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Abstract

An ebit is a pair of quantum mechanically entangled qubits i.e. locally
un-factorizable state vectors of bipartite quantum states. The ebits consti-
tute building blocks of the theoretical analyses and the technological tasks
which are put forward in the area of quantum computation and informa-
tion. Functioning as computational and communicational resource ebits
are used in various quantum algorithms, most notably the state telepor-
tation and quantum gate teleportation algorithms. This work addresses
the problem of creating ebits at a distance by various low complexity
elementary teleportation algorithms. The construction of quantum cir-
cuits follows the LOCC-SE protocol, according to which the allowed state
transformations are restricted to local operations (LO), classical communi-
cation (CC) and shared quantum entanglement (SE). Explicitly the work
investigates two types of quantum resource teleportation: in the first type
single qubit state and gate teleportation is achieved, while in the second
one the achievement concerns the state and gate teleportation of ebits,
namely non-local quantum resources. The work investigates a unifying
formalism for the respective quantum algorithms and provides relevant
analytic proofs, quantum circuits and quantification of the classical and
quantum resources required for their implementation.

1



.

2



Acknowledgement

I would first like to thank my thesis advisor Demosthenes Ellinas. The door
to Prof. offi ce was always open whenever I ran into a trouble spot or had a
question about my research or writing. He consistently allowed this thesis to be
my own work, but steered me in the right the direction whenever he thought I
needed it.
I would also like to thank the QLab for the hospitality and the facilities

which are provided to me during the implementation of this thesis.
Also I would like to give a big thanks to the thesis committee members Dim-

itrios Angelakis for his corrections on this thesis and to Antonios Deligiannakis
for his patience during the presentation.
Finally, I must express my very profound gratitude to my family and my

uncle for providing me with unfailing support and continuous encouragement
throughout my years of study and through the process of researching and writing
this thesis. This accomplishment would not have been possible without them.

Thank you.

Author
George Ntevetzakis

3



Contents

1 Introduction 5
1.1 Qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Single Qubit Gate . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 DIY one qubit unitary gate . . . . . . . . . . . . . . . . . 9
1.3 Multiple Qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Two Qubit Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 DIY two qubit unitary gate . . . . . . . . . . . . . . . . . 14
1.5 "Double-Wedge" Notation . . . . . . . . . . . . . . . . . . . . . . 15
1.6 Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.6.1 Entanglement Circuit : Bell Operator . . . . . . . . . . . 22
1.6.2 Un-Entaglement Circuit : Inverse of Bell Operator . . . . 25

1.7 Density Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.7.1 Evolution of Density Operator . . . . . . . . . . . . . . . 28
1.7.2 Reduced Density Operator of Bipartite Systems . . . . . . 29

1.8 Entropy as a measure of Entanglement . . . . . . . . . . . . . . . 31
1.9 Quantum Measurement . . . . . . . . . . . . . . . . . . . . . . . 32

1.9.1 Canonical Basis Measurement . . . . . . . . . . . . . . . . 33
1.9.2 Bell Basis Measurement . . . . . . . . . . . . . . . . . . . 36

2 Quantum Teleportation Algorithms 38
2.1 1-Qubit State Teleportation . . . . . . . . . . . . . . . . . . . . . 39
2.2 1-Qubit Gate Teleportation . . . . . . . . . . . . . . . . . . . . . 44
2.3 1-Qubit Gate only Teleportation . . . . . . . . . . . . . . . 48
2.4 2-Qubit Entangled State Teleportation . . . . . . . . . . . . . . . 51
2.5 2-Qubit Gate Teleportation . . . . . . . . . . . . . . . . . . . . . 55
2.6 2-Qubit Gate only Teleportation . . . . . . . . . . . . . . . . . . 60

3 Conclusions 65

4 Appendices 67
4.1 Appendix A:Orthonormal basis . . . . . . . . . . . . . . . . . . . 67
4.2 Appendix B:Reduced Density Operator of Bell states . . . . . . . 72

5 Bibliography 74

4



1 Introduction

In this thesis, we try to take advantage of Entanglement of two quantum par-
ticles which is a weird phenomenon in quantum mechanics to teleport vari-
ous kinds of quantum resources depending on Quantum Teleportation protocol
which first introduced by Charles H. Bennett et. al in 1993(c.f [3]).Specifically
we investigate low-complexity algorithms and circuits: for teleporting one ar-
bitrary quantum state reformulating the one proposed by Bennett in a more
compact form. Also we explain how we can succeed remotely computation,
teleporting the action of One and Two Qubits gates using some pairs of pre-
pared and shared entangled particles. Furthermore, we describe how we can
remotely send one and two Qubits with purpose the receiver to reconstruct the
gates for his own reasons. Last but not least we develop a protocol with which
we can teleport one arbitrary pair of entangled qubits. All of the above proto-
cols are examined from the perspective of resources that required to achieved
and all of them belong to LOCC-SE protocols category which stands for Local
Operator Classical Communication and Shared-Entanglement (c.f. [4]).

1.1 Qubit

In classical information the basic unit to represent information is bit which is a
discrete value "0" or "1" ∈ N which is commonly the level of voltage ("0"=0Volts
"1"=5Volts in TTL Logic). In quantum information things are a little different
the basic information is not bit anymore but qubit. Which takes values not
in the discrete N but in the continuous C2 which in quantum mathematics is
called Hilbert space. The value of a qubit is not the level of voltage but is
represented by many physical ways, commonly Photons ("0"=Horizontal Polar-
ization "1"=Vertical Polarization), Electrons ("0"=Spin Up "1"=Spin Down).
The fact that qubit is not one discrete value but two complex numbers means
that it is not only in one state but simultaneously in both states. This is a
powerful advantage of quantum information which is based on the principles
of quantum mechanics called superposition. In order to represent qubit in a
mathematical form we will introduce the Dirac notation which is nothing more
than a compact way to represent C2[2].

In Dirac notation (named for English physicist Paul Dirac) the symbol |〉 is

called "ket" and it is a column vector
(
α
β

)
and the symbol 〈| is called "bra"

and it is a row vector
(
α∗ β∗

)
.

There is an equality between them 〈| = |〉† we refer to it is at "Hilbert
Duality" where †: is the conjucate and transpose.
Using Dirac notation we can represent a qubit

|ψ〉 = a|0〉+ β|1〉

where |0〉 =
(
1
0

)
, and |1〉 =

(
0
1

)
they are called computational basis states
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and is one of the infinite basis that exist and we are going to use mainly. α, β
are called probability amplitudes of the qubit. So the qubit can represented as
a column vector

|ψ〉 = α

(
1
0

)
+ β

(
0
1

)
=

(
a
β

)
.

The quantity |a|2 declares the possibility our qubit is in the computational
base |0〉 and the quantity |β|2 declares the possibility our qubit is in the com-
putational base |1〉 respectively.

Because of the fact that they represent possibilities we know that

0 ≤ |a|2, |β|2 ≥ 1 and |a|2 + |β|2 = 1.

The Axiom 1 of quantum information claims: Every quantum state is de-
scribed by a normalized vector.

Which means that for every |ψ〉 represents a quantum state

‖|ψ〉‖ =
√
〈ψ||ψ〉 = 1.

Actually

〈ψ||ψ〉 =
(
α∗ β∗

)(a
β

)
= aα∗ + ββ∗ = |a|2 + |β|2 = 1

In general every quantum state |ψ〉 is in the form:

|ψ〉 =
∞∑
i=1

ci|ui〉

where ci are the probability amplitudes of the quantum state |ui〉.
∑∞
i=1 |ci|2 = 1

and |ui〉 are the computational basis states.

Also a more Geometrical (spatial) representation of a qubit state is Bloch
Sphere named after the physicist Felix Bloch as shown below:

1.2 Single Qubit Gate

As in classical computation we use gates made of transistors to manipulate bits
so in quantum computation we use quantum gates to manipulate qubits. Unlike
many classical logic gates, quantum logic gates are reversible.
In quantum computations, gates are unitary matrices (A†A = AA† = I) so

that they respect the normality 〈ψ||ψ〉 = 1 of a quantum state (we know that
|A| = |det(A)| = 1 for Unitary matrices). If we want to perform a gate on a

6



Figure 1: Gemetrical representation of one qubit on a Bloch Sphere

quantum state we only have to multiply the state with the matrix representation
of our gate.

|ψ′〉 = U |ψ〉

where |ψ′〉 is our new quantum state after the effect of the U gate on our
quantum state |ψ〉.

Some common quantum gates are the Pauli matrices after the physicist Wolf-
gang Pauli.

σ1 = X =

(
0 1
1 0

)
, σ2 = Y =

(
0 −i
i 0

)
, σ3 = Z =

(
1 0
0 −1

)
Interestingly properties of these gates is that they all have detσi = −1 so
|det(σi)| = 1, they are unitarity σiσ

†
i = I, T rσi = 0, σ

2
i = I their eigenvalues

are: ±1 and their normalized eigenvectors are spanning the Hilbert space and
commonly used as computational basis for quantum states

Matrix Eigenvectors

X = σ1 |+〉 = 1√
2

(
1
1

)
, |−〉 = 1√

2

(
1
−1

)
Y = σ2 | ↑〉 = 1√

2

(
1
i

)
, | ↓〉 = 1√

2

(
1
−i

)
Z = σ3 |0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
For the needs of this thesis we will use only the {|0〉, |1〉} basis (Eigenvectors

of σ3) which is called canonical base.
X is the quantum analogue of classical "NOT" gate the action leads to

reverse of the quantum state.
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Figure 2: Action of X (NOT) gate on an arbitrary qubit

Before Action:

|ψ〉 = α|0〉+ β|1〉 =
(
a
β

)

After Action

|ψ′〉 = X|ψ〉 =
(
0 1
1 0

)(
a
β

)
=

(
β
a

)

As we can observe |ψ′〉 = α|1〉+ β|0〉 which is the reverse of the state before
the action of the gate.

One other very important one qubit gate is Hadamard named for the French
mathematician Jacques Hadamard:

Figure 3: Action of H (Hadamard) gate on an qubit initialized at |0>

H =
1√
2

(
1 1
1 −1

)
The special property of this gate is that it transforms an initial base state

to a maximaly superposition state (probability state |0〉 = |1〉 = 1
2 )

Suppose that our qubit is in the base state

|ψ〉 = |0〉 =
(
1
0

)
after the action of Hadamard gate our qubit is in the state:

|ψ′〉 = H|ψ〉 = 1√
2

(
1 1
1 −1

)(
1
0

)
=

1√
2

(
1
1

)
=

1√
2
|0〉+ 1√

2
|1〉

8



This means that our qubit is in the state |0〉 with probability | 1√
2
|2 = 1

2 and

in the state |1〉 with probability | 1√
2
|2 = 1

2 .

Similar if our qubit was in the base state |ψ〉 = |1〉 =
(
0
1

)
after the action

of Hadamard gate our qubit is in the state

|ψ′〉 = H|ψ〉 = 1√
2

(
1 1
1 −1

)(
0
1

)
=

1√
2

(
1
−1

)
=

1√
2
|0〉 − 1√

2
|1〉

This means that our qubit is in the state |0〉 with probability | 1√
2
|2 = 1

2 and

in the state |1〉 with probability | − 1√
2
|2 = 1

2 .

Many quantum algorithms in our cases,will use the Hadamard transform as
an initial step.

1.2.1 DIY one qubit unitary gate

In this subsection we are going to see how we can construct our own one qubit
gate. The only thing we need to know is the outcome of the action on the
computational basis vectors |0〉, |1〉 we call them |u0〉 = U |0〉 and |u1〉 = U |1〉
If we want to construct an one qubit Gate (Operator) U then the matrix

representation of our Gate is(
〈0||u0〉 〈0||u1〉
〈1||u0〉 〈1||u1〉

)
Calculating these inner products we find the four elements (complex scalars)
which compose the matrix representation of our one-qubit gate

From the definition of |u0〉 and |u1〉 one more abstract form of our matrix is
below:

 〈0|U |0〉︸︷︷︸ 〈0|U |1〉︸︷︷︸
〈1|U |0〉︸︷︷︸ 〈1|U |1〉︸︷︷︸


Remember that our quantum Gate U must always be Unitary (UU† = I) to

respect the normality of the quantum state:

|ψ′〉 =
√
〈ψ′||ψ′〉 =

√
〈ψ|U†U |ψ〉

9



It must be
UU† = I

So that
|ψ′〉 =

√
〈ψ||ψ〉 = 1

Example:

Suppose that we want construct the quantum NOT gate matrix represtation.
We know that the action of UNOT on the computational basis vectors |0〉, |1〉 is
to reverse them.

Meaning |u0〉 = UNOT |0〉 = |1〉, |u1〉 = UNOT |1〉 = |0〉 so the matrix repre-
sentation (

〈0||u0〉 〈0||u1〉
〈1||u0〉 〈1||u1〉

)
can be rewritten replacing |ui〉(

〈0||1〉 〈0||0〉
〈1||1〉 〈1||0〉

)
Due to to orthonormality of the canonical base 〈i||j〉 = δij the final matrix
representation of our gate is: (

0 1
1 0

)
Known as quantum NOT gate.

1.3 Multiple Qubits

Like classical computation one system (PC) is not manipulating only one bit
because information that one bit can carry is not enough so in quantum com-
putation (Quantum computers) must handle more than one qubit. The mathe-
matical tool that we use to express multiple qubits state is called tensor product
and it is denoted ”⊗ ”.

If we have two qubits |ψ〉 = α|0〉 + β|1〉, |φ〉 = γ|0〉 + δ|1〉 which are the
"components" of a two qubit quantum state then the total state is

|w〉 = |ψ〉 ⊗ |φ〉 = (α|0〉+ β|1〉)⊗ (γ|0〉+ δ|1〉)
= αγ|0〉 ⊗ |0〉+ αδ|0〉 ⊗ |1〉+ βγ|1〉 ⊗ |0〉+ βδ|1〉 ⊗ |1〉
= αγ|00〉+ αδ|01〉+ βγ|10〉+ βδ|11〉

For abbreviation we will denote |i〉 ⊗ |j〉 = |ij〉

10



In vector formalism

|w〉 = |ψ〉 ⊗ |φ〉 =
(
α
β

)
⊗
(
γ
δ

)
=


αγ
αδ
βγ
βδ


As we can observe a bipartite quantum state (2-qubits state) exists in the

C4 set.

It is also valid that the tensor product is not commutative

|ψ〉 ⊗ |φ〉 6= |φ〉 ⊗ |ψ〉

Proof

|ψ〉 ⊗ |φ〉 =

(
α
β

)
⊗
(
γ
δ

)
=


αγ
αδ
βγ
βδ



|ψ〉 ⊗ |φ〉 =

(
γ
δ

)
⊗
(
α
β

)
=


γα
γβ
δα
δβ


To represent this vector a quantum state it must respect the axiom 1 of

quantum mechanics and be normalized i.e

〈w||w〉 = 1

Proof

〈w||w〉 =
(
α∗γ∗ α∗δ∗ β∗γ∗ β∗δ∗

)
αγ
αδ
βγ
βδ


〈w||w〉 = αγα∗γ∗ + αδα∗δ∗ + βγβ∗γ∗ + βδβ∗δ∗

〈w||w〉 = |αγ|2 + |αδ|2 + |βγ|2 + |βδ|2 = 1

Which applies because we know that {|αγ|2, |αδ|2, |βγ|2, |βδ|2} are the prob-
abilities finding state |w〉 along the basis vectors {|00〉, |01〉, |10〉, |11〉} respec-
tively.

Using this mathematical tool-tensor product we can composite N-Qubit
quantum states but for the needs of this thesis we will use only bipartite quan-
tum systems.
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1.4 Two Qubit Gates

Similarly with classical computation we need gates to manipulate two qubits.
The different between them is that the quantum gates are reversible it means
that if we know the outputs of the gate we can find the input qubits applying
the inverse (U−1 = U† ) gate on the output qubits.
Also unlike with classical gates the number of inputs is equal to the number

of outputs something that does not apply in classical gates (for example AND
gate has two inputs and one output).

