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ABSTRACT 
The Traveling Salesman Problem (TSP) is one of the most well-known and thoroughly studied 

problems within the domain of combinatorial optimization, having attracted for many decades the 

attention and even life-long devotion of numerous computer scientists, ranging from algorithm 

researchers to High-Performance Computing specialists. The number of its practical, real-life 

applications is sheer: Manufacturing, logistics, telecommunications, statistics, scheduling, and even 

psychology are some of them, to name a few. Since it is an NP-Hard problem, solving it to optimality 

requires an exponentially-increasing time as its size grows, thus rendering its exact solution 

prohibitive for large datasets or when time constitutes a crucial factor. This has ultimately led to the 

development of an abundance of heuristics, specifically designed to address this issue, providing 

orders of magnitude reduced running times at the cost of sub- or near-optimal results. One of the 

oldest and most recognized such heuristic is 2-OPT. Its simplicity, combined with its effectiveness 

and adaptability has led to its wide adoption within the TSP community, being actively implemented 

by researchers worldwide even today, more than fifty years after its initial conception.  

The aim of this thesis is the mapping of a 2-OPT variant based on reconfigurable logic (FPGAs). The 

presented work originates from research conducted nearly a decade ago in the Microprocessor & 

Hardware Lab at the School of ECE, Technical University of Crete. It constitutes an evolutionary 

extension to the latter, whose objective is to assess its performance while adapting it to next-

generation FPGAs, through the utilization of both the newly-(re)emerged High Level Synthesis flow 

and the traditional HDL-based flow as well; the corresponding tools are part of the Xilinx Vivado 

Design Suite. A thorough evaluation and an in-depth comparison between the intrinsic 

characteristics of these two approaches to hardware design are provided. Experimental results show 

that the implemented hardware architectures are capable of delivering speedups ranging from 1.1x 

to nearly 10x for small to medium scale problem sizes, depending on the dataset used. These figures 

are obtained when comparing the aforementioned architectures with the Concorde TSP software 

package, as well as with a state-of-the-art GPU implementation. 
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CHAPTER 1: INTRODUCTION 
This opening chapter constitutes an introduction to the scientific areas approached by the thesis, 

intending to familiarize the reader with some basic, related notions, and provide an early, generic 

insight into its main topic. Under these premises, the first section presents the concise definitions of 

some fundamental terms of algorithm theory encountered in this text, followed by a piece of 

introductory information about Reconfigurable Computing & FPGAs. The chapter then continues 

with the statement of the motivations that led to the development of this thesis, its scientific 

contribution, and ultimately concludes with the structure of the rest of the text.  

1.1   CONCISE BACKGROUND IN COMPUTATIONAL COMPLEXITY 
This section constitutes a short review of some key aspects of computational complexity and 

algorithm theory, intending to aid the comprehension of relative terms. For extensive and in-depth 

information about these topics, the reader is encouraged to refer to [1] and [2]. 

Computational complexity refers to the inherent difficulty of a computational problem solvable by 

an algorithm. Such a problem is considered inherently difficult if its solution requires a significant 

amount of a resource, be it time and/or space, regardless of the actual underlying algorithm utilized 

to solve it. In that notion, “time”, and more formally, Time Complexity, does not necessarily 

translate to actual running time in the sense of seconds or minutes, since that would require the 

precise knowledge of several implementation-dependent parameters, but to a rather abstract 

concept involving the estimation of the number of a series of fixed-time elementary steps required 

to process the desired solution [1].  An equivalent premise holds for the case of “space”, namely 

Space Complexity. 

Within the framework of computational complexity, Time complexity typically refers to the worst-

case scenario, denoted T(n), defined as the maximum amount of time required to solve a problem 

with an arbitrary-sized input of length n. When formulating the Time complexity of a problem, the 

former is usually provided in the form of the type of its asymptotic upper bound (Big O notation, 

O~), such as “linear time”, T(n)= O(n), “logarithmic time”, T(n)= O(logn), “quadratic time”, T(n)= 

O(n2), etc. 

Time/Space complexity aside, two other equally important factors characterizing the complexity of a 

computational problem are its type and model of computation. The most common representative of 

the former is decision problems, where, given a set of inputs, their solutions result in a Yes-or-No 

answer, while many more types exist, such as function problems, counting problems, optimization 

problems, promise problems etc. As far as the latter is concerned, the deterministic Turing machine 

is the predominant model used in computational complexity theory, some of the rest being non-

deterministic Turing machines, Boolean circuits and quantum Turing machines. 

These three factors mentioned above are sufficient in order to define some simple complexity 

classes; a set of computational problems of related resource-based complexity (time or space). The 

section below presents a few fundamental complexity classes, frequently appearing in algorithmic 

literature, based on the combination of decision problems, Turing machines, and polynomial time 

complexity. 
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P: Contains all the decision problems that can be solved by a deterministic Turing machine in 

polynomial time, thus implying that T(n)= 2O(logn)= poly(n). As expressed in [3] and [4], a “good”, in 

terms of efficiency algorithm, is an algorithm with polynomial execution time. This statement also 

appears in [1].  

P-complete: A decision problem is P-complete if it is in P and every problem in P can be reduced to 

it by an appropriate reduction. 

NP: NP stands for non-deterministic polynomial time; it is a superset of P and contains the decision 

problems for which an efficient, polynomial time verifier exists [1]. In other words, given an instance 

of a decision problem where the answer is “yes”, its validity can be verified in polynomial time. Still, 

it is unknown whether a “good”, polynomial time solution exists for any problem within the NP-P 

class, and this issue actually poses one of the most elusive unresolved problems in computer 

science, coined as the “P versus NP” problem. There is no concrete evidence pointing to one way or 

the other, yet the general belief within the scientific circles is that P≠NP, which implies that, possibly, 

there are problems in NP that are harder to compute (super-polynomial or exponential time) than to 

verify (polynomial time)[1]. 

NP-complete: NP-complete problems are considered the “hardest” decision problems within NP 

[5]; a problem X is classified as NP-complete if X belongs in NP and every other problem Y within NP 

can be polynomially reduced to X [8]. An alternate definition that highlights this inherent difficulty is 

the following: “Assume X is a NP-complete problem. If X is solvable in polynomial time, then P=NP” 

[1]. 

NP-hard: NP-hard is the class of problems that are at least as hard as the hardest problems in NP 

[8], but not necessarily in NP [6]. A more formal definition is the one found in [7], which states that a 

decision or optimization problem H is NP-hard when for every problem L in NP there is a polynomial 

time reduction from L to H [8]. Another equivalent definition is to require that there is a polynomial 

time reduction from an NP-complete problem G to H [7]. Consequently, if an optimization problem H 

has an NP-complete version G then H is NP-hard. The above imply that NP-hard class is not limited to 

decision problems (i.e. not limited to NP), but also includes function problems, optimization 

problems etc. 

NP-easy: A problem which polynomially reduces to some problem in NP is called NP-easy [8]. 

NP-equivalent: An NP-equivalent problem is a problem that is both NP-hard and NP-easy [8]. 

Many more complexity classes exist, such as BPP, ZPP and RP, defined using probabilistic Turing 

machines; BQP and QMA are defined using quantum Turing machines; ALL is the class of all decision 

problems. 

1.2   USEFUL THEORETICAL DEFINITIONS 

Combinatorial Optimization: Combinatorial optimization is one of youngest and most active areas 

of discrete mathematics, having its roots in combinatorics, operations research and theoretical 

computer science [8]. Its main theoretical as well as practical focus is to aid the choice of a “best” 

(i.e. optimal) configuration of objects or set of parameters in order to achieve a specific goal, the set 

being finite, and typically constituting an integer set, a permutation set, or a graph. Thus, in the case 
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of combinatorial optimization problems, the solution is chosen from among a finite set of possible 

solutions [9].   

Local & Global Optimum: Consider an optimization problem, be it continuous or discrete, where 

the objective is to choose some arbitrary variables, collected into a vector x, in order to maximize or 

minimize an objective function f(x), which in turn might or might not be subject to constraints. A 

vector x satisfying all the constraints set (if those exist) is called feasible. A particular feasible choice 

x, say x*, is called optimum if no other feasible choice gives a higher (or equivalently lower in the 

case of minimization problems) value of f(x), and a strict optimum if all other feasible solutions give 

a lower (or equivalently higher in the case of minimization problems) value of f(x). An optimum x* is 

called local if the comparison is restricted to other feasible choices within a sufficiently small 

neighborhood of x*. If the comparison holds against all other feasible solutions, no matter how 

distant, the optimum is called global [10]. 

Metric Spaces & Metrics: A metric space is a set X that has a notion of the distance d(x,y) 

between every pair of points x,y ∈ X. A metric on a set is a function that satisfies the minimal 

properties expected of a distance. A more formal definition is the following: “A metric d on a set X is 

a function d : X x X -> R such that for all x,y ∈ X: (1) d(x,y) ≥ 0 and d(x,y) = 0 if and only if x=y, (2) 

d(x,y)=d(y,x) (symmetry), and, (3) d(x,y) ≤ d(x,z)+d(z,x) (triangle inequality). A metric space 

(X,d) is a set X with a metric d defined on X [11][34]. 

Hamiltonian Cycle: A Hamiltonian cycle, also called a Hamiltonian circuit and defined on a graph 

G= (V,E), is a graph cycle (i.e. a closed loop) through a graph that visits each one of its nodes E 

exactly once. A graph possessing a Hamiltonian cycle is said to be a Hamiltonian Graph [30]. 

1.3   ABOUT RECONFIGURABLE COMPUTING & FPGAs 
Field-Programmable-Gate-Arrays (FPGAs) are (re)programmable semiconductor devices able to 

perform all kinds of computational operations and implement any algorithm that can be executed on 

a classic CPU. This is highlighted by the fact that they can be programmed to emulate the 

functionality of the latter; such an example is the Microblaze softcore RISC CPU from Xilinx, which, 

among others, is capable of running lightweight Linux distributions. FPGAs are usually employed to 

accelerate computationally intensive applications through the extensively parallelized mapping of 

the involving algorithms on the former’s fabric. 

Contrary to Application-Specific-Integrated-Circuits (ASICs), FPGAs are available off-the-self, 

completely prefabricated and ready to be customized by the end user according to the specific 

needs of the target application. The aforementioned customization usually comes in the form of 

Hardware Description Languages, such as VHDL and Verilog, enabling the user to model the desired 

design in the RTL abstraction, which, in turn, is provided as input to an appropriate EDA tool tasked 

to map the RTL model to the structural components of the FPGA fabric; this is the industry-standard, 

long-proven methodology to reprogrammable custom hardware design, its final step being the 

generation of the bitstream used to actually program the FPGA itself.  

Historically, FPGAs were an evolution of PLDs, commonly termed as CPLDs, introduced in the mid-

1980s as larger, compared to their PROM, PAL and GAL ancestors (all PLDs), capacity platforms for 

implementing digital logic. The novel and main differentiating point between PLDs and FPGAs was 
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that the former concentrated primarily on two-level, sum-of-products implementations of functions, 

while the latter were optimized for multi-level circuits, thus enabling them to perform much more 

complex functions and at greater density. By the early 1990s, their capabilities along with their 

capacity and speed had largely grown, and some of their first and major usage scenarios were logic 

emulation and rapid system prototyping, since the offered prototyping rate was much higher than 

MPGAs [13,15]. 

Since then, their commercial acceptance has been on an ever-constant and sharp increase, 

rendering them the driving force of the field that has become known as Reconfigurable Computing - 

performing computations through the utilization of spatial, high-performance, hardware-based, 

programmable architectures by exploiting the inherent parallelization and flexibility traits of fast, 

fine-grained computing fabrics, mainly FPGAs [13,14,15]. Lately, the prominent role of FPGA-based 

reconfigurable systems in High Performance Computing (HPC) applications has been highlighted by 

the dawn of FPGA-based supercomputers, such as [16] and [17], as lower-power and higher-

performance alternatives to classic x86-based multiprocessor servers. 

The range of applications where the power offered by FPGAs or FPGA-based systems has been 

successfully harnessed and proven is literally vast: signal processing, cryptography, 

arithmetic/numeric computing, scientific computing, networking, military applications, financial 

computations, molecular dynamics modeling, telecommunications, NP-hard optimization, 

bioinformatics, medical applications, multimedia processing, big data processing and more 

[12,15,18,19,20,21,22,23]. 

Recently, the escalating system-on-chip design complexity combined with the huge silicon 

capacities, has begun pushing the design community to raise the level of abstraction beyond RTL 

[24]. This has led to the emergent of High Level Synthesis (HLS) tools which enable the user to 

capture the desired functionality in the form of a high-level language used traditionally for software 

programming, such as C and C++ [24,25,26,27], thus largely simplifying and most importantly 

speeding up the process of designing custom hardware architectures.  Heterogeneous computing is 

also encouraged through the support of relevant software frameworks, such as Khronos’ OpenCL 

[28]. 

The basic structure of an FPGA consists of the following elements: a) Look-Up Tables (LUTs), b) Flip-

Flops (FFs), c) Wires and d) I/O pads; generally, the first two components, along with a few RAM-

based storage elements and other auxiliary logic, form the CLB, which, in turn, constitutes the basic 

building block of modern FPGAs. Additional components include: Embedded memories, clocking 

resources for driving the FPGA fabric at different clock rates, off-chip memory controllers interfacing 

to external memories, DSP blocks and more [70]. 
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Figure 1: Basic FPGA Architecture, ©Xilinx Inc. Image extracted from Xilinx’s “Introduction to FPGA Design 
with Vivado HLS” Guide (UG998) [70]. 

 

Figure 2: Contemporary FPGA Architecture, ©Xilinx Inc. Image extracted from Xilinx’s “Introduction to FPGA 
Design with Vivado HLS” Guide (UG998) [70]. 

Major FPGA vendors include Xilinx Inc. and Altera Corporation; the latter is a subsidiary of Intel since 

2015. 
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1.4   MOTIVATION 
Since the work presented in this thesis is based on previously conducted research [29], the motives 

that led to its materialization were manyfold: 

 Examine how much FPGA technology has evolved in the past decade in terms of fabric capacity 

as well as attainable clock speeds, by conducting practical experimentations with high 

performance hardware architectures. 

 Examine how the hardware architecture proposed in [29] scales for problem instances larger 

than those previously considered, as well as the performance gains obtained for previously 

tested instances through their implementation in next generation FPGAs and utilization of 

modern design suites. 

 Explore the strengths and weaknesses of recently (re)introduced hardware design flows, 

specifically the HLS design flow, and examine how it fares against the classic HDL approach. 

This comparison is conducted in terms of quality of results as well as temporal and knowledge 

requirements, by utilizing both design flows during the implementation phase of the 

aforementioned architectures, always within the context of a parallel 2-OPT solver. 

 Explore how the implemented architectures compete against corresponding state-of-the-art 

implementations of the 2-OPT algorithm, both serial (CPU based) and parallel (GPU based) as 

well.     

1.5   CONTRIBUTION 
The contribution of this thesis is as follows:  

 Provides an experimentation-based comparison of the performance characteristics of multiple 

variations of the 2-OPT algorithm, including its original, randomized and symmetrical versions, 

in terms of key metrics such as quality of results, runtime, convergence rate and more; this 

entailed the implementation of the aforementioned 2-OPT variants in software (MATLAB), and 

their subsequent thorough testing against multitudes of TSP instances. 

 Provides an experimentation-based assessment of the ways in which the performance 

characteristics of the 2-OPT algorithm are affected by the replacement of the Euclidean 

distance-utilized by Euclidean 2-OPT as its primary cost function-with its squared 

approximation (squared Euclidean distance). 

 Constitutes-to the author’s knowledge-one of the very few works on the mapping of 2-OPT-as 

well as of TSP-related heuristics in general-in reconfigurable logic, since the literature review 

of this thesis indicated that most of the ongoing research on the parallelization of such 

algorithms focuses on evolutionary-based heuristics and their optimization for execution in 

high-performance GPUs. 

 Provides a multi-level comparison of the two most prominent approaches to hardware design, 

namely the HLS-flow and the RTL-to-Bitstream flow, based on the design and implementation 

of a 2-OPT hardware architecture along with the utilization of both the aforementioned flows; 

these are realized through the Vivado HLS and Vivado IDE tools respectively, which constitute 

part of the Xilinx Vivado Design Suite. 

 Investigates the extent to which an FPGA-based 2-OPT solver can be considered as a viable 

and effective alternative option to equivalent high-performance solutions implemented either 

in software (CPU) or in hardware as well (GPU). 
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 Investigates the performance-wise viability of an FPGA-based TSP metaheuristic embedding 

the 2-OPT hardware architecture under consideration; the resulting design could be possibly 

realized as a software/hardware co-design mapped on a heterogeneous system such as the 

Convey series of hybrid supercomputers.  

1.6   THESIS STRUCTURE 
The rest of the thesis is organized as follows: Chapter 2 introduces the fundamentals of the Traveling 

Salesman Problem (TSP), such as its roots, formal definition, complexity, and solution methods in a 

compact, yet descriptive manner. Chapter 3 cites some of the most prominent work on parallel 

implementations of TSP heuristics, mainly hardware based, and more specifically GPU based 

implementations. Next, Chapter 4 presents the functionality of the 2-OPT algorithm upon which the 

implemented hardware architectures are based and compares it with some popular variations, while 

providing metrics representative of their intrinsic characteristics. Chapter 5 constitutes an in-depth 

presentation of the aforementioned hardware architectures and the design tools utilized, along with 

the workflow, major milestones in the development of the former and some key findings concerning 

the latter. Chapter 6 provides the implemented hardware architectures’ evaluation along with 

related performance and quality results and compares them to the state-of-the-art in 2-OPT solvers. 

Finally, the thesis concludes with its summary along with possible future extensions and additions, 

Chapter 7.   
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CHAPTER 2: APPROACHING THE TSP 
This chapter constitutes a brief overview of the fundamentals of the Traveling Salesman Problem, 

and as such it does not cover every aspect of it or delve into specifics, since that would be completely 

out of the scope of the thesis. For more, in-depth information on the TSP, the reader is encouraged to 

consult the references provided in this chapter. 

