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Abstract

Motion estimation is a widely researched topic of Computer Vision with numerous

published algorithms. Nowadays, Computer Vision and motion estimation are utilized

to confront real world problems. One such application, with on-going research interest,

is the estimation of the motion �eld of rivers using video data. The incorporation of

Computer Vision in river �ow estimation can lead to the development of a low-cost, fast,

accurate and above all, a non-intrusive method of measuring the river's velocity. These

characteristics are of most importance since until now, this estimation required on-�eld

measurements with costly conventional equipment, such as accelerometers or doppler-

based devices.

Moreover, natural phenomena that have rapid occurrence, such as �ash �ood streams,

are hard to monitor at their full extent with the use of conventional equipment. On the

other hand, a video surveillance system accompanied with a motion estimation algorithm

would allow constant and accurate measurements of the �ow without requiring the on-

�eld presence of hydrologists or any other man-held equipment, under the condition that

a light-source is available. However, the development of a motion estimation algorithm

for the case of �uids can be a di�cult task due to the dynamic motion nature of the

�uid, guided by both internal and external forces, such as wind and gravity. In addition,

when applying such methodologies to real world problems, such as the development of a

river monitoring system, researchers must also deal with a number of other tasks beyond

the selection of an appropriate motion estimation algorithm. These tasks span from the

selection of hardware equipment to be used and the monitoring layout formation as well

as the data mining capabilities that o�ers, to even the derivation of a way to associate

the 2-dimensional image space with the 3-dimensional real world in order to reach to a

real world velocity estimate for the river's velocity.

This thesis addresses the problem of developing an Image-based monitoring layout

for river �ows presenting and discussing the methodologies behind each module. More

speci�cally, we propose the utilization of a stereo camera monitoring layout allowing the

relation of the real world and image plane coordinate systems and thus the 2-Dimensional

image plane motion and the 3-Dimensional river surface motion. Moreover, a novel proba-

bilistic motion estimation method based on stereoscopic data is presented which evaluates

each possible displacement based on the two views of the monitored scene resulting in a

dense global motion �eld that accurately represents the motion patterns present on the



river's surface. However, this thesis does not comments upon the performance and cost

trade-o� of the used hardware.



Περίληψη

Η εκτίμηση κίνησης αποτελεί ένα ευρέως εξεταζόμενο θέμα στον επιστημονικό κλάδο της

Μηχανικής ΄Ορασης έχοντας μάλιστα πληθώρα δημοσιευμένων αλγορίθμων και μεθοδολο-

γιών. Στις μέρες μας, η Μηχανική ΄Οραση και η εκτίμηση κίνησης χρησιμοποιούνται για

την αντιμετώπιση προβλημάτων στον πραγματικό κόσμο. Μια τέτοια εφαρμογή, με εξε-

λισσόμενο επιστημονικό ενδιαφέρον, αποτελεί η εκτίμηση του πεδίου κίνησης ποταμών α-

ξιοποιώντας δεδομένα βίντεο. Η ενσωμάτωση του κλάδου της Μηχανικής Ορασης στην

εκτίμηση του πεδίου κίνησης των ποταμών μπορεί να οδηγήσει στην ανάπτυξη μιας χαμη-

λού κόστους, γρήγορης, ακριβέστατης και πρωτίστως μη επεμβατικής μεθόδου εκτίμησης

της επιφανειακής ταχύτητας ενός ποταμού. Αυτά τα χαρακτηριστικά τυγχάνουν ιδιαίτερης

σημασίας δεδομένου ότι μέχρι τώρα, η εκτίμηση της ταχύτητας ενός ποταμού απαιτούσε

μετρήσεις πεδίου χρησιμοποιώντας δαπανηρό συμβατικό εξοπλισμό, όπως επιταχυνσιόμετρα

ή συσκευές βασιζόμενες σε τεχνολογία Doppler.

Επιπροσθέτως, φυσικά φαινόμενα που έχουν ταχεία εμφάνιση, όπως πλημμυρικά φαινό-

μενα, είναι δύσκολο να παρακολουθηθούν, σε όλη τους την έκταση με τη χρήση συμβατικού

εξοπλισμού. Από την άλλη πλευρά, ένα σύστημα παρακολούθησης βίντεο το οποίο συ-

νοδεύεται με έναν αλγόριθμο εκτίμησης κίνησης μπορεί να επιτρέψει συνεχείς και ακριβείς

μετρήσεις της ροής χωρίς να απαιτείται η επιτόπια παρουσία υδρολόγων και η χρήση εξοπλι-

σμού που απαιτεί ανθρώπινο χειρισμό, υπο την προϋπόθεση υπάρξης πηγής φωτός που θα

επιτρέπει την απεικόνιση της σκηνής απο την κάμερα. Ωστόσο, η ανάπτυξη ενός αλγορίθμου

εκτίμησης κίνησης για την περίπτωση ενός ρευστού μπορεί να αποτελέσει ένα δύσκολο έρ-

γο, εξαιτίας της δυναμικής φύσης της κίνησης του ρευστού, η οποία καθοδηγείται τόσο απο

εσωτερικές όσο και απο εξωτερικές δυνάμεις, όπως ο αέρας και η βαρύτητα. Επιπλέον, κατά

την εφαρμογή μεθοδολογιών βασιζόμενων σε επεξεργασία εικόνας σε προβλήματα του πραγ-

ματικού κόσμου, όπως είναι και η ανάπτυξη ενός συστήματος παρακολούθησης ποταμών, οι

ερευνητές θα πρέπει επίσης να ασχοληθούν με μια σειρά από άλλα καθήκοντα, πέρα απο την

επιλογή του κατάλληλου αλγόριθμου εκτίμησης κίνησης. Τα καθήκοντα αυτά εκτείνονται

από την επιλογή του εξοπλισμού που θα χρησιμοποιηθεί και την τοπολογική αξιολόγηση

της διάταξη παρακολούθησης σε συνδυασμό με τις δυνατότητες εξόρυξης δεδομένων που

προσφέρονται, μέχρι και την εύρεση ενός τρόπου διασύνδεσης του 2-διάστατου χώρου της

εικόνας με τον 3-διαστάσεων πραγματικό κόσμο προκειμένου να φτάσει σε μια εκτίμηση της

πραγματικής ταχύτητας του ποταμού.

Η παρούσα διατριβή ασχολείται με το πρόβλημα της ανάπτυξης μιας διάταξης παρακο-

λούθησης ροών ποταμών βασιζόμενη σε δεδομένα βίντεο, παρουσιάζοντας και συζητώντας

τις μεθοδολογίες που μπορούν να αξιοποιηθούν καθώς το πως εν τέλει αναπτύχθηκαν σε



κάθε ενότητα του συστήματος παρακολούθησης, εξαιρώντας όμως, το σχολιασμό και την

αξιολόγηση της σχέσης απόδοσης - κόστους για τον εξοπλισμό που χρησιμοποιήθηκε στο

πρωτότυπο του συστήματος. Συγκεκριμένα, προτείνουμε την χρήση μιας στερεοσκοπικής

διάταξης παρακολούθησης η οποία επιτρέπει την συσχέτιση των διανυσματικών χώρων του

πραγματικού κόσμου και του επιπέδου της εικόνας, επιτρέποντας έτσι τη διασύνδεση της

2-Διάστατης ταχύτητας στο επίπεδο της εικόνας και της 3-Διάστατης ταχύτητας του πραγ-

ματικού χώρου. Επιπλέον, παρουσιάζεται μια νέα πιθανοτική μέθοδος εκτίμησης κίνησης

βασιζόμενη στα στερεοσκοπικά δεδομένα η οποία αξιολογεί κάθε πιθανή μετατόπιση με

βάση τις δύο προβολές της παρακολουθούμενης σκηνής και η οποία εξάγει ένα πυκνό πεδίο

κίνησης που αντιπροσωπεύει με ακρίβεια τα μοτίβα κίνησης που υπάρχουν στην επιφάνεια

του ποταμού.
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Chapter 1

Introduction

Computer Vision is a diverse and active science �eld with its researchers showing various

interests and aspirations to develop methodologies that confront real world problems,

and thus, blending Computer Vision with other scienti�c �elds. One such attempt is

to combine Computer Vision with Hydrology, developing image based estimation and

inference methods concerning the �uid's motion �eld.

An application of this scienti�c marriage is in river and stream �ow monitoring. The

estimation of the �ow �eld of a river or a stream is performed traditionally with the use

of conventional equipment, such as accelerometers, which require on-�eld measurements.

Such monitoring methods, despite the costly human operated equipment do not provide

continuous monitoring of the �ow. This aspect is crucial, in cases of natural hydrological

phenomena that have rapid outbreaks, such as �ash �oods. Hydrologists rarely can

monitor cases of such phenomena at their full extent since no warning about the imminent

occurrence is possible. In addition, the majority of the conventional equipment that is

used requires the presence of hydrologists near or even within the �ow region of the

stream or river. This means that in extreme cases of �ash �ood events with rapid �ow

increase, the measurement acquisition process can become dangerous for the researchers.

1.1 Thesis Focus and Contribution

This thesis describes a new image-based river and stream �ow monitoring framework.

The monitoring module integrates image data and depth information of the monitored
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1. INTRODUCTION

scene, captured with the use of a stereo camera layout, estimating the river's average

real-world surface velocity at any time.

The river's �ow �eld is initially estimated in the image plane domain, with the use of

a probabilistic optical �ow estimation methodology that combines the image data from

the two views to extract displacement probabilities for each examined image region. The

prediction of the position of each object in the next time frame follows a Bayesian infer-

ence scheme based on a number of assumptions about the relation between neighbouring

regions as well as the motion of each pixel within the examined region leading to dense

optical �ow �eld estimates. In essence a stochastic motion estimation model is applied for

the derivation of the motion �eld making this method ideal for the estimation of �uid's

�ow �eld since its dynamic motion nature results in the relative positions of neighbouring

points to change faster in a �uid than on a rigid body.

This methodology, initially presented by Chang et.al. [1] based on a 3-Dimensional

(time and space) neighbourhood, was redesigned in my undergraduate diploma thesis

(Bacharidis [2]) to allow a 2-Dimensional neighbourhood re�ning prediction ambiguities

due to the data reduction. In this thesis, we introduce an new theoretical basis on

the estimation and neighbourhood formulation process by incorporating the image data

from the two scene views acquired by the stereo camera layout. This new estimation

scheme achieved the same or in some cases increased estimation accuracy compared to

the previous approach, requiring at the same time approximately 16% less amount of

data.

Moreover, to exclude disambiguous and erroneous motions within the �ow produced

due to di�usion e�ects by occluding rocks with the river or at the river banks we applied

clustering and classi�cation techniques on the estimated motion �eld in order to extract

the main motion trend of the �ow. A variety of clustering and classi�cation Machine

Learning techniques were examined, leading to the observation that a supervised classi-

�cation approach that utilizes a prior knowledge about the expected motion of the river

�ow can achieve higher classi�cation accuracy, with Naive Bayes yielding the best results.

Finally, in order to associate the 2-Dimensional motion �eld with the real world,

thus, estimating the 3-Dimensional velocity, we utilized the scene's depth information

derived using the stereo layout. The relation between the projection planes allowed the

association of the position of each object in the 2-Dimensional image plane with its corre-

sponding position in the 3-Dimensional world coordinate system. This association allowed
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the relation between the 2-Dimensional pixel displacements and their corresponding 3-

Dimensional displacements, generating the 3-Dimensional motion �eld, and thus allowing

the derivation of the 3-Dimensional motion �eld of the river. In this thesis, we will de-

scribe and present the theoretical basis behind these relations as well as the constraints

and assumptions that were made to achieve an accurate projection relation between the

two coordinate systems.

The framework was incorporated in a newest version of a �uid �ow extraction and

visualization tool, Fluid Flow Viewer (F.F.V.), which was initially presented in my un-

dergraduate thesis. This new version allows a user to calibrate the stereo camera layout,

extract the depth map of viewed scene, view of the viewed �ow from each camera, ex-

tract the 2-Dimensional motion �elds and �nally, estimate the 3-Dimensional average

river surface velocity.

1.2 Thesis Outline

In Chapter 2 we state the river �ow estimation problem with the use of video data and

we refer to di�erent image-based river monitoring approaches that have been developed

by other researchers, presenting and commenting on the advantages and disadvantages

of each method. In Chapter 3 we present all the background information needed for this

thesis. We give an overview of �uid �ow estimation problem and present the state of the

art image based estimation methodologies. Furthermore, we provide basic information

about Stereo Vision and projection relations and scene reconstruction methodologies

that will be used in the depth map generation process. In Chapter 4 we describe our

river monitoring framework, presenting our novel optical �ow estimation method, our

main motion trend method extraction scheme, and �nally, the relation derivation and

transformation scheme that allows the extraction of the 3-Dimensional river velocity. In

Chapter 5 we evaluate the accuracy of the presented monitoring framework comparing

the velocity estimate with estimates acquired with the use of conventional equipment,

we also compare the new stereo data based optical �ow estimation algorithm with our

previous 2-Dimensional single camera version (presented in Bacharidis [2]) as well as

with other known pre-existing optical �ow estimation method, and we also present the

new version of our graphical user interface(GUI), Fluid Flow Viewer(F.F.V.). Finally,
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Chapter 6 acts as an epilogue for this thesis, presenting our conclusions along with future

improvements.
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Chapter 2

Problem Set-up

2.1 Image-based River Monitoring

Traditionally, river �ow monitoring was performed using man-held, expensive equipment,

such as accelerometers and doppler-based devices. Moreover, such monitoring methods

did not provide continuous monitoring data, a crucial factor for the task of observing

and analyzing the behaviour and characteristics of rapid duration �uid phenomena, such

as �ash �oods. The development of an image-based river monitoring system provides

non-intrusive, low-cost and constant monitoring of the river �ow.

An image based river monitoring system depends on many factors that determine the

estimation accuracy, ranging from the appropriate selection of the hardware and the mo-

tion estimation algorithm, to the camera position in the monitoring scene. Moreover, the

transition to real world conditions introduces new challenges towards producing accurate

estimates, thus, special care must be given to pre and post processing of the collected

data in order to remove distortions introduced by the external monitoring conditions.

There have been a few approaches which try to estimate the river's motion through

the development of an image-based monitoring system. However, most of these methods

rely upon the existence of arti�cial and physical tracers within the �ow in order to

determine the 2-Dimensional image motion �eld of the river. Furthermore, the transition

from the 2-Dimensional optical to the real world 3-Dimensional �ow �eld and �nally, to

an average real world surface velocity requires knowledge upon the scene (usually use

of ground truth points). These characteristics result in these systems not being fully

automated and adaptable to any monitoring scene, leading to gaps that our approach
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attempts to �ll. The following section will attempt to present the basic ideas behind the

implementation of the existing image-based river �ow monitoring systems.

2.2 Related Work and Component Analysis of Image-

based River Monitoring Systems

We will begin by presenting the key parts behind each image-based river monitoring

system analyzing in each component the di�erences and variations that each existing

approach o�ers, commenting at the same time upon the limitations or advantages that

each variation presents.

An image-based river monitoring system essentially consists of three major compo-

nents, (a) Flow Visualization and Recording, (b) Image Processing and Motion Estima-

tion, and (c) 2-Dimensional to 3-Dimensional motion �eld association. All three compo-

nents are related to each other, since there is a pipeline of information �owing from one

component to another.

2.2.1 Flow Visualization and Recording

The �rst component deals with the monitoring hardware used, the camera position in

accordance to viewed scene and the a�ect of the position selection in the data acquisition

process and quality. In this section we will also, deal with �ow visualization process from

the scope of tracer selection.

Monitoring layout formation: Existing image-based river monitoring systems use

single camera rigs, most commonly high resolution CCD cameras, placed on-top of bridges

at an angle that allows a wide view of the river surface as well as the river banks (e.g.

Bradley et. al. [46]; Tsubaki et.al. [47]; Muste et. al. [48]), as shown in �gure 2.1. The

latter viewing condition is essential to the majority of the developed systems since the

ground truth points used to relate the optical and real world velocity are placed in the

river banks. The selection of the viewing angle is crucial in order to reduce the spatial

distortion that the camera lens introduces, usually angles between 5 to 7 degrees are

selected.
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Figure 2.1: Monitoring layout deployment example of existing image-based river moni-

toring systems. The selected area is videotaped by a camera laid on top of a bridge.

The appropriate selection of the viewing position, when monitoring takes place in real

world conditions, is crucial since we must compensate and reduce to best possible ratio

the a�ect of illumination variation of the natural light as well as to be able to acquire the

best possible view of the river surface. The illumination variation problem results in glare

and shadowing phenomena that can reduce the quality of the recorded image. In order to

reduce the image degradation a�ect due to illumination variation, image pre-processing is

applied to the recorded image prior the motion estimation process. The most preferable

techniques are, (a) histogram equalization (e.g. Kim [49]) or (b) to deal with uneven illu-

mination as an addictive signal and try to subtracted it from the original image to reveal

the detailed information (e.g.Wang et.al. [50];Avgerinakis et.al. [51]). Finally, as far as

the recording frame rate of the �ow is de�ned by the lighting conditions and the exis-

tence of tracers (for particle-based systems), usually a frame rate of 30 frames per second

is selected. The size of the image and the resolution is de�ned by capability to distin-

guish movement of the water body in image pairs, as well as the selected particle patterns.

Flow Visualization: The second factor in the �rst component of an image-based

river monitoring system �ow visualization tracer selection. The majority of the existing

approaches rely on the existence of tracers, natural(e.g. foam or boils) or arti�cial, to

apply particle tracking in order to produce the motion �eld(e.g. Fujita and Komura [52];

Bradley et. al. [46]; Muste et.al. [48]). The biggest problem in particle-depended systems

is insu�cient �ow seeding. In cases where no natural tracers are present, arti�cial tracers
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need to be added, thus, reducing the system automation and constant monitoring char-

acteristics. Moreover, for the case of arti�cial tracers as will be mentioned in Chapter 3,

careful selection of their characteristics (material, volume e.t.c.) should be made in order

to ensure the validity of association of their velocity �eld with the river's.

Another case of �ow visualization, unconstrained by the particle existence condition,

is the one when we can use as tracking surrogate the specular re�ection formed by incident

light interacting with the free-surface deformations as well as waviness generated by wind

or large-scale turbulence structures (e.g. Tsubaki et. al. [47];Creutin et.al. [53]). Such

image patterns can be easily traced across the river motion and accurately depict the

surface velocity despite their short duration(Fujita et.al. [54]).

2.2.2 Image-based Fluid Motion Estimation

The next component of an image-based river monitoring system is the 2-Dimensional

optical �ow �eld estimation of the river's �ow. In this section we will present the method-

ologies applied in existing monitoring systems. Furthermore, we also deal with motion

�eld post-processing approaches that aim to reduce the number of erroneous motion vec-

tor estimates. Starting from the task of estimation the 2-Dimensional motion �eld of the

river, existing approaches can be group in two categories (a) Particle-based Approaches,

and (b) Surface Deformation Approaches, based on the utilization of particles in the

tracking process.

2.2.2.1 Particle-based Approaches

The most widely class of methods used in image based monitoring systems is the Particle

Image Velocimetry methodology (PIV). The idea behind PIV approaches is that we to

use a characteristic pattern (particle) to approximate the motion �eld of the �uid under

the assumption that motion pattern of the particle follows the motion pattern of the

�uid, in our case the water �ow in the river or stream.

Existing monitoring systems mainly rely upon cross-correlation and feature-based

PIV motion estimation methods to derive the motion �eld (Bradley et.al. [46]; Fujita

et. al. [55]; Muste et.al. [48];Fujita and Komura [52]). Cross-correlation and feature-

based methods compute similarity indexes, such as Mean Squared Error (MSE) or Sum

of Squared Di�erences (SSD), between an interrogation region in the �rst image and
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Figure 2.2: Cross-correlation particle tracking process applied in a small cluster of parti-

cles. Image taken from Muste et.al. [48].

candidate interrogation regions in a search area in the subsequent frame, as shown in

�gure 2.2. The interrogation region in the �rst image can be either applied directly on the

tracked particle pattern, initially isolated using color or feature based segmentation(e.g.

Harris Matrix) from the river �ow, or on the entire image and then isolating the motion

vectors belonging to the pattern. For example, Fujita et.al. [55] as well as Bradley

et.al. [14], used a cross-correlation coe�cient Ra,b (Pearson's coe�cient) as a similarity

index to track a particle pattern across the frames and estimate the displacement vectors:

Ra,b =

∑
l

∑
k (akl − ākl)

(
bkl − b̄kl

)√∑
l

∑
k (akl − ākl)2∑

l

∑
k

(
bkl − b̄kl

)2
(2.1)

where akl are the grey-scale values for pixels in the interrogation spot, and bkl are the

grey-scale values for the corresponding pixels in the search area and ākl, b̄kl the average

intensity values in the interrogation spot and the search area.

The accuracy of cross-correlation and feature -based approaches depends on the search

area selection. The size of the search window should be appropriately selected in order to

ensure the in-plane motion of the particle is captured. A �xed location for the interroga-

tion region in the second image results in velocity bias errors and high signal-to-noise ratio

due to large displacements (Adrian [56]). In order to solve this problem we can de�ne the

interrogation as well as the search area using multi-stage window deformations (see �g-

ure 3.2), as will be presented in Chapter 3. Such concepts have been extensively applied

in existing image-based river monitoring systems, such as the one presented by Muste

et.al. [48], who applied a decoupling approach of the interrogation area to any arbitrary
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location in the second image, thus, allowing a dynamic range of velocity measurements

and improving the signal-to-noise ratio.

2.2.2.2 Surface Deformation Approaches

As previously mentioned, the second class of motion estimation approaches utilized in

image-based river monitoring rely upon river surface deformations due to spectral re-

�ection of the natural light or waviness introduced by external forces, such as wind and

gravity (Tsubaki et. al. [47];Creutin et.al. [53]; Fujita et.al. [54]). Such approaches are

applied to the entire image and no particle detection and tracking is required since they

are not bound by the existence of particles. In order to compute the motion �eld of the

image such methods rely upon the image gradients as a means of luminance distribution

propagation along the recorded image frames (Tsubaki and Fujita [57]; Fujita et.al. [54])

or even cross correlation metrics, such as MSE and SSD, searched in a prede�ned search

region (e.g.Creutin et.al. [53]).

A representative method on this concept is Space-Time Image Velocitry(STIV), pre-

sented by Tsubaki and Fujita (Tsubaki and Fujita [57]; Fujita et.al. [54]). For image

pattern an orientation angle of speed propagation is computed based on image gradients.