The gates act on bipartite C4 quantum states must be represented as 4x4
unitary (to repsect the normality of the quantum state) matrices.

Some common two qubits quantum gates are:

Control Not (CNOT)
It is the most used quantum gate which checks if the first qubit is in state

|1〉 (control qubit) then it flips the second one (target qubit).

Figure 4: Action of CNOT gate on two qubits initialized at |10>

Truth table:

UCN |x〉 ⊗ |y〉 = |x〉 ⊗ |x⊕ y〉(⊕ : Exclusiveorsymbol)

Input Output
|00〉 |00〉
|01〉 |01〉
|10〉 |11〉
|11〉 |10〉

Matrix Representation of CNOT Operator:

UCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



Swap
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It swaps the two qubits.

Truth table:

USwap|x〉 ⊗ |y〉 = |y〉 ⊗ |x〉

Input Output
|00〉 |00〉
|01〉 |10〉
|10〉 |01〉
|11〉 |11〉

Matrix Representation of SWAP Operator:

USwap =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Control U (CU)
This is a general set of two qubits gates which checks if the first qubit is in

state |1〉 then it acts with the U gate on the second one. CNOT belongs in this
category for which U = X.

Truth table:
Input Output
|00〉 |00〉
|01〉 |01〉
|10〉 |1〉 ⊗ U |0〉
|11〉 |1〉 ⊗ U |1〉

Matrix Representation of CU Operator:

UCU =


1 0 0 0
0 1 0 0
0 0 U11 U12
0 0 U21 U22


Example: Lets confirm the action of CNOT gate on the four possible inputs

UCNOT |00〉 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



1
0
0
0

 =


1
0
0
0

 = |00〉,

UCNOT |01〉 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



0
1
0
0

 =


0
1
0
0

 = |01〉
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UCNOT |10〉 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



0
0
1
0

 =


0
0
0
1

 = |11〉,

UCNOT |11〉 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



0
0
0
1

 =


0
0
1
0

 = |10〉

Something that confirms the truth table of the gate

1.4.1 DIY two qubit unitary gate

In this subsection we are going to see how we can construct our own two qubits
gate. The only thing we need to know is the outcome of the action on the
computational basis vectors |00〉, |01〉. |10〉, |11〉. we call them |u00〉 = U |00〉 ,
|u01〉 = U |01〉 ,|u10〉 = U |10〉 , |u11〉 = U |11〉

If we want to construct a two qubit gate (Operator) U then the matrix
representation of our gate is

〈00||u00〉 〈00||u01〉 〈00||u10〉 〈00||u11〉
〈01||u00〉 〈01||u01〉 〈01||u10〉 〈01||u11〉
〈10||u00〉 〈10||u01〉 〈10||u10〉 〈10||u11〉
〈11||u00〉 〈11||u01〉 〈11||u10〉 〈11||u11〉


Calculating these inner products we find the sixteen elements (complex

scalars) which compose the matrix representation of our two-qubit gate.

From the definition of |u00〉,|u01〉,|u10〉,|u11〉 one more abstract form of our
matrix is below

〈00|U |00〉︸ ︷︷ ︸ 〈00|U |01〉︸ ︷︷ ︸ 〈00|U |10〉︸ ︷︷ ︸ 〈00|U |11〉︸ ︷︷ ︸
〈01|U |00〉︸ ︷︷ ︸ 〈01|U |01〉︸ ︷︷ ︸ 〈01|U |10〉︸ ︷︷ ︸ 〈01|U |11〉︸ ︷︷ ︸
〈10|U |00〉︸ ︷︷ ︸ 〈10|U |01〉︸ ︷︷ ︸ 〈10|U |10〉︸ ︷︷ ︸ 〈10|U |11〉︸ ︷︷ ︸
〈11|U |00〉︸ ︷︷ ︸ 〈11|U |01〉︸ ︷︷ ︸ 〈11|U |10〉︸ ︷︷ ︸ 〈11|U |11〉︸ ︷︷ ︸



Remember that our quantum Gate U must always be Unitary (UU† = I) to
respect the normality of the quantum state

Example:
Suppose that we want construct the quantum CNOT gate matrix represta-

tion. We know that the action of UCNOT on the computational basis vectors

14



|00〉, |01〉, |10〉, |11〉 is to check if the first qubit is in state |1〉 then reverse the
second.

Meaning |u00〉 = UCNOT |00〉 = |00〉, |u01〉 = UCNOT |01〉 = |01〉, |u10〉 =
UCNOT |10〉 = |11〉, |u11〉 = UCNOT |11〉 = |10〉 so the matrix representation of
our two qubit gate is:

〈00||u00〉 〈00||u01〉 〈00||u10〉 〈00||u11〉
〈01||u00〉 〈01||u01〉 〈01||u10〉 〈01||u11〉
〈10||u00〉 〈10||u01〉 〈10||u10〉 〈10||u11〉
〈11||u00〉 〈11||u01〉 〈11||u10〉 〈11||u11〉


can be rewritten replacing |ui〉

〈00||00〉 〈00||01〉 〈00||11〉 〈00||10〉
〈01||00〉 〈01||01〉 〈01||11〉 〈01||10〉
〈10||00〉 〈10||01〉 〈10||11〉 〈10||10〉
〈11||00〉 〈11||01〉 〈11||11〉 〈11||10〉



Due to to orthonormality of the canonical basis 〈xy||zw〉 = δxz,yw {x, y, z, w ∈
[0, 1]} the final matrix representation of our gate is:


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



Known as quantum CNOT gate.

1.5 "Double-Wedge" Notation

For the needs of this thesis we introduce a new notation called "double wedge"
[7] it is a way to represent bipartite quatum systems in a form of a 2x2 matrices.

Lets suppose we have a two qubit quantum state

|ψ〉 = a00|00〉+a01|01〉+a10|10〉+a11|11〉 =


a00
a01
a10
a11

 so that |a00|2+|a01|2+|a10|2+|a11|2 = 1

15



then the double-wedge "ket" notation of this genaral bipartite quantum state is

|A〉〉 = |
(
a00 a01
a10 a11

)
〉〉

similar to vector representation the "bra" notation is

〈〈A| = (|A〉〉)† = 〈〈
(
a∗00 a∗10
a∗01 a∗11

)
|

We know that if |A〉〉 represents a quantum state it must be normalized which
means 〈〈A||A〉〉 = 1 or |||A〉〉|| = 1

It is valid that:
〈〈A||B〉〉 = Tr[A†B]

Proof:

〈〈A| = a∗00〈00|+ a∗01〈01|+ a∗10〈10|+ a∗11〈11|

|B〉〉 = |β00|00〉+ β01|01〉+ β10|10〉+ β11|11〉
Calculating the product

〈〈A||B〉〉 = (a∗00〈00|+ a∗01〈01|+ a∗10〈10|+ a∗11〈11|) (β00|00〉+ β01|01〉+ β10|10〉+ β11|11〉)

= a∗00β00〈00||00〉+ a∗00β01〈00||01〉+ a∗00β10〈00||10〉+ a∗00β11〈00||11〉
+a∗01β00〈01||00〉+ a∗01β01〈01||01〉+ a∗01β10〈01||10〉+ a∗01β11〈01||11〉
+a∗10β00〈10||00〉+ a∗10β01〈10||01〉+ a∗10β10〈10||10〉+ a∗10β11〈10||11〉
+a∗11β00〈11||00〉+ a∗11β01〈11||01〉+ a∗11β10〈11||10〉+ a∗11β11〈11||11〉

due orthonormality 〈xy||x′y′〉 = δxx′,yy′ leads to

〈〈A||B〉〉 = a∗00β00 + a
∗
01β01 + a

∗
10β10 + a

∗
11β11

Next, we compute:

A† =

(
a∗00 a∗10
a∗01 a∗11

)
, B =

(
β00 β01
β10 β11

)
and

A†B =

(
a∗00 a∗10
a∗01 a∗11

)(
β00 β01
β10 β11

)
=

(
a∗00β00 + a

∗
10β10 a∗00β01 + a

∗
10β11

a∗01β00 + a
∗
11β10 a∗01β01 + a

∗
11β11

)
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Taking the trace of this matrix:

Tr[A†B] = a∗00β00 + a
∗
10β10 + a

∗
01β01 + a

∗
11β11

So
〈〈A||B〉〉 = Tr[A†B]

The way of representing bipartite states via double-wedge notation is also
very handy when we want to perform gates on the quantum state either one-
qubit gates (X,Y,Z) or one two-qubit gate (SWAP,CNOT) due to the identity:

A⊗B|C〉〉 = |ACBT 〉〉

Proof:

|C〉〉 =
∑
ij

cij |i〉 ⊗ |j〉

A =
∑
kl

Akl|k〉〈l|

B =
∑
mn

Amn|m〉〈n|

A⊗B|C〉〉 = (A⊗B)
∑
ij

cij |i〉 ⊗ |j〉

A⊗B|C〉〉 =
∑
ij

cijA|i〉 ⊗B|j〉

A⊗B|C〉〉 =
∑
ij

cij

(∑
kl

Akl|k〉 〈l||i〉︸︷︷︸
)
⊗
(∑
mn

Bmn|m〉 〈n||j〉︸ ︷︷ ︸
)

due to orthonormality 〈x||y〉 = δxy We have that 〈l||i〉 = δli and 〈n||j〉 = δnj

A⊗B|C〉〉 =
∑
ij

cij

(∑
k

Aki|k〉
)
⊗
(∑

m

Bmj |m〉
)

A⊗B|C〉〉 =
∑
ijkm

AkicijBmj |k〉 ⊗ |m〉

A⊗B|C〉〉 =
∑
jkm

(AC)kjBmj |k〉 ⊗ |m〉
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A⊗B|C〉〉 =
∑
jkm

(AC)kj(Bjm)
T |k〉 ⊗ |m〉

A⊗B|C〉〉 =
∑
km

(ACBT )km|k〉 ⊗ |m〉

A⊗B|C〉〉 = |ACBT 〉〉

Examples:

Suppose that we have a bipartite system

|ψ〉 = a00|00〉+ a01|01〉+ a10|10〉+ a11|11〉

In double wedge notation

|A〉〉 = |
(
a00 a01
a10 a11

)
〉〉

If we act with X gate on the first qubit and with Z gate on the second one the
unitary matrix U representation of this gate is

U = X ⊗ Z =
(
0 1
1 0

)
⊗
(
1 0
0 −1

)
=


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0



The quantum state after the action of U using dirac notation

U |ψ〉 =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0




a00
a01
a10
a11

 =


a10
−a11
a00
−a01


= a10|00〉 − a11|01〉+ a00|10〉 − a01|11〉

The quantum state after the action of U using double wedge notation and the
identity A⊗B|C〉〉 = |ACBT 〉〉

X ⊗ Z|A〉〉 = |XAZT 〉〉 = |
(
0 1
1 0

)(
a00 a01
a10 a11

)(
1 0
0 −1

)
〉〉

X ⊗ Z|A〉〉 = |
(
a10 −a11
a00 −a01

)
〉〉

X ⊗ Z|A〉〉 = a10|00〉 − a11|01〉+ a00|10〉 − a01|11〉.

We can easily observe that both ways lead to the same outcome and the second
one (double wedge) does it in a very compact way.
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Similarly if we act with a two-qubit gate specifically with a CNOT gate,
whose unitary matrix UCNOT representation is:

UCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


The quantum state after the action of UCNOT using dirac notation reads,

U |ψ〉 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




a00
a01
a10
a11

 =


a00
a01
a11
a10


U |ψ〉 = a00|00〉+ a01|01〉+ a11|10〉+ a10|11〉.

Trying to express CNOT as a tensor product of two independent one qubit
gates is impossible.
Definition: We say that CNOT is a non-local gate because it can’t be written

as a tensor product of two one-qubit gates (A⊗B) but only as a sum of tensor
products because is not acting on each qubit independently but check the first
and then acts on the second.
So decomposing CNOT as a sum of two matrices we have:

UCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =

(
1 0
0 0

)
⊗
(
1 0
0 1

)
+

(
0 0
0 1

)
⊗
(
0 1
1 0

)

The quantum state after the action of CNOT using double wedge notation
and the identity A⊗B|C〉〉 = |ACBT 〉〉 reads

UCNOT |A〉〉 =

[(
1 0
0 0

)
⊗
(
1 0
0 1

)
+

(
0 0
0 1

)
⊗
(
0 1
1 0

)]
|
(
a00 a01
a10 a11

)
〉〉

UCNOT |A〉〉 =

[(
1 0
0 0

)
⊗
(
1 0
0 1

)]
|
(
a00 a01
a10 a11

)
〉〉+

(
0 0
0 1

)
⊗
(
0 1
1 0

)
|
(
a00 a01
a10 a11

)
〉〉

UCNOT |A〉〉 = |
(
1 0
0 0

)(
a00 a01
a10 a11

)(
1 0
0 1

)
〉〉+ |

(
0 0
0 1

)(
a00 a01
a10 a11

)(
0 1
1 0

)
〉〉

UCNOT |A〉〉 = |
(
a00 a01
0 0

)
〉〉+ |

(
0 0
a11 a10

)
〉〉

UCNOT |A〉〉 = |
(
a00 a01
a11 a10

)
〉〉 = a00|00〉+ a01|01〉+ a11|10〉+ a10|11〉

We can easily observe again that both ways lead to the same outcome.
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1.6 Entanglement

One weird phenomenon we observe in quantum world is entanglement. Sup-
pose that we have a bipartite system (two quantum particles(photons,electrons
etc)) we call them entangled if there is an "invisible" connection between them.
Changing the polarization of our own qubit (photon particle) performing one
qubit gate for example then the polarization of the remote particle will transofm
analogous. One of the first researchers which observed these phenomena was
Albert Einstein in 1935 who called it "spooky action at a distance". In quan-
tum computation and communication entanglement is a very important resource
(ebit) because it allows us to use it as quantum channel to transfer quantum
information and to make computations at distance.The main algorithms of this
thesis are using quantum entanglement to teleport a quantum state from one
location to other or to teleport the action of quantum gates on quantum states
at a distance.

Mathematically, we say that two qubits are entangled if we can not express
their quantum state as a tensor product of two independent one qubit states
(un-factorized).
i.e |w〉 is an entangled bipartite system if there are not two qubits |x〉, |ψ〉

such that |w〉 = |x〉 ⊗ |ψ〉
Suppose that we have the quantum state:

|φ+〉 =
1√
2
|00〉+ 1√

2
|11〉

we say that this bipartite system is entangled because does not exist two one
qubit states whose the composition will produce |φ+〉.

Proof
We suppose that exists two one qubit states |x〉, |y〉 whose the composition

will produce |φ+〉

|x〉 =
(
a
b

)
, |y〉 =

(
c
d

)
Taking the tensor product of them

|x〉 ⊗ |y〉 =
(
a
b

)
⊗
(
c
d

)
=


ac
ad
bc
bd


It must be:

|x〉 ⊗ |y〉 = |φ+〉
ac
ad
bc
bd

 =


1√
2

0
0
1√
2
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which means

ac =
1√
2

(1)

ad = 0 (2)

bc = 0 (3)

bd =
1√
2

(4)

from equation (1) α 6= 0 and c 6= 0 which leads to d = 0 and b = 0. So that equations (2),(3) can be verified
respectively but if d = 0 and b = 0 then equation (4) is invalid.
So our system has no solution, which means that there are no |x〉, |y〉 such

that |x〉 ⊗ |y〉 = |φ+〉 is valid.

