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Abstract

Classic approaches to game AI require either a high quality of domain knowledge, or
a long time to generate effective AI behavior. Monte Carlo Tree Search (MCTS) is a
search  method  that  combines  the  precision  of  tree  search  with  the  generality  of
random sampling. The family of MCTS algorithms has achieved promising results
with perfect-information games such as Go.  In our work, we apply Monte-Carlo Tree
Search to the non-deterministic game "Settlers of Catan", a multi-player board-turned-
web-based  game  that  necessitates  strategic planning  and  negotiation  skills.  We
implemented an agent which takes into consideration all the aspects of the game for
the first time, using no domain knowledge. 
In our work, we are experimenting using a reinforcement learning method  Value of
Perfect Information (VPI) and two  bandit  methods,  namely,  the  Upper Coefficient
Bound  and  Bayesian Upper Coefficient  Bound  methods.  Such methods attempt  to
strike a balance between  exploitation  and  exploration  when creating of the search
tree. 
For first time, we implemented an agent that takes into consideration the complete
rules-set of the game and makes it possible to negotiate trading between all players.
Furthermore, we included in our agent an alternative initial placement found in the
literature,  which is  based on the  analysis  of  human behavior  in  Settlers  of  Catan
games.
In our experiments we compare the performance of our methods against each other
and against appropriate benchmarks (e.g.,  JSettlers  agents), and examine the effect
that  the  number  of  simulations  and  the  simulation  depth  has  on  the  algorithms’
performance.  Our  results  suggests  that  VPI scores  significantly better  than  bandit
based  methods,  even  if  these  employ  a  much  higher  number  of  simulations.  In
addition to this, the simulation depth of the algorithm needs to be calculated so the
method will neither get lost in deep simulations of improbable scenarios neither end
up shortly without given a proper estimation of the upcoming moves. Finally,  our
results indicate that our agent performance is improved when the alternative, human
behavior-based, initial placement method.
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Δενδρική Αναζήτηση Monte Carlo στο Παιχνίδι
Στρατηγικής "Άποικοι του Κατάν"

Περίληψη
Παραδοσιακές μέθοδοι Τεχνητής Νοημοσύνης χρειάζονται είτε υψηλή γνώση πάνω
στον  τομέα  που  εφαρμόζονται,  είτε  χρειάζονται  αρκετό  χρόνο  ώστε  να
προσαρμοστούν. Η Δενδρική Αναζήτηση  MonteCarlo (Monte Carlo Tree Search –
MCTS) είναι  μια μέθοδος αναζήτησης που συνδυάζει  την ακρίβεια της δενδρικής
αναζήτησης  με  την  γενίκευση  που  προσφέρουν  οι  τυχαίες  δειγματοληψίες.  Η
οικογένεια  των αλγορίθμων  MonteCarlo έχει  επιτύχει  αισιόδοξα αποτελέσματα σε
κλασικά παιχνίδια,  με πλήρη πληροφορία,  όπως το επιτραπέζιο παιχνίδι  Go.  Στην
εργασία μας, εφαρμόζουμε Δενδρική Αναζήτηση MonteCarlo στο μη-ντετερμινιστικό,
επιτραπέζιο παιχνίδι στρατηγικής "Άποικοι του Κατάν". Αναπτύξαμε έναν πράκτορα
που, για πρώτη φορά, λαμβάνει υπόψη όλες τις πτυχές του παιχνιδιού με καθόλου, εκ
των προτέρων, γνώση του παιχνιδιού.
Στην  εργασίας  μας  τρέχουμε  πειράματα  χρησιμοποιώντας  τη  μέθοδο  ενισχυτικής
μάθησης  Αξία  της  Τέλειας  Πληροφόρησης  (Value of Perfect Information) και  δύο
μεθόδους «κουλοχέρη», την μέθοδο Άνω Όριο Συντελεστή (Upper Coefficient Bound)
και  μια  επέκταση  αυτής  της  μεθόδου  -  την  μέθοδο  Μπαεσιανού  Άνω  Ορίου
Συντελεστή(Bayesian Upper Coefficient Bound). Στόχος αυτών των μεθόδων είναι να
εξισορροπήσουν  την  σχέση  εκμετάλλευσης-εξερεύνησης  (exploration-exploitation
problem) κατά την δημιουργία του δένδρου αναζήτησης. 
Για πρώτη φορά στην σχετική με το  Settlers of Catan βιβλιογραφία, αναπτύσσουμε
έναν  πράκτορα  που  χρησιμοποιεί  MCTS ο  οποίος  λαμβάνει  υπόψη  όλους τους
κανόνες  του παιχνιδιού ενώ ταυτόχρονα  μπορεί  να διαπραγματευτεί  ανταλλαγές με
τους  υπόλοιπους  παίχτες.  Επιπρόσθετα,  συμπεριλάβαμε  στον  πράκτορα  μια
εναλλακτική στρατηγική αρχικής τοποθέτησης που υπάρχει στην βιβλιογραφία, και η
οποία χρησιμοποιεί γνώση προερχόμενη από την ανάλυση συμπεριφοράς ανθρώπων
κατά την τοποθέτηση κομματιών.
Στα  πειράματά  μας  εξετάζουμε  την  απόδοση  των  μεθόδων  μας  όταν  έρχονται
αντιμέτωπες μεταξύ τους, ή με κατάλληλα επιλεγμένους αντιπάλους (benchmarks),
όπως οι γνωστοί JSettlers agents. Επίσης, εξετάζουμε το πώς το βάθος και το πλήθος
των προσομοιώσεων επηρεάζει τη απόδοση των αλγορίθμων μας. Τα αποτελέσματά
μας  υποδεικνύουν  ότι  η  μέθοδος  VPI με  λιγότερες  προσομοιώσεις  είναι  πιο
ανταγωνιστική σε σχέση με τις μεθόδους ληστές, παρά το γεγονός ότι οι τελευταίες
χρησιμοποιούν  πολλαπλάσιες  προσομοιώσεις.  Επίσης,  είναι  σημαντικό  να
υπολογιστεί το βάθος των προσομοιώσεων στον αλγόριθμο, ώστε οι μέθοδοι να μην
χάνονται σε ατέρμονες προσομοιώσεις απίθανων σεναρίων, αλλά ταυτόχρονα να μην
τελειώνουν  την  εξερεύνηση,  χωρίς  να  έχουν  κάνει  μια  επαρκή  εκτίμηση  των
επόμενων  κινήσεων.  Τέλος,  τα  πειράματά  μας  δείχνουν  πως   η  εναλλακτική
στρατηγική  τοποθέτησης  που εξετάσαμε  βοηθάει  στην  αύξηση της  απόδοσης  του
πράκτορά μας.
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1 Introduction

Developing sufficient Artificial Intelligence (AI) for games was always challenging
from a computer science point of view. Most AI agents, for unsolved games, are based
either on stored plays either on hand-coded heuristic evaluation factions. A different
approach is offered by Monte Carlo Tree Search (MCTS) methods which attracts the
significant attention the last decade. MCTS is a method for making optimal decisions
by combining the precision of tree search and the generality of random playouts.
Research interest in MCTS risen rapidly due to its success with computer Go and
potential application to a number of other difficult problems. Its applications extends
beyond games and MCTS can theoretically be applied to any domain that can forecast
outcomes by simulations. 

1.1 Motivation:  Real-Time,  Non-Deterministic,  Partially
Observable Multiagent Environments

The family of MCTS algorithm had great success in deterministic games such as Go,
therefore  we  needed  to  reach  for  the  limits  of  this  method.  The  next  step  from
deterministic  and perfect  information  games  is  the  addition  of  Bayesian  elements
through the game, converting the game to Non-Deterministic and hiding parts among
players. A famous strategy board game fulfilling all the criteria is the game Settlers of
Catan. Several implementations have been made [4][8][21] but none of them tested
their agents according to the complete rule set of the game.

Settlers of Catan is a strategy board game played by [2,4] players.  Players in this
game are trying to colonize an deserted island by gathering resources in order to build
cities and roads. There are distinct turns for each player, which is very important for
our implementation, and on each round the providing resources are determined on
dice result.
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1.2 Related Work 

Szita et al. [4] made an agent selecting actions based on MCTS methods but on the
action selection they used weights based on a priori domain knowledge. Mixing the
Monte - Carlo philosophy with hand-coded evaluations. They also, remove from the
simulation phase all actions concerning Development Cards. Also, they handicapped
their agent by removing his ability to negotiate trading with other players, but all the
other players can perform trades among them, leaving out one of the most critical
aspects of the game.

The agent of Panousis [21] is rather similar to Szita et al. [4]. During the making of
the tree, the agent makes a stack and place all the available moves, but it favors some
moves. An action that will provide more value at the time it will be played (not by
calculating a long-term plan) is favored over the others and placed on top of the stack.
On each round, the agent is making all the actions that he is able to do by picking the
first action from the stack. As in the work of Szita et al. [4], the development cards are
ignored during the simulation, and throughout the game all trades are disabled. Also,
the agent in each round spends all his resources, trying to build as many constructions
as possible from his stack. If he cannot build a type of piece in the stack then just
continues  to  the  next  one  until  it  reach  the  bottom of  the  stack  or  he  is  out  of
recourses. 
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1.3 Contributions and Thesis Outline

In our work, we have implemented a MCTS agent using three different methods in
various simulations depths. Our agent is using the whole rule set for the game and
does  not  use  any domain  knowledge.  Trading  negotiations  among  all  players  are
available and  we give an estimated reward for the development cards during the
simulation phase. Also, we included an empty action to our agents planning, so he can
choose to do nothing if he has a better plan calculated. 

In the following list we present our contributions, which will be discussed into the
thesis:

1. We are the first to implement an agent with pure MCTS methods leaving out
any domain knowledge in the sense that action selection is based only on the
simulated evaluation of the algorithm. 

2. Also, we are the first1 to test our agent in an environment with complete rules-
set. Including Developing cards estimation during the simulation step of the
algorithm.

3. We examine the performance of our agent using different simulation depths, in
order to optimize the  exploitation-exploration dilemma at the search of the
tree. 

4. We devised and used a plethora of metrics to assert methods' performance. 
5. We also tested whether results could be improved by using a recent method by

Dobre et al. [22], which is a sophisticated calculation for the initial placement.
6. We test our agent using three different methods. 

 A standard  among the  MCTS family bandit  method  (UCT)  and an
improvement of this using Bayesian interference (BUCT).

 And the dominant, based on our results, (VPI) reinforcement learning
method.