The reference pattern is compared to candidate patterns in subsequent frames through a

coherence measure C computed based on the orientation angle:

C =

√
(Jxx − Jtt)2 + 4J2

xt

Jxx + Jt
(2.2)

where C is the Coherence measure, Jxx, Jtt, Jxt are structure tensors calculated as follows:

Jxx =

∫
A

∂g

∂x

∂g

∂x
dxdx (2.3)

Jtt =

∫
A

∂g

∂t

∂g

∂t
dtdt (2.4)

Jxt =

∫
A

∂g

∂x

∂g

∂t
dxdt (2.5)

where

∂g

∂x
=
gi+2 − 8gi+1 + 8gi−1 − gi−2

12∆x
(2.6)
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where
∂g

∂x
is the 4th order central di�erence scheme and g(x, t) is the gray intensity level.

Finally, in order to compute the velocity the pattern is tracked along an interrogation

line through the frame series (Space-Time) and the mean orientation angle φ of the

pattern is used to compute the velocity of the river:

U =
Sx
St
tanφ (2.7)

where U is the average velocity, Sx is the length scale of the pattern in m/pixel, St is the

is the unit time scale of the time axis in sec/pixel and φ is the mean orientation of the

pattern along the interrogation line.

The main di�erence between particle and surface deformation approaches is that the

�rst compute the instantaneous velocity of the river whereas the latter produces the mean

velocity of the river surface.

2.2.2.3 Erroneous Motion Vector Exclusion

In order to increase the accuracy of the estimated motion �eld, image-based monitoring

systems must re�ne the estimated motion �elds to exclude erroneous motion estimates

produced either by di�usion phenomena near the river banks or low signal-to-noise ra-

tio in the image or insu�cient correlated particle images for the case of particle-based

approaches. Various approaches have been proposed that can correct erroneous motion

estimates (e.g. Fujita and Kaizu [59]; Nogueira et.al. [58]) with the idea behind them

being the combination of the physical characteristics of the �ow with an assumption of

local continuity among the vectors. For example, Nogueira et.al. [58] presented a method

in which local coherency of a vector with its 8 neighbors is de�ned as:

coh =

∑
i |ui − uo|∑

i |ui|
(2.8)

with ui is the velocity vector of the eight neighboring points and uo the velocity vec-

tor of the examined point. This metric of coherency is then used to de�ne a measure

of uniformity among neighboring vectors, thus, allowing the correction of non-coherent

neighboring vector. Such approaches have been incorporated to existing image-based river

monitoring systems, increasing the estimation accuracy (Fujita [55]; Muste et.al. [48]).
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Figure 2.3: Positioning and relation between the camera and the ground truth points.

Figure taken from Muste et.al. [48].

2.2.3 2D to 3D Motion �eld Transition

The last stage an image-based river monitoring system involves the relation of the 2-

Dimensional motion �eld estimate with its corresponding 3-Dimensional real world. In

order to do so we need to de�ne a mapping between the image and world coordinate

systems. In single camera systems the way to do this is to use ground truth points

(GPs), i.e. points whose 3-Dimensional world coordinates are known. These points are

usually placed in the river banks facing the camera, as shown in �gure 2.3 .

The association between the GPs and their corresponding image plane points is per-

formed through an eight parameter projective transformation, initially presented and used

in an image-based river monitoring system by Fujita et.al. [55]. This process known as

image orthorecti�cation, has been since then the most common image to real world rela-

tion method used in the majority of existing monitoring systems (e.g. Bradley et.al. [46];

Fujita et.al. [54]; Muste et.al.( [48], [61]); Creutin et.al. [60]). The relation between the

two coordinate systems based on the eight parameters is de�ned as:

xw =
α1 · x+ α2 · y + α3

α7 · x+ α8 · y + 1
(2.9)

yw =
α4 · x+ α5 · y + α6

α7 · x+ α8 · y + 1
(2.10)

with (xw, yw) being the x and y axis components of the 3D real world point Xworld, (x, y)

the coordinates of the point in the image plane and ai the transformation coe�cients.

Given the appropriate number of control data points (at least 8 control points), these

transformation coe�cients can be estimated by solving a system of linear equations. In
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Figure 2.4: Orthorecti�cation application to a river view. Image taken from Muste

et.al. [61].

order to apply this approach an horizontal water surface assumption must be made, a

condition that also requires the control points to be placed on the horizontal surface. The

result of this transformation is an image transformation in which the (x, y) coordinates

of the each point is mapped to its corresponding (xw, yw) real world coordinates(see

�gure 2.4). Thus, we can express the pixel displacement into real world displacement

based on the aforementioned relation as:

∆xw = xw,new − xw,old
∆yw = yw,new − yw,old

and then the real world velocity can be estimated by dividing with the required time

interval.
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Chapter 3

Theoretical Background on Motion

Estimation and Stereo Vision

In this chapter we will further present, analyze and compare the motion estimation ap-

proaches that are being used in the 2-D motion �eld extraction from image data in the

existing image-based monitoring systems as well as the overall �uid motion estimation

problem. Each method class utilizes di�erent constraints in intensity variation model

that leads to the motion �eld extraction. For example, in particle based methods, an

intensity conservation assumption is being made in order to simplify the particle tracking

process between frames. On the other hand, some methods utilize �uid mechanics to

model, constrain and estimate the intensity variation between the frames. In essence, the

di�erence between the method lies on the constraints applied in the variation of intensity:

∇I · u + It = Variation Constraint

where ∇I = (Ix, Iy) is the spatial intensity gradient and u = (υ, ν) is the optical �ow

vector. Due to the fact that the time displacement is between two frames,∆t = 1 the

time related factor can be removed.

Moreover, this chapter will provide the theoretical background behind the relation of

the 2-D image plane and the 3-D real world using for the case of stereo camera views, as

well as the reconstruction ambiguities and constraints introduced based on the deploy-

ment characteristics of the stereo layout.
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3. THEORETICAL BACKGROUND ON MOTION ESTIMATION AND
STEREO VISION

3.1 Image-based Motion Estimation in Fluids

The extraction of the apparent motion of �uids is a di�cult task due to the non-rigid

motion nature of the �uid. Non-rigid motion is dynamic, meaning that the positions

among points in a �uid change constantly and with an unknown scale, due to the e�ect

of external forces, such as wind or gravity, that alter the motion. In Fluid Mechanics

the velocity �eld u constant density and temperature and a pressure �eld p is described

using the Navier-Stokes equations [3] as follows:

du

dt
=
∂u

∂t
+
(
u∇̇
)
u = −1

p
∇p+ v∇2u+ f (3.1)

∇ · u = 0 (3.2)

with v being the �uid's kinematic viscosity, p its density and f an external force, such as

the wind. Naiver-Stokes equations describe the variation of these features based on the

variation of the �uid's velocity.

If we observe equation (2.1) we can establish a relation between the �uid's velocity

variation with Computer Vision and optical �ow estimation. Equation (2.1) resembles

the optical �ow constraint equation, in which the unknown variable is the velocity vector:

∇I · u + It = 0 (3.3)

where ∇I = (Ix, Iy) is the spatial intensity gradient and u = (υ, ν) is the optical �ow

vector. Due to the fact that the time displacement is between two frames,∆t = 1 the

time related factor can be removed.

The optical �ow constrain equation allows the motion estimation in image data under

the intensity conservation assumption between subsequent frames. This assumption is

the basis behind the a�ne translational models that estimate the motion �eld of rigid

models. However, non-rigidity di�ers from rigid motion since it is characterized by multi-

directional and multi-scalable formulations of the body.

If we relate these two equation based on the velocity being the unknown variable we

can formulate models that approximate and constrain non-rigid based intensity variation

with physically based feature constraints generated by the properties and quantities of

�uids.
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There have been numerous image-based motion estimation approaches that try to

estimated a �uid's motion. Some of these methods incorporate classical optical �ow

methods, based on intensity conservation hypothesis, applied in mediums within the �ow,

such as particle tracers, that provide absent rigidity and whose motion �eld is assumed

to follow and thus, approximate the �uid's. Other methods, are based on stochastic

modeling the relative position change of pixels, and the relative intensity variation due to

non-rigidity in a �uid image as a random variable with a probability distribution function.

Lastly, the most elaborate motion estimation methods utilize motion models combined

with physically based feature constraints generated by the properties and quantities of

�uids in order to model the multi-directional and multi-scalable formulations encountered.

3.2 Particle-based Methods

The simplest image based motion estimation method class is particle based approaches.

These methods apply block matching motion estimation techniques combined with cor-

relation matching and feature tracking on mediums, known as particles or tracers, that

�ow within or in the surface of the �uid.

The key concept is that the velocity �eld of these particles can be associated with the

velocity �eld of the �uid under the assumption that the particle's motion follows the same

motion pattern as the �uids. Such methodologies although being simple to implement

are de�ned by a number of parameters which ensure that the motion �eld approximation

is as accurate as possible. These parameters relate to the characteristics of the particles

present in the �ow as well as the measurement requirements during the monitoring of the

�ow.

As a particle we refer to an element or a group of elements (pattern), natural or

arti�cial, that can be used as a tracer, which can be tracked along the frames and whose

properties(size, material properties) allow the association of its displacement vector with

the displacement vector of �uid's �ow �eld. In fact it is the combination of particles

characteristics and monitoring constraints that separate the developed particle based

approaches into two major methodologies, the Particle Image Velocimetry method (PIV)

and the Particle Tracking Velocimetry method (PTV). The approaches belonging to these

method classes, mainly use correlation and feature based image processing techniques

to track particles along the frames and extract the motion �eld. The main di�erence
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between these two classes is in the number of particles being tracked, with PTV methods

tracking a single particle along the frame series making it appropriate for low seeding

density �ows. On the other hand PIV, tracks groups of particles and thus, is applied

in medium and high seeding density �ows. This di�erence de�nes the yielded velocity

characteristics, with PIV allowing the estimation of the Eulerian velocity extracted as

the average particle motion in the space based on a group of velocity vectors, whereas

PTV, describes the Lagrangian motion in a system as the motion vector is extracted by

tracking the displacement path of an individual particle (Cenedese [4]).

3.2.1 Particle characteristics and seeding

In the previous paragraphs we mentioned that the main discrimination criterion between

particle based techniques is the particle �ow density. The particle seeding density depends

on two factors, (a) the particles characteristics and, (b) the monitoring approach that is

followed to acquire the particle images.

Starting from the second factor, when monitoring �uid �ows there exist two monitor-

ing cases, (1) a con�ned highly restricted �ow within a controlled environment , e.g. a

tube, and (2) outdoor monitoring case, e.g. rivers or stream. In the �rst case, the �uid

is placed in a controlled �ow environment and is seeded with particles that are illumi-

nated with a light source, such as lasers, and with digital cameras recording the �ow (see

�gure 3.1). The illuminated particles can be identi�ed within the �uid �ow, using an

image-based correlation scheme. Such monitoring layouts provide images with decreased

background noise and particle overlapping (Westerweel et.al. [5]; Meinhart et.al. [6]).

To that respect, it is important that the characteristics of particles and the seed-

ing method are carefully selected such that su�cient light is scattered into the �uid to

acquire high-quality images for the estimation process. On the other hand, in outdoor

monitoring conditions, when extracting the surface velocity, the estimation accuracy is

highly dependable on the particle characteristics since they determine how the exposure

to external forces, such as the wind, might a�ect the velocity relation between the particle

and the �ow.

But what are the particle's characteristics and how can we select them appropriately

in order to increase the velocity estimation accuracy?
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Figure 3.1: A laser based monitoring procedure, which uses laser beams as tracer pointers.

Such monitoring layouts are preferable for small scaled �ows where PIV motion estimation

schemes can be used.

The answer that question is that mainly arti�cial particles allow to explicitly de�ne

appropriately relate their characteristics and seeding density with velocity estimation

accuracy. In arti�cial particles, their characteristics are the diameter, the shape and

density. However, thing characteristics are associated also with the �uid's density as well

as the dynamic viscosity, meaning that these factors must be taken in mind in order

to increase the tracking success of the particle, and essentially the motion estimation

accuracy.
Answering to the second part of the question, the factors that determine the appro-

priate selection particle characteristics, are the particle motion uparticles, the �ow motion
uflow as well as the instantaneous relative velocity Vinst between the �uid and the par-
ticle. An appropriate relation among these factors will allow us to estimate the �ow
velocity from the particles velocity, based on the particle characteristics. This relation,
for the case of spherical arti�cial tracers is given by the Basset - Boussinesq - Oseen
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(BBO) equation which describes the unsteady motion of a suspended sphere based on
the aforementioned factors as follows:

πd3particle
6

ρflow
duparticle

dt
= −3πµdparticleVinst︸ ︷︷ ︸

term1

+
πd3particle

6
ρflow

duflow
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term2

−1

2

πd3particle
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ρflow
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−−3
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d2particle (πµρflow)
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∫ t
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dξ

dξ

(t− ξ)1/2︸ ︷︷ ︸
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+
∑
k

Fk︸ ︷︷ ︸
term5

(3.4)

with ρflow being the �uid density, µ the �uid's dynamic viscosity, Vinst de�ning the

di�erence between uparticle and uflow , dparticle being the particle's diameter, and �nally,

Fk the existing external forces, for example, gravity.

The basis of the BBO equation is Newton's second law, which in the BBO case

describes the imposed forces on the particle's motion:

mparticle
duparticle

dt
= Fapplied (3.5)

with mparticle being the mass of the spherical particle which is equal to:

mparticle =
π

6
d3
particleρflow (3.6)

If we combine these two equations we end-up with the BBO equation. Commenting

now on the forces applied to the particle (right side of the BBO) these are essentially

(a)the viscosity applied to the spherical particle, as de�ned by Strokes's drag law (term

1 ), (b) the pressure gradient describing the rate as well as the direction in which the

pressure is applied and change in the particle space(term 2 ), (c) the mass increase due to

the resistance produced to the particle's motion from the �uid's volume (term 3 ), (d) the

Basset force, which describes the temporal delay in the boundary layer development due

to the relative velocity change over time (term 4 ), and (e) subsequent external forces,

such as gravity or wind, etc. (term 5 ).

Essentially, BBO equation provides a correlation between the particle's characteris-

tics, it's velocity and the velocity of the �uid. Thus, an appropriate selection of the

particle's characteristics will de�ne the accuracy of the �uid's velocity estimate.

But how do we appropriate select the particle's characteristics?

The condition that ensures the appropriate selection of particle characteristics is the

satisfaction of Stoke's drag law. According to this condition the particle's Reynold's
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numberRep, which is the ratio of inertial forces to viscous forces, and the instantaneous

relative velocity Vinst are related as follows:

Rep =

inertial forces︷ ︸︸ ︷
ρflowVinstdparticle

µ︸︷︷︸
viscuous forces

(3.7)

What Reynold's number o�er is an immediate relation between the particle's charac-

teristics and the di�erent �ow situations. For example, high Reynold numbers indicate

the existence of a turbulent �ow with instabilities, like vortices or eddies, whereas low

Reynold numbers will indicate smooth �ow patterns. An interested reader on the associ-

ation of Reynold's number and the �ow situations is refereed to Hadad's and Gurka's [7]

review on the in�uence of seeding particles parameters in PIV and PTV approaches.

3.2.2 Particle tracking and motion estimation

Following the selection of the appropriate particle characteristics and seeding density is

the isolation and identi�cation of particles. This step is crucial in the particle based

methods since it can either be used as a means of computational speed and estimation

accuracy increase (PIV case) or essentially to de�ne the overall estimation accuracy

(PTV case). For instance, the estimation accuracy on PTV techniques relies more on

the successful tracking step since they tracking process involves only a single particle,

meaning that the correct identi�cation is crucial to ensure the validity of the result.

The most important stage in particle tracking is particle identi�cation which is mainly

based on image segmentation. To this task, the presented approaches are based on either

the use of local and dynamic thresholding procedures (e.g. Stitou and Riethmuller [8];

Cavagna et.al. [9]) or particle-mask-correlation operators (e.g. Takehara and Etoh [10])

and feature selection strategies that are combined with pattern correlation metrics (e.g.

Shindler et.al. [11]).

From these three method classes the one that presents the greatest interest due to its

low computational cost and estimation accuracy trade-o� is the last one. In this method

class the most crucial step is the appropriate derivation of the features that will allow an

accurate particle identi�cation. The key feature selection condition is that the particle

features must enable accurate particle identi�cation overcoming aperture-related prob-

lems, that will lead to false motion estimates. For example, one of the most frequent
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feature extraction methods is the use of corner detection based on the image intensity

gradients (Harris matrix). The particle identi�cation is based on the eigenvalues of the

Harris matrix and if the minimum eigenvalue is larger than a threshold then the region

is considered to contain a particle (e.g. Baker and Mathews [12]). A relevant review of

feature based techniques can be found in Shi and Tomasi [13].

Motion Estimation and Validity of Estimate: The �nal step of a particle-based

approaches involves the estimation of the motion �eld of the identi�ed particles. Ap-

proaches on this task involve the application a block matching and correlation motion

estimation methods with �xed (e.g. Bradley et.al. [14]; Westerweel et.al. [5]) or adjustable

window sizes ( e.g. Lecordier et.al. [15]; Gui and Wereley [16]), phase cross correlation

(e.g. Hauet et.al. [17]; Nogueira et.al. [18]) and image deformation methods (e.g. Eck-

stein et.al. [19]; Eckstein and Vlachos [20]), di�erential (e.g. Shindler et.al [11]) as well

as probabilistic methodologies (e.g. [2]).

How do we ensure the validity estimation in the particle based methods?

The validity of the estimates is determined by the displacement vector estimation

success within an interrogation window. There is an immediate relation between the size

of interrogation window and the particle characteristics and seeding density. According to

Keane and Andrian [21] the factors that determine the estimation accuracy are: (a)tracer

particle density NI , (b)in-plane displacement amountFI , and (c) out-plane displacement

amountFO. The latter motion cannot be appropriately determined in the image plane.

Such motion in a 3D coordinate system is manifested as an object's motion across the

z-axis, in the form of translation or rotation, which in the 2D image coordinate system,

is re�ected as a change in the object's dimensions rather than a motion. Following again

Keane's and Andrian's work, a condition on the combination of the particle density and

the in- and out-plane displacements within the interrogation window can be established

that will allow us to control the accuracy of displacement estimation expressed as the

minimization of the product NIFIFO (Keane and Adrian [21]; Ra�el et.al. [22]), which

for the case of PIV measurements in high density �ows this product should than 7.
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3.2.3 Particle Image Velocimetry (PIV)

As mentioned in the previous sections, we can divide the particle based methods in two

method classes, (a) the Particle Image Velocimetry (PIV) method class, and (b) the Par-

ticle Tracking Velocimetry (PTV) class based on the amount of particles being tracked.

Starting with the �rst, in PIV methods we are interesting in �nding the displacement

of a pattern of particles within a template window. This is done by examining a set

of neighbouring locations in the next time stamp to �nd the most similar pattern(see

Fig. 3.2).

Figure 3.2: An example of a window deformation approach in a two-stage search with

the interrogation window and the search area being deformable. At the 1st stage we

have a square shaped window whereas in the 2nd stage becomes a circle around the best

matched pixel found in the 1st stage.

The motion �eld is found by dividing the displacement of the image pattern along

the image pair with the corresponding time interval. Existing PIV approaches can be

grouped into three major categories based on the search window formulation, the space

domain in which the correlation is examined and �nally, the monitoring hardware used,

(a) Image and Window deformation approaches, (b) Phase Cross-correlation approaches,

(c) Stereoscopic camera concatenations. The last category determines hardware aspects

of the particle tracking process, while it can incorporate the previous classes in the motion

estimation step.
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3.2.3.1 Image and Window Deformation approaches

In window based approaches, the main factors that control the estimation are the size

and shape of the interrogation window. The simplest window-based motion estimation

approach is to use a window with �xed size and shape and just apply a correlation

coe�cient as a matching criterion to extract the motion �eld (Bradley et.al. [14]. Such

approaches, however, are constrained by the assumption that the motion is restricted

within the window. This assumption makes them susceptible to out-of-plane deviations

of the estimated motion vectors. A solution to this problem to adjust the window's size

and shape.

Window and image deformation techniques allow the interrogation window in the

second image to be deformed, in terms of rotation,size and shape. Approaches in this

concept involve the use of multi-stage iterative evaluation methods that enable the ad-

justment of the position and the shape of the window (e.g. Lecordier et.al. [15]; Huang

et.al. [23]), as shown in �gure 3.2. Another approach is to deform the second image

with use of a bilinear interpolation scheme or a weighting function to deform and recon-

struct the second image thin order to maximize the correlation result (e.g. Jambunathan

et.al. [24]; Nogueira et.al. [18]; Astarita [25]). This modi�cation can address decision

con�icts prone to large interrogation windows or truncation e�ects of particles in small

window sizes.

3.2.3.2 Phase Cross-correlation approaches

This method class consists of approaches that apply phase �ltering and correlation pro-

cedures that incorporate a series of optimized �lters to the generalized cross-correlation

scheme between the interrogation area and the reference pattern. The idea is that switch-

ing to the phase domain through a series of �ltering procedures will enhance the standard

cross-correlation result.

Such approaches however, are prune to spectral leakage due to under-sampling and

window- bound discontinuity (�nite window sizes) as well as aliasing e�ects produced

by the periodic boundary constraint in the discrete Fourier case, resulting in large dis-

placement deviations. This e�ect can be reduced through the incorporation of �ltering

procedures(prior or posterior the Fourier transform), such as spatial masking, phase �l-

tering and Gaussian transforms of the phase correlation. The most common scheme is

the Generalized Cross Correlation (GCC) that adds a series of adaptive smoothing �lters
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prior the Fourier transformation to reduce the e�ect of the background noise in the esti-

mation of correlation. Numerous approaches have been developed on this sense, involving

the incorporation of phase �lters as well as Gaussian kernels prior and posterior to the

FFT correlation operator (e.g. Eckstein et.al. [19]; Eckstein and Vlachos [20]; Theunis-

sen [26]) or even the application of weighted �lter series (e.g. Wernet [36]) that allows

the detect of an object in the current scene based on a reference scene.

The idea is that these �lters will enhance the phase term in the DFT domain that

re�ects the expected displacement. In the case of region matching between the reference

and the candidate scene, based on a prede�ned displacement, the �lter application will

result in phase cancellation in the spatial domain and the generation of a linear phase

term in the DFT domain. This will manifest as a delta−like function at the correlation

peak. The position of the peak will de�ne the amount of displacement. For example,

consider �gure 3.3, a �lter W (i, j) to the candidate region in order to detect a particle

in the reference scene. In this case, the �lter, known as the phase-only-�lter (POF),

eliminates magnitude information removing the a�ect of scaling, shape or size factors of

the particle (Wernet [36]):

W (i, j) =
1

|F2|
(3.8)

with F2 being the candidate region in the frequency domain.

