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Abstract

Motivation In the post-genome era high throughput technologies like DNA
arrays provide the massive expression profiling of thousands of genes and have
become a powerful tool for the state of the art scientific research especially in
relation to the treatment of complex, multifactorial diseases such as cancer.
Breast cancer is widely known as the most common malignancy in women
worldwide and the presents the second highest mortality rate. In breast cancer
patients, it is not the primary tumour, but its metastases at distant sites that
are the main cause of death. To establish a metastasis, tumour cells have
to invade their surrounding host tissue, enter the circulatory blood stream,
arrest in capillary beds of distant organs, invade the host tissue and proliferate.
These so-called circulating tumor cells (CTCs) are now considered to play a
key role in metastasis and their study and characterization is becoming pivotal
for the detection of cancer and metastasis at an early stage.

Goal During the recent couple of years a number of techniques have
been developed for the isolation of CTCs but research efforts encounter many
challenges such as the scarcity of CTCs in the patients’ blood. The CTC
detection methods are usually based on the physical properties of CTCs (e.g.
filtration based on size), or by using specific antibodies able to recognize specific
tumor markers such as the epithelial cell adhesion molecule (EpCAM). An
alternative, interesting approach is to follow a data-driven methodology that
through the use of statistics and computational techniques aims to identify
differences and similarities between the blood and tissue samples of cancer
patients and healthy populations. Potential discoveries in this endeavor can
provide answers for the molecular characterization of metastatic breast cancer
and the presence of CTCs.

Approach In order to proceed to a statistically sound genomic classification
of tissue and blood of breast cancer patients a data integration approach has
been designed. A large compendium of publicly available gene expression data
sets has been brought together and carefully merged in order to overcome
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study specific biases or platform related technical variations. This integration
methodology is then followed by a number of statistical comparisons between
the different in origin (blood or tissue) or in disease status (cancerous or
healthy) samples in order to reveal potential “biomarkers” for each case. These
biomarkers are genes that exhibit different behavior (e.g. over-expression) in
the aforementioned comparisons but in order to increase the sensitivity the sets
of discriminating genes are intersected and a common subset is identified. The
unique set of genes derived is then related to well curated sources of biological
knowledge, such as biological networks, and subjected to novel algorithmic
procedures so as to establish the underlying biological foundation and to
further elicit features (genes) for the supervised and unsupervised classification
of breast cancer patients.

Contributions The key deliverables of this work is the identification of a
27-genes signature as potential markers for the characterization of CTCs and
the metastatic cascade, and a number of computational methods along their
findings that take advantage of existing biological knowledge to fine tune the
derived signature for the supervised or unsupervised classification of patient
samples, as follows:

• Following the methodology that was briefly described above, 9 different
data sets publicly available from the Gene Expression Omnibus (GEO)
database were collated, assembled, and integrated, yielding more than
800 samples of gene expression values. The subsequent statistical analysis
and integration of results produced a “genes signature” of 27 genes as
candidate biomarkers related to the presence of CTCs and two of them
(CXCR4 and JUNB) were in fact found to be really CTC-related in a
biological “bench-top” experiment, effectively confirming the statistical
findings.

• The next question is whether the genes participating in the derived
signature are related and how they affect each other. By introducting
biological networks, these questions are translated to the Steiner tree
problem in graphs. This formulation and the corresponding solution in
a high quality protein-protein interaction network reveal the shortest
interconnect for the genes in our signature and enhance it with additional
central genes along the interconnecting paths.

• The ability of the 27-genes signature as a guiding, feature extraction and
generation tool for the classification or “clustering” of patient samples is
then examined, again using the underlying network information. We first
introduce a two-level classification scheme that uses as base classifiers
the “neighborhoods” of the 27 genes, which were induced using random
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walks in the biological graph. Secondly, for the problem of classification
into unknown categories (“clustering”) or the identification of new groups
of patients, a model-based statistical algorithm is adapted to use the
“neighbors” of the 27 genes that effectively alleviates the problem of
dimensionality.
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Cancer is a highly complex and heterogeneous disease which involves a
succession of genetic changes that eventually results in the conversion of normal
cells into cancerous ones. It is obvious that a complete understanding and
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knowledge of these processes requires the integration and analysis of massive
amounts of data as is being collected from current genomic, proteomic and
metabolomic platforms [Ge et al., 2003]. But it is not only the multiplicity of
the factors (and cellular levels) contributing to a particular disease framework
that imposes approaching the problem in a systematic way. Even for Mendelian
genetic disorders, nearly all of which have now been correlated with a specific
gene or set of genes [Hoh and Ott, 2004] due to remarkable advances in gene
mapping and bioinformatics, the relationship between genotype and phenotype
is not as simple as expected (and/or currently treated) [Scriver and Waters,
1999]. Because our knowledge of this domain is still largely rudimentary,
investigations are now routinely moving from being “hypothesis driven” to
being “data-driven” with analysis based on a search for biologically relevant
patterns. These technological advances have created enormous opportunities
for accelerating the pace of science. In this context, exploratory analyses is the
process of generating hypotheses that are later supported (or not) by the data
(e.g. hypothesis: gene x is responsible for a side effect of drug y) [Sfakianakis
et al., 2010a].

This data driven approach is the main theme of the current thesis. We are
interested in the hypothesis generation through the computational analysis
of high throughput, gene expression data, focusing, mainly, on the molecular
characterization of Breast Cancer and its metastatic cascade. Breast cancer
is widely known as the most common malignancy within the population of
western Caucasian women and is also the second most common type of cancer
with fatal outcome in female populations [Siegel et al., 2015]. In breast
cancer patients, it is not the primary tumor, but its metastases at distant
sites that are the main cause of death. A prominent theory on the cancer
progression and metastasis is the invasion of tumour cells into surrounding
stroma in order to subsequently intravasate and enter the blood circulation,
effectively, becoming Circulating Tumor Cells (CTCs) , which may represent
“metastatic intermediates” [Valastyan and Weinberg, 2011]. The importance
of CTCs, therefore, for early detection of cancer and metastasis has been
prominently reported in the last couple of years and a multitude of approaches
and techniques for their detection and characterization have been proposed
by the scientific community. Instead, what we followed is a multi-comparison
statistical methodology that aims to identify differences and similarities between
the blood and tissue samples of cancer patients and healthy populations.
Potential discoveries in this endeavor can provide answers for the molecular
characterization of metastatic breast cancer and the presence of CTCs.

Towards this aim, high throughput technologies like DNA microarrays
provide the massive expression profiling of thousands of genes and have become
a powerful tool for the state of the art scientific research [Van’t Veer et al., 2002].
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Nevertheless, whereas in traditional applications of pattern recognition and
data mining there are large number of samples with a small feature space, in
the area of bioinformatics the mass of data produced exhibit the exact reverse
characteristics: small sample size with a large number of features, a problem
commonly referred as the “curse of dimensionality” [Clarke et al., 2008]. In this
environment standard statistical and machine learning methods are likely to
over-fit the structures in the data, and the presence of “noise” puts statistical
analysis and inference under fire. To alleviate this problem, in addition to
standard computational techniques that are successfully employed in other
domains with similar characteristics (e.g. image recognition, computer vision,
etc), the use of prior biological knowledge can be invaluable as a dimensional
reduction technique, a heuristics generating strategy, as well as a means for
the validation of results or for the generation of further hypotheses.

Therefore, the objective of this chapter is primarily to lay the ground
and present the setting of our research. We briefly provide some background
information both from the biological domain point of view and from the compu-
tational and technical viewpoints. Subsequently, we present the main roadmap
of our work, the objectives and the main contributions. The succeeding
chapters expand on these topics.

1.1 Background on Biology and Breast Cancer

Since the focus of our work is within the confines of bioinformatics [Baldi
and Brunak, 2001], we start by providing some background information on
the domain: the molecular biology with emphasis on molecular genetics, the
pathology of Breast Cancer, and the circulating tumor cells as the mechanisms
for the creation of secondary tumors and metastases in cancer patients. Due
to the space limitations and the urge to proceed to the main subject of the
thesis, the exposition is brief and, of necessity, incomplete. The referenced
publications can provide a more thorough account of this material to the
interested readers.

1.1.1 DNA, RNA, and the “central dogma” of Biology

Cells are the fundamental working units of every living system. Inside their
nuclei (in the case of eucaryotes), a molecular sequence known as deoxyribonu-
cleic acid, or DNA, conveys the instructions needed to direct the activities of
the cells [Brown, 2006]. In fact, DNA is the primary molecule of inheritance as
it carries most of the genetic instructions used in the growth, development, and
functioning of nearly all organisms. It was discovered in 1869 by Swiss physi-
cian and biochemist Friedrich Miescher inside the nuclei of human white blood
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cells (leucocytes) [Dahm, 2008]. In 1953, American biologist James Watson
and English physicist Francis Crick concluded that the DNA molecule exists
in the form of a three-dimensional double helix, as depicted in Figure 1.1 [Wat-
son et al., 1953]. Another highly important molecule is the ribonucleic acid
(RNA). This is a single-stranded molecule and its main functionality is the
interpretation of the genetic information stored in the DNA.

DNA and RNA share a similar structure. They are composed of a series of
nucleotides and each nucleotide has three components: a phosphate group; a
pentose sugar (deoxyribose in the case of DNA, ribose in the case of RNA);
and a nitrogen-containing base. There are two basic categories of nitrogenous
bases: the purines (adenine [A] and guanine [G]), and the pyrimidines (cytosine
[C], thymine [T], and uracil [U]). RNA contains only A, G, C, and U (no T),
whereas DNA contains only A, G, C, and T (no U). These bases are paired
together by forming hydrogen bonds according to the pairing (binding) rules:
A always pairs with T in DNA or with U in RNA; G always pairs with C, in
the case of both, DNA and RNA. The double stranded form of DNA is kept
together through these bindings (Figure 1.1).

Figure 1.1: The double-strand helix of
DNA. Image courtesy of Nature Education.

The human genome, i.e. the to-
tal composition of genetic material
within a cell, is packaged into larger
units known as chromosomes. The
chromosomes are physically separate
molecules that range in length from
about 50 million to 250 million base
pairs (Figure 1.2). Human cells con-
tain two sets of chromosomes, one
set inherited from each parent. Each
cell, except sperm and eggs, contains
23 pairs of chromosomes — 22 “auto-
somes”1 (numbered 1 through 22) and
one pair of sex chromosomes (XX or
XY). Sperm and eggs contain half as
much genetic material (e.g., only one
copy of each chromosome) [Alliance,
2010].

The generic information encoded by DNA in a cell of an organism guides the
functioning of the cell through the creation of proteins. Proteins form enzymes
and macromolecules active in cellular structure and biochemical processes.
The complete set of proteins expressed by an organism at a particular time is

1An autosome is a chromosome that is not an “allosome”. An allosome is a sex chromosome.

http://www.nature.com/nature_education
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Figure 1.2: DNA is a double helix formed by base pairs attached to a sugar-phosphate
backbone. DNA is found inside a special area of the cell called the nucleus in a
packaged form that is called a chromosome. DNA is made of chemical building
blocks called nucleotides. There are four types of “nucleobases” forming pairs in the
DNA helix: adenine (A), thymine (T), guanine (G), and cytosine (C). The sequence
of these bases determines what biological instructions are encoded in a strand of
DNA. The complete DNA of an individual, her or his genome, contains about 3
billion bases and about 20,000 genes on 23 pairs of chromosomes. (Image courtesy
of www.myvmc.com)

called the proteome and, in contrast with the genome which is normally stable,
it is dynamically influenced by various factors, including internal and external
conditions of the cell.

The so called central dogma of molecular biology [Crick et al., 1970] defines
the production of proteins from DNA through the use of RNA, as illustrated
in Figure 1.3. Briefly, a specific sequence of DNA (an eukaryotic protein-
coding gene) is transcribed into pre-mRNA by the means of RNA polymerase.
This RNA is then usually modified (splicing) by an RNA- protein complex
called the spliceosome2. Once the pre-mRNA is processed (maturation), the
resulting mRNA message is then translated by the ribosome in order to produce
proteins (translation). The expression of a particular gene is defined as the
level (density) of mRNA produced by the transcription of this gene. The initial
product of genome expression is called transcriptome, a collection of RNA

2Sometimes a pre-mRNA message may be spliced in several different ways, allowing a
single gene to encode multiple proteins (alternative splicing).

http://www.myvmc.com
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molecules derived from those protein-coding genes whose biological information
is required by the cell at a particular time [Brown, 2006].

A gene is a specific segment of a DNA molecule that contains all the coding
information necessary to instruct a cell to synthesize a specific product, such
as an RNA molecule or a protein. Contained within the gene are segments that
we acknowledge as active in the coding process (exons), as well as segments
that are non-coding (introns). Each gene also represents a basic unit of a
person’s biological inheritance from his or her two parents. Genes can be
“mapped” because each occupies a specific location (or locus) on a chromosome
(out of the 23 pairs of chromosomes), and each chromosome can be specifically
identified as well. Currently, the estimated number of human genes is around
20,000 [Ezkurdia et al., 2014].

By definition, human genes function to promote and regulate biological
activity that is considered necessary and productive for the functioning of the
organism. It is not correct to state that a gene codes for a disease or predisposes
a person to a specific disorder. Rather, it is a deleterious mutation in a gene
that may predispose a person to a specific disease or disorder [Hernandez et al.,
2006].

1.1.2 Breast Cancer

Cancer is the name given to a collection of related diseases (over 100), when
some of the body’s cells begin to divide without stopping and spread into
surrounding tissues. Cancer occurs as a result of mutations, or abnormal
changes, in the genes responsible for regulating the growth of cells and keeping
them healthy. Normally, the cells in our bodies replace themselves through
an orderly process of cell growth: healthy new cells take over as old ones die
out. But over time, mutations can alter the behaviour of certain genes which
results in uncontrolled cell division and the formation of tumors. If untreated,
the malignant cells eventually can spread beyond the original tumor to other
parts of the body and cause metastasis, which is estimated to be the cause of
death to around 90% of the cases [Weigelt et al., 2005].

The term “breast cancer” refers to a malignant tumor that has developed
from cells in the breast. Usually breast cancer either begins in the cells of the
lobules, which are the milk-producing glands, or the ducts, the passages that
drain milk from the lobules to the nipple. Less commonly, breast cancer can
begin in the stromal tissues, which include the fatty and fibrous connective
tissues of the breast. Breast cancer is the most common form of cancer in
women, rarely affecting also men [Anderson et al., 2010], with an estimated
234,190 new cases and 40,730 deaths in 2015 in the United States alone [Siegel
et al., 2015] (Figure 1.4). It was first documented in ancient Egyptian writings,
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Figure 1.3: The flow of information from DNA to proteins in a eucaryote organism.
The coding and noncoding regions of DNA are transcribed into messenger RNA
(mRNA) by the enzyme RNA polymerase. The introns are removed during the initial
mRNA processing and the remaining exons are then spliced together. The spliced
mRNA molecule (red) exports out of the nucleus through and when it arrives in the
cytoplasm, it is translated to a protein. Image courtesy of Nature Education.

the Edwin Smith Papyrus (copy of trauma surgery) where 8 cases of breast
malignancy were recorded [Lakhtakia, 2014].

Breast cancer’s treatment options include local therapy, such as surgery
and radiation, and systemic therapy e.g. chemotherapy. The choice of the
specific treatment plan depends on a number of factors, such as the age, the
size and location of the tumor, and, of course, the stage of the cancer. Stage
I and stage II are early stages of breast cancer and are usually treated by
mastectomy and/or radiotherapy. At stage III the tumor is large and the
cancer has spread to lymph nodes or other tissues near the breast, while at
stage IV the cancer has metastasized beyond the breast and underarm lymph
nodes to other organs and parts of the body. The most frequent metastatic
sites are the bones, the lungs, the skin, and the brain.

Although treatments like hormone therapy and chemotherapy can slow
down the spread of cancer or relieve the symptoms, metastatic breast cancer,
unfortunately, remains incurable and therefore early detection is very important.
A screening mammogram, which is a type of x-ray, is the best tool available for

http://www.nature.com/nature_education
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(a) Incidence Rates (b) Death Rates

Figure 1.4: Trends in cancer rates for selected sites by sex, United States, 1930 to
2011. (Reprinted with permission from [Siegel et al., 2015].)

finding breast cancer early, before symptoms appear. Thanks to the routine use
of those screening mammograms in developed countries, more and more women
diagnosed with breast cancer are detected at an early stage. Despite early
detection and initial treatment, approximately 40% of the diseased women
will develop distant metastasis, i.e. development of new tumors in different
organs [Weigelt et al., 2005]. Most recurrences appear within the first 2 or 3
years after treatment, but breast cancer can recur 10 years or more after the
initial diagnosis [Harris et al., 2012].

Due to the prevalence of breast cancer and its importance for public health,
there is a vast interest on its understanding and treatment in recent years.
Although currently scientists do not have yet enough information to provide
definite answers, a number of risk factors like the age (women over the age of
60 are at a higher risk), ethnicity (more frequent in Caucasian women), and
family history have been reported. Finally, research has identified the relation
of certain genetic alterations (mutations) in genes such as BRCA1 and BRCA2
to the emergence of breast cancer. Based on these findings, the importance of
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genetic testing becomes more and more acknowledged [Jolie, 2013].

1.1.3 Circulating Tumor Cells

Metastatic disease is responsible for over 90% of cancer deaths [Fidler, 2002,
Wittekind and Neid, 2005]. During the first stages of the metastatic cascade,
cancer cells escape from a primary tumor mass and intravasate allowing their
lymphohematogenous dissemination to distant sites of the body. Most of
these “circulating tumor cells” (CTCs) that depart the primary tumor will
die, whereas as few as 0.01% of CTCs are likely to give rise to metastases, as
suggested by pre-clinical models [Chaffer and Weinberg, 2011]. Once cancer
cells extravasate in anatomically distant organs, they can be found as single
cells or small number of clustered cells referred to as “disseminated tumor cells”
(DTCs) [Zhe et al., 2011,Massagué and Obenauf, 2016] (see also Figure 1.6.)
Early findings
The hypothesis that circulating tumour cells (CTCs) are a fundamental
prerequisite to metastasis was first proposed in the mid 19th Century by
Thomas Ashworth, an Australian pathologist [Ashworth, 1869], when he
wrote (see Figure 1.5 for the full article):

The fact of cells identical with those of the cancer itself being seen
in the blood may tend to throw some light upon the mode of origin
of multiple tumours existing in the same person.

Progression-free and overall survival
Progression-free survival (PFS) is defined as the time elapsed between treat-
ment initiation and tumor progression or death from any cause, with censoring
of patients who are lost to follow-up [Green et al., 2012]. On the other hand,
Overall survival (OS) is based on death from any cause, not just the condition
being treated.

Increasing evidence suggests that circulating tumor cells (CTCs) in the
peripheral blood are associated with reduced progression-free survival (PFS)
and overall survival (OS) in metastatic disease [Bidard et al., 2008,Hayes et al.,
2006, Botteri et al., 2010, Cristofanilli et al., 2004]. Whereas the detection
of CTCs before the start of a new treatment has been associated with poor
prognosis, the enumeration of CTCs shortly after the initiation of therapy
provides additional information regarding treatment response [Cristofanilli
et al., 2004,Hayes et al., 2006].

Cancer patients have only between 5 and 50 CTCs per teaspoon of blood
(or approximately 1 CTC per billion blood cells!!), so their presence is dwarfed
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Figure 1.5: The complete article of [Ashworth, 1869] where it was first observed the
similarity between the cancer cells and the cells found in the blood of diseased patient.
The article can be found at http://hdl.handle.net/11343/23133 (accessed on February
15, 2016.)

by blood cells (Figure 1.7). However, in the past decade emerging technologies
have, for the first time, allowed the isolation of CTCs from patients’ blood
samples. Some methods, among the first established, rely on the cells’ physical
properties. When a blood sample settles or is spun in a centrifuge, red blood
cells, white blood cells, and other components of blood separate into layers.
Based on their buoyancy, CTCs can be found in the white blood cell fraction.
Then, because CTCs are generally larger than white blood cells, a size-based
filter can divide the cell types.

Dissemination of cancer cell in the blood corresponds to one of the first step
of the metastatic process (when cancer cells detach from the primary tumor and
intravasate), while micrometastasis in a distant organ, like the bone marrow,
reflects a more advanced stage [Bidard et al., 2013]. In early breast cancer,
CTC count is also a prognostic biomarker, not correlated with the other usual
prognostic factors [Bidard et al., 2016]. Considering the prognostic effect of

http://hdl.handle.net/11343/23133
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Figure 1.6: The metastatic cascade. Metastasis can be envisioned as a process that
occurs in two major phases: (i) physical translocation of cancer cells from the primary
tumor to a distant organ and (ii) colonization of the translocated cells within that
organ. (A) To begin the metastatic cascade, cancer cells within the primary tumor
acquire an invasive phenotype. (B) Cancer cells can then invade into the surrounding
matrix and toward blood vessels, where they intravasate to enter the circulation, which
serves as their primary means of passage to distant organs. (C) Cancer cells traveling
through the circulation are CTCs. They display properties of anchorage-independent
survival. (D) At the distant organ, CTCs exit the circulation and invade into the
microenvironment of the foreign tissue. (E) At that foreign site, cancer cells must be
able to evade the innate immune response and also survive as a single cell (or as a
small cluster of cells). (F) To develop into an active macrometastatic deposit, the
cancer cell must be able to adapt to the microenvironment and initiate proliferation.
(Reprinted with permision from [Chaffer and Weinberg, 2011])

CTCs, it is of interest to determine how the effects of such single cells are diluted
within the peripheral blood circulation. Clinical evidence suggests that the
number of CTCs before treatment is an independent predictor of progression-
free survival (PFS) and overall survival (OS) in patients with metastatic breast
cancer (MBC), with a prognostic power independent of and either equivalent
or superior to tumor burden and disease phenotype [Cristofanilli et al., 2004,
Cristofanilli et al., 2007]. Particularly, Cristofanilli et al. [Cristofanilli et al.,
2004] reported that MBC patients with >5 CTCs/7.5 ml of whole blood, as
compared with the patients with fewer than 5 CTCs/7.5 ml of blood, had a
shorter median PFS and shorter OS. This poor prognosis is confirmed in a
pooled meta-analysis of individual patient data from 1,944 MBC patients from
20 studies [Bidard et al., 2014]. This threshold seems also to agree with the
data shown in Figure 1.7.
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Furthermore, based on clinical data, Giuliano et al. [Giuliano et al., 2014]
reported a highly different anatomical distribution of metastatic sites in patients
with advanced breast cancer according to their baseline CTC counts (>5 versus
<5 CTCs/7.5 ml). Thus, a prevalence of bone involvement or soft-tissue/lymph
node involvement is higher in patients with >5 CTCs/7.5 ml or with <5
CTCs/7.5 ml, respectively.

Considering the lower concentration of CTCs detected in non-metastatic
compared with metastatic breast cancer, this cut-off point has changed to a
value of >1 CTC in order to assess the prognostic role of CTCs. The large
pooled analysis of individual data from 3,173 patients with non-metastatic
(stage I-III) breast cancer from five breast cancer institutions conducted by
Janni et al. demonstrates the significant prognostic relevance of CTCs in
primary breast cancer patients, independent of the particular frequency of
presence [Janni et al., 2016]. Also, [Maltoni et al., 2015] demonstrated that
CTC-positivity in pre-surgery early breast-cancer patients often had negative
prognostic features, i.e. large tumor dimension, high proliferation, negative
receptor status, lymph node positivity and it was highly correlated with vascular
invasion. Thus, the utility of CTCs as a predictive and prognostic marker
appears to be of great importance in patients with early breast cancer, since it
is assumed that their presence at the time of primary diagnosis could predict
early disease recurrence and prevail reduced survival based on preliminary
prospective clinical trials [Franken et al., 2012,Lucci et al., 2012].

Taking advantage of the recent achievements in detecting and quantifying
rare CTCs (as few as 1 CTC per 106 - 108 leukocytes) in the peripheral blood
of cancer patients, the researchers can explore their clinical effectiveness by
real-time monitoring of disease progression and treatment responses based on
repeated blood sampling [Joosse et al., 2015,McInnes et al., 2015,Janni et al.,
2016]. However, beyond the enumeration of CTCs, the delineation of their
gene and/or protein expression profiles, as well as the identification of the
biological properties (e.g. processes, pathways) that govern these rare cells is
a challenging issue [Gradilone et al., 2011,Giuliano et al., 2014].

1.2 Measuring gene expression using microar-
rays

DNA microarrays are a high throughput technology used to measure the
expression levels of thousands of genes, in some cases all of the genes in a
genome, simultaneously. The fundamental idea behind most microarrays is to
measure the amount of the different types of mRNA molecules in a cell, thus
indirectly measuring the expression levels of the genes that are responsible
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Figure 1.7: Prevalence of CTCs in 7.5 mL of blood of 145 women donors, 199
women with nonmalignant diseases, 188 samples from 123 metastatic prostate cancer
patients, 1,316 samples from 422 metastatic breast cancer patients, 168 samples from
99 metastatic lung cancer patients, 333 samples from 196 metastatic colorectal cancer
patients, 53 samples from 29 metastatic ovarian cancer patients, 21 samples from 16
metastatic pancreatic cancer patients, and 104 samples from 79 patients with other
metastatic cancers.(Reprinted with permision from [Allard et al., 2004].)

for the synthesis of those particular mRNA molecules [Brown and Botstein,
1999,Lockhart and Winzeler, 2000].

Depending on the type of the probe material, microarrays can be employed
for different purposes, e.g. transcriptomics (DNA microarray) or proteomics
(Protein microarray) data analysis. In this thesis, the term “microarray” will
mostly be used to refer to DNA gene expression microarrays, rather than
protein or other types of arrays.

The concept behind this technology relies on accurate binding, also called
hybridization, of strands of DNA with their precise complementary copies in
experimental conditions where one sequence is also bound onto a solid state
substrate (glass). Basically, a microarray chip is composed of DNA fragments
(probes) that represent specific gene coding regions. Purified RNA fragments
from a biological sample are then fluorescently or radioactively labeled and
hybridized to the chip. Once the hybridization is complete, the chip is washed
to remove non-hybridized fragments. The chip is then processed by a laser
scanner in order to detect the areas of the chip where hybridizations occurred
(see Figure 1.8).

Microarrays can be used to measure either absolute transcript concentra-
tions or relative transcript concentrations (i.e. expression ratios). Traditionally,
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Figure 1.8: The steps required in a microarray experiment. Original work available
in Wikipedia

two-channel, cDNA array data (e.g. using Cy3 and Cy5 dyes) are usually
used to measure ratios, whereas single channel, oligonucleotide array data (e.g.
Affymetrix) are intended to represent absolute expression values.

1.2.0.1 The Affymetrix GeneChip R©

The GeneChip R©, which is manufactured by Affymetrix, is an oligonucleotide
array and is the most commonly used type of DNA microarray. They differ
slightly in operation from other kinds of arrays. Each array will contain
hundreds of thousands of probe spots and each of these spots will in turn
contain millions of copies of the individual 25 base long DNA oligonucleotide.

Each gene that is being targeted is represented by typically (but not
necessarily always) 11 pairs of these probes [Irizarry et al., 2003]. This
set of probes contains 11 perfect match (PM) probes, which are exactly
complementary to the DNA sequence of a subset of 25 bases of the target gene.
Each PM probe has a corresponding mismatch probe (MM), which contains
the same 25 base long sequence as the PM probe, except for the fact that the
middle base, or the 13th base in the chain, is substituted for the complement
of the 13th base of its corresponding PM probe; so for example, a G in the
13th base of a PM probe will be replaced with a C in the MM probe. This is
meant to give an estimate of non-specific binding, which occurs when mRNA
that is not targeted binds to a PM probe.

1.3 Analysis of gene expression data

The typical input of the computational stage in an experimental study using
microarrays is the expression values of multiple (usually thousands) of genes
measured in a number of different conditions or experimental setups. The
different conditions could be different individuals that can have their own char-
acteristics and phenotypes (e.g. clinical information, cancer stage, treatment
plans, etc), or could correspond to different time points. There are public
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databases like the Gene Expression Omnibus (GEO3) [Edgar et al., 2002a] and
ArrayExpress4 [Parkinson et al., 2009] that store data from high-throughput
functional genomic experiments, and provides these data for reuse to the
research community.

Genotype and phenotype
The genotype is the unique genome of an individual and therefore corresponds
to the individual’s complete heritable genetic information.
The phenotype is a description of the actual physical characteristics. This can
include a person’s appearance, like eye color and height, the disease status
and history, etc.

The data for the downstream statistical analysis are usually presented in
matrix form X ∈ RMxN, where M is the number of genes (rows) and N is
the number of conditions or observations (columns). This matrix is usually
referred to as the gene expression matrix. The values xi,j in this matrix are
numeric, denoting the absolute or relative intensity (expression) of a gene i in
a condition j.

