). Because of the overlap that can be pre-

sent in fuzzy sets, this principle differentiates from that of crisp sets as follows: 

 𝛢 ∪ �̅� ≠ 𝑋 𝑎𝑛𝑑 𝐴 ∩ �̅� ≠ ∅  (76)  



 Chapter 4   61 

 

Figure 18: The law of the excluded middle 

Fuzzy sets can be classified according to membership functions as shown in Figure 19 

as follows: 

a) Normal fuzzy sets (at least one membership function reaches 1) 

b) Subnormal fuzzy sets (no membership function reaches 1) 

c) Convex fuzzy sets 

d) Non-convex fuzzy sets 

 

Figure 19: Various types of fuzzy sets 

4.1.2 Membership functions  

The degree of fuzziness of a fuzzy set is defined by its membership functions. The 

representation of these functions can be done either numerically or graphically.  

The graphical representations include various forms, each with its own restrictions. 

The membership functions can have any parameterized form, either symmetric or 

asymmetric. The most popular forms include among others: 

a) Triangular membership functions 

b) Trapezoidal membership functions 

c) Bell membership functions 

d) Gaussian membership functions 

e) Sigmoid membership functions 

f) Polynomial membership functions 

A graphical representation of a membership function in comparison with a crisp 

set is shown in Figure 20. 
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Figure 20: A fuzzy membership function in comparison to a crisp set 

(https://commons.wikimedia.org/wiki/File:Fuzzy_crisp.svg) 

4.1.3 Fuzzification  

Fuzzification is among the most important processes in the fuzzy theory. In particular, 

it is the process of converting an explicit numerical quantity into a fuzzy one, which is 

represented by the membership functions. The process is based on the recognition of 

the uncertainty which exist in explicit quantities 

On practical applications it is possible for errors to occur with a consequent reduction 

of data accuracy. This reduction of precision can also be represented by the member-

ship functions.  

The definition or fine tuning of the membership functions can be done either intui-

tively or by using algorithms and logical processes. The most popular methods include 

among others: 

• Intuition 

• Inference 

• Rank ordering 

• Angular fuzzy sets 

• Neural networks 

• Genetic algorithms 

• Inductive reasoning 

4.1.4 Defuzzification  

With the term defuzzification is denoted the conversion process of the fuzzy outputs 

into explicit values. This process is necessary as the value of outputs must be accurate, 

especially when the fuzzy system is used as a controller, where the fuzzy outputs are 

not useful for further processing. For the defuzzification of fuzzy output functions, the 

following methods can be used: 

1. Maximum membership principle 

2. Centroid 

3. Bisector 

https://commons.wikimedia.org/wiki/File:Fuzzy_crisp.svg
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4. Middle or mean of maximum (MOM) 

5. Smallest of maximum (SOM) 

6. Largest of maximum (LOM) 

7. Centre of sums 

8. Centre of largest area  

9. Weighted average (WTAVER) 

The choice of the appropriate defuzzification method is often a subjective process and 

depends on the data and/or the requirements of each problem. 

Two different methods can give completely different results. It is also possible the re-

sults of two or more methods to be identical. For example if the final surface is trian-

gular, the result of methods SOM, MOM and LOM will be identical (the top of the 

triangle). 

In the applications of Mamdani-type fuzzy control which were implemented in this 

dissertation, the MOM, centroid and bisector methods were used for the defuzzifica-

tion of the fuzzy outputs (see Figure 21). 

 

Figure 21: An example of defuzzification methods 

(http://www.mathworks.com/help/examples/fuzzy_featured/defuzzdm_04.png) 

The defuzzification with the method of middle of maxima or ΜOM method is calcu-

lated by taking the average membership rate (average) of output data located in the 

edge of the area with the largest value (the maximum). 

According to the centroid method, for the conversion of the final surface of the output 

to a single point, the center of gravity is calculated and then its projection point on the 

x axis is taken. The derived value is the defuzzified value. 

Another method for the defuzzification of the output can be the calculation of the bi-

sector of the surface and taking its projection on the x axis, as before. The bisector 

http://www.mathworks.com/help/examples/fuzzy_featured/defuzzdm_04.png
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method usually produces relatively similar results to the ones produced with the cen-

troid method, if the surface is relatively uniform. These methods are shown graph-

ically in Figure 21. 

On the other hand, the calculation of outputs in Sugeno-type controllers is not based 

on membership functions of fuzzy sets, but on linear functions, due to the nature of 

their outputs. 

This means that a different way of calculation of outputs should be used. In this case, 

the weighted average method can be useful. This method is a variation of the ordinary 

arithmetic mean, as for the calculation of the average uses weights, which in turn 

change the contribution of the involved outputs. Thus, the calculation of outputs is 

based on linear functions of the type: 

 z0 =
∑ aiCi

n
i=1

∑ ai
n
i=1

 (77) 

where αi are the trigger points of membership functions and Ci the individual values 

of the outputs.  

It is worth mentioning that weighted average is not exactly a defuzzification method, 

in the context which this term is met in the Mamdani-type controllers, but it is usually 

called like that due to the fact that it is used for the calculation of the final outputs.  

4.1.5 Fuzzy inference systems  

Fuzzy inference systems or FIS are also known as fuzzy rule – based systems or fuzzy 

models.  

The rules of verbal variables can be formed by deterministic statements (e.g. velocity 

= high), condition statements (e.g. IF grade ≥ 8.5 THEN excellent) or statements with-

out condition (e.g.  GO TO). The properties of the set of the rules is the fullness, con-

sistency, continuity and interaction.  

A fuzzy system is usually described with more than one rules. The process of summa-

rizing the rules for obtaining an overall conclusion is called aggregation. In the case 

where the individual rules are associated with the AND operator, the determination 

of the aggregation is done by the conjugation of the rules system taking the intersection 

of the individual rules. If the individual rules are associated with the OR operator, the 

determination of the aggregation is done by the disjunction of the rules system, calcu-

lating the union of the individual rules. The methods of conjugation and disjunction 

are also known as methods of minimum (min) and maximum (max), respectively. 

A fuzzy inference system consists of the following elements: 

• Rule base (IF – THEN rules)  

• Data base (set of membership functions) 

• Decision – making unit (inference process) 

• Fuzzification interface 

• Defuzzification interface 
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The operation of the inference system goes as follows. The explicit inputs are con-

verted into fuzzy via fuzzification. Then the set of rules is drafted, which together with 

the data, forms the knowledge data base. Subsequently, the decision is made by impli-

cation, and the fuzzy output arises. Finally this value is defuzzified. This process is 

depicted in Figure 22. 

 

Figure 22: The structure of a fuzzy inference system taken from a machining application  

(http://www.hindawi.com/journals/acisc/2011/183764/) 

4.1.6 Fuzzy inference methods  

The two main methods of fuzzy inference are the Mamdani method and the Sugeno 

method. Other known methods are the Inference of Larsen and the Tsukamoto 

method. For the investigations considered in the present dissertation, two Mamdani-

type fuzzy controllers and one Sugeno-type neuro-fuzzy controller were developed. 

The first method, which is the most widespread, was introduced by Mamdani and 

Assilian in 1975 (Mamdani & Assilian, 1975). Ten years later Takagi and Sugeno intro-

duced the second method, which is known as Takagi - Sugeno method (Takagi & 

Sugeno, 1985). These two methods have several common characteristics. Their main 

difference lies in the type of membership functions of their outputs. In Mamdani 

method, the membership functions are fuzzy sets. Instead, in the Sugeno method the 

outputs are either linear functions or constant values. 

The main advantages of each of the two methods of fuzzy inference are summarized 

as follows: 

The Mamdani method: 

It is an intuitive method, which is widely accepted and it adapts well to real problems. 

It is a relatively simple method which works well even in complex models, without 

sacrificing accuracy. 

The basic steps of the implementation process of the Mamdani method are: 

1. Fuzzification of inputs using the membership functions 

2. Definition of verbal rules of fuzzy system 

3. Evaluation of the rules 

4. Calculation of system outputs 

5. Defuzzification 

http://www.hindawi.com/journals/acisc/2011/183764/
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The Sugeno method: 

It is a computationally accurate method, which works very effectively in combination 

with linear techniques. It also works effectively in combination with optimization tech-

niques. Moreover, the Sugeno method presents a guaranteed continuous output sur-

face and it is susceptible to mathematical analysis. 

Likewise to the Mamdani method, the steps for the Sugeno inference are: 

1. Fuzzification of input variables (clustering) 

2. Determination of system rules 

3. Evaluation of system rules 

4. Calculation of outputs 

In the Sugeno controllers fuzziness of inputs and their categorization (clustering) in 

membership functions is similar to that followed by Mamdani-type controllers. The 

same applies to the rules governing the fuzzy system. 

However, the major advantage of Sugeno-type controllers is the fact that they can be 

trained using adaptive neuro-fuzzy inference (ANFIS) techniques, as it will be de-

scribed in the following section. 

4.2 Artificial neural networks  

Machine learning is a scientific field that includes adaptive methods, which in turn 

allow computers to be trained based on experience, examples and proportionality. A 

core characteristic of these methods lies to the fact that learning abilities improve the 

performance of a machine learning system over time.  

An artificial neural network (ANN) is an approach of machine learning which at-

tempts to simulate the function of the human central nervous system, i.e. of the bio-

logical neural networks. It is about a network of interconnected calculating nodes (ar-

tificial neurons) which are algorithms of computational intelligence. 

4.2.1 What is a neural network 

A biological neural network is a model of logical thinking which is based on the hu-

man brain. Our cerebrum consists of a 10 billion neural cells network and these cells 

have 60 trillion connections that are called synapses. 

The cell (soma) is the structural element of a neural network. Each cell has a simple 

structure, however the combination of a huge number of cells provides incredible com-

putational power, allowing the rapid processing of stimuli by the human brain. 

In a neural network, besides the body (soma) of the cell there is also the axon, the 

synapses and the dendrites (see Figure 23). 
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Figure 23: Biological neural network 

Any given neuron of a biological neural network is able to respond only to a certain 

subset of stimuli which are within its receptive field, i.e. its sensory space. This prop-

erty of the networks is called tuning. This core characteristic of biological neural net-

works has inspired the design and formulation of artificial neural networks. 

Thus, the comparative advantage of an artificial neural network is the fact that it is 

also open to training. This process, known as learning, trains the network in order to 

be capable of better solving several problems. This is done through a repeated process 

where the parameters of the network are self-adjusted.  

Once trained, the network receives inputs from the environment (stimuli) processes 

them and provides an output (decision), which is sent either to the environment or to 

the next neuron until the final processing is made. 

If the training is done properly, the network will be able to solve even problems for 

which it has not been trained for. This means that it should be able to produce outputs 

even for inputs that it ignores, which in turn is the objective. This property is called 

generalization. 

The first artificial neural network was designed by McCulloch and Pitts in 1942 

(McCulloch & Pitts, 1942). This was one of the first studies of computer systems that 

relied on the functioning of the human brain. In 1957, Rosenblatt introduced the con-

cept of the neuron Perceptron (Rosenblatt, 1957). In 1986 Rumelhart, Hinton and Wil-

liams suggested the backward propagation method of errors, known simply as back-

propagation method (Rumelhart, et al., 1986). 

Neural networks are used in a wide range of applications from different sciences. 

Some of these are systems control, pattern recognition, stock market control, equip-

ment maintenance, various robotics applications, etc. 

The main advantages of such networks over other heuristic methods are among oth-

ers, their ability to solve highly complex problems, their tolerance to the existence of 

noise, as well as the fact that they do not require previous knowledge of the model. 

https://en.wikipedia.org/wiki/Stimulus_%28physiology%29
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This latter feature makes neural networks particularly useful in systems where exper-

imental measurements exist, but there is lack of information about the model. In this 

case, these experimental measurements can be used for training and control of the net-

work. 

4.2.2 The concept of artificial neuron 

Artificial neurons are the structural elements of artificial neural networks. In fact they 

are nodes which take inputs and produce outputs. The inputs can be received from 

other neurons or directly from the environment. Similarly, the output is sent either to 

the external environment or is used as input to other network neurons. 

Artificial neurons consist of the following five elements (the index i indicates the i-th 

input element or synaptic weight) 

1. A set of inputs, xi  

2. A set of synaptic weights, wi  

3. A bias, θ  

4. An activation function, f  

5. The output of the neuron, y or O 

 

Figure 24: A typical neuron 

Generally, there are three different types of neurons: the input neurons, the output 

neurons and the hidden neurons. 

Input neurons are not responsible for calculations. Their role is to import the inputs of 

the network to the intermediate (hidden) neurons where the calculations take place. 

The role of output neurons is to export the final results (outputs) of the neural network 

of the intermediate levels in the environment. 

The hidden neurons are responsible for the calculations. Each input is multiplied by 

the corresponding synaptic weight. The sum of the products of these multiplications 

is being calculated and then inserted in the activation function, which is calculated at 

each node. The value of the function is the output of the hidden neuron for the given 

inputs. 
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By nature, neurons located in the so-called hidden layers have the ability to "hide" their 

desired output. For this reason, no information from the interaction between inputs 

and outputs can be extracted. Moreover, there is no obvious way to know which could 

be the desired values of the outputs of hidden neurons. 

Artificial neural networks used for educational or commercial purposes usually in-

clude three or four levels. This means that there will be one or two hidden layers re-

spectively. Each layer contains from 10 to 1000 neurons. 

4.2.3 Calculation of outputs 

A neuron with n inputs x1,...,xn where every synapsis has a synaptic weight w1,..., wn   

is considered. 

The input x0 is always 1 and the synaptic weight x0 is the threshold for the activation 

of the neuron.  

The output yk of every neuron is calculated by the following equation: 

 𝑦𝑘 = 𝑓(∑ 𝑥𝑘𝑖 ∙ 𝑤𝑘𝑖

𝑛

𝑖=0

) (78) 

where xki  and wki  are the i-th input and weight of the neuron k, respectively, n is the 

number of neurons and f is the activation function. 

A neuron is positively activated when: 

 ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=0

≥ 𝑤0 (79) 

The weight 𝑤0 = 𝜃 is called threshold. If θ is equal to zero, then the input is disre-

garded. 

The activation of the neurons of an artificial neural network can be done using several 

activation functions. 

4.2.4 Activation functions 

The activation function could be any of the following functions: 

• step function 

• sign function 

• linear function 

• non-linear function 

A step activation function is of the form: 

 𝑓(𝑥) = {
1,    𝑥 ≥ 0

0,    𝑥 < 0
 (80) 
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A sign function can be used as activation function and is given as: 

 𝑓(𝑥) = {
+1,    𝑥 ≥ 0

−1,    𝑥 < 0
 (81) 

The linear activation function is given by: 

 𝑓(𝑥) = 𝑎 ∙ 𝑥 (82) 

where α is any given constant 

The non-linear activation function could be any non-linear function. When, for exam-

ple, the activation function is a sigmoid function, it is given by the formula: 

 𝑓(𝑥) =
1

1 + 𝑒𝑥
 (83) 

The schematic representation of the above activation functions is shown in Figure 25. 

 

Figure 25: Graphic representation of the most common activation functions 

4.2.5 The perceptron 

The perceptron is a simple neural network which was invented by Frank Rosenblatt 

in the 1957 (Rosenblatt, 1957). It is a feed-forward neural network which is based on 

the idea of the simple neuron. Alternatively, in the literature can be also found as linear 

classifier. 

The model consists of a linear combiner and a limiter that produces the values of the 

outputs. The purpose of the perceptron is the classification of the inputs x1, x2,..., xn, 

into two categories e.g. A1 and A2. 

A multilayer perceptron with two hidden layers is shown in Figure 26. 
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Figure 26: A multilayer perceptron with four layers 

4.2.6 Training of neural networks 

The objective of the training procedure is to find the appropriate weights of the syn-

apses, for which the network will be able to produce the desired values of the outputs 

for given inputs. 

There are several ways of learning, and thus training of artificial neural networks, 

which can be classified into two major categories: supervised learning and unsuper-

vised learning. 

4.2.6.1 Supervised learning 

Supervised learning is the process that combines the existence of an external trainer 

and the total amount of the available information for the model. This category includes 

the back-propagation method of errors, the perceptron method, the stochastic learn-

ing, etc. 

In supervised learning the supervisor have to decide on a number of issues such as: 

 the examples (experimental data) that will be used for training 

 the progress of the training process 

 the termination of the training 

4.2.6.2 The perceptron training method 

The training of a perceptron is a classic case of supervised training. The training is 

done through an iterative process by making small adjustments to the synaptic 

weights so as to reduce the difference between the current and the desired output of 

each neuron. The initial weights are randomly selected, usually between the range [-

0.5, 0.5], and then updated until the outputs approximate the training examples. 

The training error is given by: 

 𝑒(𝑝) = 𝑌𝑑(𝑝) − 𝑌(𝑝) (84) 

where p=1,…,n is the number of iterations (training examples), 𝑌(𝑝) is the actual out-

put and 𝑌𝑑(𝑝) is the desired output of the system. 
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The error determines the success of the training procedure. If the training er-

ror 𝑖𝑠 𝑒(𝑝) > 0, the value of the actual output 𝑌(𝑝) should be increased. If the training 

error 𝑖𝑠 𝑒(𝑝) < 0, the value of the actual output 𝑌(𝑝) should be reduced. 

The learning rule, i.e. the calculation of the synaptic weights w, is provided by: 

 𝑤𝑖(𝑝 + 1) = 𝑤𝑖(𝑝) + 𝑎 ∙ 𝑥𝑖(𝑝) ∙ 𝑒(𝑝) (85) 

where α represents the learning rate and is a positive constant less than unity. 

4.2.6.3 Perceptron training algorithm 

Step 1: Initialization 

Set random values for the initial weights w1, w2,…, wn and for bias θ from the range [-

0.5, 0.5]. 

If the error e(p) is positive, increase the value of the output 

If the error e(p) is negative, reduce the value of the output 

Step 2: Activation 

Activate the neuron by applying inputs x1(p), x2(p),…, xn(p) and the desired output 

Yd(p).  

Calculate the actual output at the first iteration p=1 using the output equation: 

 𝑌(𝑝) = 𝑓(∑ 𝑥𝑖(𝑝) ∙ 𝑤𝑖(𝑝)

𝑁

𝑖=0

− 𝜃) (86) 

where N is the number of inputs and f is the activation function (e.g. the step function). 