Figure 3.3: Generalized Cross-Correlation scheme using the Phase Only Filter W (i, j)

de�ned by the spectral transformation of the scene magnitude.
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3.2.3.3 Stereoscopic camera concatenations

Single camera PIV systems are prune to the out-of-plane displacements. Out−of−plane
motion a�ects the estimation accuracy due to the fact that the location of each particle

does not correspond to the camera axis. Such depth perception leads to deviation between

the true in-plane and the apparent motion of the particle. In order to reduce such

deviations researchers have incorporated Stereo Vision in the particle estimation process.

The use of a stereoscopic system can counteract the out−of−plane motion a�ect by

simultaneously acquiring particle images from di�erent directions. This allows a better

depth perception reconstruction, since we can capture the out-of-plane motion, thus,

improving the displacement estimation. The main di�erence of the SPIV systems from

the other PIV approaches lies on the incorporation of stereo depth information in the

motion estimation process. As far as the particle identi�cation and tracking procedures

used in the SPIV systems the methodologies utilized are essentially the window-based or

image-deformation techniques we previously presented.

Stereoscopic PIV method can classi�ed in two major classes based on the camera

system alignment selected: (1) the translational and (2) the rotational systems.

Translational Alignment: The translational formulation, shown in �gure 3.4, is

produced by setting the camera pair axes parallel to each other, being symmetric to the

viewed scene. Such layouts simplify the scene matching process between the two views

since the deviation in the scene between the two views is manifested as a translation

in the x-axis. Translational system layouts also provide well-focused images, due to the

fact that each camera's optical axes is perpendicular to the illuminated area. A number

of translational camera layout based SPIV approaches have been developed for liquid

�ow motion estimation (Prasad and Adrian [27]; Lecerf et.al. [28]; Liu et.al. [29]). For

example, Prasad and Adrian [27], presented a stereoscopic approach to examine a thick

liquid layer scene that uses a translational camera alignment layout in the monitoring

stage, whereas in the motion estimation stage an image-shifting approach is utilized to

identify and estimate the particle's in-plane and out-plane displacements.

Rotational Alignment: In the case of rotational camera alignment, as depicted in

�gure 3.5, the cameras are rotated over a viewing angle to the viewed scene. By rotat-

ing the camera optical center we increase �eld of view, thus capturing better views of
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Figure 3.4: The Translational Stereoscopic camera alignment.

the out-of-plane motion, increasing the estimation accuracy due to the reduction of the

perspective error. Various SPIV approaches with a rotational camera alignment have

been presented(e.g. Westerweel and van Oord [30]; Hill et.al. [31]) mainly due to the

accuracy increase in the out-of-plane motion that such formulations o�er. However, ro-

tational camera alignments are susceptible to errors introduced by the calibration and

reconstruction procedures with the accuracy of both of them depending on the viewing

angles of the cameras (Adrian and Westerweel [33]). The viewing angles of the camera

greatly a�ect the overall estimation accuracy, since erroneous selection of them can lead

to a non-uniform magni�cation e�ect for the image domain. As means of coping with

this unwanted e�ect the image plane is further rotated under an angle bounded by the

Scheimp�ug condition. This condition, ensures co-linearity between the image plane, the

lens plane and the particles, thus, increasing the e�ciency of focus.

An interested reader on the SPIV approaches can �nd more details in Ra�el et.al. [22]
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Figure 3.5: The Rotational Stereoscopic camera alignment.

3.2.4 Particle Tracking Velocimetry (PTV)

Particle Tracking Velocimetry (PTV) methods track a single particle along the frames.

This means that they require low seeding densities in order to be able to identify, isolate

and track the speci�c particle, making these crucial for the success of this method. A

number of PTV approaches have been developed which can essentially be classi�ed, as

Shindler et.al. [11] suggests, into two method classes based on the number of images used

in identi�cation, isolation and tracking processes as well as the seeding density in which

they can be applied: (a) multiply-exposed single images and (b) singly-exposed multiple

images.
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In particular, multiply-exposed single image methods are used in low seeding den-

sity sparse �ows, avoiding particle occlusion and overlapping in single frames. However,

singly-exposed multiple image methods are preferable in relatively higher density �ows

since the use of sequential frames allows better tracking of the particle. The isolation

and tracking of the particle is performed by either pattern matching or feature based

approaches, like Harris matrix that allow fast identi�cation and isolation of a speci�c

particle pattern. The tracking process can be performed by either using the initial dis-

placement estimates extracted for the whole image domain in order to guide the particle

matching or by �rst isolating the particle moving to a prede�ned region in subsequent

frames in order to track it.

PTV approaches can be further grouped into two categories with respect to the mo-

tion estimation methodology used in the derivation of motion �eld: (a) block matching

correlation-based and (b) di�erential-based hybrid estimation.

Correlation Methods: Correlation methods use block matching motion estimation

techniques in order to derive the motion �eld. The matching of a particle pattern in the

subsequent is achieved using correlation metrics such as the S.S.D. or M.S.E. that act as

a matching criterion. For example the SSD criterion for region matching in the 2D image

domain is de�ned as follows:

SSD =
N−1∑
i=0

N−1∑
j=0

(f (i, j, t)− f (i+ υ, j + ν, t+ 1))2 (3.9)

with N being the block size and f(i, j, k) the pixel's intensity in the block at the kth

frame and (υ, ν) the optical �ow �eld u components.

The majority of the correlation based approaches follow the �rst concept in the mo-

tion �eld and particle region association, i.e. the �ow �eld is initially computed for the

whole image domain, then identify/isolate the particle region and �nally, associate and

update the optical �ow �eld only for the speci�ed particle. A characteristic example of

this method class and particle to motion �eld association concept is the approach pre-

sented by Stitou and Riethmuller [8], in which particle extraction is initially performed

based on intensity-level thresholding as determined through the extraction of the local

intensity distribution. The algorithm initially computes the velocity estimates using a

block driven cross-correlation scheme followed by particle matching that associates the

estimated motion �eld with the speci�ed particle pattern.
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Hybrid (Di�erential-Particle) approaches: Hybrid methods combine di�erential

optical �ow estimation approaches, with particle tracking. In this case of approaches the

particle is initially identi�ed using feature extraction techniques and a candidate region

for the tracked particle in the subsequent frame(s) is de�ned and then di�erential optical

�ow estimation method is applied. Di�erential optical �ow estimation methods are based

on the optical �ow constraint equation (equation 2.3 ). Such approaches combine the

optical �ow constraint equation with regularization and smoothness terms to de�ne cost

functions whose minimization produces the estimate of the optical �ow �eld. For example,

Shindler et.al. [11] presented an approach in which the cost function de�nes a relation

between the candidate search regions and the reference region, in a windowed region W

by combining a modi�ed feature tracking Lucas-Kanade method with the SSD distance

metric:

SSD(U) =

∫ ∫
W

(I2 − I1)2 dx (3.10)

with I2 being the candidate image at the time stamp t+ s and I1 being the reference

image at the time stamp t.

This region's di�erential formulation, based on the optical �ow constraint, in the

form of partial derivatives according to each pixel intensity gradients, as Lucas - Kanade

presented, goes as follows. For each pixel qi in the window:

Ix(q1)υ + Iy(q1)ν = −It(q1)

...

Ix(qw)υ + Iy(qw)ν = −It(qw)

⇒

[ ∫ ∫
W
I2
xdxdy

∫ ∫
W
IxIydxdy∫ ∫

W
IxIydxdy

∫ ∫
W
I2
ydxdy

]
· u +

[∫ ∫
W
IxItdxdy∫ ∫

W
IyItdxdy

]
= 0 (3.11)

This formulation is essentially a least squares problem whose solution provides the

motion vector u:

⇐⇒ G · u + b = 0⇐⇒ u = −G−1 · b

with G being the Harris matrix and b the mismatch vector.
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The advantage of Hybrid methods is that they combine the �exibility, speed and

feature driven advantages of the di�erential methods to improve the particle motion �eld

estimation. Di�erential approaches provide local velocity vector estimates suitable for

predicting the particle's position for the successive step of particle pairing across the

frames, reducing the search region range.

3.3 Probabilistic Methods

Another way to estimate the �ow �eld of a �uid is to consider the motion vector of each

�uid pixel as a random variable and thus, apply a stochastic modelling of the inten-

sity displacement �eld based on a Bayesian inference scheme. The motion as a random

variable is associated with a probability distribution function which enables us to use a

conditional model to associate the image intensity, the unknown velocity �eld, the prior

motion assumptions and the motion likelihood models. There have been numerous prob-

abilistic approaches the majority whom consider Gaussian models describing the prior

and likelihood information given the observations (e.g. Chang et.al. [1]; Heas et.al. [34];

Krajsek and Mester [35]).

In order to estimate the motion �eld u need to estimate the posterior probability of the

motion �eld p (u|I) given a function I(.) that describes image intensities. The posterior

probability is determined by two factors, the likelihood or conditional probability p (I|u)

and the prior probability p(u) .

3.3.1 Conditional Probability Models

In motion estimation the conditional probability describes the observed data given the

underlying motion �eld. The factor that de�nes the accuracy of such schemes is the

appropriate selection of the data representation function φ.

One approach is to follow a stochastic formulation, in which each destination position

is assigned a probability of selection. On this concept, Chang et.al. [1], used a discrete

probability density function to describe the probability of displacement for a pixel in the

candidate region. However, we still need to de�ne a relation between the data and the

displacement probabilities. In Chang's case the Spatio-Temporal Autoregressive (STAR)
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model provides this relation:

I (xs, ys, t) =
Ds∑
i=1

AiI (xs + ∆xi, ys + ∆yi, t+ ∆ti) (3.12)

with Ai being the displacement probability of pixel(xs, ys) of in the frame t to the

pixel position (xs + ∆xi, ys + ∆yi) after the time interval ∆ti.

Based on this formulation, φ is de�ned as a discrete function describing the displace-

ments as:

φ (∆xi,∆yi) ≈
Ai∑Ds

j=1 Aj
(3.13)

In order to de�ne a likelihood function that associates data with a motion model

we combine the discrete probability function φ with a continuous function g(.) that

representing an assumption of the motion model. An example of such formulation is

presented in Chang et.al. [1], where the conditional probability is de�ned as:

p (I|u) =
Ns∏
xs,ys

(
Ds∑
i

(φ (∆xi,∆yi) · g (∆xs −∆xi,∆ys −∆yi))

)
(3.14)

In this case, the functiong(.) is di�erential function based on the pixel displacement,

φ is the discrete function describing the data in a probabilistic formulation, Ds is the

candidate displacement neighbourhood and Ns is the examined pixel's neighbourhood in

the current frame.

Another approach to de�ne the function φ is to incorporate the intensity conserva-

tion assumption. One representative approach of this concept was presented by Heas

et.al. [34]. In their work, φ is de�ned as a linear combination of the image temporal

discrepancies and an observation operator on a pixel grid, based on the optical �ow

constraint (equation 2.3):

φ (∆xi,∆yi) =
1

2

∑
x,y∈Ω

(It (x, y) +∇I (x, y, t+ 1) · u (υ, ν))2 (3.15)

with I being the intensity, ∇I(x, y) the spatial gradients of I, and It the temporal gra-

dient.

In Heas et.al. [?], the conditional probability (likelihood) is de�ned in the form of a

Gibbs distribution with function φ indicating the observed data energy:

p (I|u) =
1

Gφ

e−βd·φ(∆xi,∆yi) (3.16)
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in which Gφ is a normalization constant and βd a free model parameter.

The di�erence between the formulation used by Chang and the of Heas lies on the fact

that Heas's approach involves an energy con�guration scheme in the data model instead

of a probabilistic-based formulation like the one selected by Chang.

3.3.2 Prior Probability Models

As mentioned the second term of the Bayesian estimation is the prior probability for-

mulation. This probability re�ects the initial assumption on the motion model that the

data follow.

In Image Processing the most preferable prior for the motion model u is a Gibbs

distribution:

p (u) =
1

Gprior

e−λpriorU (3.17)

with prior Gprior being a normalization constant and U being the energy term describing

the motion, usually de�ned as a linear combination of the partial derivatives of the optical

�ow �eld u. The appropriate selection of the prior is crucial, since it acts as a smoothness

factor preventing the velocity to have abrupt variations and discontinuities.

3.3.3 Optical Flow Estimation

The estimation of �ow �eld u can be achieved through the estimation of the posterior

distribution of motion p (u|I). Bayesian formulation allows the estimation of the posterior

probability using the Maximum a Posteriori (MAP) rule. This rule for the case of motion

�eld estimation is formulated as:

u ∝ argmaxup (I|u) · p (u) (3.18)

with p (I|u) being the conditional probability describing the observed data given motion

�eld realization and p (u) the prior probability describing an initial assumption for the

underlying motion model.

If we now assume that the prior motion model follows an exponential distribution the

MAP rule we end up with the following expression:

u = argmaxup (I|u) · p (u)

= argmaxup (I|u) · αe−λU
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' argmaxup (I|u) · e−λU

≡ argmaxuln
(
p (I|u) · e−λU

)
≡ argminu − ln (p (I|u)) + λU

≡ argminuL{φ (∆xi,∆yi)}+ λU

≡ argminfdata + λ · fsmooth

with L being a functional term on the conditional distribution and U being an energy

based smoothness factor.

The maximization of the MAP rule for the case of exponential motion distributions is

proportional to minimizing a cost function consisting of a smoothness function term and

a data function term depending on the data description function φ. The data term fdata

is a function describing the relation between the observed data based on the underlying

motion �eld. Essentially, this term describes errors in the rate of change in image bright-

ness given the estimated motion �eld. On the other hand, the smoothness term fsmooth

describes the a prior assumption made about the motion model describing the �ow �eld

and imposes a smoothness constraint on the �ow.

Summing up, a probabilistic formulation leads to a global motion-�eld estimate since

the �nal MAP formulation relates the likelihood models of all image pixels and leads to a

highly dense motion �elds. However, the use of a discrete description function that assigns

unique displacement probabilities to all the candidate positions in the next frame, like the

one used by Chang et.al. [1] also allows the derivation of local motion estimates for pixel

blocks,based only on the displacement probabilities Ai extracted for each neighborhood.

A global scheme will provide smoother and more robust �ow estimates. On the other, a

local one will result in a loss of overall detail restricting the estimates only to an average

block level, however, if we restrict to nearby object boundaries the local scheme provides

more accurate results for occluded cases and boundary motion, making it ideal for particle

tracking.

3.4 Di�erential Methods based on Fluid Properties

In di�erential optical �ow estimation techniques, the image domain is assumed to be

continuous and the optical �ow is computed based on the spatio-temporal derivatives of

the pixel intensity, which express the energy channeling between the frames. Global and

the local schemes are also applied here based mainly on the size of implementation in the
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image domain. Global approach are computed over large image regions resulting in dense

optical �ow �elds through the minimization of a cost function based on the optical �ow

constraint equation applied on the image data fdata and smoothness and regularization

constrains fsmooth:

min

∫ ∫
x,y

f 2
data + λ2 · f 2

smoothdxdy

Local methods, however, compute the optical �ow �eld in local neighborhoods by mini-

mizing the optical �ow constraint function combined with a window based function using

a least squares minimization approach.

When moving to the case of �uid �ows, we can consider that the density of features in

the �ow is altered by the motion in a local level, thus, we can incorporate the properties of

�uid mechanics, such as mass conservation, or �uid models describing �uid phenomena,

like wave generation, as a constraint to justify brightness variation in the image domain:

∇I · u + It = Fluid Properties

The addition of the �uid properties explains the divergence of the optical �ow based on

the undergoing a�ne transformation model. The optical �ow �eld is estimated through

the minimization of a cost function based on again, the optical �ow constraint equation,

which is now constrained by the �uid properties.

We can discretize the methodologies that follow this concept based on whether they

use (a) the �uid's properties as a constraint or mathematical models or (b) mathematical

models that explain the generation or the behavior of �uid phenomena, such as waves.

3.4.1 Methods based on Fluid Mechanics

Fluid properties derived from �uid mechanics, such as mass or brightness conservation

assumptions, can be used as constraints in the �uid motion. One of the most popular

�uid property incorporated in image-based �uid �ow �eld extraction is the conservation

of mass assumption (Wildes et.al. [37]; Nakajima et.al. [38]).

The rational behind this method class lies on the fact that the �uid's density % (x, y, z, t)

can be associated to the 3D velocity �eld V (x, y, z, t) = (U (x, y, z, t) , N (x, y, z, t) ,W (x, y, z, t))

using the mass conservation assumption:

∇ (% · V ) +
∂%

∂t
= 0 (3.19)
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The image intensity values are associated with the density the object as:

I (x, y, t) =

∫ z2(x,y)

z1(x,y)

% (x, y, z, t) dz (3.20)

with z1 and z2 being the object's surface boundaries. By imposing the surface boundaries

on eq. (2.19), according to Fitzpatrick [53], we can associate it with the image intensity

as follows:

∇x,yI · u +
∂

∂t
I = −

(
% · n · V z2

z1

)
(3.21)

with V being the 3D velocity estimate, % the density, and u the 2D optical �ow �eld.

The optical �ow �eld is derived from the weighted average of the initial 3D velocity

�eld V with the density % according to the following equation:

u ≡
∫ z2
z1
% · Vx,ydz∫ z2
z1
%dz

(3.22)

Equation (2.21) is known as the continuity equation and indicates the relation between

the 3D �uid �ow and the 2D �ow derived from the image under the assumption that

the conservation of mass law is satis�ed. The continuity equation is strengthened with

additional physical and smoothness constraints, that restrict the motion �eld, reducing

the e�ects of noise (e.g. [Wildes et.al. [37]; Nakajima et.al. [38]).

The �ow �eld estimate is again found through the minimization of a cost function

that has the form:

u = min

∫ ∫
(k · cs + cc) (3.23)

with cc being the continuity equation and cs a smoothness constraint.

3.4.2 Methods based on the Physical Properties of Fluid Phe-

nomena

The second approach to attribute the brightness change based on a mathematical model

driven by the characteristics of speci�c �uid phenomena, such as wave generation or

tsunami generation model. One of the most popular �uid phenomena driven models is

the wave generation model (e.g. Jahne et.al. [39]; Saikano [40]).
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For example, Saikano [40], presented a wave-based optical �ow in which a wave gener-

ation equation is used to model the image brightness changes. The model that describes

the �uid motion is a multi-directionality irregularity (MI) model of the following form:

Iw =
M∑
m=1

α∗mcos (k∗mx · cosϑ∗m + k∗my · sinϑ∗m − 2πf ∗mt+ εm) (3.24)

with Iw being the image intensity at the pixel(x, y) as de�ned by the MI model,α∗m
is the amplitude, (kxm, k

y
m) are the wave number components, fm∗ the frequency, ϑ the

orientation, ε the noise and M the number of cosine functions that describe the wave.

The multi-directional irregularity (MI) model is combined with the optical �ow equa-

tion to explain deviations in the estimated brightness changes based on the temporal

derivative of the image intensity:

∇I · u + It =
dIw (x, y, t)

dt
(3.25)

with I being the image intensity, and Iw the expected intensity based on the MI model.

The task now is to estimate both the wave-related parameters as well as the optical

�ow components. To do an objective function must be de�ned whose minimization

will lead to the desired estimation. For example, Saikano de�ned a combined objective

function of robust logarithmic form (to accommodate for outliers and discontinuities):

E (u, v, kxm, k
y
m, fm, αm, ϑm) =

∑
Ω∈R2

ρimgvar(e0, σ) + λ1

∑
Ω∈R2

ρwaveconstraint(e1, σ)

+ λ2

∑
Ω∈R2

ρsmoothconstraint(e2, σ) (3.26)

with three terms pertaining to the data from eq. (34) and two smoothness constraints,

one for the wave model and the other for the optical observations. Each of these terms

has the same form as: ρ(z, σ) = log
(
1 + 0.5 (z/σ)2) , ∂ρ/∂e = 2e/

(
2σ2+e2

)
, e0 =| It +

Ixu+ Iyv−
∂H

∂t
|, e1 =| u2 + v2− α2 (γ − f 2

m)
1/2 |, e2 =| u2

x + u2
y + v2

x + v2
y |, γ =

3g

16πh
, g:

gravity acceleration and h: water depth.

The minimization of such an objective function can be performed via optimization

algorithms such as, gradient descent. The characteristic di�erence and advantage of

speci�ed �uid phenomena driven models is that it allows the estimation of discontinuous

motion in images with inhomogeneous brightness is estimated based on a visually plau-

sible way to re�ect these expected discontinuous motion patterns. On the other hand,
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methodologies based on brightness conservation can estimate rather smooth and uniform

motion.

3.5 Stereo Vision

Multiple-View Geometry is an aspiring subject of Computer Vision, with rapid develop-

ment over the last decades. It presents an understanding of what and how a computer

system comprehends the real world. Stereo Vision is a subclass of the Multiple View Ge-

ometry subject dealing with the inference and 3D reconstruction possibilities of a viewed

scene with the use of a camera pair. In order to achieve a full understanding of the

3D space through image views we need to de�ne the number of parameters involved, the

constraints between points and lines imaged in the views, and �nally, how we can retrieve

3D-space points from image correspondences.

3.5.1 Projective Geometry and Estimation

Starting from the �rst task, i.e. the parameter derivation and estimation, we need to de-

�ne the relations between the coordinate systems involved, i.e. the 2-Dimensional image

plane space, the 3-Dimensional Camera space and the 3-Dimensional real world. These

relations, depicted in �gure 3.6, are de�ned as follows.

World to Camera System relation: The camera points are related with the 3-D

world points based on the following transformation:

Xc = [R|T ] ·Xworld (3.27)

where Xc = (xc, yc, zc) are the camera coordinates of the point, Xworld = (xw, yw, zw) is

the 3-D real world coordinates of the point and R, T are the rotation matrix and trans-

lation vector that relate the two coordinate systems, known as the extrinsic parameters.

World to Image plane relation: A point in the image plane is associated with its

corresponding 3-D real world point through the projection matrix:

Xim = K · [R|T ] ·Xworld (3.28)

where Xim = (x, y) are the image plane coordinates of the point, and K being a 3 x

3 matrix containing the intrinsic characteristics of the system such as the camera focal
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length that denote the mapping from the 3-Dimensional camera coordinate system to the

2-Dimensional image plane.

Figure 3.6: Relation between the 3-D world, the 3-D camera, and the 2-D image plane

coordinate systems.