The data at this point may need to undergo a certain range of preprocess-
ing steps. Typical preprocessing techniques include imputation in order to
address missing values, outlier detection, and removal of features that appear
to be redundant. Missing data can occur systematically as a result of the
microarray fabrication, especially for cDNA arrays, or for various reasons
such as insufficient resolution on images or due to dust and scratches in the
slides. Filling the missing data with techniques such as the “K-nearest neigh-
bors” [Troyanskaya et al., 2001] can address this problem and can produce
complete data matrices for downstream analyses, although many alternative
approaches exist [Liew et al., 2011, Shashirekha and Wani, 2015]. Outliers
are measurements that are substantially different from the majority of the
other values and can severely effect further statistical analysis. In order to
identify them, Z-scores or coefficients of variation, and their robust versions
using the median and the median absolute deviation (MAD), can be used with
a cutoff value5. The values exceeding the cutoff threshold can then be replaced
with the maximum permitted value (“trimming”). Finally, features that do not
exhibit much variation can be totally excluded in order to reduce the number
of genes to evaluate. To this end, measures of variability such as the standard

3http://www.ncbi.nlm.nih.gov/geo/ (accessed on May 6, 2016)
4https://www.ebi.ac.uk/arrayexpress/ (accessed on May 6, 2016)
5The z-score of a gene g that has mean value ĝ, standard deviation σ, and median g̃ is

(gj− ĝ)/σ. The coefficient of variation is defined as σ/ĝ while its median absolute deviation
is the median value of |g− g̃|

http://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/arrayexpress/
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deviation or the “interquartile range” are used6.
Typical preprocessing steps may also include specific data transformation,

such as “standardization”, logarithmic (log) transformation, and discretization.
Standardization or normalization attempts through a linear transformation
to make all genes have the same range of values, so that the statistical or
data mining tools used next are not affected by features that show larger 1st
order (e.g. mean) or 2nd order (e.g. standard deviation) statistics. Centering
the values by subtracting the sample mean, median, or minimum value, and
standardizing by dividing by the standard deviation (z-scoring), MAD, or the
range (min-max normalization) are used frequently. The log transformation,
instead, is a non-linear transformation and it is very popular for a lot of
reasons. First, the expression values usually exhibit high skewness, with
a lot of genes having low intensities followed by a long tail of genes that
show larger intensities. The logarithmic transformation reduces much of this
skewness, making the visual inspection of the data easier. It also improves the
estimation of the variance and make the data amenable to statistical methods
that assume normality. Other transformations, such as Tukey’s proposed
“ladder of power transformations”, can also be used [Box and Cox, 1964]. On
the other hand, discretization allows the transformation of continuous data
to discrete or even binary values since researchers are usually interested in
identifying three categories of genes with respect to the increase or decrease
in their expression when compared to a reference or to their mean value: (i)
up-regulated (increased expression, enrichment, and transcript concentration),
(ii) down-regulated (decreased expression), and (iii) non-regulated. A popular,
non parametric discretization method is that of Fayyad based on Minimum
Description Length Principle (MDLP) [Fayyad and Irani, 1993], but several
others exist [Potamias et al., 2004, Pensa et al., 2004, Bolón-Canedo et al.,
2010,Li et al., 2010].

After this preprocessing stage, the core of the statistical and computational
analysis is performed. This analysis potentially includes the uncovering of
differentially expressed genes, the identification of hidden clusters in the data,
or the generation of hypotheses and models for the classification of new unseen
data into a set of known categories. We describe each of these tasks in the
following paragraphs.

1.3.1 Differentially expressed genes

Researchers and biologists are especially interested in identifying genes that
behave differently in different conditions than the majority of the other genes.

6The interquartile range is defined as the difference between the 25% and 75% quartiles.
By definition, this range contains the 50% of the observed values.
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When we analyse gene expression data from microarrays, the different behavior
is related to the amount of the mRNA produced and therefore to the intensity
values in the gene expression matrix. We call these genes “differentially
expressed” [Dudoit et al., 2002b].

Finding the differentially expressed genes is not important only for the
biologists but it is usually crucial for the statistical analysis as well. As we
describe in more detail in Section 1.4.1, the size difference between the genes
(rows) and the conditions (columns) in the input data puts a lot of strain to the
subsequent data mining and machine learning processing. The identification
of a small subset of informative genes will then greatly alleviate this problem.

Usually, the motivation behind the use of microarrays is a research question
involving the comparison of two groups or conditions, such as the cancer
samples versus the healthy ones, although more classes are also frequently
compared. In such comparative two-group experiments the simpler approach
is to check the expression of each single gene in the two groups, while more
complex approaches could consider the expression of many genes in combination.
Visualization techniques such as “heatmaps” (Figure 1.9), boxplots, etc. can
be used as a first step to get a coarse understanding of the expression of genes
in the different conditions. Nevertheless, since we try to use the expression
of genes in a limited number of cases in order to draw general conclusions for
the population, the analysis of gene expression data lies in the realm of the
“statistical inference” [Casella and Berger, 2001]. There is a need therefore for
quantification, and the calculation of the statistical significance of any findings
is quite important.

One of the most simple strategies for finding differential expression of
genes is the so called fold change, where a gene was considered to have
significantly different expression in the two conditions or groups if the ratio of
its mean expressions in the two groups is above some cut-off value. Usually, the
comparison is done in the logarithmic scale and therefore a two-fold change (i.e.
double of the expression) means that the difference of the mean expressions
to be 1. The Fisher and Golub scores put similar focus on the difference of
a gene’s average expression in the two conditions, but also emphasize their
“separability” by incroporating the standard deviations, as shown below [Golub
et al., 1999]:

SFisher =
(µ1 − µ2)

2

σ21 + σ
2
2

SGolub =
|µ1 − µ2|

σ1 + σ2
(1.1)

where µ1, µ2 are the mean expression values of the gene in the two conditions
and σ1, σ2 the corresponding standard deviations. Based on these scores the
genes can be ranked in terms of their discriminating power or separability of
the two classes or conditions.



18 Chapter 1. Introduction

Figure 1.9: An example of a “heatmap” visualization, from [Notas et al., 2015]. Each
column represents a sample and each row is a gene. Samples have been grouped
according to the “dmfs” (“distant metastasis, free survival”) variable. The selected
genes are shown to have different expression in the metastatic samples.

Similarly, the two-sample t test is a generalization of the fold change
that takes into account also the variability (standard deviation) of the gene’s
expression in the two conditions. t tests have been used extensively7 due to
their flexibility (e.g. one can assume equal or different group variances (i.e
Welch’s test)) and easy computation, and their interpretability and the strong
connection with the null hypothesis significance testing (and the notorious
p-value). Nevertheless, because of their sensitivity when the variance is low,
modified versions of t-test have been proposed such as the “moderated t statistic”
of [Smyth, 2005] and the Significance Analysis of Microarrays (SAM) [Tusher
et al., 2001]. SAM in particular uses the following adjusted t statistic:

d(g) =
x̄1(g) − x̄2(g)

s(g) + s0
(1.2)

where x̄1(g), x̄2(g) are the mean expression values of gene g in the two
conditions, s(g) is its “gene-specific scatter” (pooled standard deviation), and
s0 is a “fudge factor” computed so that it minimizes the coefficient of variation

7Perhaps even excessively!
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of the s(g) values (i.e. for all genes)8. SAM then performs a large number
of permutations, computes dp(g) for each permutation p, and averages these
values to estimate the “expected relative difference” dE(g). A user specified ∆
parameter can be used to identify genes that deviate more than that from their
expected relative difference and consider them as significantly differentiating
genes. At the same time, this parameter can estimate the number of “false
discoveries” based on the permutations, and therefore the False Discovery Rate
(FDR, see box below) is automatically calculated. In reverse, a researcher
can pre-specify a cut-off value for the FDR, i.e. the expected proportion of
false discoveries they can tolerate, and then SAM can calculate and use the
corresponding ∆ parameter.

False-discovery rate (FDR) and q-value

The False Discovery Rate (FDR) is the expected proportion of false discoveries
(type 1 errors) among all statistically significant hypotheses identified by a
hypothesis test [Benjamini and Hochberg, 1995a]. It is used to adjust a
hypothesis test in a multiple testing scenario. Given a number of false
positives V and a number of all positives R, the FDR can be written as:
FDR = E(V/R). The q-value for a specific hypothesis test is the minimum
FDR threshold at which the test would be regarded as significant.

There are a lot more techniques, ranging from model based methods,
e.g. ANOVA (Analysis of Variance) models [Kerr and Churchill, 2001] to
non-parametric tests such as RankProd [Hong et al., 2006]. [Drăghici, 2011]
contains an extensive list of methods and their background.

1.3.2 Cluster Analysis

When the research question is related to the identification of sets of genes or
sets of experiments that exhibit common behavior (e.g. similar gene expression
patterns), a large assortment of techniques for clustering are relevant. The
goal is to discover these clusters (groups) of observations in order to reveal
potentially new phenotypes when clustering the observations (samples, experi-
ments), or to identify genes with similar functions. In the machine learning
community this is usually called unsupervised classification since there is no
apriori knowledge about these groupings.

8In more detail, [Tusher et al., 2001] propose the following computation: Let sa be the
a-th percentile of the {s(g)} values, and da(g) the gene specific value of Equation (1.2) when
it uses sa as the fudge factor. For a ∈ {0, 5, . . . 100}, compute the median absolute deviation
(mad) from the median, madj(a), for each [qj, qj+1] interval of percentiles. Then, find the
â value of a that minimizes the coefficient of variation of these madj(a) values and use the
corresponding sâ as the fudge factor.
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Cluster analysis techniques can be hierarchical, when the result is a hierarchy
of virtually nested groups, or partitional (non-hierarchical). Hierarchical
clustering can be divisive, i.e. top-down, or agglomerative, i.e. bottom-up.
In either case, the choice of the distance metric and the “linkage” method to
be used is important. Typical choices for distances include the Euclidean or
the (inverse) correlation coefficient9. The linkage criterion defines the distance
between two groups of objects based on the distances of their members and it’s
used for the splitting of groups, in the case of divisive clustering, or the merge
of groups in the case of agglomerative. Possible cases for the linkage used are
the “single” linkage (the minimum pairwise distance between the objects of the
different sets), the “complete linkage” (the maximum pairwise distance), the
average linkage, and the Ward’s criterion that splits or merges the groups in
order to minimise the total within-group variance. Hierarchical agglomerative
clustering has been used extensively in bioinformatics after the seminal paper
of [Eisen et al., 1998].

In the partitional or non-hierarchical clustering, algorithms try to find a
division of the set of data points into non-overlapping clusters such that each
data point is in exactly one cluster. Example of a non-hierarchical algorithm
is the k-means where each cluster is represented by its “centroid” [Hartigan,
1975]. In k-means, each data point is assigned to the cluster with the “closest”,
in terms of Euclidean distance, centroid. Another example is the Partitioning
Around Medoids (PAM) that implements the k-medoids algorithm [Kaufman
and Rousseeuw, 2009]. Similarly to k-means, this algorithm attempts to find a
segmentation of the input data so as to minimize the distance between points
labeled to be in a cluster and a point designated as the center of that cluster.
The difference is that k-medoids choose a specific data point, called “medoid”,
as the cluster center in each iteration and can use non-Euclidean distances as
well. PAM is a common realization of the k-medoids clustering that uses greedy
search in order to find the solution: at each iteration a swap is performed
between a medoid object i and non-medoid object j if this re-arrangement
produces a better clustering. Another adaptation of PAM uses a silhouette
measure, which contrasts the average proximity of a data point to the other
points in the same cluster with its average proximity to the data points in the
nearest cluster to which it is not assigned [Van der Laan et al., 2003]. Finally,
model based clustering [Yeung et al., 2001], such as Gaussian mixture models,
can provide a well-grounded, theoretically appealing statistical model for the
evaluation of clustering results, but some structure needs to be imposed to
limit the number of parameters to be estimated [Banfield and Raftery, 1993]
(see also Section 1.4.1.1 for the regularization techniques).

9If ρij is the Pearson correlation coefficient of two vectors i and j, then dR ≡ 1− ρij can
be used as distance metric since similar (e.g. linear dependent) vectors will have dR = 0.
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In the partitioning class of cluster algorithms the number of clusters to
identify is given as input. The problem of how many clusters to search for
can be usually addressed by techniques such as cross validation or resampling
where increasing values for the number of clusters are examined and the one
that maximizes a criterion, like the average silhouette, is selected. A notable
resampling technique is consensus clustering where different values for the
number of clusters are tried and the most “stable” clustering is chosen [Monti
et al., 2003].

Finally, more “exotic” cluster analysis techniques include biclustring and
spectral clustering. Biclustering is a set of techniques that perform clustering
in the two dimensions (samples, genes) concurrently [Madeira and Oliveira,
2004,Alevyzaki et al., 2016]. Contrary to the previous methods, biclustering
algorithms try to identify groups of genes that show similar activity patterns
under a specific subset of the experimental conditions or groups of samples.
Non-negative matrix factorization is a linear factorization that can be used
for biclustering [Carmona-Saez et al., 2006]. Spectral clustering, on the other
hand, uses the spectral decomposition of an input similarity matrix to derive
the first k eigenvectors and then performs clustering using k-means in the
matrix containing these eigenvectors. More details for spectral clustering can
be found in [Pentney and Meila, 2005].

1.3.3 Classification

The landmark paper of Golub et al [Golub et al., 1999] represented the first
demonstration gene expression profiling could be used to identify new cancer
subtypes or assign tumors to known classes. Interestingly, the paper also
demonstrated the use of unsupervised learning (clustering) for a supervised
learning task.

[Dudoit et al., 2002a] and [Rogers et al., 2005] provide a relevant review of
techniques for supervised learning but there are many classification algorithms
originated from the Machine Learning community [Murphy, 2012]. [Slawski
et al., 2008] provides a comprehensive list of such techniques used in the
microarray data analysis.

1.4 Challenges in the microarray analysis

At first sight, microarray data analysis can be framed as an application of
the classical statistical analysis of experimental data as formulated by the
pioneering works of Karl Pearson, Ronald A. Fisher, Jerzy Neyman and others,
but this could not be further from truth. There are a couple of issues innate
to the application domain and the technologies used that make the analysis of
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microarray data quite challenging. In this section, we describe in more detail
some of these issues.

1.4.1 High Dimensional Data

The data analysis with microarray gene expression data is always challenging
because of the high dimensionality inherent in these datasets. For example it is
frequently the case that we have a few tens of samples/cases and on the other
hand thousands of genes to be used as features. The high dimensions, not only
in bioinformatics but also in image processing, text mining, and other fields,
are characterized by unintuitive geometric properties that not only puzzle the
researchers but also put familiar 2-d or 3-d computational methods in a lot of
trouble.

Pedro Domingos has provided a great summary of the problems one face
in higher dimensions [Domingos, 2012]:

Our intuitions, which come from a three-dimensional world, often
do not apply in high-dimensional ones. In high dimensions, most
of the mass of a multivariate Gaussian distribution is not near the
mean, but in an increasingly distant “shell” around it; and most
of the volume of a high-dimensional orange is in the skin, not the
pulp. If a constant number of examples is distributed uniformly in
a high-dimensional hypercube, beyond some dimensionality most
examples are closer to a face of the hypercube than to their nearest
neighbor. And if we approximate a hypersphere by inscribing
it in a hypercube, in high dimensions almost all the volume of
the hypercube is outside the hypersphere. This is bad news for
machine learning, where shapes of one type are often approximated
by shapes of another.

[Hayes, 2011] provides an accessible description of these “strange” geometric
properties in higher dimensional spaces using the behavior of a unit ball as an
example. The volume of a ball of radius r in the n dimensions is given by the
formula [Scott, 2015]:

Vn(r) =
πn/2rn

Γ(1+ n
2
)

(1.3)

where Γ is the Gamma function, for which we have Γ(x+ 1) = xΓ(x) and in
the case of natural numbers Γ(m + 1) = m!. It can be easily shown that by
increasing the number of dimensions by two, that is going from n to n+ 2, the
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smaller fraction of the cube as n increas-
es. There’s a simple, intuitive argument 
suggesting that the trend will continue: 
The regions of the cube that are left va-
cant by the ball are the corners. Each 
time n increases by 1, the number of 
corners doubles, so we can expect ever 
more volume to migrate into the nooks 
and crannies near the cube’s vertices.

To go beyond this appealing but non-
quantitative principle, I would have to 
calculate the volume of n-balls and n-
cubes for values of n greater than 3. 
The calculation is easy for the cube. An 
n-cube with sides of length s has vol-
ume sn. The cube that encloses a unit 
ball has s = 2, so the volume is 2n.

But what about the n-ball? As I have 
already noted, my early education 
failed to equip me with the necessary 
formula, and so I turned to the Web. 
What a marvel it is! (And it gets better 
all the time.) In two or three clicks I 
had before me a Wikipedia page titled 
“Deriving the volume of an n-ball.” 
Near the top of that page was the for-
mula I sought:

V(n, r ) = π n
2 rn

Γ( n
2 + 1)

.

Later in this column I’ll say a few 
words about where this formula came 
from, both mathematically and histori-
cally, but for now I merely note that the 
only part of the formula that ventures 
beyond routine arithmetic is the gamma 
function, Γ, which is an elaboration on 
the idea of a factorial. For positive inte-
gers, Γ(n+1) = n! = 1×2×3× ...×n. But 

the gamma function, unlike the facto-
rial, is also defined for numbers oth-
er than integers. For example, Γ(½) is 
equal to √π–.

The Incredible Shrinking n-Ball
When I discovered the n-ball formula, 
I did not pause to investigate its prov-
enance or derivation. I was impatient 
to plug in some numbers and see what 
would come out. So I wrote a hasty 
one-line program in Mathematica and 
began tabulating the volume of a unit 
ball in various dimensions. I had defi-
nite expectations about the outcome. 
I believed that the volume of the unit 
ball would increase steadily with n, 
though at a lower rate than the volume 
of the enclosing s = 2 cube, thereby 
confirming Bellman’s curse of dimen-
sionality. Here are the first few results 
returned by the program:

n V(n,1)

≈
≈
≈
≈

1 2
2 π 3.1416
3 4

3 π 4.1888
4 1

2 π2 4.9348
5 8

15 π2 5.2638

I noted immediately that the val-
ues for one, two and three dimensions 
agreed with the results I already knew. 
(This kind of confirmation is always 
reassuring when you run a program 
for the first time.) I also observed that 
the volume was slowly increasing with 
n, as I had expected.

But then I looked at the continuation 
of the table:

n
1 2
2 π 3.1416
3 4

3 π 4.1888
4 1

2 π2 4.9348
5 8

15 π2 5.2638
6 1

6 π3 5.1677
7 16

105 π3 4.7248
8 1

24 π4 4.0587
9 32

945 π4 3.2985
10 1

120 π5 2.5502

V(n,1)

≈
≈
≈
≈
≈
≈
≈
≈
≈

Beyond the fifth dimension, the vol-
ume of a unit n-ball decreases as n in-
creases! I tried a few larger values of 
n, finding that V(20,1) is about 0.0258, 
and V(100,1) is in the neighborhood of 
10–40. Thus it looked very much like 
the n-ball dwindles away to nothing as 
n approaches infinity.

Doubly Cursed
I had thought that I understood Bell-
man’s curse: Both the n-ball and the 
n-cube grow along with n, but the cube 
expands faster. In fact, the curse is far 
more damning: At the same time the 
cube inflates exponentially, the ball 
shrinks to insignificance. In a space of 
100 dimensions, the fraction of the cubic 
volume filled by the ball has declined to 
1.8×10–70. This is far smaller than the 
volume of an atom in relation to the 

r = 1
r = 1

r = 1

s = 2s = 2

s = 2

1-ball in 1-cube

2-ball in 2-cube

3-ball in 3-cube

volume ratio = 1.0

volume ratio = 0.79 volume ratio = 0.52

Balls in boxes offer a simple system for studying geometry across a series of spatial dimensions. A ball is the solid object bounded by a sphere; 
the boxes are cubes with sides of length 2, which makes them just large enough to accommodate a ball of radius 1. In one dimension (left) the 
ball and the cube have the same shape: a line segment of length 2. In two dimensions (middle) and three dimensions (right) the ball and cube 
are more recognizable. As dimension increases, the ball fills a smaller and smaller fraction of the cube’s internal volume. In three dimensions 
the filled fraction is about half; in 100-dimensional space, the ball has all but vanished, filling only 1.8 × 10–70 of the cube’s volume.
Figure 1.10: A unit ball is inscribed in the center of a “cube” in different dimensions.
The cube has sides of length 2, which makes it just large enough to accommodate a
ball of radius 1. In one dimension (left) the ball and the cube have the same shape: a
line segment of length 2. As dimension increases, the ball fills a smaller and smaller
fraction of the cube’s internal volume. In three dimensions the filled fraction is about
half. (Reprinted with permission from Brian Hayes and American Scientist [Hayes,
2011])

volume of the unit ball (i.e. with r = 1) actually decreases for n > 5, because
the following recursive formula holds:

Vn+2(1) =
2π

n+ 2
Vn(1) (1.4)

Therefore for n > 5 the factor 2π
n+2

becomes less than 1 and the volume
of the ball becomes smaller and smaller. The implications of this rather
bizarre phenomenon are that if we assume a corresponding “cube” with sides
of length 2 that can be put around the ball so that the ball touches its sides,
in higher dimensions the volume of the ball becomes so small that the ball
effectively vanishes, despite the fact that it is actually the “largest” sphere
that be inscribed to it (see Figure 1.10). This is also called the empty space
phenomenon [Scott and Thompson, 1983].

Another implication of this is that if we assume a large number of points
uniformly distributed in the multidimensional space then as we go in larger
dimensions the points go far apart from each other. This is the usual interpre-
tation for the term “curse of dimensionality”: in high dimensions, almost all
pairs of points are equally far away from one another. To see why this is the
case, imagine a single point x0 as the center of our unit ball and N additional
points scattered uniformly around it inside the inscribing cube, so that in each
coordinate they are at distance 1. The volume of the ball corresponds to the
average number of points that are at most at (Euclidean) distance r = 1 from



24 Chapter 1. Introduction

the x0 point. In higher dimensions the volume of the cube increases to be
2n while, as explained above, the volume of the ball given by Equation (1.3)
shrinks constantly so that effectively the space becomes too sparse and none
of the N points are in the neighborhood of x0. Where did all the points go? If
not inside the ball, they should be in the “corners” of the cube!

Also if we imagine two “concentric” balls, one embedded to the other, with
the ratio of their radii to be 0.910 then according to Equation (1.3) the ratio
of their volumes decreases exponentially with rate 0.9n when we consider an
n-dimensional space. So in the 1-d case the “balls’ volumes” differ by 10%
but when we consider the 5 dimensional space the relative difference of their
volumes decreases to 40% while in the 100-d space the small ball has effectively
vanished inside the bigger one.

The high dimensionality has strong implications also in the nearest neighbor
types of algorithms. As [Beyer et al., 1999] proves, the minimum and the
maximum distance between a random reference point Q and a list of random
data points becomes indistinguishable compared to the minimum distance, i.e.

lim
d→∞

(
Dist(d)max−Dist

(d)
min

Dist
(d)
min

)
→ 0

when limd→∞ var
(

||Xd||

E(||Xd||)

)
= 011. This means under the given assumption

that the relative contrast between near and far neighbors diminishes as the
dimensionality increases. This property has similar effects to any technique
that uses some notion of geometric distance such as the (Gausian) Radial Basis
Function (RBF) kernel.

Additionally, many statistical techniques and machine learning methods
assume that the number of cases N far exceeds the number of features d. When
that’s not true (i.e. when d � N) problems like collinearity and numerical
instability appear and result in failures of the methods. Furthermore, in
such cases, most learning algorithms “overfit” the training data, i.e. one can
easily find a decision function that separates the (sparse, due to the high
dimensionality) training data set, but performs poorly on new, unseen data.

1.4.1.1 How to deal with the high dimensionality?

Theoretically, the challenges introduced by the high dimensionality can be
resolved if we use a large number of points (samples, examples) that cover
the whole space. But this is impractical because the number of points needed

10For example the bigger ball could be a unit ball and the other could have radius of 0.9.
11This assumption means that the ratio of the variance of the length of any point vector

with the length of the mean point vector converges to zero when dimensionality increases,
and holds for any Lp norm for p > 1.
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increases exponentially with the dimension: if N points suffice to cover the
feature space in the one dimensional (1D) case, in 2D we need N2, N3 in
the 3D space, etc. Especially in the application domain that we study here,
the bioinformatics analysis of gene expression data, the cost of acquiring new
samples is very high and therefore the typical data set size is measured in
tens or couple of hundreds of patient samples, in sharp contrast to the number
of genes measured that is in the range of tens of thousands. In fact, it has
been argued that thousands of samples are necessary in order to derive a
robust list of genes for cancer prediction [Ein-Dor et al., 2006]. An approach
to circumvent this problem could be to integrate multiple data sets in order to
increase the number of samples/observations but this introduces its own array
of challenges, which we expand in Section 1.4.3.

Therefore, an obvious way to tackle the problem is to try to reduce the di-
mensionality by performing “feature selection” or “variable ranking” [Guyon and
Elisseeff, 2003] in a way that potentially removes irrelevant (non-informative)
features. There are many different algorithms that use heuristics to select
the “best” (or good enough) set of features (dimensions) since it is usually
intractable to check exhaustively all possible combinations. Depending on
the evaluation criteria used for the selection of a specific set of features, the
methods are usually classified as “filters”, “wrappers”, or “embedded” [Saeys
et al., 2007].

• In the filter techniques the features are evaluated by looking only at the
intrinsic properties of the data, a score is calculated, and low-scoring
features are removed. For the case of univariate filters, the relevance
of the features can be estimated separately by using, for example, their
linear correlation coefficients with a target variable of interest, or similar
criteria like the information gain [Quinlan, 1986]. Multivariate filter
methods are able to find relationships among the features but are less
scalable and slower than the univariate filter techniques. A notable
example of a multivariate filter method is the Correlation-based Feature
Selection (CFS) [Hall, 1999]. Popular choices for filtering genes are also
described in Section 1.3.1 where we discuss techniques (mostly univariate
filters) for finding “differentially expressed” genes.

• The wrapper techniques, on the other hand, require one predetermined
learning algorithm in feature selection and use its performance to evaluate
and determine which features are selected. Examples of such techniques
are the sequential forward selection, where features are added as long
as the performance of the learning algorithm improves, the sequential
backward elimination, where, in reverse, features are removed, genetic
algorithms, etc.
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• Finally, in the embedded methods, the search for the optimal subset of
features is built into the learning algorithm, such as the Decision Tree
family of algorithms, Random Forests [Breiman, 2001], or the Support
Vector Machines (SVM) Recursive Feature Elimination (RFE) that uses
the magnitude of the SVM weights as ranking criterion [Guyon et al.,
2002]. As a subcategory of the wrappers-based feature selection, a range
of methods incorporate feature “weighting” in their objective function,
which are usually called regularization or shrinkage methods [Tibshirani
et al., 2002]. Regularization is a technique that tries to reduce overfitting
and variance by introducing additional bias and its origin dates back
to Andrey Nikolayevich Tikhonov and his work on ill-posed problems12

[Tikhonov, 1977]. Regularization, loosely speaking, means that while
the desired classifier is constructed to approximately send the observed
feature vectors to the correct labels, constraints are applied to the
construction of the classifier with the goal of reducing the generalization
error. Examples of regularization algorithms are the “Ridge Regression”
(the classical Tikhonov regularization), the LASSO [Tibshirani, 1996],
and the Elastic Net that combines both [Zou and Hastie, 2005]. In
these methods, a penalization term is inserted in the objective function
that is to be optimized, which results in certain uninformative features
(dimensions) to be ignored (vanished) in the final solution. As an example,
in LASSO regression, an l1 norm is used in the objective function to
penalize the coefficients of the features:

J(W) =
1

2N

N∑
i=1

(wTxi − yi)
2 + λ||w||1 (1.5)

where 0 6 λ 6 1 controls the amount of “shrinkage” of the parameters (the
vector w of features coefficients in the regression) towards 0. For model
based clustering or classification techniques using Gaussian distributions,
shrinkage of the covariance matrices is a similar technique [Ledoit and
Wolf, 2004,Schäfer and Strimmer, 2005].

Another way to fight against the curse of dimensionality is to try to locate
a lower-dimension “embedding” of the data. Usually the data are not truly
random but exhibit some “structure”, making the intrinsic dimensionality
a lot lower than the representational (embedding) one. For example, the
surface of a sphere is a two-dimensional “manifold” wrapped around a three-
dimensional object. In such cases, algorithms like Isomap [Tenenbaum et al.,

12Well-posed are problems that have a unique solution that depends on the data in some
stable way. Ill-posed are problems that are not well posed.
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2000], LLE [Roweis and Saul, 2000], Locality preserving projections [He and
Niyogi, 2004], and other non-linear dimensionality reduction techniques [Lee
and Verleysen, 2007] can be used effectively. A relevant array of techniques
fall under the term Topological Data Analysis [Lum et al., 2013] that try to
recognize shapes or patterns in the data, such as “loops” or linear segments,
and then identify interesting groups using these shapes.