In general, every bipartite system of the form α|00〉+ β|11〉 is entangled.
We call the state vector:

1√
2
|00〉+ 1√

2
|11〉

a maximaly entangled state because the probability of two states |00〉, |11〉 are
the same and equal to | 1√

2
|2 = 1

2 . If we know the state of one particle we can
guess the state of the other with confidence. In this specific bipartite quantum
state if we know that the first qubit is in state |0〉 then and the second qubit is in
state |0〉 similarly if the first qubit is in state |1〉 then and the second qubit is in
state |1〉 because the fact that all the possible states of our qubits are |00〉, |11〉.

One other maximally entagled bipartite quantum state is

|ψ+〉 =
1√
2
|01〉+ 1√

2
|10〉

Similarly with before if we know the state of the first qubit then we can quess
deterministic the state of the second one. If the first qubit is in state |0〉 then
the second is in state |1〉 similarly if the first is in state |1〉 then the second is
in state |0〉.

John Bell promoted a set of four bipartite quantum states which are maxi-
mally entangled[1]:

|φ+〉 =
1√
2
|00〉+ 1√

2
|11〉

|ψ+〉 =
1√
2
|01〉+ 1√

2
|10〉

|φ−〉 =
1√
2
|00〉 − 1√

2
|11〉

|ψ−〉 =
1√
2
|01〉 − 1√

2
|10〉
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These four states define a new basis, the so called Bell basis which (as it is
shown in Appendix A) is orthonormal.

1.6.1 Entanglement Circuit : Bell Operator

It’s time to present our first quantum circuit (combination of quantum gates)
which has as inputs two initialized qubits in a computational basis |00〉, |01〉, |10〉, |11〉
(canonical-factorized) and produces at the output one of the four Bell States
(un-factorized).
The action of the circuit evolves from left to right as we can see in the

diagram.

Figure 5: Action of Bell Circuit on two qubits initialized at |00>

In first step we apply a Hadamard gate on the first qubit and then a CNOT
gate on the two qubits.
Example
Suppose input is in the quantum state

|00〉 =


1
0
0
0


after the action of Hadamard gate on the first qubit:

H ⊗ I = 1√
2

(
1 1
1 −1

)
⊗
(
1 0
0 1

)
=

1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1


the quantum state transforms to

|ψ1〉 = (H ⊗ I) |00〉 =
1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1



1
0
0
0

 =


1√
2

0
1√
2

0


Then the action of CNOT on both qubits transforms the quantum state to:
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|ψ2〉 = UCNOT |ψ1〉 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1√
2

0
1√
2

0

 =


1√
2

0
0
1√
2


which is the final output for input |00〉.As we observe that it is equal to the first
of the Bell states |φ+〉.

Using the notation we can prove that the action of the circuit is exactly the
same.
Suppose the input is in the quantum state

|A00〉〉 = |
(
1 0
0 0

)
〉〉

which is equal to |00〉.
After the action of Hadamard gate on the first qubit:

|ψ1〉〉 = H ⊗ I|A00〉〉 = H ⊗ I|A00〉〉 = |HA00〉〉

|ψ1〉〉 = | 1√
2

(
1 1
1 −1

)(
1 0
0 0

)
〉〉

|ψ1〉〉 = |
(

1√
2

0
1√
2

0

)
〉〉

Then the action of CNOT on both qubits transforms the quantum state to

|ψ2〉〉 =
[(

1 0
0 0

)
⊗
(
1 0
0 1

)
+

(
0 0
0 1

)
⊗
(
0 1
1 0

)]
|
(

1√
2

0
1√
2

0

)
〉〉

|ψ2〉〉 = |
(
1 0
0 0

)( 1√
2

0
1√
2

0

)(
1 0
0 1

)
〉〉+|

(
0 0
0 1

)( 1√
2

0
1√
2

0

)(
0 1
1 0

)
〉〉

|ψ2〉〉 = |
( 1√

2
0

0 0

)
〉〉+ |

(
0 0
0 1√

2

)
〉〉

|ψ2〉〉 = |
(

1√
2

0

0 1√
2

)
〉〉 =


1√
2

0
0
1√
2


which is the final output for double wedge input |A00〉〉. As we observe it is equal
to the first of Bell states |φ+〉.

Similarly we can easily verify either by using Dirac notation or double wedge
notation that this circuit has outputs |ψ+〉, |φ−〉, |ψ−〉 for |01〉, |10〉, |11〉 respec-
tively.
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Also in quantum world every circuit can be represented as a unitary matrix
multiplying the gates from right to left of the diagram. The circuit which defines
UBell gate is:

UBell = UCNOT (H ⊗ I) =
1√
2


1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

 .

which is unitary i.e (UBellU
†
Bell = I4) a requirement in order to respect the

normality of quantum state,indeed

U†BellUBell =
1√
2


1 0 0 1
0 1 1 0
1 0 0 −1
0 1 −1 0

 1√
2


1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



We can easily confirm that UBell acting on two qubits in the canonical basis
{|00〉, |01〉, |10〉, |11〉} transforms it directly to a Bell state {|φ+〉, |ψ+〉, |φ−〉, |ψ−〉}
respectively.

Example

UBell|00〉 =
1√
2


1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0



1
0
0
0

 =


1√
2

0
0
1√
2

 = |φ+〉

UBell|01〉 =
1√
2


1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0



0
1
0
0

 =


0
1√
2
1√
2

0

 = |ψ+〉 etc.

A significant property is that we can transform from one Bell State to another
by applying one qubit gate only at the first particle which means that Bell states
are locally interconnected. This is very useful in practical implementations such
as supedense coding protocol which exceeds the range of interests of this thesis.

From\To |φ+〉 |ψ+〉 |φ−〉 |ψ−〉
|φ+〉 I ⊗ I X ⊗ I Z ⊗ I iY ⊗ I
|ψ+〉 X ⊗ I I ⊗ I iY ⊗ I Z ⊗ I
|φ−〉 Z ⊗ I −iY ⊗ I I ⊗ I −X ⊗ I
|ψ−〉 −iY ⊗ I Z ⊗ I −X ⊗ I I ⊗ I
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Example:

If we have a Bell state (From):

|φ−〉 =


1√
2

0
0
− 1√

2


and we want to transform it to an other Bell state (To) for example:

|ψ+〉 =


0
1√
2
1√
2

0


Then we have to act as follows,

|ψ+〉 = (−iY ⊗ I)|φ−〉 =
[(

0 −1
1 0

)
⊗
(
1 0
0 1

)]
1√
2

0
0
− 1√

2



|ψ+〉 =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0




1√
2

0
0
− 1√

2

 =


0
1√
2
1√
2

0



1.6.2 Un-Entaglement Circuit : Inverse of Bell Operator

As we said every quantum gate is reversible i.e if we know the outputs of the
gate we can find the inputs applying the U† gate at the output qubits. This can
be generalized for quantum circuits since every quantum circuit can be written
in a form of a unitary matrix who represents the whole circuit.
As we have shown the Matrix representation of Bell circuit is:

UBell =
1√
2


1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0



which takes an input from the canonical basis {|00〉, |01〉, |10〉, |11〉} and trans-
forms it to a Bell state.
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Due to reversibility the reverse Bell gate reads

Uun−Bell ≡ U†Bell = (UCNOT (H ⊗ I))
†
= (H ⊗ I)†U†CNOT

UCNOT and H are Hermitians (U†CNOT = UCNOT and H† = H),which reads

Uun−Bell = (H ⊗ I)UCNOT =
1√
2


1 0 0 1
0 1 1 0
1 0 0 −1
0 1 −1 0



Action of un-Bell Circuit on two qubits initialized at |φ+ >

Example:

If we "insert" to un-Bell circuit the Bell state

|φ−〉 =


1√
2

0
0
− 1√

2


then the outcome is:

|ψout〉 = Uun−Bell|φ−〉 =
1√
2


1 0 0 1
0 1 1 0
1 0 0 −1
0 1 −1 0




1√
2

0
0
− 1√

2

 =


0
0
1
0

 = |10〉

which is the input (on canonical basis) which produces the Bell state |φ−〉
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1.7 Density Operator

A more complete way of describing quantum systems is the so called density
matrix/operator. This refers to the general case where we do not know the
exact state in which our system finds itself. E.g a system is 30% in the state
|0〉 and 70% is in state |+〉 it can be described by the following density operator
ρ = 0.3|0〉〈0|+ 0.7|+〉〈+|. But this kind of systems are out of the needs of this
thesis. In our cases we know that the state is |ψ〉 with certainty so an alternative
way of saying that is by means of the density operator which is:

ρψ = |ψ〉〈ψ|

Suppose we have a general one qubit state:

|ψ〉 = α|0〉+ β|1〉 =
(
α
β

)
let’s compute the density operator of one qubit state using vector notation

ρψ = |ψ〉〈ψ| =
(
α
β

)(
a∗ β∗

)
=

(
|α|2 αβ∗

βα∗ |β|2
)

Three conditions which a density operator satisfies are:

a) It is Hermitian:
ρ† = ρ

b) The sum of the diagonal elements is equal to 1:

|a|2 + |β|2 = 1

because |a|2, |β|2 are possibilities
c) % is a positive operator which means that 〈ψ|ρ|ψ〉 ≥ 0 for an arbitrary

quantum state |ψ〉
Suppose we have one general two qubit-Bipartite state:

|ψ〉 = (α|0〉+ β|1〉)⊗ (γ|0〉+ δ|1〉) =


αγ
aδ
βγ
βδ



The general density operator of this arbitrary bipartite system is:

ρψ = |ψ〉〈ψ| =


αγ
aδ
βγ
βδ

( α∗γ∗ α∗δ∗ β∗γ∗ β∗δ∗
)
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ρψ =


|α|2|γ|2 |α|2γδ∗ |γ|2αβ∗ αγβ∗δ∗

|α|2δγ∗ |α|2|δ|2 aδβ∗γ∗ |δ|2aβ∗
|γ|2βα∗ βγα∗δ∗ |β|2|γ|2 |β|2γδ∗
βδα∗γ∗ |δ|2βα∗ |β|2δγ∗ |β|2|δ|2


Also as we used tensor product to describe multiple qubits quantum states.

So we will use tensor product of density operators to describe the general density
operator of two or more qubits quantum states

ρ = ρα ⊗ ρβ ⊗ ργ ....

Especially for a general bipartite system we may have that

ρψ = ρφ ⊗ ρx

Proof

|φ〉 = α|0〉+ β|1〉 then ρφ = |φ〉〈φ| =
(
|α|2 αβ∗

βα∗ |β|2
)

|x〉 = γ|0〉+ δ|1〉 then ρx = |x〉〈x| =
(
|γ|2 γδ∗

δγ∗ |δ|2
)

Which leads to:

ρψ = ρφ ⊗ ρx = |φ〉〈φ| ⊗ |x〉〈x| =
(
|α|2 αβ∗

βα∗ |β|2
)
⊗
(
|γ|2 γδ∗

δγ∗ |δ|2
)

ρψ =


|α|2|γ|2 |α|2γδ∗ |γ|2αβ∗ αγβ∗δ∗

|α|2δγ∗ |α|2|δ|2 aδβ∗γ∗ |δ|2aβ∗
|γ|2βα∗ βγα∗δ∗ |β|2|γ|2 |β|2γδ∗
βδα∗γ∗ |δ|2βα∗ |β|2δγ∗ |β|2|δ|2


which applies because it is equal to the direct computation of the density oper-
ator for a general bipartite systems.

1.7.1 Evolution of Density Operator

We know that the evolution of a quantum state |ψ〉 after the action of a gate U
is given by: |ψ′〉 = U |ψ〉.
Similarly the evolution of the ρ after the action of U gate ρ′ reads:

ρ′ = UρU†

Proof

We know that

ρ′ = |ψ′〉〈ψ′|
where |ψ′〉 = U |ψ〉 and 〈ψ′| = |ψ′〉† = (U |ψ〉)† = 〈ψ|U†

So ρ′ = U |ψ〉〈ψ|U† = UρU†
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Example
We have a single qubit quantum state

|ψ〉 =
(
a
β

)
which has as we have seen before Density Operator

ρ =

(
|α|2 αβ∗

βα∗ |β|2
)

After the action of UNOT = X gate the new quantum state is:

|ψ′〉 = X|ψ〉 =
(
0 1
1 0

)(
a
β

)
=

(
β
α

)
So

ρ′ = |ψ′〉〈ψ′| =
(
β
α

)(
β∗ α∗

)
=

(
|β|2 βα∗

αβ∗ |α|2
)

Using the equation we just proved

ρ′ = UρU† =

(
0 1
1 0

)(
|α|2 αβ∗

βα∗ |β|2
)(

0 1
1 0

)
=

(
|β|2 βα∗

αβ∗ |α|2
)

As we can observe both ways to compute the density operator after the action
of a gate U are equivalent.

Respectivly we can generalize the evolution of density operator for bipartite
quantum systems or N-partite quantum systems.

1.7.2 Reduced Density Operator of Bipartite Systems

In this subsection we will describe how we can calculate a very important object
the reduced density operator (2x2) which describes one of two qubits given the
general density operator (4 × 4) of a bipartite system using the mathematical
tool known as "Partial Trace" over one or the other of the two quantum systems
Suppose that we have a bipartite density operator

ρAB =
∑
ijkl

ρijkl|i〉〈j| ⊗ |k〉〈l|

ρAB =


ρ0000 ρ0001 ρ0100 ρ0101
ρ0010 ρ0011 ρ0110 ρ0111
ρ1000 ρ1001 ρ1100 ρ1101
ρ1010 ρ1011 ρ1110 ρ1111


Grouping the above 4× 4 matrix in four 2× 2 matrices we rewrite:

ρAB =

(
ρ00 ρ01
ρ10 ρ11

)
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We can find that the reduced density operator ρA describing the first quantum
system tracing out the second density operator ρB

ρAB =
∑
ijkl

ρijkl|i〉〈j| ⊗ |k〉〈l|

ρA =
∑
ijkl

TrB(ρijkl|i〉〈j| ⊗ |k〉〈l|)

ρA =
∑
ijkl

ρijkl|i〉〈j| ⊗ Tr(|k〉〈l|)

We know that
Tr(|k〉〈l|) = δkl

So,
ρA =

∑
ijk

ρijkk|i〉〈j|

leads to:

ρA =

(
ρ0000 + ρ0011 ρ0100 + ρ0111
ρ1000 + ρ1011 ρ1100 + ρ1111

)
Which is equal to

ρA =

(
Tr(ρ00) Tr(ρ01)
Tr(ρ10) Tr(ρ11)

)
Similarly

ρB =
∑
ijkl

TrA(ρijkl|i〉〈j| ⊗ |k〉〈l|)

ρB = ρijklTr (|i〉〈j|)⊗ |k〉〈l|

We know that
Tr(|i〉〈j|) = δij

So,
ρB =

∑
ikl

ρiikl|k〉〈l|

ρB =

(
ρ0000 + ρ1100 ρ0001 + ρ1101
ρ0010 + ρ1101 ρ0011 + ρ1111

)
Which is equal to

ρB = (ρ00 + ρ11)

So using the above two relations we can calculate any of both reduced density
operators (ρA, ρB) given the general Density operator % of a bi-partite system.