Step 3: Calculation of the synaptic weights 

Update the values of the weights according to the relation: 

 𝑤𝑖(𝑝 + 1) = 𝑤𝑖(𝑝) + 𝛥𝑤𝑖(𝑝) (87) 

where Δ𝑤𝑖(𝑝) is the correction of the weight in iteration p and is given by the delta 

rule as: 

Δ𝑤𝑖(𝑝) = 𝑎 ∙ 𝑥𝑖(𝑝) ∙ 𝑒(𝑝) 

Step 4: Iterations 

Increase the number of iterations by 1: 

𝑝 = 𝑝 + 1 

Go to step 2 and repeat the procedure until the desired convergence is achieved. 
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4.2.6.4 Back-propagation method of errors 

The back-propagation method of errors is a common training method for multilayer 

neural networks, that is, networks with many layers. Quite often, it is used in combi-

nation with other methods such as the steepest descend algorithm. 

The method calculates the derivative of the error function considering all the network 

weights. The calculated derivative is fed to the optimization method, which in turn 

uses it to update the weights in order to minimize the error. 

 

Figure 27: Backpropagation process 

This method requires knowledge of the desired outputs for every input, in order to 

calculate the derivative of the error. Another requirement of this method is the differ-

entiability of the activation function which is used by the neurons. 

The training process is similar to that of a perceptron. More specifically, a training data 

set is selected, the outputs are calculated and if an error exist, the weights are adjusted 

to minimize this error.  

4.2.6.5 The back-propagation training algorithm 

Step 1: Initialiazation 

Set random values for the initial weights w1, w2,…, wn and the bias θ evenly distrib-

uted in a narrow range (−
2.4

Fi
,

2.4

Fi
). 

where Fi is the total number of neuron inputs. 

The initialization of the weights is done for each neuron. 

Step 2: Activation 

Activate the neuron by applying inputs x1(p), x2(p),…, xn(p) and the desired outputs 

Yd,1(p), Yd,2(p),…, Yd,n(p). On the first iteration p=1: 
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a) Calculate the actual outputs of the neurons of the hidden layer using the output 

calculation equation: 

 𝑦𝑗(𝑝) = 𝑓(∑ 𝑥𝑖(𝑝) ∙ 𝑤𝑖𝑗(𝑝)

𝑁

𝑖=0

− 𝜃𝑗) (88) 

where N is the number of inputs of the neuron j at the hidden layer and f is the activa-

tion function (e.g. sigmoid function) 

b) Calculate the actual outputs of the neurons of the output layer using the output 

calculation equation: 

 𝑦𝑘(𝑝) = 𝑓(∑ 𝑥𝑗(𝑝) ∙ 𝑤𝑗𝑘(𝑝)

𝑀

𝑗=0

− 𝜃𝑘) (89) 

where M is the number of inputs of the neuron k at the output layer. 

Step 3: Calculation of the synaptic weights 

Update the values of the weights in the network propagating the error backwards, i.e. 

from the output neurons towards the neurons of the hidden layer. 

a) Calculate the derivative of the error for the neurons of the output layer using 

the relation: 

 𝛿𝑘(𝑝) = 𝑦𝑘(𝑝) ∙ [1 − 𝑦𝑘(𝑝)] ∙ 𝑒𝑘(𝑝) (90) 

where 𝑒𝑘(𝑝) = 𝑦𝑑,𝑘(𝑝) − 𝑦𝑘(𝑝) 

Calculate the correction of the weight: 

 𝛥𝑤𝑗𝑘(𝑝) = 𝑎 ∙ 𝑦𝑗(𝑝) ∙ 𝛿𝑘(𝑝) (91) 

Update the weights on the output neurons: 

 𝑤𝑗𝑘(𝑝 + 1) = 𝑤𝑗𝑘(𝑝) ∙ 𝛥𝑤𝑗𝑘(𝑝) (92) 

b) Calculate the derivative of the error for the neurons of the hidden layer using 

the following equation: 

 𝛿𝑗(𝑝) = 𝑦𝑗(𝑝) ∙ [1 − 𝑦𝑗(𝑝)] ∙ ∑ 𝛿𝑘(𝑝) ∙ 𝑤𝑗𝑘(𝑝)

𝐿

𝑘=1

 (93) 

where L is the number of the neurons of the hidden layer 

Calculate the correction of the weight: 

 𝛥𝑤𝑖𝑗(𝑝) = 𝑎 ∙ 𝑥𝑖(𝑝) ∙ 𝛿𝑗(𝑝) (94) 

Update the weights on the output neurons: 

 𝑤𝑖𝑗(𝑝 + 1) = 𝑤𝑖𝑗(𝑝) ∙ 𝛥𝑤𝑖𝑗(𝑝) (95) 
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Step 4: Iterations 

Increase the number of iterations by 1: 

𝑝 = 𝑝 + 1 

Go to step 2 and iterate the process until the error tolerance criterion is met. 

4.2.7 Unsupervised training 

The unsupervised training of an artificial neural network tends to follow the neurobi-

ological organization of the human brain. This type of training is very fast and there-

fore can be used in real-time applications. 

The training is done by self-organized algorithms, which train the network based only 

on local information without requiring the existence of a supervisor. 

During the training, the neural network receives an amount of training data, finds 

similarities or important features of these data and learns to classify them into catego-

ries. 

Some of the most popular methods of unsupervised training are, among others, the 

Hebb training algorithm, the competitive learning (Kohonen networks), etc. However, 

the presentation of these methods does not fall within the scope of this dissertation. 

4.3 Adaptive neuro – fuzzy inference systems (ANFIS) 

Simple fuzzy systems are very popular in several scientific fields, such as control, ro-

botics, etc. The basic structure of these systems relies on membership functions for in-

puts and outputs, as well as a set of verbal rules in order to establish the decision-

making system as described in section 4.1. Membership functions should be chosen by 

experience or arbitrarily and the structure of the rules should be predetermined and 

based on user's interpretation of the model. 

Such systems are very efficient when applied to control. However, there are some crit-

ical limitations, such as the absence of a systematic framework or method of trans-

forming human experience into a set of if-then rules, and/or the lack of an intact meth-

odology for the fine tuning of the parameters of fuzzy controllers, and especially of 

membership functions.  

Moreover, the application of fuzzy inference techniques to systems for which a set of 

input/output data already exist, is quite common. Structural control is only one exam-

ple. In many industrial applications, the model is more or less known, or a collection 

of measurements could be easily obtained. 

Actually, it is rather often that when the control mechanism is built, the designer or 

the engineer cannot decide the form and the other characteristics of the membership 

functions, or the coherence of the rules just considering the available data. In this case, 

adaptive fuzzy systems can solve the problem.  
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4.3.1 What is ANFIS 

ANFIS is one of the most popular adaptive fuzzy systems, if not the most popular. A 

thoroughly study of the adaptivity of fuzzy systems, especially in control, as well as 

their stability properties can be found in classical monographies as “Adaptive fuzzy 

systems and control: Design and stability analysis” (Wang, 1994). 

The forerunner of adaptive network-based fuzzy systems was a fuzzy system which 

was modeled using generalized neural networks (GNN) and a Kalman filter algorithm 

to minimize the squared error (Jang, 1991). In this approach, a fuzzy inference system 

with parameters that could be updated was built. From the simulation results was ex-

tracted that the proposed fuzzy system is able to fine-tune its parameters (e.g. the 

membership functions of inputs), as well as to incorporate prior knowledge about the 

original system.  

The architecture of ANFIS is based on a fuzzy inference system which in turn is im-

plemented inside the framework of adaptive neural networks and introduced by Jyh-

Shing R. Jang at University of California in 1993. (Jang, 1993). 

ANFIS consists of fuzzy rules which, in contrast to classical fuzzy systems, are local 

mappings instead of global ones (Jang & Sun, 1995). These mappings facilitate the min-

imal disturbance principle, which states that the adaptation should not only reduce 

the output error for the current training pattern but also minimize disturbance to re-

sponse already learned (Widrow & Lehr, 1990). This is particularly important if an on-

line learning process is considered. Comparisons with neural network approaches can 

be found in (Jang, 1993). 

The process which should be followed in order to create a fuzzy inference system is 

usually called fuzzy modeling. On the other hand, neuro-fuzzy modeling refers to the 

way of applying various learning techniques developed in the neural network litera-

ture to fuzzy inference systems. Back-propagation neural networks are mostly used 

for the identification of the parameters of an adaptive fuzzy inference system. 

The learning procedure could be hybrid, i.e. the proposed control model can construct 

an input-output mapping based on both human knowledge, just like in fuzzy systems, 

and appropriate input/output data pairs. However, even if human expertise is una-

vailable, it is still possible to set up the initial parameters intuitively and generate the 

fuzzy rules using a learning process in order to approximate a desired performance. 

This means that, rather than choosing the parameters of the controller (membership 

functions, rules, etc.) arbitrarily, an automated process can provide tailor-made mem-

bership functions for the fuzzy variables (inputs and outputs) based on the available 

system’s data. Moreover a set of rules, or other parameters of the control can also be 

considered, and the most important; the controller can be trained in order to be robust, 

i.e. capable of functioning under different conditions. 
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It is a common fact that fuzzy control is by far the most successful application of the 

fuzzy theory. However, due to the adaptive capability that ANFIS technique provides, 

fuzzy control becomes even more powerful, to the extent that it could be able to replace 

neural networks in control systems. 

4.3.2 What is the ANFIS routine of MATLAB®  

In this case the acronym ANFIS is derived from adaptive neuro-fuzzy inference system 

and it can be used in MATLAB® as part of the fuzzy logic toolbox. Namely, it is a 

training routine for Sugeno-type fuzzy inference systems. 

With ANFIS, a fuzzy inference system can be constructed, just using a given input/out-

put data set. The parameters of the system can be adjusted using either a back propa-

gation algorithm alone or in combination with an algorithm based on the least squares 

method. This tuning allows fuzzy systems to learn from the same data they are mod-

eling. The learning method works similarly to that of neural networks.  

 

Figure 28: An ANFIS model structure in MATLAB® 

The modeling approach is similar to many system identification techniques. First, a 

parameterized model is considered and then a set of data for training is collected and 

applied. The parameters of the fuzzy system will be adjusted automatically using these 

data until an error criterion is met. 

It is essential that the training data (data for learning) are carefully chosen. This means 

that in general as for simple models, the more the data the better the approximation; 

however for noisy systems or when the collected data are not representative of the 

system, model validation might be helpful. 
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This validation can be achieved using another data set (data for testing). In general, 

model validation is the process by which inputs on which the system was not trained, 

are presented to the trained model, to check the accuracy of the prediction. This is 

necessary because after a certain point in the training process, the model may overfit 

the training data. The testing data also allow the designer to check the generalization 

capability (robustness) of the resulting fuzzy inference system.  

4.3.3 Training of adaptive neuro-fuzzy inference systems through MATLAB® 

The first step is the collection of a set of training data with the desired input/output 

data of the system to be modeled. These data must be an array with the data arranged 

as column vectors, and the output data in the last column. The data for training could 

be loaded either from a file or from the MATLAB® workspace. 

4.3.3.1 Initialization of the system parameters 

The initial fuzzy inference system parameters could be parameterized manually or, if 

there is no preference or experience on how they should look like, ANFIS can initialize 

the parameters automatically. This means that the model structure can be loaded ei-

ther by a previously saved Sugeno-type fuzzy inference system structure or generated 

by choosing one of the following partitioning techniques. 

Grid partition, which generates a single-output Sugeno-type fuzzy inference system 

by using grid partitioning on the data or subtractive clustering, which generates an 

initial model for ANFIS training by first applying subtractive clustering on the data. 

A typical grid partition in a two-dimensional input space is one of the most common 

options when designing a fuzzy controller, especially if the desired number of the clus-

ters is known. This method usually takes into account only certain of the parameters 

of the controller, such as the input variables. This partition strategy works perfect for 

a small amount of membership functions for each input (Jang & Sun, 1995). 

However, when a moderately large number of inputs exists, grid partition method 

encounters serious problems. For instance, a fuzzy model with 10 inputs and two 

membership functions on each input would result in 210 = 1024 fuzzy if-then rules, 

which is prohibitively large. This problem, usually referred to as the curse of dimen-

sionality and can be alleviated by other partition strategies such as tree partition and 

scatter partition which both overcome the problem of the exponential increase in the 

number of fuzzy rules by covering only a subset of the input space, which in turn 

needs to be carefully selected by the designer. 

Subtractive clustering, on the other hand, is the suitable option if the designer of the 

controller does not have a clear idea of how many clusters there should be at each 

input for a given set of data (Chiu, 1994). It is a fast, one-pass algorithm for estimating 

the number of clusters and the cluster centers in a set of data. These estimates can be 

used to initialize iterative optimization-based clustering methods and model identifi-

cation methods like ANFIS. 
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4.3.4 The training process through ANFIS 

After loading the training data and generating the initial FIS structure, the training 

process can be procced. As mentioned above, there are two optimization methods 

available; the backpropagation and the hybrid method, which is a combination of 

least-squares error method (LSE) and backpropagation. Both of these methods are 

used in order to train the membership function parameters to emulate the available 

training data. 

 

Figure 29: An example of training through ANFIS of MATLAB® 

The backpropagation method is a gradient descent method which is presented thor-

oughly in subsubsection 4.2.6.4. Least squares method is a standard approach in re-

gression analysis which is used for the computation of an approximate solution in 

overdetermined systems, i.e., systems of equations with more equations than un-

knowns. The term least squares suggests that the overall solution minimizes the sum 

of the squares of the computational errors of every single equation. 

The hybrid method is based on backpropagation for the calculation of the parameters 

associated with the input membership functions, and least squares method for the es-

timation of the parameters related to the output membership functions. It is found that 

the use of least-squares method for the calculation of outputs of each local mapping is 

very important. It is notable that without using LSE, the learning time would be ten 

times longer (Jang, 1993). 

The number of training epochs and the error tolerance are the stopping criteria for 

training and are both set by the designer of the model. The training process stops 

whenever one of the above criteria is met, i.e. when the maximum epoch number is 
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reached or the training error goal is achieved. If the impact of the training error to the 

results is unknown, error tolerance should be set to zero. 

To make the training process more accurate, the results of each iteration are used as 

the initial conditions for the next epoch. The training error, which occurs in the output, 

decreases, at least locally, throughout the learning process. This means that, the more 

the initial membership functions approach the optimal ones, the easier it will be for 

the training algorithm to converge. Human knowledge or expertise about the target 

system can be of great assistance in setting up these initial parameters of the fuzzy 

inference system. 

4.4 Linear quadratic regulator (LQR) 

The core aspect of optimal control is the creation of controllers capable of operating a 

dynamic system at minimum cost. Linear optimal control is a special sort of optimal 

control. More specifically, linear control refers to the case where system dynamics are 

described by a set of linear differential equations (see Equations (22) and (96)) and the 

cost is described by a quadratic function (see Equation (97)). These methods that 

achieve linear optimal control are known as Linear-Quadratic (LQ) methods and the 

control problem is termed LQ problem.  

One of the most fundamental optimal control problems is the so-called linear quad-

ratic Gaussian (LQG) control problem. The solution could be provided by the linear 

quadratic regulator (LQR) which is one of the most powerful tools of optimal control. 

The equations of motion are given in Equation (22), however they are rewritten here 

for convenience. 

          uu m elM X K X F F    (22) 

The state space representation of these equations is given by:  

 
DuCxy

BuAxx




 (96) 

where x is the state vector, u is the control vector and y are the available measurements 

For the construction of the LQR controller the following quadratic cost function should 

be minimized: 

 𝐽 =
1

2
∫ (𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡

∞

0

 (97) 

The main design parameters Q and R represent the weights on the different states and 

the control respectively, while J represents the weighted sum of the energy of the state 

and control. Matrix Q must be symmetric semi-positive definite and R is required to 

be symmetric positive definite for problems of optimal control. 

Assuming a full state feedback, the control law is given by: 
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 𝑈 = −𝐾𝐿𝑄𝑅𝑥  (98) 

where 𝐾𝐿𝑄𝑅𝑥 = 𝑅−1𝐵𝑇𝑃  is the constant control gain. 

The constant matrix P is a solution of the Riccati Equation: 

 𝐴𝑇𝑃 + 𝑃𝐴 + 𝑄 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 = 0  (99) 

The closed loop system is given by: 

 �̇� = (𝐴 − 𝐾𝐿𝑄𝑅)𝑥 + 𝐹𝑚  (100) 

A significant advantage of the LQR formulation of a problem is the guaranteed linear-

ity of the control law, which in turn leads to facile analysis and implementation. An-

other advantage of this type of control is its behavior in disturbance rejection and 

tracking. Finally, the gain and the phase margins indicate good stability.  

However, for the implementation of LQR, a complete knowledge of the whole state 

space for each time step of the analysis is necessary. If only a limited number of meas-

urements is available and/or any measurement errors are present, the effectiveness of 

control significantly deteriorates. In this case, first the system is reconstructed by the 

available measurements using a filtering technique (e.g. a Kalman filter, and then the 

optimal control problem is based on the new estimated system. 

An outline of the basic theory of the linear quadratic regulator, as well as techniques 

of controller reduction and implementation, along with useful information on how to 

use LQR effectively for the design of control systems can be found in (Anderson & 

Moore, 1989).   

4.5 The controllers 

For the investigations that are held in the present dissertation, three different intelli-

gent controllers are built. More specifically, two Mamdani-type fuzzy controllers, one 

for the mechanical and one for the electrical model of the structure, as well as one 

Sugeno-type neuro-fuzzy controller are implemented and tested. The basic character-

istics of these controllers are shown below. 

4.5.1 Fuzzy controller for the mechanical model (Controller 1) 

The fuzzy inference system shown in Figure 30 is developed within MALAB using the 

fuzzy toolbox. The control scheme consists of a Mamdani-type controller of two inputs 

and one output. Controller 1 takes as inputs displacement and velocity from the me-

chanical model and returns the control force. 

The membership functions of the fuzzy variables which were used for the construction 

of controller 1 are of triangular and trapezoidal form, both for inputs and output as 

shown in Figure 31, Figure 32 and Figure 33 for the displacement, the velocity and the 

control force respectively.  
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Figure 30: Mamdani fuzzy inference system of controller 1 

The inference system involves a decision making system which is based on the combi-

nation of the membership functions with use of logical operations. Namely, the deci-

sion (output) is computed through a set of if-then rules, thus the recurring system is a 

rule-based system. For the implementation of the present fuzzy controller, a set of 15 

rules is used as shown in Table 1. All rules have weights equal to unity and are con-

nected using the AND operator. The graphic representation of the linguistic rules is 

shown in Figure 34. 