2.1   INTRODUCTION & CHAPTER STRUCTURE 
Initially, the chapter provides a brief history of the origins of the TSP as well as a descriptive 

formulation of the problem itself. A more formal and mathematical formulation based on graph 

theory follows. Next, the complexity of the TSP along with some of its most common cases is 

presented. The chapter concludes with a concise description of the most frequently encountered 

approximation algorithms (Heuristics) along with their major categorizations. A report on the 

practical applications of the TSP is also provided. 

2.2   ORIGINS OF THE TSP 
The exact origin of the name “Traveling Salesman Problem” was and remains rather obscure, since 

no kind of authoritative document providing any concrete evidence towards its creator exists, 

although it appears to have been discussed informally among members of the mathematical society 

for decades [3,31]. One of the earliest formulations of the problem dates back to 1832, in a German 

handbook made by a traveling salesman himself who roamed in the greater regions of Germany and 

Switzerland. Within the aforementioned manual, he describes the importance of good tours and 

actually presents a TSP tour through 45 German cities, which the author in [31] believes that could 

be optimal. While the handbook was brought into the attention of the TSP community in 1983, it is 

widely believed that the first work on TSP was published in 1930 by the name the “Messenger 

Problem” [6], while the first reference containing the actual TSP term is considered to have emerged 

in 1949. In [3] and [31] it is concluded that sometime around the 1935s and most probably at 

Princeton, the TSP took on its name officially, thus indicating the initiation of its active exploration. 

2.3   WHAT IS THE TSP? 
The Traveling Salesman Problem (TSP) is one of the most significant and well-studied problems in 

combinatorial optimization [8,31].Its definition, simply put, is the following: “The Traveling Salesman 

Problem is to find a routing of a salesman who starts from a home location, visits a prescribed set of 

cities and returns to the original location in such a way that the total distance travelled is minimum 

and each city is visited exactly once” [6]. A more succinct definition states that: “Given n cities and 

their intermediate distances, find a shortest route traversing each city exactly once” [31]. 

2.4   RESOLVING TSP TO GRAPHS 
Aside from the existence of many forms of definitions, such as quadratic representation, integer 

linear representation, linear permutation representation, binary programming task and more [6,32], 

TSP can also be expressed using terminology and notions from graph theory, as a problem defined 

over a graph G. This alternative formulation also aids with the presentation of some commonly 

encountered cases of the TSP in the section below. The definition follows: Let G=(V,E) be a 

complete graph (directed or undirected) and F be the family of all Hamiltonian cycles (circuits) in G. 

For each edge e ∈ E a cost ce is prescribed. Then the TSP is to find a tour (a Hamiltonian cycle) in G 
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such as the sum of the costs of the tour edges is the least possible. Let the node set V= {1,2,…,n}. 

The matrix C= (ci,j)nxn is called the cost matrix (or distance matrix or weight matrix), where the (i,j)th 

entry cij corresponds to the cost of the edge joining node i to node j in G [6,32,34].    

2.5   TSP CASES 
There are two major categorizations of the TSP: The first refers to the nature of the graph G upon 

which the problem is defined, or alternatively to the nature of the associated cost matrix C. This in 

turn distinguishes the TSP into two categories – Symmetric and Asymmetric [6,32]. The second 

aforementioned major categorization is based on whether the cost function utilized (and the 

subsequent cost matrix C) satisfies the triangle inequality or not, thus creating two more categories 

for the TSP, namely Metric and Non-Metric/General [8,32]. 

Symmetric TSP (STSP): The Symmetric TSP is one of the most common cases, where the distance 

between each city pair is independent of the direction the salesman travels. In the graph 

representation of the problem, this translates in that the associated graph G= (V,E) is considered 

complete and undirected, or, equivalently that the cost matrix C is symmetric, i.e. C(i,j) = C(j,i). 

[6,32]. 

Asymmetric TSP (ATSP): Contrary to the definition above, the distance between each city pair is 

dependent of the direction the salesman travels, thus implying that the associated graph G= (V,A) is 

directed and the accompanying cost matrix C is asymmetric, i.e. C(i,j) ≠ C(j,i). The ATSP is a 

generalization of the STSP; every ATSP can be reduced to STSP simply by doubling the number of 

cities/nodes and while introducing distances of negative values [6,32]. 

Metric TSP: In Metric TSP, the inter-city distances, i.e. the cost matrix C, satisfies the triangle 

inequality [8], which means that C(i,j) ≤ C(i,k)+C(k,j) for all i, j, k. Simply put, this ensures that a 

direct path between two cities/vertices is at least as short as any indirect path. In particular, this is 

the case of planar problems for which the cities/vertices are points Pi= (Xi,Yi,) within the 2D or 

higher-order plane. A special, widely adopted and much studied case of Metric TSP is the Euclidean 

TSP, where the cost function is the Euclidean distance, also known as L2 norm, other notable case 

being the Rectilinear TSP (Manhattan distance) [6,32,34]. 

Non-Metric/General TSP: In this case the above premise does not hold, and so Non-Metric TSP is 

the case where the cost matrix C does not obey the triangle inequality, and in fact, C does not even 

have to express distance; for example, G’s edge weights could actually express the cost of airline 

tickets, where it is often the case that taking an indirect route is less expensive than a direct route.  

Other Cases: Many other, not so commonly encountered variations of the TSP exist, the most 

notable being the MAX TSP, Bottleneck TSP, TSP with Multiple visits (TSPM), the Messenger 

Problem, Clustered TSP, Generalized TSP, The m-salesman TSP and others. For more information on 

these non-typical cases, the reader is encouraged to refer to [6]. 

In the work presented in the following chapters, the case considered is the Symmetric Euclidean TSP. 

2.6   TSP COMPLEXITY 
The Traveling Salesman Problem in its general case is an NP-hard problem [3,6,8], while its decision 

version, formulated in [1] as “Given a set of n cities, the distances between all city pairs and a limit D, 
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is there a tour visiting each city exactly once of length less than D?”, is NP-complete [5].Moreover, 

two of the former’s most commonly studied special cases, namely the Metric TSP and Euclidean TSP, 

are also proven to be NP-hard [8,33]. Either way, a direct corollary of this fact is that, assuming the 

widely believed conjecture that P≠NP, any algorithm designed to find optimal tours should have a 

worst-case running time that grows faster than any polynomial [36], thus implying a super-

polynomial or exponential growth rate, as the size of the input problem instance increases. Despite 

the recent advances in both the fields of High Performance Computing and combinatorial 

optimization theory, the aforementioned fact renders the exact solution of large or very large 

problem instances a non-trivial matter, especially when temporal constraints are introduced [6].  

2.7   HEURISTICS AND APPROXIMATE SOLUTIONS 
The premise stated above has, for many decades now, led the TSP community towards the 

development of an abundance of computational methods and algorithms, whose main purpose is to 

find near-optimal solutions/tours in a fast and efficient manner when compared to the resources 

required by exact solvers [35]. In fact, the research on that particular area has been so active and 

prolific, that an immense number of such heuristics exist, covering a broad range of the two key 

parameters commonly referred to in their evaluation: running time (Time Complexity) and output 

tour quality (distance above optimal) [36]. In the section below follows a brief presentation of the 

main categories of TSP heuristics along with their respective representatives.  

Construction Heuristics: Construction heuristics are the simplest and weakest type of heuristics, 

and as such they tend to provide low quality (far from the global optimum) tours, thus rendering 

them as a means to generate a “good enough” starting tour for more powerful heuristics, such as 

Improvement Heuristics, reviewed next [32]. Still, their purpose is quite important, as the success of 

the latter depends heavily on the quality of the initial solution [6]. The intrinsic characteristic that all 

algorithms within this category share, is that they all create tours from scratch, successively adding 

new nodes/cities at each step and terminating when a solution (not necessarily a good one) is found, 

never trying to improve it [6,35,37,38]. In other words, a tour is successively built and parts already 

built remain in a certain sense unchanged throughout the execution of the algorithm [39]. Notable 

construction heuristics include Nearest-Neighbor heuristics, Insertion heuristics, Spanning Tree 

heuristics, Savings Methods, Greedy Algorithms, Christofides and Strip Heuristic [35,36,37,38,39]. 

Improvement/Local Search Heuristics: In the - admittedly vast - TSP bibliography, there are 

many definitions for the Improvement/Local Search Heuristics, the most descriptive being, to the 

author’s point of view, the one found in [36]: “…Such an algorithm is specified in terms of a class of 

operations (exchanges or moves) that can be used to convert one tour into another. Given a feasible 

tour, the algorithm then repeatedly performs operations from the given class, so long as each 

reduces the length of the current tour, until a tour is reached for which no further operation yields 

an improvement (a locally optimal tour). Alternatively, this can be viewed as a neighborhood search 

process, where each tour has an associated neighborhood of adjacent tours, i.e. those that can be 

reached in a single move, and one continually moves to a better neighbor until no better neighbors 

exist”. This native characteristic has coined Improvement heuristics the term “Local Search 

heuristics” [6]. It should be noted that, although commonly mistaken, Local Search is an algorithmic 

principle rather than an algorithm itself [8]. Notable representatives within this category are k-opt 
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heuristics (k ∈ {2, 2.5, 3, 4+}) and their variants, Lin-Kernighan (LK) and its variants/implementations 

and Node & Edge Insertion [6,8,32,35,36,37,38,39]. 

Metaheuristics: This last category contains the most powerful, effective and complex (both 

algorithmically and temporally) heuristics. The main differentiating point between Improvement 

heuristics and Metaheuristics is that the former terminate as soon as a (not necessarily good) local 

optimum is reached, while the latter allow a more thorough exploration of the solution search space 

[6], by enabling uphill moves (i.e. moves that increase the current tour length) in order to escape 

from local optima. Some algorithms achieve that functionality by performing random modifications 

to the tour once a locally optimal one is found, while others use more elaborate schemes. In some 

occasions, uphill moves are allowed even before a local optimum is reached [35,36]. In general, 

there are two major subcategories: Local Search-based Metaheuristics and Evolutionary 

Metaheuristics. As their name implies, the former utilize simple Improvement/Local search 

heuristics and modify a single active solution at a time, while the latter are based on heuristics 

derived from natural evolutionary processes and generate new solutions from a collection of 

multiple simultaneously active solutions (the population) [6]. The most frequently encountered 

Metaheuristics are Simulated/Quantum Annealing, Tabu Search, Iterated Lin Kernighan, Iterated 

Local Search, Large-Step Markov Chains, Genetic Algorithms, Ant Colony Optimization and Min-Max 

Ant System [6,35,36,38,40,41]. 

2.8   PRACTICAL TSP APPLICATIONS 
The practical, real life applications of the TSP span across a wide range of disciplines, some of which 

are the following: network and VLSI design, machine vision, scheduling and corporate planning, 

distribution management, logistics, database query design, frequency assignment, computational 

biology, vehicle routing, job sequencing and X-ray crystallography. 
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CHAPTER 3: RELATED WORK 

3.1   INTRODUCTION & CHAPTER STRUCTURE 
This chapter focuses on the review of related work on parallel implementations of TSP heuristics, 

and shows that most of the recently conducted as well as ongoing research on the aforementioned 

subject is based on Graphics Processing Units-GPUs, with only a few, mostly older, works utilizing 

FPGA-based solutions. Despite the fact that it is single-threaded, and since part of the comparisons 

made later in the thesis depend on it, a brief presentation of the Concorde TSP software package, 

the state-of-the-art in TSP solving, is also provided. 

3.2   PARALLEL PROGRAMMING APIs 
Parallelism is considered the future of computing since, over the past decade, processor 

architectures have embraced it as an essential and in some cases sole pathway to enhancing 

performance. Technical challenges faced in attaining ever increasing clock speeds within a certain 

thermal envelope, physical and financial issues regarding shrinking chip manufacturing processes 

further, stemming from pushing silicon beyond its capabilities and the huge R&D costs associated as 

well as a possible end of Moore’s law in the near future, has led CPU and GPU manufacturers to turn 

to spatial solutions, thus signaling the rise of multicore designs. On the other hand, GPUs have 

evolved from fixed function rendering devices and graphics engines to a highly parallel 

programmable processor featuring peak arithmetic and memory bandwidth that substantially 

surpasses those offered by CPUs. Moreover, the fact that in modern high performance computer 

systems CPUs are usually paired with powerful GPUs, has led to the desire to harness the combined 

computational power of both subsystems. All these factors have necessitated the emergence of 

appropriate APIs and frameworks that will enable computer scientists and programmers alike to 

easily access the vast computing resources available in modern machines. Below follows a brief 

description of the most common parallel and heterogeneous programming APIs and frameworks: 

OpenMP: OpenMP (Open Multi-Processing) is a portable API that supports cross-platform shared 

memory multiprocessing programming in C, C++ and FORTRAN, on the majority of the available 

computing platforms, processor architectures and operating systems, and features a set of compiler 

directives, library routines and environment variables that affect run-time behavior. The OpenMP 

Architecture Review Board (ARB), the nonprofit consortium that manages OpenMP, published the 

first API specifications in 1997. 

CUDA: CUDA® is a general purpose parallel computing platform and programming model 

introduced by NVIDIA Corp. in 2006,that allows software engineers to effectively leverage the 

parallel computing capabilities of NVIDIA GPUs, by exposing and providing explicit and direct access 

to the GPU’s virtual instruction set, multi-level memory architecture and computational elements. It 

is designed to work with a variety of general-purpose high level programming languages, such as C, 

C++, FORTRAN and Python. 

OpenCL: OpenCL (Open Computing Language) is an open, royalty-free framework based on the 

C/C++ programming languages, for creating applications that execute on heterogeneous parallel 

processing platforms consisting of CPUs, GPUs, DSPs (Digital Signal Processors) and FPGAs, providing 

programmers with portable and efficient access to the computational power offered by such 
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complex systems. OpenCL originates from Apple Inc. which submitted it in 2008 as a proposal to the 

non-profit technology consortium Khronos Group, responsible from then on for its maintenance.  

3.3   METAHEURISTICS ENCOUNTERED IN THIS CHAPTER 

Ant Colony Optimization (ACO): ACO is a metaheuristic that is inspired by the foraging behavior 

of real ants that enables them to find the shortest paths between food sources and their nest. In the 

process of finding the shortest path the ants are guided by the level of a substance called 

pheromone that each ant deposits on the ground while moving between food sources and the nest. 

Stronger pheromone concentrations indicate a short route traversed by a significant number of ants, 

and likely to be traversed again. [46]. 

Genetic Algorithms (GA): In GAs, a population of solutions evolves over time, yielding a sequence 

of generations. A new population is created from the old one by using a process of reproduction and 

selection, where the former is often performed by crossover and/or mutation and the latter decides 

which individuals form the next generation. A crossover operator combines the features of two 

parent solutions in order to create children. Mutation operators simply change one solution. The 

idea is that, analogous to natural evolution, the quality of the solutions in the population will 

increase over time [60].  

Simulated Annealing (SA): SA originates from statistical mechanics and the annealing technique 

involving heating and controlled cooling of materials. It transposes the process of annealing to the 

solution of an optimization problem: the objective function of the problem, likened to the energy of 

a heated material, is minimized using a controllable parameter of the algorithm that is associated 

with a fictitious temperature level. SA is a technique that can be applied to any minimization 

process, based on either random or deterministic iterative steps, using simple heuristics such as 2- or 

3-OPT [46].    

Iterated Local Search (ILS): In ILS, one iteratively builds a sequence of solutions generated by an 

embedded heuristic such as 2- or 3-OPT, leading to far better solutions than if one were to use 

repeated random trials of that heuristic, such as in RRHC. The nature of this approach implies that 

there must be only a single chain (i.e. solution) that is being followed and improved throughout the 

execution of the metaheuristic, thus excluding population based algorithms such as GA [41].  

Random Restart Hill Climbing (RRHC): RRHC is similar to ILS, with the exception that once a local 

minimum is reached, a random-rather than a carefully selected one-permutation is applied to the 

tour, before restarting the embedded heuristic. After a sufficient number of iterations, the operation 

comes to a stop and returns the best tour found, i.e. the one with the smallest length. RRHC can be 

considered as a simplified version of ILS. 

3.4   PARALLEL IMPLEMENTATIONS OF TSP (META) HEURISTICS 

3.4.1   SOFTWARE (CPU) BASED IMPLEMENTATIONS 
One of the earliest attempts in the parallelization of TSP heuristics can be found in [42], where a 

parallel version of the 2-OPT algorithm was implemented on a Parsytec GCel consisting of 512 

transputers. It provided “good” speedups against the classic/serial 2-OPT, while retaining the same 

quality of results. More recent works, such as [42], [43] and [44], exploit the highly parallelizable 

nature of ACO and Genetic Algorithms together with the parallelization capabilities of the OpenMP 
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framework in order to provide better quality of results than simpler heuristics while lowering the 

execution time. In [42], speedups of up to nearly 6.0x are provided when compared with the serial 

implementation, with an efficiency factor of 0.74, running ACO on 8 processors on a SGI Origin2000 

parallel machine. In the theoretical evaluation performed in [43] is estimated that the speedup 

achieved when running OpenMP-based ACO is linear within the range of 1 to 26 CPUs. In [44], the 

efficiency of the parallel computation of the TSP using GA on a multiprocessor cluster is investigated; 

it concludes that a ~4x speedup is attainable in a 1000-city problem, when utilizing 5 CPUs, with a 

reported efficiency of 83%. In 2008, [45] suggested parallel computational models for several TSP 

metaheuristics, such as ACO, GA and SA, that utilize multiple independent runs on a multicomputer 

platform comprising of 10 Intel Pentium 4 3.2GHz workstations, and exploiting a hybrid MPI + 

OpenMP approach. Its results, based on three TSPLIB instances of size  51, 150 and 439 cites, show 

that both parallel ACO and SA are capable of achieving speedups of up to 9.0x compared to serial 

execution, while parallel GA reached a maximum of 5.5x. It concludes that for larger problems, 

speedups are still attainable though decreasing, due to additional communication overhead. 