Example:
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Suppose that we have one of the Bell quantum states

|φ+〉 =


1√
2

0
0
1√
2


then the density operator of this bipartite quantum state is

ρφ+ = |φ+〉〈φ+| =


1√
2

0
0
1√
2

( 1√
2

0 0 1√
2

)
=


1
2 0 0 1

2
0 0 0 0
0 0 0 0
1
2 0 0 1

2


Then

ρA =

 Tr

(
1
2 0
0 0

)
Tr

(
0 1

2
0 0

)
Tr

(
0 0
1
2 0

)
Tr

(
0 0
0 1

2

)
 =

(
1
2 0
0 1

2

)
=
1

2
I2

and

ρB =

((
1
2 0
0 0

)
+

(
0 0
0 1

2

))
=

(
1
2 0
0 1

2

)
=
1

2
I2

In general any of Bell States (|φ+〉, |φ−〉, |ψ+〉, |ψ−〉,) have ρA = ρB =
1
2I2. (See

Apendix B)

1.8 Entropy as a measure of Entanglement

As we have already seen we say that two particles are entangled when we can
not write them as a form of two qubits using tensor product (|φ〉⊗ |ψ〉) but how
we can measure the quantify of entanglement for a bipartite system?
One way to quantify the entanglement of one bipartite system is to find

the reduced density operator according to the previous section and then calcu-
late the Von Neumann Entropy introduced by John von Neumann, using the
definition

S(ρ) = −Tr(ρ log2 ρ)

The outcome of this computation is a scalar which quantifies the entanglement.
It is very important to prove that the Bell States have the maximum quantity

of entanglement.
Suppose we have one of the Bell State e.g

|φ+〉 =


1√
2

0
0
1√
2
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according to the previous section the reduced density operator of this bipartite
system is

ρ =

(
1
2 0
0 1

2

)
Applying the definition of Von Neumann Entropy

S(ρ) = −Tr
((

1
2 0
0 1

2

)
log2

(
1
2 0
0 1

2

))
The matrix is diagonal so we can take the logarithm of it’s elements

S(ρ) = −Tr
((

1
2 0
0 1

2

)(
log2

1
2 0

0 log2
1
2

))
Due to the identity

log(
x

y
) = log x− log y

Our equation takes the form:

S(ρ) = −Tr
((

1
2 0
0 1

2

)(
log2 1− log2 2 0

0 log2 1− log2 2

))
We know that

log2 1 = 0

So

S(ρ) = −Tr
((

1
2 0
0 1

2

)(
log2 2 0
0 log2 2

))
S(ρ) = −Tr

(
1
2 log2 2 0
0 1

2 log2 2

)
Finally,

S(ρ) =
1

2
log2 2 +

1

2
log2 2 = log2 2 = 1

Which is the maximum possible as we expected and it indicates that we have
maximum entanglement.
Exactly the same applies for the rest of Bell states since all of them have the

same reduced density operator(ρ = I
2 ). (According to Appendix B)

1.9 Quantum Measurement

As in the classical case where we have to measure the level of voltage using a
multimeter so in quantum computation we have to estimate the quantum state
of qubit (for example Spin-up or Spin-down state for the case of electron states)
using a mathematical tool called projection.Which is a set of matrices Pw that
constructed with the help of a vector |w〉 on which we want to project our state.
Explicitly

Pw = |w〉〈w|
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Assuming that |||w〉||=1 we can easily verify that Pw = P 2w
Proof

P 2w = |w〉 〈w||w〉︸ ︷︷ ︸〈w|
Do to the fact that |||w〉||=1

P 2w = |w〉〈w| = Pw

1.9.1 Canonical Basis Measurement

One Qubit Measurement Suppose that we have a qubit in a general form
of superposition on the computational basis |0〉,|1〉

|ψ〉 = α|0〉+ β|1〉

where
|a|2 + |β|2 = 1

The two projection operators we can construct to observe if the qubit is in
state |0〉 or |1〉 at the moment of measurement are P0 = |0〉〈0|, P1 = |1〉〈1|
respectively.
Suppose that we want to act with the P0 on the qubit.

|ψ′〉 = P0|ψ〉 = |0〉〈0|(α|0〉+ β|1〉) = α|0〉 〈0||0〉︸ ︷︷ ︸+β|0〉 〈0||1〉︸ ︷︷ ︸
due to Orthonormality

〈x||y〉 = δxy

Our system takes the form:
|ψ′〉 = a|0〉

As we can easily observe this is not representing a quantum state because it is
not normalized

〈ψ′||ψ′〉 = α∗〈0|a|0〉 = aa∗〈0||0〉 = |α|2 6= 1

this happens because projection operators are not unitary so they do not respect
the norm of the quantum state
So we have to normalize it dividing with√

〈ψ|P0|ψ〉 =
√
〈ψ||ψ′〉 =

√
(α∗〈0|+ β∗〈1|) a|0〉√

〈ψ|P0|ψ〉 =
√
α∗α〈0|0〉+ β∗〈1|0〉|√

〈ψ|P0|ψ〉 =
√
|α|2 = |α|

where 〈ψ|P0|ψ〉 = |α|2 is the probability of finding our state |ψ〉 along |0〉
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The state after P0 measurement is:

|ψP0〉 =
P0|ψ〉√
〈ψ|P0|ψ〉

=
a|0〉
|α|

which means that
|ψP0〉 = |0〉

or
|ψP0〉 = −|0〉

which are equal "up to a global phase". Which means that

|ψP0〉 = |0〉

Similarly under the measurment acting with P1 on the qubit the post-measurement
state is:

|ψP1〉 =
P1|ψ〉√
〈ψ|P1|ψ〉

=
β|1〉
|β|

which is equal to:
|ψP1〉 = |1〉

As we observe either of two cases the state after measurment collapses on |0〉
or |1〉 depending on the projection operator that we will use. This means that
quantum measurement destroy our quantum state.

Two Qubits Measurement Suppose that we have a bipartite (two qubits)

quantum state in a general form on the computational base |0〉 ,|1〉

|ψ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉

where
|a|2 + |β|2 + |γ|2 + |δ|2 = 1

We have four possible states in which a qubit may be {|00〉, |01〉, |10〉, |11〉} so
we construct the respective projection operators

P00 = |00〉〈00|

P01 = |01〉〈01|
P10 = |10〉〈10|
P11 = |11〉〈11|

Suppose that we want to act with the P01 on the bipartite quantum system

|ψ′〉 = P01|ψ〉 = |01〉〈01|(α|00〉+ β|01〉+ γ|10〉+ δ|11〉)

due to orthonormality
〈x1x2||y1y2〉 = δx1y1,x2y2
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Our system will be transformed:

|ψ′〉 = β|01〉

As we can easily observe this is not representing a quantum state because it is
not normalized

||ψ′〉| = 〈ψ′||ψ′〉 = β∗〈01|β|01〉 = ββ∗〈01||01〉 = |β|2 6= 1

So we have to normalize it dividing with√
〈ψ|P01|ψ〉 =

√
〈ψ||ψ′〉 =

√
(α∗〈00|+ β∗〈01|+ γ∗〈10|+ δ∗|〈11|)(β|01〉)

due to orthonormality
〈x1x2||y1y2〉 = δx1x2,y1y2

√
〈ψ|P0|ψ〉 =

√
β∗β〈01|01〉√

〈ψ|P0|ψ〉 =
√
|β|2 = |β|

where 〈ψ|P01|ψ〉 = |β|2 is the probability of finding our state |ψ〉 along |0〉
The state after P01 measurement is:

|ψP01〉 =
P01|ψ〉√
〈ψ|P01|ψ〉

=
β|01〉
|β|

Which is equal to
|ψP01〉 = |01〉

"up to a global phase"
Similarly we can calculate the post measurment states under the action of

P
00
, P

10
, P

11
on the bipartite quantum system which are |00〉, |10〉.|11〉 respec-

tively
On bipartite quantum systems we have the ability to measure only one of

the two qubits (particles).
For example we can construct projection operators so that the first qubit be

in state |0〉 and leave alone the second one

P0,I = |0〉〈0| ⊗ I

or the second qubit be in state |1〉 and leave alone the first one.

PI,1 = I ⊗ |1〉〈1|

etc.
Suppose that we have a general bipartite system

|ψ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉
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and we want to calculate the post measurement state of P0,I projection operator
(first qubit be in state |0〉)

|ψ′〉 = P0,I |ψ〉 = |0〉〈0| ⊗ I(α|00〉+ β|01〉+ γ|10〉+ δ|11〉)
|ψ′〉 = α|0〉 〈0||0〉︸ ︷︷ ︸⊗I|0 + β|0〉 〈0||0〉︸ ︷︷ ︸⊗I|1〉+ γ|0〉 〈0||1〉︸ ︷︷ ︸⊗I|0〉+ δ|0〉 〈0||1〉︸ ︷︷ ︸⊗I|1〉
due to orthonormality

〈x||y〉 = δxy

|ψ′〉 = a|00〉+ β|01〉
which is not representing a quantum state

||ψ′〉| = 〈ψ′||ψ′〉 = (α∗〈00|+ β〈01) (|α|00〉+ β|01〉) = αα∗+ββ∗ = |α|2+|β|2 6= 1

So we have to normalize it dividing with√
〈ψ|P0,I |ψ〉 =

√
〈ψ||ψ′〉 =

√
(α∗〈00|+ β∗〈01|+ γ∗〈10|+ δ∗|〈11|)(a|00〉+ β|01〉)

due to Orthonormality

〈x1x2||y1y2〉 = δx1y1,x2y2

√
〈ψ|P0,I |ψ〉 =

√
α∗α〈00|00〉+ β∗β〈01|01〉√

〈ψ|P0,I |ψ〉 =
√
|α|2 + |β|2

where 〈ψ|P0,I |ψ〉 = |α|2+ |β|2 is the probability of finding the first qubit of our
state |ψ〉 along |0〉

The state after P0,I measurement is:

|ψP0,I 〉 =
P0,I |ψ〉√
〈ψ|P0,I |ψ〉

=
a|00〉+ β|01〉√
|α|2 + |β|2

1.9.2 Bell Basis Measurement

One other basis as we have already described is Bell basis with base vectors{
|φ+〉, |φ−〉, |ψ+〉, |ψ−〉

}
which represent four maximally entagled states of two

qubits.
The general form of a bipartite quantum system using Dirac notation of Bell

States is
|ψ〉 = α|φ+〉+ β|φ−〉+ γ|ψ+〉+ δ|ψ−〉

We can construct four Projection Operators to measure in which Bell state
is our system.

Pφ+ = |φ+〉〈φ+|
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Pφ− = |φ−〉〈φ−|

Pψ+ = |ψ+〉〈ψ+|

Pψ− = |ψ−〉〈ψ−|

for respective Bell states. When we measure on this basis we call it Bell Mea-
surement which is usefull for this thesis.
Suppose that we want to measure our bipartite system under the Pφ+ pro-

jection operator

|ψ′〉 = Pφ+|ψ〉 = |φ+〉〈φ+|(α|φ+〉+ β|φ−〉+ γ|ψ+〉+ δ|ψ−〉)
= α 〈φ+||φ+〉︸ ︷︷ ︸ |φ+〉+ β 〈φ+||φ−〉︸ ︷︷ ︸ |φ+〉+ γ 〈φ+||ψ+〉︸ ︷︷ ︸ |φ+〉+ δ 〈φ+||ψ−〉︸ ︷︷ ︸ |φ+〉

due to Orthonormality of Bell Basis

|ψ′〉 = α|φ+〉

So we have to normalize it dividing with√
〈ψ|Pφ+|ψ〉 =

√
〈ψ||ψ′〉 =

√
(α∗〈φ+|+ β∗〈φ−|+ γ∗〈ψ+|+ δ〈ψ−|)(α|φ+〉)√

〈ψ|Pφ+|ψ〉 =
√
α∗α〈φ+|φ+〉√

〈ψ|Pφ+|ψ〉 =
√
|α|2 = |α|

where 〈ψ|Pφ+|ψ〉 = |α|2 is the probability of finding our system |ψ〉 along |φ+〉
Bell state.
The final state after the measurement is

|ψPφ+〉 =
Pφ+|ψ〉√
〈ψ|Pφ+|ψ〉

=
α|φ+〉
|α|

"up to a global phase"
|ψPφ+〉 = |φ+〉

In this case it is evident that we can not construct projection operators on one
of two qubits because our base is not factorized.
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2 Quantum Teleportation Algorithms

Quantum teleportation is a protocol introduced by six scientists (C.H. Bennett,
G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. Wootters) in 1993 which
allows us to teleport quantum information (quantum states) from one space to
another taking advantage of quantum entanglement. In this thesis we are going
to reformulate the protocol in a more compact form and describe some other
cases for the teleportation of quantum resources further the one you teleport
a quantum state. Specifically, on the first section we will describe the tele-
portation of a quantum state of one qubit according to the paper of Bennett
something that requires 1shared pair of entangled qubits and two classical bits
of information. On the second section we will describe the 1Qubit Gate Tele-
portation which will have as a scope Bob to receive the outcome of the action
of one qubit gate on the arbitraty qubit that Alice had on her possession, as
we will see from resources perspective it also requires 1shared pair of entangled
qubits and two classical bits of information plus the action of a quantum gate
by Alice.One other protocol which uses this kind of teleportation is the 1-Qubit
Gate only Teleportation on which we will prove that Bob can reconstruct a gate
which Alice teleported just sending the action of this gate on the basis of |0〉, |1〉
from resources perspective it requires 2*(1shared pair of entangled qubits and
two classical bits of information)= 2 shared pair of entangled qubits and four
classical bits of information.Also, we will demonstrate a protocol with which Al-
ice can teleport an arbitrary (not necessarily maximally) entangled state of the
form a|00〉+ β|11〉 using 1shared-pair of entangled qubits and 3 classical bits of
information. On the fifth section we are going to demonstrate how we can tele-
port the action of one two qubits gate (such as CNOT) on two arbitrary qubits,
from resources persepctive it requires 2 shared-pairs of entangled qubits plus 4
bits of classsical information. Similarly, we will prove that Bob can reconstruct
the two-qubit gate if he receive the action on the basis [|00〉, |01〉, |10〉, |11〉] from
resources perspective it requires 4*(2shared-pairs of entangled qubits and four
classical bits of information)= 8 shared pairs of entangled qubits and sixteen
classical bits of information.
Summing up in a more visual form from resources perspective we have:

1-Qubit 2-Qubits
State 1ebit 2cbits 1ebit 3cbits
Action 1ebit 2cbits 2ebits 4cbits
Gate 2ebits 4cbits 8ebits 16cbits

ebits: shared pairs of entangled qubits
cbits: classical bits of information

It is notable that all of the above protocols belong to a specific category
of protocols called LOCC-SE (Local Operator Classical Communication Shared
Entanglement) which means that the sender and the receiver have prepare and
share a pair of entanglement and that the receiver performs some local opera-
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tions determined by the bits of the classical communication between the sender
and the receiver to retrieve the desirable quantum state.
One visual way to represent the steps of the protocols separated in modules

is given below:

The whole description of the protocols in a form of steps shows that
they belong to LOCC-SE protocol

2.1 1-Qubit State Teleportation

Alice wants to teleport an arbitrary unknown quantum state |ψ〉 = α|0〉+ β|1〉
to Bob. To achieve this they have prepared and shared (taking one qubit each
one) using the Entanglement Circuit a maximally entangled bipartite state

|φ+〉 =
1√
2
|00〉+ 1√

2
|11〉 = | I√

2
〉〉
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So the initial state of our system is:

|ψ〉 ⊗ | I√
2
〉〉 = (α|0〉+ β|1〉)⊗ ( |00〉+ |11〉√

2
)

|ψ〉 ⊗ | I√
2
〉〉 =

α√
2
|000〉+ α√

2
|011〉+ β√

2
|100〉+ β√

2
|111〉

From which the first two qubits belongs to Alice and the third one to Bob.
So we can rewrite the equation separating their local qubits

|ψ〉 ⊗ | I√
2
〉〉 = |00〉√

2
⊗ α|0〉+ |01〉√

2
⊗ α|1〉+ |10〉√

2
⊗ β|0〉+ |11〉√

2
⊗ β|1〉

We can easily prove that

|00〉√
2

=
|φ+〉+ |φ−〉

2
,

|01〉√
2

=
|ψ+〉+ |ψ−〉

2
,

|10〉√
2

=
|ψ+〉 − |ψ−〉

2
,

|11〉√
2

=
|φ+〉 − |φ−〉

2
,

Reformulating Alice’s qubits on Bell Basis:

|ψ〉⊗| I√
2
〉〉 =

|φ+〉+ |φ−〉
2

⊗α|0〉+
|ψ+〉+ |ψ−〉

2
⊗α|1〉+

|ψ+〉 − |ψ−〉
2

⊗β|0〉+
|φ+〉 − |φ−〉

2
⊗β|1〉

Separating the Bell Basis factors:

|ψ〉⊗| I√
2
〉〉 = 1

2

[
|φ+〉 ⊗ (α|0〉+ β|1〉) + |φ−〉 ⊗ (α|0〉 − β|1〉) + |ψ+〉 ⊗ (α|1〉+ β|0〉) + |ψ−〉 ⊗ (α|1〉 − β|0〉)

]
.

