
Technical University of Crete

School of Electrical & Computer Engineering

Design and Implementation of the OPT-2 Algorithm

in Recent Technology FPGA Logic

By Georgios Malandrakis Miller

A Thesis Submitted in Partial Fulfillment of The Requirements for The

Diploma of Electrical & Computer Engineering

Thesis Committee

Professor Dollas Apostolos, Supervisor

Assistant Professor Papaefstathiou Yannis, Committee Member

Professor Pnevmatikatos Dionisios, Committee Member

Chania, December 2016

ACKNOWLEDGEMENTS
First of all, I would like to express my sincere and deep gratitude towards my supervisor, Prof.

Apostolos Dollas, for the chances he gave me, his continuous support and availability throughout the

preparation of this thesis and last but not least, for believing in me. I would also like to specially

thank Gregory Chrysos and Pavlos Malakonakis, for our valuable collaboration and their always

insightful guidance through every obstacle I encountered during my work towards the completion of

this thesis. Many thanks are also due to Assistant Professor Yannis Papaefstathiou and Professor

Dionisios Pnevmatikatos for their participation in the committee, as well as all the staff and students

of the Microprocessor & Hardware Lab, none excluded. At this point, I should obviously also thank

my parents and sister for bearing up with me this whole time, and for their unconditional and

inexhaustible support towards every endeavor I undertake. Finally, many, many thanks to each and

every one of my friends, for all the good times we had together during our studies.

Everything that has a beginning has an end.

Every end is a new beginning.

ABSTRACT
The Traveling Salesman Problem (TSP) is one of the most well-known and thoroughly studied

problems within the domain of combinatorial optimization, having attracted for many decades the

attention and even life-long devotion of numerous computer scientists, ranging from algorithm

researchers to High-Performance Computing specialists. The number of its practical, real-life

applications is sheer: Manufacturing, logistics, telecommunications, statistics, scheduling, and even

psychology are some of them, to name a few. Since it is an NP-Hard problem, solving it to optimality

requires an exponentially-increasing time as its size grows, thus rendering its exact solution

prohibitive for large datasets or when time constitutes a crucial factor. This has ultimately led to the

development of an abundance of heuristics, specifically designed to address this issue, providing

orders of magnitude reduced running times at the cost of sub- or near-optimal results. One of the

oldest and most recognized such heuristic is 2-OPT. Its simplicity, combined with its effectiveness

and adaptability has led to its wide adoption within the TSP community, being actively implemented

by researchers worldwide even today, more than fifty years after its initial conception.

The aim of this thesis is the mapping of a 2-OPT variant based on reconfigurable logic (FPGAs). The

presented work originates from research conducted nearly a decade ago in the Microprocessor &

Hardware Lab at the School of ECE, Technical University of Crete. It constitutes an evolutionary

extension to the latter, whose objective is to assess its performance while adapting it to next-

generation FPGAs, through the utilization of both the newly-(re)emerged High Level Synthesis flow

and the traditional HDL-based flow as well; the corresponding tools are part of the Xilinx Vivado

Design Suite. A thorough evaluation and an in-depth comparison between the intrinsic

characteristics of these two approaches to hardware design are provided. Experimental results show

that the implemented hardware architectures are capable of delivering speedups ranging from 1.1x

to nearly 10x for small to medium scale problem sizes, depending on the dataset used. These figures

are obtained when comparing the aforementioned architectures with the Concorde TSP software

package, as well as with a state-of-the-art GPU implementation.

KEYWORDS
Combinatorial optimization, Traveling Salesman Problem (TSP), 2-OPT, Parallel Implementation, Field

Programmable Gate Array (FPGA), High Level Synthesis (HLS), Hardware Description Language (HDL),

Comparison, Evaluation.

1

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION ... 5

1.1 CONCISE BACKGROUND IN COMPUTATIONAL COMPLEXITY ... 5

1.2 USEFUL THEORETICAL DEFINITIONS ... 6

1.3 ABOUT RECONFIGURABLE COMPUTING & FPGAs ... 7

1.4 MOTIVATION ... 10

1.5 CONTRIBUTION .. 10

1.6 THESIS STRUCTURE .. 11

CHAPTER 2: APPROACHING THE TSP .. 12

2.1 INTRODUCTION & CHAPTER STRUCTURE .. 12

2.2 ORIGINS OF THE TSP... 12

2.3 WHAT IS THE TSP? .. 12

2.4 RESOLVING TSP TO GRAPHS ... 12

2.5 TSP CASES .. 13

2.6 TSP COMPLEXITY .. 13

2.7 HEURISTICS AND APPROXIMATE SOLUTIONS .. 14

2.8 PRACTICAL TSP APPLICATIONS ... 15

CHAPTER 3: RELATED WORK... 16

3.1 INTRODUCTION & CHAPTER STRUCTURE .. 16

3.2 PARALLEL PROGRAMMING APIs ... 16

3.3 METAHEURISTICS ENCOUNTERED IN THIS CHAPTER ... 17

3.4 PARALLEL IMPLEMENTATIONS OF TSP (META) HEURISTICS 3.4.1 SOFTWARE (CPU) BASED

IMPLEMENTATIONS ... 17

3.4.2 HARDWARE BASED IMPLEMENTATIONS, FPGA-BASED .. 18

3.4.3 HARDWARE BASED IMPLEMENTATIONS, GPU-BASED .. 18

3.5 THE CONCORDE TSP SOLVER .. 21

CHAPTER 4: THE 2-OPT IMPROVEMENT HEURISTIC .. 22

4.1 INTRODUCTION & CHAPTER STRUCTURE .. 22

4.2 2-OPT AT A GLANCE (2OPT) .. 22

4.3 2-OPT MOVE EVALUATION ... 22

4.4 2-OPT COMPLEXITY .. 23

4.5 2-OPT TOUR QUALITY ... 23

4.6 A GRAY AREA ... 23

2

4.7 CLARIFICATION & 2-OPT STRATEGIES ... 24

4.8 THE RANDOMIZED VARIANT (R2OPT) ... 25

4.9 THE SYMMETRICAL VARIANT (S2OPT) .. 25

4.10 THE TSPLIB TSP DATASET LIBRARY .. 28

4.11 PERFORMANCE ANALYSIS & COMPARISONS OF 2-OPT VARIANTS 28

4.11.1 TOUR QUALITY .. 28

4.11.2 AVERAGE TOUR CONVERGENCE RATE ... 29

4.11.3 TOUR LENGTH REDUCTION PER MOVE APPLIED .. 30

4.11.4 NUMBER OF EVALUATED MOVES .. 31

4.12 RRHC: A CASE STUDY WITH SYMMETRICAL 2-OPT (S2OPT) ... 32

4.13 THE SQUARE OF THE EUCLIDEAN DISTANCE AS THE COST FUNCTION (S2OPT) 34

4.14 AVAILABLE PARALLELISM OF 2-OPT VARIANTS ... 37

CHAPTER 5: S2OPT HARDWARE ARCHITECTURES & THE IMPLEMENTATION TOOLS 39

5.1 INTRODUCTION & CHAPTER STRUCTURE .. 39

5.2 THE MATLAB-BASED HARDWARE ARCHITECTURE EMULATOR .. 39

5.3 THE XILINX VIVADO DESIGN SUITE .. 39

5.4 ANALYSIS OF THE S2OPT ALGORITHM FOR FPGA IMPLEMENTATION 41

5.5 S2OPT VHDL-BASED ARCHITECTURE ... 45

5.5.1 S2OPT TOP LEVEL (S2OPT MODULE) .. 45

5.5.2 REGISTER UNIT (RGU) MODULE ... 47

5.5.2.1 CITYREG MODULES ... 49

5.5.3 PROCESSING UNIT (PRU) MODULE .. 52

5.5.3.1 PROCESSING ELEMENT (PE) MODULE ... 53

5.5.3.2 SWAP GENERATION UNIT (SGU) MODULE .. 56

5.5.3.3 LOCAL CONTROL UNIT (LCU) MODULE .. 58

5.5.4 MAIN CONTROL UNIT (MCU) MODULE .. 58

5.5.5 VHDL-BASED ARCHITECTURE LATENCY SUMMARY .. 60

5.6 S2OPT HLS-BASED DESIGNS .. 60

5.6.1 FACTORS INFLUENCING THE GENERATED DESIGN CHARACTERISTICS............................. 60

5.6.2 THE EMPLOYED WORKFLOW PATTERN .. 61

5.6.3 SOURCE CODE STRUCTURES COMMON IN THE EVALUATED REVISIONS 62

5.6.4 SOURCE CODE REVISIONS .. 63

5.6.5 DIRECTIVES EVALUATED & SUBSEQUENT DISCUSSION ... 67

5.6.6 FINAL HLS-BASED DESIGNS .. 69

3

CHAPTER 6: EVALUTION OF THE DESIGN FLOWS, PERFORMANCE RESULTS, AND RELATED

DISCUSSIONS .. 71

6.1 INTRODUCTION & CHAPTER STRUCTURE .. 71

6.2 DESIGN FLOWS EVALUATION .. 71

6.2.1 PRESENTATION OF THE DESIGN FLOWS ... 71

6.2.2 COMPARISON CRITERIA ... 73

6.2.3 COMPARING THE DESIGN FLOWS .. 73

6.3 PERFORMANCE ASSESSMENT METHODS & PARAMETERS .. 76

6.4 PERFORMANCE RESULTS & SUBSEQUENT DISCUSSIONS ... 77

6.4.1 COMPARISON OF THE HLS-BASED DESIGNS (RESOURCE UTILIZATIONS & CLOCKS) 77

6.4.2 VHDL-BASED S2OPT & COMPARISON WITH HLS-BASED DESIGNS (RESOURCE

UTILIZATIONS & CLOCKS) ... 80

6.4.3 VHDL-BASED & HLS-BASED S2OPT COMPARED TO CONCORDE (RUNTIMES, SPEEDUPS &

TOUR QUALITY) ... 82

6.4.4 VHDL-BASED S2OPT COMPARED TO ORIGINAL S2OPT ... 84

6.4.5 RRHC: VHDL-BASED S2OPT COMPARED TO GPU-BASED 2-OPT 85

CHAPTER 7: CONCLUSION & FUTURE WORK .. 88

7.1 CONCLUSION ... 88

7.2 FUTURE WORK ... 88

APPENDIX ... 90

A.1 MATLAB SCRIPT UTILIZED IN “APPROACH A” DISCUSSED IN SECTION 4.13, CHAPTER 4. 90

A.2 HLS DESIGNS EVALUATIONS ... 92

BIBLIOGRAPHY ... 105

4

5

CHAPTER 1: INTRODUCTION
This opening chapter constitutes an introduction to the scientific areas approached by the thesis,

intending to familiarize the reader with some basic, related notions, and provide an early, generic

insight into its main topic. Under these premises, the first section presents the concise definitions of

some fundamental terms of algorithm theory encountered in this text, followed by a piece of

introductory information about Reconfigurable Computing & FPGAs. The chapter then continues

with the statement of the motivations that led to the development of this thesis, its scientific

contribution, and ultimately concludes with the structure of the rest of the text.

1.1 CONCISE BACKGROUND IN COMPUTATIONAL COMPLEXITY
This section constitutes a short review of some key aspects of computational complexity and

algorithm theory, intending to aid the comprehension of relative terms. For extensive and in-depth

information about these topics, the reader is encouraged to refer to [1] and [2].

Computational complexity refers to the inherent difficulty of a computational problem solvable by

an algorithm. Such a problem is considered inherently difficult if its solution requires a significant

amount of a resource, be it time and/or space, regardless of the actual underlying algorithm utilized

to solve it. In that notion, “time”, and more formally, Time Complexity, does not necessarily

translate to actual running time in the sense of seconds or minutes, since that would require the

precise knowledge of several implementation-dependent parameters, but to a rather abstract

concept involving the estimation of the number of a series of fixed-time elementary steps required

to process the desired solution [1]. An equivalent premise holds for the case of “space”, namely

Space Complexity.

Within the framework of computational complexity, Time complexity typically refers to the worst-

case scenario, denoted T(n), defined as the maximum amount of time required to solve a problem

with an arbitrary-sized input of length n. When formulating the Time complexity of a problem, the

former is usually provided in the form of the type of its asymptotic upper bound (Big O notation,

O~), such as “linear time”, T(n)= O(n), “logarithmic time”, T(n)= O(logn), “quadratic time”, T(n)=

O(n2), etc.

Time/Space complexity aside, two other equally important factors characterizing the complexity of a

computational problem are its type and model of computation. The most common representative of

the former is decision problems, where, given a set of inputs, their solutions result in a Yes-or-No

answer, while many more types exist, such as function problems, counting problems, optimization

problems, promise problems etc. As far as the latter is concerned, the deterministic Turing machine

is the predominant model used in computational complexity theory, some of the rest being non-

deterministic Turing machines, Boolean circuits and quantum Turing machines.

These three factors mentioned above are sufficient in order to define some simple complexity

classes; a set of computational problems of related resource-based complexity (time or space). The

section below presents a few fundamental complexity classes, frequently appearing in algorithmic

literature, based on the combination of decision problems, Turing machines, and polynomial time

complexity.

6

P: Contains all the decision problems that can be solved by a deterministic Turing machine in

polynomial time, thus implying that T(n)= 2O(logn)= poly(n). As expressed in [3] and [4], a “good”, in

terms of efficiency algorithm, is an algorithm with polynomial execution time. This statement also

appears in [1].

P-complete: A decision problem is P-complete if it is in P and every problem in P can be reduced to

it by an appropriate reduction.

NP: NP stands for non-deterministic polynomial time; it is a superset of P and contains the decision

problems for which an efficient, polynomial time verifier exists [1]. In other words, given an instance

of a decision problem where the answer is “yes”, its validity can be verified in polynomial time. Still,

it is unknown whether a “good”, polynomial time solution exists for any problem within the NP-P

class, and this issue actually poses one of the most elusive unresolved problems in computer

science, coined as the “P versus NP” problem. There is no concrete evidence pointing to one way or

the other, yet the general belief within the scientific circles is that P≠NP, which implies that, possibly,

there are problems in NP that are harder to compute (super-polynomial or exponential time) than to

verify (polynomial time)[1].

NP-complete: NP-complete problems are considered the “hardest” decision problems within NP

[5]; a problem X is classified as NP-complete if X belongs in NP and every other problem Y within NP

can be polynomially reduced to X [8]. An alternate definition that highlights this inherent difficulty is

the following: “Assume X is a NP-complete problem. If X is solvable in polynomial time, then P=NP”

[1].

NP-hard: NP-hard is the class of problems that are at least as hard as the hardest problems in NP

[8], but not necessarily in NP [6]. A more formal definition is the one found in [7], which states that a

decision or optimization problem H is NP-hard when for every problem L in NP there is a polynomial

time reduction from L to H [8]. Another equivalent definition is to require that there is a polynomial

time reduction from an NP-complete problem G to H [7]. Consequently, if an optimization problem H

has an NP-complete version G then H is NP-hard. The above imply that NP-hard class is not limited to

decision problems (i.e. not limited to NP), but also includes function problems, optimization

problems etc.

NP-easy: A problem which polynomially reduces to some problem in NP is called NP-easy [8].

NP-equivalent: An NP-equivalent problem is a problem that is both NP-hard and NP-easy [8].

Many more complexity classes exist, such as BPP, ZPP and RP, defined using probabilistic Turing

machines; BQP and QMA are defined using quantum Turing machines; ALL is the class of all decision

problems.

1.2 USEFUL THEORETICAL DEFINITIONS

Combinatorial Optimization: Combinatorial optimization is one of youngest and most active areas

of discrete mathematics, having its roots in combinatorics, operations research and theoretical

computer science [8]. Its main theoretical as well as practical focus is to aid the choice of a “best”

(i.e. optimal) configuration of objects or set of parameters in order to achieve a specific goal, the set

being finite, and typically constituting an integer set, a permutation set, or a graph. Thus, in the case

7

of combinatorial optimization problems, the solution is chosen from among a finite set of possible

solutions [9].

Local & Global Optimum: Consider an optimization problem, be it continuous or discrete, where

the objective is to choose some arbitrary variables, collected into a vector x, in order to maximize or

minimize an objective function f(x), which in turn might or might not be subject to constraints. A

vector x satisfying all the constraints set (if those exist) is called feasible. A particular feasible choice

x, say x*, is called optimum if no other feasible choice gives a higher (or equivalently lower in the

case of minimization problems) value of f(x), and a strict optimum if all other feasible solutions give

a lower (or equivalently higher in the case of minimization problems) value of f(x). An optimum x* is

called local if the comparison is restricted to other feasible choices within a sufficiently small

neighborhood of x*. If the comparison holds against all other feasible solutions, no matter how

distant, the optimum is called global [10].

Metric Spaces & Metrics: A metric space is a set X that has a notion of the distance d(x,y)

between every pair of points x,y ∈ X. A metric on a set is a function that satisfies the minimal

properties expected of a distance. A more formal definition is the following: “A metric d on a set X is

a function d : X x X -> R such that for all x,y ∈ X: (1) d(x,y) ≥ 0 and d(x,y) = 0 if and only if x=y, (2)

d(x,y)=d(y,x) (symmetry), and, (3) d(x,y) ≤ d(x,z)+d(z,x) (triangle inequality). A metric space

(X,d) is a set X with a metric d defined on X [11][34].

Hamiltonian Cycle: A Hamiltonian cycle, also called a Hamiltonian circuit and defined on a graph

G= (V,E), is a graph cycle (i.e. a closed loop) through a graph that visits each one of its nodes E

exactly once. A graph possessing a Hamiltonian cycle is said to be a Hamiltonian Graph [30].

1.3 ABOUT RECONFIGURABLE COMPUTING & FPGAs
Field-Programmable-Gate-Arrays (FPGAs) are (re)programmable semiconductor devices able to

perform all kinds of computational operations and implement any algorithm that can be executed on

a classic CPU. This is highlighted by the fact that they can be programmed to emulate the

functionality of the latter; such an example is the Microblaze softcore RISC CPU from Xilinx, which,

among others, is capable of running lightweight Linux distributions. FPGAs are usually employed to

accelerate computationally intensive applications through the extensively parallelized mapping of

the involving algorithms on the former’s fabric.

Contrary to Application-Specific-Integrated-Circuits (ASICs), FPGAs are available off-the-self,

completely prefabricated and ready to be customized by the end user according to the specific

needs of the target application. The aforementioned customization usually comes in the form of

Hardware Description Languages, such as VHDL and Verilog, enabling the user to model the desired

design in the RTL abstraction, which, in turn, is provided as input to an appropriate EDA tool tasked

to map the RTL model to the structural components of the FPGA fabric; this is the industry-standard,

long-proven methodology to reprogrammable custom hardware design, its final step being the

generation of the bitstream used to actually program the FPGA itself.

Historically, FPGAs were an evolution of PLDs, commonly termed as CPLDs, introduced in the mid-

1980s as larger, compared to their PROM, PAL and GAL ancestors (all PLDs), capacity platforms for

implementing digital logic. The novel and main differentiating point between PLDs and FPGAs was

8

that the former concentrated primarily on two-level, sum-of-products implementations of functions,

while the latter were optimized for multi-level circuits, thus enabling them to perform much more

complex functions and at greater density. By the early 1990s, their capabilities along with their

capacity and speed had largely grown, and some of their first and major usage scenarios were logic

emulation and rapid system prototyping, since the offered prototyping rate was much higher than

MPGAs [13,15].

Since then, their commercial acceptance has been on an ever-constant and sharp increase,

rendering them the driving force of the field that has become known as Reconfigurable Computing -

performing computations through the utilization of spatial, high-performance, hardware-based,

programmable architectures by exploiting the inherent parallelization and flexibility traits of fast,

fine-grained computing fabrics, mainly FPGAs [13,14,15]. Lately, the prominent role of FPGA-based

reconfigurable systems in High Performance Computing (HPC) applications has been highlighted by

the dawn of FPGA-based supercomputers, such as [16] and [17], as lower-power and higher-

performance alternatives to classic x86-based multiprocessor servers.

The range of applications where the power offered by FPGAs or FPGA-based systems has been

successfully harnessed and proven is literally vast: signal processing, cryptography,

arithmetic/numeric computing, scientific computing, networking, military applications, financial

computations, molecular dynamics modeling, telecommunications, NP-hard optimization,

bioinformatics, medical applications, multimedia processing, big data processing and more

[12,15,18,19,20,21,22,23].

Recently, the escalating system-on-chip design complexity combined with the huge silicon

capacities, has begun pushing the design community to raise the level of abstraction beyond RTL

[24]. This has led to the emergent of High Level Synthesis (HLS) tools which enable the user to

capture the desired functionality in the form of a high-level language used traditionally for software

programming, such as C and C++ [24,25,26,27], thus largely simplifying and most importantly

speeding up the process of designing custom hardware architectures. Heterogeneous computing is

also encouraged through the support of relevant software frameworks, such as Khronos’ OpenCL

[28].

The basic structure of an FPGA consists of the following elements: a) Look-Up Tables (LUTs), b) Flip-

Flops (FFs), c) Wires and d) I/O pads; generally, the first two components, along with a few RAM-

based storage elements and other auxiliary logic, form the CLB, which, in turn, constitutes the basic

building block of modern FPGAs. Additional components include: Embedded memories, clocking

resources for driving the FPGA fabric at different clock rates, off-chip memory controllers interfacing

to external memories, DSP blocks and more [70].

9

Figure 1: Basic FPGA Architecture, ©Xilinx Inc. Image extracted from Xilinx’s “Introduction to FPGA Design
with Vivado HLS” Guide (UG998) [70].

Figure 2: Contemporary FPGA Architecture, ©Xilinx Inc. Image extracted from Xilinx’s “Introduction to FPGA
Design with Vivado HLS” Guide (UG998) [70].

Major FPGA vendors include Xilinx Inc. and Altera Corporation; the latter is a subsidiary of Intel since

2015.

10

1.4 MOTIVATION
Since the work presented in this thesis is based on previously conducted research [29], the motives

that led to its materialization were manyfold:

 Examine how much FPGA technology has evolved in the past decade in terms of fabric capacity

as well as attainable clock speeds, by conducting practical experimentations with high

performance hardware architectures.

 Examine how the hardware architecture proposed in [29] scales for problem instances larger

than those previously considered, as well as the performance gains obtained for previously

tested instances through their implementation in next generation FPGAs and utilization of

modern design suites.

 Explore the strengths and weaknesses of recently (re)introduced hardware design flows,

specifically the HLS design flow, and examine how it fares against the classic HDL approach.

This comparison is conducted in terms of quality of results as well as temporal and knowledge

requirements, by utilizing both design flows during the implementation phase of the

aforementioned architectures, always within the context of a parallel 2-OPT solver.

 Explore how the implemented architectures compete against corresponding state-of-the-art

implementations of the 2-OPT algorithm, both serial (CPU based) and parallel (GPU based) as

well.

1.5 CONTRIBUTION
The contribution of this thesis is as follows:

 Provides an experimentation-based comparison of the performance characteristics of multiple

variations of the 2-OPT algorithm, including its original, randomized and symmetrical versions,

in terms of key metrics such as quality of results, runtime, convergence rate and more; this

entailed the implementation of the aforementioned 2-OPT variants in software (MATLAB), and

their subsequent thorough testing against multitudes of TSP instances.

 Provides an experimentation-based assessment of the ways in which the performance

characteristics of the 2-OPT algorithm are affected by the replacement of the Euclidean

distance-utilized by Euclidean 2-OPT as its primary cost function-with its squared

approximation (squared Euclidean distance).

 Constitutes-to the author’s knowledge-one of the very few works on the mapping of 2-OPT-as

well as of TSP-related heuristics in general-in reconfigurable logic, since the literature review

of this thesis indicated that most of the ongoing research on the parallelization of such

algorithms focuses on evolutionary-based heuristics and their optimization for execution in

high-performance GPUs.

 Provides a multi-level comparison of the two most prominent approaches to hardware design,

namely the HLS-flow and the RTL-to-Bitstream flow, based on the design and implementation

of a 2-OPT hardware architecture along with the utilization of both the aforementioned flows;

these are realized through the Vivado HLS and Vivado IDE tools respectively, which constitute

part of the Xilinx Vivado Design Suite.

 Investigates the extent to which an FPGA-based 2-OPT solver can be considered as a viable

and effective alternative option to equivalent high-performance solutions implemented either

in software (CPU) or in hardware as well (GPU).

11

 Investigates the performance-wise viability of an FPGA-based TSP metaheuristic embedding

the 2-OPT hardware architecture under consideration; the resulting design could be possibly

realized as a software/hardware co-design mapped on a heterogeneous system such as the

Convey series of hybrid supercomputers.

1.6 THESIS STRUCTURE
The rest of the thesis is organized as follows: Chapter 2 introduces the fundamentals of the Traveling

Salesman Problem (TSP), such as its roots, formal definition, complexity, and solution methods in a

compact, yet descriptive manner. Chapter 3 cites some of the most prominent work on parallel

implementations of TSP heuristics, mainly hardware based, and more specifically GPU based

implementations. Next, Chapter 4 presents the functionality of the 2-OPT algorithm upon which the

implemented hardware architectures are based and compares it with some popular variations, while

providing metrics representative of their intrinsic characteristics. Chapter 5 constitutes an in-depth

presentation of the aforementioned hardware architectures and the design tools utilized, along with

the workflow, major milestones in the development of the former and some key findings concerning

the latter. Chapter 6 provides the implemented hardware architectures’ evaluation along with

related performance and quality results and compares them to the state-of-the-art in 2-OPT solvers.

Finally, the thesis concludes with its summary along with possible future extensions and additions,

Chapter 7.

12

CHAPTER 2: APPROACHING THE TSP
This chapter constitutes a brief overview of the fundamentals of the Traveling Salesman Problem,

and as such it does not cover every aspect of it or delve into specifics, since that would be completely

out of the scope of the thesis. For more, in-depth information on the TSP, the reader is encouraged to

consult the references provided in this chapter.

2.1 INTRODUCTION & CHAPTER STRUCTURE
Initially, the chapter provides a brief history of the origins of the TSP as well as a descriptive

formulation of the problem itself. A more formal and mathematical formulation based on graph

theory follows. Next, the complexity of the TSP along with some of its most common cases is

presented. The chapter concludes with a concise description of the most frequently encountered

approximation algorithms (Heuristics) along with their major categorizations. A report on the

practical applications of the TSP is also provided.

2.2 ORIGINS OF THE TSP
The exact origin of the name “Traveling Salesman Problem” was and remains rather obscure, since

no kind of authoritative document providing any concrete evidence towards its creator exists,

although it appears to have been discussed informally among members of the mathematical society

for decades [3,31]. One of the earliest formulations of the problem dates back to 1832, in a German

handbook made by a traveling salesman himself who roamed in the greater regions of Germany and

Switzerland. Within the aforementioned manual, he describes the importance of good tours and

actually presents a TSP tour through 45 German cities, which the author in [31] believes that could

be optimal. While the handbook was brought into the attention of the TSP community in 1983, it is

widely believed that the first work on TSP was published in 1930 by the name the “Messenger

Problem” [6], while the first reference containing the actual TSP term is considered to have emerged

in 1949. In [3] and [31] it is concluded that sometime around the 1935s and most probably at

Princeton, the TSP took on its name officially, thus indicating the initiation of its active exploration.

2.3 WHAT IS THE TSP?
The Traveling Salesman Problem (TSP) is one of the most significant and well-studied problems in

combinatorial optimization [8,31].Its definition, simply put, is the following: “The Traveling Salesman

Problem is to find a routing of a salesman who starts from a home location, visits a prescribed set of

cities and returns to the original location in such a way that the total distance travelled is minimum

and each city is visited exactly once” [6]. A more succinct definition states that: “Given n cities and

their intermediate distances, find a shortest route traversing each city exactly once” [31].

2.4 RESOLVING TSP TO GRAPHS
Aside from the existence of many forms of definitions, such as quadratic representation, integer

linear representation, linear permutation representation, binary programming task and more [6,32],

TSP can also be expressed using terminology and notions from graph theory, as a problem defined

over a graph G. This alternative formulation also aids with the presentation of some commonly

encountered cases of the TSP in the section below. The definition follows: Let G=(V,E) be a

complete graph (directed or undirected) and F be the family of all Hamiltonian cycles (circuits) in G.

For each edge e ∈ E a cost ce is prescribed. Then the TSP is to find a tour (a Hamiltonian cycle) in G

13

such as the sum of the costs of the tour edges is the least possible. Let the node set V= {1,2,…,n}.

The matrix C= (ci,j)nxn is called the cost matrix (or distance matrix or weight matrix), where the (i,j)th

entry cij corresponds to the cost of the edge joining node i to node j in G [6,32,34].

2.5 TSP CASES
There are two major categorizations of the TSP: The first refers to the nature of the graph G upon

which the problem is defined, or alternatively to the nature of the associated cost matrix C. This in

turn distinguishes the TSP into two categories – Symmetric and Asymmetric [6,32]. The second

aforementioned major categorization is based on whether the cost function utilized (and the

subsequent cost matrix C) satisfies the triangle inequality or not, thus creating two more categories

for the TSP, namely Metric and Non-Metric/General [8,32].

Symmetric TSP (STSP): The Symmetric TSP is one of the most common cases, where the distance

between each city pair is independent of the direction the salesman travels. In the graph

representation of the problem, this translates in that the associated graph G= (V,E) is considered

complete and undirected, or, equivalently that the cost matrix C is symmetric, i.e. C(i,j) = C(j,i).

[6,32].

Asymmetric TSP (ATSP): Contrary to the definition above, the distance between each city pair is

dependent of the direction the salesman travels, thus implying that the associated graph G= (V,A) is

directed and the accompanying cost matrix C is asymmetric, i.e. C(i,j) ≠ C(j,i). The ATSP is a

generalization of the STSP; every ATSP can be reduced to STSP simply by doubling the number of

cities/nodes and while introducing distances of negative values [6,32].

Metric TSP: In Metric TSP, the inter-city distances, i.e. the cost matrix C, satisfies the triangle

inequality [8], which means that C(i,j) ≤ C(i,k)+C(k,j) for all i, j, k. Simply put, this ensures that a

direct path between two cities/vertices is at least as short as any indirect path. In particular, this is

the case of planar problems for which the cities/vertices are points Pi= (Xi,Yi,) within the 2D or

higher-order plane. A special, widely adopted and much studied case of Metric TSP is the Euclidean

TSP, where the cost function is the Euclidean distance, also known as L2 norm, other notable case

being the Rectilinear TSP (Manhattan distance) [6,32,34].

Non-Metric/General TSP: In this case the above premise does not hold, and so Non-Metric TSP is

the case where the cost matrix C does not obey the triangle inequality, and in fact, C does not even

have to express distance; for example, G’s edge weights could actually express the cost of airline

tickets, where it is often the case that taking an indirect route is less expensive than a direct route.

Other Cases: Many other, not so commonly encountered variations of the TSP exist, the most

notable being the MAX TSP, Bottleneck TSP, TSP with Multiple visits (TSPM), the Messenger

Problem, Clustered TSP, Generalized TSP, The m-salesman TSP and others. For more information on

these non-typical cases, the reader is encouraged to refer to [6].