In other cases, a transformation of the original space can reveal hidden
patterns where the data points are clustered together in areas of higher
density. The most common such transformation is the Principal Component
Analysis (PCA) that performs a linear decomposition of the original data
set through the rotation and scaling of the axes in a way that most of the
“total variance” in the original data set is persisted. Mathematically, the total
variance equals to the trace of the covariance matrix (i.e. the sum of the
variance in each dimension/feature) and using its “eigendecomposition” (or
the Singular Value Decomposition (SVD) of the original data matrix, see
Appendix A) we can derive a set of uncorrelated variables termed “principal
components” (Equation A.7 in Appendix A). These principle components
correspond to the eigenvectors of the covariance matrix and by keeping the
first k of them we can approximate13 as much as we want the original data
matrix. So, for example, by keeping the first two or three principal components
we can have a low-dimensional representations that covers a large degree of
the variance (and thus a large degree of the information content) in the data,
in spite of a potentially very high original dimensionality of the data. We can
of course keep as many principal components (i.e. eigenvectors) as we want
in order to decrease the reconstruction error and increase the total variance
explained, at the expense of increasing the dimensionality in the transformed
space. The so called “scree plot”, which shows as a decreasing function the
variance explained by each principal components, can be used to decide how
many principal components to keep [Cattell, 1966].

Similar techniques to PCA include the Multidimensional Scaling (MDS) and
Sammon’s mapping [Borg and Groenen, 2005]. The input of MDS is a matrix
consisting of the pairwise dissimilarities of the samples (observations), which
are not necessary distances in the strict matthematical sense, and the algorithm
tries to reproduce those dissimilarities in a reduced dimensional space. In
the classical MDS (also known as Principal Coordinates Analysis), Euclidean
distances are assumed and the method is the same as doing PCA in the matrix
of distances. In the non-metric MDS the dissimilarities are known only by their
rank order and therefore they are qualitative (e.g. ordinal), while the metric
MDS is a generalization of the classical MDS where the dissimilarities are still

13According to the Frobenius norm, which is equal to the sum of of the squares of the
singular values of the original data matrix [Meyer, 2000].
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Figure 1.11: A “PCA plot”, reprinted with permission from [Pollen et al., 2014].

quantitative but need not be Euclidean and in fact the optimization sought can
take into account a parametric monotonic function of the original dissimilarities.
On a related note, t-SNE is a non-linear dimensionality reduction technique
that is targeted towards the 2D or 3D visualization of high dimensional
data [Van der Maaten and Hinton, 2008]. All these techniques are valuable
especially as a preprocessing step in order to gain insights on the data when
visualized in two- or three-dimensional spaces. For example, in Figure 1.11
we see a 2D visualization of the high dimensional input data, revealing the
existence of clusters that can be biologically explained.

When the dimensionality of the input data is very high the problem of
scalability and efficiency of certain algorithms becomes evident. This is for
example the case for the “instance-based learning” and Nearest Neighbor
classifiers that use Euclidean or Mahalanobis14 distances to determine the
similarity or “nearness” of two points. To alleviate this issue, a celebrated
lemma by Johnson and Lindenstrauss [Dasgupta and Gupta, 2003] asserts that
a set of N points in high dimensional Euclidean space can be projected into a
O(logN/ε2) dimensional Euclidean space such that the distance between any
two points changes only by a factor of 1 ± ε. Since Euclidean distances are
preserved, running the Nearest Neighbor classifier on this mapped data yields
the same results but at a lower computational cost.

14The Mahalanobis matrix is the inverse of the covariance matrix.
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1.4.2 Batch Effects

[Leek et al., 2010] defines batch effects as “sub-groups of measurements that
have qualitatively different behaviour across conditions and are unrelated to
the biological or scientific variables in a study.” The term batch denotes a
collection of microarrays (or samples) processed at the same site over a short
period of time using the same platform and under approximately identical
conditions [Chen et al., 2011]. For example, batch effects may occur if a
subset of experiments was run on Monday and another set on Tuesday, if two
technicians were responsible for different subsets of the experiments, or if two
different lots of reagents, chips or instruments were used. [Churchill, 2002]
mentions some of the reasons for these effects:

Slides are often printed in batches that can vary in their overall
quality and even within a batch, the order and position on the
printing device can affect results.

Usually the processing date of the microarrays is an important confounding
variable that can reveal the presence of batch effects, as described in [Akey
et al., 2007]. As an additional example, consider the data set of [Pau Ni
et al., 2010] that is available from Gene Expression Omnibus (GEO) under
the GSE15852 accession number15. The authors claim that they did find a
differentiation between 43 breast carcinomas and 43 normal breast tissues
collected from Kuala Lumpur Hospital, UKM Hospital and Putrajaya Hospital,
in Malaysia. I wanted to use this dataset but usually the first step is to try
to visualize the data if possible, in the two or three dimensions. An easy
way to do this is to reduce the dimensionality by performing a Principal
Component Analysis (PCA) or the corresponding Multidimensional Scaling
(MDS), as described in Section 1.4.1.1, and keep the first two or three “principal
conponents” as axes. The results in the 2-D case as shown in Figure 1.12 and
reveal the existence of two “clusters” in the data, which do not seem to be
related to the physiology of the samples, e.g. whether they come from healthy
people or from cancer samples.

Hopefully, the data available from GEO contain also the date when the
samples were processed and annotating the samples with the processing date
seems to fully explain the bimodal distribution of the data: as can be seen
in Figure 1.13 the cluster shown in the right contains samples processed in
2007 while the left cluster groups mostly the ones processed in 2006! Therefore
the processing date appears to be a strong differentiating factor between the
samples, although we don’t know whether some third factor (e.g. heredity,

15The data set can be found at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE15852 (accessed in February,19 2016)

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15852
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15852
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Figure 1.12: A PCA plot for the GSE15852 dataset reveals two groups of samples.
The normal and cancer samples seem to be intermixed in both clusters and therefore
there does not seem to be a correlation between the disease status and the cluster the
samples belong to.

environment, etc.) can possibly “explain” both the assortment of the samples
in the PCA plot and the processing date.

[Chen et al., 2011] provides an evaluation of six algorithms that attempt to
remove batch effects. The “Empirical Bayes” or COMBAT algorithm [Johnson
et al., 2007] appears to perform best. COMBAT estimates the mean and
variance of each gene by pooling information from multiple genes with similar
expression characteristics in each batch.

1.4.3 Integrative analysis of multiple data sets

For reasons related to the need to defend against the high dimensionality, to get
better statistical power, and to validate or expand previous findings, integration
of different microarray data sets appears to be an attractive approach [Rhodes
and Chinnaiyan, 2005]. This is facilitated by the availability of freely accessible
public repositories such as the Gene Expression Omnibus (GEO) [Edgar et al.,
2002a] and the ArrayExpress [Parkinson et al., 2009].

Despite the benefits that this data integration can yield, using data from
different microarrays studies is quite problematic [Tsiliki et al., 2011]. The
danger of batch effects that we mentioned above (Section 1.4.2) is only one of
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Figure 1.13: When we annotate the points with the date information i.e. when
the corresponding microarrays were processed, we see that the right cluster contains
samples processed in 2007 while the left cluster groups mostly the ones processed in
2006. The processing date is therefore a confounding factor for the gene expression
variation between the samples.

the many challenges. Additional issues are the use of different platforms (e.g.
cDNA versus oligonucleotide arrays), different probes (DNA transcripts), the
varying length of those sequences, the lack of common annotation i.e. mappings
from transcript identifiers to gene names and symbols, and the number and
characteristics of the samples hybridized. In Section 2.2.2 we provide details
on our strategy for addressing those problems.
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1.5 Sources of biological knowledge: Biological
networks and Gene Ontology

In response to the challenges imposed by the high dimensionality and the
intricacies (e.g. noise) of the technologies used, the incorporation of expert
prior knowledge aims to guide the knowledge discovery process or increase its
performance and accuracy. An aspect of such an effort is the exploitation of
existing knowledge as formulated in the contents of an ontology. An ontology
describes “the objects, concepts, and other entities that are presumed to exist in
some area of interest and the relationships that hold among them” and therefore
ontologies have a very broad application domain and are more expressive than
vocabularies, taxonomies, and thesauri. In the biological domain a number of
ontologies have been developed in the recent years [Bard and Rhee, 2004], with
Gene Ontology (GO) being the most popular. The GO is organized along three
main axes, molecular function, biological process, and cellular component, where
the concepts are represented though a taxonomy, going from the most general
to the most specific terms [Ashburner et al., 2000]. Such a taxonomy can be
easily represented as a graph. GO aims to represent our knowledge about
biological processes, molecular functions, and cell components. In [Azuaje and
Bodenreider, 2004] such semantic similarities suggested by GO were used to
deduce correlation of gene expression data. [Bolshakova et al., 2006] suggest
using the GO as the domain knowledge in order to validate clustering results
and to determine the number of clusters in gene expression analysis. [Khatri
and Drăghici, 2005] present a number of tools for GO based analysis of gene
expression data.

Another source of domain knowledge comes from the various biological
networks that represent complex reactions at the molecular level in living
cells [Alm and Arkin, 2003,Alon, 2003]. The term Biological Networks has
been introduced to describe any graph whose vertices are biological entities,
such as genes, proteins, molecules, etc [Mason and Verwoerd, 2007]. With
respect to the analysis of the gene expression data we can identify three major
types of biological networks [Vidal et al., 2011]:

• Metabolic networks, which consist of chemical reactions that result in the
construction of complex compounds and the storage and release of energy
and are controlled by special proteins (enzymes). The nodes of these
networks are biochemical metabolites and edges are either the reactions
that convert one metabolite into another or the enzymes that catalyze
these reactions. The edges can be directed or undirected, depending on
whether a given reaction is reversible or not.
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• Gene Regulatory networks that describe the relationships of genes, pro-
teins, and other molecules with respect to the regulation of gene ex-
pression (i.e. the expression of a gene can be controlled by the product
of another gene). These networks are directed graphs where the direc-
tion of an edge represents which gene or transcription factor affects the
expression of another gene or regulatory element.

• Protein-Protein interaction networks (PPIs), where proteins (physically)
interact with each other to promote the activation of a protein or to form
protein complexes. The edges are undirected, as it cannot be said which
protein binds the other, that is, which partner functionally influences
the other.

The potential of the use of these networks and additional ones (such as
disease-disease networks, i.e. graphs that show inter-disease connections [Goh
et al., 2007], see Figure 1.14) has been eloquently argued in [Barabási et al.,
2011], in addition to the current shortcomings, e.g. incompleteness, and “inves-
tigative biases”. It’s not surprising therefore that in the recent years biological
networks have been the subject of important research: In [Rapaport et al.,
2007] a general framework is presented that aims to analyse gene expression
data when a gene network is known a priori; [Chuang et al., 2007] focus on
identifying markers of metastasis within gene expression profiles where these
markers are not encoded as individual genes or proteins, but as sub-networks of
interacting proteins within a larger human protein–protein interaction network;
The search for subnetworks of interaction networks that exhibit significant
changes in gene expression has also been investigated in [Ideker et al., 2002]. In
this work we make extensive use of Protein-Protein interaction networks and
take advantage of their structure and their properties (e.g. degree distribution,
random walks) in order to reveal underlying “neighborhoods” and get a better
understanding of the genes biological functionality (Chapters 3 and 4).

1.5.1 Examples of using biological knowledge in compu-
tational methods

As descrined in Section 1.4.1.1, a popular approach is to use some lower reduc-
tion technique (PCA, SVD, etc) to find smaller number of “meta-genes” that
are (linear, usually) independent. In [Chen and Wang, 2009] the authors classi-
fied the available genes using GO and for each gene category they constructed
“super genes” by summarizing information from genes related to outcome using
a modified principal component analysis (PCA) method. Then, they use these
supergenes representing information from each gene category as predictors to
predict survival outcome.



34 Chapter 1. Introduction

Figure 1.14: Graphical representation of the human disease network, where each node
corresponds to a distinct disorder and colours represent disease classes [Goh et al.,
2007] (Copyright (2007) National Academy of Sciences, USA). The size of each node
is proportional to the number of genes participating in the corresponding disorder,
and the thickness of the edge (link) is proportional to the number of genes shared by
the disorders it connects.

Traditionally clustering requires a distance metric and below are some
distance metrics that take advantage of the prior biological knowledge:

• [Hanisch et al., 2002] proposed the use metabolic networks for clustering
tasks, by first defining a distance metric based on a pathway and then
this metric is combined with the usual expression-based metric using
their average. The combined metric is as follows (ok = (gk, vk) with gk
being genes and vk network nodes)

∆(oi, oj) = 1− 0.5(λexp(gi, gj) + λnet(vi, vj))

where
λΨ =

1

1+ e−sΨ(δΨ(xi,xj)−νΨ)

• In [Kustra and Zagdanski, 2006] the following distance metric is proposed:

dist(g1, g2) = λd(x1, x2) + (1− λ)d(g1, g2)
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where d(x1, x2) is the distance between the gene expression profiles and
λ is a user defined coefficient in the interval [0, 1] that defines the balance
between the expression and Gene Ontology based similarity.

• Huang and Pan [Huang and Pan, 2006] use the k-medoids algorithm (see
Section 1.3.2) with a distance metric that is computed as r · d(x1, x2) if
the two genes share a common functional annotation (e.g. participate
to the same pathway) and d(x1, x2) otherwise, with r being a shrinkage
estimator in [0, 1]. The parameter r is estimated through cross-validation.

1.6 Objectives and design of the thesis

The prevalence of circulating tumor cells (CTCs) in peripheral blood of
metastatic breast cancer patients has been evaluated by several groups and
has been correlated with poor progression-free and overall survival of the
patients, as described in section 1.1.3. CTCs are frequently found in the blood
of patients with primary solid tumors, and it is generally assumed that a subset
of these cells will eventually give rise to distant metastases [Labelle and Hynes,
2012]. Due to their involvement in the metastasis CTCs can indeed play an
important role in the treatment of the cancer [Lianidou, 2014]. We can even
potentially use them for testing the efficacy of existing tumour therapies like
chemotherapy at the individualized level (“chemosensitivity”) [Pachmann et al.,
2014]. But first we need to find ways to detect CTCs in the blood of the
patients, which is quite challenging in practice.

The technical challenge in this field consists of finding “rare” tumour cells
and being able to distinguish them from epithelial non-tumour cells and
leukocytes [Paterlini-Brechot and Benali, 2007]. The CTC frequency is usually
low, often around 1-10 CTCs per millilitre of whole blood [Miller et al., 2009],
which could also vary per disease and cancer progression (see Figure 1.7), while
1 millilitre of blood contains about 10 million white blood cells and 5 billion
red blood cells [Barrett et al., 2010]. Numerous CTC detection techniques
have been developed so far [Ignatiadis et al., 2015] but only a few of them
have been used in clinical cohorts of relevant size. Among these technologies,
some very promising approaches, such as the microfluidic-based “lab-on-a-chip”,
have not yet confirmed their better sensitivity in large cohorts [Nagrath et al.,
2007]. In Breast Cancer patients, comparisons between the different techniques
showed that filter-based and different EpCAM enrichment-based detection
techniques have a globally similar CTC detection rate, although important
differences were seen at the individual level [Magbanua et al., 2015]. Another
approach to increase the CTC detection rate is to screen larger volumes of
blood [Stoecklein et al., 2015], although higher numbers of CTC detected does
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not always translate into a better clinical validity or utility.
A major challenge in the CTC detection is the low concentration CTC in

the blood, especially in post-operable breast cancer patients [Nadal et al., 2013].
Most current methods for detecting CTCs in patients score only single cells
and could be missing an important fraction of the CTC population [Labelle
and Hynes, 2012]. In lieu of these techniques, here we attempt to explore
the molecular characteristics of the peripheral blood of breast cancer patients
using statistical methods on the microarray data sets. This approach can be
indirectly linked with the characterization of the circulating tumor cells, and
it is based on the following assumptions and research findings:

• Distant metastases rely on the dissemination of tumor cells via the blood
circulation, in a multi step process: detachment from the primary tumor,
intravasation into the vascular system (whether directly or via the lymph
nodes), survival while in transit through the circulation, extravasation
and initial seeding for the creation of micrometastases, and finally the
colonization in the distant organs, the proliferation, and the growth of
macroscopic metastases [Labelle and Hynes, 2012]. Metastasis is an
inefficient process, especially the latest steps, since the micrometastatic
cells need to adapt to the microenvironment of the tissue in which they
have landed, which is generally a lot different than the microenvironment
of the tissue from which they originated [Chambers et al., 2002,Weinberg,
2007].

• CTCs carry information from primary tumor [Obermayr et al., 2010], but
also from secondary tumor [Barbazán et al., 2012]. Moreover, [Sieuwerts
et al., 2011] reported discrepancies in estrogen receptor and HER2
status profile compared to primary tumor, while it has been shown
that metastases, which may develop several years after occurrence of
the primary tumor and after prior systemic therapy in the adjuvant
or neoadjuvant setting, can differ greatly from primary tumor tissue
in terms of genetic characteristics [Suzuki and Tarin, 2007,Park et al.,
2009].

• CTCs can be detected in single-cell level through specific genes. [Ober-
mayr et al., 2010] identified six genes (CCNE2, DKFZp762E1312, EMP2,
MAL2, PPIC and SLC6A8) as potential markers for the detection of
circulating tumor cells in the peripheral blood of patients with breast
cancer. Genes VIM, CXCR4, and uPAR were also found significantly
correlated with the presence of CTCs by [Markiewicz et al., 2014].

• Cancer causes alterations in specific tissue areas but also in the blood.
Gene alterations in tissue relate to those in blood, but also differences
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are important Specific gene alterations are (might be) indicative of the
ability of cancer to diffuse in blood; such genes can predict the existence
of CTCs without the need to exactly detect them [Molloy et al., 2012].

• CTCs diffuse in other blood cells and justify the analysis of blood volume
percentage. Also, [Bettegowda et al., 2014] were able to detect the
existence of circulating tumor DNA (ctDNA) (i.e. DNA of the dying
tumor cells) in the blood of cancer patients even without the presence of
CTCs. It therefore seems to be the case that specific differences of cancer
tissue and cancer blood are indicative of the ability of tumor to diffuse
and can be used for prognostic means and possibly for CTC assessment.

According to the above, a first objective of our work is to identify gene
alterations in blood based on the characteristics of breast cancer tissues but
also taking into account the specific blood characteristics so that only cancer-
related markers are identified in the blood of the patients. In statistical terms,
this means that any comparison between cancer tissue and cancer blood needs
to control for any variation due to the origin (tissue or blood) of the samples.

Subsequently, any findings need to be linked with the prior biological
knowledge in order to, if possible, explain and validate it, and potentially extend
them to new discoveries. For example, it has long been discovered that despite
the early successes (e.g. [Van’t Veer et al., 2002], [Paik et al., 2004], [Wang et al.,
2005]) a robust breast cancer gene signature has not yet been found [Ein-Dor
et al., 2005,Weigelt et al., 2012]. However, integrating secondary data sources
like protein-protein interaction (PPI) networks and other sources of biological
knowledge has been proved to overcome the variability in the signatures and
improve the predictive power [Chuang et al., 2007,Lee et al., 2008,Taylor et al.,
2009,Abraham et al., 2010]. For these reasons, we are focusing on the use of
biological networks for the validation and expansion of our findings.

1.6.1 Contributions and structure of the thesis

This thesis focuses on the characterization of circulating cancer cells in Breast
Cancer patients using computational, data-driven, statistical methods. The
goal is to identify differences and similarities between the blood and tissue
samples of cancer patients and healthy populations using publicly available
data sets that contain gene expression measurements. In order to proceed to a
statistically sound genomic classification of tissue and blood of breast cancer
patients a data integration approach has been designed. A large compendium
of publicly available gene expression data sets has been brought together
and carefully merged in order to overcome study specific biases or platform
related technical variations. This integration methodology is then followed by
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a number of statistical comparisons between the different in origin (blood or
tissue) or in disease status (cancerous or healthy) samples in order to reveal
potential “biomarkers” for each case. These biomarkers are genes that exhibit
different behavior (e.g. over-expression) in the aforementioned comparisons
but in order to increase the sensitivity the sets of discriminating genes are
intersected and a common subset is identified. The unique set of genes derived
is then related to well curated sources of biological knowledge, such as biological
networks, and subjected to novel algorithmic procedures so as to establish the
underlying biological foundation and to further elicit features (genes) for the
supervised and unsupervised classification of breast cancer patients.

The key contribution of this work is the discovery of a 27-genes signature
as potential markers for the characterization of CTCs and the metastatic
cascade, and a number of computational methods and their findings that take
advantage of existing biological knowledge to fine tune the derived signature
for the supervised or unsupervised classification of patient samples, as follows:

• Following the methodology described above, 9 different data sets pub-
licly available from the Gene Expression Omnibus (GEO) database were
assembled and integrated, yielding more than 800 samples of gene expres-
sion measurements. The subsequent statistical analysis and integration of
results produced a “genes signature” of 27 genes as candidate biomarkers
related to the presence of CTCs. In a subsequent, biological “bench-top”
experiment, two of these genes (CXCR4 and JUNB) were in fact found
to be really CTC-related, effectively confirming the statistical findings.
The analysis that led to these findings is presented in detail in Chapter 2.

• In order to gain more insight in the induced signature of the 27 genes,
we introduced prior domain knowledge in the form of biological networks.
The question whether the genes participating in the derived signature
are related and how they affect each other was formulated in as the
graph theoretical problem called “Steiner Tree”. This formulation and
the corresponding solution in a high quality protein-protein interaction
network reveals the shortest interconnect for the genes in our signature
and enhances it with additional central genes along the interconnecting
paths. The methodology is based on the local properties of the genes
in the graph, i.e. their immediate neighbors, the neighbors of their
neighbors, and so on. Chapter 3 demonstrate these computational
methods and their results.

• The incorporation of the prior biological knowledge in the form of biolog-
ical networks using the induced graph of the genes in the vicinity of the
27 genes is described in Chapter 4. The goal is to take advantage of the
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“neighborhoods” of the 27 genes in an underlying biological network and
to introduce a two-level classification scheme for new unseen samples. In
contrast to the previous strategy, we now consider “random walks” in the
graph, and therefore the approach is much more global and holistic.

• Finally, in Chapter 5, we present an adaptive model-based clustering that
exploits prior biological information (e.g. groupings of genes) in order
to perform “clustering” (unsupervised classification) of patient samples.
The method effectively performs a biologically-inspired regularization in
the well known “mixture of Gaussians” model. The method is presented
first in the generic way and we then proceed to test the method when
parameterized with the neighborhoods of the 27 genes.

The list of publications that were used for the dissemination of these results
can be found in Appendix C.
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In this chapter we present the main outcome of our work, which is a list
of 27 genes that can potentially characterize the circulating tumor cells and
the alterations of the genetic profile of the whole blood cells in the breast
cancer patients. The approach is based on the computational data analysis and
statistical tools using a large compendium of breast tissue and blood samples
from patients and healthy subjects. The results are validated in independent
datasets and their biological evaluation is presented.
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2.1 Introduction

Nowadays, a large number of high-dimensional gene expression datasets are
obtained through the exploitation of molecular techniques, such as DNA
microarrays. Gene expression profiling of CTCs might provide the opportunity
to identify markers for diagnosis and prognosis in breast cancer patients [Dirix
et al., 2005], towards better provision of personalized medicine [Riethdorf and
Pantel, 2010]. Furthermore, exploring gene alterations in CTC profiles could
give valuable information on the molecular mechanism of tumor cell metastasis.
In this chapter, we take advantage of CTC-targeted microarray studies obtained
from human peripheral blood (PB) and tissue of breast cancer patients, as
well as control individuals, in order to formulate a working hypothesis for the
identification of a gene signature characterizing metastasis and the existence
of CTCs.

2.1.1 Rationale and design methodology

The aim of this work is the identification of genes that characterize CTCs
using comparisons between healthy (normal) and cancerous biological samples
originated from tissues and blood. Our hypothesis supports that specific
differences of cancer tissue and cancer blood are indicative of the ability of
tumor to diffuse and, thus, can be used as factors for CTC estimation without
direct detection. Direct gene expression profiling of CTCs is difficult for the
reasons we explore in Section 1.6. Instead we aim at attacking the problem
through an indirect approach, based on bioinformatics methods and separate
datasets from blood and tissue samples.

For this purpose, we are using a two-stage procedure applied on several
publicly available DNA microarray datasets from different origins (tissue and
blood). The first stage aims to extract gene signatures associated with pair
wise differentiation between cell types and /or disease states. For instance,
the comparison of cancer and control tissue provides information about the
discriminative factors of the primary disease. Next, the comparison between
cancer blood and control blood can derive markers indicative of alterations
due to the pathology, related to the CTC content and in association to the
primary and secondary disease. From this stage, we derive four signatures,
each reflecting the over-expressed differential profiles of genes associated with
the specific comparison. In more detail we consider the following primary
comparisons, which effectively test site-specific differences in the presence of
the disease:

• Cancer tissue versus healthy tissue (C1): What are the tissue
specific differences during the disease progression? This comparison can
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reveal genes and biological processes that are triggered in the case of
(primary) breast cancer patients.

• Cancer blood versus healthy blood (C2): Are there any differences
in the blood of cancer patients when compared to the blood of healthy
subjects? The prevalent hypothesis for the relapse of the cancer pa-
tients and the appearance of metastases in distant organs is that tumor
cells intravasate to blood circulation, and therefore we expect that this
comparison provides strong evidence for the characterization of this
process. Nevertheless, any identified differences in this comparison could
be due to blood specific characteristics and cannot necessarily provide
any CTC-related information.

We additionally consider the cross-site comparisons (blood - tissue) for
similar differential expression in the presence of disease, as follows:

• Cancer tissue versus healthy blood (C3): What are the genes that
exhibit differential expression in cancer tissue when compared to normal
blood? This comparison identifies genes over-expressed in primary cancer
and not in blood cells and in combination with C2 provides a fine tuning
mechanism for the identification of cancer related differentiation in blood,
as there is strong evidence that the metastatic tumors bear a lot of
similarities with their primary cancer sites (e.g. [Ding et al., 2010]).

• Cancer blood versus healthy tissue (C4): Likewise, this comparison
further filters and specializes the identified differentially expressed genes
to a set of potential biomarkers that exhibit elevated expression in the
disease both in the blood and the tissue samples.

Figure 2.1 provides a graphical representation of this design. The hypothesis
at this point is that peripheral blood from cancer patients carries information
regarding the primary and secondary (metastasis) tumor, as well as other cancer
induced alterations. By comparing the previous signatures, we can isolate
markers indicative of certain aspects of cancer, leading to closer association
with the existence of CTCs. This is the rationale for the second stage of our
proposed procedure, which considers the intersection of the previous signatures.
In particular, we consider the intersections:

• C1∩C2: derives genes over-expressed in cancer tissue and blood; however,
it can also reflect genes over-expressed in normal blood,

• C1 ∩ C2 ∩ C3: eliminates genes over-expressed in normal blood and
involves only genes over-expressed in blood due to cancer-associated
factors.
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• C1 ∩ C2 ∩ C4: eliminates genes over-expressed in normal blood and
involves only genes over-expressed in blood due to cancer-associated
factors.

Figure 2.1: The setting we aim to find differentially expressed genes for. The different
comparisons aim at finding over-expressed genes as shown in the figure: C1 compares
tissue samples and yields the genes over expressed in Cancer; C2 compares blood
samples and provides the genes over expressed in Cancer; C3 determines the genes
over expressed in Cancer Tissue with respect to Normal Blood; and finally C4 yields
the genes over expressed in Cancer Blood when compared to Normal Tissue. Therefore
C1 and C2 are comparisons in homogeneous samples (tissue and blood respectively),
while C3 and C4 are both between blood and tissue samples. Since no comparison
between the cancer tissue and cancer blood is performed, their relative position is not
important and the image shows one possible setting. For example, it could be the case
that the expression of a gene in cancer blood is greater than in the cancer tissue.

We aim at discovering genes that exhibit differential expression in all these
cases, i.e. we are looking to find the members of the set C = C1∩C2∩C3∪C1∩
C2∩C4. In particular, the genes we consider to be indicative of the alterations
in blood for breast cancer patients and that are possibly related to the presence
of CTCs should demonstrate up-regulated expression in cancer tissue and
cancer blood when compared to normal tissue and blood correspondingly, and
also they should have elevated expression in cancerous state both in tissue
versus blood and in blood versus tissue.