The implication method is set to minimum and the aggregation one is set to maximum. 

The mom (Mean of Maximum), the bisector, as well as the centroid method are 

chosen as defuzzification methods in several investigations of the present study. 

Table 1: Fuzzy rules (e.g. if displacement is far up and velocity is up then the control force is max) 

Displacement 

Velocity 

Far up Close up Equilibrium Close down Far down 

Up Max Med+ Low+ Null Low- 

Null Med+ Low+ Null Low- Med- 

Down High+ Null Low+ Med- Min 

 

Figure 31: Membership function of displacement (input 1) 
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Figure 32: Membership function of velocity (input 2) 

 

Figure 33: Membership function of control force (output) 

 

Figure 34: Graphic representation of the fuzzy rules of controller 1 
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4.5.2 Fuzzy controller for the coupled electromechanical model (Controller 2) 

The controller 2 which is set taking into account the electromechanical model, is also 

Mamdani-type and consists of two inputs and one output, exactly as the one of the 

mechanical system. The main difference lies into the fact that this controller takes as 

inputs, not the displacement and the velocity, but the electric potential and the electric 

current, while returns as output not a control force, but an electric signal which can be 

used for control. Controller 2 is shown in Figure 35 below. 

 

Figure 35: Mamdani fuzzy inference system of controller 2 

The membership functions of the variables of controller 2 are again of triangular and 

trapezoidal form, for both inputs, i.e. the electric potential and the electric current, as 

well as for the output, that is, the control signal (see Figure 36, Figure 37 and Figure 

38). 

It is worth mentioning that the range of the output, i.e. of the control signal of the 

actuator, is set to [-200, 200] as the piezoelectric materials used for the analysis can 

produce voltage which is up to 200 Volts. 

The set of rules is written similarly to the rules of controller1 and is shown in Table 2 

and in Figure 39. Again, all rules have weights equal to unity and are connected using 

the AND operator. 

Table 2: Fuzzy inference rules for the electrical system (e.g. if Electric potential is far positive and elec-

tric current is positive then the electric control signal is max) 

Electric potential 

Electric current 

Far 

Positive 

Close 

Positive 

Equilib-

rium 

Close 

Negative 

Far 

Negative 

Positive Max Med+ Low+ Null Low- 

Null Med+ Low+ Null Low- Med- 

Negative High+ Null Low+ Med- Min 
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Figure 36: Membership function of the electric potential (input 1) 

 

Figure 37: Membership function of the electric current (input 2) 

 

Figure 38: Membership function of the electric control signal (output) 
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Figure 39: Graphic representation of the fuzzy rules of controller 2 

4.5.3 Neuro-fuzzy controller (Controller 3) 

In contrast to Mamdani-type fuzzy controllers, the adaptive neuro-fuzzy control 

schemes that are presented here are based on Sugeno-type controllers. Again the sys-

tem takes two inputs (displacement and velocity) and returns one output (control 

force), thus is a multiple inputs – single output (MISO) control device. The overview 

of the Sugeno controller is shown in the following Figure 40. 

As mentioned above, controllers of this type, use the same forms of membership func-

tions exactly as the mamdani-type ones, regarding inputs. However, the output, in this 

case, can be only linear (i.e. of the form: y = ax + b) or constant.  

 

Figure 40: Sugeno fuzzy inference system of controller 3 

Optimization of the controllers is achieved via a training process within the adaptive 

neuro - fuzzy inference system (ANFIS) package of MATLAB®. As mentioned in sub-

section 4.1.6, only Sugeno-type controllers are eligible for training with ANFIS. 

The characteristics of the fuzzy system in this case are tuned using artificial neural 

networks. More specifically, a well-chosen set of training data is used in order to adjust 

the system parameters. For the compilation of these data, the model is first simulated 

without any control mechanism attached, in order to collect the necessary vibration 

data. Subsequently, these data are used for the training of the Sugeno controller. 
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Once loading the data to the ANFIS editor of MATLAB®, the initial fuzzy inference 

system can be generated either using grid partitioning on the data with the Grid 

partition option, if the form and the number of the membership functions is 

known, or, otherwise, if there is no such information, subtractive clustering (Sub. 

clustering option) may be used (see subsection 4.3.3). 

The procedure of the computation of the clusters of the inputs of this controller via the 

subtractive clustering method through the ANFIS editor is shown in Figure 41.  

 

Figure 41: Computing of the clusters of the Sugeno controller using subtractive clustering 

The resulting form of the membership functions (clusters) of the inputs i.e. the dis-

placement (in1) and the velocity (out2), after the initialization process are shown in 

Figure 42 and Figure 43 respectively. Namely, four clusters of Gaussian form for each 

input occurred from the subtractive clustering process. 

 

Figure 42: Membership function of the displacement 
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Figure 43: Membership function of the velocity 

The output variable, i.e. the control force (out1), can take either constant values or lin-

ear functions taking values within the range [-1 1]. 

The verbal rules which describe the emerging system are given in Table 3:  

Table 3: Fuzzy rules of the ANFIS controller (e.g. if Displacement is in cluster 1 and velocityis in clus-

ter 1 then the control force is out1) 

Displacement  

Velocity 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Cluster 1 Out1 - - - 

Cluster 2 - Out2 - - 

Cluster 3 - - Out3  

Cluster 4 - - - Out4 

For the structure of rules in ANFIS see Figure 44. The visualization of the rules is 

shown in Figure 45. 

 

Figure 44: The structure of rules in ANFIS 
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Figure 45: Graphic representation of the fuzzy rules of controller 3 

The “and” method has been set to prod (product), while the “or” method has been set 

to probor (probabilistic or). The implication and the aggregation method have been 

set to min and max respectively. As defuzzification method the weighted average 

(wtaver) method is chosen. 

It is worth mentioning that the characteristics of this controller (membership functions, 

rules, etc.) came through a training process, unlike the ones of fuzzy controllers which 

have been set based on experience. 
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5 Optimization methods 

 

Initially, the parameters of the fuzzy controllers which were used for vibration sup-

pression of smart structures, where chosen from the literature and applied to the con-

trol strategy directly or were fine-tuned using the trial and error method. 

The fuzzy controller described in 4.5.1, was tested in different smart structures 

(Tairidis, et al., 2009), (Tairidis, et al., 2014), (Tairidis, et al., 2007), providing very sat-

isfactory results for vibration reduction in terms of displacement. However, the sup-

pression of velocity was not good and the results concerning the acceleration were 

totally disappointing. 

Due to this situation, the need of optimization of some of the parameters of the fuzzy 

controller arose. This fine tuning is a really demanding process, thus a simple, effective 

and well known procedure had to be chosen. 

Classic optimization methods such as gradient descent can be proved quite unreliable 

due to the fact that the range of the parameters of the optimization could considerably 

vary. Moreover, classic optimization tools are quite sensitive to local optima. 

Thus, among the plethora of optimization methods and algorithms, genetic algorithms 

as well as the particle swarm optimization method were selected due to their simplic-

ity and smooth behavior in such problems. 

These algorithms were used in order to optimize some parameters of the fuzzy con-

trollers, such as the membership functions and the ranges of the fuzzy variables (in-

puts/outputs). 

5.1 Genetic algorithms (GAs) 

A genetic algorithm is a nature inspired method which in turn is based on the natural 

selection process. Namely, it simulates biological evolution. A major advantage of the 

method is that is suitable for both constrained and unconstrained optimization prob-

lems. The difference between genetic algorithms and other optimization methods 

based on derivatives, is that it creates a population of possible solutions (members) 

instead of a single individual solution. Thus, the optimum is being approached by the 

best member of the whole population at each iteration.  
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It is a stochastic process, which means that the population of solutions is produced 

and modified in each iteration at some extend in a random manner. As the generations 

pass by, the population is following an evolutionary course in order to approach the 

optimal solution. 

5.1.1 The history of genetic algorithms 

Evolutionary algorithms (EAs) are optimization methods, whose operation is based 

on imitation of the natural evolution process. These algorithms appear in three differ-

ent forms, each one following a distinct path, but at the same time having strong in-

teractions between them: genetic algorithms (GAs), evolutionary programming (EP) 

and evolution strategies (ES). 

The first appearance of genetic algorithms dates to the early 1950s, when several sci-

entists from the biology field decided to use computers in their attempt to simulate 

complex biological systems. However, their systematic development, which led to the 

form in which they are known today, was conducted in the early 1970s by John Hol-

land and his colleagues at the University of Michigan (Holland, 1975) 

The idea of natural selection, which is the base of evolutionary algorithms, is described 

by Michalewicz using the following example, which refers specifically to the genetic 

algorithms (Michalewicz, 1996): 

“Let us take rabbits as an example: at any given time there is a population of rabbits. Some of 

them are faster and smarter than other rabbits. These faster, smarter rabbits are less likely to be 

eaten by foxes, and therefore more of them survive to do what rabbit do best: make more rabbits. 

Of course, some of the slower, dumber rabbits will survive just because they are lucky. This 

surviving population of rabbits starts breeding. The breeding results in a good mixture of rabbit 

genetic material: some slow rabbits breed with fast rabbits, some fast with fast, some smart 

rabbits with dumb rabbits and so on. And on top of that, throws in a ‘wild hare’ every once in 

a while by mutating some of the rabbit genetic material. The resulting baby rabbits will (on 

average) be faster and smarter than these in the original population because more faster, smarter 

parents survived the foxes. (It is a good thing that the foxes are undergoing similar process - 

otherwise the rabbits might become too fast and smart for the foxes to catch any of them). A 

genetic algorithm follows a step by step procedure that closely matches the story of the rabbits”. 

5.1.2 How genetic algorithms work 

Evolutionary algorithms are mainly based in imitating the evolution process, as well 

as the heredity process in living organisms. It was therefore expected to borrow the 

terminology of biology for many processes similar to the corresponding biological 

ones (Goldberg, 1989). 

For example genetic algorithms are using terminology borrowed from the field of ge-

netics. They refer to individuals or genotypes within a population. Any individual or 

genotype consists of chromosomes. In genetic algorithms we usually refer to individ-

uals with only one single chromosome. Chromosomes, in turn, are composed of genes 

that are arranged in a linear sequence. Each gene affects the inheritance of one or more 
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characteristics. Genes affecting specific features of the individual are situated in re-

spectively specific positions of the chromosome called loci. Each distinctive trait of the 

individual (such as hair color, eye shape, height, etc.) can be displayed in various 

forms, depending on the corresponding influencing gene. These alternative forms, 

which a gene may obtain, are called alleles. 

Many organisms have more than one chromosomes in each one of their cells. The total 

sum of genetic material, i.e. the total amount of chromosomes, is called genome of the 

organism. The term genotype refers to a specific set of genes of the genome. Finally, 

after the fetal development of the organism, the genotype gives its position to the phe-

notype, that is, the physical and mental characteristics, such as eye color, height, brain 

size, intelligence, etc. Therefore, the genotype is referred to coding procedure of the 

external characteristics, while the phenotype is referred to the inherent characteristics 

of the organism. Natural selection directly affects the phenotype, due to the interaction 

between the external characteristics of the organism and the environment. However, 

the influence of natural selection in the genotype, is done indirectly through the sur-

vival of the best adapted individuals (Goldberg, 1989). 

Chromosomes, unlike the genes, are not permanent structures. They can be frag-

mented and their parts can be then combined in a different way, thus forming new 

sets of genes. The basic operations which take place in organisms are the reproduction 

and mutation. 

During the reproduction process, two members of the organism can exchange genetic 

material in order to create offspring. The procedure is as follows: first, the chromo-

somes are divided in several parts. Then, the parts of the one chromosome are com-

bined with the parts of the other. This process is called crossover. In each parent, the 

genes are shared between chromosome pairs in order to form the gamete, which is a 

simple chromosome, and then the gametes of both parents mate and create a complete 

set of chromosomes (chromosomes in pairs) to their offspring. Offspring which are 

produced get some of the characteristics not only of their parents, but even of past 

generations as well. 

Mutation is an error in the reproduction of the genetic material during the process of 

mitosis (cell division and proliferation). If this error takes place during the replication 

stage, which is following the crossover, then the modified chromosome can be passed 

to the next generation. This procedure occurs very infrequently and is caused either 

by genetic or by environmental factors. 

The basic scope of genetic algorithms is to maintain the population in the form of en-

coded information, along with the evolution of this population over time. The evolu-

tion of the members of the population is based on the principles of natural selection 

(survival of the fittest) and on the recombination of genetic material into the popula-

tion. The evolving population samples the exploration space, accumulating infor-

mation regarding the areas of good and poor quality solutions and forms optimal per-

formance solutions for each specific problem, by exchanging information parts. 
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5.1.3 Genetic algorithms and optimization 

Regarding the optimization of systems, first of all, the modeling of the system should 

be created. The model is a simplified representation of the system. The mapping is 

performed using a finite number of parameters of the independent design variables. 

These variables could either be in binary format (classical genetic algorithms), or in an 

integer or a real number format (hybrid evolutionary algorithms). When in binary 

form, each independent design variable is a gene and consists of a binary digit (0 or 1) 

or a series of bits (e.g. 1101010).  

Each row, consisting of the encoded genes, is the chromosome. When the independent 

design variables take specific values in the chromosome, then we have a candidate 

solution. The coding of a particular system in the form of a chromosome is the geno-

type, while the system that is produced if this genotype is applied to the system model 

is the phenotype, which is the one that is finally evaluated. 

The fitness function value, which controls how strong a chromosome is, depends on 

the value of the objective function for the given chromosome. The strongest chromo-

somes are selected and combined with other strong chromosomes in order to create 

offspring, while the rest are gradually removed from the population. Fitness function 

optimization corresponds to the adjustment of each individual in the environment 

during the process of natural selection. 

Crossover is implemented by exchanging genetic material between two haploid par-

ents, i.e. between the chromosomes of two solutions of the same generation. In its sim-

plest form, the two chromosomes are cut in the same random point and the first part 

of the first chromosome is joined to the second part of the second and vice versa, 

thereby resulting in two new solutions (two offspring). The mutation is performed by 

changing a gene’s value in a randomly selected position of the chromosome. 

The new value is obtained from the alleles (the different values that a gene can take) 

of that specific gene. Therefore, if the coding is done with binary numbers, then if the 

value of the selected item is 0 it is converted to 1, while if it has a value of 1 is converted 

to 0. 

The selection operator actuates the exploration in areas with greater potential, in terms 

of objective function. 

The mutation and crossover operators explore the space of solutions, while the selec-

tion operator exploits the information that exists in the population. The first operators 

tend to increase differentiation among individuals within populations, while the se-

lection operator tends to decrease it, leading to a greater uniformity of individuals 

with high value of the objective function. A balance adjustment between the two con-

flicting functions (exploration - exploitation) is performed by the mechanism of selec-

tion. The term which expresses the prevalence of exploitation at the expense of explo-

ration property is called “selective pressure”. Increasing the selective pressure, which 
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is achieved by changing variable q, leads to increasing convergence speed of the algo-

rithm, although sometimes it also increases the possibility of being trapped in a local 

optimum (Michalewicz, 1996). 

The optimization process is as follows: initially, a randomly generated number of P 

solutions, coded in the form of strings (usually binary), which represent the natural 

chromosomes is created. The concept of population gives to genetic algorithms unique 

features, such as the ability of using many candidate solutions, that is, a large popula-

tion of candidate solutions, simultaneously. 

After the creation of the initial population, each member of the population is decoded 

in a candidate solution of the problem, while a "fitness" value is given to this solution, 

through a quality function which gives a measure of the quality of each solution. Then, 

pairs of members of the population are selected in order to reproduce and form off-

spring (new solutions). The choice of pairs is probabilistic, so that the probability of 

each solution is proportional to its “suitability”. This ensures that high-quality solu-

tions will be chosen many times and will become the “parents” for many new solu-

tions, while low-quality solutions will contribute less to the new population, since the 

probability of not being selected to reproduce is higher. (Holland, 1975). Popular se-

lection methods are among others the tournament selection, the roulette-wheel selec-

tion the truncation selection, etc. In practice, tournament selection, is used more often, 

due to the fact that it is fast and easy to implement, it have a constant selection pressure 

and presents less stochastic noise than other methods. (Blickle & Thiele, 1996). In this 

method, in order to select a new member of the intermediate population, q members 

(q≥1) of the population are selected, with uniform probability. Usually q=2 or q=3. 

Within those q members the best are selected for the intermediate population. This 

process is repeated until the number of individuals of the intermediate population is 

completed. 

When the two solutions (parents) are selected, their strings are combined again in or-

der to produce a solution-offspring, using operators which simulate respective genetic 

mechanisms. The basic genetic operators used, are crossover and mutation. Crossover 

recombines parents’ strings in order to produce an offspring which inherits character-

istics of both parents. The crossover operator, although being the basic exploration 

mechanism for new solutions, in fact it is not able to produce information that is not 

already present in the population. This need is covered by mutation. With this opera-

tor it is possible to introduce new information to the new offspring. Mutation is ac-

complished by randomly changing values of the new offspring. Generally, mutation 

is considered as a minor, but useful operator, which gives a non-zero probability for 

checking and evaluating every possible solution. The two most known types of muta-

tion are the random uniform mutation and the random non-uniform mutation. 

When M new solutions are produced, these are considered as the new generation and 

completely replace their “parents” in order for the development to proceed. Many 

generations are needed until the population converges to the optimal solution or to a 
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close to the optimal one. The number of generations required increases proportionally 

to the difficulty of the optimization problem. 

The general steps of a genetic algorithm are given below: 

Step 1: Time t=0 

Initialization of the population of P solutions (t=0) 

Evaluation of the population of the solutions 

Step 2: Time t=t+1 

Selection of new population of solutions P(t+1) from the old P(t) 

Application of operators to the new population 

Evaluation of the new population 

Return to Step 23 

A simple genetic algorithm in the form of pseudocode can be written as follows: 

 generation=0 

Initialize 

Evaluate 

KeepBest 

do generation = 1, MAXGENS 

Select 

Crossover 

Mutate 

Report 

Evaluate 

Elitist 

enddo 

 

The above functions, which are denoted with bold letters, can be described as follows: 

Initialize: generates the initial population, giving random values, with uniform prob-

ability and within the limits of each independent design variable, to the genes of each 

chromosome of the population. 