In the following chapters we will describe the game "Settlers of Catan" (Chapter 2)
and point out some of the main strategies in the game. Following that, we will present
the JSettlers framework (Chapter 3) that we used for our experimentation and describe
the enemies of our agent. At Chapter 4 we will provide all the necessary background
for our thesis regarding the Monte Carlo Tree Search Algorithm, as well as all its
different methods that we will use. Chapter 5 describes our agent implementation and
the  adaption  of  MCTS  algorithm  to  the  specific  domain.  The  results  from  the
experiments  we  made  are  presented  at  the  chapter  6  while  chapter  7  draws
conclusions and outlines possible future work. 
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2 Settlers of Catan

This board game was created by Klaus Teber and it was first published in 1995. It is a
landmark among board games because it combines simplicity,  strategy and trading
skills. 
A few references  about this game in the press:

“Settlers has become so popular in Silicon Valley that it's now being used as an icebreaker at some business 
meetings.”
-Wall Street Journal

“Over the past few years, Settlers of Catan has transformed from an activity enjoyed by a small niche of gamers 
into a mainstream hit.”
-The Atlantic

“Settlers manages to be effortlessly fun, intuitively enjoyable, and still intellectually rewarding, a combination 
that's changing the American idea of what a board game can be.”
-Wired Magazine

“...the new generation of post collegiate gamers is gravitating toward more complex games of exploration and 
trade...like Settlers of Catan...”
-The New York Times

“Settlers has spread from Stuttgart to Seoul to Silicon Valley...it has become a necessary social skill among 
entrepreneurs and venture capitalists.”
-The Washington Post

“Settlers has its own elegant economy, in which the supply and demand for five different commodities are 
determined by tactics, luck and the stage of the game.”
-Financial Times

The game is played by 2 to 4 players, and their goal is to colonize the uninhabited
island of Catan. During the game players will construct cities, settlements and roads.
By expanding their territory they win Victory Points (VP) and when a player reach 10
VP wins the game. In order to build something, players needs resources. Resources
can be gained either by natural  locations around the edifices of each player either by
trading with other players. [1][2]
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2.1 Board

2.1.1 Components

The board of the game is consists of 19 hexagon tiles of terrain surrounded by 18
hexagon tiles of sea and 18 tiles with numbers.
Terrain tiles:

1. Desert (1),  produces nothing
2. Forest (4),  produces wood
3. Hills (3),  produces clay
4. Meadows (4),  produces wool
5. Mountains (3),  produces ore
6. Plains (4), produce wheat

Sea tiles:
1. Simple sea (9)
2. Trade ports (9)

Number  tiles:  The  tiles  with  number  represent  all  the  possible  dice  outcomes
aggregation. So the numbers belong in [2,12] with all numbers appear twice except
the numbers 2 and 12 which are represented only once.

2.1.2 Setting up the board

The process of setting up the board starts by selecting all the 19 tiles of terrain. After
shuffling, one column contained 5 tiles is set. Afterwards another column of 4 tiles is
placed on each side of the previous column. Lastly, two columns of 3 tiles are placed
on the right and the left side of the previous (figure 1).

Figure 1: Placing hexes

After all the terrain tiles are set, one port tile is placed alternately by one tile of sea
(figure 2).
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Figure 2: Placing ports

To complete the set up of the board, 19 number tiles are placed on the top of each
terrain tile. To do so, the placement starts from a  terrain tile at the outline of the
hexagon which is located to one of the six corners of the hexagon. The placement
continues to the next tile reverse clockwise, and when the outline is filled it continues
to the second layer making a vortex to the center, skipping the terrain tile which is the
desert (figure 3).

Figure 3: Placing numbers on hexes

The numbers are not placed in random order, but they follow this pattern: 
5→2→6→3→8→10→9→12→11→4→8→10→9→4→5→6→3→11
So at the end, it will look like figure 4.

Figure 4: Final board
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2.2 General Rules

Each turn of a player has the following actions:
1. Dice roll, all players takes resources based on their establishments.
2. The current player can make trade either with other players either with the

stash.
3. The  current  player  can  build  road/settlement/city  or  buy/play  development

cards. 

2.2.1 Income - resources

The player starts his turn with a dice roll. The summarized result of the dice dictates
which hexagons produce resources. Each player who has built a settlement or a city
on an intersection takes resources.

2.2.2 Trade

The player can trade his resources. 
I. Internal Trade

The player can offer to trade resources with all the other players and take  
counteroffers from other players. All the trades that will occur must include 
the current player. Players cannot trade when it's not their turn.

II. Sea Trade
a) The player can trade 4:1, meaning that the player can return 4 resources of the

same kind and take 1 resource of any kind he wants.
b) If the player has built a settlement or a city at a port location, then better trades

3:1 or 2:1 are available.
Note that a player can always trade 4:1 even if he has not a built in port location.

2.2.3 Construction 

In order to build a player must give a specific amount of resources. Players cannot
build more than the pieces they have in their inventory.

a) Road : 1x[clay] + 1x[wood]
 The new road must be adjacent with a piece of the player
 In each corridor can be built only one road
 The  player  with  the  biggest  uninterrupted  road  (minimum  5)   is

awarded with the "Longest Road" which awards 2 victory points to the
player. If a player exceed the road then he takes the "Longest Road"
from the other player as well as the 2 victory points.

b) Settlement: 1x[clay]+1x[wheat]+1x[wood]+1x[wool] 
 A settlement  is  built  on  an  intersection  only  if  the  three  neighbor

intersections are not occupied. 
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 The new settlement  must  be adjacent  with at  least  one  road of  the
player.

 For each settlement the player take 1 resource from all the hexagons
during the income phase.

 Settlement awards 1 victory point to the player.
c) City: 3x[iron]+2x[wheat]

 A city can be built only as an upgrade of a settlement.
 When  a  player  upgrades  one  of  his  settlements,  he  replaces  the

settlement with the city and the settlement becomes again available.
 For each city the player takes 2 resources from all the hexagons during

the income phase.
 City awards 2 victory point to the player.

d) Development Card: 1x[iron]+1x[wheat]+1x[wool]
 When a player buys a development card, he gain one random from the

stash.
 There are five different types:

 Knight (14)
 Victory Point (5)
 Monopoly (2)
 Road Building (2)
 Year of Plenty (2)

2.2.4 Special Occasions

a) Robber
 When a player rolls 7, no player is gains any resources.
 All the players, who have more than 7 resources, choose half of them

and they discard them. If they have odd number of cards, they round
down the number.

 The player has to move the robber to another hexagon that he likes
(cannot remain unchanged)

 When the player place the robber to a hexagon, he can steal 1 resource
from a player who has built a city or settlement on this hexagon.

 If the number which is rolled is occupied by the robber, this hexagon
does not produce resources for any of the players.

b) Play Development Card
A player, during his turn, can play a development card anytime he wants. But
he must not have bought this card at the same round.

I. Knight
 When a player plays a knight card, we must do all the actions

like he has rolled 7 on dice.
 All the Knight cards remain open at the player.
 When  someone  has  3  knight  cards  he  is  awarded  with  the

"Large Army" and 2 Victory Points.
 If  another  player  gain  more  knights  than  the  owner  of  the

"Large Army" he immediately takes the "Large Army" along
with the 2 Victory Points. 
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II. Monopoly
When a player plays a monopoly card, he chooses one type of resource
and all players must give him all the resources of the chosen type they
have.

III. Victory Points
The cards with Victory Points remain hidden until the player has 10
Victory Points and he wins the game.

IV. Road Building
When a player plays this card, he can build two road pieces with no
cost.

V. Year of Plenty
Playing this card, the player can take two resources from the bank.

2.2.5 Starting the Game

Each  player  starts  the  game  with  5  settlement,  4  city  and  15  road  pieces  in  his
inventory. The first player is selected randomly and the other players, in clockwise
order. The first player places a road piece and a settlement piece on the board and all
the other players follow according to their turn. When the last player places his pieces,
then they start  a new round of placing a road and a settlement but this  time in a
reverse order. In meaning that the last player will place first and the first player will
place the last pieces. So at the beginning of the game each player starts with 2 Victory
Points.

2.2.6 Game Overview

On a player's turn, the following actions can be made:
1. The player must roll the dice. The result of the roll, declares which hexagons

produce resources (the result applies to all players).
2. The player may trade resource card with other player and/or use marine trade.
3. The  player  may build  roads,  settlements  or  cities  and/or  buy development

cards. Player may also play one development card at any time during his turn.
Figure 5 represents an abstract flow chart of the game. 
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Figure 5: Turn flow-chart

2.2.7 End of the Game

The game ends, when someone in his turn has 10 or more Victory Points. A player in
order to win, it must be his turn and he must has or acquire at least 10 Victory Points. 

2.2.8 Tactics

Since the game of Settlers of Catan has a variable map, the tactical considerations of
each game are different. There are nevertheless, some common points:

 At the beginning of  the game,  the most  important  resources  are  brick and
lumber in order to build roads.

 Harbors have value. Especially when they are combined with great amounts of
a certain resource. 
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 The  placing  of  your  first  two  settlements  should  leave  enough  space  to
expand.

 The key to victory is trading.
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3 The JSettlers Framework

There are many software platforms for Settlers of Catan players, which are mostly
based on heuristics evaluations and can easily be defeated by a human.  One of the
strongest is Robert S. Thomas' JSettlers, an open-source Java version of the game,
which has heuristic-based AI players and is a basis of many Settlers of Catan servers
online.  For instance, Pfeiffer et al. [3] and Szita et al. [4] both use that environment
to test their agents.
In our implementation, we use elements of and test our agent against the JSettlers
environment, so it is important to present it to some extremely.

3.1 Interface

When  a  player  enters  a  game,  s/he  interacts  with  the  Game  Interface  which  is
composed by 4 player regions - the board region and the chat region. At the beginning
there is no player sitting and all hexes of the board are water. 

Figure 6: Empty interface

After the player is seated, he chooses against how many player he would like to play
against (1 to 3). After the game starts, the board is created as described in the rules
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and  a  player,  that  is  selected  at  random,  starts  first.  After  a  few turns  the  view
provided by the interface will be similar to that of Figure 7.

Figure 7: Complete Interface

There are two different player regions.

 Each player  region displays  all  public  information about  each player.  How
many Knights (marked as "soldiers" on the interface) the player has played,
how many roads,  settlements,  cities  has  available  in  inventory,  how many
unused Development Cards and how many resources (only the number not the
type). Also, the owner of Large Army and Large Road (if there is any) are
displayed in the area of the respective player. 

 Each player can view additional own information regarding her actual Victory
Points  (calculate  victory points from development  cards)  and what  type  of
resources and development cards are available to her. Also, this area features
the trading aspect of the player. There are three buttons for clearing the sets,
trading with ports or bank, and for offering resources to other players.
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Figure 8: Enemy player Figure 9: Our player

At the bottom of the interface there is an area containing all the information about
buying actions as well as how many are the remaining development cards. It shows
what resources are needed in order to build a piece or buy a development card. It is
also the interface to perform these actions. The boxes with the dashed indicate that the
player does not have the necessary resources to build a piece. When the resources are
gained,  the  dashes  are  replaced with  a  Buy indication.  Also,  Game Statistics  and
Game info buttons are used to show the statistics of the game and the options of the
game respectively.  

Figure 10: Game index

On the top of the game board, there is a region containing the chat and information
area. This region is divided into two subareas. The first area above includes all the
information about the game progress like dice roles, resources acquiring and trading
offers. On the bottom area there is the chat between players . 
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Figure 11: Chat

In the next sections we briefly present the agent implementation of Robert  Shaun
Thomas.

3.2 Agent Implementation

Robert Shaun Thomas in [5], describes his agent implementation analysis as falling
into 3 chapters, as follows. 

3.2.1 Determining Options & Resource Estimation of Time

Thomas describes some of the basic strategies that a player can use to decide where
make his initial placement of his pieces. These strategies aim to maximize the player's
"building speed".
In order to make a choice of what to build, we need to know all the available options
we have. The legal places to build are determined by the rules described in (2.2.3 -
Construction). In the JSettlers framework there is an object keeping track of all the
legal moves for each player and there is another object which includes all the potential
places.
Now that the agent knows all  the moves which are available to him, he needs to
decide where to build. The initial placement of the settlements is important because
not only determines what resources will be produced but it also determines where he
can build in the future, affecting the strategy of the player. A player should place the
settlement according to which subset of the 5 elements he prefer and maybe if he can
combine resources with ports (he can choose to place a settlement at a port giving him
the disadvantage on gaining incomes from one to two hexes instead of three. But if he
has big income for a certain element the 2:1 trade could advantage).  The choice that
will be made is linked to three potential "end game" strategies:

 road-building, which necessities wood and clay production, which are used for
roads and settlements builds,

 city-building, which require ore and wheat to build cities or buy development
cards and 
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 monopolizing,  in  which  a  player  tries  to  monopolize  a  resource  and  have
access to a matching 2:1 port.