2.1. Introduction 45

The purpose and contribution of C3 is justified based on the considera-
tion of tissue-specific differences in the expression of genes, which have been
established in biological studies even for same-condition (homogeneous) pop-
ulation (variability of expression within and across populations) [Kandula
et al., 2012,Schobesberger et al., 2008,Radich et al., 2004,Shin et al., 2011].
Basically, the inclusion of C3 aims to alleviate cross-tissue differences appearing
in the base populations of control breast and control blood engaged in our
study. Along these lines, if the distributions in these two base populations are
similar then C3 derives similar results as C1 and cannot contribute any new
information. However, if in certain genes there is a large increase either in the
first (mean) or second-order (variance) statistic of control blood over control
tissue, then the effect is also mapped on the SAM metric used for assessing
the differentiation of populations (section 2.2.3). Recall that C1 compares the
distribution of cancer tissue over control tissue, whereas C3 compares the same
distribution over control blood. Thus, even though a gene might present large
SAM metric in C1, this metric can be drastically reduced when the mean or
variance of the base population (control blood) increases in C3, leading to the
exclusion of this gene from the C3 set.

As a final note, we particularly check of “over-expression” only (instead of
or in addition to the “under-expression” case) because we want to focus on
genes with hyperactivity and elevated expression that are commonly called
“oncogenes” [Shastry, 1995]. Oncogenes drive abnormal cell proliferation as a
consequence of genetic alterations that either increase gene expression or lead
to uncontrolled activity of the oncogene-encoded proteins [Cantley et al., 1991]
and have been characterized as the Achilles’ heel of cancers [Weinstein, 2002].

Summarizing our motivation, the intersection of sets C1∩C2 reveals active
genes over the base levels in both tissue and blood, which could be due to
cancer causality but also to certain blood differences from tissue. To that
respect, the inclusion of C3 relieves the influence of overexpressed genes in
blood compared to tissue due to any reasons possibly unrelated to cancer.
Such genes are captured in the set C1∩C2−C3 and excluded from the overall
intersection C1 ∩ C2 ∩ C3.

Currently, two prevalent models - progression model and metastatic pre-
destination model - provide evidence about tumor progression towards metas-
tasis [Hunter and Alsarraj, 2009]. Bearing in mind that both models are still
under scrutiny and that CTC profiles capture either primary tumor or metas-
tasis molecular characteristics [Barbazán et al., 2012], we applied the two-stage
methodological approach described above to derive a panel of genes that are
common in primary carcinomas and peripheral blood of breast cancer patients.
Overall, we consider the hypothesis that this intersection, representing the
common features of primary tumor and breast cancer peripheral blood, is
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likely to reflect circulating tumor cells biology. In this form, the analysis of
the intersection signature might be biologically and therapeutically significant
in terms of the involved processes and pathways, forming a useful clinical
diagnostic tool.

2.1.2 Related studies

In general, several microarray studies on breast cancer tissue samples (control
versus cancer tissue even from the same person) demonstrate alterations in
processes manifested in gene deformations. Similar gene alterations appear
in the analyzed portion of peripheral blood (control blood versus cancer
blood) [Balmain et al., 2003]. In addition, [Barbazán et al., 2012] report
that the spread of cancer relates to the detachment of malignant cells into
blood and [Obermayr et al., 2010] demonstrate that CTCs can be detected
in single-cell level through specific genes (six gene panel) in peripheral blood.
Particular microarray studies on peripheral blood that isolate specific CTC
cells report that CTCs carry characteristics from the primary cause [Obermayr
et al., 2010], but also convey information regarding the secondary (metastasis)
tumor [Barbazán et al., 2012]. Thus cancer-specific alterations can be identified
in affected tissue areas, as well as in blood. Moreover, some specific alterations
in cancer might be indicative of its ability to diffuse; such genes can indirectly
predict the existence of CTCs without the need to detect and/or extract
them [Molloy et al., 2012].

2.2 Methods and Procedures

2.2.1 Breast Cancer Datasets

We have used 9 different data sets publicly available from the Gene Expression
Omnibus (GEO) database [Edgar et al., 2002b], which are shown in Table 2.1
with their relevant characteristics. Most of the data sets provide samples from
both normal and cancer breast tissues. Furthermore, there are a variety of
different platforms; Affymetrix and Agilent are the most common manufac-
turers in this collection of datasets while there is one dataset using a custom
microarray chip from Agendia and another one from Applied Biosystems (ABI).

2.2.2 Dataset integration

Unfortunately, not all of the three comparisons (C1, C2, C3, and C4) can be
robustly performed by studying a single data set, due to the lack of samples.
Even in the case of C1, which contrasts healthy tissue samples with cancer
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Table 2.1: Breast cancer datasets used

GEO Accession Site
Number of Can-
cer / healthy
samples

Used in

GSE22820 [Liu et al., 2011]a Tissue 176 / 10 C1, C3, C4
GSE19783 [Enerly et al., 2011]a Tissue 113 / 2 (0†) C1, C3
GSE31364 [Molloy et al., 2012]b Tissue 72 / 0 C1, C3
GSE9574 [Tripathi et al., 2008]c Tissue 14 (0?) / 15 C1, C4
GSE18672 [Haakensen et al., 2010]d Tissue 64 / 79 C1, C3, C4
GSE27562 [LaBreche et al., 2011]e Blood 57 / 31 C2, C3, C4
GSE16443 [Aaroe et al., 2010]f Blood 67 / 54 C2, C3, C4
GSE15852 [Pau Ni et al., 2010]c Tissue 43 / 0 C3
GSE12763 [Hoeflich et al., 2009]d Tissue 30 / 0 C3
a Agilent Whole Human Genome Microarray 4x44K G4112F
b Agendia human DiscoverPrint v1 custom platform
c Affymetrix Human Genome U133A Array
d Agilent Whole Human Genome Oligo Microarray G4112A
e Affymetrix Human Genome U133 Plus 2.0 Array
f ABI Human Genome Survey Microarray Version 2
† Two samples in GSE19783 were removed from C1 because they are metastatic
? 14 samples in GSE9574 are from epithelium adjacent to a breast tumor and were removed

patients, the number of healthy subjects is limited if a single dataset is used.
Therefore, we have designed a data integration methodology that combines
different datasets in a single multi-platform, multi-origin dataset where the
microarray probe intensities have been re-normalized with the removal of
study and batch specific variations. This is not a “meta-analysis” based
approach because the data are integrated at the gene expression level instead
of working on the combination of p-values, effect sizes, and other statistics
that have been computed per dataset ( [Marot et al., 2009], [Jaffrézic et al.,
2007] and [Choi et al., 2003] are examples of such methodologies). Our data
integration approach is designated by the heterogeneity in the available datasets
in terms of the gene transcripts used and also the biological question and the
classification of samples.

The dataset integration approach we have followed consists of the following
steps performed for each of the four comparisons:

• Each dataset that is relevant to a given comparison is downloaded from
the GEO in the format (e.g. preprocessed) it has been uploaded and
registered. However, the raw data are not always available, and it may
be the case that some preprocessing tasks have already been performed.
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We perform k-nearest neighbors type of imputation [Troyanskaya et al.,
2001] if needed and we log-transform the probeset intensities if they have
not been already transformed (please refer to Section 1.3 for details).

• For each dataset we map the probes identifiers that are platform specific
to Entrez Gene identifiers, in order to have a common “namespace” for
the identification of the corresponding genes. Probe sets that lack such a
mapping are removed. The mappings used are based on the platform spe-
cific annotations in the corresponding Bioconductor libraries [Gentleman
et al., 2004]. In the specific case of GSE31364 that uses a custom chip, we
have used the annotation provided by GEO using the provided GenBank
Accession numbers as the mapping means (Platform GPL143781).

• Since the mapping process explained in the previous step can result in
different probes correspond to the same Entrez Gene id, we keep the
expression values for the probes that exhibit the largest variation as
estimated by the Interquartile Range (IQR). The IQR provides a robust
measure of the dispersion of expression values for a given gene, and
keeping the probe set with the largest IQR is a kind of univariate “feature
selection” to remove non-informative variables.

• After the summarization and probe filter procedure that is performed
in the previous step for each study (data set) separately, the method
proceeds in each planned comparison by performing a cross-study batch-
correction and cross-platform normalization of the comparison relevant
datasets using the Empirical Bayes (COMBAT) algorithm [Johnson et al.,
2007].

• The final merged dataset for each comparison is subsequently used
for finding differential expressed genes by selecting the samples from
the original datasets that are relevant to the specific comparison (for
example the 31 healthy blood samples of GSE27562 are not used in the
C4 comparison but are used in C2 and C3).

2.2.3 Gene differentiation

When the subsets of samples from the relevant data sets have been prepared and
merged together, we are using the Significance Analysis for Microarrays (SAM)
method [Tusher et al., 2001] with the siggenes package of R/Bioconductor
in order to discover the genes that exhibit comparison-specific differential

1http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL14378 (accessed on
February, 26 2016)

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL14378
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expression. We are also using the False Discovery Rate (FDR) [Benjamini
and Hochberg, 1995b] as the criterion for determining the set of genes that
exhibit differential expression and its critical value has been set to 0.01 for
all comparisons. The use of FDR implies that the resulting gene sets that
were found to have differentiating expression values do not have the same
number; instead, the number of differentially expressed genes differs among
comparisons.

We are particularly interested in the genes that show significant up-
regulation in the various comparisons, so the final step is the selection of
those that exhibit one-direction over-expression.

2.3 Results

2.3.1 Statistical comparisons and first findings

Based on the proposed methodology, we have extracted the signatures from the
comparison of specific sets of genes, which exhibit differentially over- expressed
behavior

What is important at the second step of our process is to find the number
and reveal the biological relevance of genes belonging to the different sets,
but also in the intersections of these sets. As shown in Table 2.2, for the
C1 comparison, we identify 3,725 genes showing significant differential over-
expression in cancer over control tissue. Similarly, for the C2 comparison,
we extract 79 genes over-expressed in cancerous peripheral blood samples.
Finally, the C3 comparison derives 245 genes over-expressed in cancer tissue
when compared with control peripheral blood samples whereas C4 yields 1,076
genes with increased expression in cancer blood versus normal tissue. The size
(cardinality) of the different sets of genes alongside with their interestion areas
can be seen in the Venn diagram of Figure 2.2. For example, we identify 24
common genes in the C1 ∩ C2 ∩ C3 intersection, 26 in C1 ∩ C2 ∩ C4, 27 genes
in the intersection of C1 and C2, 137 genes in the intersection of C1 and C3,
59 genes in the intersection of C2 and C3, etc.

Table 2.2 also shows the genes that have been found in common with other
studies, in particular [Molloy et al., 2012] and [Powell et al., 2012]. From
Molloy et al. we identify 3 genes (RPS8, WISP1, and TMEM121) in the gene
set produced by comparison C1. Powel et al. report a number of genes that
are supportive for the presence of CTCs. Among them we identify Chemokine,
CXC motif, receptor 4 (CXCR4) in the common genes of all comparisons,
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the intersection of
C1 and C3, and Vimentin (VIM) in the intersection of C2 and C3. Both VIM
and CXCR4 have been associated with the epithelial-mesenchymal transition
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Table 2.2: Results of the comparisons

Set Size Common with [Powell et al., 2012] Common with [Molloy et al.,
2012]

C1 3725
RT18, KRT19, ACTB, RRM1,
S100A9, SLC2A1, TFRC, TGFB1,
UBB, CXCR4, CASP3, CD44, CD53

RPS8, TMEM121, WISP1

C2 79 MAPK14, VIM, CXCR4

C3 241
PARP1, MAPK14, GAPDH, VIM,
CXCR4

C4 1076

PARP1, GAPDH, KRT8, KRT18,
ACTB, RRM1, S100A9, SLC2A1,
TFRC, TGFB1, UBB, CXCR4, CD44,
CD53

C1 ∩C2 27 CXCR4

C1 ∩C3 134 PARP1, GAPDH, CXCR4

C2 ∩C3 59 MAPK14, VIM, CXCR4

C1 ∩C4 1035

PARP1, GAPDH, KRT8, KRT18,
ACTB, RRM1, S100A9, SLC2A1,
TFRC, TGFB1, UBB, CXCR4, CD44,
CD53

C2 ∩C4 27 CXCR4

C1 ∩C2 ∩C3 24 CXCR4

C1 ∩C2 ∩C4 26 CXCR4

The intersections of gene signatures with the corresponding number of up-regulated
genes. A set of previously identified biomarkers is also mapped into the different
sets and intersections.

but there are additional epithelial marker genes like Keratin 8 (KRT8) and
Keratin 19 (KRT19) or metastatic genes like calgranulin-B (S100A9) that
are found be over expressed in the comparison C1. In particular S100A9 has
been identified as a negative regulator for lymph node metastasis [Choi et al.,
2012]. Common to many intersections of the gene sets is the CXCR4 that
was recently found to be associated with the mobilization and trafficking of
CTCs [Mego et al., 2016].

The exact size and members of the important intersections in the results
of the statistical comparisons are shown in Table 2.3.

2.3.2 Biological interpretations

According to our hypothesis, we aim to identify factors in peripheral blood
that can indirectly reveal the traffic of circulating tumor cells, instead of CTC
detection. This is reflected in the intersection C1 ∩ C2 ∩ C3, in which genes
that are over-expressed in normal blood are eliminated and remain only genes
that are over-expressed in blood due to cancer-associated factors. This gene
signature includes 24 genes as shown in Figure 2.2.
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Figure 2.2: The number of differentially expressed genes in the various intersections
of the comparisons. As can be seen there are 24 genes in the intersection C1∩C2∩C3,
26 in the intersection C1 ∩C2 ∩C4, and 27 genes in the union of these intersections.
Finally, there are 23 genes common in all four comparisons. The Venn diagram
shown was created through the Venny tool [Oliveros, 2007].

Table 2.3: Genes identified

Set Size Genes

C1 ∩C2 ∩C3 24

TRIB1, CDKN2D, TMED10, GABPB1, GALK2,
GLO1, HMGN2, EIF6, JUNB, KPNA4, NFYA,
PRDX1, WDR83OS, TMEM70, WIPI1, SAR1A,
SRSF6, TYROBP, YWHAB, CXCR4, DHX58,
BECN1, MAFB, PTBP3

C1 ∩C2 ∩C4 26

TRIB1, CDKN2D, TMED10, GABPB1, GALK2,
GLO1, HMGN2, HNRNPU, JUNB, KPNA4, NFYA,
PRDX1, WDR83OS, TMEM70, WIPI1, PRKAR1A,
SAR1A, SRSF6, SNRPF, TYROBP, YWHAB,
CXCR4, DHX58, BECN1, MAFB, PTBP3

C1 ∩C2 ∩C3 ∩C4 23

TRIB1, CDKN2D, TMED10, GABPB1, GALK2,
GLO1, HMGN2, JUNB, KPNA4, NFYA, PRDX1,
WDR83OS, TMEM70, WIPI1, SAR1A, SRSF6, TY-
ROBP, YWHAB, CXCR4, DHX58, BECN1, MAFB,
PTBP3

C1 ∩C2 ∩C3 ∪C1 ∩C2 ∩C4 27

TRIB1, CDKN2D, TMED10, GABPB1, GALK2,
GLO1, HMGN2, HNRNPU, EIF6, JUNB, KPNA4,
NFYA, PRDX1, WDR83OS, TMEM70, WIPI1,
PRKAR1A, SAR1A, SRSF6, SNRPF, TYROBP,
YWHAB, CXCR4, DHX58, BECN1, MAFB, PTBP3

Classification of all four gene signatures (C1 ∩ C2, C2 ∩ C3, C1 ∩ C3, and
C1∩C2∩C3) was conducted by WebGestalt (WEB-based GEne SeT AnaLysis
Toolkit) [Zhang et al., 2005] in order to evaluate the most enriched Kyoto
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Encyclopedia of Genes and Genomes (KEGG) pathways and gene-ontology
(GO) terms for the category of biological processes (BP). WebGestalt utilizes
the hypergeometric test for the enrichment of GO and KEGG terms in the
selected genes, followed by the Benjamini & Hochberg (BH) method for multiple
test adjustment (adjP) [Benjamini and Hochberg, 1995a]. Additionally, we
used the G2SBC (Genes-to-Systems Breast Cancer) Database [Mosca et al.,
2010b], which is a valuable resource that integrates gene-transcript-protein
data reported in literature as altered in breast cancer cells, to annotate all
genes that are associated with breast cancer in each of these gene signatures.

The biological results correlate well with the statistical results. The in-
tersections C1 ∩ C2, C2 ∩ C3, and C1 ∩ C3 derive gene signatures with 3,
35 and 113 genes, respectively, without taking into account the all-common
genes of C1 ∩ C2 ∩ C3. Importantly, all these signatures include breast cancer
associated genes in a relative high percent (C1 ∩C2 = 33.3%, C2 ∩C3 = 20%,
and C1 ∩ C3 = 33.63%) according to G2SBC database. Moreover, according
to WebGestalt the enriched biological processes include: for C1 ∩ C2, RNA
processing (adjP< 0.05); for C2 ∩ C3, biosynthetic process, protein modifica-
tion process, metabolic process, gene expression, Toll signaling pathway and
osteoclast differentiation (adjP< 0.05); and for C1 ∩ C3, antigen processing
and presentation, response to stress and cell cycle (adjP< 0.05). In addi-
tion, the most enriched KEGG pathways include: for C1 ∩ C2, spliceosome
(adjP=2.58e-05); for C2∩C3, Toll-like receptor signaling pathway (adjP=1.90e-
05) and osteoclast differentiation (adjP=2.89e-05); and for C1∩C3, proteasome
(adjP=4.18e-06) and lysosome (adjP=1.57e-05).

Finally, focusing on the 24 genes of C1∩C2∩C3 intersection, we observe that
seven of them are associated with breast cancer and the most enriched biological
processes (adjP < 0.05) include RNA splicing, and the autophagic vacuole
assembly (adjP = 0.0432). In addition, the majority of genes participate
in regulation of the metabolic process; however, without reaching statistical
significance. The cell cycle and osteoclast differentiation are both enriched
(adjP = 0.0023) KEGG pathways in C1 ∩C2 ∩C3 intersection. The biological
enrichment associations of the 24 genes of this intersection are presented in
Table 2.4. In addition, the biological enrichment associations of the 27 genes
of the C1 ∩ C2 ∩ C3 ∪ C1 ∩ C2 ∩ C4 set are presented in Table 2.5.

Desmedt et al [Desmedt et al., 2008] note that different prognostic signatures
are not evaluated and compared on similar molecularly defined subgroups
(e.g. ER and HER2 subgroups) although the original studies address the
same questions, so that there is no overlap or only little between their gene
lists. Targeted studies have specified major biological processes in breast
cancer, such as proliferation, tumor invasion/metastasis, impairment of immune
response, evasion of apoptosis, self-sufficiency in growth signals, and ER/HER2
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Table 2.4: Gene Ontology (GO) Biological Processes

Biological Process Adjusted P-value (BH) Affected Genes

negative regulation of RNA splicing
[GO:0033119] 0.0378 PTBP3, SRSF6

organelle assembly [GO:0070925] 0.0378 EIF6, WIPI1, BECN1

peptide metabolic process
[GO:0006518] 0.0378

GLO1, TMED10,
BECN1

erythrocyte homeostasis [GO:0034101] 0.0378
PTBP3, MAFB,
PRDX1

beta-amyloid metabolic process
[GO:0050435] 0.0378 TMED10, BECN1

autophagic vacuole assembly
[GO:0000045] 0.0432 WIPI1, BECN1

vesicle targeting, to, from or within
Golgi [GO:0048199] 0.0432 WIPI1, TMED10

cellular amide metabolic process
[GO:0043603] 0.0529

GLO1, TMED10,
BECN1

regulation of cellular metabolic process
[GO:0031323] 0.0529

NFYA, CXCR4,
WIPI1, SRSF6, JUNB,
PTBP3, MAFB,
GLO1, CDKN2D,
BECN1, GABPB1,
YWHAB, TRIB1,
HMGN2

macroautophagy [GO:0016236] 0.0529 WIPI1, BECN1

signaling [Hanahan and Weinberg, 2000]; but other key biological processes
are likely to be added to this list in the future. Indeed, our 24 gene signature
consists of both known and emerging features of cancer, namely the autophagy
and the reprogramming of energy metabolism. Autophagy, which is involved
in our signature as elements of the autophagic program (e.g. biosynthesis,
energy metabolism, intracellular vesicles, lysosomes), represents an important
cell-physiologic response and is known to mediate both tumor survival and
death [Hanahan and Weinberg, 2011], while the reprogramming of energy
metabolism, which is represented in Table 2.4 by cellular amide metabolic
process and peptide metabolic process, was added as one of two emerging
hallmarks of potential generality to the cancer list. In addition, a recent
study in [Lozy and Karantza, 2012] emphasizes the continuous interplay of
reprogrammed cancer cell metabolism and autophagy, which is modulated
by many tumor related conditions including oxidative stress (beta-amyloid
possibly increase the generation of reactive oxygen species, GO: 0050435,
Table 2.4). The latter allows cancer cells for rapid adaptation to stressful
environmental conditions, preservation of the uncontrolled proliferation, as
well as prevention of toxic radiation and/or chemotherapy effects [Lozy and
Karantza, 2012].

Moreover, Shi et al [Shi et al., 2010] performing a co-expression module
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Table 2.5: Gene Ontology (GO) Biological Processes

Biological Process Adjusted P-value (BH) Affected Genes

peptide metabolic process 0.0278 GLO1, TMED10, BECN1

autophagic vacuole assembly 0.0278 WIPI1, BECN1

positive regulation of cellular
metabolic process 0.0278

CXCR4, NFYA, WIPI1, JUNB,
MAFB, BECN1, GABPB1, YWHAB,
PRKAR1A, TRIB1

ribonucleoprotein complex as-
sembly 0.0278 SNRPF, EIF6, SRSF6

erythrocyte homeostasis 0.0278 PTBP3, MAFB, PRDX1

negative regulation of RNA
splicing 0.0278 PTBP3, SRSF6

organelle assembly 0.0278 EIF6, WIPI1, BECN1

vesicle targeting, to, from or
within Golgi 0.0278 WIPI1, TMED10

beta-amyloid metabolic pro-
cess 0.0278 TMED10, BECN1

cellular nitrogen compound
metabolic process 0.0351

SRSF6, SNRPF, MAFB, GLO1,
BECN1, GABPB1, TRIB1, HMGN2,
NFYA, SAR1A, TMED10, WIPI1,
JUNB, PTBP3, HNRNPU, CDKN2D,
YWHAB, PRKAR1A

intracellular transport 0.0401
KPNA4, WIPI1, TMED10, SAR1A,
SRSF6, YWHAB, PRDX1

cellular amide metabolic pro-
cess 0.0401 GLO1, TMED10, BECN1

regulation of cellular metabolic
process 0.0401

CXCR4, NFYA, WIPI1, SRSF6,
JUNB, PTBP3, MAFB, GLO1,
CDKN2D, BECN1, GABPB1,
YWHAB, PRKAR1A, TRIB1,
HMGN2

macroautophagy 0.0401 WIPI1, BECN1

transcription from RNA poly-
merase II promoter 0.0401

MAFB, SNRPF, GLO1, NFYA,
GABPB1, SRSF6, JUNB, PRKAR1A

termination of RNA poly-
merase II transcription 0.0401 SNRPF, SRSF6

RNA splicing 0.0401 PTBP3, SNRPF, HNRNPU, SRSF6

cellular macromolecular com-
plex assembly 0.0401

SNRPF, EIF6, TMEM70, TMED10,
SRSF6

regulation of protein phospho-
rylation 0.0401

CXCR4, CDKN2D, WIPI1, YWHAB,
PRKAR1A, TRIB1

homeostasis of number of cells 0.0413 PTBP3, MAFB, PRDX1

mRNA metabolic process 0.0468
PTBP3, SNRPF, HNRNPU, SRSF6,
YWHAB

establishment of vesicle local-
ization 0.0468 WIPI1, TMED10

Golgi vesicle transport 0.0468 WIPI1, TMED10, SAR1A

analysis reveal biological processes that are associated with breast cancer
progression. They found three groups of modules, one of which (Group
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II) included up-regulated modules such as cell cycle, RNA splicing, cellular
component organization and protein metabolic process that are related to
uncontrolled cell proliferation, a hallmark of cancer. All these processes have
been found in our C1 ∩ C2 ∩ C3 intersection forming the CTC-related 24 gene
signature.

Nowadays it is also known that the mechanisms of cell-cycle, a pathway
that we found in our C1 ∩ C3 and C1 ∩ C2 ∩ C3 intersection signatures, are
deregulated at multiple levels in breast cancer cells [Caldon et al., 2006].
Finally, the KEGG pathway of osteoclast differentiation was also found in our
24-gene signature through TYROBP, and JUNB (Table 2.4). This process
has been found to be stimulated by a novel factor (CCN3), which impairs
osteoblast differentiation to promote breast cancer metastasis to bone [Ouellet
et al., 2011]. Thus it is interesting to further consider the association of genes
such as TYROBP and JUNB, with breast cancer metastasis. Notice that,
DAP12 (TYROBP) is substantial for macrophage fusion, and the production
and function of osteoclasts, while its breast cancer expression is more recently
connected with bone and liver metastases [Shabo et al., 2013].

In a related framework Hanahan and Weinberg communicate specific bio-
logical capabilities that constitute the hallmarks of cancer and are acquired
during multistage tumor development in humans, which include sustaining
proliferative signaling, evading growth suppressors, resisting cell death, en-
abling replicative immortality, inducing angiogenesis, activating invasion and
metastasis, reprogramming of energy metabolism and evading immune de-
struction [Hanahan and Weinberg, 2000,Hanahan and Weinberg, 2011]. These
distinctive attributes form a structured principle to streamline the complex
nature of neoplastic diseases. They can be explored through the observation
of a set of perturbed genes in microarray experiments, but they should be
confirmed in engaged biological pathways and processes or correlated to risk
categories [Wirapati et al., 2008, Fan et al., 2006,Molloy et al., 2012] and
through such enrichment analysis to assess their relevance to tumor develop-
ment, progression, invasion and metastasis [Hung, 2013].

Based on the above observations, we conclude that all four gene signatures
contain valuable information regarding breast cancer disease. Specifically,
the 24-gene signature, which is expected to involve all these factors that are
associated indirectly with the circulation of tumor cells, appears to fulfill our
exploration. In our study we demonstrated that our two-step process provides
a 24 gene signature of the C1 ∩C2 ∩C3 intersection with main components of
breast cancer characteriscs and with good association to the characteristics of
CTCs.

In summary, we attempted to identify a common list of genes in primary
tumor tissues and breast cancer peripheral blood from breast cancer patients.
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Using gene set enrichment analysis we identified key pathways and biological
processes that are well known to be implicated in breast cancer and metastasis;
i.e. they have a biological association to deregulated mechanisms of breast
cancer and can possibly reflect the CTC status.

2.4 Independent Validation of Results

2.4.1 Classification performance in Independent
Datasets

Recent studies highlight the significant role of the external validation of signa-
tures that have been generated from specific datasets, as to allow repeatability
on other datasets [Kim and Kim, 2008]. In order to gain further insight on
our results, we test the performance of the 24 genes in the intersection of C1,
C2, and C3 on two independent datasets, (GSE29431 and GSE42568), which
of cource have not been used for the elicitation of our gene sets. We also
evaluate these genes on the already used dataset (GSE19783) but on different
class labelling, focusing on the discrimination of circulating and disseminating
tumor cells.

The first independent dataset (GSE29431) by Lopez et al. [Lopez et al.,
2012] provides microarray data from 54 primary breast carcinomas and 12
samples of breast normal tissues from breast cancer patients. Considering the
information about metastatic status we only include 31 tumor samples (18
metastatic, 13 non- metastatic) and all 12 samples of breast normal tissues
for validation. The second study by Clarke et al. [Lopez et al., 2012] provides
microarray data (GSE42568) from 104 cases of primary breast cancer, prior
to any treatment with tamoxifen or chemotherapeutic agents, with known
metastatic status of lymph nodes (forty- five tumors with no axillary metastases
and 59 tumors showing metastasis to axillary lymph nodes), and 17 samples of
normal breast tissues. Both datasets (GSE29431 and GSE42568) are available
from GEO [Barrett et al., 2005] and measured on the same platform (Affymetrix
Human Genome U133 Plus 2.0 Array).

In order to validate our methodology, we use hierarchical clustering on the
first dataset (GSE29431) and we show that the 24 genes that we identified can
effectively separate the population of control (healthy) from tumor samples.
We consider the differentiation between control and non-metastatic, as well as
control and metastatic populations. In order to assess the grouping of samples,
we also present the correct class label encoded in black and gray color in a
separate row. The distribution of labeled samples in clusters is graphically
depicted in Figure 2.3a and 2.3b, for the comparisons of control with non-
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metastatic and metastatic populations, respectively. The control population
shows different characteristics that enable the inclusion of most samples (9 from
12 in each test) in a single cluster. Furthermore, the hierarchical clustering
of all three populations is presented in Figure 2.3c, where we observe only
partial separation of the two cancer classes, as expected from their biological
context [Hunter and Alsarraj, 2009,Weigelt et al., 2003, Choi et al., 2012].
There are contradictory findings regarding the molecular characteristics of the
primary tumors and their metastases, but it is widely assumed that the gene
expression profiles of metastases are broadly similar to that of primary breast
carcinomas [Hunter and Alsarraj, 2009,Weigelt et al., 2003,Wu et al., 2008].