Evaluate: calculates the fitness function of each chromosome. It is worth noting that 

the fitness function differs depending upon the problem. 

KeepBest: keeps the best individual of each generation (chromosome and its fitness 

function). 

Select: selects intermediate population chromosomes.  

                                                      

3 Step 2 is repeated until the stop criterion is met, so that the algorithm gives an optimal solution 

which satisfies all the involving constraints. 
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Crossover: selects the pairs to apply the crossover. Scans all individuals within the 

population. Each one is selected as a candidate for the crossover with probability pxo-

ver. Once the pair is completed, Xover is called. 

Xover: performs a single-point crossover between two individuals of the selected chro-

mosome pair. The intersection point is selected with uniform probability. 

Mutate: genes are selected (with uniform probability) within the total population and 

the total set of the genes of each chromosome, in order to be mutated. The new value 

for each gene is resulting with uniform probability within the definition space of the 

relevant design variable. 

Report: calculates population statistics in each generation and exports them to the out-

put file. 

Elitist: if the best individual of the current generation is worse than the previous gen-

eration’s best, the latter replaces the worst individual of the current generation. 

5.1.4 Selection of the control parameters 

The Control Parameters of a genetic algorithm are the following: 

 Number of variables (NVARS) 

 Number of chromosomes (POPSIZE) 

 Number of generations (MAXGENS) 

 Crossover Probability (PXOVER) 

 Mutation Probability (PMUTATION) 

 Selection Operator (q) 

Control parameter values should be selected carefully, as they play particularly im-

portant role in the performance of the genetic algorithm. This means that in order to 

find the appropriate values for each problem one may use the trial and error method. 

Generally, in order to choose the values of these parameters one should have in mind 

the following: 

The larger the number of chromosomes i.e. the population size (POPSIZE), the greater 

the amount of the variations shown in the initial population. However, this increase 

the computational cost, as more fitness function calculations are necessary. The size of 

the population depends on the problem. A good population includes a diverse selec-

tion of possible structural units, resulting in a better exploration. If the population 

loses its diversity, then the algorithm has premature convergence and the exploration 

is limited. In complex optimization problems, with large chromosome size, a larger 

population size is required. The range of the population size proposed in literature is 

between 25 and 200 chromosomes. 
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The number of generations (MAXGENS) is the termination criterion of the genetic al-

gorithm and it depends on its convergence. This parameter’s value usually ranges 

from 5 to 100 generations, depending on the problem. 

The crossover probability (PXOVER) refers to the crossover process as follows: once 

the two chromosomes to be crossed are selected, a random number is chosen from the 

range [0-1]. If that number is less than the crossover probability PXOVER then crosso-

ver takes place. Usually the probability is selected within the range from 0.5 to 1. 

The mutation probability (PMUTATION) determines the probability that a gene of a 

chromosome has to change from 0 to 1 or vice versa. The mutation restores part of the 

variety of genetic material which has been destroyed by the selection procedures and 

crossover. While selection and crossover tend to homogenize the population based on 

the principle of survival of the strongest, the mutation restores some of the genes that 

have been eliminated in the process and that they may be necessary in order to avoid 

being trapped in local solutions. In practice, it has been found that mutation probabil-

ity typically ranges from 0.001 to 0.15. 

As mentioned above, the selection operator (q) is the parameter that adjusts the “se-

lective pressure”, which reflects the predominance of exploitation at the expense of 

exploration property. It should be carefully selected in order to avoid local optima 

(Michalewicz, 1996). 

The performance of a genetic algorithm can be improved in several ways if the results 

at the initial stage are not satisfactory. One way is by varying the values of the param-

eters mentioned above. This trial and error method can be time consuming, however 

it has the ability of increasing the performance of the algorithm. If the change of the 

parameters has no effect, one may needs to change the encoding. Note that in some 

applications binary (discrete) encoding is required, whereas in other problems real 

(continuous) encoding provide better results. 

5.1.5 Genetic algorithms with constraints 

The optimization problems can be distinguished, according to several criteria, in dif-

ferent categories, as for example: problems with or without constraints, static or dy-

namic optimization problems, optimal or non-optimal control problems and so on. 

Generally, an optimization problem is based in the finding of a vector that correspond-

ingly minimizes or maximizes the objective function f(x) of the problem. Additionally, 

in case of a problem with constraints, it should also satisfy the constraints of the prob-

lem. 

 𝑚𝑖𝑛𝑥𝑓(𝑥) or 𝑚𝑎𝑥𝑥𝑓(𝑥) (101) 

where 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛] are the design variables. 

subject to: 

 𝑔𝑖(𝑥) ≤ 0,   𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2,3, … , 𝑚 (102) 
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 𝑖𝑗(𝑥) = 0,   𝑤ℎ𝑒𝑟𝑒 𝑗 = 1,2,3, … , 𝑝 (103) 

The vector x represents the decision variables, the function f(x) the objective function, 

the functions gi(x) the inequality constraints and the functions ij(x) the equality con-

straints. 

5.1.6 Penalty functions 

In the general case of non-convex solution space with non-linear constraints, most pro-

posed methods for evolutionary algorithms, are based on the principle of penalty func-

tions. A penalty method can transform a problem with constraints to a problem with-

out constraints in two ways. The first one uses the aggregated form: 

 
𝑒𝑣𝑎𝑙(𝑥) = {

𝑓(𝑥), 𝑖𝑓 𝑥 𝑖𝑠 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

𝑓(𝑥) + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑥), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (104) 

where the penalty(x) stands for the penalty function and f the feasible space solution. 

If there are no violations, the penalty(x) will be null; otherwise it will obtain a positive 

value. The function eval(x) becomes the main objective function of the problem. 

The second way uses the dot product form: 

 
𝑒𝑣𝑎𝑙(𝑥) = {

𝑓(𝑥), 𝑖𝑓 𝑥 𝑖𝑠 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

𝑓(𝑥) ∙ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑥), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (105) 

In most methods, several penalty functions are being used, one for each constraint of 

the problem. Each function measures the degree of non-satisfaction of the restriction 

and adds some amount to the objective function (penalty). If there are no violations, 

penalty(x) will be unity; otherwise it will be greater than one. 

5.2 Particle swarm optimization (PSO) 

Particle swarm optimization (PSO) algorithm is a very popular global optimization 

algorithm which has been introduced by Kennedy and Eberhart (Kennedy & Eberhart, 

1995).  

It is a population based optimization algorithm and a totally stochastic technique that 

simulates the movement of particles i.e. the flying motion of a flock of birds, of a 

swarm of insects, etc. In similar manner, the “flock” or “swarm” of possible solutions 

“flies” towards the optimum solution. 

More specifically, this optimization algorithm takes into account the natural move-

ment of the individuals (particles) of the population (swarm) towards the search of 

food and is very adaptive to the global, as well as the local exploration ability of the 

swarm. 

Particle swarm optimization is widely used in various applications of different scien-

tific sectors, as it is considered to be one of the most promising algorithms inspired by 
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nature. It also has the advantage of being very simple and easy to implement and pre-

sents significant adaptiveness in many different problems, especially in those using 

continuous values. The PSO method can also be used for the optimization of the char-

acteristics of fuzzy controllers (Tairidis, et al., 2015), (Marinaki, et al., 2011), (Marinaki, 

et al., 2011b). An extensive literature review of particle swarm optimization method 

can be found in (Banks, et al., 2007), (Banks, et al., 2008). 

5.2.1 The implementation of the algorithm 

Similarly to the genetic algorithms, initially, a population of particles is created, most 

times randomly. Each particle has a certain position 𝑥𝑖𝑗  in the space of solutions and is 

moving with a specific velocity 𝑢𝑖𝑗, where 𝑖 = 1,2,3, … , 𝑚 and 𝑗 = 1,2,3, … , 𝑛. Note that 

m is the population size and n is the number of iterations. 

The position of the particles is given as: 

 
𝑥𝑖𝑗(𝑡 + 1) = 𝑥𝑖𝑗(𝑡) + 𝑢𝑖𝑗(𝑡 + 1)  (106) 

The velocity denotes the change of the position at each iteration and is given by: 

𝑢𝑖𝑗(𝑡 + 1) = 𝑢𝑖𝑗(𝑡) + 𝑐1𝑟1 (𝑝𝑏𝑒𝑠𝑡 𝑖𝑗 − 𝑥𝑖𝑗(𝑡)) + 𝑐2𝑟2 (𝑔𝑏𝑒𝑠𝑡 𝑗 − 𝑥𝑖𝑗(𝑡))  (107) 

where 𝑐1 = 𝑐2 = 2 are constants of acceleration that can control exploration, i.e. they 

indicate how far a particle can travel, 𝑟1 and 𝑟2 are random values in the interval [0, 1], 

𝑝𝑏𝑒𝑠𝑡 𝑖𝑗 is the optimal position of a single particle (personal best) and 𝑔𝑏𝑒𝑠𝑡 𝑗 is the opti-

mal position of the whole swarm at every iteration (global best). 

In the case of minimization problems, the personal best of each particle at every itera-

tion is given as: 

 𝑝𝑏𝑒𝑠𝑡 𝑖𝑗 = {
𝑥𝑖𝑗(𝑡 + 1),   𝑖𝑓   𝑓 (𝑥𝑖𝑗(𝑡 + 1)) < 𝑓 (𝑥𝑖𝑗(𝑡))

𝑝𝑏𝑒𝑠𝑡 𝑖𝑗 ,   𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
  (108) 

In this case, the global best of the swarm at every iteration should be: 

 𝑔𝑏𝑒𝑠𝑡 𝑗 = 𝑚𝑖𝑛{𝑓(𝑝𝑏𝑒𝑠𝑡 1𝑗), 𝑓(𝑝𝑏𝑒𝑠𝑡 2𝑗), … , 𝑓(𝑝𝑏𝑒𝑠𝑡 𝑛𝑗)} (109) 

where n is the number of iterations. 

The optimum solution results from the iterative process and is returned after the com-

pletion of the total number of iterations. 

5.2.2 Variations of the PSO method 

In order to increase the efficiency of the PSO algorithm by increasing its exploration 

capability, avoiding local optima, several variations of the original method were pro-

posed. 
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5.2.2.1 Inertia PSO 

A method which introduces an inertial weight, also known as inertia PSO, was intro-

duced by Shi and Eberhart in (Shi & Eberhart, 1998). 

In this algorithm the velocity at each iteration is calculated by: 

𝑢𝑖𝑗(𝑡 + 1) = 𝑤 𝑢𝑖𝑗(𝑡) + 𝑐1𝑟1 (𝑝𝑏𝑒𝑠𝑡 𝑖𝑗 − 𝑥𝑖𝑗(𝑡)) + 𝑐2𝑟2 (𝑔𝑏𝑒𝑠𝑡 𝑗 − 𝑥𝑖𝑗(𝑡)) (110) 

The inertia weight 𝑤 is given by: 

 𝑤 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛

𝑚𝑎𝑥 _𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
𝑡  (111) 

where usually 𝑤𝑚𝑎𝑥 = 0.99,   𝑤𝑚𝑖𝑛 = 0.01 have been chosen from the literature. 

It is notable that the choice of the inertial weight is very important, as it affects the 

convergence of the algorithm. 

In structural design optimization (Perez & Behdinan, 2007) through the analysis of the 

eigenvalues of the structure the following stability conditions derived for the inertia 

PSO parameters: 

𝑐1𝑟1 + 𝑐2𝑟2 > 0 
 

(𝑐1𝑟1 + 𝑐2𝑟2)

2
− 𝑤 < 1 

𝑤 < 1 

(112) 

From the above, the upper limit for (𝑐1𝑟1 + 𝑐2𝑟2) is (𝑐1𝑟1 + 𝑐2𝑟2) < 4. Moreover, 

knowing that the random variables 𝑟1 and 𝑟2 lie in the interval [0, 1], the cognitive 

parameter 𝑐1 and the social parameter 𝑐2 should be: 

0 < 𝑐1 + 𝑐2 < 4 (113) 

It is worth mentioning that even if conditions (113) are satisfied, only the convergence 

of the algorithm to a stable equilibrium point is guaranteed. This does not indicate that 

the algorithm has reached the global optimum. 

5.2.2.2 Constriction PSO 

Another successful variation, known as constriction PSO was introduced by Clerc and 

Kennedy (Clerc & Kennedy, 2002). In this algorithm a constriction factor χ is used in 

order to restrict the velocity of the particles so as to improve the convergence of the 

algorithm. In this case the velocity of the particles of the swarm is given by: 

𝑢𝑖𝑗(𝑡 + 1) = 𝜒 (𝑢𝑖𝑗(𝑡) + 𝑐1𝑟1 (𝑝𝑏𝑒𝑠𝑡 𝑖𝑗 − 𝑥𝑖𝑗(𝑡)) + 𝑐2𝑟2 (𝑔𝑏𝑒𝑠𝑡 𝑗 − 𝑥𝑖𝑗(𝑡))) (114) 

Constriction factor χ is given as: 
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 𝜒 =
2

|2 − 𝑐 − √𝑐2 − 4𝑐|
 (115) 

where the constant c is given as: 

𝑐 = 𝑐1 + 𝑐2,   𝑐 > 4 

In case of constriction PSO, the values of these constants are proposed from the litera-

ture to be selected as: 𝑐1 = 𝑐2 = 2.05.  
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6 Numerical results 

 

In this chapter, several control schemes are applied on smart composites structures for 

the suppression of vibrations in terms of displacement, velocity and acceleration. More 

specifically smart beams and plates based on single layer, as well as on layerwise the-

ories are considered. The analytical description of the models has been presented in 

chapter 3.  

Regarding control, fuzzy and adaptive neuro-fuzzy controllers are implemented and 

tested (see section 4.5). 

Moreover, the initial characteristics of the control are modified using ANFIS (see sec-

tion 4.3) and global optimization tools (see chapter 5) for the improvement of the ob-

tained results. In other words, the fuzzy control incorporates global optimization tech-

niques such as genetic algorithms and particle swarm optimization. The effectiveness 

and the robustness of the proposed control schemes is shown. 

Furthermore, the robustness of control is investigated under several delamination 

cases between the piezoelectric components. 

6.1 Fuzzy control of smart plates 

In this investigation, the structure consists of a composite plate (see section 3.4). The 

length of each side of the plate is 0.8m, the elastic modulus is 150x109N/m2, the shear 

modulus is 7.1x109N/m2 and the density of the material is 1600kg/m3. 

The model consists of four composite layers and two outer piezoceramic layers. The 

stacking sequence the composite is antisymmetric angle-ply ([-45o /45o/-45o/45o]). 

The plate is made of T300/976 graphite-epoxy composite and the piezoceramic is PZT 

G1195N. The material properties of the structure are given in detail in Table 4. For 

further details see (Lam, et al., 1997).  

The proposed plate model is shown in Figure 46. The structure is discretized using the 

finite element method. Namely, it is divided into 144 (12x12) quadratic finite elements, 

yielding to a system of 169 nodes with 825 degrees of freedom. 

The plate is fixed at the left end. The fixed nodes are denoted by the bold line at the 

left side of the structure (see Figure 47). 
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Table 4: Material properties of the composite plate with piezoelectric sensors and actuators 

Property Graphite/epoxy Piezoceramic 

E1 (GPa) 150 63 

E2= E3 (GPa) 9.0 63 

G12 (GPa) 7.1 24.2 

G23= G13 (GPa) 2.5 24.2 

ν12 = ν13 = ν23 0.3 0.3 

ρ (kg/m3) 1600 7600 

d13= d23 (m/V) - 254∙10-12 

d42= d51 (m/V) - 584∙10-12 

Ply thickness (mm) 0.25 0.1 

 

 

Figure 46: The simplified plate model 

 

Figure 47: The discretized plate model (mesh) 
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6.1.1 Results without optimization of the controller’s parameters 

Two different loading scenarios are examined (Tairidis, et al., 2014). The first one in-

clude a three-point loading at the unsupported end of the plate, while the second sce-

nario consider a five point loading applied to the free end of the host structure. 

The fuzzy controller which is used for the vibration suppression is the one described 

in subsection 4.5.1 (controller 1). 

6.1.1.1 Three-point loading scenario 

In this first scenario, a sinusoidal loading was applied to three nodes. These nodes 

correspond to the upper corner, the middle point and the lower corner of the free side 

of the plate respectively, as shown in Figure 48(a). With blue arrow in Figure 48(b) is 

shown the position (node) of the control mechanism (collocated sensor and actuator). 

The loading that is applied to each node is given by: 

 𝑃 =
1

3
𝑠𝑖𝑛(20𝑡)  (N) (116) 

 

Figure 48: a. The loading points (black arrows) and b. the control node (blue arrow) for the three point 

loading scenario 

In the following Figure 49, the transverse displacement, the velocity and the accelera-

tion respectively, as well as the excitation and the control force at the control point (see 

Figure 48(b)), are shown. 

With blue colour is denoted each quantity before the application of the control, while 

with red colour is the same value after the application of controller 1. In the last dia-

gram with blue colour is denoted system’s excitation, with red the control force, while 

with black colour is shown the control force rate. The results are also presented nu-

merically in Table 5. 
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Figure 49: Displacement, velocity, acceleration and forces at the middle point of the free end (see Figure 

48a) for three point loading 

Table 5: Numerical results for the three-point loading scenario at the middle point of the free end (see 

Figure 48a) 

Three point loading scenario Max 𝒖 (m) Max �̇� (m/s) 

Uncontrolled 0.0198 0.1957 

Controller 1 0.0058 0.1347 

Percentage of reduction 71% 31% 

From the results of Table 5, one can observe that the control strategy applied to this 

scenario is very efficient in terms of displacement (71% oscillation reduction) and ve-

locity (31% reduction). Moreover, as shown in Figure 49, this kind of control is not 

only effective, but smooth as well. On the other hand, the results in terms of accelera-

tion are very disappointing and a burden for the material and/or the sensors and ac-

tuators. Namely, an increase of the order of 167% in the oscillations in terms of the 

second derivative of displacement is derived. 
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6.1.1.2 Five-point loading scenario 

In this case the external loading is applied to five different points across the free side 

of the plate, opposite to the fixed one, as shown in Figure 50(a). In Figure 50(b) is 

shown the position of control. 