The choice between those strategies is based on the "building speed". There are two
approaches to calculate building speed, one taking into account trading with ports and
the bank and one not. Trading with other players is not considered by any of the
strategies.

1. The first is the simplest way, we ignore trading and consider how often we
will receive resources based only on the types and numbers of the adjacent
hexes of our pieces, but also by estimating how often these numbers are rolled.
There are some "intended" inaccuracies in this algorithm because it employs
estimates to make different kinds of decisions. So if we have an estimation
speed that says that it takes longer to build a city that a road, this should be in
reality, too.
We can enhance this approach by taking into consideration the possibility of
trading with ports or the bank. But this addition of the trading phase, can lead
to an estimation that is inconsistent in some situations, because the algorithm
does not look ahead concerning the resource production.

2. The  second  approach  was  based  on  the  assumption  that  a  more  accurate
estimation  can  lead  to  an  improvement  in  gameplay.  It  is  basically  a
modification to the algorithm described above, in which there was a restriction
that a player can only receive at most one type of particular resource per roll.
To do so we need to construct a frequency table to keep track of how many
resources of a particular type player receives with a given frequency.  This
approach although, it was proved to be very slow to be used in practice and the
author presents it as a motivation for future work. 

Sometimes we can sacrifice precision for a rough but rather fast estimation. 

3.2.2 Making a Plan and Deciding What to Build

In  order  to  make  a  selection  of  the  initial  settlements  and  roads,  Thomas  [5]  is
calculating all the legal pairs of settlement spots and estimates how long it would take
to build each possible piece. Then, the agents simply picks the spot with the faster
building speed. This planning can be combined with other strategies of road-building
or city-building. To do so, the agent takes weighted sums over potential strategies it
could follow. For the placement of the initial roads, the algorithm is guessing spots
that other players will occupy and in this new set of pieces is trying to find paths that
can  build  good settlement  later  on.  After  the  initial  placement  of  settlements  and
roads, Thomas uses a rough plan as guide for creating a utility-based measure for
making decisions in imperfect information environment.  The results  show that the
computer players can win approximately 55% of the time against a single human
opponent.
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3.2.3 Negotiation and Trading

If one wants to make a sufficient negotiation, he should know first what he can do if
the negotiation fails. This is called the Best Alternative to a Negotiated Agreement
(BATNA) [5][6].  If we miss resources that we need based on our planning, we need
to determine our BATNA by looking what resources we need and what resources we
are willing to give up for trading. After the determination of our BATNA we should
start  making  offers.  We  start  with  offers  better  than  our  BATNA by  giving  one
resource that is easy to get for one resource that is hard to get. As hard to get resource
is a resource that we have no direct access, like if we want iron and we do not have
any settlement on hex with iron. On the other hand, recourse easy to get is a resource
that either we have settlement on hex that produces that type or we have a port where
we can trade for this recourse. 
The estimation of BATNA comes from the alteration it affects on building speed. If
the speed gets higher (decreased time we need to make it), then the offer is acceptable.
To  determine  if  another  player  will  accept  our  offer,  we  must  keep  track  of  his
activities (what resources refuses, what resources he ask for, what resources he gives).
If our initial offer is refused, then we increase the amount of resources we give, either
adding more resources either giving some more valuable (for us) resources. Counter
offers to the players are made the same way.
Results of his attempt [5] showed that the performance of the agents dropped and that
the computer players were agreeing to offers that are no in their favor. So, BATNA is
not yielding very good results. In our future work, we intend to use Game Theory,
Machine learning and argumentations methods in order to improve the negotiation
aspect of our agent which now uses the approach at [5].
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4 Monte Carlo Tree Search

Real-world games typically involve a delayed reward structure  in which only those
rewards achieved in the terminal states of the game accurately describe how well each
player is performing. On the other hand there is the approach of Monte Carlo Tree
Search (MCTS). The MCTS focuses on the analysis of the most promising moves,
expanding  the search  tree based  on random sampling of  the  search  space  [7].  The
application  of  Monte  Carlo  tree  search  in  games  is  based  on  many
simulations (playouts). In each simulation, the game is played out until the end of the
game or until a predefined computational budget is reached,  by selecting moves at
random. The final game result of each simulation is then used to weight the nodes in
the game tree so that better nodes are more likely to be chosen in future simulations.
MCTS algorithm has high success in games like computer Go, Scrabble and Bridge.

4.1 Overview

The  basic  idea  of  MCTS  is  very  simple.  A tree  is  build  in  an  incremental  and
asymmetric manner [7]. For each iteration a  tree policy  [7] is used to find the most
urgent node. When the most immediate node is found, a simulation is run from this
node and the tree is updated based on the results. Moves during the simulation are
made through some  default  policy which  in  the simplest  way is  to  make random
moves.  A great benefit of MCTS is that the values of intermediate states do not have
to  be  evaluated,  as  for  minimax  search,  which  reduces  the  amount  of  domain
knowledge  required  [7].  Only  the  value  of  the  terminal  state  at  the  end  of  each
simulation  is  required.  The  key factor  in  the  algorithm of  MCTS  is  the  balance
between exploration (look to unexplored areas) and exploitation (look in promising
areas) which is trying to achieve with the tree policy.

4.2 Algorithm

The basic algorithm involves iteratively building a search tree until some predefined
computational budget is reached, at which point the search is stopped and the best-
performing root action is returned [7]. Each node in the search tree represents a state
of  the  domain,  and  directed  links  to  child  nodes  represent  actions  leading  to
subsequent states. 
Four steps are applied per search iteration [8]: 

1. Selection: Starting at the root node, the  tree policy is recursively applied to
descend through the tree until we reach the most urgent  expandable node. A
node is expandable if it  represent a non-terminal state and has unexpanded
children. The tree policy selects or creates a leaf node from the nodes already
contained within the search tree.

https://en.wikipedia.org/wiki/Monte_Carlo_method
https://en.wikipedia.org/wiki/Search_tree
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2. Expansion:  A child  node  is  added  to  expand  the  tree,  according  to  the
available actions.

3. Simulation: A simulation is run from the new node according to the default
policy to produce an outcome. The default policy plays out the domain from a
given state to produce a value estimation.

4. Backpropagation: The simulated results are updating the selected nodes with
their  statistics.  This  step  does  not  use  any policy  itself,  but  updates  node
statistics that inform future tree policy decisions. 

Figure 12 shows an iteration of the basic MCTS will start at the root node  t0 and
recursively select child nodes, according to some utility function, until a node  tn is
reached that is either terminal state or not fully expanded. An unvisited action α from
this state s is selected and a new leaf node tl is added to the tree, which describes the
state  s' reached from applying action  α to  state  s.  This  completes  the tree  policy
component for this interaction.
A simulation is then run from the newly expanded leaf node  tl  to produce a reward
value Δ which is then backpropagated up to nodes selected for this iteration, in order
to  update  node  statistics.  Each  node's  visit  count  is  incremented  and  its  average
reward updated given Δ.
As soon as the search is interrupted or the computation budget is reached the search
terminates and an action α of the root node t0 is selected by some mechanism.

Figure 12: Monte Carlo Tree Search steps

The steps are summarized in pseudocode below [7]: 

General MCTS approach
    function MCTSSEARCH(s0)
         create root node υ0 with state s0

         while within computational budget do
υl ←TREEPOLICY(υ0)
Δ←DEFAULTPOLICY(s(υl))
BACKUP(υl; Δ)

          return a(BESTCHILD(υ0; 0))
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Figure 13: General MCTS approach

In Figure (13), u0 is the root node corresponding to state s0, ul is the last node reached
during the tree policy stage and corresponds to state  sl and  Δ is the reward for the
terminal state reached by running the default policy from state  sl. The result of the
overall search  α(BESTCHILD(u0)) is the action  α that leads to the best child of the
root node u0, where the exact definition of "best" is defined by the implementation.  

4.3 Characteristics

In  this  section,  we  will  describe  some  of  the  characteristics  that  make  MCTS  a
popular choice for a variety of domains [7].

4.3.1 Aheuristic

One  of  the  most  significant  benefits  of  MCTS  is  that  it  does  not  need  domain
knowledge, making it readily applicable to any domain that can be modeled using a
tree. Although a full-length minimax is optimal, the quality of depth-limited minimax
depends significantly on the heuristics used to evaluate  leaf  nodes.  In  games like
Chess,  where reliable  heuristics  have emerged after  decades  or research,  minimax
performs rather well. In cases like Go, however, which has large branching factors
and  useful  heuristics  are  much  more  difficult  to  formulate,  the  performance  of
minimax degrades significantly. 

4.3.2 Anytime

MCTS  algorithm  backpropagates  the  outcome  of  each  game  immediately  which
ensures all values are always updated following every iteration of the algorithm. This
allows  the  algorithm  to  return  an  action  which  is  high-quality,  given  current
knowledge at any time.

4.3.3 Asymmetric

The tree selection allows the algorithm to favor more promising nodes, leading to an
asymmetric tree over time. The tree shape that emerges can even be used to gain a
better  understanding  about  the  game  itself.  For  instance,  Williams  et  al. [13]
demonstrates that shape analysis applied to trees generated during UCT search can be
used to distinguish between playable and unplayable games.
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4.4 Bandit-Based Methods

Bandit problems are a class of sequential decision problems, in which one needs to
choose amongst K actions in order to maximize the cumulative reward by consistently
taking  optimal  actions  [7][9].  Since  the  reward  distributions  are  unknown  and
potential rewards must be calculated based on past observations, the action choice is
rather difficult. The trade-off between the need to obtain new knowledge and the need
to use that knowledge to improve performance is one of the most basic trade-offs is
this kind of methods, and optimal performance usually requires some balance between
exploratory and exploitative behaviors. Known as exploitation-exploration dilemma.

Now, for Bandit problems, it is useful to know the Upper Confidence Bound (UCB)
that any given arm will be optimal. The simplest UCB policy is  UCB1 [9] which
dictates to play arm j that maximizes: 

UCB1= X́ j+√2 ln nn j

( 0 )

where  X́ j is the average reward from arm j,  nj is the number of times arm j was

played and  n is  the overall  number of plays  so far.  The first  part  of the equation
encourages the exploitation and the second part the exploration. 

4.4.1 Upper Confidence Bounds for Trees (UCT)

The Upper Confidence Bound for Trees (UCT) is the most popular algorithm in the
MCTS family [9].  The success of MCTS is  primarily due to the proposed use of
UCB1 (4.3.1) as tree policy (4.2), by Koscis et al. [10] and Szepesvari et al. [11]. In
treating the choice of child node as a multi-armed bandit problem, the value of a child
node is the expected reward approximated on the simulations. 
UCB1 has some promising properties:  it  is  very simple and efficient.  It  is  thus a
promising candidate to address the exploration-exploitation dilemma in MCTS: every
time a node is to be selected within the existing tree, the choice may be modeled as an
independent multi-armed bandit problem. A child node j is selected to maximize: 

UCT= X́ j+2C p√ 2 lnnn j
( 0 )
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where  n is the number of times the current node has been visited,  nj the number of
times child j has been visited and Cp > 0 is a constant. If more than one child node has

same maximal value, we choose randomly [11]. The values of X́ j  are within [0,1].

Previously unvisited children are assigned ∞, to ensure that all children of a node are
considered at  least  once before any child is expanded further.  The constant in the
exploration term Cp can be adjusted to lower or increase the amount of exploration

performed. The value Cp = 1/ √2  was shown [11] to reward set in the range [0,1].