3.4.2   HARDWARE BASED IMPLEMENTATIONS, FPGA-BASED 

To the author’s knowledge, there are few published works on the mapping of TSP heuristics on 

FPGAs that provide concrete evaluation results. In 2002, I. Skliarova et al. [47] presented an FPGA-

based implementation of GA for the TSP and its industrial applications. The proposed architecture 

was evaluated on a Xilinx XCV812E Virtex FPGA, where only the most computing-intensive part of 

the GA was assigned to the hardware, while the rest of the algorithm’s functionality was executed 

on an 800MHz Pentium III based host machine. The results obtained by this hybrid approach were 

quite impressive, achieving a maximum speedup of almost 50.0x for a 724-city instance, although it 

is noted that the system’s performance depends heavily on the problem instance under 

consideration as well as some key algorithm parameters. A similar work also based on GA and using 

the TSP as a case study is the one found in [48]. The proposed architecture was designed using a 

High-Level programming language (Handel-C) and implemented in a Xilinx XCV2000E Virtex-E FPGA. 

The attained speedups vary from about 1.5x to almost 39x when compared to a serial 

implementation running on a 1.7GHz Pentium 4 machine, depending on the problem instance. It is 

concluded that, as far as execution time is concerned, the FPGA implementation is superior to the 

software one when the problem size increases or when better solutions (nearer to the optimum) 

must be found. In 2007, I. Mavroidis et al. [29] presented a high performance and resource-efficient 

FPGA-based 2-OPT solver, able to exploit the fine-grained parallelism made available by the 

proposed notion of Symmetrical 2-OPT moves. The hardware architecture was evaluated on a Xilinx 

XC2VP100-6 Virtex 2 Pro FPGA, and was shown that it was capable of achieving speedups ranging 

from 60x to almost 100x when compared to the corresponding software-based serial 

implementation, and, on average, a 6x speedup compared to the state-of-the-art Concorde TSP 

software package, both executed on a 3GHz Pentium 4 based machine. 

3.4.3   HARDWARE BASED IMPLEMENTATIONS, GPU-BASED 

As is mentioned in this chapter’s introduction, the emphasis of the recently conducted and ongoing 

research on the parallelization of TSP heuristics has been on their mapping in highly parallel GPU 

kernels. Thus, there exist many such published works, ranging from simple improvement heuristics 

to metaheuristics such as Local Search schemes and evolutionary algorithms. For the sake of clarity, 

the review is presented in a categorized manner. 
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k-opt: In [49] and [50], K. Rocki et al. present high performance CUDA/GPU implementations of 

both the 2-OPT and 3-OPT improvement heuristics. The results, obtained by evaluating their 

proposed kernels on a 1536-streaming processor NVIDIA GeForce GTX 680 GPU using 13 TSPLIB 

problem instances ranging in size from 100 to 4461 cities, show that speedups up to 26x (1.53 

TFLOPS) are achievable compared to a 32-core CPU or 500x when the sequential algorithm is 

concerned. They note that the performance gains of 3-OPT are higher than those of 2-OPT due to 

the fact that its increased complexity leads to more efficient utilization of the GPU’s hardware. It is 

concluded that, as far as GPU computing is concerned, the number of streaming processors 

constantly increases, while the on-chip cache/shared memory limitations remain almost unchanged, 

thus imposing its treatment as a scarce resource.  

Random Restart Hill Climbing & Iterated Local Search: In [51] (2011), MA O’neil et al. present a 

CUDA-based implementation of RRHC using 2-OPT moves for determining high–quality solutions to 

the TSP. Their approach is based on the logical assumption that by running hundreds of thousands of 

times the 2-OPT heuristic on randomly permutated starting tours of a given TSP instance, an optimal 

or near-optimal solution is bound to be found. Indeed, their results show that 105 random restarts 

are enough to yield the optimal solutions for four out of the five 100-city TSPLIB instances tested. 

The proposed implementation exploits both inter- (independent randomly permutated instances of 

the problem) as well as intra- (move evaluations within a given randomly permutated instance of the 

problem) 2-OPT solver, termed “climber”, parallelism. The kernel was evaluated on a 448-streaming 

processor NVIDIA Tesla C2050 GPU capable of supporting 14336 simultaneous climbers, and yielded 

a throughput of 20 billion 2-OPT move evaluations per second, similar to this delivered by a 

corresponding 256-thread CPU-based implementation running on 32 8-core 2GHz Intel Xeon CPUs. 

When compared to the sequential implementation executed on a 2.53GHz Intel Xeon CPU, the 

speedup achieved was 62x. It is noted that the proposed implementation is memory-bound, since 

the limited amount of on-chip cache did not allow the evaluation of problem sizes larger than 100 

cities. A refinement of the aforementioned work by the same authors can be found in [52] (2015), 

where a more efficient exploitation of the hierarchy of the available hardware resources combined 

with the utilization of a more recent and powerful NVIDIA K40 GPU with 2880 stream processors, led 

to a throughput increase from a maximum of 20 to 60 billion 2-OPT move evaluations per second 

and an 8x speedup when compared to the equivalent OpenMP implementation running on 20 

2.7GHz Intel Xeon cores. This new version also removed the previous limitation on the problem size, 

supporting problem instances with more than 15000 cities.  

K. Rocki et al. [53] (2012), based on the work conducted in [51], proposed a similar implementation 

in which they managed to relax the limitation imposed by the on-chip caches on the maximum 

supported problem size (from 100 cities to 6000 cities), by using them to store the cities’ coordinates 

instead of pre-calculated inter-city distances, and computing the latter on-the-fly. Despite the 

aforementioned fact, their evaluations on the same GPU as in [51] showed that the proposed 

implementation was up to 90% slower than [51], due to the lack of intra-climber parallelization 

exploitation and the performance hit induced by the constant computation of inter-city distances. In 

[54] (2013), the same authors presented a refinement of their previous work [53], where they 

considered the case of Iterated Local Search with 2-OPT moves. It was decided to parallelize and 

accelerate on the GPU only the local search itself (i.e. a single run of the 2-OPT algorithm) since 

profiling showed that 90% of the ILS execution time is spent exclusively on it. The aforementioned 
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limit on problem sizes was completely overcome through an appropriate ordering of the city 

coordinates and the utilization of extra structures, rendering the proposed implementation capable 

of solving arbitrarily large problem instances, in the range of 700K plus cities. The evaluation on a 

CUDA-enabled NVIDIA GeForce GTX 680 GPU showed that the proposed implementation was 5 to 45 

times faster than the equivalent OpenCL-based parallel implementation running on a 6 core 3.3GHz 

Intel Core i7 3960X CPU. It is concluded that while the algorithm reaches very good solutions in less 

than a second for problem instances up to about 7500 cities, its main disadvantage is that it still 

requires a significant amount of time to reach the first local minimum in case of larger instances.   

Another published work related to those already mentioned is [55], which yet again proposes 

parallelization strategies for the ILS metaheuristic, but this time the latter is combined with 3-OPT 

moves instead of 2-OPT utilized in the works previously discussed. The authors describe several 

CUDA-based parallelization models which were evaluated on an NVIDIA Tesla C2050 GPU. The 

experimental results, although highly dependent on the dataset under consideration (size-wise), 

showed that performance was maximized when the on-chip cache was more efficiently utilized, the 

accesses to global memory kept at a minimum and when more worker threads were dispatched, 

since the latter was necessary to hide the memory latency. Again, the small amounts of on-chip 

cache proved the limiting factor in the maximum supported problem instance. 

Genetic Algorithm: In [56], N. Fujimoto et al. present a method to efficiently map GA on GPU using 

the CUDA API. It is noted that in order to maximize the performance gains, the off-chip memory 

access latency must be hidden, which in turn implies that, even though only about 30K can be 

simultaneously active, hundreds of thousands of threads must be dispatched for execution, so as 

when a number of them is temporarily stalled due to dependencies, others, until then inactive, can 

begin/resume execution. In other words, ideally, the GPU should remain constantly saturated, and 

the authors accomplish that by parallelizing not only the GA in its metaheuristic level, but also the 

underlying crossover operator as well as the embedded 2-OPT local search. The experimental results 

showed that for problem sizes ranging from about 100 to almost 500 cities, speedups from 9x to 24x 

are attainable, when compared to the equivalent serial implementation running on a 3GHz Intel 

Core 2 Duo E6850 CPU. The evaluation platform was an NVIDIA GeForce GTX 285 GPU. A similar 

work can be found in [57] by S. Chen et al. who, as stated, intended to develop a CPU-based GA 

metaheuristic for the TSP and then parallelize it with CUDA on GPU for performance gains. The 

proposed implementation was evaluated on an NVIDIA Tesla C2050 GPU, and the speedups achieved 

where characterized as “insignificant” due to the limitations imposed on the efficient utilization of 

the available computing resources by the applied synchronization solution.   

Ant Colony Optimization: In [58], C. José M. et al. present a novel parallel implementation of ACO, 

in which the two main stages of the algorithm, namely Tour Construction and Pheromone Update, 

are both GPU-accelerated, contrary to the usual approach of implementing the former in GPU and 

the latter in CPU, thus parallelizing both. New models for both stages, aiming to provide improved 

mapping efficiency, are also proposed and evaluated, since the authors note that the existing ones 

exhibit many weaknesses, such as very low GPU utilization, serialization bottlenecks and more. The 

proposed kernels were evaluated on an NVIDIA Tesla M2050 CUDA-enabled GPU using a set of 

benchmark instances from the TSPLIB library, obtaining speedups up to 29x when compared to serial 

execution, depending on the dataset used. Another work on the parallelization of ACO can be found 

in [59] by A. Uchida et al. where an efficient CUDA-based implementation, able to tackle many of the 
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issues and shortcomings inherent to GPU computing is proposed. Optimizations applied include the 

maximization of the on-chip cache usage while keeping the global, off-chip memory accesses to a 

minimum, as well as the introduction of a new, less computing-intensive stochastic method for 

determining ant movement. In order to hide the high latency of global memory and increase the 

attainable bandwidth, memory coalescing, the technique of simultaneously accessing consecutive 

addresses is applied. The proposed implementation was evaluated on a 512-streaming processor 

NVIDIA GeForce GTX 580 GPU, with the experimental results showing that speedups ranging from 

7.5x to 44x were achieved, compared to the sequential version executed on a 2.8GHz Intel Core i7 

860 CPU. The tested TSPLIB instances included problem sizes from 198 up to 2392 cities. It was also 

noted that some key parameters of the CUDA API, such as block size and number, play a major role 

in the resulting performance and thus should be chosen after careful experimentation. 

A comprehensive literature review on the role of GPUs in discrete combinatorial optimization, 

referring to some of the works presented in this chapter plus more, can be found in [60]. 

3.5   THE CONCORDE TSP SOLVER 
The Concorde TSP Solver is probably the most well-known and one of the best CPU-based exact 

solvers for the Symmetric TSP to date [32], freely available for academic research use (source code 

plus precompiled executables) [61]. It is written in ANSI C and consists of roughly 130000 lines of 

code spanning across more than 700 functions, thus rendering it highly customizable, permitting 

users to create specialized codes for TSP-like problems. Concorde was the result of the long-term 

collaboration between D. Applegate, R. Bixby, V. Chvatal and W. Cook [62], who began its 

development most probably during the late 1980s. Since its initial release, in the early 1990s, it 

gradually gained the acclaim of the TSP community, as it was the first (and in some cases the only) 

solver that managed to successfully obtain the optimal solutions to all 110 problem instances within 

the TSPLIB library of TSP datasets, the largest consisting of 85900 vertices and stemming from a VLSI 

application [63]. Besides from an efficient exact TSP solver, Concorde also includes a great number 

of highly optimized heuristics for the TSP, such as Greedy, Nearest Neighbor, Boruvka, Chained Lin-

Kernighan, 2/3-OPT and more. It should be noted that, although Concorde is available both as source 

code as well as in a precompiled executable, the latter’s GUI interface does not provide access to the 

full range of the supported heuristics. The last official release of Concorde was in 2003. For an in-

depth analysis of Concorde’s underlying architecture and its employed algorithms, the reader is 

encouraged to refer to [3], written by its creators. 
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CHAPTER 4: THE 2-OPT IMPROVEMENT HEURISTIC 

4.1   INTRODUCTION & CHAPTER STRUCTURE 
This chapter presents the 2-OPT improvement heuristic along with some very similar variations. 

Their functionality is explained while their performance characteristics are evaluated and analyzed 

through the scope of multiple metrics, such as tour quality, effectiveness and more. Next, the focus 

is shifted towards the Random Restart Hill Climbing (RRHC) scheme, in order to examine how the 

Symmetrical 2-OPT variant fares when combined with the aforementioned metaheuristic. The effect 

of utilizing the square of the Euclidean distance-instead of the Euclidean distance itself-as the cost 

function on the behavior of 2-OPT, using the Symmetrical variant as a case study, is assessed 

afterwards. Finally, the chapter concludes with the presentation of the fine-grained parallelism 

offered by the Symmetrical 2-OPT variant. As was mentioned in the end of the Chapter 2, in section 

2.5, the work presented in this thesis concerns the Symmetric Euclidean TSP case, thus 2-OPT is 

approached and examined under that specific scope. 

4.2   2-OPT AT A GLANCE (2OPT) 
2-OPT is one of the oldest and probably the most basic improvement heuristic for the TSP, proposed 

by G. A. Croes in his 1958 paper titled “A Method for solving Traveling-Salesman Problems” [64], 

although the notion of the 2-OPT move itself had already been introduced in 1956 by M.M. Flood 

[65,34,36]. Over the years, 2-OPT managed to gain wide recognition and acceptance within the TSP 

community, due to the fact that it yields impressive results in terms of both tour quality and running 

time, considering that its functionality is exceptionally simple; it incrementally improves an initial 

tour by applying a series of length-reducing tour modifications, known as “2-OPT moves”, until no 

further such modifications can be found, i.e. a local optimum is reached, in which case the resulting 

tour is considered “2-optimal” [37]. A 2-OPT move deletes two edges, thus breaking the tour into 

two separate parts, and then reconnects those paths in the other possible way, which is equivalent 

to reversing the order of the cities between those edges (segment reversal) [29]. 

4.3   2-OPT MOVE EVALUATION 
This section demonstrates the process of evaluating whether a 2-OPT move is length-reducing or 

not, through an example: Consider a tour T already defined over a given TSP instance represented as 

a graph G= (V,E) containing an arbitrary number of cities/vertices, which are, in turn,  presented as 

a collection of points within the 2D Euclidean space. Now consider four specific vertices of G, namely 

A, B, C, and D. In the tour T, these vertices are connected through 2 separate edges, namely E1 and 

E2 as follows: Edge E1 connects vertices A and B, while edge E2 connects vertices C and D. These 

vertices are then deleted and the aforementioned nodes are reconnected the only other possible 

way that yields a new complete TSP tour T’: A is connected with C through edge E1’ and B is 

connected with D through edge E2’.  

Next, in order to assess if the move made yields length-reducing results, the change in tour length 

when transitioning from T to T’ must be computed. There is no need to compute the length/weights 

of every edge in E though, since all vertices, with the exception of those involved in the 2-OPT move, 

have kept their relative distances unchanged (tour reversal). Thus, the only edges involved in the 

aforementioned computation are E1 and E2 from T and E1’ and E2’ from T’. Finally, the proposed 

2-OPT move is length-reducing if and only if  
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The “Sum of lengths of proposed edges E1’ and E2’” minus the “Sum of lengths of their previous 

versions E1 and E2” is negative. More formally if and only if 

Delta= (length(E1’) + length(E2’)) - (length(E1) + length(E2)) < 0   => 

Delta= (distance(A,C) + distance (B,D))  - (distance(A,B) + distance(C,D)) < 0 

Since the 2D Euclidean case is assumed, function distance() refers to the Euclidean distance or L2 

norm, which, considering two points K, L in the 2D Euclidean space, is calculated as 

distance (K,L)= √(Kx − Lx)2 + (Ky − Ly)2 

4.4   2-OPT COMPLEXITY 
The worst-case running time of a straightforward 2-OPT implementation is exponential, and this 

holds even for Euclidean instances [8]. Thus, supposing that the number of cities/nodes within a 

certain TSP instance equals N, then the cost of finding a single improving move is Θ(N2) assuming all 

possible N*(N-1)/2 moves must be considered (true 2-optimality) [32,38]. If the actual number of 2-

OPT moves occurring in a full run of the heuristic, which is theoretically about Θ(NlogN), is taken into 

account, then the overall time increases to a figure more closely resembling Θ(Ν3logN) [6,36]. Many 

workarounds have been proposed to tackle this issue, though some of them give up the guarantee 

of true 2-optimality and/or increase the algorithm’s spatial complexity. Such techniques include 

heavy pruning of legal moves, “don’t look bits”, utilization of sophisticated structures such as k-d or 

black-red trees, preprocessing to generate neighbor lists and other auxiliary structures and more 

[29]. The experimental results conducted in the related review of Johnson and McGeoch [36] show 

that when such workarounds are exploited, the runtimes actually observed for the 2-optimization 

phase are definitely subquadratic and no worse than O(N1.2). In this thesis the straightforward 2-OPT 

implementation is considered. 

4.5   2-OPT TOUR QUALITY 
On instances that fulfill the triangle inequality, the worst-case approximation ratio of 2-OPT is 

O(4√𝑁), which means that the worst achievable local optimum is within a factor of O(4√𝑁) of the 

global optimum, where N equals the number of cities within a given problem instance.  In the case 

that Euclidean distances are considered, the aforementioned ratio becomes O(logN) [66]. Related, 

more experiment-oriented studies have shown that the tours produced by 2-OPT are on average 

about 5% above the Held-Karp bound [38]. The Held-Karp bound is itself an approximation to the 

length of the optimal solution of a given problem instance; very useful when evaluating the empirical 

performance of heuristics, as its computation is much faster than solving the instance under 

consideration to optimality and then computing the optimal tour length.   