 

Figure 50: a. The loading points (black arrows) and b. the control node (blue arrow) for the five point 

loading scenario 

The loading which is applied to each node in this particular case is given as: 

 𝑃 =
1

5
𝑠𝑖𝑛(20𝑡) (N) (117) 

 

 

Figure 51: Displacement, velocity, acceleration and forces at the middle point of Figure 50a for five 

point loading 
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 Table 6: Numerical results for the five-point loading scenario at the middle point of Figure 50a 

Five point loading scenario Max 𝒖 (m) Max �̇� (m/s) 

Uncontrolled 0.0182 0.1668 

Controller 1 0.0052 0.115 

Percentage of reduction 71% 31% 

As seen from Figure 51 and  

 Table 6, the oscillation reduction with this scenario is also very efficient. Again the 

displacement field is reduced by 71% and velocity by 31%. One can easily observe that 

these results are very similar to the ones of the previous scenario. 

6.1.1.3 Comparison with a tested cantilever beam results 

In order to check the robustness of the proposed control scheme, a comparison with 

the results of the same controller (Tairidis, et al., 2007), (Tairidis, et al., 2009), tested on 

a beam model is presented. The beam (see section 3.3) is made of the same material, 

i.e. of T300/976 graphite-epoxy composite with elasticity modulus E = 150 Gpa and 

density ρ = 1600 kg/m3. The structure has a total length of 0.8 m and a square cross-

section with dimensions 0.02×0.02 m. 

The beam is discretized using four finite elements resulting in a model with eight de-

grees of freedom (see section 3.3 and section 6.3). The excitation is again of sinusoidal 

form, it is applied to the free end of the cantilever and it is given by: 

 𝑃 = 1 ∙ 𝑠𝑖𝑛(20𝑡)  (N) (118) 

In the following figures the results of the cantilever beam described above are pre-

sented. In Figure 52, the displacement field, the velocity and the acceleration of the 

cantilever, as well as the forces of the system (loading and control force) are shown. 

The numerical results are presented in detail in Table 7. Prior to the evaluation of the 

results of the beam model, one may assert that they are comparable to the ones of the 

plate model, due to the similarity of the excitations as well as the structures them-

selves, i.e. material properties, dimensions, etc. 

Table 7: Numerical results for the cantilever beam 

Beam results Max 𝒖 (m) Max �̇� (m/s) 

Uncontrolled 1.19 ∙ 10-5 1.73 ∙ 10-4 

Controller 1 3.25 ∙ 10-6 1.00 ∙ 10-4 

Percentage of reduction 72.71% 42.15% 
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Figure 52: Displacement (m), velocity (m/s), acceleration (m/s2) and forces (N) of the beam model 

Indeed, from the results of Table 7, one can conclude that the control strategy is very 

efficient for the beam model as well, especially in terms of displacement (72.71% re-

duction) and velocity (42.15% reduction). By comparison with the results of the plate 

model which were presented in the previous subsubsections, it is stated that the sup-

pression of beam is slightly better in terms of displacement (72.71% instead of 71%) 

and velocity (42.15% instead of 31%). However, the results regarding acceleration are 

totally unacceptable, as an increase of almost 1400% occurs (instead of 167% for the 

plate, which is also unsatisfactory). 

Form the results above it becomes clear, that a fine tuning of the parameters of the 

fuzzy controller is mandatory. 

6.1.2 Optimization of fuzzy control with genetic algorithms 

In this investigation, the simplified plate using fuzzy control is again considered. 

However, instead of the manually tuned controller 1, an optimized one was used for 

vibration suppression. A genetic algorithm is used for the optimization (Tairidis, et al., 

2016). The objective function consists of the percentage of oscillation reduction in 

terms of displacement as given in equation (119). 

The design variables are the possible positions of the points a, b, c and a, b, c, d that 

define the membership functions, of both inputs and output, for triangular and trape-

zoidal functions respectively, as shown in the Figure 53 below.  



110                                      Numerical results 

 

Figure 53: Plot points of triangular (a, b, c) and trapezoidal (a, b, c, d) membership function 

More specifically, the objective is to maximize the following function that gives the 

percentage of the oscillation reduction, thus to minimize the oscillation of the structure 

in terms of displacement, subject to linear inequality constraints as follow. 

Maximize: 

percentage(u) =
(max _displ before control) − (max _displ after control)

max _displ before control
∙ 100 (119) 

subject to:  

 𝑥(𝑖) < 𝑥(𝑖 + 1) (120) 

 𝑥(𝑗) < 𝑥(𝑗 + 1) (121) 

 𝑥(𝑘) < 𝑥(𝑘 + 1) (122) 

where:  

𝑚𝑎𝑥 _𝑑𝑖𝑠𝑝𝑙 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 𝑚𝑎𝑥(𝑢 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) + |𝑚𝑖𝑛(𝑢 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙)| (123) 

 max _displ after control = max(u after control) + |min(u after control)| (124) 

 min (u) < x(i) < 𝑚𝑎𝑥 (𝑢), 𝑖 = 1, … , 4 (125) 

 min (�̇�) < x(j) < 𝑚𝑎𝑥 (�̇�), 𝑗 = 1, 2 (126) 

 −𝑃0 < x(k) < 𝑃0,  𝑘 = 1, … , 8 (127) 

The membership functions are discretized in i, j or k points for each variable, i.e. the 

displacement, the velocity and the control force respectively, as shown in Figure 54. In 

order to retain the symmetry of the membership functions, the zero point is kept con-

stant at the center of the design variables x(i), x(j) and x(k) of the horizontal axis, re-

spectively. 
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Figure 54: Discretization of membership function for optimization 

For instance, in the case of the fuzzy input of displacement, which has five member-

ship functions, the design variables are x(1) and x(2) to the left of zero (fixed point), as 

well as x(3) and x(4) to the right of this point. This means that in this case there are 

four design variables for the optimization problem. Similarly, in case of velocity, there 

are only two design variables, while for the optimization of the membership functions 

of the control force a set of eight design parameters is needed. 

The genetic algorithm used for this investigation has been built within MATLAB® as 

part of the optimization toolbox. The parameters of the algorithm are chosen after a 

number of trials, taking into account the size and the special characteristics of the prob-

lem. 

Finally, the population size is set to 20 members, that is, 20 different possible 

solutions. The maximum number of generations, which denote the number of 

total iterations, is set to 50. A stopping criterion is set in order to terminate the 

process after 20 generations without any improvement of the results, even if the max-

imum number of iteration have not been reached. The creation function for the ini-

tial population is chosen to be the feasible population function. The 

tolerance of the algorithm is set to 10-6 and the penalty factor to 100. For the 

modification of the population through generations tournament selection 

method is chosen. As for the main operators of the genetic algorithm, intermediate 

crossover with probability of 0.8 and adaptive feasible mutation are used. 

During the optimization of the membership functions of the controller 1 two different 

scenarios are implemented. The first one concerns the optimization of the inputs only 

while in the second scenario the inputs, as well, the output are optimized. 

The loading and the control for all applications considered in this subsection were ap-

plied to the middle of the free end of the structure as denoted by the blue arrow in 

Figure 55. 

In all cases, a sinusoidal loading is applied, which is given by: 

 𝑃 = 1 ∙ 𝑠𝑖𝑛(20𝑡)  (N) (128) 
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Figure 55: Loading and control point at the middle of the free end 

6.1.2.1 Optimization of inputs 

In the first scenario only the membership functions of the fuzzy inputs are optimized. 

The optimized controller 1 has the membership functions shown in Figure 56 and Fig-

ure 57 for the displacement and the velocity respectively. The membership function of 

the output (control force) is not modified (see Figure 33). 

 
Figure 56: Optimized membership function of displacement (optimization of inputs of controller 1) 

 

Figure 57: Optimized membership function of velocity (optimization of inputs of controller 1) 
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In Figure 58, the transverse displacement, the velocity, the acceleration and the forces 

respectively, at the control point shown in Figure 55, are presented. With blue colour 

is denoted each quantity before the application of any control, while with red colour 

is the same quantity after the application of the fuzzy optimized controller described 

above. As for the forces, with blue colour is denoted system’s excitation, with red the 

control force and with black the control force rate. 

 

 

Figure 58: Displacement, velocity, acceleration and forces of the system with the optimized inputs of 

controller 1 

Table 8: Numerical results for optimized membership functions of inputs of controller 1 

Optimization of inputs Max 𝒖 (m) Max �̇� (m/s) Max �̈� (m/s2) 

Uncontrolled 0.0063 0.0921 1.7128 

Optimized MFs of 

inputs of controller 1 

4.25∙10-5 0.0022 3.0063 

Percentage of reduction 99.33% 97.61% -75.52% 

From the results of Table 8, one can observe that the optimized controller gives excel-

lent results in terms of displacement, that is, an impressive 99.33% reduction. As for 

velocity the reduction is also very high at 97.61%. Moreover, as shown in Figure 58, 

this kind of control is not only effective, but smooth as well in both terms. However, 
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the results concerning the acceleration are very poor, as the oscillations in terms of 

acceleration, not only had not improved, but increased by 72.52%. At the same time, 

the qualitative characteristics of the second derivative of displacement are inadequate 

as well. 

6.1.2.2 Optimization of inputs and output 

Analyzing the results of the previous subsubsection, one can observe that the optimi-

zation of inputs provides very satisfactory oscillation reduction of displacement and 

velocity. But there is another problem to be solved, namely the oscillation of the accel-

eration. Again, the genetic algorithm is called, this time to optimize the membership 

functions of the inputs, as well as of the output. 

The genetic algorithm provided the membership functions shown in Figure 59, Figure 

60 and Figure 61 for the displacement, the velocity and the control force respectively. 

 

Figure 59: Optimized membership function of displacement (optimization of inputs and output of con-

troller 1) 

 

Figure 60: Optimized membership function of velocity (optimization of inputs and output of controller 

1) 
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Figure 61: Optimized membership function of control force (optimization of inputs and output of con-

troller 1) 

The results which occurred for the displacement, the velocity and the acceleration, 

along with the loadings, are shown in Figure 62. The total vibration suppression which 

achieved is presented, in numerical terms, in Table 9. 

 

 

Figure 62: Displacement, velocity, acceleration and forces of the system with the optimized inputs and 

output of controller 1 
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Table 9: Numerical results for optimized membership functions of inputs and output of controller 1 

Optimization of inputs and output Max 𝒖 (m) Max �̇� (m/s) Max �̈� (m/s2) 

Uncontrolled 0.0063 0.0921 1.7128 

Optimized MFs of inputs and output 

of controller 1 

7.75∙10-5 0.0066 2.5982 

Percentage of reduction 98.77% 92.84% -51.69% 

The oscillation reduction in this scenario is again efficient in terms of displacement. 

Namely the displacement field is reduced significantly by 98.77% and velocity by 

92.84%. One can observe that the qualitative characteristics of the results are quite sim-

ilar to the ones of the previous scenario. Thus, the problem with the acceleration re-

mains. However, a slightly improvement is apparent, as the oscillations were in-

creased this time by 51.69%. The graphic representation of acceleration was again non 

smooth, but better than in previous case. It is obvious that in this case, velocity reduc-

tion is sort of sacrificed, in order for the results concerning acceleration to be improved. 

6.1.3 Further fine tuning of the fuzzy controller utilizing different defuzzification 

techniques 

In order to achieve better and/or smoother results for the acceleration, a different fine 

tuning scheme, relying on the trial and error method is considered. Namely, different 

types of defuzzification methods are tested. This case is based on the results described 

in subsubsection 6.1.2.1. In this investigation, best results are given with use of the 

bisector and the centroid method and are presented below. 

6.1.3.1 The bisector method 

As mentioned in subsection 4.1.4, the bisector is the vertical line that divides a surface 

into two parts of equal area. Depending on the surface, it is quite common that the 

bisector and the centroid line coincide. The results concerning the displacement, ve-

locity and acceleration at the given control point (see Figure 55) are shown in Figure 

63. The vibration suppression achieved is presented in the following Table 10: 

Table 10: Numerical results for the controller with the bisector method 

Bisector method Max 𝒖 (m) Max �̇� (m/s) Max �̈� (m/s2) 

Uncontrolled 0.0063 0.0921 1.7128 

Optimized MFs of 

inputs of controller 1 

2.12∙10-5 9.07∙10-4 1.2194 

Percentage of reduction 99.66% 99.02% 28.81% 
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Figure 63: Displacement, velocity, acceleration and forces of the system with the bisector method 

From the results given in Table 10, one can observe that along with the impressive 

reduction of both displacement and velocity, for the first time there is a significant 

reduction of the oscillations by 28.81% in terms of acceleration as well. It seems that 

the change of the defuziffication method was beneficiary. 

However, the problem with the qualitative characteristics of the acceleration remains, 

therefore, further improvement is sought. 

6.1.3.2 The centroid method 

As seen from the results above, the oscillation reduction which achieved using the bi-

sector as defuzzification method, was very satisfactory. However, in order to improve 

further the results for the acceleration, the centroid method is tested. 

In this method (see subsection 4.1.4), the defuzzification process returns the center of 

the area that exists under the curve of the membership functions that participate in the 

result. If this area is of equal density, this method gives the point along the x axis at 

which the shape would balance, that is the center of gravity of the surface. The results 

for the displacement, velocity and acceleration at the control point (see Figure 55) are 

shown in Figure 64. The vibration suppression achieved, is presented in Table 11. 

From these results one can observe that along with the impressive reduction of both 

displacement and velocity by 99.86% and 99.64% respectively, significant reduction is 

achieved also in terms of acceleration by 74.05%. A slight problem which lies in the 

qualitative characteristics of the oscillatory acceleration remains, but nonetheless, one 
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can clearly observe that the use of the centroid method for defuzzification, provides a 

significant reduction of oscillation in every field, including acceleration. 

 

 

Figure 64: Displacement, velocity, acceleration and forces of the system with the centroid method 

Table 11: Numerical results for the controller with the centroid method 

Centroid method Max 𝒖 (m) Max �̇� (m/s) Max �̈� (m/s2) 

Uncontrolled 0.0063 0.0921 1.7128 

Optimized MFs of 

inputs of controller 1 

0.0880 3.32∙10-4 0.4446 

Percentage of reduction 99.86% 99.64% 74.05% 

6.1.4 Comparison with the results of controller 1 prior optimization 

The optimized and fine-tuned mamdani-type fuzzy controller tested in subsection 

6.1.2 (Tairidis, et al., 2016) is quite comparable with the one tested in subsection 6.1.1 

(Tairidis, et al., 2014). The plate model has exactly the same characteristics in both cases 

and the same external loading is considered. Namely, an excitation, again of sinusoidal 

form is chosen and applied to the middle of the free end of the plate (see Figure 55).  

This excitation is given by: 



 Chapter 6  119 

 𝑃 = 1 ∙ 𝑠𝑖𝑛(20𝑡)  (N) (129) 

Thus, a comparison is not only feasible, but desirable as well. In the following figures 

this comparison is presented. Namely, the displacement, the velocity and the acceler-

ation field, along with the excitation and the control force of the two models are shown. 

From the results below, one can observe that after the optimization of the characteris-

tics of the controller, the oscillation reduction achieved is significantly greater. 

Namely, a reduction by 99.86% instead of 68.78% for displacements, 99.64% instead of 

32.87% for velocities and 74.05% instead of -244.69% for accelerations is observed. At 

the same time, the results were smoother as well. 

It is also notable that the control forces needed in order to obtain this reduction were 

significantly lower. More specifically, the total width of the control force for the case 

of the non-optimized controller is 4,88 N, which is more than two times the total width 

of the excitation which is 2.00 N, as shown in Figure 68. In fact, the optimized controller 

produces a control force that is equal to the excitation, which is more reasonable and 

desirable. 

 

Figure 65: Displacement of the plate before and after the optimization of control 

 

Figure 66: Velocity of the plate before and after the optimization of control 
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Figure 67: Acceleration of the plate before and after the optimization of control 

 

Figure 68: Excitation and control force of the plate before and after the optimization of control 

6.1.5 Investigation for various excitation frequencies 

In order to test the functionality of the optimized controller proposed in subsection 

6.1.2 a further investigation checking the oscillation reduction achieved under differ-

ent external loading conditions is carried out. For this purpose, sinusoidal loadings of 

the form 𝑃 = 𝑃𝑜 ∙ 𝑠𝑖𝑛(𝜔𝑡), for various frequencies ω, are considered. In the investiga-

tions of this subsection, the optimized and fine-tuned controller of subsubsection 

6.1.3.2 is used. The loadings are applied at the middle point of the free end of the plate 

as mentioned above (see Figure 55). 

Firstly, the frequency is set equal to 15 rad/sec, thus an external loading of the follow-

ing form is considered: 

 𝑃 = 1 ∙ 𝑠𝑖𝑛(15𝑡)  (N) (130) 

The application of the optimized fuzzy controller 1 at the given smart plate, is shown in Figure 69. The 

vibration suppression achieved is presented in the   

Table 12. 
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Figure 69: Displacement, velocity, acceleration and forces of the system under a loading with frequency 

15 rad/sec.  

Table 12: Numerical results for the controller with the centroid method and loading of freq. 15 rad/sec 

ω = 15 rad/sec. Max 𝒖 (m) Max �̇� (m/s) Max �̈� (m/s2) 

Uncontrolled 0.0046 0.0383 0.7054 

Optimized MFs of 

inputs of controller 1 

2.57∙10-5 0.0021 2.5963 

Percentage of reduction 99.44% 94.41% -268.07% 

One can easily observe that even if a high reduction of oscillations is achieved in terms 

of displacement and velocity, however the acceleration is augmented by more than 

268%. This is definitely unacceptable. As for the control force, only a slight augmenta-

tion to the width, 2.29 N instead of the optimum 2.00 N of excitation, is observed.  

In another investigation, the frequency is set equal to 25 rad/sec, thus an external load-

ing of the following form is considered: 

 𝑃 = 1 ∙ 𝑠𝑖𝑛(25𝑡)  (N) (131) 

The results of the simulation of the smart plate are shown in Figure 70. The vibration suppression 

achieved is presented in the   
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Table 13 below: 

 

 

Figure 70: Displacement, velocity, acceleration and forces of the system under a loading with frequency 

25 rad/sec.  

Table 13: Numerical results for the controller with the centroid method and loading of freq. 25 rad/sec 

ω = 25 rad/sec. Max 𝒖 (m) Max �̇� (m/s) Max �̈� (m/s2) 

Uncontrolled 0.0045 0.0767 1.9004 

Optimized MFs of 

inputs of controller 1 

8.51∙10-6 4.61∙10-4 0.7809 

Percentage of reduction 99.81% 99.40% 58.91% 

From the results of the present simulation, one can observe that a significant reduction 

of the oscillations of the displacement (99.81%), velocity (99.4%) and acceleration 

(58.91%) is achieved. Again, the results regarding acceleration are not smooth enough. 