This mapping can be expressed in a matrix multiplication form with the use of ho-

mogeneous coordinates in order to express the 3D world viewed point Xworld and the

corresponding point Xim on the image plane:

Xhom.world = (xw, yw, zw, 1)T andXhom.im = (x, y, 1)T

Now, we can express the coordinate system association in terms of matrix multiplication

as follows:


x

y

1

 = K · [R|T ] ·


xw

yw

zw

1

 = H ·


xw

yw

zw

1


where the image point is the 3 x 1 vector point in the homogenous image plane

coordinates, K is the 3 x 3 matrix, [R|T ] is the 3 x 4 matrix containing the relation

between the camera and real world coordinate systems, the homogeneous world point is

a 4 x 1 vector point in homogeneous coordinates and �nally, H is a 3 x 3 homography

matrix.
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(a) (b)

Figure 3.7: (a)Image with perspective distortion with the windows not being rectangular

and their lines converging at a �nite point, (b)Image taken from Frankfurt airport. Line

parallelism is lost with lines converging also to �nite point. First �gure was taken from

Hartley and Zisserman [42], whereas the second from wikipedia https://en.wikipedia.

org/wiki/Perspective_projection_distortion.

This homography de�nes a geometric mapping of points from one plane to another.

For the world to camera to image relations the homography matrix denotes the rela-

tion(extrinsic and intrinsic parameters) that describes the conversion of 3D real world

point coordinates to image pixel point coordinates.

Plane Mapping problems and Solutions: Projection along rays through a com-

mon point de�nes a mapping from one plane to another. In order to say, that we have an

accurate plane mapping it is evident that this mapping preserves the lines and geometri-

cal formulations intact, i.e. a line in one plane is mapped to a line in the other (Hartley

and Zisserman [42]).

However, for the case of an image we do not have this a�ect. Instead we end up with

a projective transformation known as perspective projection. Such mapping results in

geometrical shapes being distorted and line parallelism to be violated with parallel lines

on a scene plane converging to a �nite point. For example, in �gure 3.7, the windows

appear not to be rectangular in addition to their true nature, and line parallelism is lost

as line appear to converge in the second image.

Removing projective distortion in a perspective image: In order to remove
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the projective distortion we need to compute and apply to the image the inverse of the

projective transformation. The way to do the computation of the projective transforma-

tion is to use point-to-point correspondences between known 3D world points and their

corresponding image points. If we de�ne a world point in inhomogeneous coordinates

(xw, yw) and its correspondence in the image plane (x, y) then according to the projective

transformation we end up with:

x =
h11 · xw + h12 · yw + h13

h31 · xw + h32 · yw + h33

and y =
h21 · xw + h22 · yw + h23

h31 · xw + h32 · yw + h33

These equations are linear in the elements of H. In order to �nd the matrix H we

need four point correspondences. The constraint to achieve an accurate result is that

the four points must not be col-linear. By �nding H we can then compute the inverse

transformation of H and then apply it to the whole image to undo the e�ect of perspective

distortion.

3.5.2 Epipolar Geometry

For the case of a stereo rig we need to deal with two perspective views and furthermore,

we need also to de�ne the geometry that depends only on the cameras, allowing the

relation of their positions as well as their internal parameters.

The epipolar geometry is intrinsic geometry of the two camera views, depended on

the cameras' internal parameters and relative pose. It essentially de�nes assumptions

and constraints that allow the image planes of the two views to be related and guide the

point correspondence search between the two views. We will now go through the basic

principles of the epipolar geometry.

Epipolar plane π: The plane de�ned by an image point correspondence(x and x′,

the associate 3D space point X and the baseline of camera centres. All the parameters as

shown in �gure 3.8 are coplanar and the rays back-projected from the point correspon-

dences intersect at the space point X.

How do this property facilitates the problem of searching for a correspondence?

If we know only the one of image point and search for its correspondence in the other

image plane we can use the epipolar plane π to de�ne a search area instead of searching
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(a) (b)

Figure 3.8: (a)Point Correspondence, with C and C' being the camera centres of the

image planes. The 3D space point X, and the image plane point correspondences images

(xandx′) lie in the common epipolar plane π. (b) The epipolar line de�ne a ray in which

the 3D space point X must lie in order the image of the X to lie on the epipolar line l′ in

the the second view. Figure was taken from Hartley and Zisserman [42].

the entire image plane. We know that the ray corresponding to the unknown point lies

in the epipolar plane π. If we de�ne a line l′ as the image in the second view of the ray

back-projected from the known point, the unknown point (x′ in the case of �gure 3.8.b)

will lie on the intersection of the line l′ with the second image plane. This line is known

as the epipolar line.

Epipole e:The point de�ned by the intersection of the line connecting the camera

centers, known as the baseline, with the image plane.

3.5.3 Intrinsic and Extrinsic Parameters

We still have not discussed how to estimate the internal parameters of the stereo rig as

well as the relative positions of the cameras between them and the viewed scene. The

parameters that de�ne these relations can be grouped into (a)intrinsic and, (b) extrinsic

parameters.

Konstantinos Bacharidis 42 October 2016



3.5 Stereo Vision

Figure 3.9: Extrinsic parameters.

3.5.3.1 Extrinsic Parameters of the Stereo rig

By the term extrinsic we refer to the transformation parameters that allow the camera

and the world coordinate systems to be related, i.e. de�ne the location and orientation

of the camera with respect to the world frame.

This transformation is typically de�ned by (�gure 3.9):

• a 3-D translation vector T = [x, y, z]T and de�nes relative positions of each frame.

• a 3 x 3 rotation matrix, R, that rotates corresponding axes of each frame into each

other, with R being orthogonal.

As mentioned, real world, camera and image plane coordinate systems are related by

projection transformations shown in equation (2.28). If we examine this relation we end

up with the following pair of equations:

x− xo
f

= s
xc
zc

= s · R11xw +R12yw +R13zw + Tx
R31xw +R32yw +R33zw + Tz

(3.29)

y − yo
f

= s
yc
zc

= s · R21xw +R22yw +R23zw + Ty
R31xw +R32yw +R33zw + Tz

(3.30)

where (xo, yo) is the principal point, (xc, yc, zc) is the 3D camera point's coordinates

and (x, y) are the point's coordinates in the image plane, f is the focal length and s

denotes the scaling ratio of the pixel spacing in the x- and y-directions for the case of

unequal pixel dimensions in the CCD cameras.
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Given the previous assumption and the relation presented previously we can derive

the following:

x− xo
y − yo

= s
xc
yc

(3.31)

By considering only the direction of the point in the image as measured from the prin-

ciple point results in an point estimate that is independent of the unknown focal length f

. By combining the equations for interior (equations 2.29 and 2.30) and exterior(equation

2.27 and 2.28) orientation we obtain for the equation (2.28) the following relation:

(2.29)&(2.30)⇒ x− xo
y − yo

= s · R11xw +R12yw +R13zw + Tx
R21xw +R22yw +R23zw + Ty

By assuming that the model plane is on Zw = 0 of the world coordinate system then

the parameters Tz, R13, R23, and R3i , with i=1,2,3 drop out of the equations(2.29 and

2.30) for the image coordinates:

⇒ x− xo
y − yo

= s · R11xw +R12yw + Tx
R21xw +R22yw + Ty

We can observe that the estimation of the extrinsic parameters is now simpli�ed into

an 6 parameter estimation, thus simplifying the computation and data requirements. As

for the overall relation between the image plane point and the 3D world point we can

observe that for the case of planar targets the point Xworld and its image plane associated

point xim are related by a new homography matrix:

xim = H ′ ·Xworld = K · [R1 R2 T ] ·Xworld (3.32)

with H' being a 3 x 3 homography matrix.

In order to estimate the extrinsic parameters we need to recover the simpli�ed 6

parameter rotation matrix R and translation vector T . This process known as camera

calibration will be presented in the following sections.

3.5.3.2 Intrinsic Parameters of the Stereo rig

As intrinsic parameters of the stereo rig we refer to the parameters a�ecting the relation

of a camera point to its corresponding image plane projection point. These parameters

are the camera characteristics, such as the focal length and the camera center point. The
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matrix containing these parameters is the 3 x 3 K matrix, from equation (2.28) and in

its simplest form is de�ned as follows:

K =


f xo

f yo

1


with f being the focal length and (xo, yo) the coordinates of the principal point (camera

center).

In the case of a CCD camera, there is a possibility that the pixel dimensions are not

the same, i.e. no squared sized pixels. In such case, the matrix K is called the camera

intrinsic matrix and has the following form:

KCCD =


αx x

′
o

αy y
′
o

1


with ax, ay the focal length along the x and y directions and (xo, yo) = (mx · xo,my · yo)
the coordinates of the principal point (camera center).

3.5.4 Radial and Tangential Lens Distortion

The world point, image point and the optical center are not really collinear as imaged in

the ideal case of the pinhole lenses. In the real non-pinhole lenses there exist a number

of inevitable geometric distortions.

What is radial distortion?

Due to the spherical lens surface, a geometric distortion occurs in the radial direction.

In radial distortion a point imaged at a distance from the principle point can be seen as

larger/magni�ed (pin-cushion distortion), smaller (barrel distortion) or a mixture of both

types(mustache distortion) than the perspective projection estimates (see �gure 3.10).

The relation between the projected point and the ideal(non distorted) point is modeled

as function of radial displacement:(
x

y

)
= L (r)

(
xu
yu

)
(3.33)
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Figure 3.10: Radial distortion variations. Image source: https://en.wikipedia.org/

wiki/Distortion_(optics)

where (x, y) are the distorted point coordinates, (xu, yu) are the ideal point coordinates

and L(r) is a distortion factor, de�ned only for positive values of r, with an approximation

of it, derived using Taylor series:

L (r) = 1 + k1r + k2r
2 + k3r

3 + · · ·

with (k1, k2, k3, · · · )being the distortion coe�cients and r =
√
x2
u + y2

u. If we now

consider the fact that even powers of the distance r from the principle point occur we

only need to take account the �rst and second coe�cients and ignore the others.

What is tangential distortion?

Another kind of distortion is the "thin prism" distortion, also known as tangential

distortion. Tangential distortion is induced due to manufacturing imperfections of lens

elements and the imperfect centering of the lens components to the camera sensor, as

shown in �gure 3.11.

Thin prism distortion induces both radial and tangential distortions resulting the L(r)

function to have the following form:

L (r; a) =

r + (ζ1r
2 + ζ2r

4 + ζ3r
6 + · · · ) sin (θ − a)

θ + (ζ1r
2 + ζ2r

4 + ζ3r
6 + · · · ) cos (θ − a)

where ζi are the thin prism distortion coe�cients, r is the radial distortion factor, θ is the

observed angular component of a projected point and a is the angle between the positive

Konstantinos Bacharidis 46 October 2016

https://en.wikipedia.org/wiki/Distortion_(optics)
https://en.wikipedia.org/wiki/Distortion_(optics)


3.5 Stereo Vision

Figure 3.11: Tangential distortion, source: http://zone.ni.com/reference/en-XX/

help/372916P-01/nivisionconcepts/spatial_calibration_indepth/

y-axis and the axis of maximum tangential distortion.

3.5.5 Camera Calibration

Camera calibration results in the estimation of the intrinsic and extrinsic characteristics

of the stereo layout. One of the most known calibration methodology is the one presented

by Zhang [41], which allows the estimation of the stereo rig relative position (extrinsic

parameters) as well as the camera intrinsic parameters. Although this method is con-

sidered one of the most solid methodologies for camera calibration it only takes account

the radial lens distortion and not the tangential distortion. A solution to this is to use

Heikkil's and Silven's [43] intrinsic model which include two extra distortion coe�cients

corresponding to tangential distortion. The calibration process essentially computes the

camera projection matrix P from corresponding 3-space and image entities.

We will now present Zang's method using Heikkil's and Silven's [43] intrinsic model.

The basic idea behind Zang's method is that we seek correspondences between a 3D

point Xworld and its image xim in order to derive the parameters of the projection trans-

formations (extrinsic, intrinsic parameters). Given su�ciently many correspondences

Xworld,i ↔ xim,i the camera matrix P may be determined. In order to do so, in an un-

known scene we use planar surfaces, usually a chessboard pattern, as a reference patterns
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that allows easy mapping between 3D space points and the corresponding image plane

ones. The restrictions for the planar surface, for the case of a chessboard is that (a)

the chessboard's square size is known, (b) the chessboard sides are not even and (c) the

pattern is visible in the acquired frames.

The Chessboard's role: In order to detect the chessboard pattern we deploy a cor-

ner detection procedure so as to �nd the corners of the chessboard. The 3D coordinates

of the recognized corners are required for the estimation. In each frame(multiple frames

required since we are using a non co-planar approach) the checkerboard is assumed to be

coincident with the XY plane of a 3D coordinate system in which the coordinates (0,0,0)

are assigned to its top-left corner. The camera centers are now reassigned by estimating

the rotation and translation that minimizes their squared distances. We need to have a

di�erent aspect in the horizontal and sizes of the chessboard pattern so that the correct

recognition and assignment of the coordinate layout is succeeded.

The most common approach in order to obtain the image points xim,i, as mentioned

in Hartley and Zisserman [42], is to (a)initially extract the line segments Canny edge

detection, (b) to apply straight line �tting in the extracted edges and (c)�nd intersecting

lines to derive the imaged corners.

How do we estimate the 6 parameters of the simpli�ed planar target case

and how do we compute the missing elements?

Extrinsic Parameter Estimation -Recovering the Rotation Matrix and Translation Vec-

tor : The homography matrix H' denoting the relation between the image plane point and

the 3D world point is expressed as follows based on the relation equation (2.32):

H ′ = [h1 h2 h3] = λ ·K · [R1 R2 T3]

with λ being an arbitrary scalar and K being the intrinsic matrix and T : [Tx Ty]
T

since Tz has been excluded in the planar simpli�cation.

By forcing orthonormality for the �rst two rows of the rotation matrix R by adjusting

them and re-normalizing them with a scaling factor so that they are related as:
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R
′

1 = R1 + kR2 and R
′

2 = R2 + kR1

and

R
′

1 ·R
′

2 = R1 ·R2 + k (R1 ·R1 +R2 ·R2) + k2R1 ·R2 = 0 and k ≈ − (1/2)R1 ·R2

In this case we can derive the third row of the rotation matrix R by simply taking

the cross-product of the two rows. Based on the orthonormality of the two rows we can

derive two following constraints for the homography matrix:

hT1
(
K−1

)T
K−1h2 = 0 (3.34)

hT1
(
K−1

)T
K−1h1 = hT2

(
K−1

)T
K−1h2 (3.35)

If we de�ne as A = (K−1)
T
K−1 , a 3 x 3 matrix, and α its corresponding 6D vector,

with K being the intrinsic parameter matrix as previously de�ned, then for each model

to image homography relation we can derive the following equation:

hiA
Thj = vTijα (3.36)

with hi being the i-th column vector of H and

vij = [hi1hj1, hi1hj2 + hi2hj1, hi2hj2, hi3hj1 + hi1hj3, hi3hj2 + hi2hj3, hi3hj3]T

Applying the two previous relations to equation we end up with:[
vT12

(v11 − v22)T

]
α = 0⇒ V α = 0 (3.37)

With n images we end with n relations of the form of equation (2.36). The solution

of this system of linear equations is the eigenvector of V TV for the smallest eigenvalue

derived. By estimating V we end up estimating α and thus, �nally estimating the intrinsic

matrix K. Having found the estimate for K we can derive the rotation matrix and

translation vector using the following relations derived from the relation (2.32) and the
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orthonormallity conditions(i.e. the third row of the rotation matrix is the cross-product

of the two �rst rows):

R1 = λK−1h1 (3.38)

R2 = λK−1h2 (3.39)

R3 = R1 ×R2 (3.40)

T = λK−1h3 (3.41)

with T being the translation vector (3 x 1) , R = [R1 R2 R3] is the (3 x 3) rotation matrix

and λ = 1/‖K−1h1‖ = 1/‖K−1h2‖.
Since, we are dealing with image points fused with noise(Gaussian) this approach

uses a maximum likelihood inference to obtain the estimates. The estimates are obtained

through the minimization of the following functional:

n∑
i=1

m∑
j=1

‖xij − x̂ (K,Ri, Ti, Xworld,j) ‖2 (3.42)

where n is the number of images with m points and x̂ is the projection of Xworld,j

to the image plane based on (2.27). The solution of the maximum likelihood problem is

performed using the Levenberg- Marquardt Algorithm [44] as mentioned in the previous

section.

Intrinsic Parameter Estimation -Focal length, Principal point, Radial and Tangential

distortion estimation:Given the estimates of the Rotation matrix and the estimates for

the two components of the Translation vector (Tx and Ty) we have to estimate the focal

length, the Tz component, the principal point as well as the distortions and to re�ne

the estimates based on minimization of the image error. In order to solve the previous

equations we assumed that a reasonable estimate of the position of the principle point is

known.
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In order to estimate these two factors we take the cross product of equations (2.29

and 2.30), with the estimated rotations and translations (across x and y axes) Rij

and Tx, Ty and solve these equations for the focal length f and the translation across

the z-axis Tz using one or more correspondences between the target and the image:

⇒

s (R11xw +R12yw +R13zw + Tx) f − (x− xo)Tz = (R31xw +R32yw +R33zw) (x− xo) (A)

s (R21xw +R22yw +R23zw + Ty) f − (y − yo)Tz = (R31xw +R32yw +R33zw) (y − yo) (B)

• Radial and Tangential Distortion

Based on the intrinsic model de�ned by Heikkil's and Silven's [43], the distortion

model between the true (distorted) image coordinate and the undistorted image

coordinate (produced by the pinhole geometry) is de�ned as a function of both

radial and tangential distortions:xu +Dx + dx = x

yu +Dy + dy = y
(3.43)

where (x, y) is the distorted image coordinate on the image plane ,and (xu, yu) is

the undistorted image coordinate and Dx, Dy is the induced radial distortion and

dx, dy is the induced tangential distortion with:

Dx = xu
(
k1r

2 + k2r
4 + · · ·

)
,

Dy = yu
(
k1r

2 + k2r
4 + · · ·

)
,

r =
√
x2
u + y2

u,

dx = 2k3xuyu + k4

(
r2 + 2x2

u

)
,

dy = k3

(
r2 + 2y2

u

)
+ 2k4xuyu

where k is the 5 x 1 vector containing the distortion coe�cients(radial and tangential)

The estimation of the intrinsic parameters is incorporated to the Maximum Likelihood

inference model allowing the estimation of the complete set of parameters by minimizing

the following functional:

n∑
i=1

m∑
j=1

‖xij − x̂ (K, k1, k2, k3, k4, Ri, Ti, Xworld,j) ‖
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The minimization is again performed with the Levenberg- Marquardt Algorithm as men-

tioned previously.

3.5.6 Stereo Alignments and Image Plane Relation

The continuous debate in a stereo rig formulation is whether a parallel or a convergent

layout will be selected. Each one has its advantages and disadvantages. In a parallel rig

the cameras are placed parallel to each other separated by the inter-axial distance and

both are aimed straight ahead, as illustrated in �gure 3.12).(a). A parallel rig requires

simpler transformations in order to move from the physical to image plane coordinate

systems as well as to relate the two image planes together. In a parallel rig the the viewed

scene in each camera di�ers in a form of translation in the x-axis only. The biggest prob-

lem in a stereo rig is to �nd a way to relate the views of the two cameras, thus a simple

translation in one axis allows us to easily �nd point correspondences between the image

views. A parallel layout provides valid points more accurately, thus, allowing a more

accurate 3D scene reconstruction with denser depth information �elds compared to a

convergent layout, and is also una�ected by keystone distortion ** that is more common

in a convergent stereo rig.

However, parallel layouts provide less information about the depth perception, since the

�eld of view is constrained. This fact is due to the point of convergence of the two views,

which in a parallel stereo rig happens to be the in�nity. When the convergence point

is in�nity, then depth information of the scene is lost and there is no focus. Also, this

introduces a number of unmatched regions in the views especially in the edges of the

scene.The solution to this problem is to shift the two views horizontally to place the

point of convergence wherever desired. This is an easy task since the views only di�er in

the x-axis.

On the other hand, convergent layouts, use wider viewing angles and depth perception,

since the point of convergence is not the in�nity as in the parallel case but in front of the

viewed scene. This means that everything in front is pushed in front of the view anything

behind is pushed back into screen space, whereas, an in�nity point of convergence does

not produce this e�ect and, as mentioned, requires post processing. Nevertheless, conver-

gent layouts introduce keystone distortion, when the viewing angles and viewed scene's

dimensions are not selected appropriately, which can lead to inaccuracies during the 3D

scene reconstructions. Moreover, since the cameras are not aligned further pre-processing
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(a) (b)

Figure 3.12: (a)Parallel stereo rig, (b) Convergent stereo rig. Figure was taken from
http://www.slideshare.net/RobinColclough1/viva3d-stereo-vision-user-manual-en-201606.

must be made in order to match the views (x and y axis misalignments). This is known

as image recti�cation. As mentioned this process is not required in parallel rigs due to

the fact that the views only di�er in x-axis information.

**Keystone Distortion: an e�ect produced when two images are not parallel, due to

the projection of an image onto a surface at an angle which results in a distortion on the

image dimensions, e.g. make a square look like a trapezoid.

3.5.6.1 Image Recti�cation

In the case of a convergent stereo rig the images taken by the camera pair are mismatch

in both x and y axes. In order to simplify our search for point correspondences during

the relation of the viewed scene to its corresponding image plane view we need to apply

geometrical transformations that changes a general camera con�guration model with non-

parallel epipolar lines (convergent layout) to the canonical one (parallel image planes)

that will allow the mismatches to be present only in the x-axis(see �gure 3.13).

The recti�cation procedure is based on the characteristics and constraints of the stereo

rig and the common plane of projection π de�ned by the two camera centers and their

corresponding image planes. The characteristics of the epipolar plane π de�ned after the

recti�cation process will be:

• Epipolar lines(l and l' in the �gure 3.13) become collinear and parallel

• Exclude y-axis from the disparity estimation step
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Figure 3.13: The recti�cation process of transforming the image pair, with C, C' being

the principal points, and [R|t] the transformations relating the two planes.

• Any disparities will be parallel to x-axis

• Epipoles →∞

The recti�cation procedure, as previously mentioned, is the process of computing the

image transformations resulting the conjugated epipolar lines (denoting the corresponding

points) to become collinear and parallel to horizontal image axis. In order to de�ne the

require transformations that allow the relation of the two images planes and the world

coordinate system let's remember the relation between the 3D world point coordinate

vector Xworld = (xw, yw, zw)T and the corresponding coordinate vector in the camera

reference coordinate point Xcamera = (xc, yc, zc)
T is de�ned according to equation(2.27).

In the case of the camera pairs, the aim is to relate the two image planes in order to

associate corresponding points but also to de�ne the relations the image planes and the

physical world. In this case the camera projection transformation for each camera are

the following:

Xleft = Pleft ·Xworld and Xright = Pright ·Xworld (3.44)

with Pi being the projection matrix of each camera relating each image point Xi of the

each camera to the world point Xworld.