4.6   A GRAY AREA 
Up until this point, the reader has intentionally not been provided with an explicit description of 2-

OPT’s functionality, due to the fact that there seems to be a major ambiguity in the TSP bibliography 

concerning a key aspect of its behavior. More specifically, based on the literature review of this 

thesis, most of the papers that approach 2-OPT and/or the TSP in general in a theoretical manner, 

such as [32,34,35,38], imply more or less directly that a length-reducing move is always applied, as 

soon as one is found, at which point the heuristic resets and a new iteration begins. On the contrary, 

the papers that refer to parallel implementations of 2-OPT or to metaheuristics that embed it, such 
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as [50] and [52], state explicitly that at every iteration all the possible moves are evaluated in order 

to find and apply the one that yields the best results (i.e. reduces the tour length the most).  G. 

Reinelt [39] and M. Hahsler [37] also suggest the latter. 

4.7   CLARIFICATION & 2-OPT STRATEGIES 
It turns out that both the approaches described above are valid [6]. The one that seeks the best 

move is referred to as the “best improvement” strategy, while the other is referred to as “first 

improvement”. It is noted that normally, practical implementations do not use the best improvement 

strategy but rather rely on the latter, since first improvement saves running time and often yields 

better results (quality-wise). These two approaches will be from now on referred to as 2OPTFIRST and 

2OPTBEST (first improvement and best improvement respectively). 

 

Figure 3: 2OPTFIRST pseudocode. 

 

Figure 4: 2-OPTBEST pseudocode. 

2OPT-FIRST
CONSIDER A TOUR T OF LENGTH N

PROCESS 2OPT_FIRST(T)
START:
FOR EVERY i IN RANGE 1 TO N-2

FOR EVERY j IN RANGE i+2 TO N-1
-> COMPUTE E1 EDGE LENGTH (DISTANCE(i,i+1)).
-> COMPUTE E2 EDGE LENGTH (DISTANCE(j,j+1)).
-> COMPUTE E1' EDGE LENGTH (DISTANCE(i,j)).
-> COMPUTE E2' EDGE LENGTH (DISTANCE(i+1,j+1)).
-> COMPUTE DISTANCE DELTA ((E1'+E2')-(E1+E2)).
IF {DELTA IS NEGATIVE}

-> APPLY THE LENGTH-REDUCING MOVE BY REPLACING EDGES E1 AND E2
     WITH E1' AND E2' RESPECTIVELY.
-> GOTO START.

END_IF
END_FOR

END_FOR
END PROCESS

2OPT-BEST
CONSIDER A TOUR T OF LENGTH N

PROCESS 2OPT_BEST(T)
START:
-> SET THE CURRENTLY MAXIMUM NEGATIVE CHANGE IN TOUR LENGTH TO ZERO.
FOR EVERY i IN RANGE 1 TO N-2

FOR EVERY j IN RANGE i+2 TO N-1
-> COMPUTE E1 EDGE LENGTH (DISTANCE(i,i+1)).
-> COMPUTE E2 EDGE LENGTH (DISTANCE(j,j+1)).
-> COMPUTE E1' EDGE LENGTH (DISTANCE(i,j)).
-> COMPUTE E2' EDGE LENGTH (DISTANCE(i+1,j+1)).
-> COMPUTE DISTANCE DELTA ((E1'+E2')-(E1+E2)).
IF {DELTA IS LESS THAN THE CURRENTLY MAXIMUM NEGATIVE CHANGE IN

                        TOUR LENGTH}
-> UPDATE CURRENTLY MAXIMUM NEGATIVE CHANGE WITH DELTA.
-> STORE THE CORRESPONDING INDICES i, j IN BEST_i, BEST_j. 

END_IF
END_FOR

END_FOR
IF {AT LEAST ONE LENGTH-REDUCING MOVE WAS FOUND DURING THE SEARCH}

-> APPLY THE BEST LENGTH-REDUCING MOVE STORED IN BEST_j, BEST_j. 
-> GOTO START.

END_IF
END PROCESS
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4.8   THE RANDOMIZED VARIANT (R2OPT) 
As it can be inferred from the pseudocodes above, 2-OPT evaluates moves in a strictly deterministic 

manner, always starting from the first position of the tour-containing structure (a simple array in the 

case considered here) and proceeding sequentially from that point on. A contrasting approach is to 

choose the two edges which are candidates for deletion in a non-deterministic fashion, i.e. pick a 2-

OPT move at random. The 2-OPT variant that evaluates moves in this form is termed Randomized 2-

OPT (R2OPT from now on). R2OPT has no BEST strategy; if the randomly chosen move is length-

reducing it is always applied.  

 

Figure 5: R2OPT pseudocode. 
 

4.9   THE SYMMETRICAL VARIANT (S2OPT)  
This section describes the Symmetrical 2-OPT variant, as proposed in 2007 by I. Mavroidis et al. [29].  

The very purpose of the design of Symmetrical 2-OPT (S2OPT from now on) was the uncovering of 

fine-grain parallelism and its subsequent exploitation through an efficient FPGA implementation. 

Having the aforementioned objective, the algorithm, besides the desired high-level functionality, is 

largely defined as a set of hardware-oriented structures and operations along with the schedule 

upon which the latter act on the former. Thus, for the time being, only an abstract overview of 

S2OPT is presented, as the hardware specifics are a matter of the next Chapter, Chapter 5.   

S2OPT resembles 2-OPTFIRST in the sense that a) at each iteration any length reducing move is 

applied, not just the best one, and b) it evaluates moves in a strictly deterministic manner as well. 

The main differentiating points between these two cases are that a) S2OPT applies all the available 

length-reducing moves discovered within a given iteration and b) it evaluates moves in a 

considerably different pattern than the one utilized by 2-OPT in general. The name given to the 

algorithm by its authors possibly provides an insight to the intra-move relation.  

R2OPT
CONSIDER A TOUR T OF LENGTH N

PROCESS R2OPT(T)
START:
-> RANDOMLY CHOOSE TWO EDGES E1 AND E2 BY GENERATING TWO UNEQUAL RANDOM INTEGERS i, j
     WITHIN AN APPROPRIATE RANGE.
//THE PSEUDOCODE SECTION BELOW CONSIDERS THE CASE THAT (i<j). AN EQUIVALENT SECTION COVERS
//THE OPPOSITE CASE (NOT SHOWN HERE).
-> COMPUTE E1 EDGE LENGTH (DISTANCE(i-1,i)).
-> COMPUTE E2 EDGE LENGTH (DISTANCE(j,j+1)).
-> COMPUTE E1' EDGE LENGTH (DISTANCE(i-1,j)).
-> COMPUTE E2' EDGE LENGTH (DISTANCE(i,j+1)).
-> COMPUTE DISTANCE DELTA ((E1'+E2')-(E1+E2)).
IF {DELTA IS NEGATIVE}

-> APPLY THE LENGTH-REDUCING MOVE BY REPLACING EDGES E1 AND E2 WITH E1' AND E2'
     RESPECTIVELY.

END_IF
IF {A LENGTH REDUCING MOVE IS NOT FOUND WITHIN N^2 CONSECUTIVE EVALUATIONS}

-> GOTO END.
ELSE

-> GOTO START.
END_IF
END:

END PROCESS
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The following excerpt provides an illustration and the definition/description of Symmetrical 2-OPT 

moves, extracted from [29]. 

Consider two tour segments, SegmA and SegmB, each consisting of a given ordering of the tour’s 

cities. A set of segments (or equivalently their corresponding 2-OPT moves) are defined as 

symmetrical segments (or symmetrical 2-OPT moves), if and only if: 

“For each segment SegmA of the set (except the smallest one), segment SegmB that consists of the 

same cities except the two cities at the boundaries of SegmA, is also part of the set. For example, if 

SegmA= {C1…C100} is in the set, then SegmB= {C11…C99} will also be in the set. Taking this further, if 

we assume that SegmA is the largest segment in the set, then the set will consist of segments 

{C10…C100}, {C11…C99}, {C12…C98}, down to whichever segment is the smallest.” 

 

Figure 6: Example of three symmetrical 2-OPT moves. Image extracted from [29]. 

The figure above displays a tour consisting of 8 cities, presented as a sequence of numbers which 

represent their position within the starting tour, along with three possible symmetrical moves. The 

matrix shows the modifications incurred to the initial tour after the application of one, two or all 

three of the aforementioned moves. 

With careful observation, two key points, largely influencing the characteristics of the derived 

hardware architecture, arise from the example above: a) “After the application of any number of the 

symmetrical moves under consideration, each city will either remain in its original position within 

the starting tour, or swap positions with its symmetrical city; two cities are considered symmetrical if 

they are at the two ends of one of the symmetrical segments”, and b) “Whether the cities at the two 

ends of a specific segment will keep their positions or swap them, depends only on whether an even 

or odd number of segment reversals are applied on them. Therefore the number of the segment 

reversals can be counted by considering only the segments that these cities are part of.” 

It should be noted that, as is probably evident in the example tour displayed in the figure below, 

reversing tour segment {C3…C7} is equivalent to reversing the remaining tour segment {C8, C1, C2}. 

Thus, S2OPT, during its search for length-reducing segment reversals only considers segments that 

consist of up to half the total number of cities. 
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Figure 7: Application of a 2-OPT move. Image extracted from [29]. 

S2OPT’s serialized pseudocode is cited below. Due to the fact mentioned at the beginning of this 

section, its presentation is fairly abstract as it hides most of the architecture/implementation-

specific functionality. 

 

Figure 8: S2OPT abstract pseudocode. 

At this point it should be noted that in the following chapters only the S2OPT case is considered. The 

rest of the variants (including the original) have been presented here for the sake of a holistic 

approach to the subject. 

S2OPT
CONSIDER A TOUR T OF LENGTH N

PROCESS S2OPT(T)
-> SET PHASE TO A.
START:
FOR EACH SYMMETRICAL-CITY-PAIR WITHIN THE CURRENT TOUR'S N/2 FIRST CITIES (i IN RANGE 1 TO N/4)

-> COMPUTE E1 EDGE LENGTH (DISTANCE(i,(i-1)).
-> COMPUTE E2 EDGE LENGTH (DISTANCE((N/2-i+2),(N/2-i+1)).
-> COMPUTE E1' EDGE LENGTH (DISTANCE((i-1),(N/2-i+1))).
-> COMPUTE E2' EDGE LENGTH (DISTANCE(i,(n/2-i+2)).
-> COMPUTE DISTANCE DELTA ((E1'+E2')-(E1+E2)).

END_FOR
-> COMPUTE THE RESULTING LENGTH-REDUCING SYMMETRICAL-SEGMENT-REVERSALS BASED ON THE
     REVIOUSLY COMPUTED DELTAs.
-> COMPUTE THE CORRESPONDING LENGTH-REDUCING SYMMETRICAL-CITY-PAIR SWAPS.
-> APPLY THE AFOREMENTIONED LENGTH-REDUCING SWAPS.
IF {PHASE EQUALS A}

-> PERFORM PREDEFINED TOUR MODIFICATION A.
-> SET PHASE TO A'.
-> GOTO START.

ELSE
-> PERFORM THE INVERSE OF THE PREDIFINED TOUR MODIFICATION A, A'.
-> SET PHASE TO A.

END_IF
-> PERFORM PREDEFINED TOUR MODIFICATION B.
IF{A LENGTH-REDUCING MOVE IS NOT FOUND WITHIN N CONSECUTIVE ITERATIONS}

-> GOTO END.
ELSE

-> GOTO START.
END_IF
END:

END PROCESS
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4.10   THE TSPLIB TSP DATASET LIBRARY 
Due to the significant scientific interest towards the TSP, which began to emerge right after its 

introduction in the 1940s, a huge number of works ranging from theoretical studies to algorithm 

proposals and high performance implementations started to amass. It quickly became evident that a 

set of standard TSP instances was needed so as to enable researchers and computer scientists 

worldwide to compare, assess and evaluate the performance characteristics of their proposed works 

with those of others. The most prominent solution to this issue originated from G. Reinelt, who, in 

the late 1980s, began collecting TSP instances from various sources and of various types such as 

actual locations within cities or countries and VLSI design layouts. His work has been widely adopted 

by the TSP community and is considered as the standard TSP benchmark package. G. Reinelt’s TSPLIB 

[67] collection of TSP datasets can be found in [68]. 

TSPLIB’s dataset naming convention obeys the following pattern: {instance name/type}{number of 

cities within the dataset}. For example, berlin52 implies that the number of cities within the dataset 

is 52. 

4.11   PERFORMANCE ANALYSIS & COMPARISONS OF 2-OPT VARIANTS 
All the experimental work presented in the current as well as the following sections has been 

conducted by the author in MATLAB environment. 

At this point, it is probably evident that there exist quite a few different approaches to the 2-OPT 

algorithm, even in its original formulation. Thus, a question is raised concerning their performance 

characteristics, especially through a comparison point of view. The aim of the current section is the 

evaluation of the aforementioned approaches through various criteria such as tour quality, 

convergence rate and more. The obtained results, along with the appropriate annotations are 

presented below: 

4.11.1   TOUR QUALITY 

The first evaluation metric is the output tour length, expressed in the form of the percentage above 

the optimal length (error); a smaller value translates to higher quality tour, closer to the optimal, 

and vice versa. 
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Figure 9: Comparison of the quality of the tours yielded by the four 2-OPT implementations under 
consideration; 16 TSPLIB datasets are considered. 

 

Judging by the graph it is fairly evident that, as far as tour quality is concerned, the worst performer 

in all but one case is 2OPT in either its FIRST or BEST approaches, or even in both, while R2OPT along 

with S2OPT generally fare much better. On average, 2OPTBEST yields 13.6% longer than optimal tours 

while 2OPTFIRST follows with 13%. In a completely different league, S2OPT yields the second-best 

results, boasting an average error of 8.6%, closely trailing R2OPT which manages an average error of 

8%. 

Furthermore, although only by 0.6 pp.1, the experimental results verify the notion mentioned in 

section 4.7, that 2OPTFIRST often yields better results than 2OPTBEST.     

4.11.2   AVERAGE TOUR CONVERGENCE RATE 

The second evaluation criterion is the tour convergence rate managed by each approach. The 

convergence rate refers to how quickly, in terms of moves evaluated or elapsed runtime, the 

currently modified tour trends towards the local optimum. When a given dataset is considered, an 

increased convergence rate usually indicates decreased runtimes, and more importantly, it means 

that in the case that the heuristic is prematurely terminated, the 2-OPT implementation with the 

higher convergence rate will probably have managed to produce a higher quality tour than the one 

with the lower rate, and vice versa. 

In the following chart, an approximation of the average convergence rate achieved throughout the 

full run of each dataset is shown. The values are obtained by computing the average 

gradient/steepness of the “Tour Length - Moves Evaluated” figure (not shown here), through the 

following formula: 

                                                             
1 pp.: Percentage Point, the unit for the arithmetic difference of two percentages. 
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 K, the total number of length-reducing moves found/applied. 

 Yi, the tour length at the time when length-reducing move i is applied. 

 Xi, the total number of applied moves at the time when length reducing move i is applied. 

 

Figure 10: Comparison of the average convergence rate achieved by the four 2-OPT realizations under 
consideration, obtained through the gradient/steepness approximation; a high value indicates a high 

convergence rate and vice versa. 

 

The chart above clearly suggests that R2OPT converges much quicker than the rest of the variants, 

with 2OPTFIRST following far behind and S2OPT even more. 2OPTBEST’s strategy of always evaluating all 

possible moves at every iteration renders its convergence rate minimal compared to those of the 

rest. More specifically, R2OPT boasts a convergence rate of 87; 2OPTFIRST follows next with 29, while 

S2OPT ranks third, with a rate of 10. 2OPTBEST converges an order of magnitude slower, with a rate of 

0.2.    

4.11.3   TOUR LENGTH REDUCTION PER MOVE APPLIED 

The third metric provides, in a sense, an insight into “how effective the moves applied by each 

approach are”, by relating the total change in the tour length with the number of the applied moves. 
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This figure is obtained by calculating the change induced in the tour length by the application of each 

single move and then computing the average value. 

 

Figure 11: Comparison of the average reductions brought to the tour length by the application of each 
length-reducing 2-OPT move, among the four 2-OPT implementations under consideration; the reductions 

are expressed percent changes. 

 

The effect of 2OPTBEST’s strategy of always seeking for the best possible move is clearly visible, as 

each one of the moves it applies tends to reduce the tour length in a much greater extent than those 

of the rest of the implementations, whose results in this aspect are roughly the same. 2OPTBEST 

manages an average reduction of 1.5% per move, while R2OPT, S2OPT and 2OPTFIRST follow equally 

far behind, with 0.59%, 0.58%, and 0.49% equivalently.  

4.11.4   NUMBER OF EVALUATED MOVES 

The fourth and final metric is the total number of Moves Evaluated, provided here as a means of 

assessing runtime, since actual runtime measurements would not be representative of real-world 

performance, due to the limitations imposed on the latter by the MATLAB environment. 
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Figure 12: Comparison of the total number of 2-OPT moves evaluated by each 2-OPT implementation; a 
larger value indicates increased runtimes and vice versa. 

 

Both original 2OPT variants perform significantly more move evaluations prior to termination, a 

trend persistent in every dataset tested. S2OPT and R2OPT lead the way, with an average of 51300 

and 59273 evaluated moves respectively; 2OPTBEST and its sibling, 2OPTFIRST, follow orders of 

magnitude behind, with figures of 925728 and 1377528 respectively. 

An interesting result is that, contrary to the notion stated in section 4.7, 2OPTFIRST seems to be 

actually almost 50% slower than 2OPTBEST, and not the other way round.  