In the work presented in the following chapters, the case considered is the Symmetric Euclidean TSP.

2.6 TSP COMPLEXITY
The Traveling Salesman Problem in its general case is an NP-hard problem [3,6,8], while its decision

version, formulated in [1] as “Given a set of n cities, the distances between all city pairs and a limit D,

14

is there a tour visiting each city exactly once of length less than D?”, is NP-complete [5].Moreover,

two of the former’s most commonly studied special cases, namely the Metric TSP and Euclidean TSP,

are also proven to be NP-hard [8,33]. Either way, a direct corollary of this fact is that, assuming the

widely believed conjecture that P≠NP, any algorithm designed to find optimal tours should have a

worst-case running time that grows faster than any polynomial [36], thus implying a super-

polynomial or exponential growth rate, as the size of the input problem instance increases. Despite

the recent advances in both the fields of High Performance Computing and combinatorial

optimization theory, the aforementioned fact renders the exact solution of large or very large

problem instances a non-trivial matter, especially when temporal constraints are introduced [6].

2.7 HEURISTICS AND APPROXIMATE SOLUTIONS
The premise stated above has, for many decades now, led the TSP community towards the

development of an abundance of computational methods and algorithms, whose main purpose is to

find near-optimal solutions/tours in a fast and efficient manner when compared to the resources

required by exact solvers [35]. In fact, the research on that particular area has been so active and

prolific, that an immense number of such heuristics exist, covering a broad range of the two key

parameters commonly referred to in their evaluation: running time (Time Complexity) and output

tour quality (distance above optimal) [36]. In the section below follows a brief presentation of the

main categories of TSP heuristics along with their respective representatives.

Construction Heuristics: Construction heuristics are the simplest and weakest type of heuristics,

and as such they tend to provide low quality (far from the global optimum) tours, thus rendering

them as a means to generate a “good enough” starting tour for more powerful heuristics, such as

Improvement Heuristics, reviewed next [32]. Still, their purpose is quite important, as the success of

the latter depends heavily on the quality of the initial solution [6]. The intrinsic characteristic that all

algorithms within this category share, is that they all create tours from scratch, successively adding

new nodes/cities at each step and terminating when a solution (not necessarily a good one) is found,

never trying to improve it [6,35,37,38]. In other words, a tour is successively built and parts already

built remain in a certain sense unchanged throughout the execution of the algorithm [39]. Notable

construction heuristics include Nearest-Neighbor heuristics, Insertion heuristics, Spanning Tree

heuristics, Savings Methods, Greedy Algorithms, Christofides and Strip Heuristic [35,36,37,38,39].

Improvement/Local Search Heuristics: In the - admittedly vast - TSP bibliography, there are

many definitions for the Improvement/Local Search Heuristics, the most descriptive being, to the

author’s point of view, the one found in [36]: “…Such an algorithm is specified in terms of a class of

operations (exchanges or moves) that can be used to convert one tour into another. Given a feasible

tour, the algorithm then repeatedly performs operations from the given class, so long as each

reduces the length of the current tour, until a tour is reached for which no further operation yields

an improvement (a locally optimal tour). Alternatively, this can be viewed as a neighborhood search

process, where each tour has an associated neighborhood of adjacent tours, i.e. those that can be

reached in a single move, and one continually moves to a better neighbor until no better neighbors

exist”. This native characteristic has coined Improvement heuristics the term “Local Search

heuristics” [6]. It should be noted that, although commonly mistaken, Local Search is an algorithmic

principle rather than an algorithm itself [8]. Notable representatives within this category are k-opt

15

heuristics (k ∈ {2, 2.5, 3, 4+}) and their variants, Lin-Kernighan (LK) and its variants/implementations

and Node & Edge Insertion [6,8,32,35,36,37,38,39].

Metaheuristics: This last category contains the most powerful, effective and complex (both

algorithmically and temporally) heuristics. The main differentiating point between Improvement

heuristics and Metaheuristics is that the former terminate as soon as a (not necessarily good) local

optimum is reached, while the latter allow a more thorough exploration of the solution search space

[6], by enabling uphill moves (i.e. moves that increase the current tour length) in order to escape

from local optima. Some algorithms achieve that functionality by performing random modifications

to the tour once a locally optimal one is found, while others use more elaborate schemes. In some

occasions, uphill moves are allowed even before a local optimum is reached [35,36]. In general,

there are two major subcategories: Local Search-based Metaheuristics and Evolutionary

Metaheuristics. As their name implies, the former utilize simple Improvement/Local search

heuristics and modify a single active solution at a time, while the latter are based on heuristics

derived from natural evolutionary processes and generate new solutions from a collection of

multiple simultaneously active solutions (the population) [6]. The most frequently encountered

Metaheuristics are Simulated/Quantum Annealing, Tabu Search, Iterated Lin Kernighan, Iterated

Local Search, Large-Step Markov Chains, Genetic Algorithms, Ant Colony Optimization and Min-Max

Ant System [6,35,36,38,40,41].

2.8 PRACTICAL TSP APPLICATIONS
The practical, real life applications of the TSP span across a wide range of disciplines, some of which

are the following: network and VLSI design, machine vision, scheduling and corporate planning,

distribution management, logistics, database query design, frequency assignment, computational

biology, vehicle routing, job sequencing and X-ray crystallography.

16

CHAPTER 3: RELATED WORK

3.1 INTRODUCTION & CHAPTER STRUCTURE
This chapter focuses on the review of related work on parallel implementations of TSP heuristics,

and shows that most of the recently conducted as well as ongoing research on the aforementioned

subject is based on Graphics Processing Units-GPUs, with only a few, mostly older, works utilizing

FPGA-based solutions. Despite the fact that it is single-threaded, and since part of the comparisons

made later in the thesis depend on it, a brief presentation of the Concorde TSP software package,

the state-of-the-art in TSP solving, is also provided.

3.2 PARALLEL PROGRAMMING APIs
Parallelism is considered the future of computing since, over the past decade, processor

architectures have embraced it as an essential and in some cases sole pathway to enhancing

performance. Technical challenges faced in attaining ever increasing clock speeds within a certain

thermal envelope, physical and financial issues regarding shrinking chip manufacturing processes

further, stemming from pushing silicon beyond its capabilities and the huge R&D costs associated as

well as a possible end of Moore’s law in the near future, has led CPU and GPU manufacturers to turn

to spatial solutions, thus signaling the rise of multicore designs. On the other hand, GPUs have

evolved from fixed function rendering devices and graphics engines to a highly parallel

programmable processor featuring peak arithmetic and memory bandwidth that substantially

surpasses those offered by CPUs. Moreover, the fact that in modern high performance computer

systems CPUs are usually paired with powerful GPUs, has led to the desire to harness the combined

computational power of both subsystems. All these factors have necessitated the emergence of

appropriate APIs and frameworks that will enable computer scientists and programmers alike to

easily access the vast computing resources available in modern machines. Below follows a brief

description of the most common parallel and heterogeneous programming APIs and frameworks:

OpenMP: OpenMP (Open Multi-Processing) is a portable API that supports cross-platform shared

memory multiprocessing programming in C, C++ and FORTRAN, on the majority of the available

computing platforms, processor architectures and operating systems, and features a set of compiler

directives, library routines and environment variables that affect run-time behavior. The OpenMP

Architecture Review Board (ARB), the nonprofit consortium that manages OpenMP, published the

first API specifications in 1997.

CUDA: CUDA® is a general purpose parallel computing platform and programming model

introduced by NVIDIA Corp. in 2006,that allows software engineers to effectively leverage the

parallel computing capabilities of NVIDIA GPUs, by exposing and providing explicit and direct access

to the GPU’s virtual instruction set, multi-level memory architecture and computational elements. It

is designed to work with a variety of general-purpose high level programming languages, such as C,

C++, FORTRAN and Python.

OpenCL: OpenCL (Open Computing Language) is an open, royalty-free framework based on the

C/C++ programming languages, for creating applications that execute on heterogeneous parallel

processing platforms consisting of CPUs, GPUs, DSPs (Digital Signal Processors) and FPGAs, providing

programmers with portable and efficient access to the computational power offered by such

17

complex systems. OpenCL originates from Apple Inc. which submitted it in 2008 as a proposal to the

non-profit technology consortium Khronos Group, responsible from then on for its maintenance.

3.3 METAHEURISTICS ENCOUNTERED IN THIS CHAPTER

Ant Colony Optimization (ACO): ACO is a metaheuristic that is inspired by the foraging behavior

of real ants that enables them to find the shortest paths between food sources and their nest. In the

process of finding the shortest path the ants are guided by the level of a substance called

pheromone that each ant deposits on the ground while moving between food sources and the nest.

Stronger pheromone concentrations indicate a short route traversed by a significant number of ants,

and likely to be traversed again. [46].

Genetic Algorithms (GA): In GAs, a population of solutions evolves over time, yielding a sequence

of generations. A new population is created from the old one by using a process of reproduction and

selection, where the former is often performed by crossover and/or mutation and the latter decides

which individuals form the next generation. A crossover operator combines the features of two

parent solutions in order to create children. Mutation operators simply change one solution. The

idea is that, analogous to natural evolution, the quality of the solutions in the population will

increase over time [60].

Simulated Annealing (SA): SA originates from statistical mechanics and the annealing technique

involving heating and controlled cooling of materials. It transposes the process of annealing to the

solution of an optimization problem: the objective function of the problem, likened to the energy of

a heated material, is minimized using a controllable parameter of the algorithm that is associated

with a fictitious temperature level. SA is a technique that can be applied to any minimization

process, based on either random or deterministic iterative steps, using simple heuristics such as 2- or

3-OPT [46].

Iterated Local Search (ILS): In ILS, one iteratively builds a sequence of solutions generated by an

embedded heuristic such as 2- or 3-OPT, leading to far better solutions than if one were to use

repeated random trials of that heuristic, such as in RRHC. The nature of this approach implies that

there must be only a single chain (i.e. solution) that is being followed and improved throughout the

execution of the metaheuristic, thus excluding population based algorithms such as GA [41].

Random Restart Hill Climbing (RRHC): RRHC is similar to ILS, with the exception that once a local

minimum is reached, a random-rather than a carefully selected one-permutation is applied to the

tour, before restarting the embedded heuristic. After a sufficient number of iterations, the operation

comes to a stop and returns the best tour found, i.e. the one with the smallest length. RRHC can be

considered as a simplified version of ILS.

3.4 PARALLEL IMPLEMENTATIONS OF TSP (META) HEURISTICS

3.4.1 SOFTWARE (CPU) BASED IMPLEMENTATIONS
One of the earliest attempts in the parallelization of TSP heuristics can be found in [42], where a

parallel version of the 2-OPT algorithm was implemented on a Parsytec GCel consisting of 512

transputers. It provided “good” speedups against the classic/serial 2-OPT, while retaining the same

quality of results. More recent works, such as [42], [43] and [44], exploit the highly parallelizable

nature of ACO and Genetic Algorithms together with the parallelization capabilities of the OpenMP

18

framework in order to provide better quality of results than simpler heuristics while lowering the

execution time. In [42], speedups of up to nearly 6.0x are provided when compared with the serial

implementation, with an efficiency factor of 0.74, running ACO on 8 processors on a SGI Origin2000

parallel machine. In the theoretical evaluation performed in [43] is estimated that the speedup

achieved when running OpenMP-based ACO is linear within the range of 1 to 26 CPUs. In [44], the

efficiency of the parallel computation of the TSP using GA on a multiprocessor cluster is investigated;

it concludes that a ~4x speedup is attainable in a 1000-city problem, when utilizing 5 CPUs, with a

reported efficiency of 83%. In 2008, [45] suggested parallel computational models for several TSP

metaheuristics, such as ACO, GA and SA, that utilize multiple independent runs on a multicomputer

platform comprising of 10 Intel Pentium 4 3.2GHz workstations, and exploiting a hybrid MPI +

OpenMP approach. Its results, based on three TSPLIB instances of size 51, 150 and 439 cites, show

that both parallel ACO and SA are capable of achieving speedups of up to 9.0x compared to serial

execution, while parallel GA reached a maximum of 5.5x. It concludes that for larger problems,

speedups are still attainable though decreasing, due to additional communication overhead.

3.4.2 HARDWARE BASED IMPLEMENTATIONS, FPGA-BASED

To the author’s knowledge, there are few published works on the mapping of TSP heuristics on

FPGAs that provide concrete evaluation results. In 2002, I. Skliarova et al. [47] presented an FPGA-

based implementation of GA for the TSP and its industrial applications. The proposed architecture

was evaluated on a Xilinx XCV812E Virtex FPGA, where only the most computing-intensive part of

the GA was assigned to the hardware, while the rest of the algorithm’s functionality was executed

on an 800MHz Pentium III based host machine. The results obtained by this hybrid approach were

quite impressive, achieving a maximum speedup of almost 50.0x for a 724-city instance, although it

is noted that the system’s performance depends heavily on the problem instance under

consideration as well as some key algorithm parameters. A similar work also based on GA and using

the TSP as a case study is the one found in [48]. The proposed architecture was designed using a

High-Level programming language (Handel-C) and implemented in a Xilinx XCV2000E Virtex-E FPGA.

The attained speedups vary from about 1.5x to almost 39x when compared to a serial

implementation running on a 1.7GHz Pentium 4 machine, depending on the problem instance. It is

concluded that, as far as execution time is concerned, the FPGA implementation is superior to the

software one when the problem size increases or when better solutions (nearer to the optimum)

must be found. In 2007, I. Mavroidis et al. [29] presented a high performance and resource-efficient

FPGA-based 2-OPT solver, able to exploit the fine-grained parallelism made available by the

proposed notion of Symmetrical 2-OPT moves. The hardware architecture was evaluated on a Xilinx

XC2VP100-6 Virtex 2 Pro FPGA, and was shown that it was capable of achieving speedups ranging

from 60x to almost 100x when compared to the corresponding software-based serial

implementation, and, on average, a 6x speedup compared to the state-of-the-art Concorde TSP

software package, both executed on a 3GHz Pentium 4 based machine.

3.4.3 HARDWARE BASED IMPLEMENTATIONS, GPU-BASED

As is mentioned in this chapter’s introduction, the emphasis of the recently conducted and ongoing

research on the parallelization of TSP heuristics has been on their mapping in highly parallel GPU

kernels. Thus, there exist many such published works, ranging from simple improvement heuristics

to metaheuristics such as Local Search schemes and evolutionary algorithms. For the sake of clarity,

the review is presented in a categorized manner.

19

k-opt: In [49] and [50], K. Rocki et al. present high performance CUDA/GPU implementations of

both the 2-OPT and 3-OPT improvement heuristics. The results, obtained by evaluating their

proposed kernels on a 1536-streaming processor NVIDIA GeForce GTX 680 GPU using 13 TSPLIB

problem instances ranging in size from 100 to 4461 cities, show that speedups up to 26x (1.53

TFLOPS) are achievable compared to a 32-core CPU or 500x when the sequential algorithm is

concerned. They note that the performance gains of 3-OPT are higher than those of 2-OPT due to

the fact that its increased complexity leads to more efficient utilization of the GPU’s hardware. It is

concluded that, as far as GPU computing is concerned, the number of streaming processors

constantly increases, while the on-chip cache/shared memory limitations remain almost unchanged,

thus imposing its treatment as a scarce resource.

Random Restart Hill Climbing & Iterated Local Search: In [51] (2011), MA O’neil et al. present a

CUDA-based implementation of RRHC using 2-OPT moves for determining high–quality solutions to

the TSP. Their approach is based on the logical assumption that by running hundreds of thousands of

times the 2-OPT heuristic on randomly permutated starting tours of a given TSP instance, an optimal

or near-optimal solution is bound to be found. Indeed, their results show that 105 random restarts

are enough to yield the optimal solutions for four out of the five 100-city TSPLIB instances tested.

The proposed implementation exploits both inter- (independent randomly permutated instances of

the problem) as well as intra- (move evaluations within a given randomly permutated instance of the

problem) 2-OPT solver, termed “climber”, parallelism. The kernel was evaluated on a 448-streaming

processor NVIDIA Tesla C2050 GPU capable of supporting 14336 simultaneous climbers, and yielded

a throughput of 20 billion 2-OPT move evaluations per second, similar to this delivered by a

corresponding 256-thread CPU-based implementation running on 32 8-core 2GHz Intel Xeon CPUs.

When compared to the sequential implementation executed on a 2.53GHz Intel Xeon CPU, the

speedup achieved was 62x. It is noted that the proposed implementation is memory-bound, since

the limited amount of on-chip cache did not allow the evaluation of problem sizes larger than 100

cities. A refinement of the aforementioned work by the same authors can be found in [52] (2015),

where a more efficient exploitation of the hierarchy of the available hardware resources combined

with the utilization of a more recent and powerful NVIDIA K40 GPU with 2880 stream processors, led

to a throughput increase from a maximum of 20 to 60 billion 2-OPT move evaluations per second

and an 8x speedup when compared to the equivalent OpenMP implementation running on 20

2.7GHz Intel Xeon cores. This new version also removed the previous limitation on the problem size,

supporting problem instances with more than 15000 cities.

K. Rocki et al. [53] (2012), based on the work conducted in [51], proposed a similar implementation

in which they managed to relax the limitation imposed by the on-chip caches on the maximum

supported problem size (from 100 cities to 6000 cities), by using them to store the cities’ coordinates

instead of pre-calculated inter-city distances, and computing the latter on-the-fly. Despite the

aforementioned fact, their evaluations on the same GPU as in [51] showed that the proposed

implementation was up to 90% slower than [51], due to the lack of intra-climber parallelization

exploitation and the performance hit induced by the constant computation of inter-city distances. In

[54] (2013), the same authors presented a refinement of their previous work [53], where they

considered the case of Iterated Local Search with 2-OPT moves. It was decided to parallelize and

accelerate on the GPU only the local search itself (i.e. a single run of the 2-OPT algorithm) since

profiling showed that 90% of the ILS execution time is spent exclusively on it. The aforementioned

20

limit on problem sizes was completely overcome through an appropriate ordering of the city

coordinates and the utilization of extra structures, rendering the proposed implementation capable

of solving arbitrarily large problem instances, in the range of 700K plus cities. The evaluation on a

CUDA-enabled NVIDIA GeForce GTX 680 GPU showed that the proposed implementation was 5 to 45

times faster than the equivalent OpenCL-based parallel implementation running on a 6 core 3.3GHz

Intel Core i7 3960X CPU. It is concluded that while the algorithm reaches very good solutions in less

than a second for problem instances up to about 7500 cities, its main disadvantage is that it still

requires a significant amount of time to reach the first local minimum in case of larger instances.

Another published work related to those already mentioned is [55], which yet again proposes

parallelization strategies for the ILS metaheuristic, but this time the latter is combined with 3-OPT

moves instead of 2-OPT utilized in the works previously discussed. The authors describe several

CUDA-based parallelization models which were evaluated on an NVIDIA Tesla C2050 GPU. The

experimental results, although highly dependent on the dataset under consideration (size-wise),

showed that performance was maximized when the on-chip cache was more efficiently utilized, the

accesses to global memory kept at a minimum and when more worker threads were dispatched,

since the latter was necessary to hide the memory latency. Again, the small amounts of on-chip

cache proved the limiting factor in the maximum supported problem instance.

Genetic Algorithm: In [56], N. Fujimoto et al. present a method to efficiently map GA on GPU using

the CUDA API. It is noted that in order to maximize the performance gains, the off-chip memory

access latency must be hidden, which in turn implies that, even though only about 30K can be

simultaneously active, hundreds of thousands of threads must be dispatched for execution, so as

when a number of them is temporarily stalled due to dependencies, others, until then inactive, can

begin/resume execution. In other words, ideally, the GPU should remain constantly saturated, and

the authors accomplish that by parallelizing not only the GA in its metaheuristic level, but also the

underlying crossover operator as well as the embedded 2-OPT local search. The experimental results

showed that for problem sizes ranging from about 100 to almost 500 cities, speedups from 9x to 24x

are attainable, when compared to the equivalent serial implementation running on a 3GHz Intel

Core 2 Duo E6850 CPU. The evaluation platform was an NVIDIA GeForce GTX 285 GPU. A similar

work can be found in [57] by S. Chen et al. who, as stated, intended to develop a CPU-based GA

metaheuristic for the TSP and then parallelize it with CUDA on GPU for performance gains. The

proposed implementation was evaluated on an NVIDIA Tesla C2050 GPU, and the speedups achieved

where characterized as “insignificant” due to the limitations imposed on the efficient utilization of

the available computing resources by the applied synchronization solution.

Ant Colony Optimization: In [58], C. José M. et al. present a novel parallel implementation of ACO,

in which the two main stages of the algorithm, namely Tour Construction and Pheromone Update,

are both GPU-accelerated, contrary to the usual approach of implementing the former in GPU and

the latter in CPU, thus parallelizing both. New models for both stages, aiming to provide improved

mapping efficiency, are also proposed and evaluated, since the authors note that the existing ones

exhibit many weaknesses, such as very low GPU utilization, serialization bottlenecks and more. The

proposed kernels were evaluated on an NVIDIA Tesla M2050 CUDA-enabled GPU using a set of

benchmark instances from the TSPLIB library, obtaining speedups up to 29x when compared to serial

execution, depending on the dataset used. Another work on the parallelization of ACO can be found

in [59] by A. Uchida et al. where an efficient CUDA-based implementation, able to tackle many of the

21

issues and shortcomings inherent to GPU computing is proposed. Optimizations applied include the

maximization of the on-chip cache usage while keeping the global, off-chip memory accesses to a

minimum, as well as the introduction of a new, less computing-intensive stochastic method for

determining ant movement. In order to hide the high latency of global memory and increase the

attainable bandwidth, memory coalescing, the technique of simultaneously accessing consecutive

addresses is applied. The proposed implementation was evaluated on a 512-streaming processor

NVIDIA GeForce GTX 580 GPU, with the experimental results showing that speedups ranging from

7.5x to 44x were achieved, compared to the sequential version executed on a 2.8GHz Intel Core i7

860 CPU. The tested TSPLIB instances included problem sizes from 198 up to 2392 cities. It was also

noted that some key parameters of the CUDA API, such as block size and number, play a major role

in the resulting performance and thus should be chosen after careful experimentation.

A comprehensive literature review on the role of GPUs in discrete combinatorial optimization,

referring to some of the works presented in this chapter plus more, can be found in [60].

3.5 THE CONCORDE TSP SOLVER
The Concorde TSP Solver is probably the most well-known and one of the best CPU-based exact

solvers for the Symmetric TSP to date [32], freely available for academic research use (source code

plus precompiled executables) [61]. It is written in ANSI C and consists of roughly 130000 lines of

code spanning across more than 700 functions, thus rendering it highly customizable, permitting

users to create specialized codes for TSP-like problems. Concorde was the result of the long-term

collaboration between D. Applegate, R. Bixby, V. Chvatal and W. Cook [62], who began its

development most probably during the late 1980s. Since its initial release, in the early 1990s, it

gradually gained the acclaim of the TSP community, as it was the first (and in some cases the only)

solver that managed to successfully obtain the optimal solutions to all 110 problem instances within

the TSPLIB library of TSP datasets, the largest consisting of 85900 vertices and stemming from a VLSI

application [63]. Besides from an efficient exact TSP solver, Concorde also includes a great number

of highly optimized heuristics for the TSP, such as Greedy, Nearest Neighbor, Boruvka, Chained Lin-

Kernighan, 2/3-OPT and more. It should be noted that, although Concorde is available both as source

code as well as in a precompiled executable, the latter’s GUI interface does not provide access to the

full range of the supported heuristics. The last official release of Concorde was in 2003. For an in-

depth analysis of Concorde’s underlying architecture and its employed algorithms, the reader is

encouraged to refer to [3], written by its creators.

22

CHAPTER 4: THE 2-OPT IMPROVEMENT HEURISTIC

4.1 INTRODUCTION & CHAPTER STRUCTURE
This chapter presents the 2-OPT improvement heuristic along with some very similar variations.

Their functionality is explained while their performance characteristics are evaluated and analyzed

through the scope of multiple metrics, such as tour quality, effectiveness and more. Next, the focus

is shifted towards the Random Restart Hill Climbing (RRHC) scheme, in order to examine how the

Symmetrical 2-OPT variant fares when combined with the aforementioned metaheuristic. The effect

of utilizing the square of the Euclidean distance-instead of the Euclidean distance itself-as the cost

function on the behavior of 2-OPT, using the Symmetrical variant as a case study, is assessed

afterwards. Finally, the chapter concludes with the presentation of the fine-grained parallelism

offered by the Symmetrical 2-OPT variant. As was mentioned in the end of the Chapter 2, in section

2.5, the work presented in this thesis concerns the Symmetric Euclidean TSP case, thus 2-OPT is

approached and examined under that specific scope.

4.2 2-OPT AT A GLANCE (2OPT)
2-OPT is one of the oldest and probably the most basic improvement heuristic for the TSP, proposed

by G. A. Croes in his 1958 paper titled “A Method for solving Traveling-Salesman Problems” [64],

although the notion of the 2-OPT move itself had already been introduced in 1956 by M.M. Flood

[65,34,36]. Over the years, 2-OPT managed to gain wide recognition and acceptance within the TSP

community, due to the fact that it yields impressive results in terms of both tour quality and running

time, considering that its functionality is exceptionally simple; it incrementally improves an initial

tour by applying a series of length-reducing tour modifications, known as “2-OPT moves”, until no

further such modifications can be found, i.e. a local optimum is reached, in which case the resulting

tour is considered “2-optimal” [37]. A 2-OPT move deletes two edges, thus breaking the tour into

two separate parts, and then reconnects those paths in the other possible way, which is equivalent

to reversing the order of the cities between those edges (segment reversal) [29].

4.3 2-OPT MOVE EVALUATION
This section demonstrates the process of evaluating whether a 2-OPT move is length-reducing or

not, through an example: Consider a tour T already defined over a given TSP instance represented as

a graph G= (V,E) containing an arbitrary number of cities/vertices, which are, in turn, presented as

a collection of points within the 2D Euclidean space. Now consider four specific vertices of G, namely

A, B, C, and D. In the tour T, these vertices are connected through 2 separate edges, namely E1 and

E2 as follows: Edge E1 connects vertices A and B, while edge E2 connects vertices C and D. These

vertices are then deleted and the aforementioned nodes are reconnected the only other possible

way that yields a new complete TSP tour T’: A is connected with C through edge E1’ and B is

connected with D through edge E2’.

Next, in order to assess if the move made yields length-reducing results, the change in tour length

when transitioning from T to T’ must be computed. There is no need to compute the length/weights

of every edge in E though, since all vertices, with the exception of those involved in the 2-OPT move,

have kept their relative distances unchanged (tour reversal). Thus, the only edges involved in the

aforementioned computation are E1 and E2 from T and E1’ and E2’ from T’. Finally, the proposed

2-OPT move is length-reducing if and only if

23

The “Sum of lengths of proposed edges E1’ and E2’” minus the “Sum of lengths of their previous

versions E1 and E2” is negative. More formally if and only if

Delta= (length(E1’) + length(E2’)) - (length(E1) + length(E2)) < 0 =>

Delta= (distance(A,C) + distance (B,D)) - (distance(A,B) + distance(C,D)) < 0

Since the 2D Euclidean case is assumed, function distance() refers to the Euclidean distance or L2

norm, which, considering two points K, L in the 2D Euclidean space, is calculated as

distance (K,L)= √(Kx − Lx)2 + (Ky − Ly)2

4.4 2-OPT COMPLEXITY
The worst-case running time of a straightforward 2-OPT implementation is exponential, and this

holds even for Euclidean instances [8]. Thus, supposing that the number of cities/nodes within a

certain TSP instance equals N, then the cost of finding a single improving move is Θ(N2) assuming all

possible N*(N-1)/2 moves must be considered (true 2-optimality) [32,38]. If the actual number of 2-

OPT moves occurring in a full run of the heuristic, which is theoretically about Θ(NlogN), is taken into

account, then the overall time increases to a figure more closely resembling Θ(Ν3logN) [6,36]. Many

workarounds have been proposed to tackle this issue, though some of them give up the guarantee

of true 2-optimality and/or increase the algorithm’s spatial complexity. Such techniques include

heavy pruning of legal moves, “don’t look bits”, utilization of sophisticated structures such as k-d or

black-red trees, preprocessing to generate neighbor lists and other auxiliary structures and more

[29]. The experimental results conducted in the related review of Johnson and McGeoch [36] show

that when such workarounds are exploited, the runtimes actually observed for the 2-optimization

phase are definitely subquadratic and no worse than O(N1.2). In this thesis the straightforward 2-OPT

implementation is considered.

4.5 2-OPT TOUR QUALITY
On instances that fulfill the triangle inequality, the worst-case approximation ratio of 2-OPT is

O(4√𝑁), which means that the worst achievable local optimum is within a factor of O(4√𝑁) of the

global optimum, where N equals the number of cities within a given problem instance. In the case

that Euclidean distances are considered, the aforementioned ratio becomes O(logN) [66]. Related,

more experiment-oriented studies have shown that the tours produced by 2-OPT are on average

about 5% above the Held-Karp bound [38]. The Held-Karp bound is itself an approximation to the

length of the optimal solution of a given problem instance; very useful when evaluating the empirical

performance of heuristics, as its computation is much faster than solving the instance under

consideration to optimality and then computing the optimal tour length.

4.6 A GRAY AREA
Up until this point, the reader has intentionally not been provided with an explicit description of 2-

OPT’s functionality, due to the fact that there seems to be a major ambiguity in the TSP bibliography

concerning a key aspect of its behavior. More specifically, based on the literature review of this

thesis, most of the papers that approach 2-OPT and/or the TSP in general in a theoretical manner,

such as [32,34,35,38], imply more or less directly that a length-reducing move is always applied, as

soon as one is found, at which point the heuristic resets and a new iteration begins. On the contrary,

the papers that refer to parallel implementations of 2-OPT or to metaheuristics that embed it, such

24

as [50] and [52], state explicitly that at every iteration all the possible moves are evaluated in order

to find and apply the one that yields the best results (i.e. reduces the tour length the most). G.

Reinelt [39] and M. Hahsler [37] also suggest the latter.

4.7 CLARIFICATION & 2-OPT STRATEGIES
It turns out that both the approaches described above are valid [6]. The one that seeks the best

move is referred to as the “best improvement” strategy, while the other is referred to as “first

improvement”. It is noted that normally, practical implementations do not use the best improvement

strategy but rather rely on the latter, since first improvement saves running time and often yields

better results (quality-wise). These two approaches will be from now on referred to as 2OPTFIRST and

2OPTBEST (first improvement and best improvement respectively).

Figure 3: 2OPTFIRST pseudocode.

Figure 4: 2-OPTBEST pseudocode.