The width of the control force equals 2.06 N, which is very close to the let say optimum 

2.00 N of excitation. 

In the ultimate investigation, the frequency is set at 30 rad/sec, i.e. the external loading 

is of the following form: 
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 𝑃 = 1 ∙ 𝑠𝑖𝑛(30𝑡)  (N) (132) 

The oscillation suppression achieved in terms of displacement, velocity and accelera-

tion is presented in Figure 71 and Table 14. 

One can observe that a significant reduction of the oscillations of displacement 

(99.78%), velocity (99.46%) and acceleration (76.92%) is achieved. This is the best result 

regarding acceleration which is achieved with the maximum suppression, near 100% 

of displacement and velocity fields. 

The width of the control force in this case equals to 2.03 N, which is even most close to 

the optimum width 2.00 N of excitation. 

 

 

Figure 71: Displacement, velocity, acceleration and forces of the system under a loading with frequency 

30 rad/sec.  

Table 14: Numerical results for the controller with the centroid method and loading of freq. 30 rad/sec 

ω = 30 rad/sec. Max 𝒖 (m) Max �̇� (m/s) Max �̈� (m/s2) 

Uncontrolled 0.0044 0.0928 2.6116 

Optimized MFs of 

inputs of controller 1 

9.51∙10-6 4.97∙10-4 0.6028 

Percentage of reduction 99.78% 99.46% 76.92% 
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6.1.6 Optimization of fuzzy control with particle swarm optimization 

In the present investigation, the controller’s parameters were fine-tuned using the in-

ertia particle swarm optimization method (Tairidis, et al., 2015). 

The optimization algorithm which is used here is included in the optimization toolbox 

package of MATLAB®. The parameters of the algorithm are chosen with the trial and 

error method, taking into account the size of the problem, the computational cost and 

the desired accuracy. 

Namely, the inertia range is set to [0.1, 1.1], the maximum number of iterations to 50, 

the self-adjustment and the social-adjustment parameters of the algorithm to 1.49, the 

stall iteration limit is set to 10 iterations and the swarm size is chosen to be 4 particles. 

The characteristics of the algorithm, such as the inertia range and the cognitive, as well 

as the social parameter are chosen based on criteria for PSO stability given in literature. 

For further information see section 5.2, (Perez & Behdinan, 2007), (Marinaki, et al., 

2011), (Marinaki, et al., 2011b). 

The main objective of the control, is the minimization of the oscillations of the struc-

ture, or in other words the maximization of the percentage of the vibration reduction. 

Thus, the problem can be considered a problem of maximization of the quotient of the 

ratio of the difference between the maximum displacement before and after control, to 

the maximum displacement before control. 

The design variables x1, x2 and x3 of the algorithm are coefficients which adjust the 

range of the membership functions of the three fuzzy variables (two inputs and one 

output) of the fuzzy controller. 

The initial controller’s ranges were set to [-0.0077, 0.0077] for the displacement and to 

[-0.1209, 0.1209] for the velocity respectively. The values 0.0077 and 0.1209 were the 

maximum displacement and the maximum velocity respectively and were calculated 

by solving the dynamic system without control. The initial ranges for the force were 

set to [-1, 1]. However, we shared it to three different points (nodes), that is, the range 

of the membership function of the output, i.e. the control force, changed to [-1/3, 1/3]. 

The tuning of these ranges is the object of the investigation. The idea is to find the 

ranges of fuzzy inputs that maximize the vibration reduction. The design variables 

take values between 0 and 1, thus the range can be a percentage of the maximum val-

ues mentioned above. The optimization results (coefficients) are multiplied with the 

initial ranges yielding the new tuned ranges. 

Particle swarm optimization has the advantage that needs lower computational power 

compared to other methods, like genetic optimization. On the contrary, it is more sen-

sitive to local optima. In the present problem, strong local optima and/or non-convex-

ity does not exist, making the use of this method suitable. Moreover, due to the sim-

plicity of the optimization problem only a small number of iterations along with a 
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small size of swarm is needed. However, the results are very satisfactory as it will be 

shown below. 

As mentioned above, the loading is applied to three nodes. These nodes correspond to 

the upper corner, the middle point and the lower corner of the free side of the plate 

respectively, as shown in Figure 72(a). The position of control is shown with blue ar-

row in Figure 72(b). 

 

Figure 72: a. The loading nodes (black arrows) and b. the control node (blue arrow) 

The loading that is applied to each node is given by: 

 𝑃 =
1

3
∙ 𝑠𝑖𝑛(20𝑡)  (N) (133) 

It is already shown that the vibration suppression of the smart plate before the opti-

mization of the controller’s parameters (Tairidis, et al., 2014) was 71% for displace-

ments and 31% for velocities. On the other hand the acceleration field increased by 

167% (see subsection 6.1.1). 

One can observe that even if the reduction of displacement and velocity is not negligi-

ble, the appearance of so high accelerations is a burden for the structure and the pie-

zoelectric devices, since they lead to material fatigue and discomfort problems. Thus, 

the optimization of the controller’s parameters is quite necessary. 

In order to achieve this goal, two different cases were considered. The first one deals 

with the optimization of the ranges of the membership functions of inputs and output, 

while in the second case the tuning of solely the inputs’ ranges is performed. 

6.1.6.1 Tuning of the ranges of fuzzy inputs and output 

In this tuning scenario, we try to optimize the parameters of the inputs and of the 

output of the fuzzy inference system. This means that the ranges of the membership 

functions of displacement and velocity, as well as of the control force have changed. 

The particle swarm optimization algorithm returns the new ranges as follows. As for 

the two inputs of the controller, the new ranges occurred as a percentage of 34.04% of 

the maximum displacement and 25.51% of the maximum velocity respectively. The 

range for the output variable derived to be at the 95.93% of the maximum force width. 
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The recurring membership functions, which occurred through the optimization pro-

cess, are shown in the following figures. 

 

Figure 73: Membership functions of displacement (input 1) after optimization of inputs and output 

 

Figure 74: Membership functions of velocity (input 2) after optimization of inputs and output 

 

Figure 75: Membership functions of control force (output) after optimization of inputs and output 
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The new optimized fuzzy controller reduced oscillations by 90.59% for displacement. 

The velocity reduced by 79.78%, while acceleration was again increased by 115.72%. 

This increase of the acceleration is a serious problem that demands further tuning of 

the fuzzy controller. Schematically, these numerical results are shown in Figure 76. 

Another deficiency is that the control force is high. 

 

 

Figure 76: Displacement, velocity, acceleration and forces at the middle of the free end of the structure 

after optimization of inputs and output 

6.1.6.2 Tuning of the ranges of the fuzzy inputs only 

From the previous tuning scenario, one can easily observe that the range of the mem-

bership functions of the output, practically, remain unchanged, or if we want to be 

precise, changes slightly (only by 4%). Namely, the value of maximum control force 

that came from the optimization process was 0.96 instead of 1. For this reason and in 

order to simplify more the optimization problem, only the ranges of the fuzzy inputs 

are tuned. Thus, the recurring optimization problem has only two design variables, 

that is, the range of each input of the fuzzy system; the displacement and the velocity. 

From the optimization process, the particle swarm algorithm provided the new ranges 

for the two inputs of the controllers as a percentage of 69% of the maximum displace-

ment and 5.5% of the maximum velocity, which are quite different from the ones of 

the previous scenario. The membership function of the output remained, as said, un-

changed. The membership functions that occurred, are shown in the following figures. 
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Figure 77: Membership functions of displacement (input 1) after optimization of inputs 

 

Figure 78: Membership functions of velocity (input 2) after optimization of inputs 

 

Figure 79: Membership functions of control force (output) after optimization of inputs 

The control with these tuned ranges is proved very efficient in terms of displacement 

and velocity. The reduction of the displacement was 96.35%, while velocity reduced 

by 96.64%. The acceleration again increased, but only by 6.10%, which is much better 

than the 167% that appeared before the tuning and the 115.72% that occurred in the 
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previous scenario. This means that the controller’s performance was improved, how-

ever, further refinement is possible. The results are shown schematically in Figure 80. 

 

Figure 80: Displacement, velocity, acceleration and forces at the middle of the free end of the structure 

after optimization of inputs only 

6.1.6.3 Further tuning by changing the defuzzification method 

As one can easily observe from the results in the previous subsubsection, the reduction 

of displacement and velocity is very sufficient and smooth as well. As for the acceler-

ation, even if the results have improved significantly, they remain rough. For this pur-

pose some further fine tuning is done by changing the defuzzification methods. The 

best results produced by the centroid method. 

In this case, both displacement, velocity, and acceleration filed reduced significantly. 

These results as shown schematically in Figure 81. Namely, the displacement reduced 

by 99.35%, the velocity by 98.98% and acceleration by 95.89%. Moreover, even if the 

control force needed for the suppression is obviously higher than the external force, 

its form is smooth enough as it is shown in the figure below. 

As shown in the latter case, the vibration suppression achieved by the tuned controller 

is exceedingly satisfactory, for both displacement and velocity and even for accelera-

tion. The results were very smooth as well. 
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Figure 81: Displacement, velocity, acceleration and forces at the middle of the free end of the structure 

after optimization of inputs and selecting centroid method 

6.2 Fuzzy control of smart plates in the presence of delamination 

In this section, fuzzy control of smart plates under delamination conditions is exam-

ined (Tairidis, et al., 2015b), (Koutsianitis, et al., 2015), (Koutsianitis, et al., 2016), 

(Koutsianitis, et al., 2016b). In order to be able to describe delamination phenomena, 

one may consider a layerwise model with adhesive material, as the one described in 

section 3.5.  

The plate model considered for this investigation is shown in Figure 7. The material 

properties of the composite structure are given in the following Table 15. Further in-

formation can be obtained from (Han & Lee, 1998). 

The stacking sequence of the plate is [0/±45/90]. The dimensions of the structure are 

100mm × 100mm × 1.3mm. 10 × 10 isoparametric elements are used for the analysis 

and realistic boundary conditions (RBC) are chosen, yielding to a system of 100 ele-

ments. Each finite element consists of 12 nodes and every node has 5 degrees of free-

dom (three translational and two rotational). Therefore, the structure has 363 nodes 

and 1815 degrees of freedom. The mesh of the structure is shown in the following 

Figure 82. 
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Table 15: Material properties of the composite plate with piezoelectrics and adhesive material 

Property Graphite/epoxy Adhesive Piezoceramic 

E1 (GPa) 130 1.78 59 

E2 (GPa) 9.6 1.78 59 

G12 (GPa) 4.8 - - 

G23 (GPa) 3.2 - - 

ν12 0.31 0.3 0.34 

ρ (kg/m3) 1570 1050 7400 

d31= d32 (m/V) - - - 260∙10-12 

Ply thickness (mm) 0.1 0.05 0.2 

 

 

Figure 82: Plate discretized with finite elements 

Figure 83 presents the three layers of the structure. Note that the upper layer is used 

as actuator, the middle layer represents the elastic core of the beam (graphite/epoxy), 

while the lower layer is used as sensor. One can observe that the numbering of nodes 

starts from the lower layer and is continuing to the other two.  

It is also worth mentioning that the use of RBC is fundamental for the accurate predic-

tion of the parameters of the closed loop system. This is due to the fact that piezoelec-

tric components are able to actuate more effectively. In this context, fuzzy control is 

used for the vibration suppression of the multilayered plate both before and after the 

appearance of delamination. The main objective is the construction of robust control-

lers, which could be able to keep functioning under failure conditions, even if they are 

initially set without considering such phenomena. 
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Figure 83: Numbering of nodes for the three layers of the structure 
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We have tested two settings for the control structure, the so-called mechanical and 

electromechanical models as presented in subsections 4.5.1 and 4.5.2 respectively. In 

the mechanical model measurements are taken directly from the nodes of the structure 

and control forces are applied directly to the same nodes (collocated configuration). 

This setting is more suitable for the experimental environment. On the other hand, in 

the electromechanical model the measurements are taken and the control forces are 

applied on the piezoelectric layers and through them, related to the mechanical quan-

tities of the composite structure. 

In the first case, the measurements (data) for the inputs of the fuzzy control (controller 

1) are received from a single node of the lower layer, and namely, from the node which 

is located at the center of the free end of the structure. The control force is applied 

perpendicularly to the plate (in the direction of z-axis), and more specifically, to the 

node 308 (see Figure 83), which is the node at the central point of the free end of the 

upper piezoelectric layer which is used as actuator as shown in Figure 84. 

 

Figure 84: Application of control in the mechanical model 

On the other hand, the mode of functioning of the coupled electromechanical model 

is completely different. In that case, the measurements for the inputs of the control 

(controller 2) are again taken form an element of the lower piezoelectric layer (see sub-

subsection 6.2.2.2), however, the electric control signal (voltage) is transferred to the 

upper layer which acts like an actuator. The control forces are not perpendicular to the 

plate’s surface, but are applied through the piezoelectric phenomenon at the piezoe-

lectric layer in the direction of x and y axes as shown in Figure 85. These forces produce 

bending moments which are acting to the whole structure. 

 

Figure 85: Application of control in the coupled electro-mechanical model 
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It is noteworthy that these forces are transferred to the edge nodes that remain glued. 

This means that in case of delamination at one node, the forces of this node are trans-

ferred to the closest glued node. 

Another major difference between the two models, lies to the way that measurements 

are received from the sensor patch. In the mechanical model, as seen above, the meas-

urements are taken from a single node. In the coupled electromechanical model, the 

inputs of the control are taken from a certain element of the sensor patch. Obviously, 

in case of delamination of this element, the control stops functioning.  

The delamination of the piezoelectric patch may occur either to the upper, or the lower 

layer, which means that either the sensor or the actuator can peel off. The results for 

both cases are presented below.  

6.2.1 Delamination of the sensor layer 

Firstly, the behavior of the controller, which was initially designed for the control of 

non-delaminated composite structures, is tested for delaminated plates with different 

delamination rates of the lower layer, i.e. of the sensor (Tairidis, et al., 2015b). 

For this investigation the mechanical model is considered, that is, controller 1 is used. 

Due to the presence of delamination, the controller takes different data for inputs and 

output. The investigations were carried out for 10%, 50% and 90% delamination levels 

of the interface (glue) material.  

The measurements are taken from node 66 of the lower layer, that is, at the center of 

the free end of the structure (see Figure 83 and Figure 84). The external loading is ap-

plied to five nodes of the middle layer and more specifically to nodes 132, 154, 187, 220 

and 242 (see Figure 83) and is of the form: 

 𝑃 =
1

5
∙ 𝑠𝑖𝑛(20𝑡)  (N) (134) 

6.2.1.1 10% delamination of the sensor 

In the first case, the composite plate presents 10% loss of the piezoelectric material as 

shown in Figure 86. The displacement, velocity, acceleration and the forces before 

(blue line) and after (red line) control are shown in Figure 87.  

From the diagrams, one can observe that a significant suppression in terms of displace-

ment, velocity and acceleration is achieved. This means that the behavior of the struc-

ture and the operation of the controller are very satisfactory.  
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Figure 86: Plate with 10% delamination 

 

 

Figure 87: Displacement, velocity, acceleration and forces with 10% delamination 

6.2.1.2 50% delamination of the sensor 

Consequently, a model with delamination equal to the 50% of the piezoelectric mate-

rial of the sensor is studied (see Figure 88). The displacement, velocity, acceleration 

and the forces before (blue line) and after (red line) control are shown in Figure 89. 
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Figure 88:  Plate with 50% delamination 

 

 

Figure 89: Displacement, velocity, acceleration and forces with 50% delamination 

The vibration suppression in terms of displacement, velocity and acceleration is again 

satisfactory. A small increase in the amplitude of the displacement, velocity and accel-

eration before control appears due to the modification of stiffness. However, the con-

troller continues functioning well, as in the case of the model with 10% delamination. 
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6.2.1.3 90% delamination of the sensor 

Finally, a study was conducted with 90% delamination of material (see Figure 90). The 

results are shown in Figure 91. 

 

Figure 90: Plate with 90% delamination 

 

 

Figure 91: Displacement, velocity, acceleration and forces with 90% delamination 

In this latter case of extensive delamination of the piezoelectric layer, some useful con-

clusions are made, not only for the functionality of control, but for the behavior of the 

structure as well. It is obvious that the control gives worst results compared to the 

previous cases, however it provides quite satisfactory vibration suppression in terms 
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of displacement, velocity and even acceleration, at the cost of a much larger control 

force. As for the structure, one can observe that the amplitude of displacement, veloc-

ity and acceleration are increased. This is due to the fact that the structural dynamics 

of the plate have changed.  

In this case, the presence of delamination on the sensor layer may have affected the 

performance of the controller, but not to the extent that the controller has not a decent 

effect on the structure. 

It is notable that the results above were obtained from the fuzzy controller 1 without 

use of any optimization method for fine tuning. 

It is also worth mentioning that in case of delamination of the sensor layer, and espe-

cially of the element where the measurements are taken, the control does not function 

at all when the coupled electromechanical model is considered. 

6.2.2 Delamination of the actuator layer 

For the study of delamination of the actuator level, a different strategy is considered. 

For this investigation both the mechanical, as well as the electromechanical model are 

considered. In the first case controller 1 is used, while in the second scenario controller 

2 is called. 

An external loading of sinusoidal form is applied to five nodes of the free end of the 

structure as shown in Figure 92. 

 

Figure 92: Nodes of application of loading 

The loading at each node is of the form: 

 𝑃 =
1

5
∙ 𝑠𝑖𝑛(20𝑡)  (N) (135) 

6.2.2.1 Results for the mechanical model  

In this investigation, the efficiency of the proposed control scheme (controller 1) is ex-

amined for different grades of delamination of the actuator layer. First, the scenario of 

the absence of delamination is considered. The case of 50% delamination is following. 
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6.2.2.1.1 Delamination of 0% of the actuator for the mechanical model 

The results for the non-delaminated structure are shown in Figure 93 and Table 16. 

With blue color is denoted the vibration before the application of control, while with 

red color is shown the response of the structure after the application of the fuzzy con-

troller. 