(a) Control vs Non-Metastatic (b) Control vs Metastatic (c) Control vs Metastatic and
Non-Metastatic

Figure 2.3: The results of the hierarchical clustering for the dataset GSE29431.

To elaborate more on these issues, we also examine the second dataset
(GSE42568). For the larger number of cases in this dataset, we test the
predictive ability of the 24 genes of interest by examining the classification
accuracy in a leave-one-out cross validation (LOOCV) scheme. We test regres-
sion approaches including “Least Absolute Shrinkage and Selection Operator”
(LASSO) and “Support Vector Machines” (SVM) as classifiers applied on pairs
of populations. The LASSO classifier achieves 95,16% LOOCV accuracy for the
pair-test of (control vs non-metastatic) and 96,05% for the test of (control vs
metastatic). The classification accuracy drops to 63,46% on the cancer test of
populations (metastatic vs non-metastatic). The SVM approach achieves lower
rates but with the same order corresponding to 93,55%, 89,47% and 57,69% for
the above pair comparisons, respectively. As in the previous case, the 24 gene
signature enables the discrimination of control from cancer populations on
independent datasets, but they enable only partial discrimination of metastatic
from non-metastatic cases.

As a last effort in searching for the “most informative” genes that can
possibly characterize metastasis, we examine the LASSO approach within
a recursive feature elimination strategy, where the less significant feature is
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eliminated at each iteration. Note that each iteration achieves a full test of
LOOCV with the remaining features (genes). The maximum accuracy (65,38%)
in the test including the metastatic vs non-metastatic populations is achieved
with 11 genes in the list (TRIB1, GLO1, HMGN2, EIF6, JUNB, WIPI1,
CXCR4, DHX58, BECN1, MAFB and PTBP3). Since the ultimate goal of
our efforts is to assess the role of blood markers in metastasis and especially
in CTCs, we further examine the role of the 24 genes in disseminating and/or
circulating tumor cells associated with cancer. More specifically, we consider
the gene expression data of primary tumor in the dataset (GSE19783) (based
on information available from previous studied Dataset GSE3985) and use them
to predict the DTC status in a LOOCV classification environment. Starting
from the proposed list of 24 genes, we apply recursive feature elimination
and compare the predicted with the verified status from actual bone marrow
aspirates of the same patients. Interestingly, the maximum accuracy (73,8%)
is achieved for 10 genes, five of which are common with the previous 11 genes
characterizing metastatic from non-metastatic samples. These genes include
(TRIB1, GLO1, WIPI1, CXCR4 and BECN1). We perform the same analysis
for the CTC labels of this dataset, as presented in [Molloy et al., 2012]. Notice
that the analyzed samples are from breast cancer tissue, whereas the CTC labels
are determined using multi-marker QPCR-based CTC assays for peripheral
blood samples from the same subjects [Molloy et al., 2012]. The RFE-LASSO
approach in LOOCV scheme achieves 77,8% accuracy with 12 genes. This list
includes 5 common genes (TRIB1, CDKN2D, WIPI1, YWHAB and CXCR4
genes) with the previous comparison of DTCs showing good consistency with
the CTC status. Overall, these independent tests may assess the importance
of the extracted panel of 24 genes not only in cancer but also in metastasis
through disseminating or circulating tumor cells. This is also supported by the
fact that the reported genes have been detected and extracted as commonly
overexpressed in cancer for both breast tissue and blood, emphasizing the
association of peripheral blood in metastasis and indicating good prospects
in detecting CTCs and cancer-causal molecules through the profiling of bulk
blood samples.

2.5 Discussion

The pairwise signatures and their integration examined in this study derive
genes involved in significant cancer processes related to aggressiveness and
metastatic behavior. As such, they can be further studied for the assessment
of the presence of CTCs in peripheral blood, without the need of isolating and
processing single cells. Finally, the comparisons we perform for the derivation
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of signatures C1, C2, C3, and C4 are more or less similar to those in many
other studies. The interesting aspect of our study is the integration of many
datasets, especially for increasing the size of the control group. A similar
intersection of the form of C1 ∩ C2, has been also implemented in [Obermayr
et al., 2010]. The addition of the C3 in the intersection process is has been
found essential in order to exclude irrelevant genes that are expressed in cancer
peripheral blood but are not specifically related to cancer.

The data integration methodology we illustrate above can be criticized for
various reasons. First, the merger and integration of platform heterogeneous
data sets endangers the elimination of probesets that do not map into the
common set of gene identifiers for all the data sets of a given comparison. For
example, the Affymetrix U133 Plus 2.0 Array supports up to 20,000 unique
gene identifiers but the ABI chip maps only to around 7,000 genes. Thus, the
final combined dataset in C2 can contain up to the smaller number of genes. In
fact, the final dataset can possibly contain a lot less measured gene transcripts
because there can be an even smaller set of common Entrez Gene identifiers.
Since there is no real remedy for this problem, we use as similar and complete
platforms as possible in every comparison we make.

Secondly, the cross-study normalization of the expression values can be too
pervasive, making the merged data sets overly similar by eliminating potentially
important variations. An example of the effect of such (re)normalization across
datasets in the same comparison can be seen in Figure 2.4, where the healthy
samples from one study are shown before and after the merger. The expression
values of different genes appear to be shifted so that their central tendency
statistics (mean, median) come closer but the gene-wise variability is almost
retained. Such a transformation in the expressions of genes is generally
preferred when compared to no additional normalization: in the latter case the
unwanted study-specific variability, which is usually systematic (i.e. “batch
effects”), can be overwhelming [Leek et al., 2010]. As explained in the Methods
paragraph, a “meta-analytic” approach is not always possible although it
can be more robust since the platform and study-specific differences become
irrelevant by avoiding the integration of raw expression values. We have
therefore adopted the integration of the studies at the expression level using
the COMBAT algorithm, which appears to yield the best results in various
cases and retains legitimate biological variation between the biologically distinct
samples [Tsiliki et al., 2011,Turnbull et al., 2012].
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Figure 2.4: An example of the effect of the cross-study normalization. The expression
of a random sample of the differentially expressed genes in the C1 comparison is
shown before and after the Empirical Bayes (COMBAT) method is performed in the
normal samples of the GSE18672. The gene-wise variation seems to be preserved but
the gene-wise mean expression value (shown as a green line) is smoother after the
merger.

2.6 Conclusions

The identification and characterization of CTCs is important for the treatment
of patients with metastatic epithelial cancers such as breast cancer. The isola-
tion of CTCs though is difficult due to the small numbers of such disseminating
cells in the peripheral blood. In this chapter we describe a multi-study inte-
gration approach that attempts to explore the field by combining microarray
gene expression data originated from tissue and peripheral blood.

The results are indeed promising. The 27-gene signature contains some
of the important genes that are commonly used for CTC identification, and
therefore it makes sense to further consider the proposed approach for indirect
assessment of the existence of CTCs.The Supplementary Material and the
R/Bioconductor code for the present analysis are hosted in GitHub and can
be found at https://github.com/sgsfak/data_int_ctc.

In the subsequent chapters we expand this list of potential biomarkers
using biological networks. The objective is to strengthen the discriminating
and predictive power of these biomarkers and to get a better underdstanding

https://github.com/sgsfak/data_int_ctc


2.6. Conclusions 61

of the underlying biological mechanisms that give rise to their prominence in
the analysis we performed.
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The result of our work so far is a list of 27 genes that are potential
biomarkers for the existence of circulating tumor cells in the blood of breast
cancer patients. These genes were found as the outcome of a statistical analysis
of public data sets, where (hidden) confounding factors or “noisy” observations
may exist, and therefore are introduced with some level of uncertainty. In
order to validate and extend these findings, in this chapter we incorporate
existing biological knowledge in terms of biological networks. Our first aim
is to investigate whether the 27 genes can be used as a module of biological
functionality, that is to say, if there are “connected”, since there is evidence
that disease genes tend to cluster together and co-occur in central network
locations [Ideker and Sharan, 2008]. As a second objective, we use the list of
the 27 genes as “landmarks” or “seeds” in order to enrich this set of biomarkers
and increase their predictive and discrimination ability.
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3.1 Introduction

In this chapter, we develop a stepwise refinement approach for biomolecular-
network construction utilizing 27 genes characterized as “putative markers of
circulating tumor cells” (CTCs) in order to provide the molecular information
on breast cancer origin, and its potential to spread to other areas of the body,
such as to the brain. A key element in our approach is the consideration of
interaction network effects of specific genes suspect for revealing the presence
of circulating tumor cells in peripheral blood that are considered the primary
cause for the dissemination of cancerous cells [Greene et al., 2012,Dong et al.,
2013]. In the previous chapter we have singled out a number of genes that
appear to be correlated with the presence of CTCs in breast cancer patients.
Here, we use these “biomarkers” as the input alongside with the biological
network information in order to better understand the mechanisms that may
have given rise to their manifestation. The objective is twofold: a) to gain
insight for the biological underpinnings that can possibly give rise to the set of
biomarkers and explain their prominence, and b) to expand these biomarkers
to a larger pool of genes in a computational, data driven approach and explore
the prognostic ability of the derived gene signature in similar but independent
datasets.

We are using the biological networks of proteins (Protein-Protein Inter-
actions, Section 1.5) as the source of well-established biological knowledge.
The interaction networks provide a lot more potential and flexibility for un-
covering hidden associations among the genes than other sources of biological
information such as the Gene Ontology, due to their graph-based structure. Fur-
thermore, they have been the subject of a lot of contemporary and important
research. Usually, proteins (and therefore the genes that encode them) associ-
ated with the similar phenotypes (e.g. disease) are highly interconnected [Jon-
sson and Bates, 2006]. Also, disease genes have been reported to form strongly
connected modules in “central” locations in the networks [Ideker and Sharan,
2008] or to encode proteins with a lot of connections (“hubs”) [Wachi et al.,
2005]. Due to this extended evidence, in this chapter we consider the list of the
27 genes as “seeds” for the construction of a single module of related biological
functionalities, which can possibly include many other interconnected genes.

3.2 Materials and Methods

3.2.1 Methodology

A list of 27 genes derived from our earlier work [Sfakianakis et al., 2014] is our
starting molecular signature. These genes were the outcome of the multiple
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comparisons between normal and cancerous samples in blood and breast tissues.
We refer to this set of genes as the input or “seed” list from now on.

In order to understand better the possible biological mechanisms behind the
selection of the specific genes in the seed list the first step in our methodology
is to construct a network that spans these genes. This network construction
step uses known gene (protein) interactions in order to interconnect the genes
by introducing additional intermediate vertices in a network. This is known as
the Steiner tree problem in graphs [Winter, 1987].

The next step is to expand the elicited network in a data driven way. We
use the background biological network that was also employed in the first
step but this time combined with a gene expression (GE) dataset in order to
introduce additional nodes on the periphery of the Steiner tree. The selection
of the neighboring genes to attach to the current network is based on their
ability to increase the association of the currently expanding subnetwork with
the class labels of the GE dataset’s samples. This step results in a bigger
network that we subsequently test its discrimination power in an independent
dataset.

3.2.2 Network construction

The Steiner tree for an undirected distance graph G = (V, E, d) and a subset
of vertices S ⊆ V (called Steiner points from now on) is a connected tree T ,
with vertices U ⊆ V and edges S ⊆ E that spans all vertices in S. A minimal
Steiner tree for G and S is the one with the minimal total distance of its edges
among all the similar Steiner trees. Therefore, the Steiner tree problem aims
to find a minimum cost solution for connecting a subset of the graph’s nodes
through the selection of some of the “internal” nodes of graph, whereas in
the (similar) minimum spanning tree problem the objective is the selection of
edges to minimally interconnect all the nodes of the graph. Finding a minimal
Steiner tree is an NP-Complete problem and in this study we are using the
heuristic algorithm of Kou et al. [Kou et al., 1981] that has been shown to
produce trees that are not far from the minimal (optimal) solution.

As the initial Steiner points we use the set of genes in our seed list. We also
use the HINT database that provides high-quality protein-protein interaction
networks in human and other organisms [Das and Yu, 2012]. Twenty-three
(23) of the genes in the seed list were found in the HINT human PPI network
and the Steiner tree finding algorithm produces a 56-gene network shown in
Figure 3.1. As can be seen, the result is an acyclic graph (a tree) that spans
and connects the genes in the seed list by introducing intermediate nodes
according to the underlying graph in the HINT database
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Table 3.1: Databases and Data sets

Database Number of nodes Number of Edges
HINT 10889 45226

Dataset Platform Samples
GSE42568 Affymetrix Human Genome

U133 Plus 2.0 Array
17 normal and 53 grade 3
breast cancer patients

GSE52604 Agilent-014850 Whole Hu-
man Genome Microarray
4x44K

35 Breast Brain Metastasis
samples, 10 Non- Neoplastic
Brain samples, and 10 Non-
Neoplastic Breast samples

3.2.3 Network expansion

The algorithm of Chuang [Chuang et al., 2007] is subsequently used to expand
the Steiner tree network and explore the neighborhood of the Steiner tree
nodes. To this end we are using the public dataset of GSE42568 (Table 3.1)
and the subset of “Grade 3” breast cancer samples versus the normal cases, as
follows:

• Each of the genes in the induced Steiner tree is used as a “seed” for
possible network expansion.

• For each “seed” the methodology in Chuang et al. is followed: In
an iterative fashion, each of the seed’s neighbors in the HINT PPI
network is added to the subnetwork rooted at the seed and the set
of subnetwork nodes is checked whether the agreement with the class
labels (i.e. breast cancer versus normal cases) is improved. To determine
the agreement with the samples’ phenotypes, an “activity score” for
the current subnetwork is computed based on z-transformed scores of
the genes and the Mutual Information (MI) between the activity score
and the class labels is computed. The subnetwork for a specific seed is
expanded by checking its neighbors, their neighbors, and so on as long
as the MI score is continuously increased.

• The expanded subnetworks from the genes of the Steiner tree are then
“sewn” together to form a bigger, unified network that has the original
Steiner tree as its “backbone”.

Using the Steiner tree of Figure 3.1, the HINT PPI underlying network,



3.2. Materials and Methods 67

Figure 3.1: The Steiner tree of the input “seed list”. The genes used as the initial
Steiner points (the seed list) are shown with red fill color, whereas with green color
are the additional connecting genes.

Figure 3.2: The expanded network based on the Steiner tree of Figure 3.1. The genes
contained in the original Steiner tree are shown with circles.
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and the samples of GSE42568 described in Table 3.1, the above methodology
produces a 203-gene network that is shown in Figure 3.2.

3.2.4 Validation of the induced network

We explore the discrimination abilities of the produced network in the inde-
pendent dataset [Salhia et al., 2014] available from GEO under the accession
number GSE52604 (Table 3.1). This dataset contains three types of samples:
non-neoplastic brain tissues, non-neoplastic breast tissues, and breast brain
metastatic samples. We are interested in exploring the discriminating power of
the produced network in two comparisons: a) between the non-neoplastic breast
tissues and the breast brain metastatic ones, and b) between the non-neoplastic
brain tissues and the breast brain metastases.

A “heatmap” visualization of the expression values for the genes of out
network clearly shows that there are differences between these types of samples
(Figure 3.3). We subsequently perform gene-wise t-tests for our network in the
two comparisons with multiple test adjustment based on the False Discovery
Rate (FDR) [Benjamini and Hochberg, 1995a]. With the FDR criterion set at
0.1 the comparison between the non-neoplastic breast and the breast brain
metastases yield 52 differential expression genes. Of these, 10 genes are in the
identified Steiner tree while 6 genes come from the original seed list we used
as input. The similar comparison between the non-neoplastic brain and the
breast brain metastatic tissues results in 74 differentially expressed genes, 19
of which are nodes in the Steiner tree and 11 genes belong also to the input
gene list.

We next perform a stratified 10-fold cross validation (CV) and aggregate
the classification accuracy of the penalized generalized linear model using as
features only the 203 genes of the induced network. We are using the glmnet
package in the R statistical software for fitting the logistic regression models
with the “elastic-net” penalty [Friedman et al., 2010]. The comparison between
the non-neoplastic brain and the breast brain metastases returns a mean (along
the 10 folds) classification accuracy of 0.98 whereas the corresponding for the
breast cases yields the optimum 1.0. To further validate the statistical accuracy
of these classification results we perform a simple permutation test [Ojala and
Garriga, 2009]: 1000 hypothetical datasets are created by permuting the class
labels of the samples. For each of these perturbed datasets we evaluate the
classification power of the same genes with the same 10-fold CV methodology.
The results can be seen in Figure 3.4 alongside with the real classification
accuracy in the original dataset. Under the null distribution induced by these
permutation results, the empirical p-value of the real classification results
is around 0.001 and therefore the reported classification performances are
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Figure 3.3: The heatmap of the 203 genes of the expanded network in the GSE52604
dataset.

statistically significant.

3.3 Discussion

The proposed method uses network information twice: once for constructing
a network connecting the given set of biomarkers and then for expanding
the constructed network. The first step is network driven only and therefore
common for all cases (e.g. different physiologies, diseases, etc). In the second
step though we also take into account specific gene expression data from
patients’ samples and therefore is more data-driven and case or disease specific.
Therefore the method combines some static knowledge in the form of biological
interaction networks and dynamic knowledge that is patient and disease specific.
We argue that this is an important feature of the proposed methodology

During the first step of our method we try to identify network paths
that can interconnect the input list of genes. To this end the Steiner tree
algorithms try to solve the optimization problem of finding a small number
of intermediate genes. Of course there might be multiple alternative trees
connecting the genes, so why opt for the minimal (or near minimal) number of
interconnecting genes? We could indeed consider all possible ways that the
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Figure 3.4: Accuracy results when performing 1000 permutations of class labels. The
actual performance of the 203 genes is shown with dashed, red vertical lines.

input list of genes connect to each other but this can increase exponentially
the “solutions” to be tested. Irrespective of these computational issues, the
formulation of the gene interconnection as a Steiner tree problem offers the
advantage of the introduction of a little number of additional nodes. This is
in agreement with the Occam’s razor in the sense that we are searching for
the simpler justification on how the input genes have been selected in the first
place: the simpler, shorter, and with the fewest assumptions explanation is
usually the correct one.

From a biological point of view, following this first step, and analyzing the
gene sets by Genes-to-Systems Breast Cancer to identify disease pathways,
we observed that the intermediate vertices (AKT2 CDK4 CDK6 CDKN1B
CDKN2A) of the “backbone” Steiner tree possess a central role in the con-
structed protein network by interconnecting the 27 genes of the starting
molecular signature and thus supporting the notion that the encoded proteins
may be important for network’s integrity. The constructed “backbone” Steiner
tree unfolds a panel of various significant (0.000001809 6 p 6 0.008864)
cancer disease pathways that are related to various forms of cancer (Chronic
myeloid leukemia, Pancreatic cancer, Small cell lung cancer, Non-small cell
lung cancer, Melanoma, Glioma) apart from other important and significant
(0.00009544 6 p 6 0.0452) molecular pathways (p53 signaling pathway, Sig-
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naling by TGF beta, Cell cycle) that are important in health and disease.
For the network expansion step we are using the greedy search based on the

Mutual Information that was initially proposed by Chuang et al. Alternative
approaches exist, for example Yang et al. propose the “EgoNet” [Yang et al.,
2014]. Their technique involves the expansion of the current sub-network by
incorporating all the neighboring genes and then testing the classification
accuracy of the expanded network using a Random Forrest algorithm. This
is an interesting approach since the expansion of the network is based on
the classification potential of the genes. Instead, Chuang et al. propose
the computation of an activity score and then the mutual information score
measures the (not necessarily linear) correlation with the class labels. Therefore
EgoNet is in some sense more direct and we aim to experiment with it in the
future. In general our approach does not necessarily provide the optimum
solution. Improvements can be made in the criterion for the augmentation
and network expansion so that in addition to the prediction power we consider
the biological significance of the genes in a candidate search direction.

Following the network expansion step, we emphasize that the final uni-
fied network poses several advantages in detecting new proteins such as pro-
tein kinases (AKT1, CDK4, CDK5, CDK6, MAP3K13, PDPK1, PRKACA,
PRKCZ, RAF1, STK35, TYK2) and transcription factors (FOSB, FOSL1,
HEXIM1, LMO1, LMO3, LMO7, MEOX2, MORF4L2, MYBL2, NR4A1,
OPTN, RELA, SETDB1, SMAD3, SMAD4, SMARCC2, SREBF2, TBX15,
TCF4, ZFP64) that are implicated in cancer, as well as tumor suppressors
(CDKN2A, FANCG, SMAD4, TNFAIP3) and oncogenes (CASC5, DDIT3,
EGFR, EWSR1, LMO1, MAFB, RAF1, ZMYM2) by utilizing the Molecular
Signatures Database (MSigDB). All these intermediate molecules are essential
for the interconnection of higher scoring proteins, a crucial property for the
discovery of disease-causing genes [Salhia et al., 2014]. In addition, we confirm
that protein-protein interactions, and post-translational modifications (e.g.
phosphorylation) can move the activity of a protein from what would have
been predicted by its transcription level [Stambuk et al., 2010]. For example,
we know that changes in SMAD phosphorylation have been linked to breast
cancer metastasis [Chuang et al., 2007].

3.4 Conclusions

We have described a method for exploring the similarities of a set of genes and
validating their effectiveness in a two-step process that uses existing biological
information. Although more intensive research is needed to investigate the early
disease events and to find predictive markers for the course of breast cancer
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metastatic process, the proposed stepwise refinement approach provides: (i) a
meaningful “backbone” Steiner tree and a comprehensive unified network, (ii)
putative predictive biomarkers of breast brain metastasis and (iii) a feedback
for the validity of the 27 genes of the starting molecular signature as indicative
markers for the presence of CTCs.

The assumptions of this work, which were described in the introductory
section of this chapter, are that cancer-related genes and their corresponding
proteins occupy central locations in biological networks and they are strongly
connected with many other genes. We have formulated these assumptions as
the solution to the minimal Steiner tree problem in graphs, which effectively
tries to identify the shortest paths between the genes in our initial list. From
the biological point of view there is no clear justification for choosing the
shortest paths instead of any other path, except maybe for the “Occam’s razor”
or “maximum parsimony”: the fewest assumptions are often preferred to those
positing more. In the next chapter, we are relaxing these assumptions and we
consider each gene in our “seed” list as independent module that effectively
models its own local biological properties.
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In the previous chapter we used existing biological knowledge in the form
of biological networks in order to identify a single “module” of connected genes
around our initial set of 27 genes. The motivation of this strategy is previous
research that characterizes cancer biomarkers as “hubs” in the network, that
is to say, they tend to encode highly connected proteins [Jonsson and Bates,
2006]. In this chapter instead, we explore another approach: we consider
each of the 27 genes as local concentration points of biological functionality
and focus on their close “neighbors”. Therefore, each biomarker is considered
separate from the others rather than part of the same, global functional group.
This approach is inline with research that shows disease related genes to occupy
peripheral positions in the human interactome [Goh et al., 2007].

The underlying application domain is again the classification task but in
this case each of our initial biomarkers is used to construct a “base” network
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classifier using its closest neighboring genes. These network classifiers are
combined in an “ensemble” to form a two-level classification scheme. At the
first level base classifiers are built using the given list of candidate “biomarkers”
and the topology of the biological network. In particular, the network structure
is taken into account by a search strategy based on random walks for the
selection of the genes used in these base-classifiers. At the second level, a
meta-classifier is trained to combine in the best possible way the results of
the base classifiers. The proposed approach therefore aims to strengthen
the classification ability of the initial list of genes and provide more robust
generalization guarantees. Our methodology is explained in full detail and
promising results in Breast Cancer related scenarios are obtained.

4.1 Introduction

Nowadays the origin and evolution of cancer is conceptually dedicated to
an altered network of genetic, epigenetic, metabolic, environmental, and
biochemical responses, rather than to a defect of individually molecules. A
network-based understanding is essential concerning the biological processes
and mechanisms underlying disease progression. Bearing in mind that networks
are fundamental in personal and preventive medicine, current research in the
field is focused on exploring and elucidating disease networks at the molecular
level in order to provide diagnostic, prognostic and predictive biomarkers, and
also to intervene to treat disease through the specification of drug targets
[Barabási et al., 2011,Vanunu et al., 2010,Vidal et al., 2011].

In the recent years biological networks, either in the form of pathways,
gene interaction, or protein interaction networks, have been used to provide
insight (explanation) in the research findings or to guide the search strategies
for the discovery of “biomarker” genes. In this chapter we propose a novel
approach for building predictive models that use the underlying topological
information of biological networks in an adaptive way. Starting from the list
of candidate biomarkers identified in Chapter 2, we extend the “neighborhood”
of each of these genes by taking advantage of the whole graph topology, not
only their immediate adjacent genes in the network. This “neighborhood
expansion” phase is effectively a “wrapper” based gene subset selection [Kohavi
and John, 1997] that uses the classification performance of the neighborhoods
as the criterion for further expansion. The selection of subsets of the genes
starting from the initial candidate set leads to several gene subsets (one for each
initial candidate biomarker) which appear as loosely connected sub-graphs.
This observation induces an assumption that each marker gene does not act
by itself but rather integrates a number of functionally-neighboring genes
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towards a specific task or biological action. Thus, these subgraphs or gene
subsets are then trained independently to build the same number of classifiers.
The objective is then to build a classifier that combines the predictions of
these “base” classifiers (i.e. one classifier per biological action initiated by the
corresponding biomarker gene) in order to provide the final estimation, in
a binary classification problem. The genes selected during the construction
of the base classifiers are then considered to form strongly intra-dependent
functional groups that can be used as composite features for the unsupervised
classification of new samples.

4.2 Methods

The starting point of our work is a list of m genes, L = {gi, 1 6 i 6 m},
alongside with a biological network G = (V, E), where V is the set of vertices
corresponding to genes, and E is the list of edges connecting those genes. For
the initial set L of genes we are using the 27 genes derived from our earlier
work [Sfakianakis et al., 2014]. These genes were the outcome of the multiple
comparisons between normal and cancerous samples in blood and breast tissues.
The biological network we use is HINT [Das and Yu, 2012], a protein-protein
interaction network that consists, at the time of this writing, of around 11000
nodes (proteins/genes) and 45000 interactions.

The list L of starting genes represent a candidate “gene signature” for
the characterization of a medical condition or a disease such as cancer, or a
biological phenotype [Segal et al., 2005,Sotiriou and Piccart, 2007]. We aim
at using each of these genes as centers for the construction of independent
“classifiers” using the network topology as guidance for the selection of genes
that will be included in the classifier built around those centers. The classifiers
are then combined into a higher level classifier in order to produce more robust
classification performance than the initial list of genes.

Since the final objective is to build a predictive model for the classification of
unknown cases (biological samples) into predefined categories (e.g. metastatic
versus non-metastatic samples), an additional set of gene expression values
D = {(xxxj, yj), xxxj ∈ Rk, yj = ±1, 1 6 j 6 N} are used in a supervised learning
setting.

Our approach is based on the following two main steps:

• For each gene in the initial list L we compute their proximities to any
other gene in the biological network G.

• The distances between the genes in the initial set G and any other gene in
the network are then used to build a two level hierarchical meta-classifier
using the training set D.
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4.2.1 Computing gene proximities

The biological network links the different genes and provide a global view of
the possible ways that any gene can affect any other gene. In order to quantify
such interactions we consider not only the immediate neighbors of a gene in the
network, or the shortest path that connects them, but any possible path that
contains the genes in question. Using graph theory this problem is formulated
as performing random walks in graphs with restart [Chung, 2007,Can et al.,
2005].

In more detail the proposed methodology is as follows:

• Taking as input the gene interaction network G, we consider random
walks with restart [Lovasz, 1993]: given a parameter β that corresponds
to the probability that there’s no transition from one node of the graph
to any other, the probability distribution for every node in the graph at
time t+ 1 is given by:

PPPt+1 = βPPP0 + (1− β)WWWPPPt (4.1)

where PPP0 is the initial assignment of weights in the nodes of the graph,
andWWW is the “normalized adjacency matrix” of the graph, i.e.

WWWi,j =

{
1

deg(j) if node i directly interacts with node j,

0 otherwise

where deg(j) is the degree of a node, that is the number of genes adjacent
to it. When the graph is connected then after many transitions the
steady state condition PPPt+1 = PPPt ≡ PPP gives:

PPP = β(III− (1− β)WWW)−1PPP0 (4.2)

• In Equation 4.2 the matrix β(III − (1 − β)WWW)−1 ≡ MMMβ is a stochastic
matrix independent of the initial weights PPP0 and captures the probability
of transitions (in one or more steps) from any node in the graph to any
other node (including itself). By taking the negative logarithm of the
entries in this matrix we transform it to a matrix of “distances” so that
two genes with large transition probability are considered close to each
other1. This induced gene distance matrix provides the proximity of
any gene to any other by taking into account all possible paths in the
network as determined by the random walk formulation.