2OPT-FIRST
CONSIDER A TOUR T OF LENGTH N

PROCESS 2OPT_FIRST(T)
START:
FOR EVERY i IN RANGE 1 TO N-2

FOR EVERY j IN RANGE i+2 TO N-1
-> COMPUTE E1 EDGE LENGTH (DISTANCE(i,i+1)).
-> COMPUTE E2 EDGE LENGTH (DISTANCE(j,j+1)).
-> COMPUTE E1' EDGE LENGTH (DISTANCE(i,j)).
-> COMPUTE E2' EDGE LENGTH (DISTANCE(i+1,j+1)).
-> COMPUTE DISTANCE DELTA ((E1'+E2')-(E1+E2)).
IF {DELTA IS NEGATIVE}

-> APPLY THE LENGTH-REDUCING MOVE BY REPLACING EDGES E1 AND E2
 WITH E1' AND E2' RESPECTIVELY.
-> GOTO START.

END_IF
END_FOR

END_FOR
END PROCESS

2OPT-BEST
CONSIDER A TOUR T OF LENGTH N

PROCESS 2OPT_BEST(T)
START:
-> SET THE CURRENTLY MAXIMUM NEGATIVE CHANGE IN TOUR LENGTH TO ZERO.
FOR EVERY i IN RANGE 1 TO N-2

FOR EVERY j IN RANGE i+2 TO N-1
-> COMPUTE E1 EDGE LENGTH (DISTANCE(i,i+1)).
-> COMPUTE E2 EDGE LENGTH (DISTANCE(j,j+1)).
-> COMPUTE E1' EDGE LENGTH (DISTANCE(i,j)).
-> COMPUTE E2' EDGE LENGTH (DISTANCE(i+1,j+1)).
-> COMPUTE DISTANCE DELTA ((E1'+E2')-(E1+E2)).
IF {DELTA IS LESS THAN THE CURRENTLY MAXIMUM NEGATIVE CHANGE IN

 TOUR LENGTH}
-> UPDATE CURRENTLY MAXIMUM NEGATIVE CHANGE WITH DELTA.
-> STORE THE CORRESPONDING INDICES i, j IN BEST_i, BEST_j.

END_IF
END_FOR

END_FOR
IF {AT LEAST ONE LENGTH-REDUCING MOVE WAS FOUND DURING THE SEARCH}

-> APPLY THE BEST LENGTH-REDUCING MOVE STORED IN BEST_j, BEST_j.
-> GOTO START.

END_IF
END PROCESS

25

4.8 THE RANDOMIZED VARIANT (R2OPT)
As it can be inferred from the pseudocodes above, 2-OPT evaluates moves in a strictly deterministic

manner, always starting from the first position of the tour-containing structure (a simple array in the

case considered here) and proceeding sequentially from that point on. A contrasting approach is to

choose the two edges which are candidates for deletion in a non-deterministic fashion, i.e. pick a 2-

OPT move at random. The 2-OPT variant that evaluates moves in this form is termed Randomized 2-

OPT (R2OPT from now on). R2OPT has no BEST strategy; if the randomly chosen move is length-

reducing it is always applied.

Figure 5: R2OPT pseudocode.

4.9 THE SYMMETRICAL VARIANT (S2OPT)
This section describes the Symmetrical 2-OPT variant, as proposed in 2007 by I. Mavroidis et al. [29].

The very purpose of the design of Symmetrical 2-OPT (S2OPT from now on) was the uncovering of

fine-grain parallelism and its subsequent exploitation through an efficient FPGA implementation.

Having the aforementioned objective, the algorithm, besides the desired high-level functionality, is

largely defined as a set of hardware-oriented structures and operations along with the schedule

upon which the latter act on the former. Thus, for the time being, only an abstract overview of

S2OPT is presented, as the hardware specifics are a matter of the next Chapter, Chapter 5.

S2OPT resembles 2-OPTFIRST in the sense that a) at each iteration any length reducing move is

applied, not just the best one, and b) it evaluates moves in a strictly deterministic manner as well.

The main differentiating points between these two cases are that a) S2OPT applies all the available

length-reducing moves discovered within a given iteration and b) it evaluates moves in a

considerably different pattern than the one utilized by 2-OPT in general. The name given to the

algorithm by its authors possibly provides an insight to the intra-move relation.

R2OPT
CONSIDER A TOUR T OF LENGTH N

PROCESS R2OPT(T)
START:
-> RANDOMLY CHOOSE TWO EDGES E1 AND E2 BY GENERATING TWO UNEQUAL RANDOM INTEGERS i, j
 WITHIN AN APPROPRIATE RANGE.
//THE PSEUDOCODE SECTION BELOW CONSIDERS THE CASE THAT (i<j). AN EQUIVALENT SECTION COVERS
//THE OPPOSITE CASE (NOT SHOWN HERE).
-> COMPUTE E1 EDGE LENGTH (DISTANCE(i-1,i)).
-> COMPUTE E2 EDGE LENGTH (DISTANCE(j,j+1)).
-> COMPUTE E1' EDGE LENGTH (DISTANCE(i-1,j)).
-> COMPUTE E2' EDGE LENGTH (DISTANCE(i,j+1)).
-> COMPUTE DISTANCE DELTA ((E1'+E2')-(E1+E2)).
IF {DELTA IS NEGATIVE}

-> APPLY THE LENGTH-REDUCING MOVE BY REPLACING EDGES E1 AND E2 WITH E1' AND E2'
 RESPECTIVELY.

END_IF
IF {A LENGTH REDUCING MOVE IS NOT FOUND WITHIN N^2 CONSECUTIVE EVALUATIONS}

-> GOTO END.
ELSE

-> GOTO START.
END_IF
END:

END PROCESS

26

The following excerpt provides an illustration and the definition/description of Symmetrical 2-OPT

moves, extracted from [29].

Consider two tour segments, SegmA and SegmB, each consisting of a given ordering of the tour’s

cities. A set of segments (or equivalently their corresponding 2-OPT moves) are defined as

symmetrical segments (or symmetrical 2-OPT moves), if and only if:

“For each segment SegmA of the set (except the smallest one), segment SegmB that consists of the

same cities except the two cities at the boundaries of SegmA, is also part of the set. For example, if

SegmA= {C1…C100} is in the set, then SegmB= {C11…C99} will also be in the set. Taking this further, if

we assume that SegmA is the largest segment in the set, then the set will consist of segments

{C10…C100}, {C11…C99}, {C12…C98}, down to whichever segment is the smallest.”

Figure 6: Example of three symmetrical 2-OPT moves. Image extracted from [29].

The figure above displays a tour consisting of 8 cities, presented as a sequence of numbers which

represent their position within the starting tour, along with three possible symmetrical moves. The

matrix shows the modifications incurred to the initial tour after the application of one, two or all

three of the aforementioned moves.

With careful observation, two key points, largely influencing the characteristics of the derived

hardware architecture, arise from the example above: a) “After the application of any number of the

symmetrical moves under consideration, each city will either remain in its original position within

the starting tour, or swap positions with its symmetrical city; two cities are considered symmetrical if

they are at the two ends of one of the symmetrical segments”, and b) “Whether the cities at the two

ends of a specific segment will keep their positions or swap them, depends only on whether an even

or odd number of segment reversals are applied on them. Therefore the number of the segment

reversals can be counted by considering only the segments that these cities are part of.”

It should be noted that, as is probably evident in the example tour displayed in the figure below,

reversing tour segment {C3…C7} is equivalent to reversing the remaining tour segment {C8, C1, C2}.

Thus, S2OPT, during its search for length-reducing segment reversals only considers segments that

consist of up to half the total number of cities.

27

Figure 7: Application of a 2-OPT move. Image extracted from [29].

S2OPT’s serialized pseudocode is cited below. Due to the fact mentioned at the beginning of this

section, its presentation is fairly abstract as it hides most of the architecture/implementation-

specific functionality.

Figure 8: S2OPT abstract pseudocode.

At this point it should be noted that in the following chapters only the S2OPT case is considered. The

rest of the variants (including the original) have been presented here for the sake of a holistic

approach to the subject.

S2OPT
CONSIDER A TOUR T OF LENGTH N

PROCESS S2OPT(T)
-> SET PHASE TO A.
START:
FOR EACH SYMMETRICAL-CITY-PAIR WITHIN THE CURRENT TOUR'S N/2 FIRST CITIES (i IN RANGE 1 TO N/4)

-> COMPUTE E1 EDGE LENGTH (DISTANCE(i,(i-1)).
-> COMPUTE E2 EDGE LENGTH (DISTANCE((N/2-i+2),(N/2-i+1)).
-> COMPUTE E1' EDGE LENGTH (DISTANCE((i-1),(N/2-i+1))).
-> COMPUTE E2' EDGE LENGTH (DISTANCE(i,(n/2-i+2)).
-> COMPUTE DISTANCE DELTA ((E1'+E2')-(E1+E2)).

END_FOR
-> COMPUTE THE RESULTING LENGTH-REDUCING SYMMETRICAL-SEGMENT-REVERSALS BASED ON THE
 REVIOUSLY COMPUTED DELTAs.
-> COMPUTE THE CORRESPONDING LENGTH-REDUCING SYMMETRICAL-CITY-PAIR SWAPS.
-> APPLY THE AFOREMENTIONED LENGTH-REDUCING SWAPS.
IF {PHASE EQUALS A}

-> PERFORM PREDEFINED TOUR MODIFICATION A.
-> SET PHASE TO A'.
-> GOTO START.

ELSE
-> PERFORM THE INVERSE OF THE PREDIFINED TOUR MODIFICATION A, A'.
-> SET PHASE TO A.

END_IF
-> PERFORM PREDEFINED TOUR MODIFICATION B.
IF{A LENGTH-REDUCING MOVE IS NOT FOUND WITHIN N CONSECUTIVE ITERATIONS}

-> GOTO END.
ELSE

-> GOTO START.
END_IF
END:

END PROCESS

28

4.10 THE TSPLIB TSP DATASET LIBRARY
Due to the significant scientific interest towards the TSP, which began to emerge right after its

introduction in the 1940s, a huge number of works ranging from theoretical studies to algorithm

proposals and high performance implementations started to amass. It quickly became evident that a

set of standard TSP instances was needed so as to enable researchers and computer scientists

worldwide to compare, assess and evaluate the performance characteristics of their proposed works

with those of others. The most prominent solution to this issue originated from G. Reinelt, who, in

the late 1980s, began collecting TSP instances from various sources and of various types such as

actual locations within cities or countries and VLSI design layouts. His work has been widely adopted

by the TSP community and is considered as the standard TSP benchmark package. G. Reinelt’s TSPLIB

[67] collection of TSP datasets can be found in [68].

TSPLIB’s dataset naming convention obeys the following pattern: {instance name/type}{number of

cities within the dataset}. For example, berlin52 implies that the number of cities within the dataset

is 52.

4.11 PERFORMANCE ANALYSIS & COMPARISONS OF 2-OPT VARIANTS
All the experimental work presented in the current as well as the following sections has been

conducted by the author in MATLAB environment.

At this point, it is probably evident that there exist quite a few different approaches to the 2-OPT

algorithm, even in its original formulation. Thus, a question is raised concerning their performance

characteristics, especially through a comparison point of view. The aim of the current section is the

evaluation of the aforementioned approaches through various criteria such as tour quality,

convergence rate and more. The obtained results, along with the appropriate annotations are

presented below:

4.11.1 TOUR QUALITY

The first evaluation metric is the output tour length, expressed in the form of the percentage above

the optimal length (error); a smaller value translates to higher quality tour, closer to the optimal,

and vice versa.

29

Figure 9: Comparison of the quality of the tours yielded by the four 2-OPT implementations under
consideration; 16 TSPLIB datasets are considered.

Judging by the graph it is fairly evident that, as far as tour quality is concerned, the worst performer

in all but one case is 2OPT in either its FIRST or BEST approaches, or even in both, while R2OPT along

with S2OPT generally fare much better. On average, 2OPTBEST yields 13.6% longer than optimal tours

while 2OPTFIRST follows with 13%. In a completely different league, S2OPT yields the second-best

results, boasting an average error of 8.6%, closely trailing R2OPT which manages an average error of

8%.

Furthermore, although only by 0.6 pp.1, the experimental results verify the notion mentioned in

section 4.7, that 2OPTFIRST often yields better results than 2OPTBEST.

4.11.2 AVERAGE TOUR CONVERGENCE RATE

The second evaluation criterion is the tour convergence rate managed by each approach. The

convergence rate refers to how quickly, in terms of moves evaluated or elapsed runtime, the

currently modified tour trends towards the local optimum. When a given dataset is considered, an

increased convergence rate usually indicates decreased runtimes, and more importantly, it means

that in the case that the heuristic is prematurely terminated, the 2-OPT implementation with the

higher convergence rate will probably have managed to produce a higher quality tour than the one

with the lower rate, and vice versa.

In the following chart, an approximation of the average convergence rate achieved throughout the

full run of each dataset is shown. The values are obtained by computing the average

gradient/steepness of the “Tour Length - Moves Evaluated” figure (not shown here), through the

following formula:

1 pp.: Percentage Point, the unit for the arithmetic difference of two percentages.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%
eil51

berlin52

eil76

kroA100

kroB100

kroC100

kroD100

kroE100

eil101

pr107

pr124

pr136

pr144

pr152

kroA200

kroB200

Error %

2OPTFIRST

2OPTBEST

R2OPT

S2OPT

30

∑
(𝑌𝑖 − 1) − 𝑌𝑖
(𝑋𝑖 − 1) − 𝑋𝑖

𝐾
𝑖=1

𝐾

 K, the total number of length-reducing moves found/applied.

 Yi, the tour length at the time when length-reducing move i is applied.

 Xi, the total number of applied moves at the time when length reducing move i is applied.

Figure 10: Comparison of the average convergence rate achieved by the four 2-OPT realizations under
consideration, obtained through the gradient/steepness approximation; a high value indicates a high

convergence rate and vice versa.

The chart above clearly suggests that R2OPT converges much quicker than the rest of the variants,

with 2OPTFIRST following far behind and S2OPT even more. 2OPTBEST’s strategy of always evaluating all

possible moves at every iteration renders its convergence rate minimal compared to those of the

rest. More specifically, R2OPT boasts a convergence rate of 87; 2OPTFIRST follows next with 29, while

S2OPT ranks third, with a rate of 10. 2OPTBEST converges an order of magnitude slower, with a rate of

0.2.

4.11.3 TOUR LENGTH REDUCTION PER MOVE APPLIED

The third metric provides, in a sense, an insight into “how effective the moves applied by each

approach are”, by relating the total change in the tour length with the number of the applied moves.

0

50

100

150

200

G
ra

d
ie

n
t

TSPLIB dataset

Average Convergence Rate

2OPTFIRST

2OPTBEST

R2OPT

S2OPT

31

This figure is obtained by calculating the change induced in the tour length by the application of each

single move and then computing the average value.

Figure 11: Comparison of the average reductions brought to the tour length by the application of each
length-reducing 2-OPT move, among the four 2-OPT implementations under consideration; the reductions

are expressed percent changes.

The effect of 2OPTBEST’s strategy of always seeking for the best possible move is clearly visible, as

each one of the moves it applies tends to reduce the tour length in a much greater extent than those

of the rest of the implementations, whose results in this aspect are roughly the same. 2OPTBEST

manages an average reduction of 1.5% per move, while R2OPT, S2OPT and 2OPTFIRST follow equally

far behind, with 0.59%, 0.58%, and 0.49% equivalently.

4.11.4 NUMBER OF EVALUATED MOVES

The fourth and final metric is the total number of Moves Evaluated, provided here as a means of

assessing runtime, since actual runtime measurements would not be representative of real-world

performance, due to the limitations imposed on the latter by the MATLAB environment.

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

A
ve

ra
ge

 C
h

an
ge

 In
 T

o
u

r
Le

n
gt

h
 %

TSPLIB dataset

Average Tour Length Reduction

2OPTFIRST

2OPTBEST

R2OPT

S2OPT

32

Figure 12: Comparison of the total number of 2-OPT moves evaluated by each 2-OPT implementation; a
larger value indicates increased runtimes and vice versa.

Both original 2OPT variants perform significantly more move evaluations prior to termination, a

trend persistent in every dataset tested. S2OPT and R2OPT lead the way, with an average of 51300

and 59273 evaluated moves respectively; 2OPTBEST and its sibling, 2OPTFIRST, follow orders of

magnitude behind, with figures of 925728 and 1377528 respectively.

An interesting result is that, contrary to the notion stated in section 4.7, 2OPTFIRST seems to be

actually almost 50% slower than 2OPTBEST, and not the other way round.

4.12 RRHC: A CASE STUDY WITH SYMMETRICAL 2-OPT (S2OPT)
This section considers the performance evaluation of S2OPT when combined with, or more precisely,

when embedded within a “lightweight” yet capable metaheuristic as is Random-Restart Hill

Climbing, briefly described in section 3.3 of Chapter 3. Thus, in this case, the main metric of interest

is the minimum error (best tour quality) achieved within the set of the executed trials/random-

restart-repetitions, and its numeric relation with the average error.

The results obtained after 103 iterations are presented in the opposite page.

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

To
ta

l E
va

lu
at

ed
 M

o
ve

s

TSPLIB dataset

Runtime Estimation

2OPTFIRST

2OPTBEST

R2OPT

S2OPT

33

Figure 13: Performance assessment of the S2OPT-based version of the RRHC metaheuristic, in terms of tour quality; the

latter is expressed as the percent-change of the final tours’ length when compared to the corresponding
optimal. The AVG bars refer to the average final tour length obtained in each dataset, averaged over the 103

performed runs; the MIN bars refer to the minimum tour length marked during the execution of the
aforementioned runs. A lower error percentage translates to higher quality tour and vice versa.

Observing the Minimum and Average Error bars, it is clearly evident that the combination of RRHC

with S2OPT yields much better results than those managed by the latter alone. On average, the

RRHC+S2OPT combination yields nearly 24 times or almost 7 pp. smaller errors. If the metaheuristic

was allowed to execute for more iterations (105 for example), the obtained results should be even

better, yet this assumption could not be efficiently evaluated due to the long run times induced by

the MATLAB environment.

As a side note, another useful inference is the experiment-wise affirmation of the fact mentioned in

[39], which is that the quality of the results yielded by improvement heuristics largely depends on

the quality of the corresponding input tours, thus signifying the importance of utilizing construction

heuristics for the generation of “good enough” starting tours (Chapter 2, section 2.7).

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

Er
ro

r
%

TSPLIB dataset

RRHC: Minimum - Average Error

MIN

AVG

34

4.13 THE SQUARE OF THE EUCLIDEAN DISTANCE AS THE COST FUNCTION

(S2OPT)
This section is dedicated to evaluating the employment of the squared Euclidean distance as the cost

function-instead of the Euclidean distance itself-using S2OPT as a case study.

The process of computing the squared Euclidean distance is the same as in the standard Euclidean

distance with the exception that the final square root is not calculated. The aforementioned

approach has been followed in [29] since, in the case of FPGAs, the calculation of the square root is

computationally expensive and it is not easily mapped in hardware, thus requiring the utilization of

complex IP cores, at least when the actual function and not an approximation of it is considered.

Using an approximation to the Euclidean distance-such as its square-in a Euclidean problem instance

is rather sub-optimal, as is usually the case when approximations in general are concerned. A first

major issue is that the squared Euclidean distance does not obey the triangle inequality. A second

issue is that when the square root is omitted, the super-linearly-growing quadratic function (f(x)

=x2) utilized twice in the calculation of the Euclidean distance tends to “boost” larger values more

than smaller ones.

This trend can be trivially illustrated through the graph of the aforementioned quadratic function:

Figure 14: Illustration of the behavior of the subquadratic function f(x)= x
2
.

In order to determine the effects of this sub-optimality induced to the move evaluation procedure,

two different approaches have been taken: Approach A examines the probability that a move is

deemed length-reducing under the squared Euclidean cost function but not under the standard

Euclidean and vice versa, while approach B assesses the performance of S2OPT when combined with

the squared Euclidean distance metric and compares it to that of the standard S2OPT.

35

Approach A: The evaluation performed by approach A, described above, has been realized through

the utilization of the MATLAB script located in the appendix; a related arithmetic example is

provided as well.

The results obtained show that out of the 106 total evaluated moves:

 4.658% were applied in the standard Euclidean case but not in the squared Euclidean case.

This percentage constitutes actual length-reducing moves that should have been applied but

were not discovered in the squared Euclidean case.

 4.628% were applied in the squared Euclidean case but not in the standard Euclidean case.

This percentage actually constitutes length-increasing moves that were applied in the squared

Euclidean case while they obviously should not have.

Both events imply a loss in tour quality.

Approach B: In order to assess the impact of the squared Euclidean metric on the overall

performance of S2OPT, the exact same methodology as in the previous section (4.13) has been

followed (averaging over 103 independent trials, resulting from the application of an equal number

of random permutations to each dataset’s initial tour), except of course for the change in the cost

function.

Figure 15: Comparison of the average quality of the tours obtained by each metric. The quality is expressed
in terms of the percent-change of the final tours’ length when compared to the corresponding optimal; a

lower error percentage translates to a higher quality tour and vice versa. Results averaged over 103
independent runs.

0.00%

5.00%

10.00%

15.00%

20.00%

Er
ro

r
%

TSPLIB dataset

Average Error - Squared & Standard Euclidean Distance

SQUARED

STANDARD

36

Figure 16: Comparison of the average number of length-reducing 2-OPT moves applied by each metric.
Results averaged over 103 independent trials.

Figure 17: Comparison of the average number of 2-OPT moves evaluated by each metric. Results averaged
over 103 independent runs.

0

100

200

300

400

500

600

700

800

900

1000

#M
o

ve
s

A
p

p
lie

d

TSPLIB dataset

Average Number of Applied Moves - Squared & Standard Euclidean
Distance

SQUARED

STANDARD

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

#M
o

ve
s

Ev
al

u
at

ed

TSPLIB dataset

Average Number of Evaluated Moves - Squared & Standard Euclidean
Distance

SQUARED

STANDARD

37

Comments:

 As far as average tour quality is concerned, the squared Euclidean version performs notably

worse than the standard version, in every problem instance; the actual severity of the error is

dataset-dependent. The sole exception is the eil101 dataset where the minimum error (not

shown here) is 0.7 pp. smaller. On average, squared Euclidean S2OPT yields errors 4.4 pp.

larger than standard S2OPT.

 Squared Euclidean S2OPT tends to evaluate as well as apply more moves than standard S2OPT;

the former implies longer running times. The only exception to this is the pr107 dataset where

standard S2OPT evaluated 5.5% more moves; on average, squared Euclidean S2OPT applies

16.4% and evaluates 4.2% more moves than standard S2OPT.

Despite the fact that squared Euclidean S2OPT performs in every aspect slightly worse than standard

S2OPT, the thesis considers the former as well, so that a direct, performance-wise comparison with

the original work [29] (comparison presented in chapter 6) is made feasible.

4.14 AVAILABLE PARALLELISM OF 2-OPT VARIANTS
As far as 2-OPT parallelization strategies are concerned, there have been proposed many relevant

techniques such as Geometric Partitioning or Tour-based partitioning [36]. Yet, these constitute a

kind of distributed, coarse-grain approach to parallelization, and as such they are not expounded

since this thesis considers fine-grain approaches only.

In this section, the parallelization options offered by the various 2-OPT implementations are

discussed:

2OPTBEST: The parallelism offered by 2OPTBEST lies in that the move evaluations can be performed

simultaneously, since all the comparisons that need to be conducted are known a-priori due to the

deterministic nature of the algorithm. The fact that at every iteration all possible moves are

examined also contributes largely to its parallelization abilities, as it strengthens the predictability of

its behavior. At the end of the evaluation stage, a reduction between all the length-reducing moves

is required, in order to assess the one that yields the best results, apply it, and start the evaluation

process again.

2OPTFIRST: Although 2OPTFIRST’s functionality closely resembles that of 2OPTBEST’s, the fact that the

former applies the first length-reducing move encountered during the search instead of the best one

incurs a loss to determinism, since the location of this move within the search space cannot be

known a-priori. Thus, the parallelization abilities of 2OPTFIRST are inferior to those of 2OPTBEST.

S2OPT: The same observations that are made on 2OPTBEST apply in the S2OPT case as well, with the

exception that all length-reducing moves are applied, not just the most efficient one. Yet, this

operation can still be performed in parallel due to the symmetry of the moves.

R2OPT: Contrary to 2OPTBEST and S2OPT, R2OPT cannot be efficiently parallelized-on FPGA at least-

due to its intrinsic, highly non-deterministic move evaluation scheme, rendering it inappropriate for

such an implementation.

38

Final Thoughts: Based on the aforementioned remarks, only 2OPTBEST and S2OPT are eligible for

subsequent consideration; further investigation into each one’s intrinsic characteristics shows that

the most capable-in terms of parallelization-implementation is S2OPT due to following findings:

 S2OPT utilizes a much more consistent memory/tour access pattern enabled by the symmetry

of the moves, a fact that largely simplifies the memory architecture requirements, which, in

turn, leads to a cleaner and more capable-performance-wise-design. Apart from that, the

symmetry of the moves defines distinct and independent pairs of cities, a fact that allows all

the necessary city swaps to be performed within the same single cycle.

 The reduction operation in S2OPT is computationally less demanding, since there is no need to

assess the most efficient length-reducing move; if a move is length-reducing is applied anyway.

This gives the ability to apply all the required city-pair swaps as soon as the evaluation stage is

complete-even in a single cycle after it.

 S2OPT was designed from the very beginning with the intention of uncovering fine-grained

parallelism.

The following chapter will cover, among others, the mapping of the Symmetrical 2-OPT variant in

FPGA.

39

CHAPTER 5: S2OPT HARDWARE ARCHITECTURES &

THE IMPLEMENTATION TOOLS

5.1 INTRODUCTION & CHAPTER STRUCTURE
The aim of the current chapter is the presentation of the software tools utilized throughout the

preparation of this thesis along with an in-depth analysis of the implemented hardware

architectures. More specifically, the chapter begins with a few words on the architecture emulator

implemented in MATLAB, and then moves on to the concise description of the actual

implementation tools, namely Vivado and Vivado HLS. A few remarks on their behavior and

performance characteristics in relation to each other are also noted. The focus then shifts towards

the comprehensive presentation of S2OPT’s VHDL- and HLS-based architectures; extensive, per-

module block diagrams for the former, and workflow, source code revisions and directives for the

latter, are provided.

5.2 THE MATLAB-BASED HARDWARE ARCHITECTURE EMULATOR
A first major step towards the preparation of the thesis was the implementation of a software

emulator of the hardware architecture under consideration. The implementation environment of

choice was MATLAB, due to its extremely versatile data manipulation and viewing capabilities,

convenient UI and easily accessible debugging and verification methods. On the other hand, a

notable weakness of MATLAB is its reduced performance in terms of execution times when

compared with the executables produced by other programming languages and associated

toolchains, such as the combination of C with the highly optimized GNU GCC compiler. Yet this did

not constitute a suspending factor since the emulator’s main objective was the functional

assessment of the aforementioned hardware architecture and not its runtime performance

benchmarking.

The hardware architecture emulator’s role during the development of this thesis was of great

importance due to the following factors:

 Verify the correct apprehension of the hardware functionality as described in [29], and help

quantify the extent to which the obtained results match those referred in the aforementioned

source.

 Verify that the hardware architecture operates as intended.

 Expedite the hardware design and evaluation phase since it acted as a reference point.

 Expedite the debugging process.

 Aid in the assessment of a few parameters, important to the acceleration of the benchmarking

process.

 Act as a source for the extraction of the experimental results obtained in the previous chapter,

which were fundamental for the assessment of S2OPT from a purely algorithmic point of view.

5.3 THE XILINX VIVADO DESIGN SUITE
The main software tools utilized during the preparation of the thesis, namely the Vivado Integrated

Design Environment (IDE) and Vivado High Level Synthesis (HLS), are both components of the Vivado

40

Design Suite (DS) produced by Xilinx Inc., a software package aiming at the design, integration,

implementation and evaluation of HDL-based hardware systems.

The Vivado DS was introduced in April 2012 with the intention of replacing the aging, now

discontinued Xilinx ISE Design Suite as the company’s mainline tool chain, mostly due to the latter’s

inability to efficiently support the company’s newer, much larger and complex reconfigurable

devices (FPGAs). Thus, Vivado DS is recommended by Xilinx for new system designs with 7-series and

later products, while ISE offers support for the company’s legacy, pre-7-series devices.

Besides being able to handle the latest FPGAs from Xilinx, Vivado DS also brings a broad range of

improvements over its predecessor, such as the integration of many-previously separate tools-into a

single intuitively designed environment, improved productivity, more user-friendly, flexible and

interactive UI, and a revamped underlying engine yielding much faster response/compilation times

and a wide variety of available optimization strategies. At this point, it should be noted that the

aforementioned enhancements were actually noticed by the author during his

occupation/interaction with the tool, and do not in any way constitute an advertisement.

A short presentation of the utilized tools and design flows follows; a more elaborate discussion of the

latter is found in the next chapter.

Vivado IDE: Historically, the Vivado IDE constitutes an evolution of the PlanAhead tool included in

the ISE DS since version 10.1. Currently, it is a standalone tool and the main design environment of

the Vivado DS, incorporating all the functionality mentioned earlier in this section along with the

traditional Register Transfer Level (RTL)-to-bitstream FPGA design flow and a newer system-level

integration flow focusing on Intellectual Property (IP)-centric designs.

Vivado HLS: Vivado HLS constitutes Xilinx’s approach to the High-Level Synthesis paradigm, briefly

described in section 1.3 of Chapter 1. It enables the transformation of programs written in a high

level language such as C, C++ and SystemC as well as OpenCL API C kernels into an RTL

implementation that can be directly targeted into Xilinx-powered FPGAs, thus offering a design flow

that completely bypasses the complex and time-consuming process of manually specifying RTL. The

aforementioned transformation process can be either fully automatic or semi-automatic, by guiding

the compiler towards a single or multiple desired output characteristics/goals through the

exploitation of an extensive set of directives, able to largely influence the generated design in terms

of throughput, latency, I/O interfacing, resource utilization and more. It should also be noted that

the tool contains a host of ready-to-use libraries involving arbitrary precision data types, math,

video/image processing, linear algebra, DSP functions and more. Its capabilities are of course far

more than those mentioned here, but covering every aspect of them would be completely out of the

thesis’ scope.

A high-level illustration of both utilized design flows, namely the C-based HLS design flow, realized

through Vivado HLS and the HDL-based RTL-to-Bitstream design flow realized through the Vivado

IDE, is shown in the opposite page.

41

Figure 18: Abstract illustration of the two design flows under consideration. Left: HLS flow. Right: RTL-to-
Bitstream/HDL-based flow.

5.4 ANALYSIS OF THE S2OPT ALGORITHM FOR FPGA IMPLEMENTATION
In the previous chapter, the reader was presented with-among others-a brief and mostly abstract

description of S2OPT’s functionality, mainly focusing on the notion of the symmetrical moves and

the unique properties they possess. Before proceeding to the actual hardware architectures, a more

elaborate study is due, so as to provide a smooth transition to the RTL representation and facilitate

the correspondence between the algorithm’s functionality and the hardware.