 

 

Figure 93: Displacement, velocity, acceleration and forces for the case with no delamination of the actu-

ator (mechanical model) 

From Figure 93, it is clear that a significant suppression in terms of displacement, ve-

locity and acceleration is achieved. Namely, a reduction in vibrations of the order of 

97.14%, 94.53% and 87.02% respectively is observed. Considering these results, one 

may state that the control is very efficient. In paragraph 6.2.2.1.2 the case of 50% de-

lamination is presented. As seen from Figure 94 the failure starts from the free end and 

extends to the inner area of the structure. 

6.2.2.1.2 Delamination of 50% of the actuator for the mechanical model 

In this paragraph, the case where the failure extends to the half piezoelectric layer, that 

is, the 50% of the actuator (see Figure 94) is studied. As seen from the results below 

(Figure 95 and Table 16), the control scheme remains efficient, that is, significant vi-

bration suppression is achieved for displacements, velocities and accelerations. 
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Figure 94: Discretized plate with 50% delamination 

 

 

Figure 95: Displacement, velocity, acceleration and forces for the case of 50% delamination of the actu-

ator (mechanical model) 

Note that blue color is used for the oscillations prior the application of control, while 

with red are denoted the vibrations after the application of fuzzy control. In the last 

part of Figure 95, with blue color is given the external loading, while with red is shown 

the control force. 
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From the results of Figure 95, one may also observe a slight change also to the vibra-

tions of the structure prior the application of control. This modification stemmed from 

the alteration of the structures characteristics, i.e. the stiffness, due to the presence of 

delamination. 

It is worth mentioning that delamination cases of the 10% and 90% of the actuator 

patch for the mechanical model were also studied. As for the structure, a further alter-

ation of its characteristics is observed, in case of extensive delamination. However, 

such phenomena attracts interest, as loadings capable of causing failures of this extent 

actually exist. The results of these cases are presented in detail in (Koutsianitis, et al., 

2016b). 

The results for the two different cases of the mechanical model which are presented in 

this dissertation are summarized in Table 16. 

Table 16: Numerical results for delamination of actuator (mechanical model) 

 Delamination 0% Delamination 50% 

Reduction of displacement 97.14% 96.48% 

Reduction of velocity 94.53% 93.35% 

Reduction of acceleration4 87.02% 82.23% 

6.2.2.2 Results for the coupled electromechanical model  

In the present subsubsection, fuzzy control which takes into account the coupled elec-

tromechanical model (see subsection 4.5.2) is tested. The main purpose is again to de-

sign a controller which continue to function effectively, even in presence of partial de-

lamination (Koutsianitis, et al., 2016b). As mentioned in section 6.2, in the case of the 

electromechanical model, the control forces act in the direction of axes x and y produc-

ing bending moments which are acting to the whole structure as shown in Figure 85. 

It is also stated that the measurements are received from an element of the sensor 

patch, instead of a single node.  

Thus, the element which will serve as sensor needs to be properly chosen. The selec-

tion is made from a genetic algorithm. The objective is the maximum reduction of vi-

brations in terms of displacement and acceleration, while the optimization problem is 

considered unconstrained. The design variable is one, which is the position of the sen-

sor element. The recurring problem is as follows: 

 Maximize: 

 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = 0.4 ∙ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒(𝑢) + 0.6 ∙ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒(�̈�) (136) 

                                                      

4 Note that for the calculation of the suppression in terms of acceleration after the application 

of the control, the initial large peak of the amplitude which occur in Figure 93 and Figure 95 is 

not considered. 
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As mentioned above, the problem is not subject to any constraints. The population 

size is set to 25 members, that is, 25 different possible solutions. The maximum num-

ber of generations, is set to 50. 

The initial population was chosen by a stochastic process. As for the selec-

tion, the Tournament Selection method was used, with the parameter q for the 

selection set to 2 members of the population.   

For the genetic operators of crossover and mutation, the random crossover B 

and the random non–uniform mutation were chosen with possibilities of 0.8 and 

0.1 respectively. 

The element occurred from the process is the element 84 as shown in Figure 96. 

 

Figure 96: The element 84 which is used as sensor 

Subsequently, the fuzzy controller which is presented in section 4.5.2 (controller 2) is 

tested on the model without the presence of delamination. For the fine tuning of its 

parameters, a suitably genetic algorithm is applied. After this process, the optimized 

controller is tested for three cases of delamination of the actuator layer. 

6.2.2.2.1 Fuzzy control on the non-delaminated coupled electromechanical model 

In this paragraph, a structure without delamination of piezoelectric layers is investi-

gated. In contrast to the results of the mechanical model, one can observe that the os-

cillation reduction in this case is not so satisfactory. This comes as a result of the con-

version of the displacement and velocity, in electrical potential and electric current 

respectively and the indirect transfer of the information on the mechanical model 

through the sensor and actuator. 

With blue color is denoted the vibration prior the application of fuzzy control, while 

the red color is used for the response after the application of the control. Similarly, in 

the last section of Figure 97 with blue and red color are denoted the external loading 

and the control force respectively. 
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Figure 97: Displacement, velocity, acceleration and forces for the system without delamination (cou-

pled electromechanical model) 

From the results shown in Figure 97 and Table 17, a satisfactory decrease of the oscil-

lations in terms of displacement and velocity is achieved. One disadvantage is that the 

form of the acceleration is little rough, which makes the control quite unsatisfactory. 

6.2.2.2.2 Optimization of fuzzy control (controller 2) with genetic algorithms 

In order to improve the results obtained from controller 2, a fine tuning of its parame-

ters is made. The main purpose of the optimization process is the reduction of the dis-

placement field and the improvement of the rough character of the acceleration dia-

gram. For this purpose, a genetic algorithm is implemented and used in order to fine-

tune the membership functions of the fuzzy variables. 

The genetic algorithm which is used in this paragraph is based on the algorithm pro-

posed by Zbigniew Michalewicz (Michalewicz, 1996) and is programmed in the 

MATLAB® environment. The membership functions of the electric potential and the 

electric current were discretized in i, j or k points for each variable as shown in Figure 
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98. Due to symmetry reasons the zero point has been kept constant at the center of the 

functions as in the previous case (see subsubsection 6.1.2). 

 

Figure 98: Discretization of membership functions for optimization of categories 

In this case the optimization problem consists of the maximization of the objective 

function which is the percentage of oscillation reduction not only in terms of displace-

ment, but in terms of acceleration as well, as given in Equation (137). The problem is 

subject to linear inequality constraints which are given in (138). It is noted that the 

maximum reduction is translated in minimum oscillations of the structure. 

Maximize: 

 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = 0.4 ∙ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒(𝑢) + 0.6 ∙ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒(�̈�) (137) 

Subject to: 

 

𝑥(𝑖) < 𝑥(𝑖 + 1)𝑖𝑓𝑒𝑙. 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 ≥ 0 

𝑥(𝑖) > 𝑥(𝑖 + 1)𝑖𝑓𝑒𝑙. 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 < 0 

𝑥(𝑗) < 𝑥(𝑗 + 1)𝑖𝑓𝑒𝑙. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ≥ 0 

𝑥(𝑗) > 𝑥(𝑗 + 1)𝑖𝑓𝑒𝑙. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 < 0 

(138) 

where: 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒(𝑢) =
(max _𝑑𝑖𝑠𝑝𝑙_𝑏𝑒𝑓𝑜𝑟𝑒_𝑐𝑜𝑛𝑡𝑟𝑜𝑙) − (max _𝑑𝑖𝑠𝑝𝑙_𝑎𝑓𝑡𝑒𝑟_𝑐𝑜𝑛𝑡𝑟𝑜𝑙)

max _𝑑𝑖𝑠𝑝𝑙_𝑏𝑒𝑓𝑜𝑟𝑒_𝑐𝑜𝑛𝑡𝑟𝑜𝑙
 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒(�̈�) =
(max _𝑎𝑐𝑐_𝑏𝑒𝑓𝑜𝑟𝑒_𝑐𝑜𝑛𝑡𝑟𝑜𝑙) − (max _𝑎𝑐𝑐_𝑎𝑓𝑡𝑒𝑟_𝑐𝑜𝑛𝑡𝑟𝑜𝑙)

max _𝑎𝑐𝑐_𝑏𝑒𝑓𝑜𝑟𝑒_𝑐𝑜𝑛𝑡𝑟𝑜𝑙
 

max _displ_before_control = max(𝑢 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) + |min (𝑢 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙)| 

max _displ_after_control = max(𝑢 𝑎𝑓𝑡𝑒𝑟 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) + |min (𝑢 𝑎𝑓𝑡𝑒𝑟 𝑐𝑜𝑛𝑡𝑟𝑜𝑙)| 

max _acc_before_control = max(�̈� 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) + |min (�̈� 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙)| 

max _acc_after_control = max(�̈� 𝑎𝑓𝑡𝑒𝑟 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) + |min (�̈� 𝑎𝑓𝑡𝑒𝑟 𝑐𝑜𝑛𝑡𝑟𝑜𝑙)| 

0 < 𝑥(𝑖) < 1, 𝑖 = 1, … ,4 

0 < 𝑥(𝑗) < 1, 𝑗 = 1,2 
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At this investigation, the population size was set to 50 members, that is, 50 differ-

ent possible solutions. The maximum number of generations, was set to 100.  

The initial population was chosen by a stochastic process with respect to the 

design variable’s bounds. Regarding the selection, the Tournament Selection 

method was used, with the parameter q for the selection set to 2 members of the pop-

ulation. For the genetic operators of crossover and mutation, the random crosso-

ver B and the random non–uniform mutation were chosen with probabilities of 

0.8 and 0.1 respectively. 

The results of the optimization process for the fuzzy inputs, that is, the electric poten-

tial and the electric current are presented in Figure 99 and Figure 100 respectively. 

 

Figure 99: Optimized membership function of the electric potential 

 

Figure 100: Optimized membership function of the electric current 

The results of the application of the optimized controller to the system without delam-

ination are shown in Figure 101 and Table 17. The blue color denotes the vibration 

before the application of control, while with red color is denoted the response after the 

application of the fuzzy control. As for the forces, with blue color is denoted the exter-

nal loading, while the control force is shown with red color. 
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Figure 101: Displacement, velocity, acceleration and forces for the system without delamination and 

optimized membership functions (coupled electromechanical model) 

From the results above, a slight improvement of the suppression in terms of displace-

ment, velocity and acceleration is noticed. In addition, the vibrations are smoother.  

This optimized controller is used for the reduction of the oscillations of the structure 

(considering the coupled electromechanical model) in presence of delamination as 

shown in the following paragraph. 

6.2.2.2.3 Fuzzy control on the delaminated, coupled electromechanical model 

A relatively significant partial delamination of 50% of the actuator is presented in this 

paragraph. The results are shown in Figure 102 and Table 17. The vibration prior and 

after the application of fuzzy control is denoted with blue and red color respectively. 
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Figure 102: Displacement, velocity, acceleration and forces for the system with 50% delamination and 

optimized MF of fuzzy variables (coupled electromechanical model) 

In this case, one can observe that the response of the control in terms of displacement, 

velocity and acceleration is noticeably worse compared to the ones of the non-delam-

inated case, however the reduction achieved remains satisfactory. This fact is very im-

portant for the robustness of control, as it proves that the fuzzy controller remains 

quite efficient, even under quite large amounts of delamination. 

In Table 17, the percentage of the reduction of displacement, velocity and acceleration 

for the investigations of the electrical model are presented in detail. 

Table 17: Percentages of reduction of displacement, velocity and acceleration 

   0% delamination 50% delamination 

Percentage of  

reduction 

No optimiza-

tion 

Memb. Fcn. 

optimization 

Memb. Fcn. optimization 

Displacement 62.97% 69.09% 39.88% 

Velocity 62.94% 64.62% 40.61% 

Acceleration 53.77% 60.10% 33.71% 
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The same controller was also tested for the case of 10% delamination of the actuator 

patch, as well as for the occurrence of delamination at the collocated patch. These in-

vestigations can be found in (Koutsianitis, et al., 2016b). 

It is noteworthy that, if the delamination appears exactly at the position of the sensor 

or the collocated actuator (see Figure 96), the effectiveness of the control scheme dras-

tically deteriorates.  

6.3 Adaptive neuro-fuzzy control of a cantilever beam 

This last numerical example deals with the application of an optimized neuro-fuzzy 

controller for the vibration suppression of a cantilever beam model (see section 3.3). 

For this investigation, the Sugeno controller (controller 3) which described in subsec-

tion 4.5.3 is used.  

The beam is made of aluminium. For demonstration purposes the smart beam is as-

sumed to be of rectangular cross section with cross-sectional area equal to 0.004 m2, 

length 0.8 m, width 0.02 m and height 0.005 m. The material properties of the host 

structure and of the piezoceramic are given in detail in the following Table 18 (see also 

(Foutsitzi, et al., 2002), (Stavroulakis, et al., 2005), (Tairidis, et al., 2009). 

Table 18: Material properties of the composite plate with piezoelectric sensors and actuators 

Property Aluminium Piezoceramic 

E1 (GPa) 73 69 

ρ (kg/m3) 2700 7600 

d31(m/V) - 210∙10-12 

g31(Vm/N) - 11.5∙10-3 

The structure is divided into 4 rectangular finite elements yielding to a system with 8 

degrees of freedom as shown in Figure 103.  

 

Figure 103: Cantilever beam with piezoelectric patches acting as sensors and actuators discretized into 

4 finite elements 

Sinusoidal external excitation concentrated at the free end of the cantilever is chosen. 

The loading is of the form: 

 𝑃 = 𝑃0𝑠𝑖𝑛𝜔𝑡 (139) 
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The amplitude of the loading is chosen to be equal to 1 N and the frequency ω has 

been set to 20 rad/s. The structure has been discretized with four finite elements re-

sulting in a model with eight degrees of freedom. The purpose of the use of the adap-

tive Sugeno-type neuro-fuzzy controller is the oscillation reduction. The model is first 

simulated under the sinusoidal loading without any control in order to collect the nec-

essary vibration data. Hereupon, these data are used for the training of the controller. 

In fact, vibration suppression of a sinusoidal loading on the beam can be achieved 

using Mamdani-type fuzzy controllers without fine tuning of the involved parameters. 

Such results were presented in (Tairidis, et al., 2007), (Tairidis, et al., 2009) 

(Papachristou, et al., 2011), (Stavroulakis, et al., 2011). The results were very satisfac-

tory for displacements, while velocities and accelerations were not acceptable. On the 

other hand, adaptive controllers can provide significantly better results. For instance, 

a suitably tuned Sugeno controller can provide smooth results and, the most, im-

portant, comparable with the ones obtained by classical controllers. For this reason, a 

LQR model was used for comparison. 

The parameters of the LQR controller are chosen from the literature as follows: 

q = 1  and  r = 0.00001 

while the matrices Q and R are given as: 

Q = q × I  and  R = r × I 

where I is the identity matrix. 

The results of the Sugeno controller (controller 3) compared to the ones of a classical 

LQR controller are presented in Figure 104. 

In the first three diagrams of Figure 104 one can observe that the reduction of displace-

ments, velocities and accelerations respectively, is significant and comparable to the 

one that a classical LQR control provides. Note that with black color is denoted the 

vibration of the beam without control, while with blue and red color are the results of 

LQR and of the Sugeno controller, respectively. In the last segment of Figure 104 one 

can see the loadings of the system. The excitation is presented with black color, the 

LQR output force is denoted with blue color and with red color is indicated the Sugeno 

control force. 

In comparison to a tested fuzzy controller (Tairidis, et al., 2007), (Tairidis, et al., 2009), 

the neuro-fuzzy controller provides a slight improvement of displacements. In fact, 

the vibration suppression which is achieved using a simple fuzzy controller can be 

also similar to the one obtained with LQR.  However, the improvement of the results 

in terms of velocities and accelerations, with the Sugeno controller is impressive. As 

shown in Figure 105, the amplitude of the vibration using the neuro-fuzzy controller 

(right) is significantly lower compared to the corresponding given by the fuzzy con-

troller. In addition, the results are smoother and comparable to the LQR ones. 
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Figure 104: Vibration suppression achieved by the Sugeno controller compared to the one given by a 

classic LQR controller 

 

Figure 105: Comparison between fuzzy and neuro-fuzzy control 

From the presented results one concludes that adaptive fuzzy controllers can be very 

effective in the construction of useful and smooth controllers. In addition, adaptive 

neuro-fuzzy controllers can lead to satisfactory vibration suppression without 

knowledge of the full state-space of the problem and without use of any classical op-

timization method. 
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7 Energy harvesting 

 

As mentioned above, piezoelectric materials have the ability to produce electric charge 

when subjected to mechanical stresses or vibration. It was also stated that these mate-

rials can be both natural and synthetic, usually ceramics, and are widely used for the 

formation of sensors and actuators in smart composite structures for static and dy-

namic analysis and control (Tairidis, et al., 2014), (Tairidis, et al., 2009), (Tairidis, et al., 

2007), (Foutsitzi, et al., 2013), (Foutsitzi, et al., 2013b) as well as for mechanical energy 

harvesting from vibrations (Liao & Sodano, 2012), (Park, et al., 2008), (Anton & 

Sodano, 2007), (Liu, et al., 2012). 

Composite materials are becoming the material of choice in structural applications to-

day and for the future. Composite smart structures (see chapter 3) consist of the lami-

nated composite layer as the host structure, the embedded smart materials which serve 

as sensors and/or actuators, and the control mechanism as described at chapter 4. 

These novel structures combine the advantage of classical composite laminated struc-

tures, such as high strength-to-weight ratio, with the self-monitoring capability of 

smart structures. 

On smart composite structures that excited by various external loadings, piezoelectric 

components can be placed in selected positions in order to harvest the maximum 

amount of energy produced by the vibrations of the structure. Of course this proce-

dure can be extended in order to include harvesting from pyroelectric materials, from 

ferroelectrics, from thermal energy through temperature fluctuation, and so on. 

The behavior of the interface between the different layers of a laminate composite 

structure in order to transfer energy from the structure body to the energy harvester 

is an object of study. 

The design of the harvester, which is based on the usage of piezoelectric elements, is 

performed in such a way as to be able to obtain the maximum amount of energy. For 

the same reason, the piezoelectric elements are placed in locations which present the 

maximum strain for given vibrations. It is obvious that the position of the harvesters 

play a significant role in the final result, due to the avoidance of critical points, such as 

bonds and/or other points with absence of information i.e. eigenvector intersections, 

etc. 
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Moreover, the geometric characteristic of the harvesters, which is the shape and the 

dimensions of the components, affects not only the geometry and topology of the 

smart structure, but the efficiency of the energy harvesting process as well. 