1Using the logarithm (instead of only changing the sign, or taking the reciprocal) is
not really necessary, but it transforms the values into a more “manageable” range, usually
between 1 and 10.
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The final result of this step is the determination of the MMMβ matrix of
gene proximities, as explained above. Of course the calculation of this matrix
depends on the choice of the parameter β that corresponds to the probability
of returning to the initial gene instead of randomly selecting one of the adjacent
genes. In the current implementation, the choice of β = 0.4 has been made.

4.2.2 Building an ensemble of classifiers

The proximity matrixMMMβ computed in the previous step can be used to select
for each gi ∈ L its “nearest” genes, so that we build a different classifier Ci
based on the subset of genes that are most closer to gi. Subsequently, the
different classifiers form a committee or ensemble that if used collectively
can increase the classification performance. This is a typical application of
ensemble learning [Kittler et al., 1998,Dietterich, 2000] where the output of
the different classifiers are combined through voting (majority wins), weighted
voting (some classifier has more authority than the others), averaging the results
(for regression problems), etc. and there is a large number of approaches taking
advantage of Boosting [Schapire, 1990,Freund and Schapire, 1997] or “Bagging”
(Boostrap aggregating) [Breiman, 1996] in order to train and build the final
classifier.

An alternative way of combining different classifiers was introduced by
Wolpert [Wolpert, 1992] under the name of “Stacked Generalization” or “stack-
ing”. In this setting the output of many classifiers (or “generalizers” in Wolpert’s
terminology) form a new training set for another, higher-level, classifier. The
basic idea is to train the first-level (“Level 0”) classifiers using the original
training data set, and then generate a new data set for training the second-level
(“Level 1”) classifier, where the outputs of the first-level learners are regarded
as input features while the original labels are still regarded as labels of the
new training data (Figure 4.1).

In our case, we adapt the “stacked generalization” approach as follows:

• Each Level 0 classifier is built from the “neighborhood” of the initial
gene list L, using the most proximate genes as determined by the matrix
MMMβ. Each base classifier Ci is trained using Logistic Regression. The
rationale for this choice is twofold: First, logistic regression provides
a probabilistic output, i.e. a level of confidence that an input sample
belongs to the “positive” class (e.g. a “poor prognosis” group) that can
be used as a numerical feature for the second level classifier. Secondly,
the probabilistic output of a logistic regression classifier is usually well
calibrated since it optimizes directly the log loss [Bishop, 2006a]. The
choice of how many neighbors to consider for each gi, which equivalently
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Figure 4.1: Stacked generalization or 2-level “stacking” of classifiers. The classifiers
at the first level (Level 0) take as input the input cases and each one of them produces
a prediction. The predictions of the first level classifiers are then given as input to
the second level (Level 1) classifier (“combiner”) that provides the final prediction.

means the radius of the “open ball” [Rosenlicht, 1986] centered at gi,
is determined by an internal cross validation. In this cross validation,
increasing values of the radius r, that is the distance from the center gene
gi, are used and the subset of genes contained in the said distance are
checked in terms of the impact on classification performance as measured
by the Matthews correlation coefficient [Powers, 2011]. The different
values of r tried are determined by the desired number of genes to be
included in the corresponding ball, for example 3, 5, 10, etc. up to the
maximum 30.

• The probabilistic outputs of the base classifiers are combined in a Level
1 Random Forest classifier. As described by Wolpert [Wolpert, 1992],
the second level classifier is built using the outputs of the base classifiers
in a Leave-One-Out (LOO) scheme. This means that every case in the
input training set is kept separate, the base classifiers are trained in the
rest of the cases, and their predictions on the test case are then noted.
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When every input case has been used as test, a new training set (with the
same number of cases as in the initial training set) for the second level
classifier has been created based on the predictions of the base classifiers.
The random forest classifier is then trained in this new training set. We
have chosen the random forest technique as the second level classifier in
order to take advantage of its ability to compute “feature importances”
as we describe in Section 4.3.3.

The pseudocode of the adaptation of “stacking” and the use of the network
information is shown in Algorithm 1.

Input: L: list of “seed” genes,MMMβ: gene proximity matrix,
D = {(xxxj, yj), xxxj ∈ Rk, yj = ±1, 1 6 j 6 N}: gene expression
dataset with binary class labels

Output: C0i : base classifiers, one for each gi in L, C1: second level
classifier

begin
foreach gi in L do

find “best” number of neighbors of gi usingMMMβ and “grid search”;
end
// List of base classifiers predictions:
P ← ∅;
for j = 1 to N do
Dfold = D− {xxxj};
foreach gi in L do

C0i,j ← Fit Logistic Regression with the neighbors of gi in
Dfold;
// Predict on the left out sample, and keep

prediction:
Pi,j ← C0i,j(xxxj);

end
end
// Train 2nd level classifier:
C1 ← Fit Random Forrest in P;
// Train base level classifiers in the full dataset:
foreach gi in L do

C0i ← Fit Logistic Regression with the neighbors of gi in D;
end

end
Algorithm 1: The adapted “Stacking” algorithm
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Table 4.1: Number of sample and characteristics of the public dataset GSE45965

Phenotype Number of samples
Normal Peripheral Blood 8

Breast Cancer Tumor 50
Circulating Tumor Cells 5

Normal Epithelia 4

4.3 Results and discussion

4.3.1 Data

We have used the recently available data set of [Lang et al., 2015] to test
the proposed two-level classification approach. This data set is available as
three “sub-series” in the Gene Expression Omnibus (GEO) public database as
the “super-series” GSE459652. It consists of 67 gene expression profiles from
peripheral blood, circulating cancer, breast cancer tissue, and normal epithelia,
as shown in Table 4.1.

For the proper annotation of the gene probes in the data set we have used
the UniGene database3 to perform mappings from the GeneBank identifiers to
the Entrez Gene ids and gene symbols. Probes that dont’t have a UniGene
annotation or that have not been measured in all samples were removed. For
the case where multiple probes map to the same Entrez Gene identifier the
average (mean) expression value was calculated and used in the downstream
analysis. After this annotations and summarization step, we are left with
around 15,000 unique genes.

4.3.2 Evaluation

Based on our earlier work [Sfakianakis et al., 2014] presented in Chapter 2,
we are interested in the use of computational methods for the profiling of the
circulating tumor cells in the blood of breast cancer patients. Therefore we
focus on the comparisons between normal peripheral blood (PB) and breast
cancer tumors (BC), on one hand, and between CTCs and normal peripheral
blood on the other hand. For each binary classification we test Support
Vector Machines with Radial Basis Function (Gaussian) kernels and Random
Forests type of classifiers alongside with the proposed “stacked” classifiers and
a logistic regression using only the candidate biomarkers for the CTC presence

2http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45965 (accessed Febru-
ary 25, 2016)

3http://www.ncbi.nlm.nih.gov/unigene (accessed February 25, 2016)

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45965
http://www.ncbi.nlm.nih.gov/unigene
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Table 4.2: Average AUC scores

Classification method
CTC versus PB
(with gene selec-
tion)

BC versus PB
(with gene selec-
tion)

Random Forest 0.795 (0.842) 0.917 (0.934)

SVC-RBF 0.980 (0.995) 0.952 (0.995)

Logistic regression with the
biomarkers of [Sfakianakis
et al., 2014]

0.932 0.979

Subnetwork Stacking 0.960 0.952

identified in [Sfakianakis et al., 2014]. For the evaluation of the performance
of the classifiers we are using the area under the curve (AUC) of the Receiver
Operating Curve (ROC) [Fawcett, 2006] in order to have a unique metric that
takes into account both the true and the false positive rates. In the different
comparisons we consider Breast Cancer tumors to form the positive class,
unless the comparison contains CTC samples where we consider those cells to
be in the positive class. The choice of which is the positive class is not totally
irrelevant if combined with the use of AUC as the evaluation criterion since
AUC conveys a probabilistic meaning: the AUC of a classifier is equivalent to
the probability that the classifier will rank a randomly chosen positive instance
higher than a randomly chosen negative instance [Fawcett, 2006].

For each of the two comparisons we performed a “repeated hold-out” evalua-
tion process where in each iteration a “stratified” split of the randomly shuffled
dataset is done. In each iteration the training set consists of the 70% of the
samples and the rest 30% is used for testing the trained classifiers. We repeat
the same process 100 times and each time we record the AUC achieved by each
classifier. The final score of each classification method is the average of the
AUC scores achieved in each random split. The results are shown in Table 4.2.

The Table 4.2 contains also the performance results for the Random Forest
and the SVM rows when we perform a feature (gene) selection preprocessing
step, as follows: From each iteration we keep the most important genes as
reported by the Random Forest classifier. The union of all these “important”
genes yields 303 genes in the CTC versus peripheral blood comparison and
518 genes in the peripheral blood versus Breast cancer comparison. We then
repeat the evaluation in the same “repeated hold-out” process using the same
splits but only the most important genes identified previously as features. The
results of this second evaluation that is only relevant for the Random Forest
and the SVM classifiers are shown in parentheses in Table 4.2.
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A first remark on the results shown in Table 4.2 is that all methods
exhibit impressive classification performance (above 90%), with the exception
of random forests, in the comparison between CTCs and peripheral blood. As
expected, the gene selection process improves the performance of the Random
Forest and, to a larger extent, the Support Vector Machine classifier (SVC).
The candidate biomarkers from our previous work [Sfakianakis et al., 2014]
have very good classification power when used as features in logistic regression.
This fact emphasizes the importance of the limited number (19) of carefully
selected genes from the full set of features in the dataset.

The stacking classifier that we are proposing improves the performance
of the set of the 19 genes, but only in the case of the CTCs verus peripheral
blood. Of course the base classifiers in the stacking case are not built from the
whole set of 19 genes: instead each base classifier is build from the network
neighborhood of one of the 19 genes.

4.3.3 Significant neighborhoods

During the training phase each of the base classifiers builds a “neighborhood”
around the corresponding seed gene. On the other hand, the second level
classifier is a random forest that provides an importance score for its features
thus measuring their contribution to the predictive accuracy [Breiman, 2001].
In the proposed stacked generalization methodology the features used are
the predictions of the base classifiers and therefore they measure, indirectly,
the classification ability of the genes selected in the neighborhood of the
corresponding seeding gene.

We take advantage of the iterated hold-out evaluation process so that in
each random split of the data into training and testing sets we normalize the
importances of the base classifiers based on the performance of the whole
2-level classifier in the test set, as follows:

ĝki = AUCi ∗ gki

where AUCi is the performance of the stacking classifier in the i-th iteration
as measured in terms of the area under the ROC curve, gki is the importance
score of the k base classifier as reported by the random forest in the i-th
iteration, and ĝki is the corresponding normalized importance of the base
classifier. Computing the mean ĝi =

∑K
k=1 ĝ

k
i /K over all iterations we find

the results shown in Fig. 4.2.
In order to see what are the most frequently selected genes for each base

classifier we use again the information provided by the multiple splits into
training and test sets. We count the number of times each gene is selected
in a specific classifier (therefore in the neighborhood of the corresponding
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Figure 4.2: The mean importance scores of each base classifier in the different
comparisons. Each base classifier is referenced based on the gene that is used as its
“epicenter” in the training of the classifier and the selection of the genes most “close”
to it.

seed) across all iterations. We then select, for each base classifier, the genes
that appear at least in the 60% of the iterations. The results can be seen in
Table 4.3 and Table 4.4.

There are some genes that participate in the neighborhoods of more than
one seed. This is more evident in the results of the peripheral blood versus
breast cancer tumor samples comparison. Also each neighborhood is an
“induced” graph of genes where the seeding gene is at the epicenter. In Figures
4.3 and 4.4 we show these induced graphs and how they are connected to each
other based on the shared genes. The distance between the seed genes and
their neighbors are computed based on the number of the iterations that the
neighboring gene was selected during the construction of seed classifier in the
repeated hold-out evaluation process. For example, the distance 0.95 means
the neighboring gene was selected 95 times out of 100 during this process.

Using the collective set of the genes in the significant of the neighborhoods
found in the two comparisons we perform Principal Component Analysis (PCA,
see Section 1.4.1.1) and the results can be seen in Figure 4.5. Effectively, we
keep only the values for the genes in the two cases separately (156 and 278 for
CTC vs PB and PB vs BC, respectively) and then through PCA we keep only
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Table 4.3: Genes most commonly selected per seed in the CTC versus PB
comparison

Seed/Base clas-
sifier Genes selected in seed’s “neighborhood”

BECN1 BCL2, GFI1B, BECN1, ZWINT, PIK3C3

CDKN2D
DAB1, NR4A1, CDKN2D, RXRA, RAB1A, RB1, ASCC2, NEK6, TGFBR1,
PSMA1, CDK4, NR4A2, COPS5, INCA1, HSD17B14, CDK6, GRB2,
ATXN1, RBPMS, IKZF3

DHX58 ACVR1, POM121, DHX58, KPNA2, SMURF1, SMAD4, TERF2IP, MLH1,
ITSN1, APC

GABPB1 CIC, IL16, GABPB1, RSPH14, TRAF2, FANCG, LMO4, GABPA, USO1,
SNRPB2

GLO1
SUPT5H, GLO1, BCL10, BIRC2, RIPK1, IKBKB, TNFAIP3, CDCA8,
STAT3, NFKBIA, ZDHHC17, TNIP1, CREBBP, GIT2, TAX1BP1, EEF1A1,
GTF2E1, TANK, TRIM29, IRAK1

HMGN2 EP300, TERF1, GRB2, TERF2, TINF2, APEX1, TERF2IP, NCK1, XRCC6,
HMGN2

HNRNPU HNRNPU, A1CF, CDKN2A, SYNCRIP, RBM4, HNRNPD, HNRNPH3, HN-
RNPF, MAPK6, PRMT1

JUNB JUNB, ATF2, CREB5
KPNA4 MAT2B, HNRNPC, RAC1, KPNA4, KPNA3

MAFB
JUND, CREB5, MAFB, MIS12, ZW10, ZWINT, DDB1, FOS, ATF4, JUN,
FOSL1, FOSL2, ZDHHC2, BECN1, ATF2, CEBPG, ATF1, ANAPC5,
MAFG, JUNB

NFYA CSNK2A1, SREBF2, NFYA, ZHX1, NFYC, CDC25A, SP1, APPBP2, NFYB,
LUC7L2

PRDX1 TERF1, PRDX1, MYD88, PRDX4, ADH5
PRKAR1A WNK1, PRKAR1A, UBE2I
SNRPF SNRPG, LSM6, SNRPE, SNRPF, LSM7

TMED10 RCHY1, JMJD1C, DHODH, AKT1, APOB, TMED2, SNX27, ASS1,
TMED10, AKT2

TMEM70 TMEM70, PHC2, SSX2IP
TYROBP MEOX2, TYROBP, MICA

WIPI1 REN, SETDB1, PPA1, TRIM27, KCTD15, NOTCH2NL, WIPI1, ATXN1,
KCTD1, UNC119

YWHAB YWHAB, YWHAE, RAF1

Each gene neighborhood includes the seed. There are 156 genes in total.

the first 3 principal components with the largest variance as new dimensions.
The figures 4.5a and 4.5b show the clear separation of the classes using only
the genes in the significant neighborhoods identified in the previous analysis.

4.3.4 Biological Evaluation

We used four databases, the MSigDB4 (Molecular Signatures Database [Subra-
manian et al., 2005]), the G2SBC5 (Genes-to-Systems Breast Cancer [Mosca
et al., 2010a]), the DisGeNET6 (discovery platform on gene-disease associ-

4http://software.broadinstitute.org/gsea/msigdb/
5http://www.itb.cnr.it/breastcancer/
6http://www.disgenet.org/

http://software.broadinstitute.org/gsea/msigdb/
http://www.itb.cnr.it/breastcancer/
http://www.disgenet.org/
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Table 4.4: Genes most commonly selected per seed in the PB versus Breast
Cancer comparison

Seed/Base clas-
sifier Genes selected in seed’s “neighborhood”

BECN1

TP53BP2, UVRAG, MAFB, ESR2, MIS12, BAD, NR4A1, MAPK1, BCL2,
ZW10, MCL1, ZWINT, CASP3, GFI1B, PIK3R4, MAPRE1, CASP8,
BCL2L11, BID, BAK1, BECN1, BNIP3L, ATG14, VDAC1, NSL1, PMAIP1,
MAPK8, PPP1CA, PIK3C3, BAX

CDKN2D
DAB1, RB1, CDK6, CDKN2D, RXRA, NEK6, RAB1A, RBPMS, CDK4,
TGFBR1, GRB2, NR4A2, COPS5, HSD17B14, IKZF3, PSMA1, ATXN1,
ASCC2, INCA1, NR4A1

DHX58

RBPMS, ATP23, ACVR1, AFF4, OBFC1, MTUS2, POMZP3, TRIM23,
DHX58, ATP6V1G1, TRAF2, PLSCR1, MDFI, POM121, FAM46C, KPNA2,
TANK, SLC25A6, LDLR, RAPGEF3, TRIP6, SMURF1, SMAD4, TERF2IP,
NUP54, NMI, MLH1, ITSN1, CCDC85B, APC

GABPB1
CIC, IL16, TRIM27, CDKN2A, CSNK2B, GABPB1, ATXN1, MTUS2,
RSPH14, TRAF2, USHBP1, FANCG, LMO4, DAZAP2, QKI, GABPA,
PCBP1, ATXN2, USO1, SNRPB2

GLO1

PPP2CA, SUPT5H, GLO1, BCL10, BIRC2, RIPK1, STX11, IKBKB,
GCC1, TNFAIP3, CDCA8, STAT3, NFKBIA, ZDHHC17, TNIP1, WWP1,
CREBBP, GIT2, TAX1BP1, POLR2E, KRT18, SSX2IP, TARBP2, EEF1A1,
SNW1, GTF2E1, TANK, TRIM29, IRAK1, CLIC1

HMGN2 TERF1, XRCC6, TERF2, GRB2, TINF2, APEX1, EP300, NCK1, TERF2IP,
HMGN2

HNRNPU

HNRNPU, A1CF, HNRNPF, CDK4, MDM2, PRKCA, CDC45, FN1,
CDKN2A, HNRNPA1, SYNCRIP, CDC6, TTR, CRMP1, RBM4, HNRNPD,
HNRNPH3, HNRNPUL1, DDX17, CDC5L, MCM5, HNRNPA0, CDK6,
MAPK6, DDX5, PRMT1, CHERP, CDC7, HNRNPH1, KAT5

JUNB FOS, ATF4, CREB5, ATF2, JUNB
KPNA4 RAC1, MAT2B, HNRNPC, KPNA3, KPNA4

MAFB
JUND, CREB5, MAFB, MIS12, ZW10, ZWINT, DDB1, FOS, ATF4, JUN,
FOSL1, FOSL2, ZDHHC2, BECN1, ATF2, CEBPG, ATF1, ANAPC5,
MAFG, JUNB

NFYA
ESR2, GTF2A2, CSNK2A1, GTF2E2, PCBD1, PWP1, NFYA, SREBF2,
CREB1, ZHX1, NFYC, CDC25A, GRB2, SP1, APPBP2, PAPOLG, NFYB,
LUC7L2, TBP, SMURF1

PRDX1 TERF1, PRDX1, MYD88, PRDX4, ADH5
PRKAR1A WNK1, UBE2I, MAPK6, TAB1, PRKAR1A

SNRPF
CLNS1A, SNRPG, LSM6, SNRPE, SMN2, SNRPF, PSMA3, SRSF5,
GEMIN2, SRRT, LSM4, LSM7, LSM8, LSM5, SNRPD1, PUF60, SNRPA1,
LSM3, SNRPB2, IKZF1

TMED10
STEAP4, RCHY1, APOA1, POFUT1, JMJD1C, DHODH, SH3RF1,
TMED10, SORBS2, AKT1, ESR1, PDPK1, APOB, TMED2, NAMPT,
SNX27, ASS1, TCL1A, AKT2, AKT1S1, PRKDC

TMEM70
BMI1, SMAD3, KIFC3, SIAH1, L3MBTL3, CSNK2B, TMEM70, GFI1B,
TRIM41, FHL3, MFAP1, BYSL, GRB2, KDM1A, FAM161A, NCK1,
MAPK6, PHC2, SSX2IP, KAT5

TYROBP DAB1, RBFOX2, KLRK1, MEOX2, MDFI, ATXN1, DAZAP2, MICA, TY-
ROBP, RBPMS

WIPI1 REN, PPA1, TRIM27, ATXN1, SETDB1, UNC119, KCTD15, NOTCH2NL,
WIPI1, KCTD1

YWHAB BAD, TNFAIP3, PRKCZ, BRAF, RAF1, IGF1R, YAP1, YWHAB,
EPB41L3, YWHAE

Each gene neighborhood includes the seed. There are 278 genes in total.

ations [Piñero et al., 2015]), and the FunDO7 (functional disease ontology
7http://fundo.nubic.northwestern.edu/

http://fundo.nubic.northwestern.edu/
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Figure 4.3: The gene neighborhoods that were selected based on the CTC versus
Peripheral Blood comparison (Table 4.3). The weights in the edges are calculated
based on the number of times the neighboring gene was selected from the base network
classifier centered on the corresponding seed gene.

annotations [Osborne et al., 2009]) in order to explore the biological impor-
tance of the base-classifiers resulted from the subnetwork stacking classification
method. The MSigDB - a collection of annotated gene sets - is used for the
membership categorization of base-classifiers by gene families such as oncogenes
and tumor suppressors. The G2SBC - a bioinformatics resource for breast
cancer study - is used to find the breast cancer-related genes that constitute
each base-classifier and also the common molecular alterations (e.g. RNA,
DNA, protein) and enriched common pathways. Furthermore, we explored
the associations of the 19 seed genes and of the “neighborhood” genes of each
base-classifier with cancer, including breast cancer and other cancer types by
using one of the most comprehensive resources on gene-disease associations,
the DisGeNET, as well as a functional disease ontology (FunDO) annotations
database. PANTHER database8 [Mi and Thomas, 2009] is used for post-
assessment of the statistical over-representation of our large gene lists. In
addition, we take advantage of the recent study of [Lang et al., 2015] regard-
ing the expression profiling of CTCs in metastatic breast cancer in order to
evaluate the “neighborhood” genes of the base-classifiers.

The biological results are as follows:

1. Oncogenes and tumor suppressors: A significant number of oncogenes
8http://pantherdb.org/

http://pantherdb.org/
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Figure 4.4: The gene neighborhoods that were selected based on the Peripheral Blood
versus Breast Cancer tumor comparison (Table 4.4). The weights in the edges are
calculated based on the number of times the neighboring gene was selected from the
base network classifier centered on the corresponding seed gene.

(e.g. AKT1, JUN, CDK4, CREB1), and tumor suppressor genes (e.g.
TNFAIP3, SMAD4, CDKN2A) with known breast cancer alterations, as
well as translocated cancer genes (e.g. CIC, MAFB) and transcription
factors (e.g. CREB5, FOS, ESR1) are present in base-classifiers and
play a key role in the interconnection of expression-responsive genes
(e.g. JMJD1C, IL16, FOSL2, JUNB, JUND, TYROBP [Chuang et al.,
2007,Lang et al., 2015] (Supplementary Table S1).
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(a) CTC vs PB comparison (b) PB vs BC comparison

Figure 4.5: A three dimensional “PCA plot” using the genes in the neighborhoods of
the seeds that were selected based on the CTC versus Peripheral Blood comparison
(a), and in the Peripheral Blood versus Breast Cancer comparison (b).

2. Breast Cancer-related genes: A number of genes that are associated
with breast cancer (e.g. SREBF2, BECN1, GRB2, MAPK6, CASP3)
participate in the “neighborhood” of each base-classifier. Some of these
genes provide common molecular alterations (e.g. RNA, DNA, protein)
and enriched common pathways.

3. Expression-responsive genes: As shown in Table 4.5, a number of genes
that constitute some of the base-classifiers are detected as differentially
expressed in CTC versus PB and/or CTC versus BC, according to the
work of [Lang et al., 2015]. Seven seed genes (TMED10, TYROBP, JUNB,
GLO1, PRKAR1A, HNRNPU, PRDX) that function as “epicenter” of
their corresponding base-classifiers are also detected as differentially
expressed in CTC versus PB and/ or CTC versus BC [Lang et al., 2015]
validating our initial results [Sfakianakis et al., 2014].

In Figure 4.6 gene family characteristics and breast cancer-related proper-
ties are summarized, as obtained through the MSigDB, G2SBC and FunDO
databases. As shown, the GABPB1, GLO1 and DHX58 modules (seed sub-
networks) in PB versus BC comparison provide the most compact biological
information and might be used more effectively as a non-invasive way to
monitor and prevent metastasis.
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Figure 4.6: Simplified representation of the biological information included within
each seed-subnetwork (module) disclosed in the “PB versus BC” and “CTC versus
PB” comparisons. The presence of biological information in each module of both
comparisons is highlighted with turquoise (PB versus BC) and brown (CTC versus
PB) comparisons regarding seven selected parameters. The numbers in parentheses are
the number of nodes in “PB versus BC” and “CTC versus PB” comparisons. Identical
nodes in both comparisons are in bold. In the last column the cancer association
found only by FunDO is shown. The red dots inside the circles (GABPB1, GLO1,
DHX58) highlight the functional association of the module-genes with breast cancer.

By searching the DisGeNET database we discovered cancer and/or breast
cancers associations (mammary neoplasms, ductal carcinoma, inflammatory
breast carcinoma, secondary malignant neoplasm of bone etc.) or phenotype
associations (solid tumor, carcinogenesis, inflammation, tumor progression, tu-
mor angiogenesis, tumor expansion, neoplasm metastasis, alkaline phosphatase
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adverse event etc) with most of the 19 seed genes and a Disease Specificity
Index ranging from 0.39 to 0.88. In addition, by using FunDO we revealed the
functional associations of cancer, and/or breast cancer and/or other cancer
types with the “neighborhood” genes of the base-classifiers.

Overall, the above biological findings provide insight into the nature of the
“neighborhood” genes of the base-classifiers and their interactions. A number
of breast cancer-related genes are to a greater or lesser degree interconnected
with a) family members of oncogenes, tumor suppressors, transcription factors,
protein kinases etc, and b) expression-responsive genes that can be involved
in disease in many different ways (Table 4.5). Furthermore, DisGeNET and
FunDO provide additional information about the cancer relations and cancer-
related phenotype linkage with the seed genes, as well as the functional
associations of the interconnected genes/proteins (modules) with cancer. Since
each module entails distinct biological properties, several module-specific
assumptions can be tested on groups of genes regarding their significance in a
CTC subpopulation and their metastatic potential in a distinct homogeneous
population of patients (same tumor type and disease stage), providing reliable
markers for disease prognosis, treatment response and the overall clinical
outcome of patients. Such hypothesis could be validated either computationally
in appropriate publicly available datasets or experimentally in targeted clinical
studies.

As questions to the meaning of the disease associations and the molecular
events driving breast cancer pathology remain, we support the notion that the
proposed stacking classifier generates highly informative base-classifiers and
achieves higher discrimination and prediction potential than the set of the 19
genes.

4.4 Conclusions

Here, we present abstract elements of a wealth of biological information that has
enabled us to confirm our first assumptions concerning biomarkers indicative
of the CTC profiles, but also our multilevel methodological approaches.

In the present chapter we have described a method for combining biological
information in the form of networks in a “ensemble”-based classification scheme.
Biological networks are used in order to reveal gene interactions based on the
whole set of possible ways (paths) that two genes “communicate” instead of
just considering their immediate neighbors. We then consider a set of input
genes that are used as seeds for building a corresponding set of “base classifiers”
based on the direct or indirect interactions the seeds have with other genes.
As input genes we have used the list of candidate biomarkers that were the
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Table 4.5: Expression-Responsive Genes – Results of the comparisons

PB versus BC CTC versus PB

Seeds Nodes Differential expression
in [Lang et al., 2015]? Seeds Nodes Differential expression

in [Lang et al., 2015]†

NFYA 20 GTF2E2, PCBD1 NFYA 10 –

TMED10 21 ASS1, TMED10,
TMED2 TMED10 10 JMJD1C, TMED10

GABPB1 20 DAZAP2, IL16 GABPB1 10 FANCG, IL16

MAFB 20 FOSL2 MAFB 20 FOSL2, JUNB, JUND

TMEM70 20 – TMEM70 3 PHC2

TYROBP 10 DAZAP2, TYROBP TYROBP 3 TYROBP

PRKAR1A 5 PRKAR1A PRKAR1A 3 PRKAR1A

GLO1 30 IRAK1, GLO1 GLO1 20 CREBBP

KPNA4 5 – KPNA4 5 MAT2B

HMGN2 10 – HMGN2 10 –

DHX58 30
KPNA2, TRIP6,
SLC25A6, MLH1,
ATP6V1G1

DHX58 10 –

HNRNPU 30
CDK6, HNRNPU,
RBM4, HNRNPA1,
FN1

HNRNPU 10 RBM4

CDKN2D 20 CDK6 CDKN2D 20 ATXN1

JUNB 5 – JUNB 3 JUNB

WIPI1 10 – WIPI1 10 ATXN1, NOTCH2NL

YWHAB 10 RAF1, YWHAE YWHAB 3 RAF1

BECN1 30
VDAC1, ATG14,
MAPRE1, PPP1CA,
MAPK1

BECN1 5 BCL2

PRDX1 5 PRDX1 PRDX1 5 MYD88

SNRPF 20 SNRPE, LSM3,
SRSF5, LSM5 SNRPF 5 –

Each seed-subnetwork (module) includes a number of genes that are detected as
differentially expressed in “CTC versus PB” and/or “CTC versus BC” according
to the work of [Lang et al., 2015]. Seven seed genes are also identified as
expression-responsive genes. Abbreviations: CTC, circulating tumor cells; PB,
peripheral blood; BC, breast cancer.