Figure 14 shows the UCT algorithm in pseudocode [12]. 

The UCT algorithm
  
  function UCTSEARCH(s0)
         create root node v0 with state s0

         while within computational budget do
υl ←TREEPOLICY(υ0)
Δ←DEFAULTPOLICY(s(υl))
BACKUP(υl; Δ)

          return a(BESTCHILD(υ0; 0))

   function TREEPOLICY(υ)
         while υ is nonterminal do

if υ not fully expanded then
     return EXPAND(υ)
else
     υ←BESTCHILD(υ;Cp)

        return υ

function EXPAND(υ)

     choose α ∈  untried actions from A(s(υ))

      add a new child υ' to υ
with s(υ') = f(s(υ), α)
and a(υ') = α

     return υ'

function BESTCHILD(υ,c)

return
argmax

υ ' ϵ ch ildrens of υ
Q(υ' )
N (υ ')

+c √2 lnN (υ )N (υ ' )

function DEFAULTPOLICY(s)
     while s is non-terminal do

choose α ∈  A(s) uniformly at random

     s←f(s,α)
     return reward for state s
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function BACKUP(υ,Δ)
     while υ is not null do

N(υ) ← N(υ) + 1
Q(υ) ←Q(υ) + Δ( υ, p)
υ←parent of υ

Figure 14: UCT Algorithm

Each node υ has four pieces of data associated with it: the associated state  s(υ), the
incoming  action  α(υ),  the  total  simulation  reward  Q(υ)  and  the  visit  count  N(υ).
Instead of storing s(υ) for each node, it is often more efficient in terms of memory
usage to recalculate it as the Tree Policy descends the tree. The term Δ(υ,p) denotes
the component of the reward vector Δ associated with the current player p at node υ.
The  return  value  of  the  overall  search  in  the  pseudocode  of  Figure  14  is
α(BESTCHILD(υ0))  which  will  give  the  action  α that  leads  to  the  child  with  the
highest reward, since the exploration parameter c is set to 0 for the final call on the
root node  υ0. The algorithm could have instead returned the action that leads to the
most visited child; these two options will usually describe the same action [12].
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4.4.2 Bayesian Upper Confidence Bounds for Trees (BUCT)

In contrast to a distribution-free algorithms like UCT, Tesauro et al. [14] proposes a
fundamentally different approach based on Bayesian inference. Stochastic trial results
at  leaf  nodes  are  combined  with  prior  reward  information  to  yield  posterior
distributions;  these  then  propagate  upward  according  to  the  appropriate  inference
model to determine interior node distributions. 
In BUCT, each node i in the tree maintains a probability distribution Pi(x) over its true
expected reward value. Inference of the interior node probability distributions begins
at  the  leaves  and  propagates  up  to  the  root  node.  Before  any  trials  have  been
performed,  the  leaf  nodes  are  initialized  to  conjugate  prior  distributions  that  are
appropriate  to  the  leaf  node  reward  distributions.  When  trials  at  leaf  nodes  are
performed, the results are combined with priors to compute posterior distributions, in
the standard way. 
Each  interior  node  computes  an  extremum  distribution over  its  child  node
distributions and is given by:

Pmax (X )=∑
i

Pi(X )∏
j ≠i

C j (X )
( 0 )

where Cj is the Cumulative distribution function (CDF) of Pj.
Having computed distributions for the interior nodes, we now consider distributional
analogs of existing distributional-free sampling formulae. Tesauro et al. [14] proposes
two modified versions of UCB1 to descend the tree and choose where to sample next.

The first version (BUCT1) simply replaces the average reward ŕi  of child node i

by μi, the mean of Pi:

BUCT 1:maximaze Bi=μi+√2 lnNni
( 0 )

μi : Mean of Pi

N: Total trials of all arms
ni : Number of trials for each arm

Pi: Probability distribution over its true expected reward value

There is an error on equations (4) and (5) on the following references [7][21]  
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The  second  sampling  formula,  additionally  replaces  the  
1

√ni
 factor  in  the

exploration term by σi, the square root of the variance of Pi:

BUCT 2:maximaze Bi=μi+√2lnN σ i

( 0 )

μi : Mean of Pi 

N: Total trials of all arms σi

σ i : Square root of variance of Pi

Pi: Probability distribution over its true expected reward value

Equation 5 is motivated by the central limit theorem result σ i
2

1/ni the simple bandit

case and by the compelling intuitive notion from Interval Estimation that sampling
according to expected value plus expected uncertainty provides effective tradeoff of
exploration - exploitation. 

The results  in  [14]  indicate  that  the  equation  5 outperforms equation  4 so in  our
implementations we chose to use equation 5.

There is an error on equations (4) and (5) on the following references [7][21]  
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4.5 Value of Information Method

As  mentioned  earlier,  a  central  problem in  learning  in  complex  environments  is
balancing exploration of untested action against exploitation of actions that are known
to be good.  The benefit of exploration can be estimated using the classical notion of
Value of Information. Aiming to find a policy that maximizes the expected reward of
an agent. Dearden's et al. [15] approach builds on the notion of Q-Value Distributions
and in [16] they present a Bayesian approach to model-based reinforcement learning.
They present two new approaches to exploration:

 Q-value sampling: Wyatt  et al. [17] proposed Q-value sampling as method
for  solving  bandit  problems.  The idea is  to  represent  explicitly the agent's
knowledge  of  the  available  rewards  as  probability  distributions;  then,  an
actions is selected stochastically according to the current probability that is
optimal.  This  probability  depends  monotonically  not  only  on  the  current
expected  reward  (exploitation)  but  also  on  the  current  level  of  uncertainty
about the actual reward (exploration). Dearden et al. [15] extend this approach
to multi-state reinforcement learning problems, creating a Bayesian method
for  representing,  updating  and  propagating  probability  distributions  over
rewards.

 Myopic-VPI: Myopic value of perfect information provides an approximation
to the utility of an information tradeoff. Like Q-value sampling, myopic-VPI
uses the current probability distributions over rewards to control exploratory
behavior.

Their  results  indicate  that  the  state  space  is  explored  more  effectively  (than
conventional  model-free  learning  algorithms)  and   that  performance  advantage
appears in bigger problems.
In  our  implementation,  we  chose  Myopic-VPI  action  selection,  because  it  was
uniformly the best approach on many domains. [15][18][19][20]

4.5.1 Myopic-VPI selection

This  method  considers  quantitatively  the  question  of  policy  improvement  though
exploration [15]. Its use in tree search can also been seen as a form of exploration
against the expected cost of doing potentially suboptimal action. 

We start  by considering what can be gained by learning the true value  μs , α
¿

 of

μs , α . If this knowledge does not change the agent's policy, then rewards would not

change. Thus, the only interesting scenarios are those where the new knowledge does
change the agent's policy. This can happen in two cases:

a) When the new knowledge shows that an action previously considered sub-
optimal is revealed as the best choice.
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b) When  the  new  knowledge  indicates  that  an  action  that  was  previously
considered best is actually inferior to other actions.

For case (a), suppose that  α1 is the best action; that is  
E[ μs ,α 1

]≥E [μs , α' ]  for all

actions  α'.  Moreover  suppose that  the  new knowledge indicates  that  α is  a  better

action; that is, 
μs , α
¿ ≥ E[ μs , α1

]
. Thus, we expect to gain  

μs , α
¿ −E [μs , α1

]
 by virtue

of performing α instead of α*. 
For case (b), suppose that α1 is the action with the highest expected value and α2 is the

second-best  action.  If  the new knowledge indicates that  
μs , α1
<E [μs ,α 2

]
 then the

agent performs α2 instead of α1 and we expect to gain 
E[μs ,α 2]−μs ,a1

¿

.

To summarize , we define the gain from learning the value of μs , α
¿

 of μs , α  as:

Gains , α(μs ,a
¿ )={E [μs , α 2]−μs , a1

¿ ,if a=a1∧μs , α
¿ <E [μs ,α 1

]
E[μs ,α 2]−μs ,a1

¿ ,if a≠a1∧μs ,α
¿ <E[ μs ,α 1

]
0 , otherwise

( 0 )

where, again, α1 and α2 are the actions with the best and second best expected values
respectively. Since the agent does not know in advance what value will be revealed

for μs , α
¿

, we need to compute the expected gain given our prior beliefs. Hence the

expected value of perfect information about μs , α  is :

VPI ( s ,α)=∫
−∞

∞

Gains ,α (x )Pr (μs , α=x)dx ( 0 )

The  value  of  perfect  information  gives  an  upper  bound  on  the  myopic  value  of
information for exploring action α. The expected cost incurred for this exploration is
given by the difference between the value of α and the value of the current best action.
This suggests we choose the action that maximizes:
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E[Q (s , a')]−E[Q (s , a)]
max

a '
¿

VPI (s ,a )−¿
( 0 )

We see  that  the  value  of  exploration  estimate  is  used  as  a  way of  boosting  the
desirability  of  different  actions.  When the  agent  is  confident  of  the  estimated  Q-
values, the VPI of each action is close to 0, and the agent will always choose the
action with the highest expected value.
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5 Agent Implementation

In this  chapter  we will  describe out  proposed agent  implementation,  using Monte
Carlo Tree Search. Unlike what is done in [4] and [21] our MCTS implementation is
pure, in the sense that it does not contain any heuristics. Note that this is the case even
for the node selection [4], as we discuss later on. Also, we implemented negotiations
between the player and bank/port for the first time (in an approach using MCTS).

5.1 Overview

We implemented  the  Settlers  of  Catan  game in  the  JSettlers  software  module,  as
mentioned on Chapter 3. Because of the Internet-based architecture of JSettlers (it
was built to allow human participation over the internet), gameplay is fairly slow: a
single four-player game takes about 15 minutes on an average PC and our algorithm
requires hundreds of simulations of simulated games before making a single step. 

5.2 Algorithm 

The MCTS algorithm is used for action selection, when the agent has to decide his
next  move.  This  move  is  determined  by  calculating  the  available  actions  which
includes:

 buying a City
 buying a Settlement
 buying a Road
 buying a Development Card
 empty action

and where to place them (rules of the game at Chapter 2). Trading with other players
are not part of the action selection, therefore are not part of the MCTS Algorithm
since the negotiation phase is  over when our agent starts  to build the search tree.
However,  our agent takes into consideration trading with ports/bank when calculating
all available moves (Chapter 5.8.1). 

The algorithm starts from an initial Root Node and calculates all available actions of
our agent. Then through the selection step the most urgent action (node) is selected.
Then the selected node is expanded through the  expansion step.  Subsequently,  the
expanded node's  reward is  calculated through  simulation step.  When simulation is
complete the reward and all the statistics are back-propagated to the tree through the
backpropagate step. This algorithm continues until a computational budget is reached.
After the computational budget is reached the best-performing action is returned. 
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5.2.1 Computational Budget

We had to make a decision about setting a computational budget for the main loop of
the  algorithm concerning  the  time  cut-off.  The  time  that  we  can  provide  to  our
algorithm to  run  its  methods.  To  make  that  decision  we  had  to  make  a  tradeoff
between delaying the game and gaining sufficient time for simulations to run. We did
not  want  to  postpone  the  game  risking  of  "breaking"  the  pace  of  the  game  and
frustrate other players. Nevertheless we need to have enough time to run simulations
so the  estimated value be correct.  After  careful  consideration  and experiments  on
actual  games  with  human  adversaries,  we  decided  to  set  the  time  cut-off  at  15
seconds.  We are  currently experimenting  with  cut-off  30  seconds  but  despite  the
increase of simulations we notice only a slight increase in the agent's scores. 