In order to begin, an illustration of the aforementioned functionality through the exploitation of the

algorithm’s flow chart is required. Each process displayed within the chart, along with its available

parallelism, will then be discussed. The flow chart is based on the work done on the MATLAB-based

emulator, and is intentionally shown in an analytical level, so as to partition the functionality in

small, easily elaborated stages.

C-Based Source
Code

Automatic RTL
Generation

Design
Implementation

Hardware
Platform

Programming

HDL-Based
Source Code

Manual RTL
Specification

Design
Implementation

Hardware
Platform

Programming

Entry Point Entry Point

42

Figure 19: Flowchart of the S2OPT algorithm.

set_phase A

compute_
distances

find_shortcuts

compute_swaps

update_tour

phase == A
?

shift_3QTL set_phase B

shift_3QTR

shift_TR

Was A
Length-Reducing Move

Found
Within N Consecutive

Iterations
?

set_phase A

NO

YES

YES

OUTPUT TOUR T’

INPUT TOUR T

NO

43

At this point, it should be noted that throughout this section, the given TSP tour is considered as an

abstract, linear 1D array containing, in an equally abstract representation, the tour’s nodes’/cities’

Euclidean 2D coordinates in the same ordering as defined by the tour. It is also considered that the

two edges of this array are actually connected, in the sense that left or right circular shifts of the

cities’ coordinates are possible. For the sake of vividness, an example tour of length N=16 is

assumed.

The reader should keep in mind that, as stated in the previous chapter, a 2-OPT move can be

equivalently viewed as a tour segment reversal, and is treated as such. In the Symmetrical 2-OPT

case, in which the tour segments are symmetrical in the sense defined in that chapter, the

application of a given symmetrical 2-OPT move means that the cities located at the two edges of the

corresponding symmetrical segment will either keep their position or swap it with each other. The

same applies to the rest of the cities within that segment. If all N/4 symmetrical segments contained

within a given segment of maximum length of N/2 cities (half the total number of cities as explained

in Chapter 4) are considered, then practically, all moves applied by S2OPT can be reduced to the

swapping of appropriate symmetrical-city-pairs.

set_phase A/B: These do not constitute actual stages; they act as flow control flags and are utilized

in order to provide a cleaner, more compact flow chart. In both cases, be it phase A or phase B, the

same processes are executed. Yet there exists a distinction-from a theoretical point of view-on

whether the algorithm is running phase A or B, explained in the shift_x sub-sections further down.

compute_distances: The compute_distances stage is responsible for the calculation of the length

of the two pairs of edges (E1, E2 and E1’, E2’) involved in the evaluation of each symmetrical move

(or equally each symmetrical segment reversal). This is performed by computing the squared

Euclidean distances between the appropriate pairs of the associated quadruple of vertices/cities.

The aforementioned process is repeated for every symmetrical-city-pair within the first half-the

maximum considered tour segment length-(8 cities in total in the example) of the tour array (4

symmetrical-city-pairs, 4 repetitions). The move evaluations are completely independent and can be

efficiently performed in parallel.

find_shortcuts: This process’ functionality is fairly simple; it detects the actual length-reducing

moves/tour-reversals among those evaluated in the previous stage (4 moves in the example), and

marks them as such. The task is performed by computing the changes induced in the tour length

from each move (the “Deltas” in the context of Chapter 4, where Delta= (length(E1’) + length(E2’)) -

(length(E1) + length(E2))), and then checking whether the resulting quantities are negative or not. It

is reminded that a negative Delta value implies a length-reducing move. As is the case with the

compute_distances stage, the process discussed here can also be completely parallelized.

compute_swaps: The aim of the compute_swaps process is the “translation” of the length-

reducing tour reversals, deemed as such in the previous stages, to the corresponding actually

applied tour modifications, which are the symmetrical-city-pair swaps. This is made possible by the

reasoning stated in section 4.9 of the previous chapter; once deemed length-reducing, a

symmetrical-city-pair will swap positions if and only if the total number of tour reversals of all the

symmetrical segments that the one under consideration is part of, including itself, is odd. Again, the

44

computation of the final symmetrical-city-pair swaps can be performed in parallel, although, for

reasons that will become evident in the following sections, not always efficiently.

update_tour: The functionality of the update_tour process is straightforward; it applies the

previously assessed length-reducing symmetrical-city-pair swaps by performing the operations

necessary to update the tour within the abstract 1D array so that it accurately reflects the

modifications performed on it. The aforementioned procedure can too be efficiently parallelized.

Before proceeding to the rest of the processes/stages, a clarification on the schedule upon which

S2OPT evaluates the available moves is due. Since S2OPT only considers segments of a maximum

length equal to half the number of cities within the tour, the total number of available move

evaluations within a single iteration is equal to (N*(N-1)/2)/2. For the given example, where N=16,

the total number of move evaluations is 16*15/4= 60. The algorithm splits these evaluations into 15

groups of 4 symmetrical segments each.

At each iteration the S2OPT begins with the evaluation of symmetrical segments of even lengths.

shift_3QTL: In order to evaluate symmetrical segments of odd length, a left circular shift is

performed to the tour array and more specifically to the segment consisting of the second, third, and

final quarter of the array. After the completion of this process, all the steps described above are

repeated. An example is shown below.

Figure 20: Example application of the shift_3QTL process on a tour of length N= 16.

shift_3QTR: After the evaluation of the symmetrical segments of odd lengths is complete, the

inverse of the shift_3QTL operation, that is a right circular shift of the previously left-shifted

segment, should be applied, in order to restore the cities in their original positions.

shift_TR: Finally, in order to enable the evaluation of the rest of the groups of the symmetrical

moves, the tour array as a whole is circularly right shifted.

All three stages exhibit parallelism which can be exploited.

The process discussed in all of the above stages is repeated until no length-reducing move is found

for N consecutive iterations, at which point the algorithm terminates.

A

1

B

2

C

3

D

4

E

5

F

6

G

7

H

8

I

9

J

10

K

11

L

12

M

13

N

14

O

15

P

16

A

1

B

2

C

3

D

4

P

5

E

6

F

7

G

8

H

9

I

10

J

11

K

12

L

13

M

14

N

15

O

16

1st Quarter 2nd Quarter 3rd Quarter 4th Quarter

45

5.5 S2OPT VHDL-BASED ARCHITECTURE
The hardware architecture discussed here is based on the corresponding description provided in [29];

the design of the former is intentionally similar to the latter due to the nature of the thesis, so as to

enable a fair and an as accurate as possible comparison between the results obtained by both works.

This section considers S2OPT’s VHDL-based architecture by presenting the block diagram of each

hardware module implemented along with an appropriate description of its functionality, in a top-

to-bottom approach. In the case of control modules, a flow chart is displayed instead.

It is noted that due to clarity considerations, the clock signal is not displayed in any of the

aforementioned block diagrams; nevertheless, all of the modules discussed below are synchronous.

The hardware architectures presented here were designed, implemented and evaluated in the Xilinx

Vivado IDE environment.

5.5.1 S2OPT TOP LEVEL (S2OPT MODULE)

The algorithm’s Top Level module is located in the highest level of the design hierarchy, connecting

the basic architectural subsystems together and providing an interface between the design’s I/O and

external (sub)systems, such as auxiliary IP cores, larger designs, soft-core or embedded processors, a

host system and more.

Design Inputs:

 clk: System clock.

 RUN_S2OPT, 1bit: Inbound control signal indicating the initiation of the hardware execution.

 DATA_IN, 30bit: The main input of the design, which are the coordinates of the tour’s cities.

Design Outputs:

 DATA_OUT, 30bit: The main output of the design, which are the coordinates of the tour’s

cities.

 OUTPUT_READY, 1bit: Outbound control signal indicating the completion of the hardware

execution.

46

Block Diagram 1: Illustration of the Top Level module of the hardware design.

The main components of the S2OPT module are three:

 The Register Unit (RGU)

 The Processing Unit (PRU)

 The Main Control Unit (MCU).

The RGU constitutes a set of registers whose main purpose is the storage of the coordinates of the

tour’s cities during the execution of the hardware. The registers are inter-connected in such a way

that allows the efficient mapping of the functionality defined by the four last stages of the S2OPT’s

flowchart, namely the update_tour, shift_3QTL, shift_3QTR and shift_TR stages.

The PRU contains a set of Processing Element modules (PEs) which implement the functionality

defined by the first two stages displayed in S2OPT’s flowchart, namely the compute_distances and

find_shortcuts stages. The third, the compute_swaps stage, is implemented by PRU’s Swap

Generation Unit (SGU).

The MCU is tasked with the supervision and synchronization of the two basic components presented

above. It directly manages the RGU’s functionality, the communication between RGU and PRU as

well as some basic parameters of the latter. Most of the operations conducted within the PRU are

controlled by the PRU’s dedicated Local Control Unit (LCU). MCU also handles the loading and

unloading of TSP tours to/from the RGU and provides some basic control-related interfacing to/from

the design.

When the MCU’s RUN_S2OPT input is asserted, it signals the RGU to start loading the TSP tour from

its DATA_IN port. As soon as the loading completes, the former notifies the PRU to start the

evaluation of the first group of symmetrical moves by accessing the appropriate city coordinates

stored in the RGU. The aforementioned move evaluations are performed in parallel thanks to the

multitude of PEs contained within the PRU. When this process finishes, the latter signals the RGU to

perform the necessary length-reducing swaps and informs the MCU that the first phase of the

iteration is complete. At this point, the MCU commands the RGU to execute the shift_3QTL process

REGISTER UNIT (RGU)

PROCESSING
UNIT

(PRU)

MAIN
CONTROL

UNIT

(MCU)

OUTPUT
TOUR

INPUT
TOUR

CONTROL
SIGNALS

CONTROL
SIGNALS

SYMMETRICAL-CITY-PAIR
SWAPS DECISIONS

COORDINATES
DATA

OUTPUT_READYRUN_S2OPT

47

and after that it notifies the PRU to begin with the second phase of symmetrical move evaluations.

As soon as it finishes the MCU issues the shift_3QTR and shift_TR commands to the RGU, whose

completion marks the end of an S2OPT iteration and the beginning of another. Upon successful

termination of the algorithm’s execution, the MCU signals the RGU to unload the final tour to its

DATA_OUT port and asserts the OUTPUT_READY output signal.

5.5.2 REGISTER UNIT (RGU) MODULE

As mentioned in the sub-section above, the RGU’s purpose is the storage of the coordinates of the

tour’s cities. Since 2D Euclidean space TSP instances are considered, each city’s coordinates

constitute of two components, namely x and y. For the datasets considered in the thesis, 15bits per

component, i.e. 30bits in total are just enough for the representation of each coordinate pair; the

two 15bit quantities are concatenated in a single, easily separated, 30bit entity. It does not matter

which component (x or y) is mapped towards the LSB or the MSB end, as long as the decision is kept

consistent throughout the design. The thesis considers a Little-endian approach and the mapping of

the x component towards the MSB end.

The RGU can be visualized as a horizontal 1D array of register modules termed CITYREGs, where

each such module consists of a 30bit register along with auxiliary logic, namely multiplexers. The

number of CITYREGs contained within the RGU is equal to the number of cities within the given TSP

tour; furthermore there is a one-to-one mapping between the order in which the city coordinates

are stored within the RGU’s CITYREGs and the actual order of the cities within the considered tour.

The high-level block diagram shown below illustrates the aforementioned notion, where a tour of

length N=16 is considered. More elaborate diagrams displaying the logic within each CITYREG along

with its I/O signals and functionality are provided further down in the text.

Block Diagram 2: Abstract illustration of the internal structure of the RGU; the rectangles numbered from 1
to 16 are CITYREGs, while the (bi)directional arrows constitute their dedicated 30bit interconnections. The

assignment of the color-coding to the terminology used later in the subsection is provided below:
Black Arrows: T/T’, Purple Arrow: V, Orange Arrows: U

Dark Blue Arrow: X, Light Green Arrow: W, Dark Green Arrows: Y
Light Blue Arrows: Z.

A1

1

A

2

A

3

A

4

B

5

C

6

C

7

C

8

D

9

D

10

D

11

D

12

D

13

D

14

D

15

D

16

COORDINATES DATA TO PRU

INPUT TOUR OUTPUT TOUR

48

CITYREG #1 holds the coordinates of the city currently first in the actual TSP tour under examination,

CITYREG #2 the second, CITYREG #3 the third and so on.

The lettering on the CITYREGs represents their type; there are five types in total, although their main

structure is fundamentally the same in the sense that all CITYREGs contain a 30bit register. Their

differences lie in the minor variations of the number or size of the contained multiplexers, their

wiring, and the required control signals, dictated by their relative, fixed location within the RGU.

The arrows represented are actual 30bit datapaths between pairs of CITYREGs; they are utilized for

the efficient manipulation of the positions of the cities’ coordinates within the RGU, as required by

S2OPT’s functionality. The direction of the arrows indicates the source and destination CITYREGs.

Both the wiring corresponding to the aforementioned datapaths as well as the characterization of a

CITYREG’s type are predetermined and fixed/specific for a given tour length N. The diagram above

shows the exact wiring required for a tour of length 16, as well as the location of each type of

CITYREGs within the RGU, relative to the tour length (displayed above the CITYREGs).

Seven sets of datapaths/wires can be discerned, referred to as T, U, V, W (and W’), X, Y and Z.

 T/T’: These datapaths are used as the main input and output of TSP tours to/from the RGU

respectively (and the hardware design as a whole), and are only utilized during the

initialization and completion stages of the hardware execution of S2OPT.

 U/V: Datapath U is used during the shift_TR process; V is also used for the same reason, and it

actually enables the RGU to act as a circular right-shift register.

 W/X: Datapaths W and X, which are both bi-directional, implement the shift_3QTR and

shift_3QTL processes. The former is also utilized during the shift_TR stage [W: Light Green].

 Y: The-also bi-directional-datapath set Y is utilized during the update_tour process, enabling

the swapping of the appropriate symmetrical-city-pairs.

 Z: Datapath set Z exposes the contents of certain CITYREGs to the PRU.

At this point the reader should be reminded that, as mentioned a few times already, the maximum

symmetrical segment length that S2OPT evaluates is equal to half the length of the TSP tour under

consideration (N/2= 8 in the example). The size of the rest of the symmetrical segments contained

within the largest one, which are also evaluated, gets progressively smaller, until it reaches the

smallest possible length of 2. There are N/4 (4 in the example) such symmetrical segments (or

equivalently symmetrical-city-pair swaps, see previous section), each one involving two cities (N/2

cities in total).

The cities forming the aforementioned symmetrical-city-pairs are those found within the N/2

first/leftmost CITYREGs, hence the dense and complex wiring of that particular area of the RGU; N/4

bi-directional datapaths of type Y, and N/2 datapaths of type Z, connecting the CITYREGs that

contain the symmetrical-city-pairs involved in the move evaluations/swaps with the PRU, which

performs the actual computations required. A direct implication to this, is that in order to enable the

PRUs to examine all the available symmetrical segments of length at most N/2, these segments need

to be positioned-at some point of the hardware execution-within those special CITYREGs.

49

These are the CITYREGs of type A1, A, B and C. The D type CITYREGs, which are those located within

the last/rightmost half of the RGU, are not accessed by the PRU; this implies that they do not

perform symmetrical-city-pair swaps either. Thus their structure is simpler than the rest of the types.

An in-depth presentation of the CITYREGs’ structure is considered next.

As far as clock cycles are concerned, each one of the processes implemented by the RGU

(shift_3QTL, shift_3QTR, shift_TR, and update_tour) execute in a single clock cycle thanks to the

multitude of special purpose, dedicated inter-CITYREG datapaths.

Before ending the current sub-section, a reference to the loading/unloading of TSP tours to/from the

RGU is due. Both functions exploit the interconnections between the CITYREGs; the city coordinates

are inserted one-by-one from T and are shifted inside the RGU using datapaths U and V and

progressing one CITYREG at a time (one clock cycle). After N steps (N clock cycles), the TSP tour is

completely loaded in the RGU. For a successful loading of the TSP tour, its insertion within the RGU

must be performed in reverse order i.e. starting from the end of the initial tour. This certifies that

when the loading process completes, the first city of the initial TSP tour under consideration will be

positioned in the first/leftmost CITYREG, the second in the second and so forth. The unloading

process utilizes the same method/wiring, outputting the final TSP tour one city at a time, through

the output datapath T’.

5.5.2.1 CITYREG MODULES

This sub-section considers a more elaborate presentation of the CITYREG modules, focusing mostly

on their internal structure and wiring. Since there is a great resemblance between the internals of all

five types of CITYREGs, their common structural elements and wiring patterns will be discussed first.

A type-specific discussion along with the corresponding block diagram illustrating the structures,

wiring, and I/O ports follows.

All CITYREGs contain a 30bit register which stores the city coordinates, and a 30bit 2:1 or 3:1

multiplexer which enables the register’s input to interface with multiple datapaths; the latter is

termed INPUT_MUX. Furthermore, all CITYREGs, with the notable exception of the D-type ones,

employ a 1bit 2:1 multiplexer which renders the Write Enable (WE) port of the aforementioned

register controllable by two separate sources, namely the MCU and the PRU; the former is in

command during the shift_TR, shift_3QTR and shift_3QTL stages, while the latter during the

update_tour stage. The 1bit multiplexer will be referred to as WE_MUX.

50

CITYREG_A1 module: This is the first/leftmost CITYREG within the RGU; it is a special case of the A-

type CITYREGs and a special case of CITYREGs in general, in the sense that, among others, it acts as

the point for the insertion of TSP tours within the RGU (and the hardware design in general). Besides

the loading of tours, CITYREG_A1 is involved in the update_tour and shift_TR stages.

Block Diagram 3: CITYREG A1.

CITYREG_A module: This type of CITYREGs are (N/4)-1 in number, are located within the

first/leftmost quarter of the RGU; they are involved in the update_tour and shift_TR stages.

Block Diagram 4: CITYREG A.

REGISTER

30bit

MUX

30bit

3:1

MUX 1bit 2:1

INPUT TOUR

INPUT FROM LAST/RIGHTMOST
CITYREG (shift_TR)

SYMMETRICAL CITYREG INPUT
(update_tour)

[MCU] A1_DIN_SELECT

[MCU] 1Q_WE

[PRU] SWAP_WE

[MCU] WE_SELECT

DATA OUT

REGISTER

30bit

MUX

30bit

2:1

INPUT FROM LEFT CITYREG
(shift_3QTR)

SYMMETRICAL CITYREG INPUT
(update_tour)

[MCU] A_DIN_SELECT

[MCU] 1Q_WE

DATA OUT

MUX 1bit 2:1

[PRU] SWAP_WE

[MCU] WE_SELECT

51

CITYREG_B module: There is a single CITYREG of type B, located in the (N/4)+1 position of the

RGU; it is involved in the update_tour, shift_TR, shift_3QTL and shift_3QTR processes.

Block Diagram 5: CITYREG B.

CITYREG_C module: These CITYREGs, as is the case with A-type CITYREGs too, are (N/4)-1 in

number and are located in the second-from-left quarter of the RGU; they are involved in the

update_tour, shift_TR, shift_3QTL and shift_3QTR stages, similarly to the B-type ones.

Block Diagram 6: CITYREG C.

CITYREG_D module: There are N/2 D-type CITYREGs, located in the second/rightmost half of the

RGU; they are structurally the simplest type of CITYREGs, involved in the shift_TR, shift_3QTR and

shift_3QTL processes.

Block Diagram 7: CITYREG D.

REGISTER

30bit

MUX

30bit

3:1

MUX 1bit 2:1

INPUT FROM RIGHT CITYREG
(shift_3QTL)

INPUT FROM LAST/RIGHTMOST
CITYREG (shift_3QTR)

SYMMETRICAL CITYREG INPUT &
INPUT FROM LEFT CITYREG

(shift_TR,update_tour)

[MCU] B_DIN_SELECT

[MCU] 3Q_WE

[PRU] SWAP_WE

[MCU] WE_SELECT

DATA OUT

REGISTER

30bit

MUX

30bit

3:1

MUX 1bit 2:1

INPUT FROM RIGHT CITYREG
(shift_3QTL)

INPUT FROM LEFT CITYREG
(shift_3QTR)

SYMMETRICAL CITYREG INPUT
(update_tour)

[MCU] C_DIN_SELECT

[MCU] 3Q_WE

[PRU] SWAP_WE

[MCU] WE_SELECT

DATA OUT

REGISTER

30bit

MUX

30bit

2:1

INPUT FROM LEFT CITYREG
(shift_3QTR)

INPUT FROM RIGHT CITYREG
(shift_3QTL)

[MCU] D_DIN_SELECT

[MCU] 3Q_WE

DATA OUT

52

5.5.3 PROCESSING UNIT (PRU) MODULE

The Processing Unit (PRU) module is the computational module of the hardware architecture,

responsible for performing the move evaluations. It reads the coordinates of the cities located in

the borders of the symmetrical segments under consideration from the RGU, calculates the length-

reducing symmetrical swaps and commands the former to apply them. The main structural

components of the PRU are three, namely the Processing Elements (PEs), the Swap Generation Unit

(SGU) and the Local Control Unit (LCU); an introduction to each one’s functionality follows, while a

more elaborate discussion on their internal design is also due.

Block Diagram 8: PRU.

PE1

PROCESSING
ELEMENT

PE2

PROCESSING
ELEMENT

PE_N/4

PROCESSING
ELEMENT

PE_N/4-1

PROCESSING
ELEMENT

SGU

SWAP
GENERATION

UNIT

SYMMETRICAL SEGMENT
REVERSAL DECISIONS FROM PEs

SYMMETRICAL-CITY-PAIR SWAPS
DECISIONS

TO RGU

REG
1bit

LCU

LOCAL
CONTROL UNIT

[MCU]
START_EXECUTION

FINISHED_EXECUTION
TO MCU

MOVE_FOUND
TO MCU

COORDINATES DATA FROM RGU COORDINATES DATA FROM RGU

53

 Processing Elements (PEs): The PEs are the actual arithmetic units of the PRU; they execute

all the numeric operations necessary for the computation of the two pairs of distances

required for assessing whether a symmetrical segment reversal is length reducing or not.

There are N/4 PEs within the PRU, which is the same as the number of the symmetrical

segments under evaluation at every iteration of the algorithm’s hardware execution, thus

implying that each PE is assigned with the evaluation of a single/specific reversal. A given PE

reads the coordinates of the four cities located in the borders of its allocated symmetrical

segment and calculates the associated Delta() function discussed in section 4.3 of Chapter 4.

The output is a Yes/No answer on whether the reversal should be applied or not. The

aforementioned N/4 evaluations are performed fully in parallel.

 Swap Generation Unit (SGU): The SGU is responsible for converting the symmetrical tour

reversal decisions made by the PEs into corresponding symmetrical-city-pair swap decisions

(the two cities located at the ends of each such segment), which,-if deemed applicable-will

constitute the actual length-reducing moves performed on the RGU. The SGU’s functionality is

of great importance to the overall design since it enables the aforementioned moves to be

applied in parallel; the RGU’s dedicated datapaths also contribute to this ability. It should be

noted that the conversions themselves can too be performed fully in parallel, although, as will

be discussed later, not always very efficiently.

 Local Control Unit (LCU): The LCU implements the hardware design’s secondary control

logic, dedicated specifically to the management of the operating parameters of the PEs’

internal components. It also communicates directly with the Main Control Unit (MCU)-the

primary/global control logic-for synchronization purposes.

The OR gate visible in the block diagram is utilized by the Main Control Unit in order to assess

whether a length-reducing move is found after the completion of a given move evaluation run; the

result is of great importance since the algorithm’s termination condition depends on it.

5.5.3.1 PROCESSING ELEMENT (PE) MODULE

From this point on, the distance() function (section 2-OPT MOVE EVALUATION, Chapter 4), will refer to

the squared Euclidean function; the square root is not taken into consideration.

The block diagram of the PEs is illustrated in the next page, followed by a description of each

displayed sub-component.

54

Block Diagram 9: PE.

DIN MULTIPLEXER A 15bit 8:1

SUBTRACTER
15x15bit

IP Core

MULTIPLIER
16x16bit

IP Core

ACCUMULATOR
32x32bit

(ADD/SUB)
IP Core

LOOP MUX
32bit 2:1

SYNC
REGISTER

32bit

DIN MULTIPLEXER B 15bit 8:1

ZERO
COMPERATOR

< 0

[LCU]
REG_EN

[LCU]
ADD/SUB

[LCU]
CLK_EN

[LCU]
LOOP_MUX
SELECT

[LCU]
DIN_MUX

SELECT

[LCU]
DIN_MUX

SELECT

COORDINATE COMPONENTS
FROM RGU

COORDINATE COMPONENTS
FROM RGU

FIRST ARITHMETIC STAGE

SECOND ARITHMETIC STAGE

THIRD ARITHMETIC STAGE

YES/NO DECISION
FOR SYMMETRICAL SEGMENT REVERSAL

TO SGU

55

 Din_Mux_A/B: The two 15bit DIN_MUXes located at the module’s input provide the first

arithmetic stage of the PE with the appropriate coordinate-component-pairs; these are split

between the aforementioned multiplexers in such a way that each input pair corresponds to

an equivalent coordinate-component-pair. There are 8 such pairs involved in the computation

of the Delta() function, as the latter involves the subsequent computation of the distance()

function 4 times in total-each based on 2 pairs-hence the number of the multiplexers’ inputs.

 Subtracter: The 15x15bit subtracter is the first arithmetic stage of the PE, used to calculate

the differences of the city-pairs’ coordinate components, as per the requirements of the

distance() function. It is implemented as a highly customizable Xilinx Adder/Subtracter IP core.

 Multiplier: The 16x16bit multiplier is the second arithmetic stage of the PE, responsible for

the computation of the squares of the aforementioned differences generated by the previous

stage, hence its identical inputs. It is implemented as a highly customizable Xilinx Multiplier IP

core.

 Accumulator: The 32x32bit accumulator is the third and final arithmetic stage; it is actually

an adder/subtracter component, which performs the addition defined in the distance()

function as well as all the additions and subtractions of the Delta() function. The accumulator

is instantiated as a highly customizable Xilinx Adder/Subtracter IP core.

 Sync_Register & Loop_Mux: These two components play a key factor in the accurate

initialization of the accumulator; during its initialization phase, the former delays the

multiplier’s (temporally) first output by one clock cycle so as to synchronize it with the second

one, in order to provide the accumulator with the two inputs necessary for computing the

seed value. Upon completion, the Loop_Mux multiplexer is used to loop the accumulator’s

output back to one of its inputs, thus setting it to normal operation.

 Zero_Comperator This component’s functionality is rather self-explanatory; it examines the

sign of the result yielded by the computation of the Delta() function and outputs an

appropriate binary output.

At this point a few design- and timing-related clarifications are definitely due.

 As far as the arithmetic resources are concerned, the absolutely minimum required number is

utilized by the PEs. The addition of more instances of the aforementioned resources would

enable the partial parallelization of the necessary arithmetic operations, instead of serially

executing them as implied by the block diagram. Such an approach would in turn decrease the

overall latency, but due to the reductions needed in order to obtain the final Delta() result, the

temporal gains would be largely outweighed by the subsequent increase in resource

utilization. This notion was verified by practical assessments.

 The arithmetic units can be pipelined internally, with the number of pipeline stages easily

controlled through the appropriate parameter of the corresponding IP core generator. An

increased number of such stages usually implies a higher clock rate (if the critical path

traverses the core under consideration) at the expense of higher latency, and vice versa.

Extensive experimentation has been conducted in order to assess the optimal value for each

arithmetic unit; the results are the following:

o Subtracter: 1 pipeline stage (registered output). The addition of more pipeline stages

actually yielded worse clock performance.

56

o Multiplier: 1 pipeline stage (registered output) /3 pipeline stages in the event that

the critical path is formed within the core under consideration. A choice of 2 pipeline

stages yielded worse performance than the single stage.

o Accumulator: 1 pipeline stage by default for performance reasons, due to the nature

of the accumulator’ functionality.

 The operation of the PEs is fully pipelined, hiding the latency induced by each arithmetic unit

and processing one coordinate-component-pair (out of the 8 in total) at each clock cycle, as

soon as the pipeline fills.

 The overall PE latency amounts to 12 or 14 clock cycles, depending on the multiplier’s pipeline

stages.

5.5.3.2 SWAP GENERATION UNIT (SGU) MODULE

The functionality of the SGU is based on the notion of the two key points mentioned in section 4.9 of

Chapter 4; a symmetrical city-pair-swap is applied if the number of the length-reducing symmetrical

segment reversals of the symmetrical segments that contain the one under consideration, including

the reversal of itself, is odd.

The swap of the symmetrical pair of cities located on the edges of the outermost/largest

symmetrical segment depends on its own reversal and only. The swap of the second pair depends on

its own reversal and the previous one, the third pair depends on its own reversal and the two

previous ones and so on, up until the innermost/smallest pair which depends on its own reversal as

well as the (N/4)-1 previous ones.

This computational paradigm can be implemented with the utilization of appropriately

interconnected (N/4)-1 XOR gates, arranged in the pattern visible in the SGU’s block diagram, shown

next.

57

Block Diagram 10: SGU.

As the block diagram makes evident, there is a diagonal path starting from the top left of the figure

and ending up in the bottom right, progressively traversing every single one of the XOR gates. This is

actually quite problematic, since the total delay induced by the propagation of the signal through the

aforementioned gates adds up and grows linearly with the increase in problem size (city-wise), thus

having a detrimental effect on clock performance.

An apparent solution to this issue is the addition of uniformly spaced pipeline registers throughout

the length of the affected path, thus leading to a subsequent decrease in delay. This would be an

SYMMETRICAL-CITY-PAIR SWAPS DECISIONS TO RGU

SYMMETRICAL SEGMENT REVERSAL DECISIONS FROM PEs

FROM
PE1

FROM
PE2

FROM
PE3

FROM
PE4

FROM
PE5

FROM
PE6

FROM
PE N/4

REGISTER N/4 bit

58

efficient workaround if the hardware design was fully pipelined, which is not the case since the

S2OPT algorithm does not follow the dataflow paradigm that suits FPGAs best; on the contrary, its

nature is highly iterative.

The unavoidable consequence of this fact is that for every pipeline register added the SGU’s latency

increases by 1 clock cycle due to the penalty incurred by the repetitive filling of the pipeline; thus, a

compromise between clock performance and latency has to be made. For the datasets evaluated in

the thesis, a range of 1 to 6 pipeline stages was utilized.

In the end, the SGU proved to be the bottleneck of the hardware design, both in terms of

performance as well as in its ability to efficiently support large problem sizes.

5.5.3.3 LOCAL CONTROL UNIT (LCU) MODULE

The LCU constitutes a simple Finite State Machine which manages the operational parameters of the

PEs’ structural components; there are five such control signals, visible in the PE block diagram and

discernible from the rest due to the “FROM LCU” suffix. The LCU’s functionality-abstractly defined for

clarification and illustration purposes-is shown in the flow chart below.

Figure 21: LCU flowchart.