4.12   RRHC: A CASE STUDY WITH SYMMETRICAL 2-OPT (S2OPT) 
This section considers the performance evaluation of S2OPT when combined with, or more precisely, 

when embedded within a “lightweight” yet capable metaheuristic as is Random-Restart Hill 

Climbing, briefly described in section 3.3 of Chapter 3. Thus, in this case, the main metric of interest 

is the minimum error (best tour quality) achieved within the set of the executed trials/random-

restart-repetitions, and its numeric relation with the average error.  

The results obtained after 103 iterations are presented in the opposite page. 
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Figure 13: Performance assessment of the S2OPT-based version of the RRHC metaheuristic, in terms of tour quality; the 

latter is expressed as the percent-change of the final tours’ length when compared to the corresponding 
optimal. The AVG bars refer to the average final tour length obtained in each dataset, averaged over the 103 

performed runs; the MIN bars refer to the minimum tour length marked during the execution of the 
aforementioned runs. A lower error percentage translates to higher quality tour and vice versa. 

 

Observing the Minimum and Average Error bars, it is clearly evident that the combination of RRHC 

with S2OPT yields much better results than those managed by the latter alone. On average, the 

RRHC+S2OPT combination yields nearly 24 times or almost 7 pp. smaller errors. If the metaheuristic 

was allowed to execute for more iterations (105 for example), the obtained results should be even 

better, yet this assumption could not be efficiently evaluated due to the long run times induced by 

the MATLAB environment. 

As a side note, another useful inference is the experiment-wise affirmation of the fact mentioned in 

[39], which is that the quality of the results yielded by improvement heuristics largely depends on 

the quality of the corresponding input tours, thus signifying the importance of utilizing construction 

heuristics for the generation of “good enough” starting tours (Chapter 2, section 2.7). 
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4.13   THE SQUARE OF THE EUCLIDEAN DISTANCE AS THE COST FUNCTION 

(S2OPT)    
This section is dedicated to evaluating the employment of the squared Euclidean distance as the cost 

function-instead of the Euclidean distance itself-using S2OPT as a case study.  

The process of computing the squared Euclidean distance is the same as in the standard Euclidean 

distance with the exception that the final square root is not calculated. The aforementioned 

approach has been followed in [29] since, in the case of FPGAs, the calculation of the square root is 

computationally expensive and it is not easily mapped in hardware, thus requiring the utilization of 

complex IP cores, at least when the actual function and not an approximation of it is considered.  

Using an approximation to the Euclidean distance-such as its square-in a Euclidean problem instance 

is rather sub-optimal, as is usually the case when approximations in general are concerned. A first 

major issue is that the squared Euclidean distance does not obey the triangle inequality. A second 

issue is that when the square root is omitted, the super-linearly-growing quadratic function (f(x) 

=x2) utilized twice in the calculation of the Euclidean distance tends to “boost” larger values more 

than smaller ones.  

This trend can be trivially illustrated through the graph of the aforementioned quadratic function: 

 

Figure 14: Illustration of the behavior of the subquadratic function f(x)= x
2
. 

In order to determine the effects of this sub-optimality induced to the move evaluation procedure, 

two different approaches have been taken: Approach A examines the probability that a move is 

deemed length-reducing under the squared Euclidean cost function but not under the standard 

Euclidean and vice versa, while approach B assesses the performance of S2OPT when combined with 

the squared Euclidean distance metric and compares it to that of the standard S2OPT. 
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Approach A: The evaluation performed by approach A, described above, has been realized through 

the utilization of the MATLAB script located in the appendix; a related arithmetic example is 

provided as well. 

The results obtained show that out of the 106 total evaluated moves: 

 4.658% were applied in the standard Euclidean case but not in the squared Euclidean case. 

This percentage constitutes actual length-reducing moves that should have been applied but 

were not discovered in the squared Euclidean case. 

 4.628% were applied in the squared Euclidean case but not in the standard Euclidean case. 

This percentage actually constitutes length-increasing moves that were applied in the squared 

Euclidean case while they obviously should not have.   

Both events imply a loss in tour quality.  

Approach B: In order to assess the impact of the squared Euclidean metric on the overall 

performance of S2OPT, the exact same methodology as in the previous section (4.13) has been 

followed (averaging over 103 independent trials, resulting from the application of an equal number 

of random permutations to each dataset’s initial tour), except of course for the change in the cost 

function. 

 

Figure 15: Comparison of the average quality of the tours obtained by each metric. The quality is expressed 
in terms of the percent-change of the final tours’ length when compared to the corresponding optimal; a 

lower error percentage translates to a higher quality tour and vice versa. Results averaged over 103 
independent runs.    
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Figure 16: Comparison of the average number of length-reducing 2-OPT moves applied by each metric. 
Results averaged over 103 independent trials. 

 

Figure 17: Comparison of the average number of 2-OPT moves evaluated by each metric. Results averaged 
over 103 independent runs. 
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Comments: 

 As far as average tour quality is concerned, the squared Euclidean version performs notably 

worse than the standard version, in every problem instance; the actual severity of the error is 

dataset-dependent. The sole exception is the eil101 dataset where the minimum error (not 

shown here) is 0.7 pp. smaller. On average, squared Euclidean S2OPT yields errors 4.4 pp. 

larger than standard S2OPT.  

 Squared Euclidean S2OPT tends to evaluate as well as apply more moves than standard S2OPT; 

the former implies longer running times. The only exception to this is the pr107 dataset where 

standard S2OPT evaluated 5.5% more moves; on average, squared Euclidean S2OPT applies 

16.4% and evaluates 4.2% more moves than standard S2OPT. 

Despite the fact that squared Euclidean S2OPT performs in every aspect slightly worse than standard 

S2OPT, the thesis considers the former as well, so that a direct, performance-wise comparison with 

the original work [29] (comparison presented in chapter 6) is made feasible. 

4.14   AVAILABLE PARALLELISM OF 2-OPT VARIANTS 
As far as 2-OPT parallelization strategies are concerned, there have been proposed many relevant 

techniques such as Geometric Partitioning or Tour-based partitioning [36]. Yet, these constitute a 

kind of distributed, coarse-grain approach to parallelization, and as such they are not expounded 

since this thesis considers fine-grain approaches only. 

In this section, the parallelization options offered by the various 2-OPT implementations are 

discussed: 

2OPTBEST: The parallelism offered by 2OPTBEST lies in that the move evaluations can be performed 

simultaneously, since all the comparisons that need to be conducted are known a-priori due to the 

deterministic nature of the algorithm. The fact that at every iteration all possible moves are 

examined also contributes largely to its parallelization abilities, as it strengthens the predictability of 

its behavior. At the end of the evaluation stage, a reduction between all the length-reducing moves 

is required, in order to assess the one that yields the best results, apply it, and start the evaluation 

process again. 

2OPTFIRST:  Although 2OPTFIRST’s functionality closely resembles that of 2OPTBEST’s, the fact that the 

former applies the first length-reducing move encountered during the search instead of the best one 

incurs a loss to determinism, since the location of this move within the search space cannot be 

known a-priori. Thus, the parallelization abilities of 2OPTFIRST are inferior to those of 2OPTBEST.  

S2OPT: The same observations that are made on 2OPTBEST apply in the S2OPT case as well, with the 

exception that all length-reducing moves are applied, not just the most efficient one. Yet, this 

operation can still be performed in parallel due to the symmetry of the moves.  

R2OPT: Contrary to 2OPTBEST and S2OPT, R2OPT cannot be efficiently parallelized-on FPGA at least-

due to its intrinsic, highly non-deterministic move evaluation scheme, rendering it inappropriate for 

such an implementation. 
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Final Thoughts: Based on the aforementioned remarks, only 2OPTBEST and S2OPT are eligible for 

subsequent consideration; further investigation into each one’s intrinsic characteristics shows that 

the most capable-in terms of parallelization-implementation is S2OPT due to following findings:  

 S2OPT utilizes a much more consistent memory/tour access pattern enabled by the symmetry 

of the moves, a fact that largely simplifies the memory architecture requirements, which, in 

turn, leads to a cleaner and more capable-performance-wise-design. Apart from that, the 

symmetry of the moves defines distinct and independent pairs of cities, a fact that allows all 

the necessary city swaps to be performed within the same single cycle. 

 The reduction operation in S2OPT is computationally less demanding, since there is no need to 

assess the most efficient length-reducing move; if a move is length-reducing is applied anyway. 

This gives the ability to apply all the required city-pair swaps as soon as the evaluation stage is 

complete-even in a single cycle after it. 

 S2OPT was designed from the very beginning with the intention of uncovering fine-grained 

parallelism.  

 

The following chapter will cover, among others, the mapping of the Symmetrical 2-OPT variant in 

FPGA. 
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CHAPTER 5: S2OPT HARDWARE ARCHITECTURES & 

THE IMPLEMENTATION TOOLS 

5.1   INTRODUCTION & CHAPTER STRUCTURE 
The aim of the current chapter is the presentation of the software tools utilized throughout the 

preparation of this thesis along with an in-depth analysis of the implemented hardware 

architectures. More specifically, the chapter begins with a few words on the architecture emulator 

implemented in MATLAB, and then moves on to the concise description of the actual 

implementation tools, namely Vivado and Vivado HLS. A few remarks on their behavior and 

performance characteristics in relation to each other are also noted. The focus then shifts towards 

the comprehensive presentation of S2OPT’s VHDL- and HLS-based architectures; extensive, per-

module block diagrams for the former, and workflow, source code revisions and directives for the 

latter, are provided.     

5.2   THE MATLAB-BASED HARDWARE ARCHITECTURE EMULATOR 
A first major step towards the preparation of the thesis was the implementation of a software 

emulator of the hardware architecture under consideration. The implementation environment of 

choice was MATLAB, due to its extremely versatile data manipulation and viewing capabilities, 

convenient UI and easily accessible debugging and verification methods. On the other hand, a 

notable weakness of MATLAB is its reduced performance in terms of execution times when 

compared with the executables produced by other programming languages and associated 

toolchains, such as the combination of C with the highly optimized GNU GCC compiler. Yet this did 

not constitute a suspending factor since the emulator’s main objective was the functional 

assessment of the aforementioned hardware architecture and not its runtime performance 

benchmarking. 

The hardware architecture emulator’s role during the development of this thesis was of great 

importance due to the following factors: 

 Verify the correct apprehension of the hardware functionality as described in [29], and help 

quantify the extent to which the obtained results match those referred in the aforementioned 

source. 

 Verify that the hardware architecture operates as intended. 

 Expedite the hardware design and evaluation phase since it acted as a reference point. 

 Expedite the debugging process. 

 Aid in the assessment of a few parameters, important to the acceleration of the benchmarking 

process. 

 Act as a source for the extraction of the experimental results obtained in the previous chapter, 

which were fundamental for the assessment of S2OPT from a purely algorithmic point of view. 

5.3   THE XILINX VIVADO DESIGN SUITE 
The main software tools utilized during the preparation of the thesis, namely the Vivado Integrated 

Design Environment (IDE) and Vivado High Level Synthesis (HLS), are both components of the Vivado 



40 
 

Design Suite (DS) produced by Xilinx Inc., a software package aiming at the design, integration, 

implementation and evaluation of HDL-based hardware systems.  

The Vivado DS was introduced in April 2012 with the intention of replacing the aging, now 

discontinued Xilinx ISE Design Suite as the company’s mainline tool chain, mostly due to the latter’s 

inability to efficiently support the company’s newer, much larger and complex reconfigurable 

devices (FPGAs). Thus, Vivado DS is recommended by Xilinx for new system designs with 7-series and 

later products, while ISE offers support for the company’s legacy, pre-7-series devices.  

Besides being able to handle the latest FPGAs from Xilinx, Vivado DS also brings a broad range of 

improvements over its predecessor, such as the integration of many-previously separate tools-into a 

single intuitively designed environment, improved productivity, more user-friendly, flexible and 

interactive UI, and a revamped underlying engine yielding much faster response/compilation times 

and a wide variety of available optimization strategies. At this point, it should be noted that the 

aforementioned enhancements were actually noticed by the author during his 

occupation/interaction with the tool, and do not in any way constitute an advertisement.   

A short presentation of the utilized tools and design flows follows; a more elaborate discussion of the 

latter is found in the next chapter. 

Vivado IDE: Historically, the Vivado IDE constitutes an evolution of the PlanAhead tool included in 

the ISE DS since version 10.1. Currently, it is a standalone tool and the main design environment of 

the Vivado DS, incorporating all the functionality mentioned earlier in this section along with the 

traditional Register Transfer Level (RTL)-to-bitstream FPGA design flow and a newer system-level 

integration flow focusing on Intellectual Property (IP)-centric designs. 

Vivado HLS: Vivado HLS constitutes Xilinx’s approach to the High-Level Synthesis paradigm, briefly 

described in section 1.3 of Chapter 1. It enables the transformation of programs written in a high 

level language such as C, C++ and SystemC as well as OpenCL API C kernels into an RTL 

implementation that can be directly targeted into Xilinx-powered FPGAs, thus offering a design flow 

that completely bypasses the complex and time-consuming process of manually specifying RTL. The 

aforementioned transformation process can be either fully automatic or semi-automatic, by guiding 

the compiler towards a single or multiple desired output characteristics/goals through the 

exploitation of an extensive set of directives, able to largely influence the generated design in terms 

of throughput, latency, I/O interfacing, resource utilization and more. It should also be noted that 

the tool contains a host of ready-to-use libraries involving arbitrary precision data types, math, 

video/image processing, linear algebra, DSP functions and more. Its capabilities are of course far 

more than those mentioned here, but covering every aspect of them would be completely out of the 

thesis’ scope.  

A high-level illustration of both utilized design flows, namely the C-based HLS design flow, realized 

through Vivado HLS and the HDL-based RTL-to-Bitstream design flow realized through the Vivado 

IDE, is shown in the opposite page. 
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Figure 18: Abstract illustration of the two design flows under consideration. Left: HLS flow. Right: RTL-to-
Bitstream/HDL-based flow. 

 

5.4   ANALYSIS OF THE S2OPT ALGORITHM FOR FPGA IMPLEMENTATION  
In the previous chapter, the reader was presented with-among others-a brief and mostly abstract 

description of S2OPT’s functionality, mainly focusing on the notion of the symmetrical moves and 

the unique properties they possess. Before proceeding to the actual hardware architectures, a more 

elaborate study is due, so as to provide a smooth transition to the RTL representation and facilitate 

the correspondence between the algorithm’s functionality and the hardware.  

In order to begin, an illustration of the aforementioned functionality through the exploitation of the 

algorithm’s flow chart is required. Each process displayed within the chart, along with its available 
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Figure 19: Flowchart of the S2OPT algorithm. 
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At this point, it should be noted that throughout this section, the given TSP tour is considered as an 

abstract, linear 1D array containing, in an equally abstract representation, the tour’s nodes’/cities’ 

Euclidean 2D coordinates in the same ordering as defined by the tour. It is also considered that the 

two edges of this array are actually connected, in the sense that left or right circular shifts of the 

cities’ coordinates are possible. For the sake of vividness, an example tour of length N=16 is 

assumed. 

The reader should keep in mind that, as stated in the previous chapter, a 2-OPT move can be 

equivalently viewed as a tour segment reversal, and is treated as such. In the Symmetrical 2-OPT 

case, in which the tour segments are symmetrical in the sense defined in that chapter, the 

application of a given symmetrical 2-OPT move means that the cities located at the two edges of the 

corresponding symmetrical segment will either keep their position or swap it with each other. The 

same applies to the rest of the cities within that segment. If all N/4 symmetrical segments contained 

within a given segment of maximum length of N/2 cities (half the total number of cities as explained 

in Chapter 4) are considered, then practically, all moves applied by S2OPT can be reduced to the 

swapping of appropriate symmetrical-city-pairs. 

set_phase A/B: These do not constitute actual stages; they act as flow control flags and are utilized 

in order to provide a cleaner, more compact flow chart. In both cases, be it phase A or phase B, the 

same processes are executed. Yet there exists a distinction-from a theoretical point of view-on 

whether the algorithm is running phase A or B, explained in the shift_x sub-sections further down. 

compute_distances: The compute_distances stage is responsible for the calculation of the length 

of the two pairs of edges (E1, E2 and E1’, E2’) involved in the evaluation of each symmetrical move 

(or equally each symmetrical segment reversal). This is performed by computing the squared 

Euclidean distances between the appropriate pairs of the associated quadruple of vertices/cities. 

The aforementioned process is repeated for every symmetrical-city-pair within the first half-the 

maximum considered tour segment length-(8 cities in total in the example) of the tour array (4 

symmetrical-city-pairs, 4 repetitions). The move evaluations are completely independent and can be 

efficiently performed in parallel. 

find_shortcuts: This process’ functionality is fairly simple; it detects the actual length-reducing 

moves/tour-reversals among those evaluated in the previous stage (4 moves in the example), and 

marks them as such. The task is performed by computing the changes induced in the tour length 

from each move (the “Deltas” in the context of Chapter 4, where Delta= (length(E1’) + length(E2’)) - 

(length(E1) + length(E2))), and then checking whether the resulting quantities are negative or not. It 

is reminded that a negative Delta value implies a length-reducing move. As is the case with the 

compute_distances stage, the process discussed here can also be completely parallelized.  

compute_swaps: The aim of the compute_swaps process is the “translation” of the length-

reducing tour reversals, deemed as such in the previous stages, to the corresponding actually 

applied tour modifications, which are the symmetrical-city-pair swaps. This is made possible by the 

reasoning stated in section 4.9 of the previous chapter; once deemed length-reducing, a 

symmetrical-city-pair will swap positions if and only if the total number of tour reversals of all the 

symmetrical segments that the one under consideration is part of, including itself, is odd. Again, the 
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computation of the final symmetrical-city-pair swaps can be performed in parallel, although, for 

reasons that will become evident in the following sections, not always efficiently. 

update_tour: The functionality of the update_tour process is straightforward; it applies the 

previously assessed length-reducing symmetrical-city-pair swaps by performing the operations 

necessary to update the tour within the abstract 1D array so that it accurately reflects the 

modifications performed on it. The aforementioned procedure can too be efficiently parallelized. 