Next we express the four Bell states belonging to Alice using "Double Wedge"
notation and the Pauli matrices σ1, σ3 :

|φ+〉 =
|00〉+ |11〉√

2
=

1√
2
|
(
1 0
0 1

)
〉〉 = |σ

0
1σ

0
3√
2
〉〉 = | (σ

0
1σ

0
3)
T

√
2
〉〉

|φ−〉 =
|00〉 − |11〉√

2
= | 1√

2

(
1 0
0 −1

)
〉〉 = |σ

0
1σ

1
3√
2
〉〉 = | (σ

0
1σ

1
3)
T

√
2
〉〉

|ψ+〉 =
|01〉+ |10〉√

2
=

1√
2
|
(
0 1
1 0

)
〉〉 = |σ

1
1σ

0
3√
2
〉〉 = | (σ

1
1σ

0
3)
T

√
2
〉〉

|ψ−〉 =
|01〉 − |10〉√

2
= | 1√

2

(
0 1
−1 0

)
〉〉 = |σ

1
3σ

1
1√
2
〉〉 = | (σ

1
1σ

1
3)
T

√
2
〉〉
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The four possible cases Bob’s qubit that involve the unknown state |ψ〉 = α|0〉+
β|1〉 are expressed as:

α|0〉+ β|1〉 =

(
α
β

)
=

(
1 0
0 1

)(
α
β

)
=
(
σ01σ

0
3

)
|ψ〉

α|0〉 − β|1〉 =

(
α
−β

)
=

(
1 0
0 −1

)(
α
β

)
=
(
σ01σ

1
3

)
|ψ〉

α|1〉+ β|0〉 =

(
β
α

)
=

(
0 1
1 0

)(
α
β

)
=
(
σ11σ

0
3

)
|ψ〉

α|1〉 − β|0〉 =

(
−β
α

)
=

(
0 −1
1 0

)(
α
β

)
=
(
σ11σ

1
3

)
|ψ〉

Combining these expressions for Alice’s and Bob’s qubits the initial state can
be written as:

|ψ〉 ⊗ | I√
2
〉〉 =

1

2
(| (σ

0
1σ

0
3)
T

√
2
〉〉 ⊗ σ01σ03|ψ〉+ |

(σ01σ
1
3)
T

√
2
〉〉 ⊗ σ01σ13|ψ〉

+| (σ
1
1σ

0
3)
T

√
2
〉〉 ⊗ σ11σ03|ψ〉+ |

(σ11σ
1
3)
T

√
2
〉〉 ⊗ σ11σ13|ψ〉)

To simplify the notation let:

Vαβ =
(σα1σ

β
3 )
T

√
2

.

Our equation then gets the following equivalent forms

|ψ〉 ⊗ | I√
2
〉〉 =

1

2

(
|V00〉〉 ⊗

√
2V T00|ψ〉+ |V01〉〉 ⊗

√
2V T01|ψ〉+ |V10〉〉 ⊗

√
2V T10|ψ〉+ |V11〉〉 ⊗

√
2V T11|ψ〉

)
|ψ〉 ⊗ | I√

2
〉〉 =

1√
2
(|V00〉〉 ⊗ V T00|ψ〉+ |V01〉〉 ⊗ V T01|ψ〉+ |V10〉〉 ⊗ V T10|ψ〉+ |V11〉〉 ⊗ V T11|ψ〉)

And finally

|ψ〉 ⊗ | I√
2
〉〉 = 1√

2

∑
α,β

|Vαβ〉〉 ⊗ V Tαβ |ψ〉. (1)

We call this the simplified teleportation equation .
Next Alice performs a joint Bell measurement on her two qubits so the above

state which is described by a sum of quantum states collapses into one term.
To achieve this she acts with the projection operator on her two qubits.

PVα′β′ = |Vα′β′〉〉〈〈Vα′β′ |

where α
′
, b
′ ∈ {0, 1} can be considered as two classical bits which exported from

the Bell measurement and indicate uniquely with which of four Bell Projection
operator Alice acted on her qubits.
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So the teleportation equation after the measurement collapses into the state:

|ψ〉 ⊗ | I√
2
〉〉 → (PVα′β′ ⊗ I)(|ψ〉 ⊗ |

I√
2
〉〉)

Using the simplified teleportation equation

(PVα′β′ ⊗ I)(|ψ〉 ⊗ |
I√
2
〉〉) = (|Vα′β′〉〉〈〈Vα′β′ | ⊗ I)

1√
2

∑
α,β

|Vαβ〉〉 ⊗ V Tαβ |ψ〉

Acting on the respectively qubits:

(PVα′β′ ⊗ I)(|ψ〉 ⊗ |
I√
2
〉〉) = 1√

2

∑
α,β

|Vα′β′〉〉〈〈Vα′β′ ||Vαβ〉〉︸ ︷︷ ︸
δαα′δββ′

⊗ V Tαβ |ψ〉

Due to orthonormality of the set of matricies Vαβ ∀ α, β ∈ {0, 1} which is proved
at Appendix A

〈〈Vα′β′ ||Vαβ〉〉 =
{
1 if a′ = a and β′ = β
0 if α′ 6= a′ or β′ 6= β

}
= δαα′,ββ′

Only one term will "survive" after the action of projection operator this one
where a′ = a and β′ = β

|Systempost−measurement〉 =
1√
2
|Vα′β′〉〉 ⊗ V Tα′β′ |ψ〉

|Systempost−measurement〉 =
1

2
|Vα′β′〉〉 ⊗ σα

′

1 σ
β′

3 |ψ〉

Normalizing the final state after measurement we obtain:

|Systempost−measurement〉 = |Vα′β′〉〉 ⊗ σα
′

1 σ
β′

3 |ψ〉

We define:
Wα′,β′ = σα

′

1 σ
β′

3

Bob’s state vector after measurement is Wα′,β′ |ψ〉. To retrieve the initial state
|ψ〉 he needs to undo the unitary operator Wα′,β′ . To this end he needs to
know exponents α′ and β′ which are identified with two classical bits obtained
from Alice’s measurement, these two classical bits known to Alice and needs to
forward them to Bob by classical channel (e.g telephone line).
When Bob receives these two classical bits he acts with the appropriate

recovery operator to his qubit as shown in the table below:
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Cbit Recovery Operator

α′β′ W †α′,β′ =
(
σα
′

1 σ
β′

3

)†
00

(
1 0
0 1

)
01

(
1 0
0 −1

)
10

(
0 1
1 0

)
11

(
0 1
−1 0

)
Finally Bob acting with the suitable operator he will obtain:

|ψBob〉 =W †α′,β′Wα′,β′ |ψ〉 = I|ψ〉 = |ψ〉.

where |ψ〉 is the initial quantum state which Alice wishes to teleport to Bob.

From resources perspective we achieved this state teleportation by using one
pair of entangled qubits and classical communication of two bits.

43



The whole diagram of teleporting a quantum state. (Time evolves from left to right)

2.2 1-Qubit Gate Teleportation

Suppose that Alice wants to teleport the result of the action of one predefined
qubit gate U2x2 on her qubit (U |ψ〉) to Bob. To achieve this she acts with UT
gate on her second qubit (the entangled one) [5] [6].
So the initial state of teleportation is reformulated as

(12 ⊗ UT ⊗ 12)|ψ〉 ⊗ |
I√
2
〉〉 = |ψ〉 ⊗

(
UT ⊗ 12

)
| I√
2
〉〉︸ ︷︷ ︸

due to identity:
(A⊗B)|C〉〉 = |ACBT 〉〉
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It’s a fact that: (
UT ⊗ 12

)
| I√
2
〉〉 = (12 ⊗ U) |

I√
2
〉〉 = |U

T

√
2
〉〉

So our initial equation reads:

(12 ⊗ UT ⊗ 12)|ψ〉 ⊗ |
I√
2
〉〉 = (12 ⊗ 12 ⊗ U)|ψ〉 ⊗ |

I√
2
〉〉

Due to simplified teleportation equation introduced previously see equation (1)

(12 ⊗ UT ⊗ 12)|ψ〉 ⊗ |
I√
2
〉〉 = (12 ⊗ 12 ⊗ U)

1√
2

∑
α,β

|Vαβ〉〉 ⊗ V Tα,β |ψ〉

U gate acts on the third qubit

(12 ⊗ UT ⊗ 12)|ψ〉 ⊗ |
I√
2
〉〉 = 1√

2

∑
α,β

|Vαβ〉〉 ⊗ UV Tα,β |ψ〉

Exploiting the fact that U is Unitary: U†U = I

(12 ⊗ UT ⊗ 12)|ψ〉 ⊗ |
I√
2
〉〉 =

1√
2

∑
α,β

|Vαβ〉〉 ⊗ UV Tα,βU†︸ ︷︷ ︸U |ψ〉
(12 ⊗ UT ⊗ 12)|ψ〉 ⊗ |

I√
2
〉〉 =

1√
2

∑
α,β

|Vαβ〉〉 ⊗
1√
2
Uσα1σ

β
3U
†︸ ︷︷ ︸U |ψ〉

(12 ⊗ UT ⊗ 12)|ψ〉 ⊗ |
I√
2
〉〉 = 1

2

∑
α,β

|Vαβ〉〉 ⊗ Uσα1σ
β
3U
†︸ ︷︷ ︸U |ψ〉

So by defining the unitary operator:

WU
αβ = Uσα1σ

β
3U
†

It leads to:

(12 ⊗ UT ⊗ 12)|ψ〉 ⊗ |
I√
2
〉〉 = 1

2

∑
α,β

|Vαβ〉〉 ⊗WU
αβU |ψ〉 (2)

This will be called the simplified 1 qubit gate teleportation equation
Next Alice performs a joint Bell measurement on her two qubits. Acting

with the projection operator

P
V
α′β′

= |Vα′β′〉〉〈〈Vα′β′ |

where α
′
, b
′ ∈ {0, 1} can be considered as two classical bits which exported from

measurement and indicate with which of four Projection Operator she acted
So the teleportation equation after measurement becomes
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1

2

∑
α,β

|Vαβ〉〉 ⊗WU
αβU |ψ〉 → (PVα′β′ ⊗ 12)

1

2

∑
α,β

|Vαβ〉〉 ⊗WU
αβU |ψ〉

(PVα′β′ ⊗ 12)
1

2

∑
α,β

|Vαβ〉〉 ⊗WU
αβU |ψ〉 = (|Vα′β′〉〉〈〈Vα′β′ | ⊗ 12)

1

2

∑
α,β

|Vαβ〉〉 ⊗WU
αβU |ψ〉

(PVα′β′ ⊗ 12)
1

2

∑
α,β

|Vαβ〉〉 ⊗WU
αβU |ψ〉 =

1

2

∑
α,β

|Vα′β′〉〉〈〈Vα′β′ ||Vαβ〉〉︸ ︷︷ ︸
δαα′δββ′

⊗WU
αβU |ψ〉

Due to orthonormality of the set of matrices Vαβ∀α,β ∈{0,1}

(PVα′β′ ⊗ 12)
1

2

∑
α,β

|Vαβ〉〉 ⊗WU
αβU |ψ〉 =

1

2
|Vα′β′〉〉 ⊗WU

α′β′U |ψ〉

Normalizing our system after the measurement reads:

|Systempost−measurement〉 = |Vα′β′〉〉 ⊗WU
α′β′U |ψ〉

The qubit of Bob after measurement is in the state

|ψBob〉 =WU
α′β′U |ψ〉

To retrieve U |ψ〉 he has to undo the action of the unitary operator WU
α′β′ acting

with the unitary recovery operator W †α′β′ on his qubit.
As a consequence:

W †α′β′ |ψBob〉 =W †α′β′Wα′β′U |ψ〉 = I2U |ψ〉 = U |ψ〉.

Wa,β is unitary as a product of unitary matrices

Below is a table with the recovery operators W †α′β′ =
(
Uσα

′

1 σ
β′

3 U
†
)†
that

Bob has to act on his qubit for some common gates U (X,Y, Z,H) for the
corresponding four possible results (α′, β′)→ {00, 01, 10, 11} obtained from the
Bell measurement.

Cbit(α, β) X Y Z H

00

(
1 0
0 1

) (
1 0
0 1

) (
1 0
0 1

) (
1 0
0 1

)
01

(
−1 0
0 1

) (
−1 0
0 1

) (
1 0
0 −1

) (
0 1
1 0

)
10

(
0 1
1 0

) (
0 −1
−1 0

) (
0 −1
−1 0

) (
1 0
0 −1

)
11

(
0 −1
1 0

) (
0 1
−1 0

) (
0 −1
1 0

) (
0 −1
1 0

)
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From resources perspective we achieved this using one pair of entangled qubits
the action of a gate by Alice and classical communication of two bits.

The whole diagram of teleporting the action of one predetermined qubit gate on a quantum state.
(Time evolves from left to right)
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2.3 1-Qubit Gate only Teleportation

The gate only teleportation is a corollary of the gate teleportation. The purpose
is to teleport a whole gate, not only it’s action. To this end we will take
advantage of the fact that the gate teleportation algorithm leaves unspecified
the state |ψ〉.Suppose that we want to teleport a 2x2 unitary gate to Bob. We
need a way to make possible to Bob to reconstruct the U gate local on his
laboratory. To this end Alice has to send the action of the U gate to Bob
on two predetermined basis vectors |ψ0〉, |ψ1〉 using the protocol we introduced
above ("1-Qubit Gate Teleportation").
The initial qubits (basis vectors) that Alice has to send to Bob are e.g the

canonical basis vectors |ψ0〉 = |0〉 and |ψ1〉 = |1〉.
We assume that Alice sends U |ψ0〉 at the first one qubit gate teleportation

and U |ψ1〉 at the second one.

So the simplified teleportation equation in this case using the 1 qubit gate
teleportation equation (2) will take the form:

(12 ⊗ UT ⊗ 12)|i〉 ⊗ |
I√
2
〉〉 = 1

2

∑
α,β

|Vαβ〉〉 ⊗WU
αβU |i〉 (3)

where i ∈ {0,1} for the first and second case respectively
This will be called the simplified 1-qubit gate only teleportation equa-

tion.
Therefore after the completion of the first one Qubit Gate Teleportation

including recover operator by Bob.He will has in his possession the action of U
on |0〉

|ψ′0〉 = U |ψ0〉 = U |0〉

Similarly after the second One Qubit Gate Teleportation Bob will has in his
possession the action of U on |1〉

|ψ′1〉 = U |ψ1〉 = U |1〉

Now he is ready to reconstruct the U operator locally using these two vectors
making some post processing calculations.

We have proved that the general Matrix representation of one qubit gate
knowing the action of the gate on basis (|ψ′0〉 = U |0〉, |ψ′1〉 = U |1〉) is:(

〈0|ψ′0〉 〈0|ψ′1〉
〈1|ψ′0〉 〈1|ψ′1〉

)
where |ψ′0〉, |ψ′1〉 are the received vectors
The post-processing which Bob has to do is to calculate the inner products

of the received vectors |ψ′0〉, |ψ′1〉 with the basis vectors |0〉, |1〉
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Explicitly:

a00 = 〈0|ψ′0〉 = 〈0|U |0〉
a01 = 〈0|ψ′1〉 = 〈0|U |1〉
a10 = 〈1|ψ′0〉 = 〈1|U |0〉
a11 = 〈1|ψ′1〉 = 〈1|U |1〉

And construct the final matrix representation of the gate:(
a00 a01
a10 a11

)
In conclusion, from resources perspective to teleport the whole 1-qubit gate
you need to repeat 1-Qubit Gate teleportation twice which means: 2 ∗ (1ebit+
2cbit) = 2ebits+ 4cbits.