? Differential expressed genes in the comparison “CTC versus Tumor” of [Lang et al., 2015].
† Differential expressed genes in the comparison “CTC versus Peripheral Blood” of [Lang et al.,
2015].

output of the statistical analysis presented in Chapter 2 and each of these seeds
expands to a “neighborhood” of strongly communicating, direct or indirect,
neighbors based on the random walks in the underlying biological network.
The induced neighborhoods are built independent from each other, contrary to
the methodology we followed in the previous chapter. Each neighborhood built
around the corresponding seed/input gene is then used to build a classifier
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that takes advantage of the classification power of only the genes contained in
the neighborhood, effectively making local decisions based on the biological
functions of the neighbors involved. The base classifiers are subsequently used
to train a second level classifier that can potentially combine intelligently the
successes and failures of them.

The use of biological networks and random walks in graphs have been
studied in multiple publications [Shi et al., 2012,Leiserson et al., 2014,Wang
et al., 2014,Hofree et al., 2013]. Especially HotNet2 [Leiserson et al., 2014] uses
similar random walk-based schemes, but our aim is to construct an adaptive,
gene signature initialized, and biologically driven classifier. The results are
indeed promising and make stronger the selection of our initial gene list used
for the initialization, but further evaluation, tuning, and validation are needed.
The implementation is based on the “scikit-learn” machine learning framework
for Python [Pedregosa et al., 2011] and all the code and the data can be found
at https://github.com/sgsfak/subnet_stacking.

In the next chapter, we build upon the results of this chapter by exploring
the discriminating abilities of the “neighborhoods” built around our initial set
of genes in an “unsupervised learning” setting.

https://github.com/sgsfak/subnet_stacking
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In the previous chapter we have used the 27-genes signature and prior
biological information in order to build computational tools for the classification
task. In this chapter, we are focusing on the clustering task, that is the
categorization of samples into a number of groups so that samples grouped
together are “similar” to each other. The approach we use is largely based on
the Gaussians (Normal) Mixture Model (GMM) that provides a mathematically
appealing and extremely flexible model for this task. On the other hand, the
intricacies of the domain, such as the high dimensionality and noise, present
real challenges for the employment of finite mixture models in bioinformatics.
Here, we introduce a biology-driven adaptation of GMM where information
from biological networks and similar metadata sources, such as Gene Ontology,
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can be used to constrain the model. The adapted methodology is generic and
we present two test cases. First, we evaluate it using information extracted
from the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.
Additionally, we use the neighborhoods of the 27-genes extracted as described
in Chapter 4 to parameterize the adapted GMM and report its results.

5.1 Introduction

In Chapter 1 we introduced the problems of high dimensionality and the
inherent noise in the analysis of high-throughput data produced by technologies
such as gene expression microarrays. Indeed, in the case where the number of
features is much larger than the number of observations standard statistical
methods are either completely inappropriate or induce a high variance and
overfitting. As mentioned in Section 1.4.1.1, possible ways to deal with the
“few samples, many features” situation include techniques like feature selection
[Saeys et al., 2007] and regularization or shrinkage methods (e.g. [Tibshirani,
1996,Tibshirani et al., 2002,Zou and Hastie, 2005]).

In this chapter we instead focus on the integration of domain specific
knowledge with the statistical learning methods to address some of challenges
mentioned above. In particular, we aim at taking advantage of the known
functional relationships of certain genes, such as their annotations in the Gene
Ontology [Ashburner et al., 2000] or the KEGG [Kanehisa and Goto, 2000]
pathways they participate in, to infer better probabilistic models for their
expression. The problem we aim to attack is the clustering (or “unsupervised
classification”) of patients samples i.e. to group them in unknown target
categories, instead of the classification task we pursued in the previous chapter.
The underlying framework is based on finite mixtures of Gaussian distributions
modified to account for the information originating from the molecular biology.

The rest of the chapter is structured as follows. First, we introduce
the methodology as an adaptation of the model based clustering and we
describe a modified “Expectation Maximization” algorithm to search for possible
solutions. Next, we perform a number of experiments using public datasets
and information from some well known gene networks and compare the results
with other clustering algorithms. Finally in Section 5.3.3 we concentrate in
the neighborhoods of the 27 genes that we have singled out as described
in Chapters 2 and 4. We are using these neighborhoods in the modified
model based framework and present their performance in the unsupervised
classification tasks.
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5.2 Methods

5.2.1 Finite Mixture Models

Mixture models [McLachlan and Peel, 2000] present a probabilistic framework
both for building complex probability distributions (e.g. density estimation)
as linear combinations of simpler ones but also for clustering data, a task
also known as unsupervised learning. Assuming that our data consists of N
observations {xxxj}, the probability density function of a random sample under a
g-component mixture model is given as

f(xxxj;ΘΘΘ) =

g∑
i=1

πifi(xxxj;θiθiθi) (5.1)

whereΘΘΘ is the collection of the unknown parameters πi that are usually referred
as “mixing coefficients”, and θiθiθi, which are the parameters of the component
densities fi. In order to make (5.1) a proper density function the following
constraints are also imposed: 0 6 πi 6 1 and

∑g
i=1 πi = 1.

An important specialization of (5.1) is the Gaussian Mixture Model (GMM)
where the parametric family of the component density is assumed to be the
Gaussian distribution but with different means µµµi and covariance matrices ΣΣΣi:

fi(xxxj;θθθi) = N(xxxj;µµµi,ΣΣΣi)

≡ 1√
(2π)p|ΣΣΣi|

e−
1
2 (xxxj−µµµi)

TΣΣΣ−1
i (xxxj−µµµi)

(5.2)

where p is the dimensionality of the sample vectors (i.e. the number of genes).

5.2.2 Integrating biological knowledge

In the proposed model we assume that genes can be classified in K functional
groups, using GO Biological Processes for example. The fundamental assump-
tion of this model is that genes that belong to different groups are independent
whereas in the same group the gene relationships are unconstrained. Addi-
tionally genes that do not belong to any functional group are modeled as
totally independent random variables. Since for the Gaussian distribution
independence is equivalent to uncorrelatedness the proposed model implies the
following structure for the covariance matrix

Σ̃̃Σ̃Σ =


ΣΣΣ(1) 000 · · · 000 000

000 ΣΣΣ(2) · · · 000 000
...

... . . . ...
...

000 000 · · · ΣΣΣ(K) 000

000 000 · · · 000 DDD(r)

 (5.3)
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where each of ΣΣΣ(k) is the (unconstrained) covariance (sub)matrix for the genes
belonging to the k group, and DDD is the diagonal covariance matrix of the r
genes that do not belong to any group. The covariance model shown above
is related to the covariance matrix estimation, and in particular estimating
sparse covariance matrices, e.g. as in [Banerjee and El Ghaoui, 2008].

The structure of (5.3) is imposed on every component of the mixture model
so that (5.2) is rewritten as

fi(xxxj;θiθiθi) = N(xxxj;µµµi, Σ̃̃Σ̃Σi) (5.4)

and then taking into account the block diagonal structure of (5.3) the normal
density of (5.4) factorizes into

fi(xxxj;µµµi, Σ̃̃Σ̃Σi) = N(xxx
(r)
j ;µµµ

(r)
i ,DDD

(r)
i )

K∏
k=1

N(xxx
(k)
j ;µµµ

(k)
i ,ΣΣΣ

(k)
i ) (5.5)

where we have used the “exponent” (k) to refer to the selection of the genes
(and means and covariance sub-matrices) belonging to the k category or the
rest genes.

Now if we take a mixture of Gaussians of the form (5.5) the equation (5.1)
becomes

f(xxxj;ΘΘΘ) =

g∑
i=1

πiN(xxx
(r)
j ;µµµ

(r)
i ,DDD

(r)
i )

·
K∏
k=1

N(xxx
(k)
j ;µµµ

(k)
i ,ΣΣΣ

(k)
i )

=

g∑
i=1

πi

K+1∏
k=1

N(xxx
(k)
j ;µµµ

(k)
i ,ΣΣΣ

(k)
i )

(5.6)

with ΣΣΣ(K+1)
i ≡DDD(r)

i .

5.2.3 The Expectation-Maximization algorithm

The Expectation-Maximization (EM) algorithm [McLachlan and Krishnan,
1997] is useful in cases where we want to find maximum likelihood solutions for
models that have hidden variables. In some cases these hidden variables are
introduced on purpose in order to simplify the maximum likelihood estimations
of the model’s parameters [Bishop, 2006b]. For the problem at hand a maximum
likelihood estimation of the parameters of the mixture model can be performed
by the introduction of the “missing” (or unobserved) data zzzj, 1 6 j 6 N, where
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zzzj = (zj1 . . . zjg) is defined as

zjk =

{
1 if xxxj was generated by component k
0 otherwise

(5.7)

Using the Bayes rule we can compute the support (or “responsibility”) each
sample provides to a given component density as the conditional probability

τji ≡ Pr(zji = 1|xxxj;ΘΘΘ) =
Pr(zji = 1)fi(xxxj;θθθi)∑g

c=1 Pr(zjc = 1)fc(xxxj;θθθc))

=
πjfi(xxxj;θθθi))∑g
c=1 πcfc(xxxj;θθθc))

(5.8)

The EM algorithm operates iteratively in two stages. In the E-step the
estimations of the “missing” data zjzjzj using τji are computed based on the
current estimation of the parameter values and the observed data. In the
M-step the estimations of the τji in the E-step are used in order to update the
estimations of the model parameters ΘΘΘ = {π1, . . . , πg,θθθ1, . . . ,θθθg}.

Using the biological knowledge and the sparse structure of the components’
covariance matrix shown in (5.3) in the Gaussians mixture model of (5.6), it is
relatively easy to show that

• In the E-step the “responsibilities” are updated based on the current
model parameters as

τji =
πcuri
∏K+1
k=1 N(xxx

(k)
j ;µµµ

(k),cur
i ,ΣΣΣ

(k),cur
i )∑g

s=1 π
cur
s

∏K+1
k=1 N(xxx

(k)
j ;µµµ

(k),cur
s ,ΣΣΣ

(k),cur
s )

(5.9)

• In the M-step the new model parameters can be separately computed
per functional group as

µµµ
(k)
i =

∑N
j=1 τjixxx

(k)
j∑N

j=1 τji
(5.10)

ΣΣΣ
(k)
i =

∑N
j=1 τji(xxx

(k)
j −µµµ

(k)
i )(xxx

(k)
j −µµµ

(k)
i )T∑N

j=1 τji
(5.11)

πi =

∑N
j=1 τji

N
(5.12)

Appendix B contains the full details for this resolution.



98 Chapter 5. A biology-adapted Gaussians Mixture Model

5.3 Results

5.3.1 Implementation

We have implemented the proposed model and in this section we present some
preliminary results. The implementation of the algorithm follows the standard
EM for Gaussian mixtures (e.g. see [Bishop, 2006b], Section 9.2.2) but uses
the (5.9) and (5.10, 5.11, 5.12) in the E and M-steps respectively.

The sparse structure of the covariance matrix (5.3) allows a dimensionality
reduction since the functional groups, and subsequently the sub-matrices ΣΣΣ(k)

along the diagonal, include a significantly less number of genes than the original
data set. Nevertheless, it can still be the case that these numbers of genes
are still bigger than the number of samples, resulting in rank deficiencies in
the estimation of ΣΣΣ(k) according to (5.11). For this reason, in these cases,
as a “hard” imposed dimensionality reduction, we compute a rank truncated
estimation of ΣΣΣ(k) using its Singular Value Decomposition (SVD)1.

As described in [McLachlan and Peel, 2000] and elsewhere, the EM can
have a slow convergence and even more it can be “trapped” in a local maximum
of the likelihood function. Therefore multiple executions of the algorithm
beginning from randomly selected initial values is usually recommended.

5.3.2 Evaluation using common biological networks

In order to perform some evaluation of our method two data sets are used:

• A Breast Cancer data set [Huang et al., 2003] where there exist 52
samples with 18 samples exhibit recurrence of tumor and 34 do not.

• A Prostate Cancer data set [Singh et al., 2002] where there exist 52
tumor samples and 50 normal samples.

Both are based on the Affymetrix HG-U95Av2 chip, containing 12625 probe-
sets that we have preprocessed using the GC-RMA probe normalization and
summarization method. Furthermore, genes that exhibit low variation or do
not have an Entrez Gene identifier were filtered.

We have selected a number of KEGG “pathways” to be used as functional
groups. These pathways are shown in Table 5.1. More or less all of these
pathways are examples of Gene Regulatory Networks, which are essentially
graphs with genes as vertices and edges that represent regulation (e.g. activa-
tion, inhibition) of gene expression. Here we ignore the internal structure of

1This is of course equivalent to the Principal Component Analysis (PCA) technique, see
Appendix A.
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Table 5.1: The KEGG pathways used in the tests

Pathway id Pathway name

1 04115 p53 signaling pathway
2 04210 Apoptosis
3 04370 VEGF signaling pathway
4 05010 Alzheimer’s disease
5 05012 Parkinson’s disease
6 05014 Amyotrophic lateral sclerosis (ALS)
7 05016 Huntington’s disease
8 05200 Pathways in cancer
9 05210 Colorectal cancer
10 05212 Pancreatic cancer
11 05213 Endometrial cancer
12 05215 Prostate cancer
13 05222 Small cell lung cancer
14 05223 Non-small cell lung cancer
15 05416 Viral myocarditis

these graphs and consider them as just “modules of biological functionality” so
that genes participating in the same pathway are considered probabilistically
dependent.

The EM algorithm estimates the parameters of the mixture model (5.1) but
in the process it computes the “support” (5.8) each sample provides for each
cluster and based on these values a “hard” clustering can be done by assigning
each sample to the cluster it mostly supports. But in order to really evaluate
the performance of our approach, the information about the true underlying
clusters is needed. Unfortunately, this is not possible for the test data sets
described above, since they are real and their biological underpinnings are not
fully known.

A possible approach is to use the samples’ phenotypes as yardsticks in this
evaluation. So, since in both test data sets a binary classification is possible
we request the identification of 2 clusters, i.e. our modified EM is run with
g = 2 component mixture model. In comparison to our method we include the
clusterings performed by two well known algorithms: K-means and PAM, which
is a robust version of k-means based on “medoids” (see Section 1.3.2. Due to
the high dimensionality we weren’t able to get results for other EM and model
based clustering approaches as implemented in the MCLUST software [Fraley
and Raftery, 1999].
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Table 5.2: BHI Results

Algorithm
BHI BHI

Breast Cancer Prostate Cancer

kmeans 0.55 0.52
pam 0.56 0.51
our EM 0.56 0.49

Based on class labels of the samples (e.g. “relapse” vs. “non-relapse”) we
can use the Biological Homogeneity Index (BHI [Datta and Datta, 2006]) to
check whether the clusters produced by the different clustering algorithms are
indeed homogeneous. Ideally, if, for example, all the tumor samples are in the
same cluster and all the normal samples are in the other one, BHI will be 1,
which is its maximum value. The formula for BHI is given in (5.13).

BHI =
1

g

g∑
i=1

1

Ni(Ni − 1)

∑
x 6=y
x,y∈Di

1I(C(x) = C(y)) (5.13)

So basically for any pair x, y of different samples clustered together in a cluster
Di that “contains” Ni samples, we check whether they have the same class
label by the indicator function 1I(C(x) = C(y)). This is done for every distinct
pair of samples in every cluster and the number of matching class labels is
properly normalized.

The results of the BHI measure for the two data sets and the three clustering
algorithms are shown in Table 5.2. We see that more or less all the algorithms
exhibit the same performance in terms of phenotype homogeneity. In these
tests our EM was initialized based on the results of the K-means but in the
one data set homogeneity was improved whereas in the other was worsened.

In order to get a better understanding on the clustering results, in Table 5.3
and Table 5.4 we show the proportion of each class (i.e. Relapse/Non-Relapse,
Normal/Tumor) in each of the clusters identified by the algorithms. The
identification of the clusters along the different algorithms has been done based
on the Euclidean distances of the “prototypes” of the algorithms, i.e. the centers
of the K-means, the medoids of PAM, and the mean vectors of EM. We then
use “majority vote” in each cluster to classify the members of the cluster to the
most frequent class label. The “winning” class is shown with a boldface in the
tables. The results of this “classification” task, for each algorithm and across all
clusters, in terms of misclassification rate, sensitivity, and specificity are also
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Table 5.3: Classification results (Breast Cancer)

Algorithm
Clusters

Miscl. rate Sensitivity Specificity
# 1 # 2

kmeans 12/11 22/7 0.346 0 1
PAM 12/12 22/6 0.346 0.667 0.647

our EM 14/12 20/6 0.346 0 1

Table 5.4: Classification results (Prostate Cancer)

Algorithm
Clusters

Miscl. rate Sensitivity Specificity
# 1 # 2

kmeans 19/10 31/42 0.402 0.808 0.380
PAM 21/12 29/40 0.402 0.769 0.420

our EM 22/18 28/34 0.451 0.654 0.440

shown. Of course the results are poor in terms of classification performance
but they nevertheless show how the different algorithms separate the data.

5.3.3 Evaluation using the 27-genes and their “neigh-
bors”

As demonstrated in the previous paragraph the proposed EM algorithm with
block-diagonal covariance matrices in the Gaussian components does not appear
to yield biologically relevant clusters when generic biological knowledge in
terms of gene regulatory networks is taken into account. In this paragraph,
instead, we restrict the analysis to the set of the 27 genes identified in the
blood and tissue comparisons of Chapter 2 (see Table 2.3, last row) and the
corresponding “high affinity” genes as found by performing random walks
in the biological graph (Section 4.2.1). As described in Chapter 4 each of
the 27 genes is allowed to grow a neighborhood of “close” enough genes
(where the closeness is determined by the probability of transition based
on the “random walks” in the input biological network) while the size of
the neighborhoods is determined by the classification performance in a two
level classification scheme. Each neighborhood is therefore determined based
both on the biological characteristics and interactions of the genes, and on
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their classification and discriminating abilities on gene expression data sets.
Additionally, the initial selection of the 27 seed genes is of course highly
influential in the induced neighborhoods and we therefore expect that the
seed genes and the corresponding neighborhoods have a great potential for
producing biological relevant cluster assignments.

The extracted gene neighborhoods lend themselves quite naturally to the
mixture of models setting that we are describing in this chapter. Effectively,
each neighborhood delineates a set of genes that can be considered to be
dependent and “cross-talking”. Therefore, we consider each of the K “functional
groups” of (5.3) to correspond to a single gene neighborhood. This means
that genes in the same neighborhood are considered to be dependent whereas
genes in distinct neighborhoods are believed to be independent, and these
relationships are imposed by the structure of the covariance matrix in the
Gaussian Mixture Model. In practice we end up with a few connections or
common genes shared by neighborhoods. In order to address this issue, we
try to break these connections among the neighborhoods by assigning these
“shared” genes to the closest (minimum distance) neighborhood. The distance
D(i, j) of a gene i from the neighborhood Nj of a seed gene j is computed
based on the sum of the transition probabilities from the neighbors of j to the
i gene, as follows:

D(i, j) = − log
∑

k∈Nj,k 6=i

Pr(k→ i) (5.14)

where Pr(k→ i) is the random walk transition probability from gene k to gene
i. This formula allows us to incorporate genes from the initial list of the 27
genes that were excluded from the construction of the neighborhoods because
they were missing from the data set that we used to build the classifiers, and
these are: SAR1A, CXCR4, SRSF6, EIF6. After these computations, we
identify the totally separate gene neighborhoods shown in Figure 5.1 for the
case of the CTC versus peripheral blood comparison and in Figure 5.2 for the
case of the peripheral blood versus breast cancer tissue comparison. In the
latter case, the neighborhoods contain much more genes but also all of the
genes of the CTC versus peripheral blood comparison. For this reason, we
decided to proceed using only the neighborhoods identified in the peripheral
blood versus breast cancer tissue comparison (Figure 5.2).

For the evaluation of the network based Gaussian mixture model constructed
by the gene neighborhoods as described above we use the GSE52604 dataset [Sal-
hia et al., 2014] available from GEO2 and the data set of Huang [Huang et al.,
2003] that previously used in the previous paragraph. Both data sets refer to

2Available at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52604 (accessed
on May 25, 2016)

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52604
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Figure 5.1: The neighborhoods of genes around the “seeding” genes after making
them non-overlapping by assigning the common neighbors to the “closer” seed. These
neighborhoods are the ones found in the CTC versus Peripheral Blood comparison
(see Figure 4.3) with the addition of the four missing genes from the initial list of 27.

Breast Cancer patients and especially the GSE52604 contains 10 breast-brain
metastatic samples and 10 non-neoplastic breast tissues.

For each evaluation data set we perform clustering using a “standard”
“diagonal” Gaussian mixture model (GMM), where each Gaussian component
considers independent genes but with different variances across the diagonal of
the convariance matrix, and our “Stratified GMM” that considers the groups of
genes according to the extracted neighborhoods. The block covariance matrix
of (5.3) imposes a diagonal matrix for the genes not belonging in any group,
but because the vast majority of the genes do not participate in the identified
neighborhoods it seems plausible that the “Stratified GMM” provides similar
results to the “Diagonal GMM”. In order to reveal the potential differences in
the two models we project the data sets to the list of genes participating in the
neighborhoods of Figure 5.2, effectively performing a “crude” feature selection
to the genes of interest. In order to further test the genes in the extracted
neighborhoods we also create 1,000 random resamples on the original set of
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Figure 5.2: The neighborhoods of genes around the “seeding” genes after making
them non-overlapping by assigning the common neighbors to the “closer” seed. These
neighborhoods are the ones found in the Peripheral Blood versus Breast Cancer tissue
(see Figure 4.4) with the addition of the four missing genes from the initial list of 27.

genes: each time a random subset of the genes with the same number of genes
as in our neighborhoods is selected and then a Diagonal GMM is run using
only this subset of features.

We are interested in the evaluation of the different mixture models with
respect to their ability to produce clusters of samples with strong agreement
with the biological characteristics of the said samples. For example, a perfect
2-cluster assignment of samples would allocate all healthy subjects in one
cluster and all the non-healthy ones in the other. Nevertheless, the mixture
models with the EM algorithm are easily trapped in a local maximum of
the log likelihood function and their results can differ in each run due to the
initialization of their parameters. The sensitivity to the initial parameter values
is the reason that usually multiple runs or more advanced random initializations
are suggested [McLachlan and Peel, 2000,Biernacki et al., 2003]. To overcome
this issue, we give all algorithms the same initial parameters for the cluster
means (“centroids”) that are computed in supervised way based on the sample
labels, as follows: we take half the samples of each class (for example, the
metastatic samples) and estimate the class specific mean expression values
based on these. Therefore, all mixture models start from the same means and
the same sample covariance matrix.
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Table 5.5: Cluster performance results in GSE52604

Mixture Model BHI loglik AIC BIC
Stratified 1.0 -4,515.96 21,433.91 32,637.02
Diagonal 0.90 -10,917.78 24,085.57 26,118.06

Random Resam-
pling, Diagonal
(mean ± std)

0.95
(±0.04)

-13,188.25
(±363.73)

28,626.50
(±727.46)

30,659.00
(±727.46)

For each mixture model tested we compute a number of metrics: the
Biological Homogeneity Index (BHI) defined in Equation (5.13) above, the log
likelihood of the parameters given the data, that is, the probability of the data
set for the selected parameter values, and two standard criteria frequently used
for model selection [Burnham and Anderson, 2004]: the Bayesian information
criterion (BIC) and the Akaike information criterion (AIC). These indices are
defined as follows:

BIC = −2 · lnL(θ̂) + p · ln(N) (5.15)

AIC = −2 · lnL(θ̂) + 2 · p (5.16)

where L(θ̂) is the value of the likelihood function on the estimated parameters
θ, p is the number of the parameters of the model, and N is the sample size.
For both information criteria smaller values represent better models, while
they penalize models with high number of parameters with BIC taking into
account the size of data set under consideration.

The results for GSE52606 are shown in Table 5.5. There is a clear indication
that all models achieve almost excellent separation of the metastatic and non-
metastatic samples in two clusters, as measured by the BHI metric. The
Stratified model achieves excellent BHI, has the best (largest) likelihood of the
data given its estimated parameters, and has the best (lower) AIC index value.
Its BIC performance though is worse than the one of the Diagonal model due
to the fact that it has a lot more parameters to estimate and the BIC index
penalizes, more strongly that the AIC, the complexity of a given model (since
it takes into account the sample size). Interestingly, the random models built
during the resampling process achieve also very good performance, although
the fit to the data and the AIC value is the worst in the set of candidate
models.

We next proceed to the data set of [Huang et al., 2003] which relates to
recurrence of cancer in breast cancer patients, with 18 samples of patients
suffering a recurrence within three years after surgery and 34 samples without.
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Table 5.6: Cluster performance results in Huang dataset

Mixture Model BHI loglik AIC BIC
Stratified 0.74 -1,437.30 12,332.61 21,560.04
Diagonal 0.60 -3,142.19 8,166.38 10,002.45

27 genes Diago-
nal

0.52 -365.34 916.68 1,098.15

27 genes Full 0.67 -237.83 1,673.65 2,842.45

Random Resam-
pling, Diagonal
(mean ± std)

0.63
(±0.04)

-2,427.42
(±334.61)

6,736.85
(±669.22)

8,572.97
(±669.22)

This appears to be a “difficult” data set and the very good classification results
presented by the authors in the original publication could not be reproduced
in a subsequent analysis [Ruschhaupt et al., 2004]. The results of the different
clustering models are shown in Table 5.6. The Stratified mixture model takes
the first place in terms of BHI, which, although not excellent, is still quite
good. The Diagonal mixture model yields a good BHI but still no better
than the average BHI of the random clustering models. Also its AIC and
BIC performance is better than the Stratified model due to the number of
parameters being almost 5 times less than in the Stratified model and the
comparative values in the log likelihood function.

In Table 5.6 we also show the results when only the seeds responsible for
the creation of the neighborhoods and the groups of genes that led to the
Stratified model are used. Since we have only 27 genes we are able to test also
the “full” model, that is, the one where a complete (non-sparse) covariance
matrix is assumed, in addition to the diagonal case. The even less number of
parameters to be estimated allows these models to have the best fit to the data
and subsequently the best AIC and BIC scores. The BHI value, though, for
the diagonal model is pretty average, but what is quite interesting is that when
the full covariance matrix is assumed the BHI score is significantly increased.

Finally, the random resamples allows us to get a statistical view on the
results of the Stratified model and the full GMM for the 27 genes. In Figure 5.3
we show a histogram of the random BHI values and the corresponding results
of these models. The Full GMM using only the 27 genes yields a BHI score
above the 80th percentile of the random values and a p-value of 0.123. The
Stratified GMM achieves a score that only 4 out of the 1000 random samples
match or exceed, for a p-value of 0.004.



5.4. Conclusions and Future work 107

Figure 5.3: The distribution of the BHI values achieved by the Diagonal mixture
model after random subsets of genes are selected 1000 times. The blue vertical line is
the BHI value resulted from the full covariance mixture model for only the 27 genes,
while the green vertical line is the corresponding value for the Stratified mixture model
based on the extracted neighborhoods of these genes.

5.4 Conclusions and Future work

Early work on the analysis of gene expression data focused on the identification
of a small number of informative genes whose expression levels are able to
discriminate between different phenotypes or experimental conditions [Sotiriou
and Pusztai, 2009]. In this chapter we have described a potential exploitation
of existing biological information for the integrated analysis of gene expression
data with the extracted 27 gene set and the induced gene “neighborhoods”
used for evaluation. A justification of this approach is the recent advances
in molecular biology that have suggested the study of the cell as a dynamic
system, leading to the systems biology: instead of studying one gene or protein
at a time, a more holistic approach is usually followed [Ideker et al., 2001].