What we need to do now is to de�ne the appropriate rotational and translational

transformations that will form the projection matrix of the left image plane in accordance

with the one of the right camera's, i.e. rectify the planes:

Pleft = R · Pright + T (3.45)

with R, T being the rotational and translational transformations.
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One of the most known image plane recti�cation methods is the one introduced by

Trucco and Verri [45]. The method is based on the fact that the extrinsic as well as the

intrinsic parameters of the stereo rig are known and that the stereo rig is bound/con-

strained based on the following assumptions: 1)the origin of the reference frame is the

principal point and 2) the focal length is known. The methodology goes as follows:

1. Estimate the intrinsic and extrinsic parameters of both images. For example, we can

use Zang's [41] approach (known and well tested approach) to recover the interior

orientation, the exterior orientation, the power series coe�cients for distortion, and

an image scale factor. This is done by using linear least-squares �tting methods.

2. Calculate the relation transformations, i.e. the rotation and translation require in

order to match the the planes of the two cameras:

R = Rright ·RT
left and T = Tleft −RT · Tright (3.46)

where Ri, Ti are the rotation matrix and translation vector of the i-th camera,

i = [left, right].

3. Construct three mutually orthogonal unit vectors e1, e2 and e3. The �rst vector e1

is given by the epipole. Since the origin coincides with the image center the vector

e1 has the same direction with the translation and can be de�ned as:

e1 =
T

‖T‖

For the second vector e2 we have the orthogonality constraint. By taking the cross

product of e1 with direction vector of the optical axis and normalizing it, we derive

the vector e2:

e2 =
1√

T 2
x + T 2

y

[−Ty Tx 0]T

Now, again using the orthogonality principle between the three vectors we can

derive the vector e3 as the cross product of the vectors e1 and e2:

e3 = e1 × e2
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Build the orthogonal matrix RRect that will be used to de�ne the new rotation ma-

trices and translation vectors of the two camera's that will de�ne the new Projection

matrices:

RRect =


eT1

eT2

eT3

 (3.47)

4. Set Rleft = R and Rright = R · RRect. The projection matrices of the image pair

can are associated based on the R and T computed in a relation similar to the one

relating the world coordinate system and the camera coordinate system:

Pleft = RTPrightT ⇒ RRectPleft = RRectR
TPright +RRectT and RRectT =

‖T‖0

0


5. For every point of the left image calculate the recti�ed point as follows:

xim,left = [x y f ]T ⇒ RRectxim,left = [x
′
y
′
z
′
]T ⇒ xim,leftRect =

f

z′
[x
′
y
′
z
′
]T

and do the same for the right camera points. But these points are in camera

coordinate system (not in pixels). To associate them with pixel coordinates:

x− ox =
fx
f
− xc and y − oy =

fy
f
− yc

with (xc, yc) being the camera center coordinates, f the focal length and (ox, oy)

the coordinates of the center of projection.

Perform the last step backwards, which means for each pixel in the recti�ed image,

we need to �nd the correspondent point in the original image so that we don't end

up with holes in the recti�ed image.

The �nal relations between the recti�ed image points and the original image points

are the following:

x =
(
x
′ − ox

) z′
f
R11 +

(
y
′ − oy

) z′
f

fx
fy
R21 −R31

z
′

f
fx + ox (3.48)

y =
(
x
′ − ox

) z′
f

fx
fy
R12 +

(
y
′ − oy

) z′
f
R22 −R32

z
′

f
fy + oy (3.49)

An example of a pre-recti�ed and the recti�ed image pair for the chessboard pattern is

shown in �gure 3.14.
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(a)

(b)

Figure 3.14: (a) Chessboard view from a convergent stereo rig prior recti�cation with

disparities present in both x and y axis, (b) Recti�ed Chessboard view with disparities

only present in the x-axis.

3.5.7 3D Structure Reconstruction via Triangulation

Having related the two views and the world system we can determine a point in the 3D

space given its projections onto two, or more, images, a process known as triangulation.

In order to solve this problem it is necessary to know the parameters of the camera pro-

jection function from 3D to 2D for the cameras involved, in the simplest case represented

by the camera matrices. Having estimated the 3D coordinates of each point of the scene

we can reconstruct the scene.

How do we �nd the 3D space point?

In order for point correspondences be associated with a 3D space point the must sat-

isfy the epipolar constraint. However, an image pair point correspondence observation

consists of noisy point correspondences which does not in general satisfy the epipolar

constraint.
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What is the epipolar constraint? The epipolar constraint x
′
Fx = 0 denotes that the

point x
′
in the second image lies in the F ·x and the two rays back-projected from image

points x and x
′
lie in a common epipolar plane passing through the two camera centers,

with F being the fundamental matrix.

The idea behind this constraint is derived from the fact that if the projection point

x is known, then the epipolar line e · x′ is known and the point Xwor;d projects into the

right image, on a point x
′
which must lie on this particular epipolar line, as shown in

�gure 3.8.(b). This means that for each point observed in one image the same point

must be observed in the other image on a known epipolar line. This provides an epipolar

constraint which corresponding image points must satisfy and it means that it is possible

to test if two points really correspond to the same 3D point.

Fundamental Matrix, role and its use in the epipolar constraint:

The fundamental matrix is the algebraic representation of epipolar geometry. It is the

projective mapping from points to lines describing the epipolar constraint we previously

mentioned. More speci�cally, the set of points x and x
′
are both images of the 3D point

Xworld in the plane, i.e. they are projectively equivalent, since they are each projectively

equivalent to the planar point set Xworld. Thus, there exists a 2D homography mapping

the one with other. Now, given the point x
′
in the second image, the epipole e

′
and the

epipolar line l
′
passing through x

′
for which we have l

′
= e

′ × x′ . Then, since the points
x and x

′
are associated through a homography matrix H we can express the epipolar line

l
′
as:

l
′
= e

′ ×H · x = F · x

with F = e
′ ×H, being the fundamental matrix.

• Camera projection matrices and fundamental matrix association

Given the camera pair projection matrices P and P
′
of the left and right camera

respectively. The association of the 3D world point Xworld with the image point x

and its projection matrix is P ·Xworld = x. The ray back-projected from the world

point Xworld to the image plane into x is the line formed by the two known points,

the camera center C (for which P · C = 0) and the point P+x = P T
(
PP T

)−1 · x,
which belongs to the ray since it projects to x, P (P+x) = x. The line joining the
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two points is:

Xworld (λ) = P+x+ λC (3.50)

with P+ being the pseudoinverse of P, PP+ = Xffl, C is the camera center and

X)) is a normalization scalar.

For the second camera, with a projection matrix P
′
these two mentioned previously

are imaged at P
′
C and P

′
(P+x). The epipolar line l

′
, joining these two points, is:

l
′

=
(
P
′
C
)
×
(
P
′
P+x

)
The point P

′
C is the epipole e

′
in the second image and thus, the previous equation

is written as:

l
′
= e

′ ×
(
P
′
P+
)
x = Fx

meaning that the fundamental matrix, given that the projection matrices are known

is equal to F = e
′ ×
(
P
′
P+
)
.

• Fundamental Matrix Properties(as presented in Zisserman [42]) (1) The

epipole: "For any point x (other than e) the epipolar line l
′

= F · x contains the

epipole e
′
. Thus e

′
satis�es e

′T (F · x) =
(
e
′TF
)
x = 0 for all x. It follows that

e
′TF = 0, i.e. e

′
is the left null-vector of F . Similarly F · e = 0, i.e. e is the right

null-vector of F". (2) For epipolar lines: l = F ·′ and l′ = F T · x.

3.5.7.1 Triangulation Methodology

Going back to the derivation of the 3D space points we must �nd the best point corre-

spondence estimates that minimize a geometric error subject to the epipolar constraint

given a fundamental matrix F in order to �nd the correct correspondence. Based on

Hartley and Zisserman [42], the optimal triangulation method �rst corrects the point

correspondences found initially, in order to �nd the best corresponding points satisfying

the epipolar constraint, and then compute the 3D world point correspondence based on

the DLT method.
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The objective of this step is given a measured point correspondences x ↔ x
′
,

and a fundamental matrix F , compute the corrected correspondences x̂ ↔ x̂
′
that

minimize the geometric error(below) subject to the epipolar constraint:

C
(
x, x

′
)

= d (x, x̂) + d
(
x
′
, x̂
′
)
, x̂F x̂

′
= 0 (3.51)

where d() is the Euclidean distance. The point correspondence correction is based

on the assumption that only one of the corresponding points lies at an epipole

leading the 3D space point to coincide with the other camera center. The overall

algorithm used to achieve the identi�cation and correction of the point correspon-

dences is summarized in Hartley and Zisserman [42], chapter 12, algorithm (12.1)

- until step x.

• Second Step: 3D world space point estimation After the correction of the

point correspondences we can use the estimates to �nd the 3D world point Xworld

estimate using the Homogeneous method (DLT). The method uses the corrected

point correspondences, i.e. x̂ and x̂
′
.

Homogeneous method(DLT): We know that each pair of image points of the image

pair used is associated with its 3D space point based on the equations xim =

P · Xworld and x
′
im = P′ · Xworld. These equations can be combined into a form

AX = 0, which is an equation linear in X, with A a matrix being of the following

form:

A =


x · p3T − p1T

y · p3T − p2T

x
′ · p′3T − p′1T

y
′ · p′3T − p′2T


with xim = (x, y) , x

′
im =

(
x
′
, y
′)

the point correspondences in each image, and

P =
[
p1T p2T p3T

]
, P
′
=
[
p
′1T p

′2T p
′3T
]
the projection matrices.

So, all we need is to use the matrix A to estimate the 3D space point Xworld. The

algorithm goes as follows (as presented in the Hartley and Zisserman's book, chap-

ter 11).
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The overall method is summarized as: The task is given n ≥ 4 point corre-

spondences, and the matrix A, determine the vector X so that AX = 0, with X

being the vector describing the 3D space point.

For each correspondence compute the matrix Ai, as previously shown.

1. Assemble the n(2× 9) matrices Ai into a single 2n× 9 matrix A.

2. Obtain the SVD of A, the SVD is a factorization of A as UDV T , where U

and V are orthogonal matrices, and D is a diagonal matrix with non-negative

entries. The unit singular vector corresponding to the smallest singular value

is the solution Xi. Speci�cally, if A = UDV T with D diagonal with positive

diagonal entries arranged in descending order down the diagonal, then X is

the last column of V.

3. The matrix X is determined.

Thus, we have found the 3D world space points that correspond to the points of

the two images planes.

3.5.7.2 Reconstruction Ambiguities

We will present the reconstruction capabilities of a scene based on the knowledge available

about the scene's placement with to a 3D coordinate frame, as well as the parameters of

the monitoring system(see �gure 3.15).

• Projective transformation ambiguity: if we don't know anything about the

intrinsic and extrinsic parameters of the monitoring system, then, we can we can

express the ambiguity of reconstruction with an arbitrary projective transformation.

A projective transformation will preserve intersection and tangency but will not

preserve angles, ratios of length or volume of an object.

• A�ne transformation ambiguity: if we now know the focal length of the cam-

eras and the cameras are associated through a simple translation, then the recon-

struction can be expressed with an a�ne transformation. An a�ne transformation

will preserve parallelism and volume ratios, however, it will not preserve angles and

ratios of length.

• Similarity transformation ambiguity: If we have a fully calibrated camera

pair, then reconstruction can reach up to a similarity transformation. A similarity
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Figure 3.15: The reconstruction transformations for the case of the building view. Image

transformed based on an image presented in Hartley and Zisserman [42].

transformation will preserve parallelism, angles, ratios of volume and length. How-

ever, we still deal with scaled ratios of length, in order to derive actual information

about the real world dimensions of the object we will need additional information

about the real dimensions of the scene, thus, leading to an Euclidean reconstruction

(metric reconstruction!

Metric transformation: This transformation preserve the full extent of information

that we can extract from a scene, parallelism, angles, length and volume. In order to

move from another reconstruction scale to the metric scale additional information about

the scene are needed. This information can be provided in the form of a constraint on

line parallelism that can correct the plane of estimation or ground truth points (simplest

and most e�ective way). For example, in the case where ground truth points are available

then the relation between a ground truth point XgrP and the estimated 3D point Xest,

is through a 3 by 3 Homography matrix H (Hartley and Zisserman [42]):

XgrP = H ·Xest

which can be moved to an image point relation reforming the image point and world

correspondence equation(2.28) as:

Xim = P ·H−1 ·XgrP (3.52)

An example of the impact of the use of ground truth points in the case of a projective

reconstruction is shown in �gure 3.16.
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Figure 3.16: The The projective reconstruction moved to metric through the use of

�ve (or more) world points: (a) the �ve points placed on the initial scene and, (b) the

reconstruction after the point mapping. Image taken from Hartley and Zisserman [42].
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Chapter 4

Our Approach

Our approach is a new formulation of an image-based river monitoring system that is

unbound by the requirement of particles for the generation of a velocity �ow estimate

as well as, of the task of control point selection for the estimation of the real surface

velocity of the river. Our method utilizes a stereo camera layout to derive the necessary

relation between the physical and image coordinate systems. The estimation of the

optical velocity of the �uid is performed using a stereo probabilistic framework for the

computation of the optical �ow �eld. To increase the accuracy of the estimation as well

as to remove erroneous or unwanted motion vectors, image segmentation and machine

learning classi�cation methods are incorporated. Our approach can be summarized in

the following steps:

1. Stereo Layout:Use the stereo layout to derive the relation between the 3D physical

and 2D image coordinate systems and formulate a region of examination with known

real world dimensions.

2. Optical Flow Estimation: Combine a probabilistic optical �ow estimation method-

ology with the additional information provided by the stereo (layout) to estimate

the optical �ow �eld of the �uid employing the entire image domain of the stereo

image pair.

3. Coordinate System Relation for Velocity Estimation: Associate the esti-

mated motion �eld with the corresponding 3D physical velocities based on the 3D

physical coordinate change of the 2D image points as de�ned by the 2D motion

vector. In this way the perspective distortion introduced by the transformation
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from the 3D world to 2D image domain is removed.

4. Velocity Estimate Validation: Consider the average 3D velocity estimate as

constant over the monitored area and validate the estimation by examining whether

an existing particle in the �ow, assuming to have the same velocity, travels along the

examination area at the expected number of frames. By validating our estimate we

validate the fact that the estimated velocity accurately expresses the �uid's motion.

4.1 Stereo Monitoring Layout

As mentioned, existing monitoring systems make use of a single camera set up. The

relation between the physical and image coordinate systems is established by solving an

eight parameter transformation system, which given the appropriate amount of data (at

least 8 control points) leads to a system of linear equations. However, such formulations

require the prior appropriate selection of known control points which in accordance with

the horizontal viewing position assumption leads to harsher geometrical reconstructions

of the scene (a�ne reconstruction).

To overcome these disadvantages and reach to more detailed scene reconstructions,

we propose the use of a stereo layout that can provide world and image plane mapping

without the use of prede�ned control points, as well as providing information about the

depth map of the scene allowing even crude 3-Dimensional scene reconstructions. In

our monitoring formulation we have selected a calibrated monitoring approach since it

allows the computation of both the stereo rigs' characteristics and the distortion values,

minimizing projection ambiguities and thus, strengthening the coordinate system rela-

tion. The use of a stereo rig apart from removing the need of control points in order to

relate the physical and image coordinate systems, provides additional scene information,

such as depth perception and multiple scene views, that can be utilized in the processing

part to increase the accuracy of estimation e.g. stereo motion estimation for the �ow or

increase �eld of view by view stitching (panorama).

As mentioned in Chapter 3, the continuous debate in a stereo rig formulation is

whether a parallel or a convergent layout will be selected. Each of these has its advantages

and disadvantages. A parallel layout requires simpler transformations in order to move

from the physical to image plane coordinate systems and provides more valid points for

3D scene reconstruction i.e. denser depth information �eld compared to a convergent
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Figure 4.1: (a)Non Convergent Stereo Rig, (b) Convergent Stereo Rig, placed on a bridge.

layout. On the other hand, parallel layouts provide less information about the depth

perception. Convergent layouts, have better viewing angles and depth perception but,

introduce keystone distortion which reduces the number of valid points in both image

planes, and thus, leading to sparser scene reconstructions. The answer to this problem

in the river monitoring case is that the selection is river dependent. Streams or rivers

with small width will allow a parallel layout place in the center of the bridge as well as,

a convergent layout (see �gure 4.1). However, for the case of a river with large width

only a convergent layout will be feasible due to the fact that the parallel layout has a

restricted distance between the camera pair (≈ 5.5cm) resulting in a restricted �eld of

view, and thus, in our system formulation a convergent layout was selected.

However, as mentioned in Chapter 3, convergent stereo layouts require the association

of camera pair positions, which in our case di�er in x and y axes(in non-convergent they

di�er only in x-axis), as well as the stereo rig with the physical 3-Dimensional world

system. In the following subsections we will de�ne these relations, based on the theoretical

background presented in Chapter 3.
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4.1.1 Physical to Image plane coordinates

The role of the stereo rig is to connect the physical and image plane coordinate systems

so that an association between the 3-Dimensional viewed scene and the 2-Dimensional

image can be de�ned, providing us with a depth map estimate of the scene referenced to

the stereo layout position. This coordinate system relation allows us to de�ne a region

of known dimensions that will provide the information required to perform the trans-

formation of the image-based velocity estimate to its corresponding real world velocity

approximation. The relation between a point in the physical Xworld = (xw, yw, zw) and

a point in the image plane xim = (x, y) coordinate systems is given by:


x

y

1

 = K · [R|T ] ·


xworld

yworld

zworld

1



=


f xo

f yo

s

 ·

R11 R12 R13 |Tx
R21 R22 R23 |Ty
R31 R32 R33 |Tz

 ·

xworld

yworld

zworld

1


⇒ xim = P ·Xworld

with K being a matrix containing the intrinsic characteristics of the camera, required for

the relation between the camera and the image plane coordinate systems, [R|T ] a matrix

denoting the extrinsic parameters of the system, i.e. the rotation (3 x 3 matrix) and

translation (3 x 1 vector) required to match the world and camera coordinate systems

and P being the projection matrix, de�ning the geometric mapping of points from one

plane to another.

This equation expressed the correspondence relation between the image points and

the world points. In order to estimate the intrinsic parameters of the system (if not

known), such as the focal length f or the principal point coordinates (xo, yo, as well as

the extrinsic characteristics of the camera to world relation, i.e. the relative position of

the stereo layout in accordance to the viewed scene, we follow a calibration process(as

presented in Chapter 3).

The estimation of both intrinsic and extrinsic parameters of the system allows us to
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reduce the projection ambiguity between the two coordinate systems (up to similarity

reconstruction or Euclidean, given additional scene information), thus acquiring more

detailed point mapping for the �nal point displacement association.

4.1.2 Image Plane relation in the camera pair

Having related the physical and image coordinate systems for each camera the next step

is to relate the camera pair together. This process involves the disparity map estimation.

For the case of a non-convergent layout the image planes are parallel on the y-axis,

meaning that the di�erence between a point in the �rst camera is just a translation in

the x-axis, i.e. a point at the position (x, y) in the �rst image will be located in the

position (x + di, y) in the second image. For the case of a convergent layout in order to

relate the image planes we need �rst to rectify them (as has been shown in �gure 3.13

so that the points can be associated with a translation in the x-axis only, and �nally

compute the disparity map.

The relation between the 3D coordinate point Xworld = (xw, yw, zw) and the corre-

sponding in the camera reference 3D coordinate point Xcamera = (xc, yc, zc) is de�ned

based on the extrinsic parameters (rotation R, translation T ). When dealing with a

stereo rig, the camera projection matrices can be expressed as follows:

Xleft = Pleft ·Xworld = Rleft ·Xworld + Tleft (4.1)

Xright = Pright ·Xworld = Rright ·Xworld + Tright (4.2)

The task is not only to relate the two image planes in order to associate corresponding

points but also to de�ne the relations the image planes and the physical world. For this

purpose, we employed Bouguet's algorithm for stereo recti�cation as presented by Trucco

and Verri [45]. This method uses relates the left camera's image plane to the right cam-

era's image plane by applying appropriate rotational and translational transformations

forming the projection matrix of the left image plane in accordance with the one of the

right camera's:

Pleft = R · Pright + T (4.3)

with R and T being the rotation matrix and translation vector respectively relating

the two planes formed as follows:

R = Rright ·RT
left and T = Tleft −RT · Tright (4.4)

Konstantinos Bacharidis 69 October 2016



4. OUR APPROACH

where R and T essentially rectify the coordinates of the right camera Xright to those of

the left camera as XRectright. Furthermore, although this transformations lead to coplanar

image planes, row alignment is not achieved. To do so a rotation matrix Rrect consisting

of three epipolar unit vectors with mutual orthogoniallity is computed and applied to the

left projection matrix moving the left camera's epipole to in�nity as well as aligning the

epipolar lines horizontally leading to row alignment of the image planes ( [42]). The row

alignment of the two cameras is achieved by setting the rotation matrices as:

Rleft = R ·Rrect and Rright = R (4.5)

The resulting image planes are now aligned and can be searched for point correspon-

dences. By rectifying the image planes we have succeeded in the epipolar lines in the

two images to be parallel with the x-axis leading to the corresponding points in the two

images being as close to each other as possible, with any point disparities being in the

x-axis. The reason that no exact matching is achieved can be attributed to the fact that

the application of arbitrary 2D projective transformations can lead to the image being

distorted which essentially means that �nding the pair of transformations that relates

the two images introduces also distortion ( [42]).

Essentially, based on these linear relations, we can derive the physical point coordi-

nates to whom each image point is back projected, through a process known as triangula-

tion (as presented in Chapter 2). This process utilizes the image plane point xim = (x, y)

and 3D world point Xw = (xw, yw, zw) relations (eq.(3.28)) and parallel projectivity rela-

tion to form a system of linear equations based on the cross product:

xim × P ·Xw = 0

Thus, we end up with a system of linear equations of the form B ·Xw = 0, where B

is a matrix of the following form:

B =


x · p3T − p1T

y · p3T − p2T

x
′ · p′3T − p′1T

y
′ · p′3T − p′2T


with xim = (x, y) , x

′
im =

(
x
′
, y
′)

the point correspondences in each image, and P =[
p1T p2T p3T

]
, P
′
=
[
p
′1T p

′2T p
′3T
]
the projection matrices.
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Figure 4.2: (a) The distorted scene representation as recorded from the camera, (b) the

undistorted scene representation after the orthorecti�cation process.

In the case of no noise then there will be an exact solution for Xw. However, in

the opposite case the image coordinates measurement is inexact and thus, we will have

another solution for B ·Xw expect zero. To solve the system we apply the constraint that

the norm ‖Xw‖ = 1. Essentially, the problem now becomes:

Minimize ‖B · Xw‖ under the constraint ‖Xw‖ = 1: The solution of the linear

system and thus, the derivation of the 3D world point is achieved through the singular

value decomposition (SVD) of the matrix B using at least 4 known correspondences. The

matrix B is factorized in the form of UDV T , with U and V being orthogonal matrices

and D being a diagonal matrix with non-negative entries. The 3D world point is the unit

singular vector that corresponds to the smallest singular value of the matrix B(total least

squares), which is equivalent to the (unit) eigenvector of BTB with the least eigenvalue,

under the assumptions that BTB is invertible and B is an mxn matrix, with rank n and

m > n ( [42]).