5.2.2 Selection Step

The selection step is used for selecting the most urgent expandable node, in order to
descend and build the tree. A node is expandable if it represent a non-terminal state
and has unvisited children. Which node is the most urgent is determined from the
selection  formula  of  the  method.  In  our  implementation  we  use  three  different
methods  UCT,  BUCT  and  VPI  according  to  Chapters  4.4.2,  4.4.3  and  4.5.1
respectively. For clarity, we restate the methods.

5.2.2.1 UCT
The selection formula of UCT method is:

UCT= X́ j+2C p√ 2 lnnn j

( 0 )

X́ j : Average reward of node j

Cp: 
1
√2

n: The times this node was visited
nj: The times child j was visited

If more than one child node has same maximal value, we choose randomly [11]. The

values  of  X́ j are  within  [0,1].  Previously unvisited  children  are  assigned  ∞,  to
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ensure that all children of a node are considered at least  once before any child is
expanded further. The constant in the exploration term Cp can be adjusted to lower or

increase the amount of exploration performed. The value  Cp = 1/ √2  was shown

[11] to reward set in the range [0,1]. Each node maintains its number of visits and the
rewards received from simulation.

5.2.2.2 BUCT
The selection formula for Bayesian UCT is:

BUCT :maximazeBi=μi+√2 lnN σ i ( 0 )

μi : Mean of extremum (minimax) distribution Pi

N: Total trials of all arms
σ i : Square root of variance of Pi

Pi: Probability distribution over its true expected reward value

At each node we maintain a probability distribution Pi over its true expected reward.
Before any simulation,  leaf nodes are initialized with conjugate prior distributions
fitting the reward distributions. If our payoffs were 0/1 we choose to use  Dirichlet
priors which are described in Chapter 4.4.4. After the simulations are performed, the
results are combined with the priors in order to produce a posterior distribution.
For the selection step, using this method, we produce the posterior distribution and
calculate equation (15) by taking for each node the result from the updated Dirichlet
distribution. The child node of the current node that maximizes the value Bi is chosen.

5.2.2.3 VPI
The strategy of VPI is to choose the action that maximizes:

E[qs,a] +VPI(s,α) ( 0 )

where

VPI ( s ,α )=∫
−∞

∞

Gain s ,α (x )Pr (μs , α=x)dx
( 0 )
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where the Gain computes what can be gained from learning the true value μs , α
¿

 of

μs , α :

Gains , α(μs ,a
¿ )={E [μs , α 2]−μs , a1

¿ ,if a=a1∧μs , α
¿ <E [μs ,α 1

]
E[μs ,α 2]−μs ,a1

¿ ,if a≠a1∧μs ,α
¿ <E[ μs ,α 1

]
0 , otherwise

( 0 )

The computation of the integral on equation (17) depends on how we represent our

distributions  over  μs , α .  In  order  to  be  able  to  take  decisions,  each  node

corresponding to a state  s', maintains a distribution over the quality value  μs , α of

having executed the action α that led from state s (parent) to s'. This value refers to the
"quality" of following a path in the game tree downwards from s. When a decision
needs to be taken at some node, the value of its children is calculated. 

The  distributions  are  updated  by  the  use  of  appropriate  conjugate  priors.  The

distribution  over  μs , α  is  a  Dirichlet  where  each  parameter  αi represents  the

frequency  of  seeing  reward  i,  and  these  frequencies  are  updated  through  the
observation of simulation results. For these calculations we first find the two best
actions  α1 and  α2 from the  set  of  available  actions  and  we  estimate  the  Q-value
distributions using sampling on existing Dirichlet distributions. So, these Dirichlet are
used  in  order  to  implement  the  sampling  process  used  in  Model-Based  Bayesian
Exploration [15].

We sample a vector θ according to the distribution P(θ|ξ) using this procedure:

We sample values  y1 ,…, y K  such that each  y i Γ (ai ,1) ,  where  ai  is  the

concentration parameter in the index  i of  the  α vector  and  Γ(κ,  θ) is  the Gamma
distribution. Then after normalization we get the probability distribution [15]. Having
these values, we calculate equations (17) and (18) and then we select the child-node
that maximizes equation (16).

5.2.3 Expansion Step

The expansion step calculates the set of all available actions of our agent, in the given
state, and creates children nodes according to the combinations of the selected actions.
Each child node has only one action. These actions include:
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1. Buying a City
2. Buying a Settlement 
3. Buying a Road
4. Buying a Development Card
5. Empty Action

Note that action 1-2-3, may not represented as only one node. Each node represents an
action and the positional placement, and all nodes have at least one child-node, an
empty action node. Unlike [4] and [21], we introduced in the action space the empty
action  which  makes  the  action  tree  more  realistic,  and  also  we  allow  buying
development cards (Chapter 5.2.4.3). All available actions are based on the current
resources of our agent. We include in the set of available actions, all the actions that
can be made after trading some of the current resources of our agent with bank or
ports.  We  cannot  include  trading  with  other  players  in  this  step  because  the
negotiation step between players is before our MCTS algorithm. 

5.2.4 Simulation Step

The simulation step is a highly important step of the algorithm because it estimates
the  reward of our agent. In this step, we would like to maintain the purity of MCTS
and  we  have  not  implement  any  heuristics  that  affects  the  decisions  on  action
selections like [4] [21] [22]. In the simulation step we start from a given state and we
simulate the game by making fictional dice rolls, resource pay offs, player's move and
reconstruct basic behaviors of the game in general, until we reach an end.

5.2.4.1 End of Simulation
First, we define two cut-off conditions for the simulation loop:

 End-of-Game  cut-off:  if  one  of  the  players  acquires  10  or  more  Victory
Points, we have a winner and the simulation returns the result  Δ in order to
proceed to the next step.

 Round cut-off:  an  average  game takes  approximate  20  round to  end.  We
tested the algorithm with various depths (5,10,15,30). And in order to give
some extra simulations at the end of the game we adjust the simulation depth
based on this formula:

Simulationrounds={max (3,c−r) ,if r≤20max(3, c2), if r>20 ( 0 )

c: initial round cut-off {5,10,15,30}
r: current round of the game
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With this formula we make sure that the search depth is always as deep as we 
planned and when we pass the 20th round on game (real round not simulated) 
we half our initial depth because in almost all cases, if the algorithm takes  
more rounds then it is erroneously guided to non-promising paths (Chapter  
7.1.2 and 7.1.3). But in any case,  we keep a minimum of 3 rounds depth  
simulation.  This  heuristic  function  does  not  interfere  with  the  actual  
MCTS decisions, yet it boosts up its performance in simulations.   

5.2.4.2 Simulation 
For the simulation step, we keep a copy of players resources, pieces on board, special
items and victory points. At each round a random generator is used to generate a
number in the [0,1] and associate that value to a point on the CDF of a two-dice roll.
This allows us to associate the number of each interval to a specific roll. For instance,

a  value  x≤
1
36  corresponds  to  a  dice  roll  of  "2"  and  a  value  

3
36
<x ≤ 6

36

corresponds to a dice roll  of "4".  Figure (15) shows the probability for each dice
outcome.

Dice
Res
ult

Combinati
ons

Probabil
ity

2 1
1
36

3 2
2
36

4 3
3
36

5 4
4
36

6 5
5
36

7 6
6
36

8 5
5
36

9 4
4
36



5. AGENT IMPLEMENTATION 35

10 3
3
36

11 2
2
36

12 1
1
36

Tota
l

36 1

Figure 15: Dice Outcome Probabilities

According to the rules, after each dice roll, the players get resources according to their
pieces on the board. For each player  we look for pieces adjacent to hexes with a
number matching the simulated dice result and we add the resources gained by the
dice roll. 
Then the player can consider taking actions. The available action set for each player is
calculated, like expansion step, considering all legal moves and moves after trading
with port or bank. The action selection is made based on the Default Policy (Chapter
5.2.4.3). Since each node of expansion step has only one action, each player can make
several  actions  during  his  turn.  The  Victory  Points  of  all  players  are  constantly
updated by all the actions they make according to the rules expect of development
cards. When an ending condition is reached the simulation step returns a vector with
the Victory Points of all players normalized to fit [0,1].

5.2.4.3 Default Policy
Default Policy dictates the actions that will be selected during the simulation. It has
the same role in the simulation step as the Tree Policy in selection step. As mentioned
before, we would like to keep the implementation free of heuristic evaluations in any
policy, so the Default Policy is completely random. 
After all the actions are listed the player does one action at time until empty action is
selected  (after  each  action,  actions  are  recalculated),  as  the  following  pseudo
algorithm describes. 

Algorithm 3 Simulation 
    function SIMULATION

        While (ending conditions not reached)
                  Roll dice and award resources
                  do
                           α←CALCULATEMOVES(playeri)                   
                           move← Select random action ai from action set a

    makemove (move)
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                   While (move is not empty)
         Return reward vector

Figure 16: Simulation algorithm

         

5.2.4.3 Development Cards
Development cards are essential part of Settlers of Catan but they are left outside of
MCTS algorithm [4][21][22] due to the fact that we can now draw a card and then
return it to the deck. We propose a method to estimate their value on the simulation
step. We used this method in our implementation.
There are 25 Development Cards at the beginning of the game and all players know
how much remain at any time. From those 25 cards, 14 are Knight Cards, 5 Victory
Points  cards,  2  Monopoly  Cards,  2  Road  building  Cards  and  2  Year  of  plenty
(explanation of chapter 2).
First  we  can  calculate  rather  easy  the  remaining  Soldier  cards  on  the  deck,  by
subtracting all  the Knight cards that have been played and find how many knight
cards a player needs to gain Largest Army award. Then we calculate the probability to
gain a knight card and calculate our reward values based on following algorithm:

Algorithm 4 Development Card Value Estimation
    function DevelopmentCardEstimation

P ← (remaining soldiers estimation)/(remaining cards)
            if (player has the Largest Army)

if (player has same number of knights as some other player)
reward ← P*0 + (P-1)*1

else
reward ← -1*P+ (P-1)*1

else
if (knights needed to get Largest Army > remaining Knights)

reward ← -1*P+ (P-1)*1
else if (needed Knights = 1)

reward ← P*1 + (P-1)*1
else if (needed Knights = 2)

reward ← P*0.5 + (P-1)*1
else

reward ← (P-1)*1
return reward

Figure 17 Development Card Value Estimation
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It is easy to notice that the algorithm gives reward based on our positioning in the race
to form the Largest Army. If we need more than 1 or 2 Knight Cards or we have the
Largest  Army and there are  several  Knight Cards in the deck the algorithm gives
smaller reward. Concerning all the other cards, besides Knight, we give a fix value
based on their probability against Knight cards. For playing Development Cards that
reward resources, our agent cannot estimate their value through the tree, so we use the
same methods as the JSettlers agent. 

5.2.4 Backpropagation Step

Each selection method incorporates a different backpropagation method due to the
variables used in the different calculation formulas.

5.2.4.1 UCT
The backpropagation method for UCT is quite straightforward. After the simulation,
all we have to do is backpropagate the result of each player to the appropriate visited
nodes. The result is defined by victory points of each player at the terminal node. For
each of the visited nodes of the simulation, starting from the terminal node, we update
all  the  parent  nodes  with  the  results.  Either  by  increasing  its  existing  reward  X j

(equation 14) if it is node of our agent or either by decreasing its X j if the action was
made by another player.