5.5.4 MAIN CONTROL UNIT (MCU) MODULE

The MCU constitutes the primary control unit of the hardware design, responsible for the

management of the latter’s I/O, the synchronization of its two main modules and the management

of the RGU’s operational parameters. It is implemented as a Finite State Machine, whose

functionality-abstractly defined for clarification and illustration purposes-is shown in the following

flow chart; most of the control signals directed or monitored by the module under consideration can

be viewed in the PRU and CITYREG block diagrams, containing the MCU keyword.

Wait For START Signal From MCU

Initialize PE Parameters & Begin
Execution

Dynamically Adjust The Operational Parameters Of The PEs
During Execution To Achieve The Desired Functionality

(compute_distances, find_shortcuts,
compute_swaps)

Notify The MCU As Soon As The
Execution Completes & Go To

Idle

59

Figure 22: MCU flowchart.

Initialize MCU Control Parameters

Load The TSP Tour Into The RGU

Set Phase A

Command The PRU To Start
Evaluating Moves

Wait For The PRU To Complete
The Move Evaluations
(compute_distances,

find_shortcuts,
compute_swaps)

Command The RGU To Apply the
Length-Reducing Moves

(update_tour)

Phase

A or B

?

Command The RGU To Perform
shift_3QTR

Command The RGU To Perform
shift_TR

Is The
Termination

Condition Met
?

Command The RGU To Perform
shift_3QTL

Set Phase B

Unload The TSP Tour From The
RGU

BA

External Signal RUN_S2OPT
Asserts

NO

YES

OUTPUT_READY
Signal Asserts

Idle

60

5.5.5 VHDL-BASED ARCHITECTURE LATENCY SUMMARY

This section provides a summary of the clock cycles required by the hardware architecture in order

to complete a single execution iteration of the S2OPT algorithm, as illustrated in both the S2OPT

FUNCTIONAL FLOWCHART as well as the MCU FLOWCHART.

 PE symmetrical segment reversal evaluations (compute_distances & find_shortcuts): 12/14

clock cycles (x2) depending on the number of pipeline stages of the PEs’ multiplier core.

 SGU swap computations (compute_swaps): 1 to 6 clock cycles (x2) depending on the number

of the SGU’s pipeline stages.

 Registered output of the “MOVE_FOUND” OR gate within the PRU: 1 clock cycle (x2).

 RGU, apply symmetrical swaps (update_tour): 1 clock cycle (x2).

 RGU, shift_3QTL: 1 clock cycle (x1).

 RGU, shift_3QTR: 1 clock cycle (x1).

 RGU, shift_TR: 1 clock cycle (x1).

Total number of clock cycles per S2OPT execution iteration: 36 to 50.

The performance aspects of the VHDL-based architecture are covered in a more elaborate manner in

chapter 6.

5.6 S2OPT HLS-BASED DESIGNS
This section is dedicated to the presentation of the workflow, the thorough experimentation and the

decision-making process that ultimately led to the realization of the HLS-based S2OPT hardware

designs. The main software tool employed throughout this development process was the Xilinx

Vivado HLS; parts of the aforementioned work, involved in the final evaluation stages, have been

conducted in the Xilinx Vivado IDE environment for the increased accuracy of the obtained

performance and utilization results. The high-level language of choice for Vivado HLS’s input was C.

5.6.1 FACTORS INFLUENCING THE GENERATED DESIGN CHARACTERISTICS

There are four major factors that largely affect the behavior, structure, and performance of the

hardware designs (more accurately their RTL) generated by Vivado HLS:

 Source code: As will become evident later in the text, the structure, expressiveness, coding

style and workload allocation among functions of the source code itself play a crucial role in

the capabilities and behavioral characteristics of the resulting design. The importance of a

“good” source code is highlighted by the fact that it determines both the applicability as well

as the effectiveness of the available directives; it also facilitates the avoidance or overcoming

of data dependencies.

 Directives: The wide range of available directives constitutes the most potent and direct

method for the manipulation of the design’s key parameters, in terms of performance (both

latency- as well as throughput-wise), resource utilization, internal storage implementation, I/O

interfacing and protocols, and execution/operation paradigms.

 Clock constraint: The clock constraint functions in an equally important-yet often

overlooked-manner as the directives themselves, since it directly influences the performance

aspects of the generated hardware design.

61

All three factors stated above, with the possible and partial exception of the first one (the source

code), can be easily manipulated by the designer. Yet there is another one where little or no room

for adjustments is available:

 Algorithm nature: The nature of the algorithm constitutes the sole factor that determines

the success-in terms of efficiency and parallelization-of its mapping in an FPGA, and frequently

poses an unavoidable bottleneck.

Finally, from the author’s practical experience, it is essential to note that in order to reap the effects

of the directives to the maximum extent possible, no matter their type, a good base, i.e. a high

quality source code is a definite prerequisite.

For “good” practices when performing hardware design through high-level languages, the reader is

referred to the Xilinx Vivado HLS User Guide (UG902) [69].

5.6.2 THE EMPLOYED WORKFLOW PATTERN

The approach adhered to by the author in order to obtain the final versions of the HLS-based

hardware design is the following:

1. First of all, the reading of the tool’s manual was mandatory for the apprehension of both the

desired practices when performing hardware design through high-level languages, as well as

the available directives along with their corresponding effect, parameters, applications and

limitations.

2. A subset of the available directives, deemed suitable for the objectives of the work under

consideration, was chosen for experimental evaluation.

3. As soon as the first version of the C source code was fully functional and ready, an iterative

process of directive evaluations, interleaved with the development of new and improved

source code versions began. When a performance-wise notable replacement of the source

code under assessment was discovered, the subsequent directive evaluations from that point

on were based on it.

4. When the point where no more coding-related C source optimizations could be applied was

reached, the evaluation of the effect of multiple, simultaneously applied directives on the final

source code version began. It should be noted that not all possible combinations of the

candidate directives were evaluated; search-space pruning based on preliminary results was

applied, in order to reduce the associated, admittedly excessive temporal requirements.

5. Three final hardware designs were chosen, each one aiming towards the fulfillment of

different needs, such as low resource utilization, highest performance attainable, or a

combination thereof.

6. The effect of varying clock constraint targets on the performance of the final designs was

assessed afterwards; each design was implemented with a target clock constraint ranging from

100MHz to 500MHz in 50MHz increments. The clock frequency yielding the best combination

of clock period and overall latency was subsequently chosen. This final part of the workflow

process was conducted in the Vivado IDE environment for reasons previously discussed, and

constitutes a topic that will be covered more elaborately in the next chapter.

62

Again, it is noted that the work described in the aforementioned steps, with the notable exception of

step #6, was realized using the Vivado HLS; the dataset utilized was berlin52 from TSPLIB while the

target hardware platform was a Xilinx Virtex-7 330T.

5.6.3 SOURCE CODE STRUCTURES COMMON IN THE EVALUATED REVISIONS

As mentioned in the previous subsection, a host of improvements and optimizations was applied to

the initial source version, leading to the subsequent development and assessment of multiple such

code revisions. Despite the modifications and/or additions from one revision to the next, most of

them share a common, fundamental structure based on the results of preliminary work performed

in the early phases of the HLS design, right after the porting of the MATLAB emulator code to C.

These common structural elements are concisely presented below.

 void S2OPT(arguments) function: The S2OPT function constitutes the Top Level function of

the design, implementing most or in some cases all of the algorithm’s functionality (depending

on the source code version) as described in section 5.4 of the current chapter. In other words,

the majority of the functions discussed in the aforementioned section are embedded within

the S2OPT function; yet they remain clearly discernible as they are implemented as separate

code sections (see below). The function’s input arguments implement the I/O of the design,

namely the initial and final TSP tours; again, the exact type of the former depends on the

source code revision under consideration.

o In most source code versions, the S2OPT function contains-apart from various auxiliary

variables-two core arrays, namely the CT and “swaps” arrays; the former stores the

TSP tour under evaluation in the form of the cities’ coordinates, while the latter stores

the YES/NO decisions of the symmetrical-city-pair swaps. CT is either a 1D or 2D array,

while “swaps” is always implemented as a 1D array. More arrays are found within the

initial versions, such as the “distances” or “shortcuts” arrays, which were subsequently

optimized away.

o All versions include a single WHILE(1) loop; it is the function’s main iteration structure

which contains all of its functionality. An appropriate “break” condition is located at

the end of the loop’s body.

 The WHILE(1) loop embeds 4 to 11 for-loops with standard/non-variable

bounds; they are all located within the same hierarchy level, i.e. there are no

nested for-loops. Each such loop implements one or more of the functions

described in section 5.4 of the current chapter, while their actual number

depends yet again on the given source code revision. It should be noted that

there is hardly any code outside of the aforementioned loops’ bounds; if any,

it is necessary for initialization purposes.

 retval_type cfunc(arguments) function: cfunc is the sole function external to the design’s

top level; it is called by two of the latter’s for-loops, one or more times per major (WHILE(1))

iteration. In most cases it implements auxiliary arithmetic functionality, while in others the

aforementioned functionality is extended to include more complex operations. Its input

arguments are cities’ coordinates while the return value is either a distance in the notion

defined in section 4.3 of Chapter 4, or a Boolean value signifying whether a length-reducing

symmetrical segment reversal is found.

63

More concrete information on the various source code revisions can be found in the following

section.

5.6.4 SOURCE CODE REVISIONS

This subsection considers the brief presentation of the seven plus one source code revisions

implemented and evaluated during the development process of the HLS-based designs, along with

the modifications, changes and improvements each such version yielded over its predecessor.

REVISION 0

This is the first major/stable revision of the C code. The functionality of cfunc() is basic and limited to

the computation of the squared Euclidean distance of its input symmetrical-city-pairs. These are

made available to cfunc() from S2OPT(), by passing as input arguments a pointer to the entire CT

array together with two integers denoting the symmetrical-city-pairs that should be accessed (3

input arguments in total).

The TSP tour is stored within the 2D (#cities x 2) CT array as pairs of the x and y components of the

cities’ coordinates. The array itself is considered external to the design, in the sense that it is passed

to the top level function S2OPT() (and subsequently to cfunc()) as a pointer originating from an

outside source; there is no CT declaration within the design’s scope, and it actually constitutes the

sole input argument of S2OPT().

As far as the S2OPT() top level function is concerned, it includes a host of variable and array

declarations, most of which are admittedly redundant to the smooth execution of the function. Yet

this was intentional and part of the planned evaluations in order to assess the effect of the

aforementioned redundancy to the resulting design. The WHILE(1) loop, the main iteration structure

of the function, embeds 11 for-loops, each one implementing a single functionality as defined in

section 5.4 of the current chapter.

Finally, it should be noted that the data type of all the declared variables and arrays, including the

external CT array, is 32bit int.

REVISION 1

The first optimization introduced was the complete removal of the redundant arrays and variables

from within S2OPT(), as well as the partial merging of the for-loops; the latter’s number decreased

from 11 to 7, as two of the aforementioned loops were granted more extensive functionality. This

has led to a further reduction in both resource utilization and overall latency as well, although not as

striking as the previous one; the improvement of the latter stems from the fact that-considering that

both the overall workload per WHILE(1) iteration and for-loop bounds have remained unchanged-

fewer loops equals less latency.

REVISION 2

This revision concerned the redesign of the top level function’s I/O; instead of CT being accessed by

S2OPT as an external array, i.e. by-reference, it is declared within S2OPT as an array internal to the

design’s scope. The function’s input arguments were subsequently modified in order to properly

support the aforementioned changes; the first argument, IT, is a pointer to an external 2D input TSP

tour, while the second one, FT, is a pointer to the design’s final output tour. An addition of two extra

for-loops outside of the main WHILE(1) loop was also proven necessary. The first one, located at the

64

beginning of S2OPT’s body, is responsible for copying the initial TSP tour from the input pointer

argument to the CT array, while the second, located at the end of S2OPT’s body, copies the resulting

TSP tour from CT to the output pointer argument at the end of the algorithm’s execution.

The optimizations mentioned above yielded a slight increase in resource utilization yet they

decreased the overall latency by almost 13%; the most noteworthy such increase was marked in the

BRAM utilization where it grew from zero to four blocks, which is expected since the TSP tour under

assessment had become part of the design itself.

REVISION 3

The changes introduced with the 3rd revision were twofold: The usage of arbitrary precision data

types and minor modifications in the body of the cfunc() function; the latter were rather superficial

and aimed at an increase in both the number and precision of applicable directives, without altering

its functionality.

The arbitrary precision data types enable the declaration of variables and arrays of non-standard

size, i.e. not conforming to “classic” 8bit-multiple widths. For example, the declaration of an array of

19bit-integers or a 3bit unsigned integer variable is made possible. As one can infer, this is a very

powerful feature since it mitigates the unnecessary wasting of bits occurred when mapping

quantities-whose exact maximum size is known or decided a-priori-to wider, quantized data types.

The aforementioned optimization yielded a further reduction in both the resource utilization and

overall latency as well, due to the induced decrease in datapath and storage width requirements.

REVISION 4

The 4th revision brought a modification to the way the TSP tour is stored within the design during the

algorithm’s execution.

The 2D CT array, used for storing the pair of the coordinate components (x & y) of each city as

separate 15bit quantities, was replaced with a 1D version storing the coordinates as a single 30bit

entity, similarly to the approach taken in the VHDL-based architecture. This change necessitated the

addition of bit manipulation methods such as bit-wise shifting and masking within the cfunc()

function.

Although the optimization discussed above did not yield any changes in the overall latency, it did

reduce the LUT utilization by a small factor, and most importantly it largely improved the legibility

and succinctness of the source code. The decrease in LUT utilization is attributed to the reduction in

the number of the required multiplexers; the latter is induced by the fact that the access/update of a

given city entails the processing of a single value instead of two.

REVISION 5

The 5th revision introduced major alterations to the cfunc() function, which was granted more

extensive functionality that was previously part of the responsibilities of some of the for-loops

within S2OPT’s body, namely that of the abstractly-defined compute_distances() and

find_shortcuts() functions.

The new capabilities of cfunc() meant that it should be able to access four city coordinates during its

call by S2OPT in order to evaluate a given symmetrical segment reversal, i.e. compute whether Delta

65

(see section 4.3, Chapter 4) is negative or not. The previous method of passing arguments to cfunc()

(see REVISION 0) would clearly prove problematic since the accesses to the required coordinates

would have to be heavily serialized.

This issue was solved by providing the necessary values in parallel through four separate input

arguments, a fact that enabled the tool to schedule part of the required arithmetic operations to be

performed in parallel as well, thus reducing the overall latency. The reduction in the number of calls

made to cfunc() by each iteration of S2OPT() also attributed towards that direction. As far as

resources are concerned, there was a slight increase in DSP utilization due to the equivalent increase

in the number of arithmetic units required to schedule the aforementioned operations for parallel

execution.

REVISION 5.X

This version was actually an experiment encouraged by the warning message generated by the tool

when attempting to apply the #ARRAY_PARTITION TYPE COMPLETE directive to the CT array; it stated

that “the resulting design would be largely suboptimal due to the utilization of large multiplexers

imposed by the fact that the aforementioned array was accessed through non-constant indices”.

The solution that the tool suggested for that issue was either the wrapping of the array access into a

function or the usage of a register file core. Since there is no such core available in the tool’s library,

the choice was made clear. For this reason, two self-explanatory functions were added to the source

code, namely the access() and update() functions, used solely on the CT array. Apart from that, the

aforementioned modification required that the array under consideration was declared as global

static.

However, despite the numerous attempts, the proposed scheme did not manage to resolve the

issue. It also failed to yield any improvements to the resource utilization or the latency, while it

severely limited both the effect and the success of the subsequently applied directives.

REVISION 6

The changes in the 6th and final revision are similar to those brought by the 1st in the sense that it

induced further merging to S2OPT’s for-loops, reducing their number from 7 to 4. The resource

utilization remained almost unchanged, while the overall latency was reduced by 24%.

SUMMARY

The changes in both resource utilization and overall latency induced by each source code revision

are illustrated in the following charts, in order to highlight the major role that the source code itself

plays in the final design.

66

Figure 23: The changes marked in FF and LUT utilization between the evaluated source code revisions; the y-
axis shows the number of actual logic blocks used. The figure does not consider the equivalent changes in

BRAM and DSP utilization since they are relatively negligible. The TSPLIB dataset under consideration is
berlin52.

Figure 24: Changes in overall latency (clock cycles) induced by the examined source code revisions; the
TSPLIB dataset under consideration is berlin52.

300

400

500

600

700

800

900

1000

1100

1200

1300

Rev.0 Rev.1 Rev.2 Rev.3 Rev.4 Rev.5 Rev.5X Rev.6

R
es

o
u

rc
e

U
ti

liz
ia

ti
o

n

Source Code Revision

HLS Source Code Revisions, FF & LUT Utilization Comparison

FF

LUT

75000

95000

115000

135000

155000

175000

195000

215000

235000

255000

275000

Rev.0 Rev.1 Rev.2 Rev.3 Rev.4 Rev.5 Rev.5X Rev.6

La
te

n
cy

 (
C

lo
ck

 C
yc

le
s)

Source Code Revision

HLS Source Code Revisions, Changes In Overall Latency

Latency

67

As far as the latency chart is concerned, it should be noted that throughout the revisions the yielded

clock performance remained fixed at about 8.5ns; any changes in latency imply equivalent changes

in the actual runtime.

5.6.5 DIRECTIVES EVALUATED & SUBSEQUENT DISCUSSION

This subsection presents the directives that were deemed suitable for the nature of the algorithm

and the desired objectives and were subsequently evaluated so as to assess their actual effect on

the design’s key parameters, as a prerequisite to their final adoption/application. The presentation

only covers the most notable remarks made by the author during the directive experimentation

phase on their behavior and/or impact on the S2OPT algorithm; thus, the aforementioned remarks

can be considered case-specific to a certain extent.

For a complete list of the available directives along with the elaborate description of their

functionality and parameters, the reader is referred to [69].

#PIPELINE

When applied to S2OPT’s for-loops, whose bounds are non-variable, the #PIPELINE directive

behaved as intended; it drastically reduced the latency of the aforementioned loops and

subsequently of the design as a whole, with minimal increases in resource utilization and without

affecting the clock performance, not in a negative way at least. The results obtained by pipelining

such loops vary and depend on the data dependencies between consecutive loop iterations, a fact

that largely determines the rate at which the implemented pipeline outputs new data (termed

Initiation Interval or II in the tool’s manual); an optimal II of 1 might not be always achievable. A

quick possible workaround is to enable more read/write ports on the structures accessed during the

execution of the loop through the usage of appropriate directives, yet this rarely is the case.

When applied to functions, the #PIPELINE directive completely unrolls all the embedded loops

instead of pipelining them, having the same effect on them as if the #LOOP_UNROLL directive was

applied; the latter is discussed next.

It should be noted that the #PIPELINE directive cannot be applied to loops with variable bounds, i.e.

loops for which the exact number of iterations is unknown or changes dynamically during runtime;

such an example is S2OPT’s WHILE(1) loop. In fact, this kind of loops poses many limitations and

should be avoided if the nature of the algorithm under consideration allows it; frankly, this does not

apply for S2OPT, whose total number of main iterations is not known a-priori.

All in all, pipelining the for-loops proved a resource-wise efficient way of moderately enhancing

performance; a testimony to this is the case of the 5th source code revision, where after the

application of the directive a 100% reduction on the overall latency was achieved, followed by a

small 12% increase in resource utilization.

#LOOP_UNROLL

The application of the #LOOP_UNROLL directive to the for-loops of S2OPT’s WHILE(1) main loop

yielded the most striking improvements to the overall latency of the design, at the expense of

slightly worsened clock performance and sharply increased resource utilization; these side-effects

were expected due to the creation of multiple copies of the related logic instances, necessary to

facilitate the concurrent execution of the operations defined in each iteration of the affected loops.

68

The most notable such improvement was marked when the directive under consideration was

applied to the aforementioned loops of source code revision 6, where the latency reduced by

2117%; the subsequent decrease in clock frequency was a relatively minimal 10%, while resource

utilization increased by 1144% on average.

Again, the non-deterministic nature of the WHILE(1) loop proved quite limiting, as it did not support

the #LOOP_UNROLL directive either.

#INLINE

The #INLINE directive proved rather inefficient; on the one hand it did manage to yield

improvements in the overall latency but on the other it did so by inducing disproportionate increases

in resource utilization, especially DSPs. The most noteworthy such example is the case of Rev. 6,

where the DSP utilization increased by 300% while the overall latency was reduced by only 17%; the

same trend is evident in other experiments as well. The rise in DSP utilization is a logical

consequence of the inlining of cfunc() within the body of S2OPT(), since the arithmetic units

indirectly defined by the former were instantiated as many times as S2OPT() calls cfunc() within a

single iteration of the WHILE(1) loop.

To sum up, as far as the design under assessment is concerned, #INLINE turned out to be an

“expensive” directive that should be enabled when aiming for maximum performance at any cost.

#RESOURCE

During the late stages of the design process, when the final designs along with their corresponding

source codes and directives had been determined, the cfunc()-related resource utilization indicators

of the high-performance version made evident that there was quite an imbalance between the

number of implemented multipliers (DSP utilization) and the implemented adders/subtracters (LUT

utilization); it seemed as if more multipliers had been instantiated. This was odd, since there is a

block of eight subtractions at the beginning of the aforementioned function and another block at its

end consisting of eight additions; this is a total of sixteen addition/subtraction operations compared

to only eight multiplications within each cfunc() call.

Based on these two facts it was assumed that the arithmetic operations within these blocks were

not being efficiently parallelized by the compiler. The application of the “#RESOURCE AddSub”

directive to the block of the addition operators mitigated this issue to a certain extent, leading to an

average increase in LUT utilization of 40%, followed by a subsequent decrease in overall latency by

42% on average. Another positive side-effect was the marked increase in the attainable clock

frequency by about 11%.

The directive under consideration was applied to the block of subtractions as well, yet it did not yield

any changes to the design’s parameters at all.

#ARRAY_PARTITION

Within the context of the design under consideration, the #ARRAY_PARTITION directive proved

problematic at best. Not only did it fail to yield any substantial reductions to the overall latency-at

least not without causing severely disproportional increases to the resource utilization, but nearly

half the times that it was evaluated it either caused program crashes or resulted in malfunctioning or

underperforming designs, despite the numerous attempts made to resolve these issues; such an

69

attempt is described in subsection 5.7.4.6, while others include the assiduous experimentation with

various parameters of the aforementioned directive.

To the author’s point of view, the aforementioned issues stemmed from the fact that the multitudes

of read/write ports enabled by the application of the directive under assessment on the CT array

caused the compiler to either infer false parallelization options that were not actually feasible due to

inherent algorithmic data dependencies or render it unable to successfully schedule/manage the

increased number of available operations. As one can infer, the #ARRAY_PARTITION directive was not

incorporated in any of the final design versions.

A few more directives were evaluated as well; some of them could not ultimately be used due to the

fact that their application entailed specific preconditions that were impossible to be met by the

source code while others proved largely underperforming or malfunctioning. These were the

#LOOP_MERGE, #LOOP_FLATTEN, #ALLOCATION and #DATAFLOW directives.

Before ending this subsection, it would be a serious omission not to mention that all the

experimentation conducted during the development of the HLS-based designs and discussed

thoroughly within the context of the current, HLS-related section of the thesis is available in the

appendix; the related spreadsheet contains the utilization and performance results of more than 400

evaluations of source codes, single and multiple directives and combinations thereof.

5.6.6 FINAL HLS-BASED DESIGNS

Upon completion of the source code revision and directive evaluation phases, three different

combinations thereof were carefully selected; this resulted in an equivalent number of designs, each

one aiming at different usage scenarios i.e. catering to contradicting end user needs. These are

presented below; their title is largely self-explanatory.

Low Performance/Low Resource Utilization design [LP]

 Source Code Revision: Rev. 5.

 Directives

o #PIPELINE, applied to the for-loops of the S2OPT() function.

The LP design is based on the 5th source code revision, although Rev. 6 is faster in terms of overall

latency; this was intentional due to the for-loops of Rev. 5 being much simpler and straightforward

in terms of functionality and included operations than those of Rev. 6, a fact that led to the more

efficient application of the #PIPELINE directive, thus resulting in higher-performing pipelines with

fewer stages and smaller Initiation Intervals.

High Performance/High Resource Utilization design [HPA]

 Source Code Revision: Rev. 6.

 Directives

o #LOOP_UNROLL, applied to the for-loops of the S2OPT() function.

o #RESOURCE AddSub, applied to the additions block of cfunc() function.

70

Very High Performance/Very High Resource Utilization design [HPB]

 Source Code Revision: Rev. 6.

 Directives

o #LOOP_UNROLL, applied to the for-loops of the S2OPT() function.

o #RESOURCE AddSub, applied to the additions block of cfunc() function.

o #INLINE, applied to the cfunc() function.

At this point it should be noted that several attempts were made in order to introduce a balanced

design, i.e. a design offering “medium” performance and proportional resource utilization; this

proved quite an elusive objective as the two main factors could not be efficiently matched in order

to yield a design that would pose as a substantial alternative to those already mentioned.

The chart below shows the actual runtimes achieved by the HPB design in comparison to the initial

source code Rev. 0 in order to clearly illustrate the performance enhancements yielded by the

previously discussed workflow process; five TSPLIB instances are considered.

Figure 25: Comparison of the runtimes obtained by both the initial revision of the source code and the highly
performance-wise optimized yet resource-intensive HPB version, in five TSPLIB datasets; the HPB runtimes

are less than 50μs at most, thus appearing as nearly zero.

TSPLIB dataset eil51 berlin52 eil76 kroA100 kroB100

Change % 17369 17867 21579 28971 29450

Table 1: Reductions in runtime yielded by the HPB version when compared against the initial revision of the
source code, expressed in terms of Percent-Change.

The performance aspects of the HLS-based designs are covered in a more elaborate manner in the

next chapter.

0

2000

4000

6000

8000

10000

12000

eil51 berlin52 eil76 kroA100 kroB100

R
u

n
ti

m
e

(μ
s)

TSPLIB dataset

Runtime Comparisons Between Initial HLS Version & HPB HLS Version

Rev. 0

HPB

71

CHAPTER 6: EVALUTION OF THE DESIGN FLOWS,

PERFORMANCE RESULTS, AND RELATED DISCUSSIONS

6.1 INTRODUCTION & CHAPTER STRUCTURE
The subject of this chapter is twofold: the discussion of the strengths and weaknesses of the utilized

design flows as well as the elaborate presentation of the performance characteristics and results

obtained through the implementation and the subsequent evaluation of the hardware architectures

and designs examined within the context of the previous chapter. The former is based on the

practical experience attained during the lengthy and extensive occupation with the corresponding

design environments, while the latter derives from the thorough testing of the aforementioned

designs against numerous TSPLIB datasets as well as their performance comparison with both the

highly acclaimed Concorde TSP solver and a state-of-the-art GPU implementation.

6.2 DESIGN FLOWS EVALUATION
This section concerns the presentation and the subsequent evaluation of the utilized design flows.

6.2.1 PRESENTATION OF THE DESIGN FLOWS

The flow charts of each of the design flows are illustrated in the following page:

72

Figure 26: HLS (left) and HDL-based/RTL-to-Bitstream (right) flowcharts.

C-Based Source Code Development

Create/Reuse Appropriate C-Based
TestBench

Simulation/Evaluation Of C-Based
Source Code To Verify Intended

Source Functionality

Apply Directives

C-Based Source Code Synthesis (RTL
Generation)

Evaluate The Performance &
Utilization Estimates Of The

Generated RTL

Perform C/RTL Cosimulation To
Verify The Correct Operation Of The

Generated RTL

Export Design As An IP Core

Create HDL-Based RTL Specification

Run Behavioral Simulation

Apply Logical & Physical Constraints

Set Synthesis & Implementation
Strategies

RTL Synthesis – Netlist Generation

Run Post-
Synthesis
Timing/

Functional
Simulation

Synthesized Netlist Implementation

Run Post-
Implementation

Timing/
Functional
Simulation

Evaluate the Actual Performance &
Utilization Parameters

Generate Bitstream

Download Design to Hardware
Platform & Debug

Manage &
Configure

Instantiated
Cores

HLS FLOW ENTRY
POINT

HDL-BASED FLOW
ENTRY POINT

END OF HLS
FLOW

END OF DESIGN
PROCESS

73

Based on the illustrations of the flow charts, it can directly be inferred that the primary design flow

that leads to the downloading and subsequent execution of the hardware design on an actual

hardware platform is the RTL-to-Bitstream flow; in fact, the HLS design flow poses a preceding

extension to the latter that bypasses its first step, namely the creation of the RTL specification.

Hence, the differences between the two flows stem largely from the fact that the VHDL/Verilog-

based design flow entails the manual specification of the design’s RTL, while the HLS design flow

enables the partially or fully automatic generation of the RTL as implied by the C-based input and

captured by Vivado HLS’ compiler. Naturally, since the two flows share a rather large number of

design steps there inevitably exist many similarities among them as well, at least as far as the design

implementation phase is concerned.

6.2.2 COMPARISON CRITERIA

The criteria upon which the subsequent comparisons are based are briefly mentioned below:

1. The primary target user groups.

2. Learning curve & required hardware design knowledge.

3. Time requirements.

4. Accuracy of control over the design process.

5. Quality of the obtained design.

6. Bottleneck-inducing stages.

7. Use case scenarios.

Before proceeding to the actual discussions, it is reminded that the comparisons due are approached

through the author’s empirical point of view, shaped during the preparation of the thesis; thus they

are largely based on the experience gained during the mapping of S2OPT in hardware.

This premise holds for the majority of the aforementioned criteria, with the exception of the first

two which are approached more holistically due to their theoretical-oriented nature.

For further clarification, it is stated that the HLS-part of the thesis constitutes the author’s first

contact with Vivado HLS and its related design flow; previous involvement with the VHDL-based

design flow and the Xilinx ISE tool, based on smaller-scale works, exists.

6.2.3 COMPARING THE DESIGN FLOWS

THE PRIMARY TARGET GROUPS

The HLS design flow is relatively newly (re)introduced and caters to both software and hardware

engineers alike; on the one hand software engineers often wish to map their computationally-

intensive algorithmic designs to hardware platforms so as to reap the offered performance and

power-consumption benefits, without the need to learn actual hardware design principles from the

ground up or related HDL languages. On the other hand, hardware engineers have too many

compelling reasons to get involved with the HLS flow, which will be discussed later in this section.

On the contrary, the pure RTL-to-Bitstream design flow addresses mainly to hardware engineers

with decent knowledge on the fundamentals of hardware design and HDL languages, and constitutes

the standard, classic approach to hardware design for many decades now.

74

LEARNING CURVE & REQUIRED HARDWARE DESIGN KNOWLEDGE

From the software engineer’s aspect, the HDL-based design flow has an obvious, particularly steep

learning curve, thus rendering it a non-realistic path towards hardware design; the HLS flow is

definitely much more suited to the programming skills that the user group under consideration

usually possesses. That being said, the aforementioned flow might be relatively easy for someone

with such a background to get accustomed to, yet in order to maximize the extent of the control

over the desired qualities of the resulting design as well as make effective use of the available

directives, a certain degree of hardware-related knowledge is a definite prerequisite.