Nevertheless, in many real-world applications including tra�c monitoring, surveil-

lance, human motion and river �ow, the motion is still in two dimensions in the world

coordinate system, with the third dimension of height being of minor importance. Fo-

cusing on such applications, we can limit the back-projection to only two dimensions,

which is exactly the case of mapping the perspective onto the projective mapping (see

�gure4.2), which performs a distance and motion scaling from the camera plane to the

2D world plane parallel to the observed surface.
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4.1.3 Disparity and Depth map estimation

The image planes relation performed in the previous step results in the points of each

plane to be associated in the form of a translation in x-axis. Thus, we can now de�ne

the disparity map d that contains the distance between corresponding points in the two

views.

The computation of the disparity map can be performed using similar approaches

used for the computation of the optical �ow of an image. In our case we employed a vari-

ational approach developed by J.Rally [62], due to the fact that it produces denser and

more accurate disparity maps compared to a block matching-based disparity estimation

method.

What does the disparity map o�er?

The disparity map allows us to compute the depth map of the scene by back-projection

of each 2D image plane point into its corresponding point position in the 3D world

coordinate system. This process, known as triangulation (see �gure), utilizes image-point

correspondences, as de�ned by the disparity map, in the image pair of a stereo layout

to derive estimates of the Homography matrices, essentially the projection matrices P,

which map the 3D world point to its corresponding 2D image point, eq.(3.28).

The derivation of the point correspondences in the two image planes is performed

using the disparity map d, which indicates the point relation between the two planes.

Speci�cally, as mentioned, the recti�cation process led to the relation of the two planes

in the form of a simple translation in the x-axis meaning that a point xleft = (x, y) in

the left camera image plane is located in the point xright = (x
′
, y) = (x + di, y) in the

right camera image plane, with di being the disparity for the given point, as shown in

�gure 4.3.

Finding the point correspondences and through inversing the transformations applied

in the recti�cation process we can �nd the corresponding coordinates of the points in the

original unrecti�ed planes which can now be associated with 3D world point through the

mapping relations presented in Chapter 3, in the Stereo Vision subsection, which show

that the 3D point estimation process leads up to system of linear equations.
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Figure 4.3: The relation of corresponding points in the two views after the plane recti�-

cation process.

The additional depth information is used as means of validating the velocity estimate

produced by the monitoring system. This is done by using the depth information to

de�ne a region of examination in which the velocity estimate is validated by examining

the time for which an image pattern (usually a natural tracer, e.g. leaf or foam) takes

to move through a region whose length is de�ned by the depth di�erence of two objects

used as indicators/markers present at the viewed scene. More on this subject will be

presented in the �nal sections presenting our monitoring framework.

4.2 Optical �ow Estimation

The next step of the estimation process is the computation of the 2D image velocity

�eld. For this task we have developed a probabilistic method for the computation of the

optical �ow �eld of a �uid based on the methodology introduced by Chang et.al. [1]. The

approach presented in the following subsections is based on our previous work [2] on

probabilistic optical �ow estimation schemes.

Probabilistic approaches, as presented in Chapter 3, assume that the motion vector

(displacement) of a pixel can be considered as a random variable following a distribu-

tion model. Thus, we can formulate a probabilistic inference model which associates to

each possible position in the candidate neighborhood in the next frame a probability of

displacement. Such formulations allows the employment of Bayesian inference schemes

that can predict the motion �eld. However, in a probabilistic formulation the model's

accuracy depends upon on the a' priori assumption about the data distribution charac-

teristics and priors which with their turn are highly a�ected by the amount of the data

that is available. Fewer data will result in an over �tting case where the outliers will
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reduce the accuracy of the estimate instead of increasing it. To solve this problem one

solution, according to [1] is to use a number of subsequent frames to increase the data

used in the estimation process. In our method we proposed the use of a regularization

factor λ that will penalize the outliers' importance and thus, keeping the estimate robust

without the use of extra data.

Our proposed approach on this issue, is to take advantage of the stereo layout and

incorporate the additional scene information provided by the use of a stereo layout into

the displacement coe�cient estimation process. As will be presented in the following

sections this addition ill result in the reduction of the amount of data used in overall

estimation process through the reduction of the size of the interrogation window at the

examined frame pair.

4.2.1 Probabilistic Optical �ow Formulation

We will start by presenting the theoretical basis of the probabilistic optical �ow method

presented in Bacharidis [2].

The probabilistic method uses a conditional Bayesian model to estimate the unknown

2D velocity �eld u = (υ, ν). The Bayesian formulation is based on the assumption that

a pixel's �ow vector is actually a random variable described by a probability distribution

function. So, the unknown velocity can be formed as a posterior distribution that is

estimated based on the Maximum a' posteriori rule which is de�ned from prior likelihood

motion model assumptions:

û = argmaxûp (φ|u) · p (u) (4.6)

where p (φ|u) is the conditional probability describing the observed data given the actual

realization of the underlying global �ow �eld and p (u) is a probability describing a prior

knowledge for the motion, usually a Gibbs distribution.

As mentioned in Chapter 3, subsection 3.3.1, the conditional probability describes

the observed data given the underlying motion. The key factor in this representation

is the appropriate selection of the data representation function φ. In our approach the

representation function, as Chang [1] suggested, is formulated as the probability of a

pixel in the reference frame ending up in a speci�c position in a �xed neighborhood in

the next frame:

φ ≈ Ai∑Ds

j Aj
(4.7)
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where Ds is the size of the candidate neighborhood in which our pixel can be positioned

in the next frame.

The coe�cient Ai denotes the transition probability of the examined pixel to a speci�c

position i in the candidate neighborhood. These coe�cients are estimated by means of

the relation of the image intensities of both frames, reference and next, based on a Spatio-

Temporal Autoregressive model:

I (x, y, t) =
Ds∑
i

Ai · I (x+ ∆xi, y + ∆yi, t+ ∆t) (4.8)

where I(x, y, t) is the intensity of the pixel (x, y) at time t in the reference frame and

I (x+ ∆xi, y + ∆yi, t+ ∆t) the intensities of the pixels(x+ ∆xi, y+ ∆yi) at the destina-

tion neighborhood at time t + ∆t, which in our approach ∆t = 1 since we consider the

next frame.

The estimation of the transition probabilities A is performed through a least squares

scheme that utilizes the pixel intensity information of the neighborhood, Ns of the pixel

(x, y) in the reference frame and the pixel intensity information of the candidate neigh-

borhood, Ds, in the next frame. We essentially end up with a minimization of the cost

function:

J (A) =
N∑
s=1

(
I (xs, ys, t)− kTs A

)2
(4.9)

with ks being a vector of size D containing the intensities of pixels belonging to the

candidate neighborhood for the pixel (xs, ys) in the next frame and N being the number

of elements in the spatial neighborhood Ns of pixel (xs, ys) in the current reference frame.

In order to decrease the e�ect of outliers and constrain the estimation we have added

a regularization term κ which acts as a penalty term on the estimate on the existence of

outliers. Thus the previous cost function is now de�ned as follows:

J (A) =

∑N
s=1

(
I (xs, ys, t)− kTs A

)2

N
+

D∑
j=1

κ2 · Aj (4.10)

If we represent the previous equation in a matrix form we end up with a least squares

estimation problem of the form Ax = b, with A being a matrix containing the transition

coe�cients, x being a matrix containing the intensities of pixels belonging to the spatial

neighborhood Ns centered at the pixel (xs, ys) and �nally, b being a matrix containing
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the intensities of the pixels belonging to the candidate neighborhood D in the frame t+1

where the pixel (xs, ys) is expected to be displaced at.

In our case this least squares problem is estimated with respect to A instead of x

since the matrix A contains the coe�cients to be estimated. The solution of such least

squares scheme is given by:

A =
(
KTK +N · κ2I

)−1
KTM (4.11)

with K being the matrix containing the vectors ks with the intensities for all the

possible transitions for each pixel contained in the spatial neighborhood Ns de�ned by a

central pixel (xs, ys), andM being the matrix containing with the intensities of the pixels

belonging to spatial neighborhood Ns of the central pixel (xs, ys).

4.2.1.1 Local Motion Estimates

At this point we can use the estimated transition probabilities to extract a local motion

�eld for the �uid, by selecting as the �nal destination position the position assigned to

the highest transition probability Ai. This local estimation scheme although being able

to detect the main motion trend does not su�ce for the accurate estimation of the �uid.

This is due to the dynamic and highly consistent motion nature of the �uid. The

motion �eld of a liquid actually shows a unique velocity vector everywhere, meaning that

each pixel should be characterized by a single velocity vector which can be extracted

using the information of distribution functions we found. Thus, a general motion vector

interpolating model must be de�ned that can estimate and associate the velocity vectors

for all pixels belonging to the �uid.

4.2.1.2 Global Motion Estimates

The extraction a global motion �eld is achieved through the utilization of the Bayesian

inference scheme, as presented in Chapter 3.3, in equation (3.18). Through the MAP

formulation we can calculate a posterior distribution for each pixel through which we

can choose the appropriate distribution that will give us the velocity vector best describ-

ing the pixel's movement. This global motion is obtained by maximizing the posterior

distribution which is proportional to the minimization of a cost function consisting of a

smoothness function term, de�ned the prior motion model(which in our case is a Gibbs
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distribution) and the data function φ:

ûglobal = argmaxûp((I|u) · p (u)

' argmaxûp((I|u) · e−λU

≡ argminû − ln (p((I|u) ·+λU)

≡ argminûL {φ (∆xi,∆yi)}+ λU

with L being denoting a functional term based on the conditional distribution and U

being an energy based smoothness factor.

In our approach, as Chang et.al. [1] initially presented, the functional term is a di�er-

ential function consisting of linear relation of the discrete data function φ with a family

of 2-D Gaussian distributions, thus de�ning the new functional term φ̄ as:

φ̄xs,ys,t (xs + ∆xs, ys + ∆ys) =
∑
i

[φxs,ys,t (xs + ∆xi, ys + ∆yi) ∗ h (∆xs −∆xi,∆ys −∆yi)]

(4.12)

in which (xs + ∆xi, ys + ∆yi) ∈ Ds and h (x, y) is the family of Gaussian basis functions.

The smoothness factor U is linear combination of the image gradients, that de�ne the

image energy:

U =
∑
s

(
‖ux(xs, ys)‖2 + ‖uy(xs, ys)‖2

)
(4.13)

Finally, the cost function leading to the global velocity estimated, minimized through

gradient descend based methods, is de�ned as follows:

CostFunction = −
∑
s

log
(
φ̄xs,ys,t (xs + ∆xs, ys + ∆ys)

)
+λ
∑
s

(
‖ux(xs, ys)‖2 + ‖uy(xs, ys)‖2

)
(4.14)

where ux(xs, ys) = u(xs + 1, y)− u(xs, ys), uy(xs, ys) = u(xs, y + 1)− u(xs, ys) and u is

the global velocity vector.

4.2.2 Stereoscopic Data Utilization

As shown in the previous paragraphs, the estimation of the local displacement proba-

bilities Ai for each pixel position in the candidate neighborhood is an inference problem

leading to a least squares solving scheme which is high dependent on the amount of data

used. One way to increase the estimation accuracy and at the same time reduce the
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Figure 4.4: Relation between the stereo image pairs and their optical �ow estimates based

on the disparity map.

amount of data used is to utilize the extra information provided by the bi-channel for-

mulation of the stereo scheme. The pixel intensities of the two camera pairs, that have

been set up in a parallel layout or have been recti�ed when a convergent layout is used,

are related based on the disparity d as follows:

Ileft (x, y, t) = IRectRight (x+ d, y, t) (4.15)

For the subsequent frames, where a displacement for the pixel(x, y) occurs the relation be-

tween the paired images for the stereo layout is de�ned based on both the displacement(∆x,∆y)

as well as the disparity estimate (see �gure 4.4):

Ileft (x+ ∆x, y + ∆y, t+ 1) = IRectRight (x+ d′ + ∆x, y + ∆y, t+ 1) (4.16)

with d′ = d+Dt indicating the disparity of the shifted pixel, which is essentially a change

in the disparity value of the previous frame at a constant Dt.

For each pixel intensity at each camera based on the STAR model as shown in eq. 4.8

we have the relation:

IK (x, y, t) =
D∑
i=1

Ai · IK (x+ ∆xi, y + ∆yi, t+ 1) (4.17)
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where K=left, right denoting the intensity of the image for each camera.

Combining equations 4.16 and 4.17 allows us to express equation 4.15 in the following

form:

4.15⇒
D∑
i=1

Aleft,i·Ileft (x+ ∆xi, y + ∆yi, t+ 1) =
D∑
j=1

Aright,j ·IRectRight
(
x+ d′ + ∆xj , y + ∆yj , t+ 1

)
(4.18)

If we compare equation 4.18 in parts and with consideration that the intensities of each

image of the camera pair at time t+1 are connected based on equation 4.16 we can

conclude that that given the disparity estimate the coe�cient depicting the translation

to a certain position must have the same value in both the images in the image pair, i.e.

Aleft,i = Aright,j , with i = j.
As mention the coe�cient estimation for the case of a single camera, in a matrix

formation solving the least square estimation scheme of the form Ax = b with respect to
A instead of x. For the case of a stereoscopic layout the matrices A, x, b are now de�ned
as:

x =



Il
(
x1 + ∆x1, y1 + ∆y1, t

′) · · · Il
(
x1 + ∆xD, y1 + ∆yD, t′

)
0 · · · 0

0 · · · 0 Irr
(
x1 + ∆x1 + d′, y1 + ∆y1, t

′) · · · Irr
(
x1 + ∆xD + d′, y1 + ∆yD, t′

)
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Il
(
xN + ∆x1, yN + ∆y1, t

′) · · · Il
(
xN + ∆xD, yN + ∆yD, t′

)
0 · · · 0

0 · · · 0 Irr
(
xN + ∆x1 + d′, yN + ∆y1, t

′) · · · Irr
(
xN + ∆xD + d′, yN + ∆yD, t′

)



A =



Aleft,1
...

Aleft,D

Aright,1
...

Aright,D


and

b =



Il (x1, y1, t)
...

Il (xN , yN , t)

Irr (x1 + d, y1, t)
...

Irr (xN , yN , t)


with A being a 2Nx2D matrix, x being a 2Dx1 vector, b being a 2Nx1 vector, N being

the size of the spatial neighborhood Ns, D the size of the destination neighborhood,
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Il = Ileft the left image intensity value, Irr = IRectRight the recti�ed right image intensity

value and t′ = t+ 1 the time-stamp indicating the next frame.

Given the assumption that the transition coe�cients (Aleft and Aright) for each trans-

lation in each image pair must have the same value we can express the coe�cient vector

A as:

A =



1 0 0 · · · 0

0 1 0 · · · 0
...

. . . . . . . . .
...

0 0 0 · · · 1

1 0 0 · · · 0

0 1 0 · · · 0
...

. . . . . . . . .
...

0 0 0 · · · 1


·

Aleft,1...

Aleft,D

 = [I : I]T · Acommon (4.19)

What we essentially did is that we expressed the coe�cient matrix A in form A =

C ·Acommon, where C is a 2DxD matrix and Acommon being aDx1 vector. This formulation

allows us to estimate the transition coe�cients, removing the duplicates since we have

shown that Aleft,i = Aright,j, with i = j.

By doing this we have doubled the information used to approximate the transition

probabilities, modeling the estimate considering the illumination variation encountered

between the stereo image pair. This formulation enables us to use smaller windows sizes

to reach the same accuracy compared to the case of a single camera layout.

This formulation allows us to estimate a common set of transition coe�cients for the

two cameras since Aleft,i = Aright,j, with i = j, utilizing matched intensity information

from both cameras as to increase estimation accuracy. Essentially, in this form we double

the intensity values used to approximate the transition probabilities for each point and

model the estimate by also considering the illumination variation encountered between

the stereo image pair. This formulation enables the use of smaller windows sizes to reach

the same accuracy compared to the case of a single camera layout. A possible drawback

of introducing stereoscopy in the estimation of displacement distribution pertains to

the introduction of an error factor associated with the stereo camera model and the

computation of an accurate disparity map estimate that provides the correct relation

between the pixel points of the stereo image pair. The error sensitivity can be reduced
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by constraining the estimated model with the addition of a regularization parameter

λ, which controls both the modeling and computation errors for the original ill-posed

inversion problem.

Finally, the estimation of the transition coe�cients is again performed through the

same least squares formulation shown in equation 4.11. Moreover, a global motion �eld is

estimated as shown in the previous subsection through a Maximum a' posteriori (MAP)

formulation using the new transition coe�cients Ai.

4.3 Velocity Computation inWorld Coordinate System

Up to this point we have computed the optical �ow �eld of the scene using the full

intensity information from the stereo camera system, but all the computations pertain to

the common 2D reference system used by the camera planes. Since we have also derived

the disparity map for the two cameras in parallel concatenation, as well as the general

concatenation scheme, we also have the means of transforming the 2D back to the 3D

world space. Thus, in this section we derive the mapping of the motion vector �eld from

the 2D reference system of cameras to the 3D world coordinate system.

4.3.1 River Isolation and Main trend Extraction

Prior the mapping between the coordinate systems and the extraction the 3D real world

velocity of the river, we need to exclude the unwanted information that exists in order

to reduce the computational cost as well as to increase the estimation accuracy.

This step involves the isolation of the river from the unwanted terrain, i.e. river banks,

rock formations within the water. Such data despite being redundant can also reduce the

estimation accuracy since cases such as dispersion phenomena of the water hitting the

river banks or the rock formations inside the �ow, produce motion vectors that do not

depict the river's main trend of motion and thus, are not useful for the estimation of the

velocity of the �ow. For the case of the river banks although the vegetation along the

river may show motion due to the wind or the illumination variance, yet do not provide

any information for the �ow of the river and thus, must be ignored.

A quick way to deal with unwanted scene information such as the vegetation in the

river banks as well as rock formations inside the river �ow is to apply a segmentation

approach on the region of interest. This will separate the river from the vegetation. To
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(a) (b) (c)

Figure 4.5: River isolation via segmentation, (a) Initial image of Koiliaris river, (b)

Class containing vegetation, rock formations, leaves and (c) Class containing the pixels

belonging to the river.

do so, we transformed the river image into the HSV color space and performed a K-means

classi�cation task on the hue and saturation channels of the image, separating it into two

classes (see �gure 4.5 ), one containing the vegetation, rock formations, leaves �owing in

the water etc. and the other containing the water pixels. In order to distinguish which

of these clusters contains the water pixels we used an evaluation metric. The group class

that has the biggest average value, computed by the associated pixels, contains the water

pixels.

Isolating the river reduces the unwanted �ow vectors from the vegetation and the

di�usion e�ects in the river banks and rock formations in the �ow. However, this does

not solve the surface �ow vectors of the river �ow that are produced by the wind or the

illumination variance. The conventional measuring systems form a tunneling e�ect in

which the water �ows to its natural motion direction, without being disturbed by wind

changes in the surface of the �ow.

Since we cannot constrain the river �ow conditions, we need to de�ne a means of

distinguishing the main motion of the �ow from the motion vectors caused by external

forces, such as wind. As a solution we can apply a classi�cation method on the motion

vectors of the estimated �ow �eld, in order to isolate and identify the underlying motion

trends in the river �ow. Motion trend classi�cation will allow the extraction of a main

trend of motion for the river �ow, that will allow us to increase the velocity estimation

accuracy since the a�ect of redundant motions such vortical motion patterns will be re-

duced.
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How many motion classes? and supervised or unsupervised classi�ers?

The biggest questions to every classi�cation problem is �rst the number of classes

selection and secondly, whether to use a supervised or an unsupervised classi�cation

method.

Starting from the �rst question the motion trends can be grouped into 8 motion

directions (North, South, East, West and the four subsequent motion directions). Since

there is always a hint for the main motion direction of the river we can easily mark which

of these motion directions are considered valid for the main trend of motion, e.g. the river

�ows to the North so we accept North, North-East and North-West motion directions,

as shown in �gure .

As far as the supervised/unsupervised debate we compared unsupervised (K-NN, K-

means, Expectation Maximization (EM)) and supervised (Naive Bayes) classi�ers. As

will be presented in the Result section, the supervised classi�ers presented the best results

compared to the unsupervised ones, an expected result since in the case of unsupervised

learning the distance and error metrics tested (Euclidean Distance, Cosine similarity)

lead to the utilization of a sole discriminant factor (magnitude or direction) in the vector

matching process.

4.3.2 River Surface Velocity Computation

The computation of the image based motion vector is performed by computing the pixel

displacement in subsequent frames and dividing them by the time interval between the

subsequent frames. In order to extract the corresponding motion vector in the 3D space,

we need to relate each 2D pixel position with its 3D point correspondence. The stereo

layout allows us to derive such mapping through the process of trianguation. This process,

as presented in 2.5.7.1, produces a mapping between the two coordinate systems given

the fact that an appropriate point correspondence exists between the points of the two

image planes.

Thus, the 3D motion vector of a point can now be expressed as the displacement

between the two estimated 3D position of each point based on the relative positions of

pixel-based correspondent, divided by the time interval ∆t:

ureal =
‖ ˆXworld,new − ˆXworld,old‖

∆t
(4.20)
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Since the images used have been orthorecti�ed meaning that it has constant scale in

which features are represented in their 'true' positions only two directions of estimated

3-D world point are used the x and y direction. This is due to the fact that the image has

been reformed as though every point were viewed simultaneously from directly above.

The velocities computed correspond to the instantaneous velocities of points on the

river's surface. The main trend in the river velocity can be considered as the average of

several instantaneous velocities in the world system, i.e. for M relevant points of interest:

uriver =

∑M
i=1 ureal,i
M

(4.21)

In order for this velocity estimate to be considered as the river's surface velocity we

need to validate the assumption that this velocity will almost be constant over the area

of examination. Of course, this assumption will only show validity in cases of rivers

where the �ow is unobstructed and is not accelerated due to the change of the ground's

inclination. Notice that the use of a world coordinate system and the projective mapping

in the expression of the motion permits the direct averaging of vectors estimated at

di�erent points of the river, since they are devoid of perspective e�ects depending on the

viewing depth

4.4 Velocity Estimate Validation

To validate the estimated velocity we can make use the existence of physical particles

in the �ow, such as leaves or �owing wood parts. Such validation may be performed

under the notion that the computed leaf velocity should follow the main trend of the river

motion or the �uid velocity on the surface of the river. When using natural particles with

physical dimensions, i.e. objects such as leaves, we cannot guarantee that the in�uence

of external forces, such as wind or turbulence, will not dominate the particle's motion

forcing the particle to follow a di�erent motion from the typical �uid �eld. Nevertheless,

under the assumption of minimal external forces, the validation process can be performed

as follows.