Before proceeding to the rest of the processes/stages, a clarification on the schedule upon which 

S2OPT evaluates the available moves is due. Since S2OPT only considers segments of a maximum 

length equal to half the number of cities within the tour, the total number of available move 

evaluations within a single iteration is equal to (N*(N-1)/2)/2. For the given example, where N=16, 

the total number of move evaluations is 16*15/4= 60. The algorithm splits these evaluations into 15 

groups of 4 symmetrical segments each. 

At each iteration the S2OPT begins with the evaluation of symmetrical segments of even lengths. 

shift_3QTL: In order to evaluate symmetrical segments of odd length, a left circular shift is 

performed to the tour array and more specifically to the segment consisting of the second, third, and 

final quarter of the array. After the completion of this process, all the steps described above are 

repeated. An example is shown below. 

 

Figure 20: Example application of the shift_3QTL process on a tour of length N= 16. 

 

shift_3QTR: After the evaluation of the symmetrical segments of odd lengths is complete, the 

inverse of the shift_3QTL operation, that is a right circular shift of the previously left-shifted 

segment, should be applied, in order to restore the cities in their original positions. 

shift_TR: Finally, in order to enable the evaluation of the rest of the groups of the symmetrical 

moves, the tour array as a whole is circularly right shifted. 

All three stages exhibit parallelism which can be exploited. 

The process discussed in all of the above stages is repeated until no length-reducing move is found 

for N consecutive iterations, at which point the algorithm terminates. 
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5.5   S2OPT VHDL-BASED ARCHITECTURE 
The hardware architecture discussed here is based on the corresponding description provided in [29]; 

the design of the former is intentionally similar to the latter due to the nature of the thesis, so as to 

enable a fair and an as accurate as possible comparison between the results obtained by both works. 

This section considers S2OPT’s VHDL-based architecture by presenting the block diagram of each 

hardware module implemented along with an appropriate description of its functionality, in a top-

to-bottom approach. In the case of control modules, a flow chart is displayed instead.  

It is noted that due to clarity considerations, the clock signal is not displayed in any of the 

aforementioned block diagrams; nevertheless, all of the modules discussed below are synchronous. 

The hardware architectures presented here were designed, implemented and evaluated in the Xilinx 

Vivado IDE environment. 

5.5.1   S2OPT TOP LEVEL (S2OPT MODULE) 

The algorithm’s Top Level module is located in the highest level of the design hierarchy, connecting 

the basic architectural subsystems together and providing an interface between the design’s I/O and 

external (sub)systems, such as auxiliary IP cores, larger designs, soft-core or embedded processors, a 

host system and more. 

Design Inputs: 

 clk: System clock. 

 RUN_S2OPT, 1bit: Inbound control signal indicating the initiation of the hardware execution. 

 DATA_IN, 30bit: The main input of the design, which are the coordinates of the tour’s cities. 

Design Outputs: 

 DATA_OUT, 30bit: The main output of the design, which are the coordinates of the tour’s 

cities. 

 OUTPUT_READY, 1bit: Outbound control signal indicating the completion of the hardware 

execution. 
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Block Diagram 1: Illustration of the Top Level module of the hardware design. 

The main components of the S2OPT module are three: 

 The Register Unit (RGU) 

 The Processing Unit (PRU) 

 The Main Control Unit (MCU). 

The RGU constitutes a set of registers whose main purpose is the storage of the coordinates of the 

tour’s cities during the execution of the hardware. The registers are inter-connected in such a way 

that allows the efficient mapping of the functionality defined by the four last stages of the S2OPT’s 

flowchart, namely the update_tour, shift_3QTL, shift_3QTR and shift_TR stages. 

The PRU contains a set of Processing Element modules (PEs) which implement the functionality 

defined by the first two stages displayed in S2OPT’s flowchart, namely the compute_distances and 

find_shortcuts stages. The third, the compute_swaps stage, is implemented by PRU’s Swap 

Generation Unit (SGU). 

The MCU is tasked with the supervision and synchronization of the two basic components presented 

above. It directly manages the RGU’s functionality, the communication between RGU and PRU as 

well as some basic parameters of the latter. Most of the operations conducted within the PRU are 

controlled by the PRU’s dedicated Local Control Unit (LCU). MCU also handles the loading and 

unloading of TSP tours to/from the RGU and provides some basic control-related interfacing to/from 

the design.    

When the MCU’s RUN_S2OPT input is asserted, it signals the RGU to start loading the TSP tour from 

its DATA_IN port. As soon as the loading completes, the former notifies the PRU to start the 

evaluation of the first group of symmetrical moves by accessing the appropriate city coordinates 

stored in the RGU. The aforementioned move evaluations are performed in parallel thanks to the 

multitude of PEs contained within the PRU. When this process finishes, the latter signals the RGU to 

perform the necessary length-reducing swaps and informs the MCU that the first phase of the 

iteration is complete. At this point, the MCU commands the RGU to execute the shift_3QTL process 
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and after that it notifies the PRU to begin with the second phase of symmetrical move evaluations. 

As soon as it finishes the MCU issues the shift_3QTR and shift_TR commands to the RGU, whose 

completion marks the end of an S2OPT iteration and the beginning of another. Upon successful 

termination of the algorithm’s execution, the MCU signals the RGU to unload the final tour to its 

DATA_OUT port and asserts the OUTPUT_READY output signal. 

5.5.2   REGISTER UNIT (RGU) MODULE 

As mentioned in the sub-section above, the RGU’s purpose is the storage of the coordinates of the 

tour’s cities. Since 2D Euclidean space TSP instances are considered, each city’s coordinates 

constitute of two components, namely x and y. For the datasets considered in the thesis, 15bits per 

component, i.e. 30bits in total are just enough for the representation of each coordinate pair; the 

two 15bit quantities are concatenated in a single, easily separated, 30bit entity. It does not matter 

which component (x or y) is mapped towards the LSB or the MSB end, as long as the decision is kept 

consistent throughout the design. The thesis considers a Little-endian approach and the mapping of 

the x component towards the MSB end. 

The RGU can be visualized as a horizontal 1D array of register modules termed CITYREGs, where 

each such module consists of a 30bit register along with auxiliary logic, namely multiplexers. The 

number of CITYREGs contained within the RGU is equal to the number of cities within the given TSP 

tour; furthermore there is a one-to-one mapping between the order in which the city coordinates 

are stored within the RGU’s CITYREGs and the actual order of the cities within the considered tour. 

The high-level block diagram shown below illustrates the aforementioned notion, where a tour of 

length N=16 is considered. More elaborate diagrams displaying the logic within each CITYREG along 

with its I/O signals and functionality are provided further down in the text. 

 

Block Diagram 2: Abstract illustration of the internal structure of the RGU; the rectangles numbered from 1 
to 16 are CITYREGs, while the (bi)directional arrows constitute their dedicated 30bit interconnections. The 

assignment of the color-coding to the terminology used later in the subsection is provided below: 
Black Arrows: T/T’,   Purple Arrow: V,   Orange Arrows: U 

Dark Blue Arrow: X,   Light Green Arrow: W,   Dark Green Arrows: Y 
Light Blue Arrows: Z. 
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CITYREG #1 holds the coordinates of the city currently first in the actual TSP tour under examination, 

CITYREG #2 the second, CITYREG #3 the third and so on. 

The lettering on the CITYREGs represents their type; there are five types in total, although their main 

structure is fundamentally the same in the sense that all CITYREGs contain a 30bit register. Their 

differences lie in the minor variations of the number or size of the contained multiplexers, their 

wiring, and the required control signals, dictated by their relative, fixed location within the RGU. 

The arrows represented are actual 30bit datapaths between pairs of CITYREGs; they are utilized for 

the efficient manipulation of the positions of the cities’ coordinates within the RGU, as required by 

S2OPT’s functionality. The direction of the arrows indicates the source and destination CITYREGs.   

Both the wiring corresponding to the aforementioned datapaths as well as the characterization of a 

CITYREG’s type are predetermined and fixed/specific for a given tour length N. The diagram above 

shows the exact wiring required for a tour of length 16, as well as the location of each type of 

CITYREGs within the RGU, relative to the tour length (displayed above the CITYREGs).    

Seven sets of datapaths/wires can be discerned, referred to as T, U, V, W (and W’), X, Y and Z. 

 T/T’: These datapaths are used as the main input and output of TSP tours to/from the RGU 

respectively (and the hardware design as a whole), and are only utilized during the 

initialization and completion stages of the hardware execution of S2OPT.  

 U/V: Datapath U is used during the shift_TR process; V is also used for the same reason, and it 

actually enables the RGU to act as a circular right-shift register. 

 W/X: Datapaths W and X, which are both bi-directional, implement the shift_3QTR and 

shift_3QTL processes. The former is also utilized during the shift_TR stage   [W: Light Green]. 

 Y: The-also bi-directional-datapath set Y is utilized during the update_tour process, enabling 

the swapping of the appropriate symmetrical-city-pairs. 

 Z: Datapath set Z exposes the contents of certain CITYREGs to the PRU. 

At this point the reader should be reminded that, as mentioned a few times already, the maximum 

symmetrical segment length that S2OPT evaluates is equal to half the length of the TSP tour under 

consideration (N/2= 8 in the example). The size of the rest of the symmetrical segments contained 

within the largest one, which are also evaluated, gets progressively smaller, until it reaches the 

smallest possible length of 2. There are N/4 (4 in the example) such symmetrical segments (or 

equivalently symmetrical-city-pair swaps, see previous section), each one involving two cities (N/2 

cities in total).  

The cities forming the aforementioned symmetrical-city-pairs are those found within the N/2 

first/leftmost CITYREGs, hence the dense and complex wiring of that particular area of the RGU; N/4 

bi-directional datapaths of type Y, and N/2 datapaths of type Z, connecting the CITYREGs that 

contain the symmetrical-city-pairs involved in the move evaluations/swaps with the PRU, which 

performs the actual computations required. A direct implication to this, is that in order to enable the 

PRUs to examine all the available symmetrical segments of length at most N/2, these segments need 

to be positioned-at some point of the hardware execution-within those special CITYREGs. 
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These are the CITYREGs of type A1, A, B and C. The D type CITYREGs, which are those located within 

the last/rightmost half of the RGU, are not accessed by the PRU; this implies that they do not 

perform symmetrical-city-pair swaps either. Thus their structure is simpler than the rest of the types. 

An in-depth presentation of the CITYREGs’ structure is considered next. 

As far as clock cycles are concerned, each one of the processes implemented by the RGU 

(shift_3QTL, shift_3QTR, shift_TR, and update_tour) execute in a single clock cycle thanks to the 

multitude of special purpose, dedicated inter-CITYREG datapaths. 

Before ending the current sub-section, a reference to the loading/unloading of TSP tours to/from the 

RGU is due. Both functions exploit the interconnections between the CITYREGs; the city coordinates 

are inserted one-by-one from T and are shifted inside the RGU using datapaths U and V and 

progressing one CITYREG at a time (one clock cycle). After N steps (N clock cycles), the TSP tour is 

completely loaded in the RGU. For a successful loading of the TSP tour, its insertion within the RGU 

must be performed in reverse order i.e. starting from the end of the initial tour. This certifies that 

when the loading process completes, the first city of the initial TSP tour under consideration will be 

positioned in the first/leftmost CITYREG, the second in the second and so forth. The unloading 

process utilizes the same method/wiring, outputting the final TSP tour one city at a time, through 

the output datapath T’. 

5.5.2.1   CITYREG MODULES 

This sub-section considers a more elaborate presentation of the CITYREG modules, focusing mostly 

on their internal structure and wiring. Since there is a great resemblance between the internals of all 

five types of CITYREGs, their common structural elements and wiring patterns will be discussed first. 

A type-specific discussion along with the corresponding block diagram illustrating the structures, 

wiring, and I/O ports follows. 

All CITYREGs contain a 30bit register which stores the city coordinates, and a 30bit 2:1 or 3:1 

multiplexer which enables the register’s input to interface with multiple datapaths; the latter is 

termed INPUT_MUX. Furthermore, all CITYREGs, with the notable exception of the D-type ones, 

employ a 1bit 2:1 multiplexer which renders the Write Enable (WE) port of the aforementioned 

register controllable by two separate sources, namely the MCU and the PRU; the former is in 

command during the shift_TR, shift_3QTR and shift_3QTL stages, while the latter during the 

update_tour stage. The 1bit multiplexer will be referred to as WE_MUX. 
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CITYREG_A1 module: This is the first/leftmost CITYREG within the RGU; it is a special case of the A-

type CITYREGs and a special case of CITYREGs in general, in the sense that, among others, it acts as 

the point for the insertion of TSP tours within the RGU (and the hardware design in general). Besides 

the loading of tours, CITYREG_A1 is involved in the update_tour and shift_TR stages. 

 

Block Diagram 3: CITYREG A1. 

 

CITYREG_A module: This type of CITYREGs are (N/4)-1 in number, are located within the 

first/leftmost quarter of the RGU; they are involved in the update_tour and shift_TR stages. 

 

Block Diagram 4: CITYREG A. 
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CITYREG_B module: There is a single CITYREG of type B, located in the (N/4)+1 position of the 

RGU; it is involved in the update_tour, shift_TR, shift_3QTL and shift_3QTR processes. 

 

Block Diagram 5: CITYREG B. 

CITYREG_C module: These CITYREGs, as is the case with A-type CITYREGs too, are (N/4)-1 in 

number and are located in the second-from-left quarter of the RGU; they are involved in the 

update_tour, shift_TR, shift_3QTL and shift_3QTR stages, similarly to the B-type ones. 

 

Block Diagram 6: CITYREG C. 

CITYREG_D module: There are N/2 D-type CITYREGs, located in the second/rightmost half of the 

RGU; they are structurally the simplest type of CITYREGs, involved in the shift_TR, shift_3QTR and 

shift_3QTL processes. 

 

Block Diagram 7: CITYREG D. 
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5.5.3   PROCESSING UNIT (PRU) MODULE 

The Processing Unit (PRU) module is the computational module of the hardware architecture, 

responsible for performing the move evaluations.  It reads the coordinates of the cities located in 

the borders of the symmetrical segments under consideration from the RGU, calculates the length-

reducing symmetrical swaps and commands the former to apply them. The main structural 

components of the PRU are three, namely the Processing Elements (PEs), the Swap Generation Unit 

(SGU) and the Local Control Unit (LCU); an introduction to each one’s functionality follows, while a 

more elaborate discussion on their internal design is also due. 

 

Block Diagram 8: PRU. 
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 Processing Elements (PEs): The PEs are the actual arithmetic units of the PRU; they execute 

all the numeric operations necessary for the computation of the two pairs of distances 

required for assessing whether a symmetrical segment reversal is length reducing or not. 

There are N/4 PEs within the PRU, which is the same as the number of the symmetrical 

segments under evaluation at every iteration of the algorithm’s hardware execution, thus 

implying that each PE is assigned with the evaluation of a single/specific reversal. A given PE 

reads the coordinates of the four cities located in the borders of its allocated symmetrical 

segment and calculates the associated Delta() function discussed in section 4.3 of Chapter 4. 

The output is a Yes/No answer on whether the reversal should be applied or not. The 

aforementioned N/4 evaluations are performed fully in parallel. 

 Swap Generation Unit (SGU): The SGU is responsible for converting the symmetrical tour 

reversal decisions made by the PEs into corresponding symmetrical-city-pair swap decisions 

(the two cities located at the ends of each such segment), which,-if deemed applicable-will 

constitute the actual length-reducing moves performed on the RGU. The SGU’s functionality is 

of great importance to the overall design since it enables the aforementioned moves to be 

applied in parallel; the RGU’s dedicated datapaths also contribute to this ability. It should be 

noted that the conversions themselves can too be performed fully in parallel, although, as will 

be discussed later, not always very efficiently. 

 Local Control Unit (LCU): The LCU implements the hardware design’s secondary control 

logic, dedicated specifically to the management of the operating parameters of the PEs’ 

internal components. It also communicates directly with the Main Control Unit (MCU)-the 

primary/global control logic-for synchronization purposes. 

The OR gate visible in the block diagram is utilized by the Main Control Unit in order to assess 

whether a length-reducing move is found after the completion of a given move evaluation run; the 

result is of great importance since the algorithm’s termination condition depends on it. 

5.5.3.1   PROCESSING ELEMENT (PE) MODULE 

From this point on, the distance() function (section 2-OPT MOVE EVALUATION, Chapter 4), will refer to 

the squared Euclidean function; the square root is not taken into consideration. 

The block diagram of the PEs is illustrated in the next page, followed by a description of each 

displayed sub-component. 
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Block Diagram 9: PE. 
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 Din_Mux_A/B: The two 15bit DIN_MUXes located at the module’s input provide the first 

arithmetic stage of the PE with the appropriate coordinate-component-pairs; these are split 

between the aforementioned multiplexers in such a way that each input pair corresponds to 

an equivalent coordinate-component-pair. There are 8 such pairs involved in the computation 

of the Delta() function, as the latter involves the subsequent computation of the distance() 

function 4 times in total-each based on 2 pairs-hence the number of the multiplexers’ inputs. 

 Subtracter: The 15x15bit subtracter is the first arithmetic stage of the PE, used to calculate 

the differences of the city-pairs’ coordinate components, as per the requirements of the 

distance() function. It is implemented as a highly customizable Xilinx Adder/Subtracter IP core.   

 Multiplier: The 16x16bit multiplier is the second arithmetic stage of the PE, responsible for 

the computation of the squares of the aforementioned differences generated by the previous 

stage, hence its identical inputs. It is implemented as a highly customizable Xilinx Multiplier IP 

core. 

 Accumulator: The 32x32bit accumulator is the third and final arithmetic stage; it is actually 

an adder/subtracter component, which performs the addition defined in the distance() 

function as well as all the additions and subtractions of the Delta() function. The accumulator 

is instantiated as a highly customizable Xilinx Adder/Subtracter IP core. 