As far as hardware engineers are concerned, the transition from the HDL-based flow to the HLS one

is most probably a smooth process, albeit it involves the learning and subsequent adoption of the

desired practices followed when designing hardware through high-level languages; the latter holds

for the software engineers as well.

All in all, in order to make the most out of the HLS design flow, a certain amount of learning

overhead is due regardless of the designer’s knowledge background, although the software engineer

will probably need more preparation time.

TIME REQUIREMENTS

The time requirements of each design flow can be realized in a variety of ways, the most substantial

being the following:

 Time requirements for an initial design: To the author’s experience, the time required in

order to obtain an initial working version of a fully functional design is significantly shorter in

the case of the HLS flow; one needs to simply write the C-based source code correctly and let

the HLS tool handle the rest of the design process using the default settings, without applying

any directives. On the contrary, when the HDL-based flow is considered, the time required to

manually specify the RTL-even to a non-optimized initial state-is definitely much longer due to

its inherent complexity and error susceptibility.

 Time requirements for a highly optimized design: In this case, the time requirements of

the HLS flow rise remarkably, since both the quality of the source code as well as the careful

selection of directives and their subsequent efficient/effective application must be taken into

consideration, leading to what is quite a lengthy process. As previously discussed, the HDL-

based flow requires copious amounts of time regardless of the intended optimization level;

thus there is no marked change in the factor under consideration as the design objective

alters.

Within the context of the thesis, both the C-based and the VHDL-based works required a roughly

equivalent amount of time from design initiation to design closure.

ACCURACY OF CONTROL OVER THE DESIGN PROCESS

This is one aspect where the HDL-based flow markedly outshines its counterpart; the offered levels

of control over various features of the design process, such as explicitly defining logic structures and

module hierarchy or setting the exact type, number and parameters of a required resource or IP

75

core, simply cannot be matched by the HLS-flow, despite its host of available directives. Not at this

point at least.

QUALITY OF THE OBTAINED DESIGN

Both flows are capable of delivering equally high quality designs, provided that the time

requirements dictated by each design process are adequately met. Yet there exists one factor where

the HDL-based flow clearly excels: efficiency. The experiments conducted showed that the HDL-

based designs tend to utilize far less resources for a given performance level than their HLS-based

counterparts, especially when the two high-performing ones are concerned.

BOTTLENECK-INDUCING STAGES

Several bottleneck-inducing stages have been identified in both design flows:

 HLS-flow: Both the synthesis (C-to-RTL) as well as the C/RTL co-simulation phases tend to

require unacceptably large amounts of time and/or system memory in certain cases; such are

the cases where the design under consideration is rather complex or when resource-intensive

directives are utilized. A consequence of the latter is that multitudes of logic or arithmetic

elements are generated, leading to a subsequent sharp increase in the number of available

operations that must be parallelized and scheduled, thus putting a heavy computational load

on the compiler.

 HDL-based flow: As far as the HDL-based flow is concerned, the time required to perform

changes in the RTL, which can vary from relatively short to significantly long depending on the

severity and span of the intended modifications, poses a definite bottleneck.

USE CASE SCENARIOS

To the author’s point of view, there exist numerous cases where the utilization of the HLS flow

proves far more desirable than the HDL-based one; such cases include the following:

 An initial version of a working, fully functional design is needed as quickly as possible (proof of

concept, rapid system prototyping).

 Quick and efficient design space exploration prior to investing significant amounts of time in

the HDL-based flow.

 When limiting the time requirements is of utter importance, quite possibly at the expense of

reduced resource efficiency.

 When high resource efficiency or fine-grained control over the design’s parameters are

considered dispensable.

 When a highly complex algorithm with limited parallelization options is under consideration, a

fact that renders the HDL-based flow rather inefficient.

 When the algorithm under consideration exposes its available parallelism in an obvious

manner, enabling the HLS compiler to effectively extract and exploit it so as to generate a both

highly performing and resource efficient design.

For most other cases, the HDL-based flow is considered the design method of choice.

It should be noted that since this was the author’s first involvement with the Vivado HLS and its

corresponding design flow, he was rather pleased with its ever-increasing capabilities (worked with

76

both the 2015.4 and 2016.2 versions), high quality of results, straightforwardness, quick-paced

design iterations and clean, intuitive environment.

6.3 PERFORMANCE ASSESSMENT METHODS & PARAMETERS
Prior to proceeding to the presentation and subsequent discussion of the performance

characteristics of the designs obtained by each flow, it is essential to introduce the procedure that

was followed in order to extract the actual performance-defining parameters.

 HDL-based flow: The proper/intended functionality of the VHDL-based architectures was

verified by both Behavioral and Post-Implementation Functional simulation; the Post-

Implementation Timing simulation is unavailable for VHDL-based designs due to the lack of

appropriate libraries supporting this feature (Verilog support only). Each one of the

architectures under consideration was subsequently implemented in order to acquire the

corresponding Post-Place & Route utilization and clock parameters. All the aforementioned

steps were performed in the Vivado IDE.

 HLS-flow: As far as the C-based designs are concerned, the proper/intended functionality of

the source codes was verified by “C Simulation”, while the correct operation of the generated

RTLs was confirmed by “C/RTL co-simulation”; both these processes constitute features of the

Vivado HLS tool. As is the case with the HDL-based flow, the obtained RTLs were subsequently

implemented in the Vivado IDE.

Furthermore, the utilized version of the Xilinx Vivado Design Suite was the 2016.2, while the target

hardware platform of choice for both design flows was the Xilinx Virtex-7 330T, one of the smallest-

logic-capacity-wise-FPGAs of Xilinx’s current high-end product line. A high-end device was necessary

due to the fact that the hardware designs, especially the high-performing HLS-based ones, have

increased DSP requirements that only the Virtex-7 series was capable of adequately meeting.

It should also be noted that none of the designs were actually downloaded to an FPGA, due to the

lengthy process involved combined with the emergence of severe, unsurpassable time limitations

during the late completion stages of the thesis; yet thorough quality and correctness screening has

been conducted through the simulation features of the tools, as previously mentioned.

At this point, a few words on the software, datasets as well as the related published works that were

used to perform an “external” assessment of the results are due:

TSPLIB: All the datasets utilized during the experimental evaluation of the performance of both the

final hardware designs and the benchmark software as well, are part of the TSPLIB library of TSP

instances, presented and discussed in section 4.10 of chapter 4.

Original S2OPT: Part of the comparisons is made against the original 2007 implementation of

S2OPT presented in [29]; this plays a key role to the estimation of the performance enhancements

yielded by the latest generation of FPGAs, design tools and corresponding flows.

Concorde: The primary benchmark is the 2-OPT implementation included in the Concorde TSP

solver software package, presented and discussed in section 3.5 of chapter 3. Concorde employs

many of the optimizations discussed in the section 4.4 of chapter 4 so as to reduce the required

runtimes, thus giving up the guarantee of true 2-optimality. The experiments showed that

77

Concorde’s implementation of 2-OPT is highly non-deterministic, in the sense that a given input TSP

tour does not yield a standard output TSP tour; on the contrary, the output varies largely from run-

to-run, hinting that a randomized approach is at play. In order to facilitate the fairest comparison

conditions attainable, the following actions have been taken:

 The source code has been tweaked in the following ways:

o The software applies the nearest neighbor heuristic on the initial TSP tour prior to the

starting of the actual 2-OPT heuristic by default; this feature has been disabled.

o The overall running time reported by the software’s built-in timer includes both the

time needed to execute the heuristic and the time required to compute the length of

the output tour; furthermore the utilized timing function is of very crude resolution.

This feature has been modified so as to measure only the actual CPU-time of the

heuristic itself while the timing function has been replaced with the clock_gettime()

function which offers nanosecond-level accuracy.

 The performance results obtained by each dataset have been averaged over 100K

independent runs.

 The benchmark software under consideration was executed on a latest-generation machine

based on a quad-core 3.4GHz Intel Core-i7 6700 CPU with 16GB of 2.4GHz DDR4 SDRAM,

running freshly-installed Ubuntu 16.04.

 The software was compiled with the latest version of gcc using the “-O3” and “-march=native”

optimization flags.

GPU-based RRHC with 2-OPT: The final part of the performance comparisons revolves around the

GPU-based implementation of the Random Restart Hill Climbing (RRHC) metaheuristic with

embedded 2-OPT heuristic, presented in [52]; the RRHC metaheuristic is briefly discussed in section

3.3 of chapter 3. To enable such a comparison, the VHDL-based design had to undergo a minor

modification that led to subsequent increases in resource utilization, thus necessitating the

utilization of the high-capacity Xilinx Virtex-7 980T. This topic is further elaborated in the following

section.

6.4 PERFORMANCE RESULTS & SUBSEQUENT DISCUSSIONS

6.4.1 COMPARISON OF THE HLS-BASED DESIGNS (RESOURCE UTILIZATIONS & CLOCKS)
This subsection constitutes the presentation and comparison of the performance characteristics of

the three HLS-based designs in terms of target/actual clock frequency and resource utilization.

78

Figure 27: Illustration of the impact of various target clock frequencies to the runtime of each HLS-based
design; the dataset under consideration is berlin52.

As it can be inferred from the figure, the low-performance, semi-pipelined LP design is favored by

the increase in target clock frequency, despite the implied subsequent raise in the number of

pipeline stages; the lowest runtime is achieved at a desired clock frequency of 400MHz. As far as the

two high-performance designs are concerned, an inverse behavior is observed; although not clearly

visible, the runtime-wise performance of both designs deteriorates as the target clock frequency

increases. Thus, the lowest runtime is achieved at a desired clock frequency of 100MHz.

Based on these preliminary results, all datasets were subsequently tested (i.e. synthesized and

implemented) in each design’s appropriate clock frequency of:

 400MHz/350MHz for the LP design; the 350MHz target stems from the fact that during the

dataset testing phase it was quickly noted that the aforementioned frequency could not be

achieved after surpassing the 100-city mark. Thus, for datasets larger than 100 cities, a target

clock frequency of 350MHz instead of the originally-planned 400MHz was used.

 100MHz for both HPA and HPB designs.

The actually achieved clock frequencies, obtained for each HLS-based design and TSPLIB dataset

after synthesis and implementation in the Vivado IDE (post Place & Route), are displayed in the table

below; the datasets under consideration are 13 in total, ranging in size from 51 to 264 cities.

0

50

100

150

200

250

300

350

400

450

100MHz 150MHz 200MHz 250MHz 300MHz 350MHz 400MHz 450MHz 500MHz

R
u

n
ti

m
e

(μ
s)

Target Clock Frequency in Vivado HLS

HLS Designs, Clock - Performance Scaling Comparison

LP

HPA

HPB

79

 Clock Frequency (MHz)

TSPLIB dataset LP HPA HPB

eil51 402 120 105

berlin52 400 126 106

eil76 397 121 105

kroA/B/C/D/E100 372 121 108

eil101 352 115 107

pr107 372 118 101

pr124 372 114 107

pr136 366 113 103

pr144 362 113 106

kroA/B150 365 112 101

pr152 364 110 100

kroA/B200 373 113 100

pr264 361 108 101

Table 2: The actual, post-Place & Route clock frequencies reported by the Vivado IDE. Target FPGA: Virtex-7
330T.

All designs proved capable of attaining their requested clock frequencies, while most of them even

surpassed it.

The following table illustrates the resource utilization of the three designs in terms of Look Up Tables

(LUTs), Flip-Flops (FFs) and Digital Signal Processors (DSPs); the values are obtained after the

completion of the Place & Route phase of Vivado IDE and concern the aforementioned TSPLIB

datasets. BRAM utilization remains minimal for all designs and datasets; thus it is not taken into

consideration.

 LUT (%) (out of 204K) FF (%) (out of 408K) DSP (%) (out of 1120)
TSPLIB
dataset

LP HPA HPB LP HPA HPB LP HPA HPB

eil51 751 1 7033 4 11163 6 1162 1 5128 1 7117 2 8 1 56 5 208 19

berlin52 758 1 7077 4 11257 6 1162 1 5185 1 7182 2 8 1 56 5 208 19

eil76 814 1 10097 5 16263 8 1216 1 7566 2 10578 3 8 1 80 7 304 27

krox100 830 1 13097 6 21541 11 1216 1 9929 2 13772 3 8 1 96 9 400 36

eil101 823 1 13044 6 21677 11 1216 1 9999 3 13837 3 8 1 96 9 400 36

pr107 842 1 13856 7 23346 11 1128 1 10611 3 14688 4 8 1 96 9 432 39

pr124 854 1 15394 8 26604 13 1128 1 12136 3 17716 4 8 1 96 9 496 44

pr136 879 1 16825 8 29386 14 1182 1 13245 3 18908 5 8 1 96 9 544 49

pr144 878 1 17494 9 31241 15 1182 1 13972 3 19473 5 8 1 96 9 576 51

krox150 895 1 19178 9 32670 16 1182 1 14735 4 20835 5 8 1 112 10 608 54

pr152 888 1 19164 9 32829 16 1182 1 14856 4 20912 5 8 1 112 10 608 54

krox200 887 1 25650 13 43064 21 1182 1 19706 5 28122 7 8 1 168 15 800 71

pr264 936 1 32934 16 57165 28 1236 1 25733 6 37692 9 8 1 184 16 1056 94

Table 3: Post Place & Route resource utilization for each HLS-based design and TSPLIB dataset; the second
number in each column is the utilized percentage of the corresponding resource. Target FPGA: Virtex-7 330T.

As it is evident by the table above, the resource which is in greatest demand-at least when the HPB

design is concerned-is the DSP; this is expected due to both the large number of multiplications

80

(squares) involved in the calculation of the (squared) Euclidean distances, which are necessary for

the computation of the Delta() function for each one of the N/4 symmetrical segments, and the fact

that the HPB design most probably schedules all these multiplications to be executed in parallel as

well. This, in turn, significantly raises the requirements in multiplier cores which are subsequently

mapped to DSPs.

The two other resources are of relatively low demand for all three designs-even for the DSP-

intensive HPB design. Remarkably, the resource requirements of the LP design remain unchanged

and equal to 1% for all resource types and datasets. It is noted that as far as the HPA design is

concerned, larger datasets could have admittedly been examined; yet this was deemed unavailing

for reasons that will soon become apparent.

6.4.2 VHDL-BASED S2OPT & COMPARISON WITH HLS-BASED DESIGNS (RESOURCE

UTILIZATIONS & CLOCKS)

This subsection considers the presentation of the performance characteristics of the VHDL-based

architecture in terms of resource utilization and actual clock frequency; a comparison with the HLS-

based designs is also provided. Seven more TSPLIB datasets are introduced, thus increasing the

upper limit of the number of cities under consideration from 264 to 2319; this applies only to the

VHDL-based architecture, for reasons that will become apparent in the next subsection.

 VHDL-Based Architecture
TSPLIB dataset LUT (out of 204K) FF (out of 408K) DSP (out of 1120) Clock Freq. (MHz)

eil51 2758 1% 2598 1% 13 1% 441

berlin52 3503 2% 2643 1% 13 1% 455

eil76 5093 3% 3844 1% 19 2% 433

kroA/B/C/D/E100 5169 3% 5019 1% 25 2% 429

eil101 5328 3% 5128 1% 26 2% 412

pr107 5577 3% 5386 1% 27 2% 407

pr124 6374 3% 6208 2% 31 3% 407

pr136 7037 4% 6838 2% 34 3% 403

pr144 7488 4% 7251 2% 36 3% 405

kroA/B150 7789 4% 7607 2% 38 3% 408

pr152 7785 5% 7667 2% 38 3% 413

kroA/B200 10257 5% 10065 3% 50 5% 394

pr264 14080 7% 13323 3% 66 6% 415

pr299 16993 8% 15096 4% 75 7% 403

pr439 29096 14% 22174 5% 110 10% 320

rat783 51211 25% 39319 10% 196 18% 323

vm1084 70920 35% 54294 13% 271 24% 319

u1432 93606 46% 71690 18% 358 32% 313

vm1748 114495 56% 87662 22% 437 39% 286

u2319 152015 75% 116005 28% 580 52% 261

Table 4: VHDL-based S2OPT architecture post Place & Route resource utilization and actual clock frequency
for each TSPLIB dataset; the second number in each column is the utilized percentage of the corresponding

resource. Target FPGA: Virtex-7 330T.

81

Figure 28: Post Place & Route average resource utilization per evaluated design and resource type; as far as
the VHDL-based design is concerned, only the datasets tested with the HLS-based designs are taken into

consideration. Target FPGA: Virtex-7 330T.

 Design
 HLS-LP HLS-HPA HLS-HPB VHDL

LUT 1% 849 8% 16219 14% 27554 4% 6788

FF 1% 1183 3% 12523 4% 17756 2% 6429

DSP 1% 8 9% 103 46% 511 3% 32

Table 5: The percentages that are illustrated in the figure above, along with their actual corresponding
values.

 Design

 HLS-LP HLS-HPA HLS-HPB VHDL

Average Clock Frequency 374MHz 116MHz 104MHz 417MHz

Table 6: Post Place & Route average clock frequency per evaluated design; as far as the VHDL-based design is
concerned, only the datasets tested with the HLS-based designs are taken into consideration. Target FPGA:

Virtex-7 330T.

RECAP: Based on the results presented so far on the resource utilization and attainable clock

frequency of all the examined designs, the following inferences can be drawn:

 The VHDL-based design boasts the second-lowest average resource utilization after the HLS-

based LP design; the two other HLS-based designs, namely the HPA and HPB designs, trail

considerably far behind, achieving the 3rd and 4th position respectively.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

LP HPA HPB VHDL

U
ti

liz
at

io
n

Design

Average Resource Utilization per Design (HLS-Based & VHDL-Based)

LUT

FF

DSP

82

 In all three HLS-based designs-with the partial exception of the LP design, the most sought-

after resource is the DSPs; this is not the case with the VHDL-based design, as the resource

which is in greatest demand turns out to be the LUTs. The aforementioned fact is mainly

attributed to the large sum of multiplexers located within both the RGU and the PEs as well.

 The VHDL-based design managed to surpass all three HLS-based designs in terms of attainable

clock frequency, achieving a maximum value of 455MHz in the berlin52 dataset and an

average of 417MHz; the latter concerns only the 13 first datasets, i.e. those that were tested

with the HLS-based designs as well.

 All four examined designs show a clear trend of reducing clock frequency as the number of

cities increases; as far as the VHDL-based design is concerned, this behavior is attributed to the

issue affecting the PRU’s SGU module, which was discussed in subsection 5.5.3.2 of chapter 5.

6.4.3 VHDL-BASED & HLS-BASED S2OPT COMPARED TO CONCORDE (RUNTIMES,

SPEEDUPS & TOUR QUALITY)

The subsection begins with the presentation of the results concerning the runtimes, speedups and

tour quality obtained by all four examined designs when compared to Concorde; a subsequent,

related discussion follows shortly after.

 Concorde HLS-LP HLS-HPA HLS-HPB VHDL

TSPLIB
Runtime

(μs)
Runtime

(μs)
Speedup

Runtime
(μs)

Speedup
Runtime

(μs)
Speedup

Runtime
(μs)

Speedup

eil51 104 244 0.4x 41 2.5x 16 6.5x 27 3.9x
berlin52 118 190 0.6x 30 3.9x 12 9.8x 19 6.2x

eil76 172 500 0.3x 60 2.9x 28 6.1x 40 4.3x
kroA100 211 857 0.2x 102 2.1x 35 6.0x 51 4.1x
kroB100 210 998 0.2x 119 1.8x 40 5.3x 60 3.5x
kroC100 216 1041 0.2x 124 1.7x 42 5.1x 62 3.5x
kroD100 223 969 0.2x 116 1.9x 39 5.7x 58 3.9x
kroE100 216 985 0.2x 118 1.8x 40 5.4x 59 3.7x
eil101 207 1222 0.2x 147 1.4x 47 4.4x 72 2.9x
pr107 170 887 0.2x 103 1.7x 37 4.6x 53 3.2x
pr124 174 924 0.2x 98 1.8x 37 4.7x 49 3.6x
pr136 225 1167 0.2x 113 2.0x 44 5.1x 56 4.0x
pr144 185 1670 0.1x 173 1.1x 57 3.2x 75 2.5x

kroA150 309 1964 0.2x 200 1.6x 68 4.5x 90 3.4x
kroB150 315 2247 0.1x 228 1.4x 78 4.0x 103 3.1x

pr152 253 2041 0.1x 208 1.2x 71 3.6x 91 2.8x
kroA200 396 4571 0.1x 410 1.0x 143 2.8x 170 2.3x
kroB200 395 4462 0.1x 400 1.0x 139 2.8x 166 2.4x

pr264 319 4799 0.1x 372 0.9x 140 2.2x 133 2.4x
pr299 391 277 1.4x
pr439 527 388 1.4x
rat783 1329 961 1.5x

vm1084 2404 2143 1.2x
u1432 1119 768 1.6x

vm1748 4442 4341 1.1x
u2319 1858 1805 1.1x

Table 7: Runtimes and speedups of the four evaluated S2OPT designs against Concorde; the results are
based on the post Place & Route clock reports of the Vivado IDE.

83

Figure 29: Graphical representation of the speedups obtained by the evaluated designs, when compared
against Concorde; only the datasets that were tested with all four designs are considered.

 Design
 HLS-LP HLS-HPA HLS-HPB VHDL

Average Speedup 0.2x 1.8x 4.8x 3.5x

Table 8: Average speedups obtained by the evaluated designs when compared against Concorde; only the
datasets that were tested with all four designs are considered.

Figure 30: Comparison of the quality of the tours obtained by the evaluated designs (S2OPT) and Concorde;
the quality is measured as the percentage of the output tour’s length above the optimal (error). A lower

error translates to higher quality (closer to optimal) tour.

0

1

2

3

4

5

6

7

8

9

10

Sp
ee

d
u

p

TSPLIB dataset

Comparison of the Speedups Obtained by the Evaluated Designs, Both
HLS-based and VHDL-based, Against Concorde

HLS-LP

HLS-HPA

HLS-HPB

VHDL

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

ei
l5

1
b

er
lin

52
ei

l7
6

kr
o

A
10

0
kr

o
B

10
0

kr
o

C
10

0
kr

o
D

10
0

kr
o

E1
00

ei
l1

0
1

p
r1

07
p

r1
24

p
r1

36
p

r1
44

kr
o

A
15

0
kr

o
B

15
0

p
r1

52
kr

o
A

20
0

kr
o

B
20

0
p

r2
64

p
r2

99
p

r4
39

ra
t7

8
3

vm
10

84
u

14
3

2
vm

17
48

u
23

19

Er
ro

r

TSPLIB dataset

Tour Quality Comparison Between Concorde and S2OPT

Concorde

S2OPT

84

 Concorde S2OPT

Average Error 19% 14%

Table 9: Mean error of the tours yielded by both Concorde and S2OPT, averaged over the 26 tested TSPLIB
datasets.

OBSERVATIONS:

 The fastest design in terms of the average speed up against Concorde is the HLS-HPB design,

followed by the VHDL design and the HLS-HPA design; the HLS-LP design is completely out of

competition as it is incapable of delivering any speedup, yet that was largely expected from

the point of its inception.

 Throughout the range of the evaluated datasets, the VHDL design performs clearly better than

the HLS-HPA design; the same holds true for the HLS-HPB design when compared to the VHDL

design, with the exception of the pr264 dataset, where the aforementioned trend seems to be

reversed. This could not be investigated further due to the fact that the target device (the

Virtex-7 330T) had reached its full DSP-wise capacity and no larger HLS-HPB designs could be

tested, at least not without using a higher-density FPGA, which in turn would distort the

accuracy of the obtained results.

 Runtime-wise, the VHDL design is on average 94% faster than its HLS-HPA counterpart and

37% slower than the HLS-HPB design, yet it manages average resource utilization considerably

smaller than both HLS designs under consideration, thus signifying its high levels of resource

efficiency.

 The aforementioned efficiency of the VHDL design enabled the evaluation of larger datasets

containing up to 2319 cities; this was infeasible in the case of the HLS-HPB design due to

resource limitations and indifferent in the case of the HLS-LP and HLS-HPB designs due to the

lack of speedups. Admittedly, the speedups achieved by the VHDL design within the range of

299 to 2319 cities are quite modest, averaging in 1.3x. The largest dataset that could be tested

with the VHDL design in the Virtex-7 330T comprised of roughly 5000 cities, yet that was

deemed completely unnecessary due to performance limitations.

 All four designs exhibit an overall decline in their speedups as the number of cities within the

dataset under consideration grows; this is attributed to the fact that they all share the

common bottleneck induced by the SGU, as described in subsection 5.5.3.2 of chapter 5.

 The implemented S2OPT hardware designs yield TSP tours of notably higher quality than those

outputted by Concorde, with only a few exceptions to the rule; this is quite remarkable since

the hardware designs do not compute the actual Euclidean distance as Concorde does, but

rather an approximation to it (its square), which is suboptimal as discussed in the

corresponding section of chapter 4. Yet the aforementioned designs achieve an average error

of 14% compared to 19% managed by Concorde.

6.4.4 VHDL-BASED S2OPT COMPARED TO ORIGINAL S2OPT

The main topic of this subsection is the comparison of the performance characteristics of the VHDL-

based design with those reported in the corresponding original implementation of 2007 [29]; only

85

the VHDL-based design is considered as it was developed from the very beginning with the aim of

largely resembling the original work for the sole purpose of this particular subsection.

 Original Implementation [29]
Virtex-2 Pro 100

Results Of This Implementation
Virtex-7 330T

TSPLIB
dataset

Clock Frequency
(MHz)

Runtime
(μs)

Clock Frequency
(MHz)

Runtime
(μs)

Speedup

berlin52 184 47 455 19 2.5x

eil76 178 95 433 40 2.4x

pr299 165 597 403 277 2.2x

Table 10: Comparison of the clock frequencies and runtimes achieved by the VHDL-based design developed
within the context of the thesis (right) with those reported in the original implementation of 2007 (left).

Information concerning the resource utilization is intentionally omitted due to the fundamental

differences in the internal structure of the FPGAs under consideration, which render the accurate

comparison based on the aforementioned parameter a rather infeasible task.

The average speedup attained by the VHDL-based implementation designed within the context of

the thesis against the original work of 2007 [29] is roughly 2.4x, which is exactly equal to the marked

increase in clock frequency (average of 430MHz and 176MHz respectively); this attests that the two

implementations under consideration are indeed quite similar, since the runtime-wise performance

gains are clearly attributed to the corresponding rise in clock frequency.

6.4.5 RRHC: VHDL-BASED S2OPT COMPARED TO GPU-BASED 2-OPT

The final subsection considers the partial implementation and evaluation of the 2-OPT version of the

Random Restart Hill Climbing (RRHC) metaheuristic in reconfigurable logic (FPGA); before proceeding

further with the discussion, a few clarifications should be made:

 As is the case with all the implementations presented within the context of the thesis, the

design under consideration has not been actually downloaded to an FPGA.

 It is assumed that the 2-OPT heuristic embedded within the RRHC metaheuristic is realized

through the VHDL-based S2OPT hardware design, which was presented in the previous

chapter.

 The term “partial” refers to the fact that only the underlying computing engines, responsible

for the parallel execution of the embedded 2-OPT heuristic have been evaluated-not the

metaheuristic as a whole.

The work discussed here was inspired by the equivalent GPU-based implementation presented in

[52], which constitutes the benchmark for the subsequent evaluation of the design under

consideration.

Briefly explained, the basic steps of the 2-OPT based RRHC metaheuristic are the following:

1. Compute an approximate solution to the TSP instance under consideration using the 2-OPT

heuristic.

2. Store the currently best (smallest overall length) solution found by the aforementioned

heuristic.

3. Apply a random permutation to the resulting tour.

86

4. Go to step 1 and restart the process until a solution of satisfactory quality is found.

The parallelism offered by the scheme under consideration is twofold:

1. Intra-2-OPT-move-evaluation parallelism, which is already exploited by the VHDL-based S2OPT

design, and most probably by the HLS-based ones as well.

2. Intra-2-OPT-solver parallelism, available among individual 2-OPT solvers, each one working on

a different random permutation of the TSP tour under consideration.

This second form of parallelism can be realized by instantiating multiple cores of the VHDL-based

S2OPT design; these computing engines are completely independent since there is no form of

information exchange or synchronization involved between them. As far as the application of the

random permutations on the tours is concerned, this can be achieved through the utilization of the

complex dedicated datapaths within each core’s RGU; from a theoretical point of view, no major

modifications to the internal structure of the VHDL-based design are required in order to adapt it for

the scenario discussed here.

Moving on, the metric used in [52] for the evaluation of the GPU-based implementation is its

throughput, expressed in terms of the number of 2-OPT move evaluations performed per second;

thus the unit of measurement is the Giga-Move-Evaluations per second, GME/s. This made clear that

only the VHDL-based implementation could be considered, due to the fact that the exact knowledge

of its underlying architecture enables the accurate computation of the number of 2-OPT move

evaluations performed per second through the following formula:

GME/s=
𝑁 𝑐

2 𝑦 𝑧

The quantities corresponding to the variables are the following:

 N, the number of cities within the TSP instance under consideration.

 c, the number of the instantiated individual cores.

 y, the number of clock cycles required for the execution of the main iteration of the S2OPT

algorithm (the WHILE(1) loop in the terminology used in the presentation of the HLS-based

design in chapter 5).

 z, the clock period expressed in nanoseconds.

Before proceeding to presentation of the results, it should be noted that those consider the peak

theoretical throughput, based on the aforementioned formula, the post Place & Route clock reports

generated by the Vivado IDE, and the following assumptions:

 All #c cores operate and evaluate 2-OPT moves simultaneously, i.e. maximum utilization.

 An abstract, high speed control entity, responsible for maintaining the best tour and

monitoring the computing engines, is assumed; it could be realized either as a piece of

software running on an on-fabric soft/hard-core CPU or as a dedicated hardware module. An

external CPU is also a possibility, i.e. a heterogeneous system such as the Convey series of

hybrid supercomputers.

87

 The bottlenecks induced by (a) the memory subsystem accessible by both the control entity

and the computing engines and (b) the buses connecting the control entity and computing

engines with the memory subsystem, are considered negligible.

 GPU [52] VHDL-Based Design (Multiple Cores)

Cities

Throughput
(GME/s)

Throughput
(GME/s)

Speedup #Cores
Clock

Frequency
(MHz)

LUT
(out of
612K)

FF (out
of

1.2M)

DSP
(out of
3600)

36 7.3 50.9 7x 300 339 94% 45% 75%
62 16.6 47.3 2.9x 165 351 94% 43% 73%

107 28.3 48.5 1.7x 100 341 96% 44% 75%
186 38.4 45.8 1.2x 58 323 96% 45% 76%
321 45.6 46 1.01x 35 327 97% 45% 79%

Table 11: Post Place & Route performance results of the evaluated FPGA-based approach to the 2-OPT
version of RRHC utilizing multiple independent cores of the VHDL-based S2OPT hardware design discussed in

the previous sections. Target FPGA: Xilinx Virtex-7 980T. The GPU used in [52] is an Nvidia Tesla K40 with
2880 stream processors running at about 800MHz.