5.2.4.2 BUCT
For  the  update  of  the  values  needed  for  calculation  of  the  Bayesian  UCT value
(equation 15), we need to update the hyper parameter  α of the Dirichlet distribution
for  each  node.  So  according  to  the  result  Δ of  the  simulation,  we  update  the
appropriate index value of the vector α:

ai=a i+1 ( 0)

Essentially  the  vector  α acts  as  counter,  of  how many times  we  have  seen  each
reward.

5.2.4.3 VPI
The backpropagation procedure at VPI method is the same as BUCT since they both
use Dirichlet distribution. So the hyper parameter vector α of Dirichlet priors need to

be updated. The hyper-parameters ai represent the frequency of seeing reward i and

are used for sampling possible expected reward distribution. The update method is
described in equation (15).
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5.3 Opening Construction Strategy

Opening construction strategy refers to the placing of first two pairs of settlements
and roads by each player at the beginning of the game. We used two different initial
placements here.

5.3.1 JSettlers Initial Placement

The  JSettlers  opening  building  strategy  estimates  the  building  speed  that  can  be
acquired on each possible  position and trying to guess the position at which the other
players will place their settlements, so those spots will be excluded from planning.

5.3.2 European  Research  Council  (ERC)  Initial  Placement  -  Strategic
Conversation   (STAC)

Dobre  et  al. [22]  presented  a  method that  combines  knowledge  extracted  from a
corpus  of  human  play,  with  simulations  of  MCTS implementation  for  Settlers  of
Catan. They have promising results when their agent is compared against an agent
that relies on exploration seeded with hand-coded heuristics or with human players.
Although they also ran all their experiments on JSettlers, they removed completely
the trade aspect of the game. Overall, their corpus of human playing the game ensures
that  the  collected  data  contains  a  large  variety  of  scenarios  with  a  total  of
approximately 14000 state-action pairs.

5.4 Robber Strategy

In our  implementation we use the built-in  Robber  Strategy provided by JSettlers.
When a  player  roll  "7" or  play the Knight  card,  he must  move the  special  piece
Robber and place it on a hex. The hex with the Robber placed on, does not produce
resources. Also, when a player moves the Robber he can steal one random resource
card from a player adjacent to the hex he places the Robber on. To select where to
place the Robber, we estimate the winning time for each player and find the player
with the least time. The winning time for each player is calculated by estimating the
building  speed  of  each  player,  same way as  (Chapter  3.2.2),  combining  with  the
current Victory Points of each player. Then we search for the best way to obstruct the
player, by looking the building estimates for each piece of the game for each of his
hexes. The hex with the larger total building speed for all the pieces is chosen as the
best hex, because in that way we essentially "delay" that player's actions.
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5.5 Monopoly Strategy

When a player plays this type of Development Card, he selects a type of resource and
all the others players must give him all the resources of the chosen type they have. For
our agent's strategy we use the JSettlers strategy which is the following:
The agent determines the trade ration which he can trade, as well as the available
pieces and options for future actions and decides which resource is best to monopolize
and if it is the best time to play the development card. The parameters that effect the
decision when to play a development card, is the current resources our agent has, the
resources enemy players have and the importance of buying a piece.

5.6 Road Building Strategy

This Development Card allows the player to build immediately 2 road pieces with no
cost. Our Agent plays the card right after it is legal. The estimation of which road
pieces he will build, uses the JSettlers strategy. The estimation is based on the Longest
Road potential and the ability that their combination provides in order to build more
settlements. 

5.7 Discard Strategy

When  a  player  rolls  seven,  then  all  players  (including  him)  with  more  than  7
resources, must discard the half of them . If the number is odd then is rounded down
(if a player has 9 resources, he must discard 4). All agents keep a building plan, of
what they want to buy in the future. When a player needs to discard resources, he
discards those which are not affecting as much as possible his building plan, or at
least his first moves, if all resources are needed then he discards randomly. 

5.8 Negotiation

Trading  with  ports  and  the  bank,  as  well  as  negotiating  with  other  players  for
resources is a crucial aspect of the game. Most of the times, a player does not have
access to all  the necessary resources in order to  build pieces or buy development
cards. Considering the importance of this feature, we gave our agent the ability to
trade according to his resource set and even consider trading with other players, if he
can be benefited from it.  In out  implementation we use the existing structures of
JSettlers framework (Chapter 3.2.1) in order to consider and initiate trades.

5.8.1 Trading with Bank & Ports 

As mentioned in the Game Rules (Chapter 2.2.2), a player can trade with the bank
with ratio 4:1or trade with 3:1 or 2:1 with a port (based on type of the port) that has
player's settlement or city built on. Trading with banks or ports does not require any
particular logic from our agent. This type of trading expands the existing action set
based on the current resources, by including all the action that can be made if the
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agent trades resources with either the bank or a port. For example, if the agent has the
following resources {1 wood, 4 ore} he cannot buy any piece. But if he trades with
the bank 4 ores : 1 clay, he is able to buy a road piece. 

5.8.2 Trading with Players

Before initiate any negotiations our agent calculates his trading ration based on the
ports he has. After the trading ratio for each resource is defined, our agent considers
trading with other players. The trade offer is not addressed to all players, but instead
the agent  checks  for  the current  state  of  the other  players.  If  a  player  is  close to
victory, and we see that the trade we are proposing can benefit him, we do not include
him in the offer. To determine if the trade is of benefit for another player, we use the
existing structures (Chapter 3.2.1) and the specific state of the game to determine their
options for future plans. Similar logic is used when we want to determine if we will
accept an offer from another player. 
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6 Results

For  each  selection  method  between  UCT,  BUCT and  VPI,  we  tested  our  agent's
performance  against  3  Random  players  and  against  3  JSettlers  players.  With  4
different simulation depths and for each case we test our agent either with or without
STAC initial placement. Each setting was tested on 100 seeded experiments.
Random players are implemented in a way that all available actions are listed and they
select a random legal subset of those actions.

For making a point of reference, we experiment with one JSettlers agent against three
random players and the agent scores 90% win.

AVG Victory Points 9,31
AVG Place 1,28

AVG Point System 2,71
Win Ratio 90%

AVG Points From Winner 0,34
Victory Point Standard Deviation 3,809

AVG DEV from mean in each game 1,9125
Above mean of Victory Points 92%

Longest Road 55,00%
Largest Army 52,53%

Figure 18: JSettlers vs. 3 Random

6.1 Metrics

We tested our agent's performance based on the following metrics. Average Victory
Points, Average Place, Average Point System, win ratio, Average points from winner,
Victory points standard deviation, Average Deviation from mean in each game, Above
mean  of  Victory  points,  Average  enemy  players  Victory  points,  Longest  road
acquisition and largest army acquisition.

6.1.1 Average Victory Points

For this metric we calculate the average VP our agent gathered. This metric however
is not sufficient because if a game takes more rounds than usual, all players will score
higher  VP.  Regardless,  it  is  helpful  for cross-validating the methods since we are
using seeds. 

∑
i

R

I ( 0 )
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R : the Victory Points our agent took on game i
I : the total number of games

6.1.2 Average Place

For each setting we calculate the average place that our agent won. With this metric
we evaluate if our agent is scoring well against all other players by acquiring good
positions over all games.

∑
i

P

I
( 0 )

P : the place that our agent took on game i
I : the total number of games

6.1.3 Average Point System

We implemented a metric to get a more accurate average place estimate for our agent.
At (6.1.2) we calculated the average place for our agent but this is method does not
take  into  consideration  ties  between  players  which  is  very common in  Settler  of
Catan. For example, if our agent and another player have the least VP at the end, it
will award both the third place. Our formula awards our agent with 1 point for each
player with lower VP than our agent. 

∑
i

count (P)

I
( 0 )

P : the number of players our agent over passed on game i
I : the total number of games

6.1.4 Win Ratio

This method is considerate to be the most accurate since it is indicates how many
times our agent won the game.

W
I

( 0 )

W : the number of times our agent won the game
I : the total number of games
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6.1.5 Average Points from Winner

This method measures the Victory Points our agent left behind from the winner of the
game. With this method, we can measure by how much our agent was outplayed by
the winner. This method is used only in games which our agent lost.

∑
i

P (VP)i−A (VP)i

I ( 0 )

P(VP) : the Victory Points of winner on game i
A(VP) : the Victory Points of our agent on game i
I : the total number of games

6.1.6 Victory Points Standard Deviation

This method calculates the Standard Deviation of our agent's Victory Points. 

σ=√∑i (V Pi− V́P)
2

I ( 0 )

VP : the Victory Points of our agent on game i
V́P : the mean of Victory Points over all games

I : the total number of games

6.1.7 Average Deviation from Mean in each game

This method calculates the Standard Deviation of our agent's Victory Points from the
mean in each game. 

σ=√∑i (V Pi− V́Pi)
2

I
( 0 )

VP : the Victory Points of our agent on game i
V́P : the mean of Victory Points on game i

I : the total number of games
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6.1.8 Above Mean of Victory Points ratio

The metric demonstrates how many times our agent is above the mean of Victory
Points of all players in each game.

X i

N ( 0 )

Xi : the number of times our agent was above the mean of Victory Points at 
the game
N : the total number of games

6.1.9 Average Opponent Victory Points

For this metric we calculate the average VP of all players but our agent. 

∑
i

V́Pi

I ( 0 )

V́P : the mean of Victory Points on game i of all players expect ours

I : the total number of games

6.1.10 Longest Road Acquisition Ratio

This metric demonstrates the ratio of Longest Road acquisition from our player

W
I ( 0 )

W : the number of times our agent end the game with the Longest Road
I : the total number of games

6.1.11 Largest Army Acquisition Ratio

This metric demonstrates the ratio of Largest Army acquisition from our player

W
I

( 0 )

W : the number of times our agent end the game with the Largest Army
I : the total number of games
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6.2 Results: Comparisons against JSettlers

Simulation Depth 30 15 10 5

Method UCT
UCT
+S UCT

UCT+
S UCT

UCT+
S UCT

UCT+
S

AVG Victory Points 3,77 4,54 4,38 4,58 4,05 4,30 4,47 4,38
AVG Place 3,68 3,38 3,51 3,52 3,59 3,49 3,32 3,45

AVG Point System 0,23 0,33 0,25 0,38 0,31 0,39 0,61 0,44

WIN Ratio
3,00

%
4,00

%
3,00

%
4,00

%
7,00

%
9,00

%
6,00

%
7,00

%
AVG Points From Winner 6,36 5,54 5,69 5,50 6,11 5,86 5,67 5,79

Victory Point Standard
Deviation 1,25 1,32 1,55 1,46 1,43 1,80 2,07 1,80

AVG DEV from mean in
each game 3,06 2,40 2,60 2,59 3,10 3,01 2,86 2,88

Above mean of Victory
Points

4,00
%

6,00
%

5,00
%

8,00
%

7,00
%

13,0
0%

12,0
0%

10,0
0%

Average Opponent VP 7,64 7,52 7,64 7,76 7,60 7,35 7,59 7,44

Longest Road
17,0
0%

17,0
0%

19,0
0%

40,4
0%

18,0
0%

23,0
0%

17,0
0%

25,0
0%

Largest Army
13,1
3%

20,2
0%

22,2
2%

20,4
1%

12,1
2%

22,2
2%

27,2
7%

23,2
3%

Figure 19: UCT vs. 3 JSettlers

Simulation Depth 30 15 10 5

Method BUC
T

BUCT
+S

BUC
T

BUCT
+S

BUC
T

BUCT
+S

BUC
T

BUCT
+S

AVG Victory Points 3,51 3,82 5,59 5,23 4,42 4,50 4,23 4,26

AVG Place 3,74 3,70 3,20 3,29 3,39 3,60 3,58 3,43
AVG Point System 0,14 0,21 0,53 0,43 0,41 0,40 0,30 0,45
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Win Ratio 3,00
%