1. Particle Selection and Detection:Select the particle to be tracked. The selection

can be either user assisted, i.e. the user selects the particle he considers the most

appropriate manually in the image, or an automated particle identi�cation can be

performed. For the latter we can make use of the segmentation method used in
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previous sections. We can observe in �gure 4.5 that the particles �owing in the

river, case e.g. leaves, have been assigned to the non- water class. We can perform

a supervised segmentation process on this class moving to the YCbCr color space,

aiming at a speci�ed value range of the channels Cb and Cr that corresponds to

the particle's color values, brown color in the leaf's case. The identi�ed particle is

then stored as a reference pattern.

2. Examination Region Formulation and Velocity Validation: In order to

simplify and constrain the validation process, we can de�ne a region of examination

through which the particle's motion will examined.

The validation is performed by searching the speci�ed particles after a number N

of frames, under the assumption that the estimated 3D velocity estimate remains

constant over the river length. The constant velocity is used to match the par-

ticle's 3D position at the initial time stamp and the estimated position based on

motion estimation. Afterwards, by back-projecting the estimated position on the

camera plane(s) we examine the particle's presence within the speci�ed region of

the frame(s).

In the following subsections details on the validation process will be presented as well

as how the region-dependent parameters used in the validation process are de�ned.

4.4.1 Validation Process

Instead of starting from the region formulation we will begin our methodology presenta-

tion by �rst de�ning the overall validation process and then explaining the way that the

region-dependent parameters are de�ned in the next Region Formulation subsection.

The velocity validation can be performed in two ways:

1. Time speci�ed particle search: in which given the estimated velocity and a

region with known real world dimensions we estimate the time required for the

particle to travel the region. The search for the particle in the corresponding

estimated frame exiting the region validating the estimate.

2. Position speci�ed particle search: in which given the estimated velocity, the

initial particle position and a prede�ned time interval, then we can estimate the

�nal position of the particle. Essentially, using the estimated 2D motion vectors
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and the projection relation between the points of the 2D image plane and the one

of the 3D world we can back project the �nal 2D position (due to the motion

displacement) to its corresponding 3D position.

In our validation scheme we adopt the �rst approach estimating the time required

for the particle to travel from its current computed 3D position (de�ned by its centroid)

to the position of the �rst indicator (entry to region of interest) as well as the second

indicator (exit from region of interest) given the estimated average 3D velocity:

tmov =
Xw,indF in −Xw,indStart

up
(4.22)

in which Xw,indF in = (xw, yw, zw) corresponds to the stereo-based estimated 3D coordi-

nates of the centroid belonging to the indicator object denoting the end of the region,

Xw,indStart = (xw, yw, zw) corresponds to the stereo-based estimated 3D coordinates of the

centroid belonging to the indicator object denoting the start of the examination region,

and �nally, up corresponds to the particle's velocity which assumed that it follows the

river's motion pattern can be assumed equivalent to the river's motion, up ≈ uriver.

Having found the required time we can then move to the future frames and search

for the particle near the 'end of region' indicator(see �gure 4.6). The number of frames

forwards that we need to move in order to search the particle can be easily found given

the camera's frame rate:

Nframes = tmov · frame rate (4.23)

Then by simply moving at the frame = reference frame + (Nframes ± 1frame) we can

search the particle. The particle will be searched in an interrogation window centered at

the centroid of the 'end of region' indicator whose width will equal to the image's width

dimension and the length will be prede�ned, as shown in �gure 4.6.

The veri�cation of the particle at this position validates both the estimation accuracy

as well as the velocity-constancy assumption. The most important assumption behind

the velocity estimation method and its validation is the velocity constancy in its 3D

form, which is devoid of perspective e�ects associated with the 2D mapping. In real-

world applications, the 3D velocity constancy assumption can be justi�ed better than

in the 2D case, where velocity needs to be adjusted with time and scene depth as to

accommodate the perspective e�ects.

Konstantinos Bacharidis 86 October 2016



4.4 Velocity Estimate Validation

Figure 4.6: Formulation of the search area for the particle in each image plane by de�ning

a window with a horizontal size equal to the image's width and vertical size the size of

the particle ± M pixels up and down. The window is formulated around the centroid of

the second indicator.

4.4.2 Region Formulation

As presented in the previous subsection in order to simplify, constrain and reduce the

computational burden an examination region is de�ned based on two objects serving as

region start and �nish markers(indicators). The stereo-driven 3D world coordinate esti-

mates of their centroids allow the computation of the region's length used in equation 4.22

which computes the time required for the particle to move through the examination re-

gion.

Two key questions arise in this process: (a) How do we select the markers/indicators?,

and, (b) How do we detect the particle in the frames?

Starting from the �rst question the indicator objects, are assumed to be always present

in the viewed scene, in static positions. The objects are manually selected by a user, by

de�ning a rectangular window around the object, in the image depicting the viewed scene.

The 2D centroid of the pixels belonging to the object is de�ned and its corresponding

estimated (via the stereo layout) 3D coordinates are extracted. The length of the region
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can then be de�ned as by simply taking the depth di�erence (z-axis coordinate estimate)

of the centroids of the two object-indicators.

As for the second question the reference particle pattern will be searched within this

region using the SURF feature extraction and identi�cation methodology presented by

Bay et.al. [63]. As previously mentioned the presence of a particle or a characteristic

particle portion within this region can be considered for the accuracy assessment of the

estimated instantaneous velocity of the river.

To further increase the estimation con�dence we can also back-project to the expected

particle position in the two cameras. In such case, the particle's position will be di�erent

on each image plane of each camera de�ned by the direct mapping from 3D to 2D via

the corresponding matrix projection. Then, by taking advantage of the disparity map

we can relate the pixel positions and the motion vector estimates between the two image

planes. We can use this relation to search the particle in the two camera planes thus,

increasing the tracking validity of the particle.
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Chapter 5

Results

In this chapter we present the results of our work. The result section will be divided in

four sections presenting and commenting upon the following:

• The 2-D stereoscopic probabilistic optical �ow estimation method: Illus-

trating the improvement in accuracy as well as data reduction compared to the use

of single camera probabilistic method.

• The comparison of the proposed stereo-based technique with other rel-

evant methods: Test and compare the proposed optical �ow method with other

approaches utilized in the �uid �ow extraction case in order to illustrate the e�-

ciency of the proposed method to capture local motion trends retaining the both

magnitude and directional accuracy.

• The ability of summarization of motion trends:Perform clustering on the

underlying motion directions.

• The overall developments and stages of 3D motion estimation: Presen-

tation of the results for each stage of the proposed imaged-based river monitoring

system.

Finally, an additional section is added presenting a visual environment(a graphic user

interface) which incorporates the aforementioned stages of image-based river monitoring

system into a user-friendly tool.
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5.1 Improvement of 2D motion estimation using stereo

data

Apart from the 3D river velocity estimation framework, in this thesis we have also pre-

sented a new stereo based probabilistic optical �ow estimation method. In the following

paragraphs we will present how the incorporation of the stereo-driven information in the

optical �ow estimation process, enhances the estimation accuracy but also allows the

reduction of the amount of data used in the estimation process. During this evaluation

stage we compare the stereo-based approach with a single camera optical �ow estimation

methodology presented in my undergraduate diploma thesis [2]. The two approaches are

compared, with real as well as synthetic datasets, on the estimation accuracy, the amount

of data used and the post-processing capabilities that each method presents.

5.1.1 Accuracy using Real Data

As far as the optical �ow estimation accuracy is concerned, we observed small deviations

the optical �ow �eld estimates of both approaches. Speci�cally, based on the experimen-

tal results taken in Koiliaris River, show that approximately 21.7% of the main motion

vectors change and about 9.85% of the total motion vectors between the two optical

�ow derivation schemes. Both approaches succeed on retaining the main motion trend

information as shown in �gure 5.1. However, their main di�erence lies on their trade-o�

between the estimation accuracy and the amount of data used to achieve it. Based on

the amount of data used, the stereo case requires a smaller interrogation window size

∼ 38% to reach an estimation accuracy with less than 10% deviation from the single

camera approach. This is due to the incorporation of the data from the second camera

which acts as an enhancement for the estimation process. In terms of 3D real world veloc-

ity estimate deviation between each approach this ∼ 22% main motion vector deviation

results in the single-based approach to produce an estimate of 0.4201m/secs compared

to the 0.3864m/secs of the stereo approach with the Conventional equipment producing

0.3993m/secs.
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(a) (b)

Figure 5.1: (a)The estimated motion �eld using a single camera and stereo camera lay-

out,and, (b)Estimated motion �eld using the on-�eld stereo layout scheme.

5.1.2 Accuracy using Synthetic Dataset

To further back these observations we have tested both of these approaches with synthetic

datasets using ground truth motion �elds. The synthetic datasets where created based

on the monitored scene. Motion �elds where applied only to the leaves present at the

�ow. This serves a double cause, since despite the motion estimation accuracy testing it

also indicates the ability of our approach to adapt to particle tracking, through the use

of color-based segmentation approaches.

This dataset was generated for both single and stereo camera layouts. The motion

formulations employed in the synthetic dataset consist of linear translations in the each

axis separately and diagonal translations ranging from 0 to 4 pixels. For the stereo case

the disparity map d maximum translation in the x-axis (due to parallel layout assumption)

is of approximately 5 pixels. Figure 5.2 presents one of the generated synthetic datasets

and the ground truth motion �eld. The selection of the translational motion patterns

instead of rotational or spiral motions was based on the facts that the main trend of

motion in the river �ow which is followed ideally by all the tracked particles tends to

follow ideally (assuming no rock formations exist within the river which may produce

rotational or spiral motions due to di�use e�ects) a linear translational motion pattern.

The single and stereo based approaches are compared both on the optical �ow es-

timation accuracy as well as the on the amount of data (window size) required. The

optical �ow �eld estimates of both the single and stereo optical �ow estimation approach

are compared to this ground truth optical �eld. The estimation accuracy assessment is

performed based on the Angular (AE) and Endpoint (EE) error metrics ( [64]). Table 5.1
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shows the average observed errors using the same window size (13 x 13) for each of the

motion cases.

(a) (b)

(c) (d)

Figure 5.2: (a) The synthetic reconstructed river scene with motion added on the leaves,

(green) indicates the initial position and (magenta) the shifted position (a translational

motion to the right direction), (b) the corresponding ground truth motion �eld, (c) the

estimated optical �ow �eld using the single camera probabilistic optical �ow method,

and (d) the estimated optical �ow �eld using the stereo camera probabilistic optical �ow

method.
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Table 5.1: Endpoint and Angular errors between the Stereo and the Single camera Prob-

abilistic optical �ow estimation approaches using for the stereo case a neighborhood size

20% smaller than the one used for the single camera optical �ow probabilistic model.

We observe that both approaches lead to high accurate estimates with the stereo-based

approach retaining more information about the magnitude information compared to the

single-based method with a small loss in the directional information. The resulted errors

show that a mean error Endpoint error of 0.2 pixels and an Angular error of lesser than

1 degrees is produced by the application of a Bayesian inference optical �ow estimation

technique. These results indicate a very good estimation accuracy in the estimation for

both the directional and the amplitude information of the motion �eld. The suitability

of the Bayesian inference approach in the optical �ow estimation for �uids �ow �elds has

been proved in Bacharidis [2].

However, as mentioned, the most important bene�t of the stereo method is the data

reduction during the estimation process. In our test cases we have observed that the use

of the stereo based probabilistic optical �ow estimation method can lead to approximately

15.82% dataset size reduction, without presenting loss in accuracy, compared to the use

of the single camera probabilistic optical �ow estimation method. Figure 5.3 presents the

relation between the window block size variation (window size range [7 − 17]) and the

estimation accuracy for both the single-based as well as the stereo-based approaches. In

sub�gures 5.3.a and 5.3.b we present the error variance for di�erent window sizes between

the two approaches, whereas sub�gure 5.3.c presents the �uctuations of the error metrics

opposed to the optimal window size for the single camera approach (solid points, window

size 13x13).

Commenting on the results, we can observe that the stereo-based approach outper-

forms the single camera-based method. The stereo based method achieves the same or

better accuracy using smaller window sizes, thus reducing both the data requirement as

well as the computation time. Moreover, we can also observe that the standard devi-

ation of the error metrics is also reduced despite the size increase of the interrogation

region indicating that the produced �ow �eld is more compound. As for the estimation

accuracy of the presented stereo-based method, the Angular and Endpoint error metrics

range below 1 degrees and 0.01 pixels, respectively, implying good estimation e�ciency.
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(a) (b)

(c)

Figure 5.3: Average Angular and Endpoint Errors and their standard deviations using

various window sizes in the examination neighborhood formulation for the case of the

stereo-based probabilistic optical �ow estimation method. (a) AE and StD of AE for

both methods, (b) EE and StD of EE for both methods, (c)AE, EE for the proposed

stereo-based approach compared to the optimal neighborhood window size found for the

single camera probabilistic optical �ow estimation method(13 x 13 window- marked with

blue, bullet points indicate the corresponding AE and EE).
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5.2 E�ciency of Motion Estimation in Capturing Local

trends

In this section we evaluate the proposed Stereo-based Probabilistic Optical �ow estima-

tion method on three basic types of �uid motion that can be encountered in both labora-

tory and real world experiments. The motion models used to formulate the experimental

dataset consist of: (a) a simple linear motion, (b) a vortex pair with a rotational mo-

tion pattern, and (c) a membrane-like motion arrangement. These motion patterns were

synthetically formulated by applying the appropriate motion function to a set of moving

particles. The generation process follows the synthetic motion generation scheme based

on Kalman �lter, which is implemented in the PIVLab tool (Thielicke and Stamhuis [65];

Thielicke [66]). The �ow �elds are seeded with particles of 3-pixel diameters, with a size

variation of ±0.5 pixels, having a displacement range from 0 to 4 pixels. Synthetic im-

ages are used as "ground-truth" patterns, since the �ow motion pattern and the particle

seeding are well de�ned. In particular, ground truth motion �elds are derived from the

motion equations used to create the synthetic images.

The algorithms compared are (a) a Gaussian weighted Lucas-Kanade method (Baker

and Matthews [12]), (b) the classic Horn and Schunck method (1981), (c) the Single

Camera Probabilistic approach (Bacharidis [2]) using normal pdfs and (d) a local Particle

Image Velocimetry tool (OpenPIV) (Thielicke and Stamhuis [65]) that utilizes a cross-

correlation algorithm with shifting windows to accommodate for large displacements and

reduce the e�ect of out- of- plane motion(Taylor et.al. [67]; Adrian [56]) and �nally, (e)

the proposed algorithm..

In every experimental case we have used a macro block formulation of 16 x 16 pixels,

leading to a sparser and easier to comprehend �ow �eld. This was performed so as to

�rst, match the �rst 2 methods and the proposed method with the block based formulated

methods (c) and (d). The aim behind the selection of these methods is to illustrate the

di�erence between the �uid directed methods from the classical optical �ow approaches

as well as the di�erence between local and global philosophies in the estimated optical

�ow �eld.

The evaluation metrics used to assess the accuracy of each method are the Angu-

lar Error (AE) and the Endpoint Error (EE) (Baker et.al. [64]). The Angular Error

is determined by the dot product of the motion vectors divided by the product of the

motion-vector lengths, followed by the inverse cosine transformation; it depicts accuracy
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of the directional information on the estimated motion �eld. On the other hand, the

Endpoint Error is de�ned as the absolute squared error between the estimated and the

ground truth motion vectors; it primarily depicts the magnitude accuracy for the es-

timated motion �eld. We evaluate each method's accuracy based on the average and

standard deviation (STD) of these error metrics over the entire image, which are pre-

sented in the following tables. These metrics allows us to have a qualitative inspection

on the estimated motion vectors.

Linear Translation Motion Case:

The linear motion case implies small deviations in amplitude in the rage of [0, 3] pixels. In

order to allow for estimating such small deviations, the smoothing factors in all methods

is not as severe as it should be in uniform motion. The results of each method are shown

in �gure 5.4 and the corresponding Error metrics in Table 5.2.

Method Angular Error Endpoint Error Stde AE Stde EE

Proposed 1.3882 0.1164 0.3383 0.0441

Single Cam Probabilistic 1.5339 0.1732 3.8183 0.1693

Weighted Lucas-Kande 8.2863 0.9624 4.6570 0.1090

Horn-Schunk 2.8214 0.5508 0.8821 0.1052

Particle-Based(OpenPIV) 1.8335 0.2338 3.8095 0.2470

Table 5.2: Evaluation metric results for the linear shift motion case.

From the results we observe that the proposed method as well as the single camera

probabilistic method and the local particle-based method surpass in accuracy (both in

direction and magnitude) the di�erential approaches. More speci�cally, we observe in

Table 5.2 that the proposed method produces average angular and endpoint errors of ∼
1.4 degrees and 0.1164 pixels, respectively, implying good estimation e�ciency. Moreover,

the standard deviation between the estimated vectors is small both in magnitude and

direction implying a coherent and accurate estimate. Both the stereo (proposed) and

single probabilistic (Figures 5.4 (a),(b)) methods preserve the discriminant information

of the region and thus result in high �delity estimates, but with the stereo (proposed

method) showing reduced errors compared to the single camera one.

Di�erential approaches do not perform well in recovering magnitude information and

result in signi�cant underestimation of the motion e�ects. The weighted Lucas-Kanade
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Linear shift case; (a) Ground Truth motion �eld, (b) Stereo-Based Probabilis-

tic method(Proposed), (c) Single Camera Probabilistic approach, (d) Weighted Lucas -

Kanade, (e) Horn-Schunck and (f) OpenPIV tool.
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method(local one) shows the worst performance in both amplitude and direction estima-

tion due to the locality of the implementation scheme forming a trade-o� between uniform

and locally varying estimate. Horn-Schunck's method(global one) allows better preser-

vation of the directional information of this �ow �eld, yielding low angular errors with

a small deviation factor (Figure 5.4(d)). However, from Table 5.2 we observe that Horn

and Schunck's method is inferior to the recovery of magnitude information compared to

the probabilistic and particle based methods due to the fact that the smoothness induced

by the regularization factor used, over-weights the motion amplitude at each region. Fi-

nally, as previously mentioned the local particle-based method achieves high estimation

accuracy coming third to the comparison process.

Vortical Motion Case

For the second test of a rotational motion pattern with two vortexes, the estimated

motion �eld varies smoothly with a diminishing e�ect in magnitude while approaching the

vortex's center.The results of each method are shown in �gure 5.5 and the corresponding

Error metrics in Table 5.3.

Method Angular Error Endpoint Error Stde AE Stde EE

Proposed 8.4615 0.4080 3.2832 0.1627

Single Cam Probabilistic 10.3751 0.4530 4.0843 0.1297

Weighted Lucas-Kande 13.0720 0.4999 6.9035 0.3148

Horn-Schunk 10.0056 0.5989 3.2550 0.3860

Particle-Based(OpenPIV) 5.4748 0.2172 5.0570 0.8076

Table 5.3: Evaluation metric results for the vortex pair of the rotational motion case.

In this test case, the proposed approach(Figure 5.5(a)) ranks second in performance

behind the particle-based methods showing an average Angular Error of ∼ 9 degrees

and average Endpoint Error of ∼ 0.5 pixels showing an error decrease of ∼ 1.5 degrees

and ∼ 0.05 pixels from the single camera Probabilistic approach(Figure 5.5(b)). From

the top performing method of this scenario the particle-based method(Figure 5.5(e)) the

proposed approach shows an error increase of 3.5 degrees. Nevertheless, the standard

deviation of both the stereo(proposed) and single camera probabilistic schemes is smaller

implying that the estimates are more compound. This is a useful algorithmic attribute in

more random cases where the estimated displacement is expected to show large deviations

a�ected by noise.

Konstantinos Bacharidis 98 October 2016



5.2 E�ciency of Motion Estimation in Capturing Local trends

(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Vortex pair case; (a)Ground truth motion �eld, (b) Stereo-Based Probabilistic 
method(Proposed), (c) Single Camera Probabilistic approach, (d) Weighted Lucas -

Kanade, (e) Horn - Schunck and (f) OpenPIV tool.

The di�erential approaches show increased estimation accuracy compared to the pre-
vious problem formulation. Horn- Schunck's method (Figure 5.5(d)) manages to retain
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the directional information of the �ow, ranking second in the angular error estimation,

however, it fails to accurately estimate the magnitude of the motion vectors yielding the

highest endpoint error due to the regularization term which in the estimation process

although providing a smoother and coherent �ow �eld, yet fails to retain the motion

detail of each region. The locally weighted Lucas Kanade scheme on the other hand,

manages to counterbalance the smoothness loss with an accurate magnitude estimate.

The directional information loss shows an angular error of almost 13 degrees and the

magnitude information loss an endpoint error of 0.5 pixels.

Membrane Case

For the �nal test case of a membrane, the motion pattern is similar to a wave-like motion

exhibiting large motion deviations within each region.The results of each method are

shown in �gure 5.6 and the corresponding Error metrics in Table 5.4.

Method Angular Error Endpoint Error Stde AE Stde EE

Proposed 5.1023 0.1946 1.8143 0.1244

Single Cam Probabilistic 10.7231 0.2874 2.0170 0.1648

Weighted Lucas-Kande 12.5725 0.2675 1.8950 0.1097

Horn Schunk 20.9866 0.5029 5.0894 0.2584

Particle-Based(OpenPIV) 5.7395 0.1428 2.1470 0.2308

Table 5.4: Evaluation metric results for the membrane motion case.