The whole diagram of teleporting one predetermined qubit gate acting on a
predetermined quantum state. (Time evolves from left to right)
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Example:

Suppose that Alice wants to teleport to Bob the UNOT = X =

(
0 1
1 0

)
gate so he can act with it on his laboratory. To achieve this they have to follow
the "1-Qubit Gate only Teleportation" algorithm.
According to the steps of protocol she initializes her qubit at state |ψ0〉 = |0〉

and acts on her second qubit with the UTNOT .
So the simplified 1-Qubit Gate only teleportation equation takes the form:

(12 ⊗ UTNOT ⊗ 12)|0〉 ⊗ |
I√
2
〉〉 = 1

2

∑
α,β

|Vαβ〉〉 ⊗WUNOT
αβ UNOT |0〉

Suppose that Alice performs a joint Bell measurement acting with:

PV01 = |V01〉〉〈〈V01|

on her first two qubits. The outcome of this action is two classical bits specifi-
cally (0,1) and the state after measurement will be transformed to:

|systempost−measurement〉 = |V01〉〉 ⊗WUNOT
01 UNOT |0〉

According to the table above with the recovery operators for the case that the
gate is X and the two classical bits are (0,1) Bob has to act with

W †0,1 =

(
−1 0
0 1

)
to retrieve:

|ψ′0〉 =W †0,1W0,1UNOT |0〉 = UNOT |0〉
which is equal to (according to truth table of NOT):

|ψ′0〉 = |1〉

Similarly, they repeat this protocol with initialized state by Alice |ψ1〉 = |1〉 and
the action of UTNOT on her second qubit.
So after the recover by Bob his qubit will be in state

|ψ′1〉 = UNOT |1〉 = |0〉

Using these two vectors (|ψ′0〉, |ψ′1〉) Bob has to do some post processing calcu-
lations to construct the matrix representation of the gate.
Specifically: (

〈0|ψ′0〉 〈0|ψ′1〉
〈1|ψ′0〉 〈1|ψ′1〉

)
substituting |ψ′i〉 with the corresponding values:(

〈0|1〉 〈0|0〉
〈1|1〉 〈1|0〉

)
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due to orthonormality of the canonical basis vectors, the final matrix represen-
tation is: (

0 1
1 0

)
Which is the matrix representation of UNOT gate tha Alice wanted to Teleport.

2.4 2-Qubit Entangled State Teleportation

In this subsection we will expand the "1-Qubit State Telportation" protocol
trying to make possible to Alice to teleport an arbitrary entangled state of two
qubits. A straightforward generalization of 1-Qubit state teleportation shows
that any bipartite system can be teleported using two maximally entangled pairs
and four bits of classical information, but our goal is to weaken the requirements
on the resources needed to achieve the purpose (e.g the number of the prepared
and shared entangled qubits).
Suppose that Alice wants to teleport the arbitrary entangled state [8]:

|ψsend〉 = a|00〉+ β|11〉.

The whole quantum system consists of one shared Bell state between Alice &
Bob in our case

|φ+〉 =
|00〉+ |11〉√

2

on the first and second Hillbert spaces.
An arbitrary entangled state that Alice wants to teleport

|ψsend〉 = a|00〉+ β|11〉

located on the third and fourth qubit
Finally, an ancillary fifth qubit initialized at |0〉 belongs to Bob
Summing-up our systems consists of a five qubits space |〉1⊗|〉2⊗|〉3⊗|〉4⊗|〉5

(where the subscript denotes the space that each qubit belongs) from which 1,3,4
belongs to Alice and 2,5 belongs to Bob.
Our system using Dirac notation can be written as:

|ψsys〉 =
(|00〉12 + |11〉12)√

2
⊗ (a|00〉34 + β|11〉34)⊗ |0〉5

|ψsys〉 =
α|00000〉√

2
+
β|00110〉√

2
+
α|11000〉√

2
+
β|11110〉√

2

Separating two qubits which belongs to Alice (1,3) we can rewrite our system

|ψsys〉 =
|00〉13√
2
⊗a|000〉245+

|01〉13√
2
⊗β|010〉245+

|10〉13√
2
⊗a|100〉245+

|11〉13√
2
⊗β|110〉245
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Using the equations which connect the Bell states with the canonical basis we
can reformulate our state to:

|ψsys〉 =
|φ+〉13 + |φ−〉13

2
⊗ a|000〉245 +

|ψ+〉13 + |ψ−〉13
2

⊗ β|010〉245

+
|ψ+〉13 − |ψ−〉13

2
⊗ a|100〉245 +

|φ+〉13 − |φ−〉13
2

⊗ β|110〉245

Taking the Bell states as common factor:

|ψsys〉 =
1

2
(|φ+〉13 ⊗ (a|000〉245 + β|110〉245) + |φ−〉13 ⊗ (a|000〉245 − β|110〉245)

+|ψ+〉13 ⊗ (a|100〉245 + β|010〉245) + |ψ−〉13 ⊗ (−a|100〉245 + β|010〉245))

According to the protocol Alice performs a Hadamard gate on fourth qubit:

|ψsys〉 = (I2 ⊗ I2 ⊗ I2 ⊗H ⊗ I2)
1

2
(|φ+〉13 ⊗ (a|000〉245 + β|110〉245) + |φ−〉13 ⊗ (a|000〉245 − β|110〉245)

+|ψ+〉13 ⊗ (a|100〉245 + β|010〉245) + |ψ−〉13 ⊗ (−a|100〉245 + β|010〉245))

so our system transforms to

|ψsys〉 =

1
2{|φ+〉13 ⊗ (a|0〉2(

|0〉4+|1〉4√
2

)|0〉5 + β|1〉2( |0〉4−|1〉4√
2

)|0〉5)
+|φ−〉13 ⊗ (a|0〉2(

|0〉4+|1〉4√
2

)|0〉5 − β|1〉2( |0〉4−|1〉4√
2

)|0〉5)
+|ψ+〉13 ⊗ (a|1〉2(

|0〉4+|1〉4√
2

)|0〉5 + β|0〉2( |0〉4−|1〉4√
2

)|0〉5)
+|ψ−〉13 ⊗ (−a|1〉2(

|0〉4+|1〉4√
2

)|0〉5 + β|0〉2( |0〉4−|1〉4√
2

)|0〉5}

Which is equal to:

|ψsys〉 =

1
2
√
2
{|φ+〉13 ⊗ (a|000〉245 + a|010〉245 + β|100〉245 − β|110〉245)

+|φ−〉13 ⊗ (a|000〉245 + a|010〉245 − β|100〉245 + β|110〉245)
+|ψ+〉13 ⊗ (a|100〉245 + a|110〉245 + β|000〉245 − β|010〉245)
+|ψ−〉13 ⊗ (−a|100〉245 − a|110〉245 + β|000〉245 − β|010〉245)}

Bob as a receiver performs a CNOT gate on his two qubits the second and the
fifth of our system having as a control qubit the second one and as a target
qubit the fifth one. After the action our system takes the form:

|ψsys〉 =

1
2
√
2
{|φ+〉13 ⊗ (a|000〉245 + a|010〉245 + β|101〉245 − β|111〉245)

+|φ−〉13 ⊗ (a|000〉245 + a|010〉245 − β|101〉245 + β|111〉245)
+|ψ+〉13 ⊗ (a|101〉245 + a|111〉245 + β|000〉245 − β|010〉245)
+|ψ−〉13 ⊗ (−a|101〉245 − a|111〉245 + β|000〉245 − β|010〉245)}

According to the protocol Alice is going to measure the fourth qubit, to make
it explicitly we factor out the fourth qubit:

|ψsys〉 =

1
2
√
2
{|φ+〉13(|0〉4(a|00〉25 + β|11〉25) + |1〉4 (a|00〉25 − β|11〉25))

+|φ−〉13(|0〉4(a|00〉25 − β|11〉25) + |1〉4 (a|00〉25 + β|11〉25))
+|ψ+〉13(|0〉4(a|11〉25 + β|00〉25) + |1〉4(a|11〉25 − β|00〉25))

+|ψ−〉13 (|0〉4(−a|11〉25 + β|00〉25) + |1〉4(−a|11〉25 − β|00〉25))}
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Anticipating the quantum measurement we express the state in the first and
third qubit in the |Vαβ〉〉 notation and the state at Bob’s side in terms of
|ψsend〉 = a|00〉+ β|11〉:

|ψsys〉 =

1
2
√
2
{|V00〉〉13 ⊗ (|0〉4(σ03σ01 ⊗ σ03σ01)|ψsend〉〉25 + |1〉4(σ13σ01 ⊗ σ03σ01)|ψsend〉〉25

+|V01〉〉13 ⊗ (|0〉4(σ13σ01 ⊗ σ03σ01)|ψsend〉〉25 + |1〉4(σ03σ01 ⊗ σ03σ01)|ψsend〉〉25
+|V10〉〉13 ⊗ |0〉4(σ03σ11 ⊗ σ03σ11)|ψsend〉〉25 + |1〉4(σ13σ11 ⊗ σ03σ11)|ψsend〉〉25
+|V11〉〉13 ⊗ |0〉4(σ13σ11 ⊗ σ03σ11)|ψsend〉〉25 + |1〉4(σ03σ11 ⊗ σ03σ11)|ψsend〉〉25}

Obviously now the state |ysend〉〉 is obstructed to reach Bob by the unitaries.
For simplicity we define Wα,β,γ

α, β, γ Wα,β,γ

000 I ⊗ I
001 σ3 ⊗ I
010 σ3 ⊗ I
011 I ⊗ I
100 σ1 ⊗ σ1
101 σ3σ1 ⊗ σ1
110 σ3σ1 ⊗ σ1
111 σ1 ⊗ σ1

So, we can rewrite our whole system in a very compact form:

|ψsys〉 =
1

2
√
2

∑
α,β

∑
γ

|Vα,β〉〉13 ⊗ |γ〉4 ⊗Wα,β,γ |ψsend〉〉25 (4)

where α, β, γ ∈ {0, 1}
This will be called the simplified entangled state teleportation.
Alice performs two measurements on her three qubits one Bell measurement

on her first and third qubit acting with PVα′,β′ = |Vα′,β′〉〉〈〈Va′,β′ | so she exports
two classical bits (α′, β′) which identify uniquely the state of these two qubits
and one canonical measurement on her fourth qubit acting with Pγ′ = |γ′〉〈γ′|
from which she exports one classical bit (γ′)

The state after the mesaurement will collapse in

|ψsys_final〉 = |Vα′,β′〉〉13 ⊗ |γ′〉4 ⊗Wα′,β′,γ′ |ψsend〉〉25

So the only action that Bob has to do after receiving the three classical bits
(α′, β′, γ′) from Alice e.g via a telephone line is to retrieve the initial entangled
state |ψsend〉〉 undoing the action of Wα′,β′,γ′ . To this end he acts with the
appropriate recovery operator W †α′,β′,γ′ according to the table below on his two
qubits. Which leads his state in:

|ψBob〉25 =W †α′,β′,γ′Wα′,β′,γ′ |ψsend〉〉25 = I|ψsend〉〉25 = |ψsend〉〉25

We note that Wα,β,γ is unitary for any triplet (a, β, γ) as a product of unitary
matrices (W †α′,β′,γ′Wα,β,γ = I)
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Recovery operators depending on (α′, β′, γ′):

α′, β′, γ′ W †α′,β′,γ′
000 I ⊗ I
001 σ3 ⊗ I
010 σ3 ⊗ I
011 I ⊗ I
100 σ1 ⊗ σ1
101 σ1σ3 ⊗ σ1
110 σ1σ3 ⊗ σ1
111 σ1 ⊗ σ1

From resources point of view this algorithm achieved its goal i.e. to teleport
a single entangled pair by using as much resources as the original single state
teleportation (1 maximally entangled pair a Bell measurment and 2 cbits), plus
additional resources firstly at the sender’s side, consisting of a Hadamard trans-
formation, a single qubit measurement and the sending of a cbit, and secondly
at the receiver’s side, consisting of an additional qubit and a set of two-qubit
unitary trasnfomations.
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The whole diagram of teleporting one arbitrary entangled state (Time evolves from left to right)

2.5 2-Qubit Gate Teleportation

Suppose this time that Alice wants to teleport to Bob the action of a two qubit
conditional (non-local) control-U gate U4x4 on two arbitrary qubits

|ψ〉 = α|0〉+ β|1〉

and
φ〉 = γ|0〉+ δ|1〉

To achieve this we assume that Alice and Bob have prepared and shared two
pairs of entangled qubits, which leads to the fact that the initial state of our
system is:

|initial〉 = |ψ〉 ⊗ | I√
2
〉〉 ⊗ | I√

2
〉〉 ⊗ |φ〉
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so our whole system consists of six qubits|〉1 ⊗ |〉2 ⊗ |〉3 ⊗ |〉4 ⊗ |〉5 ⊗ |〉6 , from

which {1,2,5,6} belongs to Alice and {3,4} belongs to Bob.
We know that the general form of a condition control-U gate (if the first

qubit-target is equal to |1〉 act with U2x2 gate on the second one) is:

UCU = P0 ⊗ I + P1 ⊗ U

We define A0 = P0, A1 = P1 and B0 = I ,B1 = U, so the general form of UCU
can be rewritten in a compact form:

UCU = A0 ⊗B0 +A1 ⊗B1 =
1∑
i=0

Ai ⊗Bi

embedding of UCU gate into six-fold tensor product of state space. In particular
we embed into 2nd and 5th space the controlled and target space respectively.
To achieve this we reformulate our gate to:

U25 =

1∑
i=0

I ⊗Ai ⊗ I ⊗ I ⊗Bi ⊗ I

In order to apply the operator identity successfully Alice performs the UT25 gate
on her 2,5 qubits (on the particles of the shared entangled qubits) which are
located in the total space of six qubits reads:

UT25 =
∑
i

(
I ⊗ATi ⊗ I ⊗ I ⊗BTi ⊗ I

)
Acting on the initial state leads to the following equalities

(
∑
i

I ⊗ATi ⊗ I ⊗ I ⊗BTi ⊗ I)(|ψ〉 ⊗ |
I√
2
〉〉 ⊗ | I√

2
〉〉 ⊗ |φ〉)

due to:

AT ⊗ I| 1√
2
〉〉 = I ⊗A| 1√

2
〉〉〉〉 = |A

T

√
2
〉〉

and

I ⊗AT | 1√
2
〉〉 = A⊗ I| 1√

2
〉〉 = | A√

2
〉〉

Our equation can be rewritten

(
∑
i

I⊗ATi ⊗I⊗I⊗BTi ⊗I)(|ψ〉⊗|
I√
2
〉〉⊗| I√

2
〉〉⊗|φ〉 = (

∑
i

I⊗I⊗Ai⊗Bi⊗I⊗I)(|ψ〉⊗|
I√
2
〉〉⊗| I√

2
〉〉⊗|φ〉)
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At this point we observed that we have accomplished to transfer the A’s and
B’s of the controlled gate U from Alice’s spaces {2,5} to Bob’s spaces {3,4}
respectively
using simplified teleportation equation (1) twice:(∑
i