3,00
%

5,00
%

3,00
%

11,0
0%

12,00
%

6,00
%

7,00
%

AVG Points from Winner 6,69 6,22 4,49 4,87 5,58 5,65 5,89 5,82

VP Standard Deviation 1,12 1,32 1,88 1,62 1,89 1,93 1,51 1,71
AVG DEV from mean

each game
3,34 3,04 2,02 2,12 2,91 3,10 2,97 2,79

Above mean of Victory
Points

4,00
%

3,00
%

14,0
0%

10,00
%

11,0
0%

12,00
%

6,00
%

7,00
%

Average Opponent VP 7,64 7,60 7,72 7,68 7,29 7,57 7,63 7,43

Longest Road 16,0
0%

28,00
%

23,0
0%

19,00
%

18,0
0%

27,00
%

21,7
8%

9,00
%

Largest Army 20,2
0%

7,07
%

46,4
6%

48,48
%

33,3
3%

27,27
%

22,0
0%

40,40
%

Figure 20: BUCT vs. 3 JSettlers

Simulation Depth 30 15 10 5
Method VPI VPI+S VPI VPI+S VPI VPI+S VPI VPI+S

AVG Victory Points 4,62 4,47 4,76 4,54 4,80 4,96 4,46 4,68
AVG Place 3,35 3,39 3,42 3,36 3,24 3,20 3,40 3,30

AVG Point System 0,49 0,45 0,49 0,53 0,65 0,66 0,48 0,54

Win Ratio
11,00

% 11,00%
12,00

%
13,00

%
17,00

%
16,00

%
14,00

% 15,00%
AVG Points From Winner 5,45 5,63 5,32 5,60 5,33 5,13 5,58 5,37

Victory Point Standard Deviation 1,84 1,82 2,03 2,06 2,31 1,96 2,19 2,22
AVG DEV from mean in each game 2,91 3,01 3,01 3,06 3,11 2,94 3,24 3,03

Above mean of Victory Points
13,00

% 12,00%
17,00

%
14,00

% 17,00%
18,00

%
16,00

% 17,00%
Average Opponent VP 7,45 7,49 7,67 7,37 7,24 7,36 7,53 7,45

Longest Road
34,00

%
34,00

%
25,25

%
19,00

% 21,00%
33,00

%
25,00

% 28,00%

Largest Army
29,29

% 31,31%
28,57

%
33,33

%
36,36

%
31,31

%
34,34

% 31,31%
Figure 21: VPI vs. 3 JSettlers

Figures (19) (20) (21) demonstrate the results concerning the standard Monte Carlo
Tree Search algorithm with the use of UCT (19) BUCT (20) and VPI (21) in the
selection step, against 3 JSettlers. We can see that performance of our agent is rather
low. UCT won 9% of the games, BUCT 14% and VPI 17%, at simulation depth of 10
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rounds. Throughout the experiments we observe that the critical simulation depth lies
on 10 rounds because, it has enough round to build the tree ahead but the same time
the  algorithm  is  not  exhausted  into  building  long  paths  and  give  time  for  more
simulations to be made. The average of the Victory Points that our agent scored which
is half of the goal (10 VP to win when our agent scores 5VP) and the average place is
between the third and the last place at the end of the game, indicates that our pure
Monte Carlo approach needs to be more competitive against the JSettlers agent. The
pointing system as  well  as the Victory Points  difference from the winner  in  each
game, gives a more clear view of what we mentioned before. Lastly, we notice that
our agent deviation is rather good since it only diverges by a couple of Victory Points
which is understandable given the nature of "Settlers of Catan" .
Regarding the simulations in each method, UCT simulates [3000,10000] games since
it  is  the  less  complex  of  all.  BUCT has  a  slightly lower  performance simulating
[2000,9500] games, the upper bound drops only by 500 since the pick of simulations
lies in rounds close to the end of game. VPI is the method that consumes the most
computational budget of all three methods, as a result, we notice a dramatically big
drop of simulations to [500,3000], yet produces the best score.

6.3 Results: Behavior Against Random Opponents  

Simulation Depth 30 15 10 5 -

Method UCT UCT+S UCT UCT
+S

UCT UCT
+S

UCT UCT
+S

JSettle
rs

AVG Victory Points 8,87 8,86 8,65 8,68 8,93 8,97 8,87 8,57 9,31
AVG Place 1,51 1,49 1,65 1,65 1,55 1,52 1,59 1,73 1,28

AVG Point System 2,32 2,43 2,25 2,27 2,36 2,41 2,31 2,19 2,71

Win Ratio 63,00
%

67,00
%

68,0
0%

68,0
0%

72,0
0%

74,0
0%

71,0
0%

73,0
0% 90%

AVG Points from
Winner 1,32 1,14 1,40 1,37 1,12 1,07 1,21 1,53 0,34

Victory Point
Standard
Deviation

1,46 1,54 1,98 1,95 1,69 1,65 1,75 2,23 3,809

AVG DEV from mean
in each game 2,40 2,58 2,91 3,00 3,02 3,11 2,92 3,02 1,9125

Above mean of
Victory Points

79,00
%

85,00
%

74,0
0%

74,0
0%

78,0
0%

80,0
0%

76,0
0%

73,0
0%

92%

Average
Opponent VP

6,16 6,00 6,16 6,05 6,01 5,89 6,13 6,44 -
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Longest Road 29,00
%

17,00
%

55,0
0%

55,0
0%

57,0
0%

57,0
0%

56,0
0%

51,0
0%

55,00
%

Largest Army 40,40
%

49,49
%

24,2
4%

29,2
9%

32,3
2%

32,3
2%

34,3
4%

32,3
2%

52,53
%

Figure 22: UCT vs. 3 Random

Simulation Depth 30 15 10 5 -

Method BUCT
BUCT

+S BUCT
BUCT

+S BUCT
BUCT

+S BUCT
BUCT

+S
JSettl

ers
AVG Victory Points 8,93 8,81 8,97 9,11 9,13 9,12 9,13 9,24 9,31

AVG Place 1,43 1,44 1,39 1,39 1,33 1,38 1,34 1,34 1,28
AVG Point System 2,50 2,48 2,54 2,57 2,62 2,58 2,60 2,59 2,71

WIN Ratio
70,0
0%

71,00
%

73,0
0%

75,00
%

77,0
0%

77,00
%

75,0
0%

76,00
% 90%

AVG Points From Winner 1,07 1,19 1,03 0,89 0,87 0,88 0,87 0,76 0,34
VP Standard Deviation 1,51 1,69 1,51 1,34 1,34 1,36 1,31 1,16 3,809
AVG DEV from mean

each game 3,07 2,93 2,97 2,93 2,93 2,95 2,86 3,02
1,912

5
Above mean of Victory

Points
85,0
0%

84,00
%

85,0
0%

89,00
%

88,0
0%

87,00
%

89,0
0%

88,00
% 92%

Average Opponent VP 5,31 5,50 5,63 5,61 5,61 5,70 5,60 5,51 -

Longest Road
47,0
0%

44,00
%

42,0
0%

52,00
%

49,0
0%

42,00
%

44,0
0%

54,00
%

55,00
%

Largest Army
54,5
5%

50,51
%

51,5
2%

41,41
%

44,4
4%

45,45
%

41,4
1%

42,42
%

52,53
%

Figure 23: BUCT vs. 3 Random

Simulation Depth 30 15 10 5 -

Method VPI
VPI+

S VPI
VPI+

S VPI
VPI+

S VPI
VPI+

S
JSettl

ers
AVG Victory Points 9,35 9,46 9,50 9,40 9,54 9,46 9,34 9,63 9,31

AVG Place 1,23 1,21 1,23 1,23 1,16 1,23 1,23 1,17 1,28
AVG Point System 2,72 2,74 2,74 2,73 2,81 2,75 2,76 2,77 2,71

Win Ratio
86,0
0%

85,0
0%

85,0
0%

84,0
0%

87,0
0%

88,0
0%

87,0
0%

87,0
0%

90%

AVG Points From
Winner 0,63 0,54 0,50 0,60 0,46 0,54 0,66 0,37

0,34

Victory Point Standard
Deviation 1,12 0,92 0,85 1,01 0,80 0,95 1,15 0,64

3,80
9

AVG DEV from mean in
each game 3,33 3,24 3,15 3,19 3,12 3,25 3,38 3,19

1,91
25
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Above mean of Victory
Points

88,0
0%

92,0
0%

90,0
0%

91,0
0%

93,0
0%

90,0
0%

91,0
0%

96,0
0%

92%

Average Opponent VP 5,35 5,38 5,46 5,43 5,59 5,44 5,26 5,51 -

Longest Road
57,0
0%

53,0
0%

48,0
0%

50,0
0%

48,0
0%

63,0
0%

52,0
0%

51,0
0%

55,0
0%

Largest Army
52,5
3%

48,4
8%

42,4
2%

44,4
4%

50,5
1%

48,4
8%

48,4
8%

51,5
2%

52,5
3%

Figure 24: VPI vs. 3 Random

Figures (22) (23) (24) represent the results of Monte Carlo Tree Search algorithm with
the use of UCT (22) BUCT (23) and VPI (24) in the selection step, against 3 players
that choose randomly a subset of their legal actions per round. Also, the last column
shows the results of JSettlers agent against 3 Random opponents. An optimal outcome
for us would be if an agent could win more than 95% of the games against random
players.
As the results indicate UCT method is scoring low since the best outcome (74%) was
produced with simulating depth of 10 rounds and the use of STAC initial placement.
The diversion towards random of this method is highly notable in this results set,
since the agent is unable to score more than 9 Victory Points on average, meaning that
the agent was outplayed by 2 points. 
The Bayesian UCT method offers an improvement at the previous method since it
breaks the 9 Victory Points average and scoring better outcomes, by winning 77% of
the games, but this also method keeps the aberration of UCT. 
The most promising results come from VPI witch wins up to 88% of the games using
the initial placement of STAC. The method is more stable since, at the games that did
not win was only 1 Victory Point behind the winner. Although VPI scores close to the
JSettlers agent, the score is inferior than our original goal. 

6.4 Pitting Our Methods Against Each Other 

We tested all strategies of MCTS in a single game with no JSettlers opponent. The
game was played only by three of our agents. We tested the results with different
simulation depths. 