 Sync_Register & Loop_Mux: These two components play a key factor in the accurate 

initialization of the accumulator; during its initialization phase, the former delays the 

multiplier’s (temporally) first output by one clock cycle so as to synchronize it with the second 

one, in order to provide the accumulator with the two inputs necessary for computing the 

seed value. Upon completion, the Loop_Mux multiplexer is used to loop the accumulator’s 

output back to one of its inputs, thus setting it to normal operation. 

 Zero_Comperator This component’s functionality is rather self-explanatory; it examines the 

sign of the result yielded by the computation of the Delta() function and outputs an 

appropriate binary output. 

At this point a few design- and timing-related clarifications are definitely due.  

 As far as the arithmetic resources are concerned, the absolutely minimum required number is 

utilized by the PEs. The addition of more instances of the aforementioned resources would 

enable the partial parallelization of the necessary arithmetic operations, instead of serially 

executing them as implied by the block diagram. Such an approach would in turn decrease the 

overall latency, but due to the reductions needed in order to obtain the final Delta() result, the 

temporal gains would be largely outweighed by the subsequent increase in resource 

utilization. This notion was verified by practical assessments. 

 The arithmetic units can be pipelined internally, with the number of pipeline stages easily 

controlled through the appropriate parameter of the corresponding IP core generator. An 

increased number of such stages usually implies a higher clock rate (if the critical path 

traverses the core under consideration) at the expense of higher latency, and vice versa. 

Extensive experimentation has been conducted in order to assess the optimal value for each 

arithmetic unit; the results are the following: 

o Subtracter: 1 pipeline stage (registered output). The addition of more pipeline stages 

actually yielded worse clock performance. 
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o Multiplier: 1 pipeline stage (registered output) /3 pipeline stages in the event that 

the critical path is formed within the core under consideration. A choice of 2 pipeline 

stages yielded worse performance than the single stage. 

o Accumulator: 1 pipeline stage by default for performance reasons, due to the nature 

of the accumulator’ functionality.   

 The operation of the PEs is fully pipelined, hiding the latency induced by each arithmetic unit 

and processing one coordinate-component-pair (out of the 8 in total) at each clock cycle, as 

soon as the pipeline fills. 

 The overall PE latency amounts to 12 or 14 clock cycles, depending on the multiplier’s pipeline 

stages.  

5.5.3.2   SWAP GENERATION UNIT (SGU) MODULE 

The functionality of the SGU is based on the notion of the two key points mentioned in section 4.9 of 

Chapter 4; a symmetrical city-pair-swap is applied if the number of the length-reducing symmetrical 

segment reversals of the symmetrical segments that contain the one under consideration, including 

the reversal of itself, is odd. 

The swap of the symmetrical pair of cities located on the edges of the outermost/largest 

symmetrical segment depends on its own reversal and only. The swap of the second pair depends on 

its own reversal and the previous one, the third pair depends on its own reversal and the two 

previous ones and so on, up until the innermost/smallest pair which depends on its own reversal as 

well as the (N/4)-1 previous ones. 

This computational paradigm can be implemented with the utilization of appropriately 

interconnected (N/4)-1 XOR gates, arranged in the pattern visible in the SGU’s block diagram, shown 

next. 



57 
 

 

Block Diagram 10: SGU. 
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efficient workaround if the hardware design was fully pipelined, which is not the case since the 

S2OPT algorithm does not follow the dataflow paradigm that suits FPGAs best; on the contrary, its 

nature is highly iterative.  

The unavoidable consequence of this fact is that for every pipeline register added the SGU’s latency 

increases by 1 clock cycle due to the penalty incurred by the repetitive filling of the pipeline; thus, a 

compromise between clock performance and latency has to be made. For the datasets evaluated in 

the thesis, a range of 1 to 6 pipeline stages was utilized.  

In the end, the SGU proved to be the bottleneck of the hardware design, both in terms of 

performance as well as in its ability to efficiently support large problem sizes. 

5.5.3.3   LOCAL CONTROL UNIT (LCU) MODULE 

The LCU constitutes a simple Finite State Machine which manages the operational parameters of the 

PEs’ structural components; there are five such control signals, visible in the PE block diagram and 

discernible from the rest due to the “FROM LCU” suffix. The LCU’s functionality-abstractly defined for 

clarification and illustration purposes-is shown in the flow chart below. 

 

Figure 21: LCU flowchart. 
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Figure 22: MCU flowchart. 
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5.5.5   VHDL-BASED ARCHITECTURE LATENCY SUMMARY 

This section provides a summary of the clock cycles required by the hardware architecture in order 

to complete a single execution iteration of the S2OPT algorithm, as illustrated in both the S2OPT 

FUNCTIONAL FLOWCHART as well as the MCU FLOWCHART. 

 PE symmetrical segment reversal evaluations (compute_distances & find_shortcuts): 12/14 

clock cycles (x2) depending on the number of pipeline stages of the PEs’ multiplier core. 

 SGU swap computations (compute_swaps): 1 to 6 clock cycles (x2) depending on the number 

of the SGU’s pipeline stages. 

 Registered output of the “MOVE_FOUND” OR gate within the PRU: 1 clock cycle (x2). 

 RGU, apply symmetrical swaps (update_tour): 1 clock cycle (x2). 

 RGU, shift_3QTL: 1 clock cycle (x1). 

 RGU, shift_3QTR: 1 clock cycle (x1). 

 RGU, shift_TR: 1 clock cycle (x1).  

Total number of clock cycles per S2OPT execution iteration: 36 to 50. 

The performance aspects of the VHDL-based architecture are covered in a more elaborate manner in 

chapter 6. 

5.6   S2OPT HLS-BASED DESIGNS 
This section is dedicated to the presentation of the workflow, the thorough experimentation and the 

decision-making process that ultimately led to the realization of the HLS-based S2OPT hardware 

designs. The main software tool employed throughout this development process was the Xilinx 

Vivado HLS; parts of the aforementioned work, involved in the final evaluation stages, have been 

conducted in the Xilinx Vivado IDE environment for the increased accuracy of the obtained 

performance and utilization results. The high-level language of choice for Vivado HLS’s input was C. 

5.6.1   FACTORS INFLUENCING THE GENERATED DESIGN CHARACTERISTICS 

There are four major factors that largely affect the behavior, structure, and performance of the 

hardware designs (more accurately their RTL) generated by Vivado HLS: 

 Source code: As will become evident later in the text, the structure, expressiveness, coding 

style and workload allocation among functions of the source code itself play a crucial role in 

the capabilities and behavioral characteristics of the resulting design. The importance of a 

“good” source code is highlighted by the fact that it determines both the applicability as well 

as the effectiveness of the available directives; it also facilitates the avoidance or overcoming 

of data dependencies.  

 Directives: The wide range of available directives constitutes the most potent and direct 

method for the manipulation of the design’s key parameters, in terms of performance (both 

latency- as well as throughput-wise), resource utilization, internal storage implementation, I/O 

interfacing and protocols, and execution/operation paradigms.  

 Clock constraint: The clock constraint functions in an equally important-yet often 

overlooked-manner as the directives themselves, since it directly influences the performance 

aspects of the generated hardware design. 
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All three factors stated above, with the possible and partial exception of the first one (the source 

code), can be easily manipulated by the designer. Yet there is another one where little or no room 

for adjustments is available: 

 Algorithm nature: The nature of the algorithm constitutes the sole factor that determines 

the success-in terms of efficiency and parallelization-of its mapping in an FPGA, and frequently 

poses an unavoidable bottleneck. 

Finally, from the author’s practical experience, it is essential to note that in order to reap the effects 

of the directives to the maximum extent possible, no matter their type, a good base, i.e. a high 

quality source code is a definite prerequisite. 

For “good” practices when performing hardware design through high-level languages, the reader is 

referred to the Xilinx Vivado HLS User Guide (UG902) [69]. 

5.6.2   THE EMPLOYED WORKFLOW PATTERN  

The approach adhered to by the author in order to obtain the final versions of the HLS-based 

hardware design is the following: 

1. First of all, the reading of the tool’s manual was mandatory for the apprehension of both the 

desired practices when performing hardware design through high-level languages, as well as 

the available directives along with their corresponding effect, parameters, applications and 

limitations.  

2. A subset of the available directives, deemed suitable for the objectives of the work under 

consideration, was chosen for experimental evaluation. 

3. As soon as the first version of the C source code was fully functional and ready, an iterative 

process of directive evaluations, interleaved with the development of new and improved 

source code versions began. When a performance-wise notable replacement of the source 

code under assessment was discovered, the subsequent directive evaluations from that point 

on were based on it. 

4. When the point where no more coding-related C source optimizations could be applied was 

reached, the evaluation of the effect of multiple, simultaneously applied directives on the final 

source code version began. It should be noted that not all possible combinations of the 

candidate directives were evaluated; search-space pruning based on preliminary results was 

applied, in order to reduce the associated, admittedly excessive temporal requirements.  

5. Three final hardware designs were chosen, each one aiming towards the fulfillment of 

different needs, such as low resource utilization, highest performance attainable, or a 

combination thereof. 

6. The effect of varying clock constraint targets on the performance of the final designs was 

assessed afterwards; each design was implemented with a target clock constraint ranging from 

100MHz to 500MHz in 50MHz increments. The clock frequency yielding the best combination 

of clock period and overall latency was subsequently chosen. This final part of the workflow 

process was conducted in the Vivado IDE environment for reasons previously discussed, and 

constitutes a topic that will be covered more elaborately in the next chapter. 
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Again, it is noted that the work described in the aforementioned steps, with the notable exception of 

step #6, was realized using the Vivado HLS; the dataset utilized was berlin52 from TSPLIB while the 

target hardware platform was a Xilinx Virtex-7 330T. 

5.6.3   SOURCE CODE STRUCTURES COMMON IN THE EVALUATED REVISIONS 

As mentioned in the previous subsection, a host of improvements and optimizations was applied to 

the initial source version, leading to the subsequent development and assessment of multiple such 

code revisions. Despite the modifications and/or additions from one revision to the next, most of 

them share a common, fundamental structure based on the results of preliminary work performed 

in the early phases of the HLS design, right after the porting of the MATLAB emulator code to C. 

These common structural elements are concisely presented below.  

 void S2OPT(arguments) function: The S2OPT function constitutes the Top Level function of 

the design, implementing most or in some cases all of the algorithm’s functionality (depending 

on the source code version) as described in section 5.4 of the current chapter. In other words, 

the majority of the functions discussed in the aforementioned section are embedded within 

the S2OPT function; yet they remain clearly discernible as they are implemented as separate 

code sections (see below). The function’s input arguments implement the I/O of the design, 

namely the initial and final TSP tours; again, the exact type of the former depends on the 

source code revision under consideration. 

o In most source code versions, the S2OPT function contains-apart from various auxiliary 

variables-two core arrays, namely the CT and “swaps” arrays; the former stores the 

TSP tour under evaluation in the form of the cities’ coordinates, while the latter stores 

the YES/NO decisions of the symmetrical-city-pair swaps. CT is either a 1D or 2D array, 

while “swaps” is always implemented as a 1D array. More arrays are found within the 

initial versions, such as the “distances” or “shortcuts” arrays, which were subsequently 

optimized away. 

o All versions include a single WHILE(1) loop; it is the function’s main iteration structure 

which contains all of its functionality. An appropriate “break” condition is located at 

the end of the loop’s body. 

 The WHILE(1) loop embeds 4 to 11 for-loops with standard/non-variable 

bounds; they are all located within the same hierarchy level, i.e. there are no 

nested for-loops. Each such loop implements one or more of the functions 

described in section 5.4 of the current chapter, while their actual number 

depends yet again on the given source code revision. It should be noted that 

there is hardly any code outside of the aforementioned loops’ bounds; if any, 

it is necessary for initialization purposes. 

 retval_type cfunc(arguments) function: cfunc is the sole function external to the design’s 

top level; it is called by two of the latter’s for-loops, one or more times per major (WHILE(1)) 

iteration. In most cases it implements auxiliary arithmetic functionality, while in others the 

aforementioned functionality is extended to include more complex operations. Its input 

arguments are cities’ coordinates while the return value is either a distance in the notion 

defined in section 4.3 of Chapter 4, or a Boolean value signifying whether a length-reducing 

symmetrical segment reversal is found. 
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More concrete information on the various source code revisions can be found in the following 

section. 

5.6.4   SOURCE CODE REVISIONS 

This subsection considers the brief presentation of the seven plus one source code revisions 

implemented and evaluated during the development process of the HLS-based designs, along with 

the modifications, changes and improvements each such version yielded over its predecessor.  

REVISION 0 

This is the first major/stable revision of the C code. The functionality of cfunc() is basic and limited to 

the computation of the squared Euclidean distance of its input symmetrical-city-pairs. These are 

made available to cfunc() from S2OPT(), by passing as input arguments a pointer to the entire CT 

array together with two integers denoting the symmetrical-city-pairs that should be accessed (3 

input arguments in total).  

The TSP tour is stored within the 2D (#cities x 2) CT array as pairs of the x and y components of the 

cities’ coordinates. The array itself is considered external to the design, in the sense that it is passed 

to the top level function S2OPT() (and subsequently to cfunc()) as a pointer originating from an 

outside source; there is no CT declaration within the design’s scope, and it actually constitutes the 

sole input argument of S2OPT().  

As far as the S2OPT() top level function is concerned, it includes a host of variable and array 

declarations, most of which are admittedly redundant to the smooth execution of the function. Yet 

this was intentional and part of the planned evaluations in order to assess the effect of the 

aforementioned redundancy to the resulting design. The WHILE(1) loop, the main iteration structure 

of the function, embeds 11 for-loops, each one implementing a single functionality as defined in 

section 5.4 of the current chapter. 

Finally, it should be noted that the data type of all the declared variables and arrays, including the 

external CT array, is 32bit int. 

REVISION 1  

The first optimization introduced was the complete removal of the redundant arrays and variables 

from within S2OPT(), as well as the partial merging of the for-loops; the latter’s number decreased 

from 11 to 7, as two of the aforementioned loops were granted more extensive functionality. This 

has led to a further reduction in both resource utilization and overall latency as well, although not as 

striking as the previous one; the improvement of the latter stems from the fact that-considering that 

both the overall workload per WHILE(1) iteration and for-loop bounds have remained unchanged-

fewer loops equals less latency. 

REVISION 2 

This revision concerned the redesign of the top level function’s I/O; instead of CT being accessed by 

S2OPT as an external array, i.e. by-reference, it is declared within S2OPT as an array internal to the 

design’s scope. The function’s input arguments were subsequently modified in order to properly 

support the aforementioned changes; the first argument, IT, is a pointer to an external 2D input TSP 

tour, while the second one, FT, is a pointer to the design’s final output tour. An addition of two extra 

for-loops outside of the main WHILE(1) loop was also proven necessary. The first one, located at the 
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beginning of S2OPT’s body, is responsible for copying the initial TSP tour from the input pointer 

argument to the CT array, while the second, located at the end of S2OPT’s body, copies the resulting 

TSP tour from CT to the output pointer argument at the end of the algorithm’s execution. 

The optimizations mentioned above yielded a slight increase in resource utilization yet they 

decreased the overall latency by almost 13%; the most noteworthy such increase was marked in the 

BRAM utilization where it grew from zero to four blocks, which is expected since the TSP tour under 

assessment had become part of the design itself. 

REVISION 3 

The changes introduced with the 3rd revision were twofold: The usage of arbitrary precision data 

types and minor modifications in the body of the cfunc() function; the latter were rather superficial 

and aimed at an increase in both the number and precision of applicable directives, without altering 

its functionality.  

The arbitrary precision data types enable the declaration of variables and arrays of non-standard 

size, i.e. not conforming to “classic” 8bit-multiple widths. For example, the declaration of an array of 

19bit-integers or a 3bit unsigned integer variable is made possible. As one can infer, this is a very 

powerful feature since it mitigates the unnecessary wasting of bits occurred when mapping 

quantities-whose exact maximum size is known or decided a-priori-to wider, quantized data types. 

The aforementioned optimization yielded a further reduction in both the resource utilization and 

overall latency as well, due to the induced decrease in datapath and storage width requirements. 

REVISION 4 

The 4th revision brought a modification to the way the TSP tour is stored within the design during the 

algorithm’s execution.  

The 2D CT array, used for storing the pair of the coordinate components (x & y) of each city as 

separate 15bit quantities, was replaced with a 1D version storing the coordinates as a single 30bit 

entity, similarly to the approach taken in the VHDL-based architecture. This change necessitated the 

addition of bit manipulation methods such as bit-wise shifting and masking within the cfunc() 

function.   

Although the optimization discussed above did not yield any changes in the overall latency, it did 

reduce the LUT utilization by a small factor, and most importantly it largely improved the legibility 

and succinctness of the source code. The decrease in LUT utilization is attributed to the reduction in 

the number of the required multiplexers; the latter is induced by the fact that the access/update of a 

given city entails the processing of a single value instead of two. 

REVISION 5 

The 5th revision introduced major alterations to the cfunc() function, which was granted more 

extensive functionality that was previously part of the responsibilities of some of the for-loops 

within S2OPT’s body, namely that of the abstractly-defined compute_distances() and 

find_shortcuts() functions.  

The new capabilities of cfunc() meant that it should be able to access four city coordinates during its 

call by S2OPT in order to evaluate a given symmetrical segment reversal, i.e. compute whether Delta 



65 
 

(see section 4.3, Chapter 4) is negative or not. The previous method of passing arguments to cfunc() 

(see REVISION 0) would  clearly prove problematic since the accesses to the required coordinates 

would have to be heavily serialized. 

This issue was solved by providing the necessary values in parallel through four separate input 

arguments, a fact that enabled the tool to schedule part of the required arithmetic operations to be 

performed in parallel as well, thus reducing the overall latency.  The reduction in the number of calls 

made to cfunc() by each iteration of S2OPT() also attributed towards that direction. As far as 

resources are concerned, there was a slight increase in DSP utilization due to the equivalent increase 

in the number of arithmetic units required to schedule the aforementioned operations for parallel 

execution. 