For the last test case, the proposed algorithm(Figure 5.6(a)) achieves the highest

accuracy considering the direction information with an angular error of 5.1 degrees. As

far as the magnitude inference task the proposed algorithm ranks second behind the

particle based approach(Figure 5.6(b)) with a di�erence of ∼ 0.051 pixels. Considering

the results of the probabilistic class of methods (proposed and the single camera based

one),the probabilistic methods show a more compound motion �eld (Figure 5.6 (a),(b))

in terms of magnitude deviation, but have about twice as high angular error compared to

the particle based approach. Comparing the two methods we can observe again that the

stereo-based(proposed) surpasses in accuracy the single camera probabilistic approach,

showing reduced estimation deviations both in the directional as well as the magnitude

aspect of the motion �eld.
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As far as the Di�erential approaches they rank last in this test case with the Lucas-

Kanade local scheme being slightly better (Figure 5.6(c)), but with errors similar to the

global probabilistic method. However, we observe that the resulting motion �eld is denser

and the deviation in the angular error is smaller compared to the global probabilistic

scheme. Horn and Schuck's scheme (Figure 5.6(d)) provides the worst estimate due to the

fact that its global scheme along with the smoothness constraint enforce strict coherence

between regions in the form of smoothness, leading to a continuously diminishing motion

estimate towards the center of each dense membrane .
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Membrane case; (a) Ground truth motion �eld, (b) Stereo-Based Probabilistic

method(Proposed), (c) Single Camera Probabilistic approach, (d) Weighted Lucas -

Kanade, (e) Horn-Schunck and (f) OpenPIV tool.
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5.3 Summarization and Clustering of Motion Direc-

tions

In this section of the Results Chapter we present the comparison results between the

selection of a supervised and an unsupervised classi�cation method on the extraction

of the main motion trend. We have compared the classi�ers both on the main trend

of motion selection as well as the real-world velocity estimate and the optimal number

of classes. The desired main motion trend should consist of upstream motion vectors

with none or small deviation to the left and the right. The examined classi�ers are:

(a)K-Nearest Neighbors, (b)K-means with Euclidean distance and Cosine Similarity, (c)

Expectation Minimization and (d) Naive Bayes classi�er. The test case examined in the

following experiments regards a monitoring session in Axelloos River. The reference real

world surface velocity, determined using a Doppler-based device(Q-liner), was found to

be 0.6567m/sec. In this monitoring session the interrogation area was formed around the

Doppler device (Q-liner) whose dimensions were used to approximate the dimensions of

the region, as shown in �gure 5.7. The underlying motions patterns were found based on

the best performing classi�er, that will be presented in the following paragraphs.

Selection of number of classes:

Figure 5.8 shows the deviation between the classi�cation result between di�erent classi�-

cation methods as well as the deviation introduced by the number of classes used. As we

can observe in the �gure the K-NN classi�er although produces a close to the expected

velocity estimate, yet it fails to recognize and classify correctly all the wanted motion

vectors present in the �ow, compared to the Naive Bayes classi�er and lacks stability of

classi�cation as well as accuracy even with more than 4 classes of motion.

As mentioned the examined motion directions used during the experiments were es-

sentially the four main motion orientations(up, down, right and left) provides the most

stable classi�cation results. As we can see in sub�gures (c) and (d) of �gure 5.8 in both

the cases of K-NN and Naive Bayes classi�er the use of an extra class leads to misclassi-

�cations and thus, a false estimate for the main trend of motion.
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Figure 5.7: (a) Initial frame(red box denotes the initial dimensionally known work area),

(b) Initial work area(white box) based on Q-liner's length dimension, (c) Expanded work

area, (d) Optical �ow �eld of the work area, and, (e) Classi�cation result of the underlying

motions
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Figure 5.8: Main trend of motion classi�cation deviation between K-NN and Naive Bayes

classi�ers prior the global optimization step, (a) K-NN with 4 classes, real-world veloc-

ity estimate=0.6350 m/sec, (b) Naive Bayes classi�er with 4 classes, real-world velocity

estimate=0.6377 m/sec, (c) K-NN with 5 classes, real-world velocity=0.7820 m/sec and

(d) Naive Bayes with 5 classes, real-world velocity estimate=0.7334 m/sec.

Results based on the real world velocity estimate:

Concerning the estimated velocity magnitude, we compare the classi�ers based on the

resulting surface velocity estimate, by also examining if they estimated correctly the

main motion trend. The classi�cation task was performed 10 consecutive times for each

classi�er, with the same optical �ow �eld, using the four classes.

The estimated velocities are presented in Tables 5.5 and 5.6. All the classi�ers

presented a success rate from 5/10 to 10/10 on classifying as a main trend of motion purely

upstream motion vectors. The resulted surface velocities presented in Tables I and II are
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based on these successful classi�cation results and contain 5 of the 10 resulted values. In

the last two lines of the tables are depicted the average deviation the correct classi�cation

values as well as the number of correct classi�cations. As correct classi�cation we de�ne

the classi�cation that indicates as a main trend of motion the upstream motion(motion

vectors with a upwards or slightly deviated to the left or right motion direction). The

deviation between resulted velocity values is due to the initial centroids' values used

which resulted in di�erent number of classi�ed motion vectors which combined with the

magnitude based metrics used by most of the classi�ers yields deviations in the resulted

motion. Table 5.5 presents the estimated velocity by using only the local displacement

probabilities to derived the motion vectors and Table 5.6 presents the estimated velocities

after the global optimization stage of the velocity �eld, as presented in Chapter 4.

m/sec K-

means

(Euc)

K-

means

(Cos)

K-NN EM Naive

Bayes

1 0.8418 0.6350 0.7690 0.6198 0.6377

2 0.8893 0.8592 0.7655 0.5962 0.6377

3 0.6350 0.8592 0.5962 0.6259 0.6377

4 0.6350 0.6350 0.8592 0.5920 0.6377

5 0.6350 0.6350 0.7655 0.5328 0.6377

SucNum 5/10 6/10 6/10 7/10 10/10

AvDev 0.0963 0.0816 0.1325 0.0716 0.0190

Table 5.5: Real-world velocity estimates before global optimization step, Q-liner esti-

mated velocity:0.6567m/sec
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m/sec K-

means

(Euc)

K-

means

(Cos)

K-NN EM Naive

Bayes

1 0.6920 0.7996 0.5318 0.5318 0.6476

2 0.6568 0.6270 0.6728 0.5819 0.6476

3 0.6920 0.6270 0.7521 0.6476 0.6476

4 0.7990 0.7330 0.8055 0.5318 0.6476

5 0.6748 0.8604 0.7521 0.5819 0.6476

SucNum 8/10 6/10 6/10 7/10 10/10

AvDev 0.0555 0.0853 0.1009 0.0869 0.0091

Table 5.6: Real-world velocity estimates before global optimization step, Q-liner esti-

mated velocity:0.6567m/sec

In both cases, based on the fact that Q-liner's estimated velocity is 0.6567 m/sec,

we we derive that, prior the global optimization step, the most stable classi�er from the

unsupervised class is the Expectation Maximization classi�er with 7/10 correct identi-

�cations and an average deviation from Q-liner's estimation of 0.0716m and posterior

the global optimization step the most stable classi�er is K-means with a deviation of

0.0555m from the expected surface velocity. From the supervised class we used the Naive

Bayes classi�er as a corresponding method. The Naive Bayes classi�er presented a bet-

ter classi�cation accuracy compared to the unsupervised classi�ers with a 10/10 correct

identi�cations and an average deviation from the Q-liner's estimation, prior the global

optimization step, of 0.0190m and posterior the global optimization step with a devia-

tion of 0.0091m from the expected surface velocity indicating that a supervised algorithm

leads to better accuracy compared to an unsupervised one.

5.4 River Motion Estimation in World Coordinates

We have designed an initial version of the monitoring system that we have previously

presented which has been tested in Koiliaris river, Chania, Crete. In our study site,

Koiliaris river has a small width (≈ 8m) so both parallel and convergent layouts can

be implemented. We have selected and placed in the nearby bridge a convergent lay-

out(Figure 5.9(a,b)), consisting of CCD cameras(Prosilica GC1020) to examine how the
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convergent layout will perform at a small scale experiment (Figure 5.9). The camera

pair is rotated about 12 degrees in the y-axis and ±4 degrees in the x-axis respectively in

order to have a panoramic view of the scene. The baseline between the camera centers is

88cm and the cameras are rotated about 2 degrees and −3 degrees in the x-axis for the

left and right camera respectively. Finally, the camera pair placed at tripods have 5.25

meters distance above the rivers surface. The �nal system will have the cameras placed

at permanent positions on the bridge and with a wireless transmission system in place

(in our initial experiment an Ethernet connection to a modem was used).

(a) (b)

(c) (d)

Figure 5.9: Koiliaris River site,(a)The convergent stereo rig placement on top of the

bridge, (b)Close up on the stereo rig used, consisting of two CCD cameras, (c)View of

the Left camera, (d)View of the Right camera without recti�cation.

Starting from the stereo layout and the depth estimate, we �rst calibrated the cameras
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by placing a chessboard pattern at the river banks, gaining the information required to

relate the physical and the image coordinate systems and thus, producing the 2D to 3D

point mapping, information that can be later used to rectify 2D motion �eld correcting

the perspective e�ect.

The next stage is to extract the 2D motion �eld from the recorded image data. Fig-

ure 5.10 shows the motion �eld extracted using the proposed Stereoscopic Probabilistic

optical �ow estimation method. Moreover, using a Naive Bayes classi�er(which as will

be presented in the following subsection proved to be the best motion pattern classi�er)

we were able to classify the estimated motion �eld into 4 motion classes: (a) Pure x-

axis translation with increase in x-value, indicating motion to the East, (b) Pure x-axis

translation with decrease in x-value, indicating motion to the West, (c) Downwards mo-

tion(South, South-East and South-West) and �nally, (d)Upwards motion(North, North-

East and North-West).

Figure 5.10: An example of the estimated motion �elds and the derived main trends

using stereo camera layout and stereo-based probabilistic optical �ow method.

As can be observed in �gure 5.10 the main motion trend is the upwards motion, a result

verifying the observable real motion of the river. Prior the motion pattern discrimination

and classi�cation we need to isolate the motion vectors belonging to the river from the

vegetation, in order to exclude unwanted and erroneous motion vectors from the motion

pattern classi�cation process as well as the velocity estimation process, as shown in �gure

4.5.
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The most crucial aspect of the presented methodology in leading to accurate estimates

is the projection correction that this stereo-based approach o�ers. The perspective a�ect

can be corrected in the stereo based case using the image plane and scene relation resulting

in a more accurate �ow estimate. This e�ect manifests itself as in pixels in the far sight

of the camera having smaller motion vector magnitudes compared to the pixels in the

front of the camera despite the fact that the motion is actually the same. As mentioned

existing monitoring systems with single camera layouts required the use of Ground Points

with known coordinates in order to undo the perspective e�ect, a constraint that a stereo

layout does not have, thus making this monitoring system more �exible and autonomous

compared to its peers.

(a)

(b)

Figure 5.11: Koiliaris river test case, (a) river's motion �eld without projection correction

placed in image coordinate system and (b) scene and motion �eld rescaled motion �eld

based on the reconstructed 3D scene coordinates.
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Avg. pixel motion 3 
pixels per axis

Avg. pixel motion 5 
pixels per axis

Leaf group Motion field – No projection correction

(a)

(b)

Figure 5.12: Leaf bunch tracking in Koiliaris river test case, (a) leaf bunch being tracked

and corresponding motion �eld without projection correction placed in image coordinate

system and (b) scene and motion �eld orthorecti�cation based on the reconstructed 3D

scene coordinates.

To illustrate this e�ect we have isolated leaves �owing in the river surface tracking

their motion in both viewing cases. The stereo based approach allows the correction of

the perspective e�ect by associating the 3D world point information of the scene with

the image plane information and the derived motion �eld.

Figures 5.11 and 5.12 present the test case and the rescaled optical �ow �eld based

on the real world motion as estimated using the relations between the motion changes in

each coordinate system. The �rst indicates the rescaled magnitude of the motion vectors

for the whole river �ow �eld whereas the second the rescaled motion vectors for a leaf

bunch. The projection correction essentially scales the motion vectors according to the

3D world coordinate system. In the test case presented in Figure 5.12 the 3D motion

found in the initial and �nal leaf positions remains almost unchanged despite the fact
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that the image based motion di�ers approximately 2 pixels.

5.4.0.1 Proposed and Conventional Velocity Estimations

Having found the 2D motion �eld, derived the transformation relation between the image

plane and the 3D world coordinate system, allowing the correction of the perspective

e�ect, we �nally reach to the out-most aim of this paper, i.e. the estimation of the 3D

surface velocity of the river.

By relating the two coordinate systems, as presented in Chapter4 we can compute the

3D average surface velocity of the river. In the following Table 5.7 we present our velocity

estimates on the Koiliaris's surface velocity for 4 monitoring sessions, with measurements

taken under almost ideal measuring conditions (no rain or cloudy days). Moreover,

we compare the estimated surface velocity with the velocity estimates produced using

conventional Hydrological equipment(accelerometers and Doppler based devices) in order

to present the estimation deviation. The �rst two estimates were made the same day

at two distinct video recording, whereas the remaining two monitoring sessions where

performed in di�erent days.

Test Cases Conventional Equipment Proposed Monitoring System Deviation

1 0.3993 ± 0.0331 m/sec 0.4124 m/sec +0.0131 m/sec

2 0.3993 ± 0.0331 m/sec 0.3864 m/sec -0.0129 m/sec

3 0.6251 m/sec 0.6009 m/sec - 0.0242 m/sec

4 0.7143 m/sec 0.6947 m/sec -0.0196 m/sec

Table 5.7: Table Deviation between the estimated river surface velocities measured with

conventional equipment and the proposed image-based method.

As can be observed from the table our approach shows an average deviation of

±0.01745 m/sec between the real river surface velocity measured using conventional

equipment (accelerometers and Doppler-based devices) and the velocity estimate derived

using the proposed image based method. The velocity estimate using conventional equip-

ment (i.e. accelerometers) is considered to be the average surface velocity ±the variance,
as measured throughout the monitoring session. This deviation shows that the proposed

approach even at this current prototype stage produces close to actual surface velocity

estimates. Even more this deviation can be further reduced through the performance and

accuracy optimization of each of the system's components.
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5.4.0.2 Velocity Estimate Validation

The �nal stage of the system, consists of the estimation validation which ensures the

accuracy of the estimation. If natural particles, such as leaves, are present within the

�ow then they are used as validation points for the estimated velocity. The leaves are

assumed to follow the river motion, thus having the similar velocities. Assuming an al-

most constant velocity we simply examine whether the leaf bunch enters an interrogation

region, de�ned by two points or objects in the scene (indicators), after a speci�c number

of frames since the frame that they were �rst identi�ed.

Following the methodology presented in Chapter 4 we have applied this validation

scheme to our experimental scene in Koiliaris River. In our case a leaf formation is

automatically isolated through appropriate thresholding in the vegetation class found

during the river and vegetation class, its SURF features are being extracted and then the

particle is searched in future frames. A simpli�ed example of this process, in our case

of study, is shown in �gure 5.13, where initially the leaf pattern is isolated and used as

a reference pattern. This leaf pattern is then examined in future frames. At each frame

each particle is isolated, its SURF features are being extracted and then compared to the

reference pattern.

A more elaborate representation of our evaluation scheme, applied in Koiliaris River,

is shown in �gure 5.14, showing the �nal implementation of our method applied in one of

our monitoring sessions. The red and blue color variations in the �gure indicate the leaf

motion between consequent frames and were added to highlight this motion. As indicator

points/objects we used distinct rock and vegetation formations that were present in the

scene forming an interrogation region of approximately 0.59 meters in length, computed

by taking the depth estimate di�erence of the centroids of each indicator(in the test case

a bush and rock formations as shown in Figure in points 1 and 2 respectively).

The �rst leaf encounter within the interrogation region was in frame 128 of our test

video. The frame rate of the monitoring camera set was 30fps. The estimated velocity

according to our approach was 0.3864 meters/sec. Following our approach we estimated

that the leaf bunch will require 86 frames to �rst exit the interrogation region, i.e. the leaf

will require t = 1.53secs to go through the interrogation region. As shown in �gure 5.14

the leaf bunch enters the interrogation region in frame 212 and starts to exit (�rst leaf

to exit) the interrogation region at frame 301 showing that our approach had a deviation

of freal − fexpected = 301− 298 = 3 frames showing that our approach is close to the real
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leaf velocity, and thus, proving the validity of the estimated velocity.

(a) (b) (c)

(d) (e)

Figure 5.13: Particle isolation and tracking, (a) Segmented scene containing the vege-

tation and the natural particle being tracked, i.e. the leaf, (b) Isolated particle for the

examination process, (c) The vegetation and natural particles present at N = 10 frames

forward, (d) Isolated particles present in the current frame and (e) Matching of the ref-

erence particle in the current frame to verify that it has cascaded to this expected region

at this current frame based on the velocity estimate, with red is the reference particle

pattern and blue the particles present in the current frame.
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5.4 River Motion Estimation in World Coordinates

(a) (b)

Figure 5.14: Validation stage in Koiliaris River. Red and blue colors indicate the motion

between consequent frames. (a) The leaf bunch formation across the frame series are

fused into one unique frame to better represent the methodology stages across the frame

series, (b) Identi�ed and tracked leaf formation based on a reference leaf pattern taken

from previous frames.
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Figure 5.15: Initialization window of Fluid Flow Viewer (v.1.0).

5.5 Visual Environment: Fluid Flow Viewer

Following the work presented in Bacharidis [2], we present a new version of the graphical

tool "Fluid Flow Viewer (FFV)" that incorporates all the aforementioned capabilities

assisting a user to easily set up an image-based river monitoring system(Figure 5.15).

Such tools, can also be very useful to hydrologists studying the properties of the ow and

using the information derived for the extra extraction of �ow characteristics.

This version of the graphical tool(FFV v.1.0) presents the user with the following

possibilities:

• Real time view of each camera and instant single frame and video acquisition.

• On spot stereo rig calibration, plane recti�cation and depth map extraction.

• Reprojection error display in order to evaluate the depth extraction accuracy.

• Motion �eld extraction using the presented Stereo-based Probabilistic method.

• Vortex Detection and main motion trend extraction.
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• User- de�ned selection of the interrogation region by allowing the user to manu-

ally select the two indicator/objects, presenting their depth estimates in order to

evaluate the accuracy of the depth estimate.

• Real world average surface velocity of the river.

The speci�c version of the Fluid Flow Viewer was speci�cally designed in order to

allow the user to set up the image monitoring system, acquire images of the �ow, calibrate

the system and extract on spot measurements of the �ow.

The system's stages involve the following tasks: (a) View of the scene(real time)

from each camera allowing the user to appropriately set up the stereo rig. (b) Stereo

Rig calibration in order to extract the parameters that allow the relation of the image

plane with the real world coordinate systems, (c) Depth Map extraction, (d)Interrogation

region formulation through user-de�ned indicators,(e) 2-D motion �eld and main trend

extraction as well as vortex detection(more details on the methodology used in this stage

can be found in Bacharidis [2]), and (e) Real world velocity estimation. Figure 5.16

presents examples of some of the stages.

The steps (d) to (f) can be performed multiple times, allowing the user each time

to determine parameters of the Optical �ow estimation method as well as interrogation

region thus, allowing to essentially determine the accuracy of the �nal estimate. Moreover,

the user is able to save and load the parameters of a river case, i.e. the parameters relating

the cameras of the stereo rig and the real world as well as the optical �ow algorithm's

ones allowing him to perform post-processing on the data.

The advantages and novelty of the viewer is that it allows even at this non-optimized

prototype on spot measurements with a waiting time between each session of approxi-

mately 10 minutes. All the aspects of the monitoring system are controlled from this

tool presenting the user the freedom of forming the layout in the most accurate way

possible by evaluating the accuracy of stereo rig's relations and depth map extraction.

The biggest advantage of this tool is that it provides the system with independence and

�exibility to be applied in almost every river case.
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(a) (b)

(c)

(d)

(e)

Figure 5.16: Some of the Stages of FFV, (a)Scene view and Frame capture, (b)Camera

Calibration and Error Visualization,(c)Depth Map Creation(image from another session,

(d)Indicator Selection, (e) Region formulation and Motion �eld
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Chapter 6

Conclusion

6.1 Conclusion

This thesis presented a new image-based river monitoring framework that allows the

estimation of the real world average surface velocity of the river �ow using image data.

More speci�cally, we presented and examined the theoretical basis behind each component

of the system and assessed its role in the estimation process. The proposed system shows

high estimation accuracy, a deviation of±0.01745 m/sec from the estimate acquired using

conventional equipment, it is autonomous and �exible allowing on-spot measurements at

almost any river �ow case. Furthermore, compared to its peers the systems is free of the

ground points requirement due to the novel use of a stereo camera layout that allows

immediate mapping between the image plane and world coordinate systems.

Moreover, this thesis presented a stereoscopic probabilistic optical �ow method that

utilizes the stereo data as a means of strengthening the displacement probability esti-

mates of a pixel to a candidate position found by the use of Bayesian inference optical

�ow �eld estimation scheme. The algorithm was based to a probabilistic method pre-

sented in our earliest work(Bacharidis [2]) which for a candidate neighborhood associates

each destination position to a transaction likelihood, considered as a sample of a local

distribution function. The estimated local distribution functions are combined with a

di�erential basis functions to form a conditional probability of the observed data based

on the underlying motion �eld. By applying the Maximum a Posterior rule, using a prior

assumption of the motion model, we can end up with the posterior probability of motion,

i.e. the motion �eld.

Konstantinos Bacharidis 119 October 2016



6. CONCLUSION

The presented algorithm proved to be more accurate compared to particle-based block

matching and di�erential optical �ow methods concerning cases of �uid �ow motion

pattern estimation. The presented method succeed on retaining both magnitude and

directional information of the motion �eld, leading to coherent motion �eld estimates

with angular errors of less than 1 degree and endpoint error of less than 0.2 pixels.

Furthermore, compared to its predecessor the addition of the stereo data in the estimation

process leads to an increase in estimation accuracy as well as in computational e�ciency

since in order to achieve the same accuracy the proposed algorithm required almost

15.90% less data in order to estimate the transition coe�cients, compared to its single

camera predecessor.

6.2 Future Work

6.2.1 Proposed Image-based Monitoring System

As far as the proposed monitoring system, the system will be tested in more river mon-

itoring cases in order to further examine its accuracy and assess the role of each of its

parameters in the deviation on the velocity estimate. Moreover, testing of monitoring

under various weather conditions, will allow us to assess its performance based on the

weather condition factor, since so far the system has only been tested under ideal weather

conditions.

Moreover, more elaborate pre-processing and post-processing will be performed on

the observed data in order to reduce the a�ect of noise or extreme illumination variations

on the estimated motion �eld. Techniques such as histogram equalization and motion

vector �ltering have already applied at the current version of the system, however, the

methods used are basic and more problem-focused ones are expected to further increase

the accuracy.

6.2.2 Stereo-based Probabilistic Optical �ow Method

Since the proposed algorithm is a variation of the one presented in our earliest work,

future variations on this that will allow us to further increase its accuracy and com-

putational performance follow the same pattern as the suggestions made for its pre-

decessor(Bacharidis [2]). For example, the use of shifting windows for the candidate
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neighoborhood based on an similarity measures will allow the algorithm to detect larger

displacements, thus increasing the algorithms accuracy in cases of high-speed �uid �ows.

Another approach is to change the basis function used to de�ne the conditional proba-

bility of motion, i.e. functions whose data representation resembles the examined motion

style can be used, allowing a more problem-speci�c motion �eld estimation method that

increases the accuracy. Finally, concerning the problem of increasing the computational

performance of the algorithm one solution is to perform the data computation on Fourier

space domain.
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