OBSERVATIONS:

 The throughput of the GPU-based implementation [52] is relatively low for the smallest

dataset under consideration, and increases as the number of cities rises, reaching the

throughput levels achieved by the VHDL-based design near the 321-city mark; although not

shown here, it is reported in [52] that the throughput continues to climb to a peak rate of

around 60GME/s (8546 cities).

 On the contrary, the throughput of the VHDL-based design remains rather high within the

range of the tested datasets, achieving a peak rate of 50.9GME/s and an average of

47.7GME/s; this is probably the upper limit of the design’s capabilities, as increasing the

number of cities further will definitely lead to performance throttling due to the previously

discussed issue affecting the SGU and the fact that the design cannot be efficiently pipelined.

 Subsequently, the average speedup obtained by the VHDL-based design within the range of

the evaluated datasets is 2.8x; a maximum of 7x is recorded for the smallest dataset under

consideration and decreases rapidly as the number of cities grows.

 All in all the GPU-based implementation scales better than the VHDL-based implementation,

even in the best-case scenario examined here, thus rendering the latter an attractive

alternative only in the case where small TSP instances are considered.

88

CHAPTER 7: CONCLUSION & FUTURE WORK

7.1 CONCLUSION
The objectives of the thesis were manyfold, and were achieved to a great extent:

1. The evaluation and comparison of the HLS and HDL-based design flows in terms of both their

inherent characteristics and the quality of the designs they produce, based on the results

obtained by the implementation of Symmetrical 2-OPT (S2OPT).

2. The estimation of the performance enhancements yielded by the latest generation of FPGAs

and design tools, using the work conducted in [29] (original S2OPT) as a reference point.

3. The assessment of how well the architecture presented in [29] (original S2OPT)-which was

redesigned and re-implemented for the purposes of this thesis -fares against both the classic

Concorde and a state-of-the-art GPU-based 2-OPT implementation as well [52], almost a

decade after its inception.

4. The exploration of how effectively the architecture presented in [29] (original S2OPT) scales as

the length of the TSP tour increases, a question that constituted part of the future work of the

aforementioned publication.

The conclusions drawn are the following:

1. In general, both design flows are equally capable of delivering high quality of results, if their

corresponding timing requirements are sufficiently met. The HLS flow, realized through the

Xilinx Vivado HLS, is under constant improvement and is more flexible and time-efficient than

the HDL-based flow which is realized through the Xilinx Vivado IDE. On the other hand, the

latter poses the classic, long-proven approach to hardware design, with powerful capabilities

and exceptional levels of control over the design under development, which simply cannot be

matched by its counterpart.

2. Within the context of the application under consideration, there was a marked average

increase of 2.4x in the attainable clock frequency, resulting from the switching from the

venerable yet aging Xilinx Virtex-2 Pro FPGA utilized in [29] to the much newer Xilinx Virtex-7

FPGA; remarkably, this led to an exact 2.4x average reduction in the required execution times.

3. The hardware architecture under consideration proved fairly capable, achieving speedups in

the range of 1.1x to nearly 10x when compared against Concorde, depending on the dataset

used and the implementation version. As far as the GPU-based implementation is concerned

[52], the speedups attained from the VHDL-based design varied from 1.01x to 7x; in both cases

the best performance figures were obtained during the evaluation of small TSP instances,

hinting that the hardware architecture is more suitable for small scale TSPs.

4. The results obtained by both design flows show a clear trend of decreasing performance as the

number of cities within the TSP tour under consideration rises; this behavior is largely attested

to the fact that the hardware designs cannot be efficiently pipelined due to the highly iterative

nature of the Symmetrical 2-OPT algorithm that causes the aforementioned pipeline to fill and

empty at every such iteration.

7.2 FUTURE WORK
Possible future extensions to the work presented in this thesis include the following:

89

 The inclusion of the hardware required for the computation of the square root of the

Euclidean distance and the examination of its subsequent impact on the performance

characteristics of the designs obtained by both design flows.

 Explore how the hardware architecture under consideration could be modified in order to

support 2.5/r/3-OPT moves and provide corresponding FPGA-based implementations.

 The design of an FPGA-based implementation of a metaheuristic such as Iterated Local Search

or Simulated Annealing embedding the 2-OPT hardware architecture under consideration.

90

APPENDIX

A.1 MATLAB SCRIPT UTILIZED IN “APPROACH A” DISCUSSED IN SECTION

4.13, CHAPTER 4.
%Georgios Malandrakis Miller, School of ECE, Technical University of Crete
close all;
clear all;
clc

%Set the iteration/experiment count and max 2D coordinates.
ITERS= 10^6;
MAX_COORD= 2^16;

%Initialize the required structures.
delta_EUC_SQ= inf(ITERS,1);
delta_EUC= inf(ITERS,1);

%Perform 1M iterations/experiments.
for i=1:ITERS
 %Randomly generate 4 points in the 2D Euclidean space.
 A= [randi(MAX_COORD) randi(MAX_COORD)];
 B= [randi(MAX_COORD) randi(MAX_COORD)];
 C= [randi(MAX_COORD) randi(MAX_COORD)];
 D= [randi(MAX_COORD) randi(MAX_COORD)];

 %Consider that initially the points above are connected in this sense:
 %
 % A<->B<->C<->D<->A
 %
 %Now consider that we decide to "break" the path between points A,B
 %and C,D and connect them the only other possible way, ie.:
 %
 % A<->C<->B<->D<->A
 %
 %thus simulating a 2-OPT move.
 %
 %The "old" distances would be dist(A,B) and dist(C,D) while the "new"
 %distances will be dist(A,C) and dist(B,D).
 %
 %Now we move on to compute these distances, first by using the square
 %of the Euclidean distance as the cost fucntion and then by using the
 %standard Euclidean distance.

 %Computing the distances using the square of the Euclidean distance.
 distOLD1_EUC_SQ= (A(1)-B(1))^2 + (A(2)-B(2))^2;
 distOLD2_EUC_SQ= (C(1)-D(1))^2 + (C(2)-D(2))^2;
 distNEW1_EUC_SQ= (A(1)-C(1))^2 + (A(2)-C(2))^2;
 distNEW2_EUC_SQ= (B(1)-D(1))^2 + (B(2)-D(2))^2;

 %Computing the distances using the standard the Euclidean distance.
 distOLD1_EUC= sqrt((A(1)-B(1))^2 + (A(2)-B(2))^2);
 distOLD2_EUC= sqrt((C(1)-D(1))^2 + (C(2)-D(2))^2);
 distNEW1_EUC= sqrt((A(1)-C(1))^2 + (A(2)-C(2))^2);
 distNEW2_EUC= sqrt((B(1)-D(1))^2 + (B(2)-D(2))^2);

 %To evaluate if the aforementioned move is length-reducing or not, we
 %need to compute the difference between the sum of the "new" distances

91

 %and the sum of the "old" distances. That is
 %
 % delta= (dist(A,C)+dist(B,D)) - (dist(A,B)+dist(C,D))
 %
 %If the quantity above is negative, then the 2-OPT move is length
 %reducing and should be applied. Otherwise, it should be avoided.
 delta_EUC_SQ(i)= ((distNEW1_EUC_SQ + distNEW2_EUC_SQ) -

(distOLD1_EUC_SQ + distOLD2_EUC_SQ));
 delta_EUC(i)= ((distNEW1_EUC + distNEW2_EUC) - (distOLD1_EUC +

distOLD2_EUC));
end

%Now we compute which of the 1M moves were length-reducing, by assigning a
%logical '1' in every negative "delta" value, in both cases.
delta_EUC_SQ_NEG= (delta_EUC_SQ < 0);
delta_EUC_NEG= (delta_EUC < 0);

%We then compute the error vector by subtracting the Squared Euclidean
%results from the standard Euclidean results:
error_vector= delta_EUC_NEG - delta_EUC_SQ_NEG;

%This way we are able to distinguish between the 2-OPT moves that were
%applied in the standard Euclidean case but not in the Squared Euclidean,
%and vice-versa.
ERR1= sum(error_vector<0);
ERR2= sum(error_vector>0);

disp(['Number of 2-OPT moves applied in the standard Euclidean case but not

in the squared Euclidean: ',num2str(ERR2),' or

',num2str(ERR2/ITERS*100),'%']);
disp(['Number of 2-OPT moves applied in the squared Euclidean case but not

in the standard Euclidean: ',num2str(ERR1),' or

',num2str(ERR1/ITERS*100),'%']);

Number of 2-OPT moves applied in the standard Euclidean case but not in the

squared Euclidean: 46575 or 4.6575%

Number of 2-OPT moves applied in the squared Euclidean case but not in the

standard Euclidean: 46279 or 4.6279%

>>

Arithmetic Example from the berlin52 instance of TSPLIB:

A=(25,230) B=(525,1000) C=(510,875) D=(560,365)

distAB_OLD1_EUC_SQ= (525-25)
2
 + (1000-230)

2
= 500

2
+ 770

2
= 250000 + 592900=

842900

distAB_OLD1_EUC= √842900= 918

distCD_OLD2_EUC_SQ= (510-560)
2
 + (875-365)

2
= (-50)

2
 + 510

2
= 2500 + 260100=

262600

distCD_OLD2_EUC= √262600= 513

92

distAC_NEW1_EUC_SQ= (25-510)
2
+ (230-875)

2
= (-485)

2
 + (-645)

2
= 235225 +

416025= 651250

distAC_NEW1_EUC= √651250= 807

distBD_NEW2_EUC_SQ= (525-560)
2
 + (1000-365)

2
= (-35)

2
 + (635)

2
= 1225 +

403225= 404450

distBD_NEW2_EUC= √404450= 636

delta_EUC_SQ= (distAC_NEW1_EUC_SQ + distBD_NEW2_EUC_SQ) –

(distAB_OLD1_EUC_SQ + distCD_OLD2_EUC_SQ)= (651250 + 404450) – (842900 +

262600)= 1055700 – 1105500= -49800 < 0 => Length reducing move.

delta_EUC= (distAC_NEW1_EUC + distBD_NEW2_EUC) – (distAB_OLD1_EUC +

distCD_OLD2_EUC)= (807 + 636) – (918 + 513)= 1443 – 1431= 12 > 0 =>

No length reducing move

delta_EUC_SQ ≠ delta_EUC

A.2 HLS DESIGNS EVALUATIONS
The performance and utilization results obtained by the following evaluations are based on the

berlin52 TSPLIB dataset; the target hardware platform is a Xilinx Virtex-7 330T with a default clock

constraint of 100MHz (10ns). The following is a "light" version of the spreadsheet used during the

development of the HLS-based hardware architectures; the original spreadsheet contained extra

columns displaying per-loop pipeline-related information as well as remarks made by the author on

the effectiveness, impact and usefulness of the various source code revisions, directives and their

combinations, used for guidance, search space pruning and decision-making purposes. The "light"

version is presented instead of the original due to space, illustration and clarity concerns. The "X"

visible in the results of numerous evaluations implies that the design under consideration was either

implemented successfully but failed to perform as intended (single "X" in the Latency column), or

could not be implemented at all (multiple "X"s) due to fatal software errors. The number within the

parenthesis that follows the description of many of the evaluations denotes the source code revision

upon which the given directive(s) was (were) tested.

Clock

Period
BRAM_18K DSP48E FF LUT

Latency

C SOURCE REVISIONS

0_INITIAL SOURCE VERSION 8.23ns 0 8 1198 1240 261933

1_REDUNDANT ARRAY & VARIABLE REMOVAL PLUS
PARTIAL FOR-LOOP MERGING

8.23ns 0 8 643 900 235539

2_REVAMPED IO WITH FIFO SUPPORT 8.23ns 4 8 661 978 208867

3_ARBITRARY PRECISION VARIABLES & #RESOURCE
DIRECTIVE COMPATIBILITY

8.25ns 2 2 637 847 170023

4_UNIFIED CITY COORDS IN SINGLE 30bit VALUE
USING BIT MANIPULATION METHODS

8.25ns 2 2 631 789 170023

5_CFUNC FUNCTION REDESIGN WITH EXTENDED &
MORE EXPRESSIVE FUNCTIONALITY

8.59ns 2 8 475 696 130930

93

6_FURTHER PARTIAL FOR-LOOP MERGING 8.59ns 2 8 417 720 106035

5X_5 PLUS WRAPPED ARRAY (CT & SWAPS)

ACCESSES/UPDATES
8.59ns 2 8 508 714 130930

 DIRECTIVES EVALUATIONS

#PIPELINE (3)

PIPELINE S2OPT function 8.25ns 2 2 3881 5998 104445

PIPELINE S2OPT & CFUNC functions 8.25ns 2 2 3881 5998 104445

PIPELINE EVERYTHING (S2OPT & CFUNC functions +
WHILE/MAIN loop & FOR/SUB loops)

8.25ns 2 2 3873 5978 104445

PIPELINE FOR/SUB loops 8.25ns 2 2 714 898 129837

PIPELINE FOR/SUB loops & CFUNC function 8.25ns 2 2 714 898 129837

PIPELINE FOR/SUB loops & CFUNC function &
WHILE/MAIN loop

8.25ns 2 2 3744 5047 104450

#DATAFLOW (3)

DATAFLOW S2OPT function 8.25ns 4 2 639 835 170024

DATAFLOW S2OPT & CFUNC function X X X X X X

DATAFLOW WHILE/MAIN loop X X X X X X

DATAFLOW FOR/SUB loops X X X X X X

#RESOURCE (3)

MULTIPLIER CORES

FUNCTION= CFUNC-> VARIABLE(S)= multA & multB->
CORE= Mul-> LATENCY= 0

8.25ns 2 2 673 847 170023

FUNCTION= CFUNC-> VARIABLE(S)= multA-> CORE=
MuL_LUT-> LATENCY= 0

8.43ns 2 1 637 1103 170023

FUNCTION= CFUNC-> VARIABLE(S)= multA & multB->
CORE= MuL_LUT-> LATENCY= 0

7.61ns 2 0 637 1389 170023

FUNCTION= CFUNC-> VARIABLE(S)= multA & multB->
CORE= MuL_LUT-> LATENCY= 5

8.29ns 2 0 639 1420 273607

FUNCTION= CFUNC-> VARIABLE(S)= multA & multB->
CORE= MuL_*nS-> LATENCY= 0

8.24ns 2 2 515 907 170023

FUNCTION= CFUNC-> VARIABLE(S)= multA & multB->
CORE= MuL_*nS-> LATENCY= 5

8.2ns 2 2 775 908 273607

FUNCTION= CFUNC-> VARIABLE(S)= multA & multB->
CORE= DSP48-> LATENCY= 0

8.25ns 2 2 637 847 170023

FUNCTION= CFUNC-> VARIABLE(S)= multA & multB->
CORE= DSP48-> LATENCY= 4

8.25ns 2 2 637 847 170023

ADDER CORES

FUNCTION= CFUNC-> VARIABLE= add-> CORE=

AddSub-> LATENCY= 0
8.64ns 2 2 517 877 170023

FUNCTION= CFUNC-> VARIABLE= add-> CORE=
AddSub_*nS-> LATENCY= 0

8.69ns 2 2 517 882 170023

FUNCTION= CFUNC-> VARIABLE= add-> CORE=
AddSub_*nS-> LATENCY= 5

7.35ns 2 2 544 909 293029

94

FUNCTION= CFUNC-> VARIABLE= add-> CORE=
AddSub_DSP-> LATENCY= 0

8.43ns 2 3 517 847 170023

FUNCTION= CFUNC-> VARIABLE= add-> CORE=
AddSub_DSP-> LATENCY= 5

8.43ns 2 3 517 847 170023

#ARRAY PARTITION (3)

TYPE= COMPLETE-> DIMENSION(S)= 1 & 2->

VARIABLE(S)= IT & FT
8.25ns 2 2 639 1343 170127

TYPE= COMPLETE-> DIMENSION(S)= 1->
VARIABLE(S)= CT

8.66ns 0 8 10983 24646 115019

TYPE= COMPLETE-> DIMENSION(S)= 1 & 2->
VARIABLE(S)= CT

8.66ns 0 8 10983 24646 115019

TYPE= COMPLETE-> DIMENSION(S)= 1->
VARIABLE(S)= SWAPS

8.25ns 2 2 677 909 169525

#INLINE (5)

CFUNC 9.81ns 2 32 1109 923 111508

#LOOP_FLATTEN (5)

COULD NOT BE APPLIED DUE TO MULTIPLE LOOPS

WITHIN A GIVEN LEVEL

#LOOP_MERGE (5)

COULD NOT BE APPLIED DUE TO THE EXISTENCE OF
NON-TRIVIAL CODE BETWEEN LOOPS

#LOOP_UNROLL (5)

READIN, FACTOR= COMPLETE 8.59ns 2 8 481 937 130851

WHILE, FACTOR= COMPLETE 8.59ns 2 8 481 716 130930

CSWA, FACTOR= COMPLETE 9.07ns 3 8 552 810 118729

CSWA, FACTOR= 2 9.3ns 2 8 522 821 124954

CSWA, FACTOR= 5 8.71ns 2 8 697 1052 126448

CSWA, FACTOR= 10 9.07ns 2 8 891 1299 123958

UPDA, FACTOR= COMPLETE 8.59ns 2 8 567 883 130398

#ALLOCATION (5)

CORE= DSP-> LIMIT= 4 X X X X X X

CORE= DSP-> LIMIT= 1 X X X X X X

#ARRAY_PARTITION REVISITED &

VARIABLE TYPE IMPACT ASSESSMENT (5)

TYPE= AUTOMATIC, VARIABLE= CT 8.59ns 2 8 475 696 130930

TYPE= GLOBAL, VARIABLE= CT 8.59ns 2 8 475 696 130930

TYPE= STATIC, VARIABLE= CT 8.59ns 2 8 475 696 130930

TYPE= STATIC + GLOBAL, VARIABLE= CT 8.59ns 2 8 475 696 130930

VAR. TYPE= AUTOMATIC-> VARIABLE= CT &

ARRAY_PARTITION-> TYPE= COMPLETE
8.59ns 0 8 11914 14778 151377

95

VAR. TYPE= GLOBAL-> VARIABLE= CT &
ARRAY_PARTITION-> TYPE= COMPLETE

8.59ns 0 8 3514 5328 151377

VAR. TYPE= STATIC-> VARIABLE= CT &
ARRAY_PARTITION-> TYPE= COMPLETE

8.59ns 0 8 3514 5328 151377

VAR. TYPE= STATIC + GLOBAL-> VARIABLE= CT &
ARRAY_PARTITION-> TYPE= COMPLETE

8.59ns 0 8 3514 5328 151377

 EVALUATION OF #ARRAY_PARTITION
APPLIED TO CT ARRAY + FOR/SUB LOOPS

PIPELINING (5,5X)

AP: ARRAY_PARTITION, B: BLOCK TYPE, x: FACTOR
[e.g. APB8]

AP: ARRAY_PARTITION, CYC: CYCLICAL TYPE, x:
FACTOR [e.g. APCYC16]

AP: ARRAY_PARTITION, COMP: COMPLETE TYPE, x:
FACTOR [e.g. APC]

FORPIPELINE: FOR/SUB LOOPS PIPELINING

INLINE: INLINE THE CFUNC FUNCTION

APB2 (5) 8.59ns 4 8 1036 1668 433211

APB4 (5) 8.59ns 4 12 1334 2473 X

APB8 (5) 8.68ns 6 11 2492 4356 X

APB10 (5) 8.59ns 2 13 2487 4364 486646

APB12 (5) 8.59ns 10 14 2209 4074 X

APB13 (5) 8.62ns 0 8 12626 80833 109023

APB14 (5) X X X X X X

APB15 (5) 8.62ns 0 8 12665 48137 121722

APB16 (5) 8.62ns 0 8 12665 48137 121722

APB32 (5) 8.62ns 0 8 12665 48137 121722

APCYC2 (5) 8.59ns 4 8 831 1322 131174

APCYC4 (5) 8.59ns 8 8 878 1959 123953

APCYC8 (5) 8.59ns 16 8 1158 5119 176031

APCYC10 (5) 8.59ns 16 20 1937 5359 X

APCYC12 (5) 8.59ns 2 20 9755 18174 X

APCYC13 (5) 8.59ns 0 14 15572 33112 446667

APCYC14 (5) 8.59ns 0 20 18748 40013 697545

APCYC15 (5) 8.59ns 0 20 11636 19455 X

APCYC16 (5) 8.59ns 0 8 15580 33941 125691

APCYC32 (5) X X X X X X

APC (5) 8.59ns 0 8 13906 17417 144615

FORPIPELINE (5) 8.59ns 2 8 526 745 65595

FORPIPELINE + APB2 (5) 8.59ns 4 8 1222 1744 109668

FORPIPELINE + APB4 (5) 8.59ns 4 12 1897 2881 X

FORPIPELINE + APB6 (5) 8.59ns 6 9 2549 3811 X

96

FORPIPELINE + APB8 (5) 8.68ns 8 11 3093 4995 X

FORPIPELINE + APB10 (5) 10.22ns 4 132 3117 5009 116159

FORPIPELINE+APB12 (5) 10.22ns 10 14 2477 4374 X

FORPIPELINE+APB13 (5) 8.59ns 0 8 13306 86514 50406

FORPIPELINE+APB14 (5) X X X X X X

FORPIPELINE+APB16 (5) 8.59ns 0 8 13306 53818 50406

FORPIPELINE+APB32 (5) 8.59ns 0 8 11478 41274 49659

FORPIPELINE + APCYC2 (5) 8.59ns 4 8 913 1365 103443

FORPIPELINE + APCYC4 (5) 8.59ns 8 8 946 2110 103194

FORPIPELINE + APCYC6 (5) 8.59ns 12 24 2880 5090 X

FORPIPELINE + APCYC8 (5) 9.54ns 16 8 1046 5038 103194

FORPIPELINE + APCYC10 (5) 10.9ns 20 20 2434 5739 X

FORPIPELINE + APCYC12 (5) 8.59ns 8 20 13383 24513 X

FORPIPELINE + APCYC13 (5) 8.59ns 0 14 11281 38160 X

FORPIPELINE + APCYC14 (5) 8.59ns 0 20 14455 48368 63868

FORPIPELINE + APCYC16 (5) 8.59ns 0 8 11866 40670 49161

FORPIPELINE + APCYC32 (5)

FORPIPELINE + APC (5X) 8.59ns 0 8 10636 19056 49161

APB2 (5X) 8.59ns 0 8 1083 1056 1124513

APB4 (5X) 8.59ns 0 12 1470 2139 X

APB6 (5X) 8.59ns 0 9 1416 1591 X

APB8 (5X) 8.59ns 0 9 1346 1432 1117541

APB10 (5X) X X X X X X

APB12 (5X) X X X X X X

APB13 (5X) 8.59ns 0 8 2086 603 117178

APB14 (5X) X X X X X X

APB15 (5X) X X X X X X

APB16 (5X) X X X X X X

APB32 (5X) X X X X X X

APCYC2 (5X) 8.59ns 0 8 747 741 256697

APCYC4 (5X) 8.59ns 0 8 1255 1903 X

APCYC6 (5X) 8.59ns 0 14 1474 1528 1103555

APCYC8 (5X) 8.59ns 0 8 1113 1207 249725

APCYC10 (5X) 8.59ns 0 10 1450 1514 1064711

APCYC12 (5X) 8.59ns 0 10 2116 1370 1127252

APCYC13 (5X) 8.59ns 0 13 2657 1065 845148

APCYC14 (5X) 8.59ns 0 13 2657 1637 845148

APCYC15 (5X) 8.59ns 0 13 2657 1893 845148

APCYC16 (5X) 8.59ns 0 8 2086 1443 117178

APCYC32 (5X) 8.59ns 0 8 2086 4187 117178

97

APC (5X) 8.59ns 0 8 2526 9831 116680

FORPIPELINE (5X) 8.59ns 2 8 551 763 65595

 FORPIPELINE + APB2 (5X) 8.59ns 0 8 1393 2134 1243134

FORPIPELINE + APB4 (5X) 8.59ns 0 12 1713 2708 X

FORPIPELINE + APB6 (5X) 8.59ns 0 9 2018 2907 1246122

FORPIPELINE + APB8 (5X) 8.59ns 0 9 1753 2580 1242636

FORPIPELINE + APB10 (5X)

FORPIPELINE + APB12 (5X)

FORPIPELINE + APB13 (5X) 8.59ns 0 8 2112 640 95474

FORPIPELINE + APB14 (5X) X X X X X X

FORPIPELINE + APB15 (5X) X X X X X X

FORPIPELINE + APB16 (5X) X X X X X X

FORPIPELINE + APB32 (5X) X X X X X X

FORPIPELINE + APCYC2 (5X) 8.59ns 0 8 717 766 194328

FORPIPELINE + APCYC4 (5X) 8.59ns 0 8 1177 2130 141788

FORPIPELINE + APCYC6 (5X) 8.63ns 0 14 1829 2590 1174907

FORPIPELINE + APCYC8 (5X) 8.59ns 0 8 1101 1230 193830

FORPIPELINE + APCYC10 (5X) 8.59ns 0 10 1833 2596 1171919

FORPIPELINE + APCYC12 (5X) 8.59ns 0 10 2520 2551 1170356

FORPIPELINE + APCYC13 (5X) 8.59ns 0 13 2996 1783 861913

FORPIPELINE + APCYC14 (5X) 8.59ns 0 13 2996 2351 861913

FORPIPELINE + APCYC15 (5X) 8.59ns 0 13 2996 2607 861913

FORPIPELINE + APCYC16 (5X) 8.59ns 0 8 2112 1480 95474

FORPIPELINE + APCYC32 (5X) 8.59ns 0 8 2112 4224 95474

FORPIPELINE + APC (5X) 8.59ns 0 8 3858 9862 94976

 #INLINE REVISITED (5,5X)

CFUNC INLINE (5X) 9.07ns 2 32 1116 947 117982

CFUNC INLINE & FORPIPELINE (5X) 9.07ns 2 32 1137 989 64599

CFUNC INLINE (5) 9.81ns 2 32 1126 942 111508

CFUNC INLINE & FORPIPELINE (5X) 9.81ns 2 32 1165 974 63603

 #UNROLL REVISITED (5,5X)

UNROLL FOR/SUB LOOPS (5) 9.07ns 0 64 6475 6018 4782

PIPELINE WHILE/MAIN LOOP (5) 24.62ns 0 104 7594 8318 1298

PIPELINE WHILE/MAIN LOOP & INLINE CFUNC (5) 58.66ns 0 208 4703 8199 302

CFUNC INLINE & UNROLL FOR/SUB LOOPS (5) 9.75ns 0 208 9149 7334 2292

UNROLL FOR/SUB LOOPS (5X) 9.52ns 1 8 1328 3490 188819

98

PIPELINE WHILE/MAIN LOOP (5X) 9.07ns 1 16 1513 3626 135380

PIPELINE WHILE/MAIN LOOP & INLINE CFUNC (5X) 9.07ns 1 208 5878 6578 135380

CFUNC INLINE & UNROLL FOR/SUB LOOPS (5X) 9.07ns 1 208 5908 6609 182345

#INLINE APPLIED TO CFUNC +

#ARRAY_PARTITION APPLIED TO CT ARRAY
(5,5X)

CFUNC INLINE + APB2 (5) 9.07ns 4 32 1565 1871 420263

CFUNC INLINE + APB4 (5) X X X X X X

CFUNC INLINE + APB8 (5) X X X X X X

CFUNC INLINE + APB16 (5) 9.75ns 0 32 11485 46901 115248

CFUNC INLINE + APB32 (5) 9.75ns 0 32 11740 34523 115248

CFUNC INLINE + APCYC2 (5) 9.75ns 4 32 1160 1566 117977

CFUNC INLINE + APCYC4 (5) 9.89ns 8 32 1183 2339 111005

CFUNC INLINE + APCYC8 (5) 9.89ns 16 32 1470 5289 163083

CFUNC INLINE + APCYC16 (5) 9.75ns 0 32 14502 32711 119217

CFUNC INLINE + APCYC32 (5) X X X X X X

CFUNC INLINE + APC (5) 9.75ns 0 32 12828 16157 138141

CFUNC INLINE + APB2 (5X) 9.81ns 0 32 1778 1443 1105589

CFUNC INLINE + APB4 (5X) 9.89ns 0 36 1898 2413 X

CFUNC INLINE + APB8 (5X) 10.14ns 0 33 2082 1826 1105091

CFUNC INLINE + APB16 (5X) X X X X X X

CFUNC INLINE + APB32 (5X)

CFUNC INLINE + APCYC2 (5X) 9.81ns 0 32 1442 1128 237773

CFUNC INLINE + APCYC4 (5X) 9.89ns 0 32 1642 2159 X

CFUNC INLINE + APCYC8 (5X) 10.14ns 0 32 1848 1601 237275

CFUNC INLINE + APCYC16 (5X) 9.75ns 0 32 2584 1835 113194

CFUNC INLINE + APCYC32 (5X) 9.75ns 0 32 2723 3679 113692

CFUNC INLINE + APC (5X) 9.07ns 0 32 2825 10141 110206

 #UNROLL APPLIED TO FOR/SUB LOOPS+
#ARRAY_PARTITION APPLIED TO CT ARRAY

(5,5X)

APB2 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6476 6018 4782

APB4 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782

APB6 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782

APB8 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782

APB10 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782

APB12 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782

99

APB13 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782

APB14 + UNROLL_SUB_LOOPS (5) X X X X X X

APB15 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782

APB16 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782

APB32 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782

APCYC2 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782

APCYC4 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782

APCYC6 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782

APCYC8 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782

APCYC10 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782

APCYC12 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782

APCYC13 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782

APCYC14 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782

APCYC15 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782

APCYC16 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782

APCYC32 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782

APC + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782

APB2 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 8 1822 4802 943301

APB4 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 10 1936 4806 943301

APB6 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 9 2057 4981 943301

APB8 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 9 2212 5090 943301

APB10 + UNROLL_SUB_LOOPS (5X) X X X X X X

APB12 + UNROLL_SUB_LOOPS (5X) X X X X X X

APB13 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 104 5770 18179 74005

APB14 + UNROLL_SUB_LOOPS (5X) X X X X X X

APB15 + UNROLL_SUB_LOOPS (5X) X X X X X X

APB16 + UNROLL_SUB_LOOPS (5X) X X X X X X

APB32 + UNROLL_SUB_LOOPS (5X) X X X X X X

APCYC2 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 8 1451 3562 189317

APCYC4 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 8 1572 3574 189317

APCYC6 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 10 2065 4952 895981

APCYC8 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 8 1813 3788 189317

APCYC10 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 10 2303 5102 895981

APCYC12 + UNROLL_SUB_LOOPS (5X) X X X X X X

APCYC13 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 121 8697 19753 X

APCYC14 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 123 8943 20953 X

APCYC15 + UNROLL_SUB_LOOPS (5X) X X X X X X

APCYC16 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 104 5787 21558 74005

APCYC32 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 104 5787 29118 74005

APC + UNROLL_SUB_LOOPS (5X) 9.07ns 0 104 6475 4602 73507

#INLINE APPLIED TO CFUNC + #UNROLL

100

APPLIED TO FOR/SUB LOOPS +
#ARRAY_PARTITION APPLIED TO CT ARRAY

(5,X)