Method UCT BCT VPI UCT+STAC BUCT+STAC VPI+STAC
AVG Victory Points 6,69 6,62 8,99 7,03 6,82 8,99

AVG Place 2,25 2,25 1,39 2,2 2,27 1,4
AVG Point System 2,36 2,36 1,39 2,29 2,39 1,45

Win Ratio
16,00

% 9,00%
75,00

% 17,00% 11,00% 72,00%
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AVG Points From Winner 3,31 3,38 1,01 2,97 3,18 1,01
Victory Point Standard Deviation 1,86 1,90 1,52 1,79 1,71 1,46

AVG DEV from mean in each game 1,73 1,50 2,32 1,57 1,43 2,17

Above mean of Victory Points
25,00

% 25,00%
81,00

% 30,00% 22,00% 76,00%

Longest Road
19,00

% 35,00% 46,00% 34,00% 18,00% 48,00%

Largest Army
22,00

% 30,00% 48,00% 25,00% 25,00% 50,00%
Figure 25: UCT vs. BUCT vs. VPI (Depth = 30)

Method UCT BCT VPI UCT+STAC BUCT+STAC VPI+STAC
AVG Victory Points 6,8 7,3 9,01 7,27 6,49 8,97

AVG Place 2,31 2,12 1,38 2,12 2,35 1,38
AVG Point System 2,48 2,29 1,42 2,26 2,48 1,41

Win Ratio 11,00% 15,00% 74,00% 15,00% 13,00% 72,00%
AVG Points From Winner 3,2 2,7 0,99 2,73 3,51 1,03

Victory Point Standard Deviation 1,82 1,67 1,47 1,50 2,01 1,49
AVG DEV from mean in each game 1,54 1,37 2,01 1,44 1,85 2,09

Above mean of Victory Points 17,00% 28,00% 76,00% 30,00% 29,00% 80,00%
Longest Road 25,00% 27,00% 48,00% 36,00% 25,00% 39,00%
Largest Army 23,00% 27,00% 50,00% 33,00% 24,00% 43,00%

Figure 26: UCT vs. BUCT vs. VPI (Depth = 15)

Method UCT BCT VPI UCT+STAC BUCT+STAC VPI+STAC
AVG Victory Points 6,49 6,9 9,12 6,56 7,3 9,17

AVG Place 2,33 2,18 1,36 2,4 2,12 1,33
AVG Point System 2,44 2,31 1,38 2,53 2,24 1,38

Win Ratio 9,00% 18,00% 73,00% 9,00% 17,00% 74,00%
AVG Points From Winner 3,51 3,1 0,88 3,44 2,7 0,83

Victory Point Standard Deviation 1,81 1,89 1,28 1,63 1,63 1,23
AVG DEV from mean in each game 1,58 1,68 2,15 1,63 1,40 1,99

Above mean of Victory Points 22,00% 30,00% 77,00% 18,00% 30,00% 80,00%
Longest Road 26,00% 28,00% 46,00% 24,00% 37,00% 39,00%
Largest Army 23,00% 28,00% 49,00% 20,00% 25,00% 55,00%

Figure 27: UCT vs. BUCT vs. VPI (Depth = 10)

Method UCT BCT VPI UCT+STAC BUCT+STAC VPI+STAC
AVG Victory Points 6,61 7,06 8,94 7,16 7,05 8,84

AVG Place 2,29 2,2 1,35 2,23 2,16 1,43
AVG Point System 2,43 2,31 1,42 2,38 2,31 1,49

Win Ratio 12,00% 17,00% 71,00% 14,00% 15,00% 71,00%
AVG Points From Winner 3,39 2,94 1,06 2,84 2,95 1,16

Victory Point Standard Deviation 1,82 1,65 1,51 1,43 1,70 1,66
AVG DEV from mean in each game 1,58 1,56 2,04 1,48 1,47 2,00

Above mean of Victory Points 20,00% 25,00% 76,00% 21,00% 25,00% 75,00%
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Longest Road 28,00% 30,00% 42,00% 33,00% 21,00% 46,00%
Largest Army 29,00% 22,00% 49,00% 30,00% 28,00% 42,00%

Figure 28: UCT vs. BUCT vs. VPI (Depth = 5)

The method comparison confirms the previous results, VPI scored the best results
among  all  the  MCTS  methods,  since  the  absent  of  JSettlers  agent,  benefits  VPI
method more than all the others. The VPI scores up to 75% win ratio, significantly
higher than the baseline which would win 33% of the games since it is a three players
set up. Also, the VPI method was always close to the winner only 1 Victory Point on
average behind.  UCT and BUCT scores are rather similar with BUCT exceeding a
little.  The  advantages  and  disadvantages  of  each  depth  are  shared  between  the
methods, but we can notice that VPI method shows a more stable behavior because it
does not rely to simulations count as much as the remaining methods.  
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7 Conclusions

At  the  last  chapter  of  this  thesis,  we  present  our  conclusion  concerning  the
implementation of Monte Carlo Tree Search algorithm is such a complex domain and
we provide some ideas concerning our future work.

7.1 Summary

Our intention was to build a strong agent using Monte Carlo Tree Search algorithm
without  any  heuristics  in  the  non-deterministic,  partially  observable,  multi-player
game "Settlers of Catan" obeying the complete rules-set. For this task we tested three
different methods for the Tree Policy and four Simulation Depths. 
Our algorithm was outplayed from the JSettlers agents since it could not reach 25%
win ratio when competing against 3 JSettlers agents. We believe this is due mainly to
lack of domain knowledge while JSettlers uses a series of domain specific heuristics. 

Our experiments  among the  three  MCTS strategies  indicated  that  that  the  reward
based on distribution  provided by VPI  is  the  most  promising,  since  it  out-played
easily  all  the  others  bandit-based  methods  and was  the  most  competitive,  against
JSettlers agents reaching 17% win ratio when a simulation depth of 10 rounds was
used. There is place for improvement in all methods and we believe that a hybrid
algorithm would be able to score better than JSettlers agents. 

MCTS and Domain Knowledge

We wanted to test the performance of our agent using nothing but MCTS. So in each
step of the game, our agent was only aware of all his legal action which initially they
were all equal. From there, our agent needed to figure out what was the best action (or
set  of  actions)  that  will  benefit  him  the  most.  Because  of  that,  we  noticed  the
following:

 MCTS does not have strategy. MCTS algorithm runs on each turn of our
agent  with  no  prior  knowledge,  making  the  agent  have  no  consistency in
strategy. For example, we observe the agent building roads to head for a new
position  to  place  settlement  and  when  he  does,  instead  of  placing  new
settlement buys a Development Card or builds roads towards another spot.

 Set of  actions is  vast.  Each round our agent  has  a  big amount  of actions
available to him, but more than half of them have no potential.  Most of these
action can be "left out" easily with few heuristics as we suggest to section
(7.2). 

 MCTS does not make moves to protect his future progress. In the game
Settlers of Catan a player sometimes should make moves to either block or
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disturb plans of enemy players. Since blocking enemies will now increase the
calculated reward, our agent considerate moves like this as "bad moves".

 Trade manipulation. MCTS taking into consideration only trading with bank
or ports.  Because of the nature of the algorithm, MCTS plans  moves only
based on current available set and not some positional set after trading with
other players. Although, if we make some trades before or after the algorithm
we observe an increase of "right moves".

Random Selection

Our  agent  for  Default  Policy  (5.2.4.3)  uses  random selection.  Making  the  agent
calculate  scenarios  that  will  not  be  played.  Losing  significant  amount  of
computational budget that could have been used to simulation. An improvement on
this Policy will benefit crucial our agent. 

Random Playouts

The MCTS algorithm lies along with numerous simulations. The Bayesian aspect of
the game interferes severely with the effectiveness of the algorithm since most of the
scenarios will not happen. Machine learning algorithms or simple heuristics methods
could restrict the algorithm when it goes to improbable scenarios.

Depth versus Simulations 

As we can see at the results, there is a trade off we need to make between simulation
depth  and  simulation  number.  As  the  results  indicate  the  best  set  of  actions  is
Simulation Depth of 10 rounds. Because, simulation depth bigger than 10 rounds will
make simulations number to drop, with no value on estimations. Simulating the game
many rounds ahead is altering the reward estimation of our agent since they are big
variations on game states due to the Bayesian elements of the game. On the other
hand, fewer rounds than 10 will not allow the agent to actually plan ahead confined
only by a  few moves.  Of course,  the  more simulation the agent  makes  the  more
effective the algorithm will be. However, the improvement of the agent's performance
by increasing its simulations it is not commensurate. Since in some experiment we are
currently running, doubling the simulation offers only a minor growth to our scores. 

ERC Initial Placement (STAC)

Dobre et al. [22] initial placement makes our agent perform better increasing in most
cases the outcome of our agent. As they have already proven the initial placement
gives advantage to our agent and our experiments confirm that. Since in almost all set
ups, STAC initial placement gave a small boost up to our scores. 
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7.2 Future Work

In this final section, we propose some ideas for future work.

Improve MCTS with Domain Knowledge

As proven from the results, MCTS algorithm with no domain knowledge is outplayed
by a hand-heuristic agent. So we need to include to MCTS agent domain knowledge
to either increase his simulation performance or enchant the selection process.
For  example,  it  is  clear  that  the  VPI  is  an  optimistic  assessment  of  the  value  of
performing α; by performing α once, we do not get perfect information about it, but
only one more training instance. Thus, we might consider weighing the VPI estimate
by some constant.

Making a plan

As mentioned before, MCTS does not have any plan consistency through rounds. By
making a plan and each round updating it based on current state of the game, might
give our agent a better perspective of the game. This plan could be just to rank the top
pieces.

Negotiation

We discussed the power that trading has in the game of Settlers of Catan and we
pointed out its importance. The first step is to enhance our Negotiation scheme, using
tools from Machine Learning, Game Theory and Argumentation Techniques .

JSettlers Framework

The potential of MCTS is limited because of the JSettlers framework. Since it is a
internet  based  application  the  computational  budget  provided  to  our  agent  is
significant  lower  than  a  standalone  Java  application.  Removing  communication
infrastructure will allows us to test with increased number of simulations. Or maybe
complete changing domain might boost the performance of our agent.

Understating Enemy Strategies

Playing  a  game  such  Settlers  of  Catan,  a  player  does  not  need  only  to  aim  to
maximize  his  results,  but  also  counter  enemies  strategies  and  prevent  them  for
expanding their plans. Using the work of [23][24][25] we can estimate the strategy of
our enemies and give more importance to countering moves.
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Appendix A

Background

Here we provide an overview of the basic concepts related to the methods we go
throughout this thesis.

Multinomial Estimation Problem and Dirichlet Priors
Let X be a random variable  that can take K possible values. Given training set D,

which contains outcomes of N independent draws x1 ,…, xN

of X from an unknown

multinomial  Distribution  P*.  Finding a  good approximation  of  P* constitutes  the
multinomial estimation problem. This problem can also be stated as predicting the

outcome xN+1
 given x1 ,…, xN

.

The  Bayesian  estimate,  given  a  prior  distribution  over  the  possible  multinomial
distributions is:

P( xN+1|x1,…, xN , ξ )=∫ P( xN+1|θ , ξ )P (θ|x1 ,…, xN , ξ )dθ

where

( 0 )

P(θ|x1 ,…,xN ,ξ )∝ P (θ∨ξ )∏
i

θ i
N i ( 0 )

and  θ = (θ1, ..., θΚ) are the possible values over the probabilities P*(1), ..., P*(K) and ξ
is  a  variable  containing  assumptions  over  the  domain.  We  chose  the  Dirichlet
distribution as a prior distribution for each node. Dirichlet distribution is a parametric
family that is conjugate prior to the multinomial/categorical distribution [14].
A Dirichlet prior consists of two parameters:

 K ≥2 , the number of rival events and

 a1 , a2 ,…,aK the concentration parameters, where 
ai >0

The Dirichlet distribution is a generalization of Beta Distribution and is a distribution
over multinomial. It has probability density function:
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ai

∑
i

¿
¿
Γ¿

p(P={ pi}|ai)=
∏
i

(Γ (ai))
¿

( 0 )

The initial prediction for each value of the random variable X, given a Dirichlet prior,
is [14]:

P(X=i|ξ)=∫θ iP(ϑ |ξ )dϑ =
ai

∑
j

a j ( 0 )

If the prior is a Dirichlet prior with concentration parameters a1 , a2 ,…,aK  and Ni

is the number of occurrences of the symbol i in the training data, then the posterior is

also  a  Dirichlet  with  concentration  parameters  a1+N1 ,…,aK+NK and  thus  the

prediction for XN+1 is :

P(X N+1= j|x1 ,…, xN)= a j+N j

∑
j

(a j+N J ) ( 0 )
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