The use of existing biological knowledge to guide data mining tasks in
bioinformatics is definitely not a novel idea. Pan and colleagues have advocated
it in a series of publications [Pan, 2006,Wei and Pan, 2008,Tai and Pan, 2007].
The structural model (5.3) of the covariance matrix has been independently
studied by [Tritchler et al., 2009] while model-based approaches have also
used elsewhere e.g. [Yeung et al., 2001]. Contrary to these efforts, the authors
in [Jelizarow et al., 2010] argue quite convincingly that most of the publications
in this line of thought show a considerable “over-optimism” [Jelizarow et al.,
2010] and bias in their results by choosing their data sets, settings, or reporting
only the “good” results. On this last point, we believe that at least we have
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been totally honest and open with the results of our approach.
In [Pan, 2006] the author considers K Gaussian mixture models, one for

each block (category) of genes, and then proceeds to perform K EMs. The
differences when compared to our approach are the following:

• Pan performs gene clustering instead of clustering the samples. Therefore
he assumes a mixture model for the expression of genes where genes in
the same group (“stratum”) share the same prior probability coming from
a given cluster.

• In our approach the clustering of samples takes place by considering group
specific dependencies for the genes belonging to the same group, while
the samples are considered i.i.d.3 Instead, Pan assumes that the genes
are independent but they share (gene) group specific prior probabilities
for cluster membership.

• We have a more complex implementation due to the interdependences
between the genes belonging in the same group, that is, we do not
constrain the elements of each block sub-matrix in the covariance matrix
shown in (5.3).

In terms of the assumptions of the proposed mixture model, the covariance
model (5.3) assumes the independence of the uncategorized genes, an assump-
tion that is definitely far from the truth. In fact, since the annotation of the
human genome is an ongoing task our knowledge of the genes functionality and
characteristics is pretty limited and changes every day. Nevertheless this is
an simplifying assumption frequently encountered in gene expression analyses
(e.g. Diagonal Linear Discriminant Analysis (LDA)) in order to deal with
the high dimensionality and the danger of overfitting. The model (5.3) can
also be seen as a middle solution between choosing the full sample covariance
matrix, which can lead to an ill-posed inverse problem [Hansen, 1998], and
a lower dimensional diagonal covariance matrix. On another note, it can be
the case that certain genes can have more than one functional annotation
or participate in more than one category or pathway. This is an additional
observation that contradicts with the covariance structure of (5.3) since it
means that there’s inter group dependence. In this work, we were able to
split the ties and create distinct groups of features based on external criteria
(random walks probabilities) but more generic solutions may be sought in the
future.

The presented approach has been tested in an unsupervised classification
of human tumors in an exploratory stage of the analysis using the generic bio-
logical knowledge from a relatively large numbers of gene interaction pathways.

3Independent and Identically Distributed
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The outcome of these experiments were not very informative on the validity of
the described approach. The incorporation, though, of a more focused gene
set and the genes strongly interacting with them (27 genes signature and their
neighborhoods) presented a clear advantage of the methodology.

The “gene neighborhoods” of the 27 biomarkers identified in the previous
chapter were the building blocks for the application of the mixture model that
we present here, but in order to apply this model any shared genes among the
neighbohoods are “attracted” to the “closer” one. We have also used the PAN-
THER4 database for the post-assessment of the statistical overrepresentation of
the resulted non-overlapping neighborhoods. Regarding the seed subnetworks
as a whole entity in the case of CTC versus PB or PB versus BC comparison,
we can clearly see various similarities and differences in terms of Gene Ontology
(GO) biological processes and PANTHER pathways, which are governed the
“neighborhood” genes of the base-classifiers (Tables 5.7 and 5.8). Since the
“neighborhood” genes of the base classifiers in CTC versus PB comparison
(160 genes) constitute a subset of the corresponding “neighborhood” genes in
PB versus BC comparison (282 genes), the apparent similarity observed is
expected and indirectly confirms the notion that CTCs carry information from
the primary tumor, while any differences in CTC versus BC comparison could
indicate a hidden metastatic potential of CTCs. Additionally, the overlapping
processes and pathways in our CTC versus PB group expansion with the
corresponding discriminant genes in the dataset of [Lang et al., 2015] unfold
high similarities, further assessing the discriminative power on this expanded
gene set.

Therefore, the resulting base-classifiers either individually or in combination
(i) might be valuable for CTC tracking in the peripheral blood (ii) can shed
light on the biological features and the molecular mechanisms of CTCs, and
(ii) can provide operational models to test biological hypotheses underlying
CTC status and metastatic potential.

4http://pantherdb.org/

http://pantherdb.org/
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Table 5.7: PANTHER Gene Ontology (GO) Biological Processes

CTC versus PB PB versus BC

GO Slim Terms Fold En-
richment P-value Fold En-

richment P-value

RNA splicing, via transesterification
reactions (GO:0000375) 8.45 1.31e-07

RNA splicing (GO:0008380) 8.26 1.78e-07

mRNA splicing, via spliceosome
(GO:0000398) 5.72 2.06e-02 7.31 2.45e-08

mRNA processing (GO:0006397) 4.78 1.24e-02 6.51 1.99e-10

RNA metabolic process (GO:0016070) 2.55 3.06e-07 2.39 6.81e-11

nucleobase-containing compound
metabolic process (GO:0006139) 2.11 2.61e-06 2.14 2.52e-12

primary metabolic process
(GO:0044238) 1.57 1.71e-04 1.52 4.35e-07

metabolic process (GO:0008152) 1.43 2.47e-03 1.38 5.95e-05

response to stress (GO:0006950) 2.98 3.94e-02 3.61 1.28e-07

regulation of transcription from RNA
polymerase II promoter (GO:0006357) 2.88 5.79e-05 2.14 1.98e-03

transcription from RNA polymerase II
promoter (GO:0006366) 2.58 5.67e-05 2.20 1.94e-05

transcription, DNA-dependent
(GO:0006351) 2.43 1.04e-04 2.07 5.48e-05

regulation of nucleobase-containing
compound metabolic process
(GO:0019219)

2.39 1.09e-03 1.88 1.09e-02

regulation of biological process
(GO:0050789) 1.79 3.85e-02 1.65 9.17e-03

protein phosphorylation (GO:0006468) 2.96 6.55e-04

cellular protein modification process
(GO:0006464) 1.92 5.00e-02

cell cycle (GO:0007049) 2.84 9.11e-04 2.95 3.37e-08

cellular process (GO:0009987) 1.40 1.22e-03

cell communication (GO:0007154) 1.61 1.36e-02

apoptotic process (GO:0006915) 2.58 4.27e-02



5.4. Conclusions and Future work 111

Table 5.8: PANTHER Pathways

CTC versus PB PB versus BC

Pathway Fold En-
richment P-value Fold En-

richment P-value

Hypoxia response via HIF activation
(P00030) 18.70 1.09e-02

Toll receptor signaling pathway
(P00054) 16.36 4.90e-05 13.27 1.10e-06

T cell activation (P00053) 16.36 1.37e-07 12.08 1.87e-08

TGF-beta signaling pathway (P00052) 15.32 3.84e-08 11.86 8.85e-10

Apoptosis signaling pathway (P00006) 13.66 2.10e-08 14.22 2.21e-16

p53 pathway (P00059) 12.93 4.07e-05 12.85 1.61e-09

Transcription regulation by bZIP tran-
scription factor (P00055) 12.83 7.90e-03 14.58 4.57e-07

B cell activation (P00010) 12.08 1.94e-03 10.29 5.21e-05

Ras Pathway (P04393) 11.60 4.71e-04 10.35 2.43e-06

Interleukin signaling pathway
(P00036) 10.80 1.55e-04 8.43 1.88e-05

CCKR signaling map (P06959) 10.07 1.37e-07 10.56 4.43e-15

PDGF signaling pathway (P00047) 9.49 2.20e-05 8.08 1.66e-07

Gonadotropin releasing hormone recep-
tor pathway (P06664) 9.31 4.55e-09 7.60 1.88e-11

EGF receptor signaling pathway
(P00018) 8.06 1.31e-03 6.86 4.43e-05

Angiogenesis (P00005) 7.65 5.37e-04 6.76 5.43e-06

FGF signaling pathway (P00021) 7.45 7.90e-03 6.65 1.88e-04

Inflammation mediated by chemokine
and cytokine signaling pathway
(P00031)

5.88 5.42e-04 4.25 1.23e-03

p53 pathway feedback loops 2
(P04398) 11.66 9.39e-05

Insulin/IGF pathway-protein kinase B
signaling cascade (P00033) 11.44 2.73e-03

VEGF signaling pathway (P00056) 10.08 2.75e-04

Endothelin signaling pathway
(P00019) 6.84 4.45e-03





Chapter 6
Conclusions

In this thesis we focus on the identification of novel marker genes that provide
insights on the differentiating characteristics of tissue and peripheral blood
samples of breast cancer patients. The underlying biological justification of
this differentiation is the circulating tumor cells in the peripheral blood of
the patients. These circulating tumor cells have long been correlated with the
relapse and triggering of the metastatic cascade of the disease. The approach
we followed was based on the computational and statistical methodologies for
the analysis of gene expression data produced by DNA microarrays. Our work
was based therefore more on a data-driven, exploratory methodology rather
than on the biology-driven scientific experiments performed by the domain
experts (molecular biologists and biochemists).

As part of this effort, we have arrived in a limited set of potential biomarkers
(genes) that exhibit elevated expression in cancer peripheral blood. These
findings were the result of the pooling of a large number of gene expression
data from different studies that were homogenized and integrated in order to
be put over a common statistical foundation. This was a time consuming and
laborious task that required a lot of diligence in order to overcome a number
of technical and domain specific challenges. The statistical methodology was
largely based on the comparative assessment of the expression of the genes
into different conditions (control and cancerous samples, tissue and peripheral
blood sites) while controlling, at the same time, for possible biases introduced
by the separate experimental conditions. We consider the methodology and
its results to be the first main contributions of this thesis. A first evaluation
of the 27 potential biomarkers using existing biological knowledge such the
GO and KEGG databases provided encouraging results.

The following step was to expand the list of the 27 genes using the informa-
tion encoded in the biological networks. Using graph algorithms we succeeded
in expanding the initial list of genes exploiting both local properties of the



114 Chapter 6. Conclusions

(a) Cytokeratin (b) CXCR4 (c) JUNB (d) Overlay

Figure 6.1: Expression of Cytokeratin (CK), CXCR4 and JUNB in CTCs isolated
from breast cancer patients.

network and probabilistic “random walks” in it. The result is an enriched set
of genes with potentially differentiating activity that combine the knowledge
coming from the biology with the discriminating power of our initial “seed” list
of genes. The use of this augmented knowledge is then assessed into two com-
mon tasks in machine learning and data mining: supervised and unsupervised
learning. The second major area of contributions is therefore the use of prior
knowledge in order to increase the performance of these tasks.

In this research effort we have addressed a number of computational and
domain-specific issues, such as the diversity of the samples in the public data
sets, the heterogeneity of the microarray platforms, the different annotations,
and so on, in order to arrive to a limited and statistically significant set of genes.
Of course, it is common knowledge that statistical significance of any findings
do not always mean significant effect sizes. Nevertheless, a targeted biological
experiment performed in the Cancer Biology Laboratory, School of Medicine,
University of Crete, focusing on a specific pathway containing a subset of the
27 genes, yielded results that are in agreement to our bioinformatics analysis.
In particular, two of our 27 genes, CXCR4, a chemokine receptor which is
involved in tumor metastasis and JUNB a transcription factor participating
in CXCR4 pathway1, were evaluated in samples from metastatic breast cancer
patients, cell lines, and CTCs [Kallergi et al., 2015].

In more detail, triple staining immunofluoresence with panytoker-
atin/CXCR4/JUNB antibodies were performed in SKBR3, MDA-MB231,
MCF7 and Hela cell lines. The same experiments were performed in Peripheral
Blood Mononuclear Cells (PBMCs) from normal (n = 10) subjects and in
PBMCs (n = 55) from untreated metastatic breast cancer patients. Statistical
analysis revealed significant differences in the expression of both molecules
between healthy donors’ PBMCs and patient’s PBMCs. Subsequently, CTCs
were detected in 17 out of 55 screened patients (Figure 6.1). Patients with
CXCR4-positive CTCs (with mean expression higher than 95% of normal

1This pathway includes: JUNB 
 BRCA1 
 JAK2 
 CXCR4
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PBMCs) were 53%. In addition 84% of the examined CTCs had expression
profile higher than normal PBMCs. Likewise, JUNB expression in CTCs
(above 95% of normal PBMCs) was identified in 76.92% of patients. Further-
more 64.3% of the total CTCs have expression higher than Normal PBMCs.
Therefore, the results of this experiment show that CXCR4 and JUNB are
highly expressed in CTCs derived from breast cancer patients, in agreement
to bioinformatics’ analysis. Quantification of immunofluoresence potentially
delineates a subgroup of patients with high expression of CXCR4 and JUNB
that could benefit from target therapies.

In conclusion, further validation of the results is always possible, which
can also open new avenues for research. New data sets, new technological
developments, and theoretical and technical advancements continuously emerge.
We believe that the methodologies described in this dissertation are generic
and there is high probability that they can be adapted in future requirements.





Appendix A
SVD and Reduced Rank approximation

We have an NxM real data matrix X where features (genes) are in the columns
and the cases (samples, DNA arrays) are in the rows. We extract the column
means from each row to make it “centered”:

X̃ = X− 1Nµ
T (A.1)

and then the (sample) covariance matrix is given by

Σ ≡ E(x− µ)(x− µ)T =
1

N− 1
X̃T X̃ (A.2)

We make use of the Singular Value Decomposition (SVD) of the data
matrix [Meyer, 2000]:

X̃ = UDVT (A.3)

where U and V are NxM and MxM orthogonal matrices (i.e. UUT = I

and VVT = I) and D is an MxM diagonal matrix with its diagonal elements
being the “singular values” of X with σ1 > σ2 > . . . > σr > 0 where r is the
rank of matrix X̃. Now based on the SVD of X̃, the covariance matrix becomes

Σ =
1

N− 1
VDUTUDVT =

1

N− 1
VD2VT (A.4)

Therefore the Mxr matrix V contains, in its columns, the r orthonormal
eigenvectors of the covariance matrix while its eigenvalues are given by

λi =
1

N− 1
σ2i (A.5)

while the “total variance” in the data is:

tr(Σ) =
1

N− 1
tr(VD2VT ) =

1

N− 1
tr(D2VVT ) =

1

N− 1

r∑
k=1

σ2k (A.6)
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Now as a dimension reduction technique we can use the transformation:

y = VT x̃ (A.7)

so that a sample x, after centering, is mapped from the RM space to the
smaller Rr. This transformation in matrix form is given by (remember that
the X has the cases as rows while x̃ above is a column vector for a single case):

Y = X̃V (A.8)

and has covariance matrix

ΣY =
1

N− 1
YTY =

1

N− 1
VT X̃T X̃V =

1

N− 1
VTVD2VTV =

1

N− 1
D2 (A.9)

i.e. it is diagonal with diagonal elements 1
N−1

σ2i and of r rank (σi = 0, i > r).
The transformation A.8 is actually the Principal Component Analysis

technique where we are using all the eigenvalues of the covariance matrix.
If, instead, we keep the first K eigenvectors that correspond to the largest
eigenvalues (or, equivalently, the largest squares of singular values per A.5),
the transformed centred data will be:

YK = X̃VK (A.10)

where VK has the K eigenvectors in its columns. The corresponding covari-
ance matrix uses the first K singular values:

ΣYK =
1

N− 1
D2K (A.11)

The “error” of this “low rank” transformation in terms of the Frobenius
form would be (matrix approximation lemma [Eckart and Young, 1936]):

||Y − YK||
2
F =

1

N− 1

r∑
k=K+1

σ2k (A.12)

A.1 Use in rank-deficient Gaussian distribu-
tions

The probability density function (pdf) of a multivariate (M-dimensional)
normal distribution is given by:

f(x) =
1√
|2πΣ|

exp

(
−
1

2
(x− µ)TΣ−1(x− µ)

)
(A.13)
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In the analysis of gene expression and other high throughput data, it is
always the case that the number of samples is lower than the number of features
(e.g. genes), i.e. N�M. In these cases therefore, the covariance matrix Σ is
not full rank, and the above formula can not be used. In order to bypass this
problem we can use the SVD of the original data matrix as described above.

Concretely, the following matrix is the Moore-Penrose pseudoinverse of the
covariance matrix defined in Equation A.4:

Σ+ = (N− 1)VD−2VT (A.14)

This matrix is built using the r non-zero entries of the diagonal matrix D
(Equation A.3) and satisfies the properties of the pseudoinverse (e.g. ΣΣ+Σ = Σ,
Σ+ΣΣ+ = Σ+ etc.) [Golub and Van Loan, 2012]. Using this in place of the
original convariance matrix in Equation 5.4 (and its determinant |Σ+| =

(N− 1)r
∏r
i=1 σ

−2
i ) allows the computation of the Gaussian pdf.





Appendix B
The “Block diagonal” EM algorithm

In the statified model we assume that genes can be classified in K different cat-
egories using GO Biological Processes for example. We make the assumptions
that genes in different categories are independent and the covariance matrix
(by using some proper rearrangement of the genes1) is a block diagonal matrix

ΣΣΣ =


ΣΣΣ(1) 0 · · · 0

0 ΣΣΣ(2) · · · 0
...

... . . . ...
0 0 · · · ΣΣΣ(K)

 (B.1)

If we modelled the data by a single Gaussian

fi(xxxj;µµµi,ΣΣΣi) =
1

(2π)L/2|ΣΣΣi|1/2
e−

1
2 (xxxj−µµµi)

TΣΣΣ−1
i (xxxj−µµµi) (B.2)

then taking into account the block triagonal structure of (B.1) the normal
density of (B.2) factorizes into

fi(xxxj;µµµi,ΣΣΣi) =

K∏
k=1

1

(2π)Nk/2|ΣΣΣ
(k)
i |1/2

e−
1
2 (xxx

(k)
j −µµµ

(k)
i )TΣΣΣ

(k),−1
i (xxx

(k)
j −µµµ

(k)
i ) (B.3)

where we have used the “exponent” (k) to refer to the projection/selection of
the genes (and means, covariance matrices) belonging to the k category.

Now we take a mixture of Gaussians like the (B.3) the equation (5.1)
becomes

f(xxxj;Θ) =

g∑
i=1

πi

K∏
k=1

1

(2π)Nk/2|ΣΣΣ
(k)
i |1/2

e−
1
2 (xxx

(k)
j −µµµ

(k)
i )TΣΣΣ

(k),−1
i (xxx

(k)
j −µµµ

(k)
i ) (B.4)

1..and possibly repeating a gene if it’s classified in more than one category...
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that can be written more compactly as

f(xxxj;Θ) =

g∑
i=1

πi

K∏
k=1

N(xxx
(k)
j ;µµµ

(k)
i ,ΣΣΣ

(k)
i ) (B.5)

Now as in Section 5.2.1 we assume the “hidden” (missing) data zzzj where
zji = 1 if the j-th sample is generated by the i-th cluster and we can model
the probability of the data as

f(xxxj, zzzj|Θ) = f(xxxj|zzzj, Θ)f(zzzj|Θ)

=

K∏
i=1

(fi(xxxj|zzzj, Θ))
zik

K∏
i=1

(fi(zzzj|θ))
zik

=

K∏
i=1

(fi(xxxj|zzzj, Θ)pi(zzzj|Θ))
zik

=

K∏
i=1

(πifi(xxxj|zzzj, Θ))
zik

(B.6)

(where πi is the probability of cluster i, and the products appear since all but
one of the zik will be zero.)

The complete data log likelihood based on (B.6) then becomes

lnp(X,Z;Θ) = ln

N∏
j=1

f(xxxj, zzzj|Θ)

= ln

N∏
j=1

g∏
i=1

(πifi(xxxj|zzzj, Θ))
zji

=

N∑
j=1

g∑
i=1

zji (lnπi + ln fi(xxxj|zzzj, Θ))

=

N∑
j=1

g∑
i=1

zji

(
lnπi +

K∑
k=1

lnN(xxx
(k)
j ;µµµ

(k)
i ,ΣΣΣ

(k)
i )

)
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So the expectation to be maximized is

Q(Θ,Θcur) =
∑
z

P(Z|X;Θcur) lnp(X,Z;Θ)

=
∑
z

P(Z|X;Θcur)

N∑
j=1

g∑
i=1

zji

(
lnπi +

K∑
k=1

lnN(xxx
(k)
j ;µµµ

(k)
i ,ΣΣΣ

(k)
i )

)

=

N∑
j=1

g∑
i=1

P(zji = 1|xxxj;Θ
cur)

(
lnπi +

K∑
k=1

lnN(xxx
(k)
j ;µµµ

(k)
i ,ΣΣΣ

(k)
i )

)

=

N∑
j=1

g∑
i=1

p(xxxj|zji = 1;Θ
cur)P(zji = 1;Θ

cur)∑g
s=1 p(xxxj|zjs = 1;Θ

cur)P(zjs = 1;Θcur)

(
lnπi +

K∑
k=1

lnN(xxx
(k)
j ;µµµ

(k)
i ,ΣΣΣ

(k)
i )

)

=

N∑
j=1

g∑
i=1

fi(xxxj;µµµ
cur
i ,ΣΣΣ

cur
i )πcuri∑g

s=1 fs(xxxj;µµµ
cur
s ,ΣΣΣ

cur
s )πcurs

(
lnπi +

K∑
k=1

lnN(xxx
(k)
j ;µµµ

(k)
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(k)
i )

)

=

N∑
j=1

g∑
i=1

πcuri
∏K
k=1N(xxx

(k)
j ;µµµ

(k),cur
i ,ΣΣΣ

(k),cur
i )∑g

s=1 π
cur
s
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k=1N(xxx

(k)
j ;µµµ

(k),cur
s ,ΣΣΣ

(k),cur
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τji

(
lnπi +

K∑
k=1

lnN(xxx
(k)
j ;µµµ

(k)
i ,ΣΣΣ

(k)
i )

)

=

N∑
j=1

g∑
i=1

τji

(
lnπi +

K∑
k=1

lnN(xxx
(k)
j ;µµµ

(k)
i ,ΣΣΣ

(k)
i )

)

=

N∑
j=1

g∑
i=1

τji ln

(
πi

K∏
k=1

N(xxx
(k)
j ;µµµ

(k)
i ,ΣΣΣ

(k)
i )

)

where τji is the (current) estimate of the probability the j sample was generated
by (or belongs to) the i cluster

τji =
πcuri
∏K
k=1N(xxx

(k)
j ;µµµ

(k),cur
i ,ΣΣΣ

(k),cur
i )∑g

s=1 π
cur
s

∏K
k=1N(xxx

(k)
j ;µµµ

(k),cur
s ,ΣΣΣ

(k),cur
s )

(B.7)

For the M-step we need to find the parameters Θ = {πi,µµµ
(k)
i ,ΣΣΣ

(k)
i }, i =

1 . . . g, k = 1 . . . K that maximize (B) under the constraint that
∑
i πi = 1.

We insert a Langrangian multiplier λ and try to maximize the expression

J(Θ,Θcur) = Q(Θ,Θcur) + λ

(∑
i

πi − 1

)
(B.8)

We take the partial derivatives (see Section B.1 for some useful identities
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used) and set the result to zero

∂J(Θ,Θcur)
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j )

Setting that to zero and multiplying by ΣΣΣ(k) (we assume that ΣΣΣ(k) is
non-singular) we get

µµµ
(k)
i =

∑N
j=1 τjixxx

(k)
j∑N

j=1 τji
(B.9)

Similarly, for the covariance matrices:
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and again setting that to zero and multiplying by ΣΣΣ(k)
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Finally, for the “mixing coefficients” we have:

∂J(Θ,Θcur)

∂πi
=

N∑
j=1

τji
1

πi
+ λ = 0

=⇒ λπi = −

N∑
j=1

τji

=⇒ λ
∑
i

πi = −

N∑
j=1

∑
i

τji

=⇒ λ = −N

and therefore

πi =

∑N
j=1 τji

N
(B.11)

In conclusion, using the stratified model as defined in the beginning of this
section (with block diagonal covariance matrix) we end up with ML estimations
of µµµ(k)

i ,ΣΣΣ
(k)
i with the same structure (e.g. the mean µµµ(k)

i of mixture component
i in the category k is computed by considering only the genes in this category
xxx(k))

B.1 Matrix Calculus

In the above calculations we have used the following matrix identities:

∂xxxTAAAxxx

∂xxx
= (AAA+AAAT )xxx

∂aaaTXXX−1bbb

∂XXX
= −XXX−TaaabbbTXXX−T

∂|XXX|

∂XXX
= |XXX|(XXX−1)T

∂ ln |XXX|

∂XXX
= (XXX−1)T
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The research we present in this document was largely documented in various
scientific publications. Here, we provide details on these publications.

C.1 Journal papers

In the course of my research the following papers were included in scientific
journals:

• [Sfakianakis et al., 2010a] is a review paper, providing an overview of
the domain and the problems in the analysis of high throughput, gene
expression data (In International Journal of Biomedical Engineering and
Technology)

• [Sfakianakis et al., 2014] was the major output of the thesis presenting
our effort and results for characterising the gene expression profile of the
Circulating Tumor Cells using bioinformatics methods (In IEEE Journal
of Biomedical and Health Informatics). The paper was also selected to
appear on the cover page of the journal (Figure C.1). The contents of
this paper constitute the backbone of Chapter 2.

• [Kallergi et al., 2015] presented the experimental validation of a subset
of the genes identified in [Sfakianakis et al., 2014] (In Cancer Research).
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Figure C.1: The cover page of the IEEE Journal of Biomedical and Health Informatics,
May 2014, featuring the [Sfakianakis et al., 2014] paper.

• [Sfakianakis et al., 2016a] is under preparation as an extended version
of [Sfakianakis et al., 2016b].

Finally, [Notas et al., 2015] is a paper where I have contributed on the part
related to the bioinformatics and statistical analysis (In Molecular Oncology).
Although, not related to the core of this thesis, my contribution was largely
based on the experience gained during the course of my research.

C.2 Papers in conference proceedings

The following thesis-related papers have been presented in conferences and are
included in the corresponding proceedings:

• [Sfakianakis et al., 2010b] was a preliminary work for model based
clustering using the mixture of Gaussians as the underlying model in a
biological information driven way. More specifically, we were using the
information from biological networks to impose a sparse solution using a
“stratified” (or block-ed) version of the Expectation Maximization (EM)
algorithm. Chapter 5 is largely based on this publication.
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• [Sfakianakis et al., 2015] presented the “Steiner tree” expansion of
the genes identified in [Sfakianakis et al., 2014] and it’s expanded in
Chapter 3.

• [Sfakianakis et al., 2016b] built upon the same list of initial “seed”
genes and using the background network information constructed a two
level classification scheme using adaptive, data-driven learning. Further-
more, the “neighborhoods” of the seed genes are used for model-based
clustering with the modified “Expectation Maximization” fitting algo-
rithm of [Sfakianakis et al., 2010b]. This work is described in detail in
Chapter 4.

The compendium of the gene expression data sets gathered in this work
has been used extensively. The following is a list of relevant publications that
were based on this extended data set and address research questions related to
the work presented in this thesis:

• F. Gypas, E. S. Bei, M. Zervakis and S. Sfakianakis, “A disease annotation
study of gene signatures in a breast cancer microarray dataset,” Engineer-
ing in Medicine and Biology Society, EMBC, 2011 Annual International
Conference of the IEEE, Boston, MA, 2011, pp. 5551-5554. [Gypas et al.,
2011]

• N. K. Chlis, S. Sfakianakis, E. S. Bei and M. Zervakis, “A generic frame-
work for the elicitation of stable and reliable gene expression signatures,”
Bioinformatics and Bioengineering (BIBE), 2013 IEEE 13th International
Conference on, Chania, 2013, pp. 1-6. [Chlis et al., 2013]

• N. K. Chlis, S. Sfakianakis, E. S. Bei, D. Iliopoulou, D. Kafetzopoulos,
and M. Zervakis, “Searching for Significant Genes in Cancer Metastasis by
Tissue Comparisons.” In 6th European Conference of the International
Federation for Medical and Biological Engineering, pp. 594-597. Springer
International Publishing, 2015. [Chlis et al., 2015]

• S. Tsakaneli, E. S. Bei, and M. Zervakis. “Comparing genomic net-
work methodologies: A combined approach for cancer prognosis.” In
XIV Mediterranean Conference on Medical and Biological Engineer-
ing and Computing, pp 506-511. Springer International Publishing,
2016. [Tsakaneli et al., 2016]

• A. Alevyzaki, S. Sfakianakis, E. S. Bei, E. Obermayr, R. Zeillinger, D.
Fotiadis, and M. Zervakis. “Biclustering strategies for genetic marker
selection in gynecologic tumor cell lines.” In 38th Annual International
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Conference of the IEEE Engineering in Medicine and Biology Society,
2016. [Alevyzaki et al., 2016]
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