INLINE + APB2 + UNROLL_SUB_LOOPS (5) 10.14ns 0 208 9020 7964 2043

INLINE + APB4 + UNROLL_SUB_LOOPS (5) 10.14ns 0 208 9020 7964 2043

INLINE + APB6 + UNROLL_SUB_LOOPS (5) 10.14ns 0 208 9020 7964 2043

INLINE + APB8 + UNROLL_SUB_LOOPS (5) 10.14ns 0 208 9020 7964 2043

INLINE + APB10 + UNROLL_SUB_LOOPS (5) 10.14ns 0 208 9020 7964 2043

INLINE + APB12 + UNROLL_SUB_LOOPS (5) 10.14ns 0 208 9020 7964 2043

INLINE + APB13 + UNROLL_SUB_LOOPS (5) 9.75ns 0 208 9149 7334 2292

INLINE + APB14 + UNROLL_SUB_LOOPS (5) X X X X X X

INLINE + APB15 + UNROLL_SUB_LOOPS (5) 9.75ns 0 208 9149 7334 2292

INLINE + APB16 + UNROLL_SUB_LOOPS (5) 9.75ns 0 208 9149 7334 2292

INLINE + APB32 + UNROLL_SUB_LOOPS (5) 9.75ns 0 208 9149 7334 2292

INLINE + APCYC2 + UNROLL_SUB_LOOPS (5) 10.14ns 0 208 9020 7964 2043

INLINE + APCYC4 + UNROLL_SUB_LOOPS (5) 10.14ns 0 208 9020 7964 2043

INLINE + APCYC6 + UNROLL_SUB_LOOPS (5) 10.14ns 0 208 9020 7964 2043

INLINE + APCYC8 + UNROLL_SUB_LOOPS (5) 10.14ns 0 208 9020 7964 2043

INLINE + APCYC10 + UNROLL_SUB_LOOPS (5) 10.14ns 0 208 9020 7964 2043

INLINE + APCYC12 + UNROLL_SUB_LOOPS (5) 10.14ns 0 208 9020 7964 2043

INLINE + APCYC13 + UNROLL_SUB_LOOPS (5) 9.75ns 0 208 9149 7334 2292

INLINE + APCYC14 + UNROLL_SUB_LOOPS (5) 9.75ns 0 208 9149 7334 2292

INLINE + APCYC15 + UNROLL_SUB_LOOPS (5) 9.75ns 0 208 9149 7334 2292

INLINE + APCYC16 + UNROLL_SUB_LOOPS (5) 9.75ns 0 208 9149 7334 2292

INLINE + APCYC32 + UNROLL_SUB_LOOPS (5) 9.75ns 0 208 9149 7334 2292

INLINE + APC + UNROLL_SUB_LOOPS (5) 9.75ns 0 208 9149 7334 2292

INLINE + APB2 + UNROLL_SUB_LOOPS (5X) 9.75ns 0 208 6376 7911 942305

INLINE + APB4 + UNROLL_SUB_LOOPS (5X) 9.75ns 0 210 6505 7933 942305

INLINE + APB6 + UNROLL_SUB_LOOPS (5X) 9.75ns 0 209 6628 8108 942305

INLINE + APB8 + UNROLL_SUB_LOOPS (5X) 9.75ns 0 209 6757 8199 942305

INLINE + APB10 + UNROLL_SUB_LOOPS (5X) X X X X X X

INLINE + APB12 + UNROLL_SUB_LOOPS (5X) X X X X X X

INLINE + APB13 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 208 7476 18999 73507

INLINE + APB14 + UNROLL_SUB_LOOPS (5X) X X X X X X

INLINE + APB15 + UNROLL_SUB_LOOPS (5X) X X X X X X

INLINE + APB16 + UNROLL_SUB_LOOPS (5X) X X X X X X

101

INLINE + APB32 + UNROLL_SUB_LOOPS (5X) X X X X X X

INLINE + APCYC2 + UNROLL_SUB_LOOPS (5X) 9.75ns 0 208 5999 6671 182345

INLINE + APCYC4 + UNROLL_SUB_LOOPS (5X) 9.75ns 0 208 6119 6683 182345

INLINE + APCYC6 + UNROLL_SUB_LOOPS (5X) 9.75ns 0 210 6617 8061 894985

INLINE + APCYC8 + UNROLL_SUB_LOOPS (5X) 9.75ns 0 208 6361 6897 182345

INLINE + APCYC10 + UNROLL_SUB_LOOPS (5X) 9.75ns 0 210 6855 8211 894985

INLINE + APCYC12 + UNROLL_SUB_LOOPS (5X) X X X X X X

INLINE + APCYC13 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 236 10998 22897 X

INLINE + APCYC14 + UNROLL_SUB_LOOPS (5X) 10.14ns 0 228 10099 18156 776386

INLINE + APCYC15 + UNROLL_SUB_LOOPS (5X) 10.14ns 0 228 10099 19866 776386

INLINE + APCYC16 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 208 7476 22239 73507

INLINE + APCYC32 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 208 7476 29529 73507

INLINE + APC + UNROLL_SUB_LOOPS (5X) 9.75ns 0 208 7908 5874 73009

#INLINE APPLIED TO CFUNC +

#ARRAY_PARTITION APPLIED TO FOR/SUB
LOOPS + #PIPELINE APPLIED TO FOR/SUB

LOOPS
(5,X)

INLINE + APB2 + PIPELINE_SUB_LOOPS (5) 9.07ns 4 32 1774 1928 109170

INLINE + APB4 + PIPELINE_SUB_LOOPS (5) 9.89ns 4 36 2410 3030 X

INLINE + APB6 + PIPELINE_SUB_LOOPS (5) 9.89ns 6 33 3109 4167 X

INLINE + APB8 + PIPELINE_SUB_LOOPS (5) 9.89ns 8 35 3711 5193 X

INLINE + APB10 + PIPELINE_SUB_LOOPS (5) 10.22ns 8 37 3575 5231 115661

INLINE + APB12 + PIPELINE_SUB_LOOPS (5) 10.22ns 10 38 2919 4606 X

INLINE + APB13 + PIPELINE_SUB_LOOPS (5) 9.07ns 0 32 13754 86800 50406

INLINE + APB14 + PIPELINE_SUB_LOOPS (5) X X X X X X

INLINE + APB15 + PIPELINE_SUB_LOOPS (5) 9.07ns 0 32 13754 54104 50406

INLINE + APB16 + PIPELINE_SUB_LOOPS (5) 9.07ns 0 32 13754 54104 50406

INLINE + APB32 + PIPELINE_SUB_LOOPS (5) 9.07ns 0 32 11948 41592 50157

INLINE + APCYC2 + PIPELINE_SUB_LOOPS (5) 9.13ns 4 32 1319 1595 102198

INLINE + APCYC4 + PIPELINE_SUB_LOOPS (5) 9.89ns 8 32 1334 2360 102198

INLINE + APCYC6 + PIPELINE_SUB_LOOPS (5) 9.89ns 12 48 3264 5186 X

INLINE + APCYC8 + PIPELINE_SUB_LOOPS (5) 9.89ns 16 32 1406 5284 102198

INLINE + APCYC10 + PIPELINE_SUB_LOOPS (5) 10.9ns 20 44 2908 6189 X

INLINE + APCYC12 + PIPELINE_SUB_LOOPS (5) 9.89ns 8 44 13731 24923 X

INLINE + APCYC13 + PIPELINE_SUB_LOOPS (5) 9.07ns 0 38 11657 38514 X

INLINE + APCYC14 + PIPELINE_SUB_LOOPS (5) 9.07ns 0 44 15001 48612 63370

INLINE + APCYC15 + PIPELINE_SUB_LOOPS (5) 9.07ns 0 44 11950 23269 X

INLINE + APCYC16 + PIPELINE_SUB_LOOPS (5) 9.07ns 0 32 12332 40908 49161

102

INLINE + APCYC32 + PIPELINE_SUB_LOOPS (5) X X X X X X

INLINE + APC + PIPELINE_SUB_LOOPS (5) 9.07ns 0 32 11102 19312 49161

INLINE + APB2 + PIPELINE_SUB_LOOPS (5X) 9.07ns 0 32 2421 2530 1243134

INLINE + APB4 + PIPELINE_SUB_LOOPS (5X) 9.89ns 0 36 2200 3030 X

INLINE + APB6 + PIPELINE_SUB_LOOPS (5X) 9.17ns 0 33 3050 3321 X

INLINE + APB8 + PIPELINE_SUB_LOOPS (5X) 9.85ns 0 33 2785 2994 X

INLINE + APB10 + PIPELINE_SUB_LOOPS (5X) X X X X X X

INLINE + APB12 + PIPELINE_SUB_LOOPS (5X) X X X X X X

INLINE + APB13 + PIPELINE_SUB_LOOPS (5X) 9.07ns 0 32 2714 1018 95474

INLINE + APB14 + PIPELINE_SUB_LOOPS (5X) X X X X X X

INLINE + APB15 + PIPELINE_SUB_LOOPS (5X) X X X X X X

INLINE + APB16 + PIPELINE_SUB_LOOPS (5X) 9.07ns 0 32 2714 1018 95474

INLINE + APB32 + PIPELINE_SUB_LOOPS (5X) X X X X X X

INLINE + APCYC2 + PIPELINE_SUB_LOOPS (5X) 9.07ns 0 32 1663 1173 194826

INLINE + APCYC4 + PIPELINE_SUB_LOOPS (5X) 9.89ns 0 32 1721 2400 140792

INLINE + APCYC6 + PIPELINE_SUB_LOOPS (5X) 9.07ns 0 38 2861 3004 1175405

INLINE + APCYC8 + PIPELINE_SUB_LOOPS (5X) 9.17ns 0 32 2043 1644 194826

INLINE + APCYC10 + PIPELINE_SUB_LOOPS (5X) 9.07ns 0 34 2865 3010 1175405

INLINE + APCYC12 + PIPELINE_SUB_LOOPS (5X) 9.07ns 0 34 3552 2939 1243134

INLINE + APCYC13 + PIPELINE_SUB_LOOPS (5X) 9.07ns 0 37 3737 2197 826411

INLINE + APCYC14 + PIPELINE_SUB_LOOPS (5X) 9.07ns 0 37 3556 2757 826411

INLINE + APCYC15 + PIPELINE_SUB_LOOPS (5X) 9.07ns 0 37 3556 3013 826411

INLINE + APCYC16 + PIPELINE_SUB_LOOPS (5X) 9.07ns 0 32 2714 1858 95474

INLINE + APCYC32 + PIPELINE_SUB_LOOPS (5X) 9.07ns 0 32 2853 4638 95474

INLINE + APC + PIPELINE_SUB_LOOPS (5X) 9.07ns 0 32 4296 10156 95474

 #LOOP_MERGE RETRY (5)

ALL SOURCE CODE WITHIN THE FOR/SUB LOOPS TO
ENABLE #LOOP_MERGE

8.59ns 2 8 792 969 130432

ALL SOURCE CODE WITHIN THE FOR/SUB LOOPS TO
ENABLE #LOOP_MERGE + FORPIPELINE

8.59ns 3 8 900 1093 95500

BALANCED PERFORMANCE DESIGN

EVALUATIONS, #UNROLL, #PIPELINE,
#INLINE

(5)

UNROLL: COMPLETE UNROLL.
UNROLL xZ: UNROLL WITH A FACTOR Z

(PARTIAL UNROLL).
THE CODENAMES WITHIN THE BRACKETS {}

REFER TO CERTAIN FOR/SUB LOOPS. THE
KEYWORD “REST” REFERS TO THE REST OF THE
FOR/SUB LOOPS NOT MENTIONED WITHIN THE

103

BRACKETS {}.IN THE CASE WHERE SUCH
BRACKETS DO NOT EXIST, IT IS IMPLIED THAT

THE DIRECTIVE UNDER CONSIDERATION IS
APPLIED TO ALL FOR/SUB LOOPS.

#INLINE APPLIES TO CFUNC

FORPIPELINE + UNROLL {CSWAB} 9.52ns 3 8 622 899 75555

FORPIPELINE + UNROLL x2 {CSWAB} 9.30ns 2 8 557 923 88005

FORPIPELINE + UNROLL x4 {CSWAB} 9.07ns 2 8 662 1002 85017

FORPIPELINE + UNROLL x8 {CSWAB} 9.52ns 2 8 1127 1784 88503

FORPIPELINE + UNROLL {CSWAB UPDAB} 9.07ns 2 96 3671 4309 50157

FORPIPELINE + UNROLL x2 {CSWAB UPDAB} 9.30ns 2 8 685 1069 93981

FORPIPELINE + UNROLL x4 {CSWAB UPDAB} 9.07ns 2 8 928 1365 88005

FORPIPELINE + UNROLL x8 {CSWAB UPDAB} 9.52ns 2 8 1661 2527 89499

FORPIPELINE + UNROLL {CSWAB} + INLINE 9.81ns 3 208 4832 3876 56631

FORPIPELINE + UNROLL x2 {CSWAB} + INLINE 9.81ns 2 48 1559 1340 71571

FORPIPELINE + UNROLL x4 {CSWAB} + INLINE 9.81ns 2 80 2427 1943 65595

FORPIPELINE + UNROLL x8 {CSWAB} + INLINE 9.81ns 2 144 4417 3779 75555

FORPIPELINE + UNROLL {CSWAB UPDAB} + INLINE 9.07ns 2 208 5641 4997 48663

FORPIPELINE + UNROLL x2 {CSWAB UPDAB} + INLINE 9.81ns 2 48 1687 1492 77547

FORPIPELINE + UNROLL x4 {CSWAB UPDAB} + INLINE 9.81ns 2 80 2693 2306 68583

FORPIPELINE + UNROLL x8 {CSWAB UPDAB} + INLINE 9.81ns 2 144 4951 4522 76551

FORPIPELINE {CSWAB} + UNROLL REST 8.59ns 2 8 6684 6059 48171

FORPIPELINE {CSWAB} + UNROLL x2 REST 8.59ns 2 8 723 997 77296

FORPIPELINE {CSWAB} + UNROLL x4 REST 8.59ns 2 8 978 1501 76523

FORPIPELINE {CSWAB} + UNROLL x8 REST 8.59ns 2 8 1548 2513 70782

FORPIPELINE {CSWAB} + UNROLL x16 REST 8.59ns 2 8 1568 3127 66294

FORPIPELINE {CSWAB} + UNROLL x32 REST 8.59ns 2 8 2421 5567 65294

FORPIPELINE {CSWAB UPDAB} + UNROLL REST 8.59ns 2 8 6656 5911 52590

FORPIPELINE {CSWAB UPDAB} + UNROLL x2 REST 8.59ns 2 8 595 849 71320

FORPIPELINE {CSWAB UPDAB} + UNROLL x4 REST 8.59ns 2 8 712 1145 73535

FORPIPELINE {CSWAB UPDAB} + UNROLL x8 REST 8.59ns 2 8 1014 1781 69786

FORPIPELINE {CSWAB UPDAB} + UNROLL x16 REST 8.59ns 2 8 1436 2861 67290

FORPIPELINE {CSWAB UPDAB} + UNROLL x32 REST 8.59ns 2 8 2289 5333 66290

FORPIPELINE {CSWAB} + UNROLL REST + INLINE 9.81ns 2 32 7473 6011 46677

FORPIPELINE {CSWAB} + UNROLL REST x2 + INLINE 9.81ns 2 32 1345 1231 75304

FORPIPELINE {CSWAB} + UNROLL REST x4 + INLINE 9.81ns 2 32 1600 1719 74531

FORPIPELINE {CSWAB} + UNROLL REST x8 + INLINE 9.81ns 2 32 2170 2752 68970

FORPIPELINE {CSWAB} + UNROLL REST x16 + INLINE 9.81ns 2 32 2160 3297 64302

FORPIPELINE {CSWAB} + UNROLL REST x32 + INLINE 9.81ns 2 32 3013 5737 63302

104

FORPIPELINE {CSWAB UPDAB} + UNROLL REST +
INLINE

9.81ns 2 32 7387 6831 51096

FORPIPELINE {CSWAB UPDAB} + UNROLL REST x2 +
INLINE

9.81ns 2 32 1217 1089 69328

FORPIPELINE {CSWAB UPDAB} + UNROLL REST x4 +
INLINE

9.81ns 2 32 1334 1385 71543

FORPIPELINE {CSWAB UPDAB} + UNROLL REST x8 +
INLINE

9.81ns 2 32 1636 1999 67794

FORPIPELINE {CSWAB UPDAB} + UNROLL REST x16 +
INLINE

9.81ns 2 32 2058 3100 65298

FORPIPELINE {CSWAB UPDAB} + UNROLL REST +
INLINE

9.81ns 2 32 2911 5571 64298

UNROLL ALL x2 9.3ns 2 8 737 1136 99706

UNROLL ALL x4 9.07ns 2 8 1097 1763 95945

UNROLL ALL x8 9.52ns 2 8 2132 3562 93690

UNROLL ALL x16 9.07ns 2 96 4564 6443 51582

UNROLL ALL x32 9.07ns 2 96 5417 8883 50852

UNROLL ALL x2 + INLINE 9.81ns 2 48 1739 1559 83272

UNROLL ALL x4 + INLINE 9.81ns 2 80 4862 2704 76523

UNROLL ALL x8 + INLINE 9.81ns 2 144 5422 5557 80742

UNROLL ALL x16 + INLINE 9.75ns 2 208 65529 6521 50358

UNROLL ALL x32 + INLINE 9.07ns 2 208 7388 8961 49358

PARTIAL SUBFUNCTION MERGING
SOURCE VERSION EVALUATION (6)

PIPELINE FOR/SUB LOOPS 8.59ns 2 8 476 723 72069

PIPELINE FOR/SUB LOOPS + APC 9.71ns 0 8 11364 15120 37956

PIPELINE FOR/SUB LOOPS + APC + INLINE 20.43ns 0 32 8192 15463 31482

UNROLL ALL SUB/FOR LOOPS 9.07ns 0 88 7094 6715 4782

INLINE + UNROLL ALL SUB/FOR LOOPS 9.75ns 0 208 9250 7334 2043

 FINAL DESIGN VERSIONS

LOW PERFORMANCE/LOW UTILIZATION [LP]

PIPELINE FOR/SUB LOOPS (5) 8.59ns 2 8 543 764 65595

HIGHER PERFORMANCE/MEDIUM UTILIZATION

[HPA]

UNROLL ALL SUB/FOR LOOPS + #RESOURCE=
AddSub @ CFUNC ADDITIONS (6)

8.22ns 0 56 5806 7099 3786

HIGHEST PERFORMANCE/HIGHEST

UTILIZATION [HPB]

UNROLL ALL SUB/FOR LOOPS + INLINE +
#RESOURCE= AddSub @ CFUNC ADDITIONS (6)

8.74ns 0 208 8383 12728 1296

105

BIBLIOGRAPHY
[1] Kleinberg, Jon, and Eva Tardos. Algorithm design. Pearson Education India, 2006.

[2] Cormen, Thomas H. Introduction to algorithms. MIT press, 2009.

[3] Applegate, David L., et al. The traveling salesman problem: a computational study. Princeton

university press, 2011.

[4] Edmonds, Jack. "Paths, trees, and flowers." Canadian Journal of mathematics 17.3 (1965): 449-

467.

[5] M. R. GAREY, AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of

NP-Completeness, W. H. Freeman, San Francisco, 1979.

[6] Gutin, Gregory, and Abraham P. Punnen, eds. The traveling salesman problem and its variations.

Vol. 12. Springer Science & Business Media, 2006.

[7] Jan Van Leeuwen, Handbook of Theoretical Computer Science, Vol.A: Algorithms and Complexity,

MIT Press Cambridge MA USA, 1990

[8] Bernhard Korte, Jens Vygen Combinatorial Optimization: Theory and Algorithms, Fourth Edition,

Springe-Verlag Berling Heidelberg, 2008

[9] Papadimitriou, Christos H., and Kenneth Steiglitz. Combinatorial optimization: algorithms and

complexity. Courier Corporation, 1982.

[10] Avinash K. Dixit, Department of Economics, Princeton University, "Lecture on Optimization"

within the scope of "ECO305-Microeconomic Theory: A mathematical Approach"

[11] John K. Hunter, Department of Mathematics, University of California, Davis, "Lecture on

Continuous Functions" within the scope of "MAT201A-Introduction to Analysis"

[12] Xilinx(R): What is an FPGA?, http://www.xilinx.com/training/fpga/fpga-field-programmable-

gate-array.htm

[13] Hauck, Scott. "The roles of FPGAs in reprogrammable systems." Proceedings of the IEEE 86.4

(1998): 615-638.

[14] Compton, Katherine, and Scott Hauck. "Reconfigurable computing: a survey of systems and

software." ACM Computing Surveys (csuR) 34.2 (2002): 171-210.

[15] Tessier, Russell, Kenneth Pocek, and Andre DeHon. "Reconfigurable computing architectures."

Proceedings of the IEEE 103.3 (2015): 332-354.

[16] FPGA-based Accelerators: The Convey Systems,

http://www.hpcresearch.nl/euroben/Overview/web12/convey.php

[17] Maxeler Technologies, http://maxeler.com/#/

106

[18] Dollas, Apostolos. "Big Data Processing with FPGA Supercomputers: Opportunities and

Challenges." 2014 IEEE Computer Society Annual Symposium on VLSI. IEEE, 2014.

[19] Chrysos, Grigorios, et al. "Reconfiguring the Bioinformatics Computational Spectrum: Challenges

and Opportunities of FPGA-Based Bioinformatics Acceleration Platforms." IEEE Design & Test 31.1

(2014): 62-73.

[20] Chrysos, Grigorios, Apostolos Dollas, and Nikolaos Bourbakis. "An embedded software-

reconfigurable color segmentation architecture for image processing systems." Microprocessors and

Microsystems 36.3 (2012): 215-231.

[21] Papaefstathiou, Ioannis, et al. "ROTA: An Archipelago-Wide Area Network for High Speed

Communication to Ships." Informatics (PCI), 2012 16th Panhellenic Conference on. IEEE, 2012.

[22] Sourdis, Ioannis, and Dionisios Pnevmatikatos. "Fast, large-scale string match for a 10Gbps

FPGA-based network intrusion detection system." International Conference on Field Programmable

Logic and Applications. Springer Berlin Heidelberg, 2003.

[23] Kritikakis, Charalabos, et al. "An FPGA-based high-throughput stream join architecture." Field

Programmable Logic and Applications (FPL), 2016 26th International Conference on. EPFL, 2016.

[24] Cong, Jason, et al. "High-level synthesis for FPGAs: From prototyping to deployment." IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems 30.4 (2011): 473-491.

[25] LegUp High-Level Synthesis, University of Toronto, http://legup.eecg.utoronto.ca/

[26] Bambu: A Free Framework for the High-Level Synthesis of Complex Applications,

http://panda.dei.polimi.it/?page_id=31

[27] Xilinx Vivado High-Level Synthesis, https://www.xilinx.com/products/design-

tools/vivado/integration/esl-design.html

[28] OpenCL: The open standard for parallel programming of heterogeneous systems,

https://www.khronos.org/opencl/

Munshi, Aaftab. "The opencl specification." 2009 IEEE Hot Chips 21 Symposium (HCS). IEEE, 2009.

[29] Mavroidis, Ioannis, Ioannis Papaefstathiou, and Dionisios Pnevmatikatos. "A fast FPGA-based 2-

Opt solver for small-scale euclidean traveling salesman problem." 15th Annual IEEE Symposium on

Field-Programmable Custom Computing Machines (FCCM 2007). IEEE, 2007.

[30] Skiena, S. "Hamiltonian Cycles." §5.3.4 in Implementing Discrete Mathematics: Combinatorics

and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 196-198, 1990.

[31] Schrijver, Alexander. "On the history of combinatorial optimization (till 1960)." Handbooks in

operations research and management science 12 (2005): 1-68.

[32] Laporte, Gilbert. "A concise guide to the traveling salesman problem." Journal of the

Operational Research Society 61.1 (2010): 35-40.

107

[33] Papadimitriou, Christos H. "The Euclidean travelling salesman problem is NP-complete."

Theoretical Computer Science 4.3 (1977): 237-244.

[34] Englert, Matthias, Heiko Röglin, and Berthold Vöcking. "Worst case and probabilistic analysis of

the 2-Opt algorithm for the TSP." Algorithmica 68.1 (2014): 190-264.

[35] Johnson, David S. "Local optimization and the traveling salesman problem." International

Colloquium on Automata, Languages, and Programming. Springer Berlin Heidelberg, 1990.

[36] Johnson, David S., and Lyle A. McGeoch. "The traveling salesman problem: A case study in local

optimization." Local search in combinatorial optimization 1 (1997): 215-310.

[37] Hahsler, Michael, and Kurt Hornik. "TSP-Infrastructure for the traveling salesperson problem."

Journal of Statistical Software 23.2 (2007): 1-21.

[38] Nilsson, Christian. Heuristics for the traveling salesman problem. Tech. Report, Linköping

University, Sweden, 2003.

[39] Reinelt, Gerhard. The traveling salesman: computational solutions for TSP applications.

Springer-Verlag, 1994.

[40] Antosiewicz, Marek, Grzegorz Koloch, and Bogumił Kamiński. "Choice of best possible

metaheuristic algorithm for the travelling salesman problem with limited computational time:

quality, uncertainty and speed." Journal of Theoretical and Applied Computer Science 7.1 (2013): 46-

55.

[41] Lourenço, Helena R., Olivier C. Martin, and Thomas Stützle. "Iterated local search: Framework

and applications." Handbook of Metaheuristics. Springer US, 2010. 363-397.

[42] Verhoeven, M. G. A., Emile HL Aarts, and P. C. J. Swinkels. "A parallel 2-opt algorithm for the

traveling salesman problem." Future Generation Computer Systems 11.2 (1995): 175-182.

[43] Delisle, Pierre, et al. "Parallel implementation of an ant colony optimization metaheuristic with

OpenMP." Proceedings of the 3rd European Workshop on OpenMP (EWOMP’01), Barcelona, Spain.

2001.

[44] Rudeanu, Laurentiu, and Mitica Craus. "Parallel implementation of ant colony optimization for

travelling salesman problem." WSEASs Transactions on Systems 3.3 (2004): 1161-1166.

[45] Borovska, Plamenka. "Solving the travelling salesman problem in parallel by genetic algorithm

on multicomputer cluster." Int. Conf. on Computer Systems and Technologies. 2006.

[46] Lazarova, Milena, and Plamenka Borovska. "Comparison of parallel metaheuristics for solving

the TSP." Proceedings of the 9th International Conference on Computer Systems and Technologies

and Workshop for PhD Students in Computing. ACM, 2008.

[47] Skliarova, Iouliia, and António B. Ferrari. "FPGA-based implementation of genetic algorithm for

the traveling salesman problem and its industrial application." International Conference on

Industrial, Engineering and Other Applications of Applied Intelligent Systems. Springer Berlin

Heidelberg, 2002.

108

[48] Vega-Rodriguez, Miguel A., et al. "Genetic algorithms using parallelism and FPGAs: the TSP as

case study." 2005 International Conference on Parallel Processing Workshops (ICPPW'05). IEEE,

2005.

[49] Rocki, Kamil, and Reiji Suda. "High Performance GPU Accelerated TSP Solver." High Performance

Computing, Networking, Storage and Analysis (SCC), 2012 SC Companion: IEEE, 2012.

[50] Rocki, Kamil, and Reiji Suda. "Accelerating 2-opt and 3-opt local search using GPU in the

travelling salesman problem." High Performance Computing and Simulation (HPCS), 2012

International Conference on. IEEE, 2012.

[51] O’neil, Molly A., Dan Tamir, and Martin Burtscher. "A parallel gpu version of the traveling

salesman problem." 2011 International Conference on Parallel and Distributed Processing

Techniques and Applications. 2011.

[52] O'Neil, Molly A., and Martin Burtscher. "Rethinking the parallelization of random-restart hill

climbing: a case study in optimizing a 2-opt TSP solver for GPU execution." Proceedings of the 8th

Workshop on General Purpose Processing using GPUs. ACM, 2015.

[53] Rocki, Kamil, and Reiji Suda. "An efficient GPU implementation of a multi-start TSP solver for

large problem instances." Proceedings of the 14th annual conference companion on Genetic and

evolutionary computation. ACM, 2012.

[54] Rocki, Kamil, and Reiji Suda. "High performance GPU accelerated local optimization in TSP."

Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th

International. IEEE, 2013.

[55] Delévacq, Audrey, Pierre Delisle, and Michaël Krajecki. "Parallel GPU implementation of iterated

local search for the travelling salesman problem." Learning and Intelligent Optimization. Springer

Berlin Heidelberg, 2012. 372-377.

[56] Fujimoto, Noriyuki, and Shigeyoshi Tsutsui. "A highly-parallel TSP solver for a GPU computing

platform." International Conference on Numerical Methods and Applications. Springer Berlin

Heidelberg, 2010.

[57] Chen, Su, et al. "CUDA-based genetic algorithm on traveling salesman problem." Computer and

Information Science 2011. Springer Berlin Heidelberg, 2011. 241-252.

[58] Cecilia, José M., et al. "Parallelization strategies for ant colony optimisation on GPUs." Parallel

and Distributed Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE International

Symposium on. IEEE, 2011.

[59] Uchida, Akihiro, Yasuaki Ito, and Koji Nakano. "An efficient GPU implementation of ant colony

optimization for the traveling salesman problem." Networking and Computing (ICNC), 2012 Third

International Conference on. IEEE, 2012.

[60] Schulz, Christian, et al. "GPU computing in discrete optimization. Part II: Survey focused on

routing problems." EURO journal on transportation and logistics 2.1-2 (2013): 159-186.

109

[61] The Concorde TSP Solver, University of Waterloo's Faculty of Mathematics

http://www.math.uwaterloo.ca/tsp/concorde/downloads/downloads.htm

[62] Applegate, David, et al. "Concorde TSP solver." (2006).

[63] Applegate, David L., et al. "Certification of an optimal TSP tour through 85,900 cities."

Operations Research Letters 37.1 (2009): 11-15.

[64] Croes, Georges A. "A method for solving traveling-salesman problems." Operations research 6.6

(1958): 791-812.

[65] Flood, Merrill M. "The traveling-salesman problem." Operations Research 4.1 (1956): 61-75.

[66] Chandra, Barun, Howard Karloff, and Craig Tovey. "New results on the old k-opt algorithm for

the traveling salesman problem." SIAM Journal on Computing 28.6 (1999): 1998-2029.

[67] Reinelt, Gerhard. "TSPLIB—A traveling salesman problem library." ORSA journal on computing

3.4 (1991): 376-384.

[68] TSPLIB, http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

[69] Xilinx Vivado Design Suite User Guide: High Level Synthesis (UG902)

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_2/ug902-vivado-high-level-

synthesis.pdf

[70] Xilinx, Introduction to FPGA Design with Vivado High-Level Synthesis (UG998)

https://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-

hls.pdf