The harvesting criteria come from the recent literature and include the location, the 

shape, the mass and the size of the piezoelectric components (Liu, et al., 2012), 

(Galchev, et al., 2011), (Shen, et al., 2008), (Kumar, et al., 2012), (Tairidis, et al., 2015c). 

A short review of vibration-based microelectromechanical systems (MEMS) piezoelec-

tric energy harvesters can be found in (Saadon & Sidek, 2011). A review of power har-

vesting using piezoelectric materials is made in (Anton & Sodano, 2007). 

7.1 The energy harvester 

In the present chapter, the smart cantilever beam, which is described in detail in sec-

tion 3.3 is used for energy harvesting, through the surface bonded piezoelectric 

patches. 

The model is tested with respect to the maximum amount of energy that can be pro-

duced, using modal analysis tools. The amount of energy that can be produced is esti-

mated using structural dynamics. The actual amount that can be harvested depends 

on the available technology. 

The objective of the present study is to harvest energy from a smart structure, and 

namely a cantilever beam as described in previous sections. In order to achieve this, a 

single piezoelectric patch can be placed in various positions of the beam as shown in 

Figure 106. 

 

Figure 106: A beam model used for energy harvesting 

The total beam length (L) is 0.8 m with cross-sectional area (A) of the beam 0.02x0.02 

m2. The host structure is made of aluminum. The elastic modulus (Ε) of structure is 

73x109 N/m2 and the mass density (ρ) of the beam is 2700 kg/m3. For further details see 

also (Foutsitzi, et al., 2002), (Stavroulakis, et al., 2005), (Tairidis, et al., 2009). 

In the present investigation a larger amount of elements is chosen, thus the beam is 

discretized into 32 finite elements with 2 degrees of freedom per node, yielding to a 

system with 64 degrees of freedom. The beam is a cantilever, which means that it is 

fixed at the left end. 
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In order to maximize the amount of energy produced and/or to transfer it from the 

fixed end to other parts of the structure, we placed an extra mass, equal to the whole 

mass of the structure, at every finite element of the structure. This leads to 32 different 

scenarios for each eigenvector. In the present paper we study the first three eigenvec-

tors of the structure. 

The justification behind this choice is that an analogous change of mass and density 

does not significantly change the resulting modal characteristics, while a drastic 

change of mass distribution like the one tried here has this ability. Change of the shape 

of the beam would be another possibility to modify the results (Liu, et al., 2012). Fur-

ther investigation will certainly require structural optimization techniques. 

7.1.1 Modal analysis 

The governing system dynamics of the beam are given by equation (22): 

          uu m elM X K X F F    (22) 

Equation (22) can be expressed in modal space by introducing new variables derived 

by modal transformation as follows: 
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     (140) 

where    is the modal matrix and    is the modal coordinate vector. Substituting 

equations (140) into equations (22), leads to: 

          2 T T

m uF K V              (141) 

Also using the modal approach, structural damping can be easily introduced as: 

              
T T

m uF K V               (142) 

where [Λ] is a diagonal modal damping matrix with the generic term 2 i i  , where i  

is the modal damping ratio and i  the undamped natural frequency of the i-th mode. 

The first two eigenvectors of a cantilever beam are shown in the following Figure 107. 

 

Figure 107: The first and the second eigenvectors of a cantilever beam 
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7.1.2 Estimate of energy production 

The amount of energy produced from every piezoelectric element in each eigenvector 

is given by the following expression: 
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L
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where G is the elastic modulus, L is the total length of the beam and Vvol is the volume 

of the beam. 

The quantity Δu is given by the following equation: 
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j j
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h
u       (144) 

where 𝜑𝑖
𝑗
is the ith element of the jth eigenvector and h is the height of the beam. 

Depending on the electronic equipment for the electric energy harvesting or storage, 

one can obtain more precise estimates. 

7.2 Numerical results of the energy harvesting 

In the following sections, the total amount of energy produced at each element and the 

elements that present the maximum amount of energy are being discussed.  

7.2.1 Numerical results for the first eigenvector 

In the following Table 19 is shown the finite element where the extra mass is placed, 

along with the amount of the maximum energy produced and the node where this 

amount is produced. Note that node 1 is the fixed (left) end of the cantilever, while 

node 32 denotes the free end. The energy is given in Joules. The value of the maximum 

energy that produced by the structure without the extra mass is 1562.6 J and it ap-

peared at the fixed end of the beam. 

From the results of Table 19, one can observe that the total energy is not transferred to 

other elements of the structure when the extra mass is placed. This means that in any 

case the maximum energy is given at the fixed end of the beam. As for the amount of 

the maximum energy that produced, we observe a slight increase when the extra mass 

is placed at the 9th node. Namely, this amount is 1640.8 J, instead of 1562.6 J, which 

means that a 5% increase was achieved. 
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Table 19: Numerical results for the 1st eigenvector 

Element of 

extra mass 

Node of 

max energy 

Amount of 

max energy (J) 

Element of 

extra mass 

Node of 

max energy 

Amount of 

max energy (J) 

1 1 1562.80 17 1 1149.20 

2 1 1562.80 18 1 1052.10 

3 1 1571.60 19 1 957.84 

4 1 1582.10 20 1 868.25 

5 1 1596.20 21 1 784.51 

6 1 1612.30 22 1 707.24 

7 1 1627.50 23 1 636.60 

8 1 1638.40 24 1 572.49 

9 1 1640.80 25 1 514.61 

10 1 1630.80 26 1 462.56 

11 1 1605.00 27 1 415.89 

12 1 1561.90 28 1 374.10 

13 1 1501.80 29 1 336.75 

14 1 1426.70 30 1 303.39 

15 1 1340.20 31 1 273.59 

16 1 1246.40 32 1 246.98 

In Figure 108 and Figure 109, the fluctuation of energy at each element before (blue 

line) and after (red line) the adding of the extra mass are shown. 

 
Figure 108: Total energy (J) at each node when extra mass placed at elements 1 and 9 
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Figure 109: Total energy (J) at each node when extra mass placed at elements 22 and 32 

7.2.2 Numerical results for the second eigenvector 

In the Table 20 below, the finite element where the extra mass is placed, along with the 

amount of the maximum energy and the node where this amount is produced, is 

shown. The amount of total energy is given in Joules. The maximum energy without 

the extra mass is 54879 J and appeared again at the fixed end. 

Table 20: Numerical results for the 2nd eigenvector 

Element of 

extra mass 

Node of 

max energy 

Amount of 

max energy (J) 

Element of 

extra mass 

Node of 

max energy 

Amount of 

max energy (J) 

1 1 55185.00 17 17 22472.00 

2 1 58067.00 18 18 24676.00 

3 1 64564.00 19 19 26942.00 

4 1 72566.00 20 20 28925.00 

5 1 76196.00 21 21 29908.00 

6 1 71248.00 22 1 29732.00 

7 1 60539.00 23 1 38164.00 

8 1 49000.00 24 1 47454.00 

9 1 39156.00 25 1 54540.00 

10 1 31520.00 26 1 57099.00 

11 1 25833.00 27 1 55394.00 

12 1 21687.00 28 1 51057.00 

13 1 18726.00 29 1 45588.00 

14 15 18344.00 30 1 39941.00 

15 16 19526.00 31 1 34631.00 

16 17 20878.00 32 1 29895.00 
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One can observe that if the extra mass is placed in the first 14 finite elements, the max-

imum amount of energy is given at the fixed end of the beam. Then, at the next 7 finite 

elements the maximum amount of energy is given near or exactly at the node where 

the mass is placed. It is also observed that if the extra mass is placed at the last 11 finite 

elements, the maximum amount of energy is produced again at the fixed end of the 

beam. The maximum energy that produced with the extra mass, was achieved at the 

fixed end of the beam, when the mass placed at the fifth element, and was 76196 J. This 

means that an increase of 38.84% was achieved. When the extra mass is placed at the 

last elements of the structure the amount of maximum energy decreases. 

 

Figure 110: Total energy (J) at each node when extra mass placed at elements 1 and 14 

 

Figure 111: Total energy (J) at each node when extra mass placed at elements 4 and 5 

 

Figure 112: Total energy (J) at each node when extra mass placed at elements 17 and 21 
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In Figure 110, Figure 111 and Figure 112, one can observe the fluctuation of energy at 

each element before (blue line) and after (red line) the adding of the extra mass. 

7.2.3 Numerical results for the third eigenvector 

In this case, Table 21 shows the element where the extra mass is placed, the amount of 

the maximum energy produced, as well as the node where this energy appears. The 

energy is given in Joules. In this case, the maximum energy of the structure before the 

application of the extra mass, appeared at the fixed end of the beam and it is 386860 J. 

Table 21: Numerical results for the 3rd eigenvector 

Element of 

extra mass 

Node of 

max energy 

Amount of 

max energy (J) 

Element of 

extra mass 

Node of 

max energy 

Amount of 

max energy (J) 

1 1 402640.00 17 1 466430.00 

2 1 553580.00 18 1 470060.00 

3 1 736930.00 19 1 423390.00 

4 1 568320.00 20 1 364810.00 

5 1 342740.00 21 1 309580.00 

6 1 207230.00 22 1 262230.00 

7 8 154570.00 23 24 259290.00 

8 9 144610.00 24 24 302840.00 

9 22 146800.00 25 25 344380.00 

10 22 174010.00 26 26 320620.00 

11 22 206640.00 27 1 338280.00 

12 22 243790.00 28 1 393680.00 

13 23 288190.00 29 1 388190.00 

14 23 329390.00 30 1 352750.00 

15 23 341650.00 31 1 309430.00 

16 1 372280.00 32 1 267720.00 

In this case, from the results of the Table 21, one can observe that there are many var-

iations regarding the node that the maximum amount of energy appears. Namely, 

when the extra mass is placed in the first 6 finite elements, the maximum amount of 

energy is given at the fixed end of the beam. If the mass is placed at the finite elements 

7 and 8 the maximum amount of energy is given at elements 8 and 9 respectively. Then 

we observe that if the extra mass is applied to the elements 10 to 15 the maximum 

energy appears far from the element of application. Also, if we place the extra mass at 

element 15, the maximum amount of energy approaches the value of maximum energy 
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without the extra mass. In case that this extra mass is applied to the nodes from 16 to 

22 and from 27 to the free end of the beam, the maximum energy appeared at the fixed 

end of the structure, that is, at the first element. Lastly, if the mass is placed at elements 

23 to 26, the maximum energy appears near the element of application. 

It is notable that in case that we place the extra mass at element 25 the maximum 

amount of energy is not only transferred to this element, but it approaches the value 

of maximum energy without the extra mass, as well. In addition, for mass placement 

at element 28 one can observe that the energy curve approaches the initial curve. 

The maximum energy, was achieved at the fixed end of the beam when the mass 

placed at the third element and was 736930 J. The maximum energy of the structure 

before the application of the extra mass is 386860 J which means that an increase of 

90.49% was achieved. In Figure 113, Figure 114, Figure 115 and Figure 116, one can 

observe the amount of energy that is produced at each element before (blue line) and 

after (red line) the adding of the extra mass. 

 

Figure 113: Total energy (J) at each node when extra mass placed at elements 1 and 3 

 

Figure 114: Total energy (J) at each node when extra mass placed at elements 7 and 15 
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Figure 115: Total energy (J) at each node when extra mass placed at elements 18 and 25 

 

Figure 116: Total energy (J) at each node when extra mass placed at elements 28 and 32 

To conclude, the criteria of the harvester, that is, the location, the shape and the size of 

the piezoelectric components, could be properly quantified within an optimization 

process for the fine tuning of the properties of the harvesters. Structural optimization 

for dynamic problems, involving modal characteristics, is a challenging task. Optimi-

zation algorithms inspired by nature and especially Evolutionary Algorithms (EAs) 

can provide very powerful tools for this purpose. Moreover, the ability of the proposed 

model to provide satisfactory results for a large width of different frequencies that 

described various phenomena i.e. wind excitations, random vibrations, ocean waves, 

etc. may be part of future investigations. 
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8 Conclusions and future work  

 

The main objective of this dissertation was the implementation and testing of fuzzy, 

and adaptive neuro-fuzzy control mechanisms to smart composite structures, i.e. 

smart beams and plates with embodied sensors and actuators.  

More specifically the incorporation of fuzzy control with global optimization tech-

niques for the fine tuning of the characteristics of control, i.e. of the membership func-

tions and/or the ranges of the fuzzy variables was implemented.  

The modification of the control parameters was achieved through the use of suitably 

defined adaptive neuro-fuzzy inference systems (ANFIS), genetic algorithms and the 

particle swarm optimization method. The outcome of this procedure was the estab-

lishment of vigorous and robust optimized control schemes. 

The impressive results of this procedure can be concluded to two different points: 

a. The ANFIS method was proved to be very efficient for smoothing down the 

vibration results in terms of velocity and acceleration, even if such a measure 

was not directly requested. 

b. The optimized controllers worked satisfactorily, not only for the undelami-

nated structures, but even for the case of relatively extensive delamination be-

tween the elastic core and the piezoelectric patches. 

The conclusions of this dissertation are discussed in detail in the next section. Moreo-

ver, some possible next steps of further research are briefly presented in section 8.2. 

8.1 Conclusions of this work 

From the application of fuzzy control on plates one can observe that while the applied 

control strategy was quite efficient and smooth in terms of displacement and velocity, 

the results in terms of acceleration were very disappointing and a burden for the ma-

terial and/or the sensors and actuators. It is worth to mention that similar problems 

were encountered while testing fuzzy control on beams.  

These problems were addressed using genetic algorithms and particle swarm optimi-

zation for the fine tuning of the parameters of the fuzzy control, as well as adaptive 

neuro fuzzy control (ANFIS). 
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The results of fuzzy control, prior optimization, fine tuning or training, were proven 

to be very satisfactory in terms of displacement for different smart structures. How-

ever, the suppression of velocity and acceleration was not satisfactory. 

Due to this situation, the need of optimization of some of the parameters of the fuzzy 

controller arose. This fine tuning is a really exacting process, thus a simple, effective 

and well known procedure has to be chosen. Among the plethora of optimization 

methods and algorithms, genetic algorithms and particle swarm optimization were 

selected due to their simplicity and smooth behavior in such problems. Namely, the 

algorithms were used in order to optimize the membership functions of the variables 

of the fuzzy controllers. 

From the investigations presented, it is more than clear that genetic algorithms is a 

very powerful optimization tool that can be used in order to optimize and fine-tune 

fuzzy controllers. The oscillations of the smart plate were significantly reduced, not 

only in terms of displacement and velocity, but in terms of acceleration as well, which 

is a very important achievement. Moreover, the results were not only successful in 

terms of oscillations reduction, but smooth as well. 

Moreover, it was shown that the use of particle swarm optimization combined with 

other fine tuning options, such as the alteration of the defuzzification methods, was 

very beneficiary. More specifically it was shown that the vibration suppression 

achieved by the tuned controller was exceedingly satisfactory and the results were 

very smooth, not only for displacement and velocity, but for acceleration as well. 

The tuned fuzzy controllers, which resulted from the optimization through genetic 

optimization and particle swarm method, were proved to be robust for a wide range 

of different external loadings (Tairidis, et al., 2016), (Tairidis, et al., 2015) or frequencies 

(Tairidis, et al., 2016).   

From the presented numerical results, it can also be concluded that adaptive fuzzy 

techniques can be very effective in the construction of smooth controllers. One system-

atic approach of adaptive fuzzy control constitutes the hybrid neuro-fuzzy Sugeno 

controller, where the optimization of the system parameters is achieved via a training 

process of a suitable neural network. In addition, one can assert that adaptive neuro-

fuzzy controllers can lead to satisfactory vibration suppression, equivalent to classic 

control, without the need of knowledge of the full state-space of the problem or any 

other information, except of a set of data, which is necessary in order to define and 

train the controller.  

In addition, in this dissertation a multilayer formulation of a piezocomposite plate ac-

counting for adhesive flexibility was also considered, allowing the investigation of de-

lamination effects and the preparation of models for the study of controlled structures 

including partial delamination near to reality. 
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Delamination between the layers (both sensors and actuators) may appear and influ-

ences the effectiveness of active vibration control. Moreover, delamination phenome-

non leads to structural changes. Namely, it is responsible for the weakening and/or 

ageing of the materials of a smart structure, as well as it modifies, in some extend, the 

characteristics of the mechanical system, mainly its stiffness. This fact affects the effec-

tiveness of the control methods proposed. For this reason, robust control schemes are 

necessary, in order to work with the presence of these deviations. 

From numerical experiments the applicability of fine-tuned fuzzy controllers, even in 

the case of partial delamination had been shown. The parameters of fuzzy controllers 

can be optimized, using genetic algorithms. Numerical results demonstrate that a suit-

ably designed and optimized fuzzy controller works effectively in both initial and par-

tially delaminated structure.  Supplementary tuning, after the appearance of delami-

nation, was proved to make the system adaptive and extend the applicability of the 

proposed fuzzy controllers. Even if the results are satisfactory, further adaptation may 

become necessary for severely delaminated structures. 

8.2 Future work 

It should be mentioned, that in this dissertation, exclusively collocated sensor-actuator 

pairs have been considered. Moreover, the controllers were MISO (multiple inputs – 

single output), which means that pendulum-like rules are applicable. 

Non-collocated configurations as well as MIMO (multiple inputs – multiple outputs) 

control schemes require a global optimization method for the implementation and tun-

ing of fuzzy linguistic rules as well. This is due to the fact that the complexity dramat-

ically increases and the manual setting of such rules becomes unrealizable. This task 

has been left open for future investigation. 

Another topic of future research is the extension of the fuzzy and neuro-fuzzy control 

techniques to non-linear problems of smart civil structures, such as beams, plates and 

shells. 

Furthermore, the studying of structural health monitoring and vibration control with 

energy harvesting and self-repairing also attracts interest and has been left open for 

further research, since similar methods can be used. In that case, the objective could 

be the optimal function of a dynamical system under extreme events, such as strong 

winds, severe earthquakes, etc.  

The proposed control strategies can be extended to other technologies of smart struc-

tures, such as shape-memory alloy, which is a material with the ability to remember 

its original shape and thus to return to its pre-deformed condition. 

Last but not least, the effect of incomplete information (measurements) of the investi-

gated system or the presence of delay in the application of control and their impact to 
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the efficiency of the proposed methods can also be part of further investigation in the 

future. 
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