I ⊗ I ⊗Ai ⊗Bi ⊗ I ⊗ I
)
1√
2

∑
α,β

|Vαβ〉〉⊗V Tα,β |ψ〉⊗
1√
2

∑
γ,δ

V Tγ,δ|φ〉⊗|Vγδ〉〉

We can further simplify the way we write the action of the gate knowing that

UCU =

1∑
i=0

Ai ⊗Bi

So,

(I ⊗ I ⊗ UCU ⊗ I ⊗ I)
1

2

∑
α,β

|Vαβ〉〉 ⊗ V Tα,β |ψ〉 ⊗
∑
γ,δ

V Tγ,δ|φ〉 ⊗ |Vγδ〉〉

(I ⊗ I ⊗ UCU ⊗ I ⊗ I)
1

2

∑
α,β

|Vαβ〉〉 ⊗
σα1σ

β
3√
2
|ψ〉 ⊗

∑
γ,δ

σγ1σ
δ
3√
2
|φ〉 ⊗ |Vγδ〉〉

Hence:

(I ⊗ I ⊗ UCU ⊗ I ⊗ I)
1

4

∑
α,β,γ,δ

|Vαβ〉〉 ⊗ σα1σ
β
3 |ψ〉 ⊗ σ

γ
1σ

δ
3|φ〉 ⊗ |Vγδ〉〉

Exploiting the properties of tensor products on Bob’s side we reformulate:

(I ⊗ I ⊗ UCU ⊗ I ⊗ I)
1

4

∑
α,β,γ,δ

|Vαβ〉〉 ⊗ (σα1σ
β
3 ⊗ σ

γ
1σ

δ
3) (|ψ〉 ⊗ |φ〉)⊗ |Vγδ〉〉

Gate acts on the respect qubits

1

4

∑
α,β,γ,δ

|Vαβ〉〉 ⊗ UCU (σα1σ
β
3 ⊗ σ

γ
1σ

δ
3) (|ψ〉 ⊗ |φ〉)⊗ |Vγδ〉〉

Taking advantage of the unitarity of gates (U†CUUCU = I4)

1

4

∑
α,β,γ,δ

|Vαβ〉〉 ⊗ UCU (σα1σ
β
3 ⊗ σ

γ
1σ

δ
3)U

†
CU︸ ︷︷ ︸UCU (|ψ〉 ⊗ |φ〉)⊗ |Vγδ〉〉

Define:
WCU
a,β,γ,δ = UCU (σ

α
1σ

β
3 ⊗ σ

γ
1σ

δ
3)U

†
CU

Our system takes the form:

(
∑
i

I⊗ATi ⊗I⊗I⊗BTi ⊗I)|ψ〉⊗|
I√
2
〉〉⊗| I√

2
〉〉⊗|φ〉 = 1

4

∑
α,β,γ,δ

|Vαβ〉〉⊗WCU
a,β,γ,δUCU (|ψ〉 ⊗ |φ〉)⊗|Vγδ〉〉

(5)
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This will be called the simplified 2 qubit gate teleportation equation
In order our system to collapse in one specific term Alice Performs two Bell

measurements on her four qubits acting with

PV a′β′ = |Vα′β′〉〉〈〈Va′β′ |

on the first and second qubit, and with:

PV γ′δ′ = |Vγ′δ′〉〉〈〈Vγ′δ′ |

on the fifth and sixth qubit.
where α

′
, β′, γ′, δ′ ∈ {0, 1} can be considered as four classical bits which

exported from the two Bell measurements and indicate uniquely with which of
four Bell Projection operator Alice acted on her qubits in each case.
So our initial state transforms to

(|Vα′β′〉〉〈〈Va′β′ |⊗I⊗I⊗|Vγ′δ′〉〉〈〈Vγ′δ′ |)
1

4

∑
α,β,γ,δ

|Vαβ〉〉⊗WCU
a,β,γ,δUCU (|ψ〉 ⊗ |φ〉)⊗|Vγδ〉〉

due to orthonormality of Bell basis

〈〈Va′β′ ||Vαβ〉〉 = δaa′,ββ′ and 〈〈Vγ′δ′ ||Vγδ〉〉 = δγγ′,δδ′

Our system "collapses" to the below specific state:

1

4
|Vα′β′〉〉 ⊗WCU

a′,β′,γ′,δ′UCU (|ψ〉 ⊗ |φ〉)⊗ |Vγ′δ′〉〉

Normalizing:

|Systempost−measurement〉 = |Vα′β′〉〉 ⊗WCU
a′,β′,γ′,δ′UCU (|ψ〉 ⊗ |φ〉)⊗ |Vγ′δ′〉〉

After the measurement Bob’s qubits are in the state

|ψBob〉 =WCU
a′,β′,γ′,δ′UCU (|ψ〉 ⊗ |φ〉)

In order for Bob to retrieve the target state he has to act with the recovery
operator

W †a′,β′,γ′,δ′ =
(
UCU (σ

α
1σ

β
3 ⊗ σ

γ
1σ

δ
3)U

†
CU

)†
Which is a unitary as a product of unitary operators

W †a′,β′,γ′,δ′ |ψBob〉 = (W
†
a′,β′,γ′,δ′)Wa′,β′,γ′,δ′︸ ︷︷ ︸UCU (|ψ〉 ⊗ |φ〉) = I4UCU (|ψ〉 ⊗ |φ〉) = UCU |ψφ〉

Which is the outcome of the action of the UCU gate on the initial arbitrary two
qubits.
From resources perspective we achieved this using two pairs of entangled

qubits the action of a gate by Alice and classical communication of four bits.
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As a case we consider that we want to teleport the action of control-NOT
gate on two arbitrary qubits and we calculate the recovery operators for this
case.
We know that this gate can be written:

UCNOT = P0 ⊗ I + P1 ⊗ σ1

Recovery Operators are given by:

WUCNOT
α,β,γ,δ = UCNOT (σ

α
1σ

β
3 ⊗ σ

γ
1σ

δ
3)U

†
CNOT

WUCNOT
α,β,γ,δ = (P0 ⊗ I + P1 ⊗ σ1) (σα1σ

β
3 ⊗ σ

γ
1σ

δ
3) (P0 ⊗ I + P1 ⊗ σ1)

†

WUCNOT
α,β,γ,δ = (P0 ⊗ I + P1 ⊗ σ1) (σα1σ

β
3 ⊗ σ

γ
1σ

δ
3)
(
P
†

0 ⊗ I
†
+ P

†

1 ⊗ σ
†

1

)
Projection & Pauli Operators are Hermitian

WUCNOT
α,β,γ,δ = (P0 ⊗ I + P1 ⊗ σ1) (σα1σ

β
3 ⊗ σ

γ
1σ

δ
3) (P0 ⊗ I + P1 ⊗ σ1)

WUCNOT
α,β,γ,δ =

(
P0σ

a
1σ

β
3 ⊗ σ

γ
1σ

δ
3 + P1σ

α
1σ

β
3 ⊗ σ1σ

γ
1σ

δ
3

)
(P0 ⊗ I + P1 ⊗ σ1)

WUCNOT
α,β,γ,δ = P0σ

a
1σ

β
3P0⊗σ

γ
1σ

δ
3+P0σ

a
1σ

β
3P1⊗σ

γ
1σ

δ
3σ1+P1σ

α
1σ

β
3P0⊗σ1σ

γ
1σ

δ
3+P1σ

α
1σ

β
3P1⊗σ1σ

γ
1σ

δ
3σ1

So taking the Hermitian of the matrix: W †α,β,γ,δ

W †α,β,γ,δ = P0σ
β
3σ

a
1P0⊗σδ3σ

γ
1+P1σ

β
3σ

a
1P0⊗σ1σδ3σ

γ
1+P0σ

β
3σ

α
1P1⊗σδ3σ

γ
1σ1+P1σ

β
3σ

α
1P1⊗σ1σδ3σ

γ
1σ1

Calculating the recovery operators for all the cases of four classical bits we have
these possible options:

αβ\γδ 00 01 10 11
00 1⊗ 1 σ3 ⊗ σ3 1⊗ σ1 σ3 ⊗ iσ2
01 σ3 ⊗ I I ⊗ σ3 σ3 ⊗ σ1 I ⊗ iσ2
10 σ1 ⊗ σ1 iσ2 ⊗ iσ2 σ1 ⊗ I iσ2 ⊗ σ3
11 iσ2 ⊗ σ1 σ1 ⊗ iσ2 iσ2 ⊗ I σ1 ⊗ σ3
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The whole diagram of teleporting the action of one predetermined two qubit gate on two arbitrary
qubits. (Time evolves from left to right)

2.6 2-Qubit Gate only Teleportation

The 2-Qubit Gate only Teleportation is a corollary of 2-qubit gate teleportation.
The purpose is to teleport a whole gate, not only it.s action. On this end we
will take advantage of the fact that the gate teleportation algorithm leaves
unspecified the state |ψφ〉. Suppose that we want to teleport a 4x4 unitary gate
to Bob. We need a way to make possible to Bob to reconstruct the U4x4 gate
local on his laboratory. To this end Alice has to send the action of the U4x4
gate to Bob on four predetermined basis vectors |ψ00〉, |ψ01〉, |ψ10〉, |ψ11〉 using
the protocol we introduced above ("2-Qubit Gate Teleportation") four times.
The initial qubits (basis vectors) that Alice has to send to Bob are e.g the

canonical basis vectors |ψ00〉 = |00〉, |ψ01〉 = |01〉, |ψ10〉 = |10〉, |ψ11〉 = |11〉
We assume that Alice sends U4x4|00〉, at the first 2-Qubit Gate Teleportation

U4x4|01〉 on the second one U4x4|10〉 on the third one and U4x4|11〉 on the last
one.
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So the simplified teleportation equation in this case using the 2 qubit gate
teleportation equation (4) will take the form:

(
∑
i

I⊗ATi ⊗I⊗I⊗BTi ⊗I)|i〉⊗|
I√
2
〉〉⊗| I√

2
〉〉⊗|j〉 = 1

4

∑
α,β,γ,δ

|Vαβ〉〉⊗WCU
a,β,γ,δUCU (|i〉 ⊗ |j〉)⊗|Vγδ〉〉

(6)

where i, j ∈ {0, 1}
This will be called the simplified 2-qubit gate only teleportation equa-

tion.
Therefore, after the completion of the first two qubit gate teleportation (i = 0

and j = 0) including recovery operation by Bob. He will has in his possession
the action of UCU on |00〉

|ψ′00〉 = UCU |00〉

Similarly, after the completion of the second two qubit gate teleportation
(i = 0 and j = 1). He will has in his possession

|ψ′01〉 = UCU |01〉

Till the completion of the fourth two qubit gate teleportation(i = 1 and j = 1).
Where he will has in his possession

|ψ′11〉 = UCU |11〉

Now he is ready to reconstruct the UCU operator locally using these four vectors
making some post processing calculations.

We have proved that the general matrix representation of two qubit gate
knowing the action of the gate on basis (|ψ′00〉 = UCU |00〉, |ψ′01〉 = UCU |01〉, |ψ′10〉 =
UCU |10〉, |ψ′11〉 = UCU |11〉) is:

〈00||ψ′00〉 〈00||ψ′01〉 〈00||ψ′10〉 〈00||ψ′11〉
〈01||ψ′00〉 〈01||ψ′01〉 〈01||ψ′10〉 〈01||ψ′11〉
〈10||ψ′00〉 〈10||ψ′01〉 〈10||ψ′10〉 〈10||ψ′11〉
〈11||ψ′00〉 〈11||ψ′01〉 〈11||ψ′10〉 〈11||ψ′11〉


Where |ψ′00〉, |ψ′01〉, |ψ′10〉, |ψ′11〉 are the received vectors.
The post processing which Bob have to do is to calculate the inner products

of the received vectors |ψ′00〉, |ψ′01〉, |ψ′10〉, |ψ′11〉 with the basis vectors |00〉, |01〉, |10〉, |11〉
Explicitly:

αijkl = 〈ij||ψ′kl〉 = 〈ij|UCU |ψ′kl〉

Where i,j,k,l ∈ {0, 1}
And construct the final matrix representation of the gate
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α0000 α0001 α0010 α0011
α0100 α0101 α0110 α0111
α1000 α1001 α1010 α1011
α1100 α1101 α1110 α1111


In conclusion, from resources perspective to teleport a whole 2-qubit gate you
need to repeat four times the 2-qubit gate teleportation which means 4 ∗ (2
ebit+4 cbit) = 8 ebits+16 cbits.

The whole diagram of teleporting one predetermined two qubits gate acting on a
predetermined quantum state. (Time evolves from left to right)
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Example:
Suppose that Alice wants teleport to Bob the UBell gate so he can create

maximally entangled qubits on his laboratory. To achieve this they have to
follow the "2Qubit Gate only Teleportation" protocol.
According to the steps of protocol, at first she initializes her qubits at state

|ψ00〉 = |00〉 and acts with UTBell on the other two qubits (the entangled ones).
So the 2-qubit gate only teleportation equation (6), takes the form:

(
∑
i

I⊗ATi ⊗I⊗I⊗BTi ⊗I)|0〉⊗|
I√
2
〉〉⊗| I√

2
〉〉⊗|0〉 = 1

4

∑
α,β,γ,δ

|Vαβ〉〉⊗WBell
a,β,γ,δUBell (|0〉 ⊗ |0〉)⊗|Vγδ〉〉

After the two Bell measurements Alice exports four classical bits (a′, β′, γ′, δ′)
and our system collapses to the below state:

|Systempost−measurement〉 = |Vα′β′〉〉 ⊗WBell
a′,β′,γ′,δ′UBell|00〉 ⊗ |Vγ′δ′〉〉

Where
WBell
a,β,γ,δ = UBell(σ

α
1σ

β
3 ⊗ σ

γ
1σ

δ
3)U

†
Bell

So Bob’s state is:
|yBob〉 =WBell

a′,β′,γ′,δ′UBell|00〉
Knowing the four classical bits (a′, β′, γ′, δ′) and looking at the table below he
acts with W †a′,β′,γ′,δ′ to recover

|ψ′00〉 = W †a′,β′,γ′,δ′W
Bell
a′,β′,γ′,δ′UBell|00〉

|ψ′00〉 = IUBell|00〉
|ψ′00〉 = UBell|00〉 = |φ+〉

Similarly they repeat the process three more times (on initialized vectors |01〉, |10〉, |11〉)
and he retrieves

|ψ′01〉 = UBell|01〉 = |ψ+〉
|ψ′10〉 = UBell|10〉 = |φ−〉
|ψ′11〉 = UBell|11〉 = |ψ−〉

The matrix representation in this case is
〈00||φ+〉 〈00||ψ+〉 〈00||φ−〉 〈00||ψ−〉
〈01||φ+〉 〈01||ψ+〉 〈01||φ−〉 〈01||ψ−〉
〈10|||φ+〉 〈10||ψ+〉 〈10||φ−〉 〈10||ψ−〉
〈11|||φ+〉 〈11||ψ+〉 〈11||φ−〉 〈11|||ψ−〉


Calculating these inner products the final matrix which Bob will have in his
possession is 

1√
2

0 1√
2

0

0 1√
2

0 1√
2

0 1√
2

0 − 1√
2

1√
2

0 − 1√
2

0
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which is the matrix representation of the Bell Operator.
Let’s calculate the Recovery operators for this case (Bell Operator):
We know that the Bell Operator circuit in Dirac notation is described by

this equation

UBell = UCNOT (H ⊗ I)
UBell = (P0 ⊗ I + P1 ⊗ σ1)(H ⊗ I)
UBell = P0H ⊗ I + P1H ⊗ σ1

Hence, Recovery Operators Wα,β,γ,δ are:

Wα,β,γ,δ = UBell(σ
α
1σ

β
3 ⊗ σ

γ
1σ

δ
3)U

†
Bell

Wα,β,γ,δ = (P0H ⊗ I + P1H ⊗ σ1) (σα1σ
β
3 ⊗ σ

γ
1σ

δ
3) (P0H ⊗ I + P1H ⊗ σ1)

†

Projection & Pauli & Hadamard operators are Hermitian

Wα,β,γ,δ = (P0H ⊗ I + P1H ⊗ σ1) (σα1σ
β
3 ⊗ σ

γ
1σ

δ
3) (HP0 ⊗ I +HP1 ⊗ σ1)

Exploiting tensor’s identities

Wα,β,γ,δ =
(
P0Hσ

a
1σ

β
3 ⊗ σ

γ
1σ

δ
3 + P1Hσ

α
1σ

β
3 ⊗ σ1σ

γ
1σ

δ
3

)
(HP0 ⊗ I +HP1 ⊗ σ1)

Wα,β,γ,δ = (P0Hσ
a
1σ

β
3HP0 ⊗ σ

γ
1σ

δ
3 + P0Hσ

a
1σ

β
3HP1 ⊗ σ

γ
1σ

δ
3σ1

+P1Hσ
α
1σ

β
3HP0 ⊗ σ1σ

γ
1σ

δ
3 + P1Hσ

α
1σ

β
3HP1 ⊗ σ1σ

γ
1σ

δ
3σ1)

Taking the Hermitian to find the final recovery operator W †α,β,γ,δ

W †α,β,γ,δ =
(
P0Hσ

β
3σ

a
1HP0 ⊗ σδ3σ

γ
1 + P1Hσ

β
3σ

a
1HP0 ⊗ σ1σδ3σ

γ
1

+P0Hσ
β
3σ

α
1HP1 ⊗ σδ3σ

γ
1σ1 + P1Hσ

β
3σ

α
1HP1 ⊗ σ1σδ3σ

γ
1σ1

)
Calculating the recovery operators for all the cases of four classical bits we have
these possible options:

αβ\γδ 00 01 10 11
00 1⊗ 1 σ3 ⊗ σ3 1⊗ σ1 σ3 ⊗ iσ2
01 σ1 ⊗ σ1 iσ2 ⊗ iσ2 σ1 ⊗ I iσ2 ⊗ σ3
10 σ3 ⊗ I I ⊗ σ3 σ3 ⊗ σ1 I ⊗ iσ2
11 (−iσ2)⊗ σ1 σ1 ⊗ (−iσ2) (−iσ2)⊗ I σ1 ⊗ (−σ3)
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3 Conclusions

Summing up in this thesis we investigated six algorithms for teleportation of
quantum resources trying to keep a common representation on all of them mak-
ing it more familiar to our readers. Central to this construction is the derivation
for each case of the equation that we have called simplified teleportation equa-
tion. They summmarized below

1-Qubit State Teleportation
|ψ〉 ⊗ | I√

2
〉〉 = 1√

2

∑
α,β |Vαβ〉〉 ⊗ V Tαβ |ψ〉.

1-Qubit Gate Teleportation
(12 ⊗ UT ⊗ 12)|ψ〉 ⊗ | I√2 〉〉 =

1
2

∑
α,β |Vαβ〉〉 ⊗WU

αβU |ψ〉
1-Qubit Gate only Teleportation

(12 ⊗ UT ⊗ 12)|i〉 ⊗ | I√2 〉〉 =
1
2

∑
α,β |Vαβ〉〉 ⊗WU

αβU |i〉
2-Qubit Entangled State Teleportation

|ψsys〉 = 1
2
√
2

∑
α,β

∑
γ |Vα,β〉〉13 ⊗ |γ〉4 ⊗Wα,β,γ |ψsend〉〉25

2-Qubit Gate Teleportation
(
∑
i I ⊗ATi ⊗ I ⊗ I ⊗BTi ⊗ I)|ψ〉 ⊗ | I√2 〉〉 ⊗ |

I√
2
〉〉 ⊗ |φ〉

= 1
4

∑
α,β,γ,δ |Vαβ〉〉 ⊗WCU

a,β,γ,δUCU (|ψφ〉)⊗ |Vγδ〉〉
2-Qubit Gate only Teleportation

(
∑
i I ⊗ATi ⊗ I ⊗ I ⊗BTi ⊗ I)|i〉 ⊗ | I√2 〉〉 ⊗ |

I√
2
〉〉 ⊗ |j〉

= 1
4

∑
α,β,γ,δ |Vαβ〉〉 ⊗WCU

a,β,γ,δUCU (|ij〉)⊗ |Vγδ〉〉

As we can easily check one equation is extension of the other with some
modifications. Moreover all of them have a common way of representation.
Also it is notable to observe that the information and the gates that we want to
teleport transferred from spaces that belongs to Alice at the beginning to these
one that belong to Bob at the end.

After the measurements on the simplified teleportation equations we are
exporting some amount of classical information (cbits). A summarization of
the resources (quatum-classical information) needed for each protocol in a table
form exists below:

1-Qubit 2-Qubits
State 1ebit 2cbits 1ebit 3cbits
Action 1ebit 2cbits 2ebits 4cbits
Gate 2ebits 4cbits 8ebits 16cbits

The prospects of this work are multiple and some of them are summarized
below as follows:
• It would be feasible to extend these quantum algorithms to cases that our

quantum systems are not represented by qubits but from larger dimensional
state vectors such as qutrits,qudits and so on.
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• Furthermore it would be interested to extend these algorithms to the cases
of three partite state teleportation such as GHZ states and/or teleportation of
3-qubits gates such as Toffoli and Fredkin gates.
• It would be a step towards a more realistic treatment to relax the ideal

mathematical assumptions that we have introduced and proceed to analyse the
behaviour of our algorithms under the existence of noise and also try to quantify
the performance of them.
• Last but not least, it would be desirable to modify the algorithms in

order to accommodate teleportation of other quantum objects such as quantum
channels.
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4 Appendices

4.1 Appendix A:Orthonormal basis

In this appendix we are going to prove that canonical basis and Bell Basis are
Orthonormal.

The basis vectors for canonical base which are a spanning set for the vector
space C2 is the set:

|0〉 =
(
1
0

)

|1〉 =
(
0
1

)
This set of vectors is orthogonal if and only if: 〈0||1〉 = 0
Actually:

〈0||1〉 =
(
1 0

)( 0
1

)
= 0

which means that vectors |0〉,|1〉 are orthogonal

This set of vectors is normal if and only if 〈0||0〉 = 1 and 〈1||1〉 = 1
Actually:

〈0||0〉 =
(
1 0

)( 1
0

)
= 1

and

〈1||1〉 =
(
0 1

)( 0
1

)
= 1

Summing up |0〉, |1〉 constitute an orthonormal set which means:

〈i||j〉 = δij

Also the tensor products of these vectors constitute a spanning set for the
vector space C4 the set is:

|00〉 =
(
1
0

)
⊗
(
1
0

)
=


1
0
0
0



|01〉 =
(
1
0

)
⊗
(
0
1

)
=


0
1
0
0
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|10〉 =
(
0
1

)
⊗
(
1
0

)
=


0
0
1
0



|11〉 =
(
0
1

)
⊗
(
0
1

)
=


0
0
0
1


This set of vectors is orthogonal if and only if: 〈ij||kl〉 = 0 for i 6= k or j 6= l
Actually:

〈00||01〉 =
(
1 0 0 0

)
0
1
0
0

 = 0

〈00||10〉 =
(
1 0 0 0

)
0
0
1
0

 = 0

〈00||11〉 =
(
1 0 0 0

)
0
0
0
1

 = 0

〈01||10〉 =
(
0 1 0 0

)
0
0
1
0

 = 0

etc. for the other cases
which means that vectors |00〉,|01〉, |10〉,|11〉 are orthogonal

This set of vectors is normal if and only if

〈00||00〉 = 1, 〈01||01〉 = 1, 〈10||10〉 = 1, 〈11||11〉 = 1

Actually:

〈00||00〉 =
(
1 0 0 0

)
1
0
0
0

 = 1

〈01||01〉 =
(
0 1 0 0

)
0
1
0
0

 = 1
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〈10||10〉 =
(
0 0 1 0

)
0
0
1
0

 = 1

〈11||11〉 =
(
0 0 0 1

)
0
0
0
1

 = 1

which means that vectors |00〉,|01〉, |10〉,|11〉 are normal

Summing up |00〉, |01〉, |10〉, |11〉 constitute an orthonormal set which means:

〈ij||kl〉 = δik,,jl

With a similar way we are going to prove that the Bell state vectors consti-
tute a spanning set for the vector space C4 the set:

|φ+〉 =


1√
2

0
0
1√
2



|φ−〉 =


1√
2

0
0
− 1√

2



|ψ+〉 =


0
1√
2
1√
2

0



|ψ−〉 =


0
1√
2

− 1√
2

0


Orhogonality if an only if 〈φ±||ψ±〉 = 0 and 〈φ+||φ−〉 = 0 and 〈ψ+||ψ−〉 = 0

are all the possible

Actually:

〈φ+|φ−〉 =
(
1√
2

0 0 1√
2

)
1√
2

0
0
− 1√

2

 = 0
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〈φ+|ψ+〉 =
(
1√
2

0 0 1√
2

)
0
1√
2
1√
2

0

 = 0

〈φ+|ψ−〉 =
(
1√
2

0 0 1√
2

)
0
1√
2

− 1√
2

0

 = 0

〈ψ+|ψ−〉 =
(
0 1√

2
1√
2

0
)

0
1√
2

− 1√
2

0

 = 0

which means that vectors |φ+〉,|φ−〉, |ψ+〉,|ψ−〉 are orthogonal

This set of vectors is normal if and only if

〈φ+||φ+〉 = 1, 〈φ−||φ−〉 = 1, 〈ψ+||ψ+〉 = 1, 〈ψ−||ψ−〉 = 1

Actually:

〈φ+|φ+〉 =
(
1√
2

0 0 1√
2

)
1√
2

0
0
1√
2

 = 1

〈φ−|φ−〉 =
(
1√
2

0 0 − 1√
2

)
1√
2

0
0
− 1√

2

 = 1

〈ψ+|ψ+〉 =
(
0 1√

2
1√
2

0
)

0
1√
2
1√
2

0

 = 1

〈ψ+|ψ+〉 =
(
0 1√

2
1√
2

0
)

0
1√
2
1√
2

0

 = 1

which means that vectors |φ+〉,|φ−〉,|ψ+〉,|ψ−〉 are normal.
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Summing up |φ+〉, |φ−〉, |ψ+〉, |ψ=〉 constitute an orthonormal set.
Finally, we will prove also that |Va,β〉〉 where α, β ∈ {0, 1} are orthonormal

which means that 〈〈|Va′,β′ ||Va,β〉〉 = δaa′,ββ′ something that is very useful in
this thesis especially when Alice performs Bell Measurements

This set is orthogonal if and only if: 〈〈Vaβ ||Va′β′〉〉 = 0 for α 6= α′ or β 6= β′

At section 1.5 "Double-Wedge" Notation we have prove the identity

〈〈A||B〉〉 = Tr[A†B]

which is called trace inner product.

This set of matricies is orthogonal if and only if: 〈Va′,β′ ||Va,β〉 = 0 for α 6= α′

or β 6= β′

Actually:

〈〈V00||V01〉〉 = Tr

[
1

2

(
1 0
0 1

)(
1 0
0 −1

)]
= 0

〈〈V00||V10〉〉 = Tr

[
1

2

(
1 0
0 1

)(
0 1
1 0

)]
= 0

〈〈V00||V11〉〉 = Tr

[
1

2

(
1 0
0 1

)(
0 1
−1 0

)]
= 0

〈〈V10||V11〉〉 = Tr

[
1

2

(
0 1
1 0

)(
0 1
−1 0

)]
= 0

etc. for the other cases
which means that matrices |V00〉〉, |V01〉〉, |V10〉〉, |V11〉〉 are orthogonal
This set of matricies is normal if and only if

〈〈V00||V00〉〉 = 1, 〈〈V01||V01〉〉 = 1, 〈〈V10||V10〉〉 = 1, 〈〈V11||V11〉〉 = 1

Actually:

〈〈V00||V00〉〉 = Tr

[
1

2

(
1 0
0 1

)(
1 0
0 1

)]
= 1

〈〈V01||V01〉〉 = Tr

[
1

2

(
0 1
1 0

)(
0 1
1 0

)]
= 1

〈〈V10||V10〉〉 = Tr

[
1

2

(
0 −1
1 0

)(
0 1
−1 0

)]
= 1

〈〈V11||V11〉〉 = Tr

[
1

2

(
0 −1
1 0

)(
0 1
−1 0

)]
= 1
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which means that matricies |V00〉〉, |V01〉〉, |V10〉〉, |V11〉〉 are normal.
Summing up |V00〉〉, |V01〉〉, |V10〉〉, |V11〉〉 constitute an orthonormal set.
which means:

〈〈Vαβ ||Vα′β′〉〉 = δαα′,,ββ′

4.2 Appendix B:Reduced Density Operator of Bell states

As we have proved at the section "1.7.2 Reduced Density Operator of Bipartite
Systems".
Knowing the matrix representation of a bipartite quantum system

ρAB =


ρ0000 ρ0001 ρ0100 ρ0101
ρ0010 ρ0011 ρ0110 ρ0111
ρ1000 ρ1001 ρ1100 ρ1101
ρ1010 ρ1011 ρ1110 ρ1111


Grouping the above 4x4 matrix in four 2x2matrices with obvious identification:

ρAB =

(
ρ00 ρ01
ρ10 ρ11

)
The Reduced Density operators of this bipartitte system are given by

ρA =

(
Tr(ρ00) Tr(ρ01)
Tr(ρ10) Tr(ρ11)

)
and

ρB = (ρ00 + ρ11)

In this appendix we will prove that each of the Bell states has

ρA = ρB =
I2
2

Explicitly:
For |φ+〉:

ρAB = |φ+〉〈φ+| =


1√
2

0
0
1√
2

( 1√
2

0 0 1√
2

)
=


1
2 0 0 1

2
0 0 0 0
0 0 0 0
1
2 0 0 1

2



ρA =

 Tr

(
1
2 0
0 0

)
Tr

(
0 1

2
0 0

)
Tr

(
0 0
1
2 0

)
Tr

(
0 0
0 1

2

)
 =

(
1
2 0
0 1

2

)
=
I

2
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and

ρB =

(
1
2 0
0 0

)
+

(
0 0
0 1

2

)
=

(
1
2 0
0 1

2

)
=
I

2

For |φ−〉:

ρAB = |φ−〉〈φ−| =


1√
2

0
0
− 1√

2

( 1√
2

0 0 − 1√
2

)
=


1
2 0 0 − 12
0 0 0 0
0 0 0 0
− 12 0 0 1

2



ρA =

 Tr

(
1
2 0
0 0

)
Tr

(
0 − 12
0 0

)
Tr

(
0 0
− 12 0

)
Tr

(
0 0
0 1

2

)
 =

(
1
2 0
0 1

2

)
=
I

2

and

ρB =

(
1
2 0
0 0

)
+

(
0 0
0 1

2

)
=

(
1
2 0
0 1

2

)
=
I

2

For |ψ+〉:

ρAB = |ψ+〉〈ψ+| =


0
1√
2
1√
2

0

( 0 1√
2

1√
2

0
)
=


0 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 0



ρA =

 Tr

(
0 0
0 1

2

)
Tr

(
0 0
1
2 0

)
Tr

(
0 1

2
0 0

)
Tr

(
1
2 0
0 0

)
 =

(
1
2 0
0 1

2

)
=
I

2

and

ρB =

(
0 0
0 1

2

)
+

(
1
2 0
0 0

)
=

(
1
2 0
0 1

2

)
=
I

2

For |ψ−〉:

ρAB = |ψ−〉〈ψ=| =


0
1√
2

− 1√
2

0

( 0 1√
2
− 1√

2
0
)
=


0 0 0 0
0 1

2 − 12 0
0 − 12

1
2 0

0 0 0 0



ρA =

 Tr

(
0 0
0 1

2

)
Tr

(
0 0
− 12 0

)
Tr

(
0 − 12
0 0

)
Tr

(
1
2 0
0 0

)
 =

(
1
2 0
0 1

2

)
=
I

2

and

ρB =

(
0 0
0 1

2

)
+

(
1
2 0
0 0

)
=

(
1
2 0
0 1

2

)
=
I

2
.
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