REVISION 5.X  

This version was actually an experiment encouraged by the warning message generated by the tool 

when attempting to apply the #ARRAY_PARTITION TYPE COMPLETE directive to the CT array; it stated 

that “the resulting design would be largely suboptimal due to the utilization of large multiplexers 

imposed by the fact that the aforementioned array was accessed through non-constant indices”.  

The solution that the tool suggested for that issue was either the wrapping of the array access into a 

function or the usage of a register file core. Since there is no such core available in the tool’s library, 

the choice was made clear. For this reason, two self-explanatory functions were added to the source 

code, namely the access() and update() functions, used solely on the CT array. Apart from that, the 

aforementioned modification required that the array under consideration was declared as global 

static.  

However, despite the numerous attempts, the proposed scheme did not manage to resolve the 

issue. It also failed to yield any improvements to the resource utilization or the latency, while it 

severely limited both the effect and the success of the subsequently applied directives. 

REVISION 6 

The changes in the 6th and final revision are similar to those brought by the 1st in the sense that it 

induced further merging to S2OPT’s for-loops, reducing their number from 7 to 4. The resource 

utilization remained almost unchanged, while the overall latency was reduced by 24%. 

SUMMARY 

The changes in both resource utilization and overall latency induced by each source code revision 

are illustrated in the following charts, in order to highlight the major role that the source code itself 

plays in the final design. 
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Figure 23: The changes marked in FF and LUT utilization between the evaluated source code revisions; the y-
axis shows the number of actual logic blocks used. The figure does not consider the equivalent changes in 

BRAM and DSP utilization since they are relatively negligible. The TSPLIB dataset under consideration is 
berlin52. 

 

Figure 24: Changes in overall latency (clock cycles) induced by the examined source code revisions; the 
TSPLIB dataset under consideration is berlin52. 

300

400

500

600

700

800

900

1000

1100

1200

1300

Rev.0 Rev.1 Rev.2 Rev.3 Rev.4 Rev.5 Rev.5X Rev.6

R
es

o
u

rc
e 

U
ti

liz
ia

ti
o

n
 

Source Code Revision 

HLS Source Code Revisions, FF & LUT Utilization Comparison 

FF

LUT

75000

95000

115000

135000

155000

175000

195000

215000

235000

255000

275000

Rev.0 Rev.1 Rev.2 Rev.3 Rev.4 Rev.5 Rev.5X Rev.6

La
te

n
cy

 (
C

lo
ck

 C
yc

le
s)

 

Source Code Revision 

HLS Source Code Revisions, Changes In Overall Latency 

Latency



67 
 

As far as the latency chart is concerned, it should be noted that throughout the revisions the yielded 

clock performance remained fixed at about 8.5ns; any changes in latency imply equivalent changes 

in the actual runtime. 

5.6.5   DIRECTIVES EVALUATED & SUBSEQUENT DISCUSSION 

This subsection presents the directives that were deemed suitable for the nature of the algorithm 

and the desired objectives and were subsequently evaluated so as to assess their actual effect on 

the design’s key parameters, as a prerequisite to their final adoption/application. The presentation 

only covers the most notable remarks made by the author during the directive experimentation 

phase on their behavior and/or impact on the S2OPT algorithm; thus, the aforementioned remarks 

can be considered case-specific to a certain extent. 

For a complete list of the available directives along with the elaborate description of their 

functionality and parameters, the reader is referred to [69]. 

#PIPELINE 

When applied to S2OPT’s for-loops, whose bounds are non-variable, the #PIPELINE directive 

behaved as intended; it drastically reduced the latency of the aforementioned loops and 

subsequently of the design as a whole, with minimal increases in resource utilization and without 

affecting the clock performance, not in a negative way at least. The results obtained by pipelining 

such loops vary and depend on the data dependencies between consecutive loop iterations, a fact 

that largely determines the rate at which the implemented pipeline outputs new data (termed 

Initiation Interval or II in the tool’s manual); an optimal II of 1 might not be always achievable. A 

quick possible workaround is to enable more read/write ports on the structures accessed during the 

execution of the loop through the usage of appropriate directives, yet this rarely is the case. 

When applied to functions, the #PIPELINE directive completely unrolls all the embedded loops 

instead of pipelining them, having the same effect on them as if the #LOOP_UNROLL directive was 

applied; the latter is discussed next. 

It should be noted that the #PIPELINE directive cannot be applied to loops with variable bounds, i.e. 

loops for which the exact number of iterations is unknown or changes dynamically during runtime; 

such an example is S2OPT’s WHILE(1) loop. In fact, this kind of loops poses many limitations and 

should be avoided if the nature of the algorithm under consideration allows it; frankly, this does not 

apply for S2OPT, whose total number of main iterations is not known a-priori. 

All in all, pipelining the for-loops proved a resource-wise efficient way of moderately enhancing 

performance; a testimony to this is the case of the 5th source code revision, where after the 

application of the directive a 100% reduction on the overall latency was achieved, followed by a 

small 12% increase in resource utilization. 

#LOOP_UNROLL 

The application of the #LOOP_UNROLL directive to the for-loops of S2OPT’s WHILE(1) main loop 

yielded the most striking improvements to the overall latency of the design, at the expense of 

slightly worsened clock performance and sharply increased resource utilization; these side-effects 

were expected due to the creation of multiple copies of the related logic instances, necessary to 

facilitate the concurrent execution of the operations defined in each iteration of the affected loops. 
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The most notable such improvement was marked when the directive under consideration was 

applied to the aforementioned loops of source code revision 6, where the latency reduced by 

2117%; the subsequent decrease in clock frequency was a relatively minimal 10%, while resource 

utilization increased by 1144% on average. 

Again, the non-deterministic nature of the WHILE(1) loop proved quite limiting, as it did not support 

the #LOOP_UNROLL directive either. 

#INLINE 

The #INLINE directive proved rather inefficient; on the one hand it did manage to yield 

improvements in the overall latency but on the other it did so by inducing disproportionate increases 

in resource utilization, especially DSPs. The most noteworthy such example is the case of Rev. 6, 

where the DSP utilization increased by 300% while the overall latency was reduced by only 17%; the 

same trend is evident in other experiments as well. The rise in DSP utilization is a logical 

consequence of the inlining of cfunc() within the body of S2OPT(), since the arithmetic units 

indirectly defined by the former were instantiated as many times as S2OPT() calls cfunc() within a 

single iteration of the WHILE(1) loop. 

To sum up, as far as the design under assessment is concerned, #INLINE turned out to be an 

“expensive” directive that should be enabled when aiming for maximum performance at any cost. 

#RESOURCE 

During the late stages of the design process, when the final designs along with their corresponding 

source codes and directives had been determined, the cfunc()-related resource utilization indicators 

of the high-performance version made evident that there was quite an imbalance between the 

number of implemented multipliers (DSP utilization)  and the implemented adders/subtracters (LUT 

utilization); it seemed as if more multipliers had been instantiated. This was odd, since there is a 

block of eight subtractions at the beginning of the aforementioned function and another block at its 

end consisting of eight additions; this is a total of sixteen addition/subtraction operations compared 

to only eight multiplications within each cfunc() call. 

Based on these two facts it was assumed that the arithmetic operations within these blocks were 

not being efficiently parallelized by the compiler. The application of the “#RESOURCE AddSub” 

directive to the block of the addition operators mitigated this issue to a certain extent, leading to an 

average increase in LUT utilization of 40%, followed by a subsequent decrease in overall latency by 

42% on average. Another positive side-effect was the marked increase in the attainable clock 

frequency by about 11%. 

The directive under consideration was applied to the block of subtractions as well, yet it did not yield 

any changes to the design’s parameters at all. 

#ARRAY_PARTITION 

Within the context of the design under consideration, the #ARRAY_PARTITION directive proved 

problematic at best. Not only did it fail to yield any substantial reductions to the overall latency-at 

least not without causing severely disproportional increases to the resource utilization, but nearly 

half the times that it was evaluated it either caused program crashes or resulted in malfunctioning or 

underperforming designs, despite the numerous attempts made to resolve these issues; such an 
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attempt is described in subsection 5.7.4.6, while others include the assiduous experimentation with 

various parameters of the aforementioned directive.  

To the author’s point of view, the aforementioned issues stemmed from the fact that the multitudes 

of read/write ports enabled by the application of the directive under assessment on the CT array 

caused the compiler to either infer false parallelization options that were not actually feasible due to 

inherent algorithmic data dependencies or render it unable to successfully schedule/manage the 

increased number of available operations. As one can infer, the #ARRAY_PARTITION directive was not 

incorporated in any of the final design versions. 

   

A few more directives were evaluated as well; some of them could not ultimately be used due to the 

fact that their application entailed specific preconditions that were impossible to be met by the 

source code while others proved largely underperforming or malfunctioning. These were the 

#LOOP_MERGE, #LOOP_FLATTEN, #ALLOCATION and #DATAFLOW directives. 

Before ending this subsection, it would be a serious omission not to mention that all the 

experimentation conducted during the development of the HLS-based designs and discussed 

thoroughly within the context of the current, HLS-related section of the thesis is available in the 

appendix; the related spreadsheet contains the utilization and performance results of more than 400 

evaluations of source codes, single and multiple directives and combinations thereof. 

5.6.6   FINAL HLS-BASED DESIGNS 

Upon completion of the source code revision and directive evaluation phases, three different 

combinations thereof were carefully selected; this resulted in an equivalent number of designs, each 

one aiming at different usage scenarios i.e. catering to contradicting end user needs. These are 

presented below; their title is largely self-explanatory. 

Low Performance/Low Resource Utilization design   [LP] 

 Source Code Revision:   Rev. 5. 

 Directives 

o #PIPELINE, applied to the for-loops of the S2OPT() function. 

The LP design is based on the 5th source code revision, although Rev. 6 is faster in terms of overall 

latency; this was intentional due to the for-loops of Rev. 5 being much simpler and straightforward 

in terms of functionality and included operations than those of Rev. 6, a fact that led to the more 

efficient application of the #PIPELINE directive, thus resulting in higher-performing pipelines with 

fewer stages and smaller Initiation Intervals. 

High Performance/High Resource Utilization design   [HPA] 

 Source Code Revision:   Rev. 6. 

 Directives 

o #LOOP_UNROLL, applied to the for-loops of the S2OPT() function. 

o #RESOURCE AddSub, applied to the additions block of cfunc() function. 
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Very High Performance/Very High Resource Utilization design   [HPB] 

 Source Code Revision:   Rev. 6. 

 Directives 

o #LOOP_UNROLL, applied to the for-loops of the S2OPT() function. 

o #RESOURCE AddSub, applied to the additions block of cfunc() function. 

o #INLINE, applied to the cfunc() function. 

At this point it should be noted that several attempts were made in order to introduce a balanced 

design, i.e. a design offering “medium” performance and proportional resource utilization; this 

proved quite an elusive objective as the two main factors could not be efficiently matched in order 

to yield a design that would pose as a substantial alternative to those already mentioned. 

The chart below shows the actual runtimes achieved by the HPB design in comparison to the initial 

source code Rev. 0 in order to clearly illustrate the performance enhancements yielded by the 

previously discussed workflow process; five TSPLIB instances are considered. 

 

Figure 25: Comparison of the runtimes obtained by both the initial revision of the source code and the highly 
performance-wise optimized yet resource-intensive HPB version, in five TSPLIB datasets; the HPB runtimes 

are less than 50μs at most, thus appearing as nearly zero. 

TSPLIB dataset eil51 berlin52 eil76 kroA100 kroB100 

Change % 17369 17867 21579 28971 29450 
 

Table 1: Reductions in runtime yielded by the HPB version when compared against the initial revision of the 
source code, expressed in terms of Percent-Change.  

The performance aspects of the HLS-based designs are covered in a more elaborate manner in the 

next chapter. 
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CHAPTER 6: EVALUTION OF THE DESIGN FLOWS, 

PERFORMANCE RESULTS, AND RELATED DISCUSSIONS 

6.1   INTRODUCTION & CHAPTER STRUCTURE  
The subject of this chapter is twofold: the discussion of the strengths and weaknesses of the utilized 

design flows as well as the elaborate presentation of the performance characteristics and results 

obtained through the implementation and the subsequent evaluation of the hardware architectures 

and designs examined within the context of the previous chapter. The former is based on the 

practical experience attained during the lengthy and extensive occupation with the corresponding 

design environments, while the latter derives from the thorough testing of the aforementioned 

designs against numerous TSPLIB datasets as well as their performance comparison with both the 

highly acclaimed Concorde TSP solver and a state-of-the-art GPU implementation. 

6.2    DESIGN FLOWS EVALUATION 
This section concerns the presentation and the subsequent evaluation of the utilized design flows.  

6.2.1   PRESENTATION OF THE DESIGN FLOWS 

The flow charts of each of the design flows are illustrated in the following page: 
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Figure 26: HLS (left) and HDL-based/RTL-to-Bitstream (right) flowcharts. 
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Based on the illustrations of the flow charts, it can directly be inferred that the primary design flow 

that leads to the downloading and subsequent execution of the hardware design on an actual 

hardware platform is the RTL-to-Bitstream flow; in fact, the HLS design flow poses a preceding 

extension to the latter that bypasses its first step, namely the creation of the RTL specification. 

Hence, the differences between the two flows stem largely from the fact that the VHDL/Verilog-

based design flow entails the manual specification of the design’s RTL, while the HLS design flow 

enables the partially or fully automatic generation of the RTL as implied by the C-based input and 

captured by Vivado HLS’ compiler. Naturally, since the two flows share a rather large number of 

design steps there inevitably exist many similarities among them as well, at least as far as the design 

implementation phase is concerned. 

6.2.2   COMPARISON CRITERIA 

The criteria upon which the subsequent comparisons are based are briefly mentioned below: 

1. The primary target user groups. 

2. Learning curve & required hardware design knowledge. 

3. Time requirements. 

4. Accuracy of control over the design process. 

5. Quality of the obtained design. 

6. Bottleneck-inducing stages. 

7. Use case scenarios. 

Before proceeding to the actual discussions, it is reminded that the comparisons due are approached 

through the author’s empirical point of view, shaped during the preparation of the thesis; thus they 

are largely based on the experience gained during the mapping of S2OPT in hardware.  

This premise holds for the majority of the aforementioned criteria, with the exception of the first 

two which are approached more holistically due to their theoretical-oriented nature. 

For further clarification, it is stated that the HLS-part of the thesis constitutes the author’s first 

contact with Vivado HLS and its related design flow; previous involvement with the VHDL-based 

design flow and the Xilinx ISE tool, based on smaller-scale works, exists. 

6.2.3   COMPARING THE DESIGN FLOWS 

THE PRIMARY TARGET GROUPS 

The HLS design flow is relatively newly (re)introduced and caters to both software and hardware 

engineers alike; on the one hand software engineers often wish to map their computationally-

intensive algorithmic designs to hardware platforms so as to reap the offered performance and 

power-consumption benefits, without the need to learn actual hardware design principles from the 

ground up or related HDL languages. On the other hand, hardware engineers have too many 

compelling reasons to get involved with the HLS flow, which will be discussed later in this section.  

On the contrary, the pure RTL-to-Bitstream design flow addresses mainly to hardware engineers 

with decent knowledge on the fundamentals of hardware design and HDL languages, and constitutes 

the standard, classic approach to hardware design for many decades now. 
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LEARNING CURVE & REQUIRED HARDWARE DESIGN KNOWLEDGE 

From the software engineer’s aspect, the HDL-based design flow has an obvious, particularly steep 

learning curve, thus rendering it a non-realistic path towards hardware design; the HLS flow is 

definitely much more suited to the programming skills that the user group under consideration 

usually possesses. That being said, the aforementioned flow might be relatively easy for someone 

with such a background to get accustomed to, yet in order to maximize the extent of the control 

over the desired qualities of the resulting design as well as make effective use of the available 

directives, a certain degree of hardware-related knowledge is a definite prerequisite. 

As far as hardware engineers are concerned, the transition from the HDL-based flow to the HLS one 

is most probably a smooth process, albeit it involves the learning and subsequent adoption of the 

desired practices followed when designing hardware through high-level languages; the latter holds 

for the software engineers as well. 

All in all, in order to make the most out of the HLS design flow, a certain amount of learning 

overhead is due regardless of the designer’s knowledge background, although the software engineer 

will probably need more preparation time. 

TIME REQUIREMENTS   

The time requirements of each design flow can be realized in a variety of ways, the most substantial 

being the following: 

 Time requirements for an initial design: To the author’s experience, the time required in 

order to obtain an initial working version of a fully functional design is significantly shorter in 

the case of the HLS flow; one needs to simply write the C-based source code correctly and let 

the HLS tool handle the rest of the design process using the default settings, without applying 

any directives. On the contrary, when the HDL-based flow is considered, the time required to 

manually specify the RTL-even to a non-optimized initial state-is definitely much longer due to 

its inherent complexity and error susceptibility. 

 Time requirements for a highly optimized design: In this case, the time requirements of 

the HLS flow rise remarkably, since both the quality of the source code as well as the careful 

selection of directives and their subsequent efficient/effective application must be taken into 

consideration, leading to what is quite a lengthy process. As previously discussed, the HDL-

based flow requires copious amounts of time regardless of the intended optimization level; 

thus there is no marked change in the factor under consideration as the design objective 

alters. 

Within the context of the thesis, both the C-based and the VHDL-based works required a roughly 

equivalent amount of time from design initiation to design closure. 

ACCURACY OF CONTROL OVER THE DESIGN PROCESS 

This is one aspect where the HDL-based flow markedly outshines its counterpart; the offered levels 

of control over various features of the design process, such as explicitly defining logic structures and 

module hierarchy or setting the exact type, number and parameters of a required resource or IP 
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core, simply cannot be matched by the HLS-flow, despite its host of available directives. Not at this 

point at least. 

QUALITY OF THE OBTAINED DESIGN 

Both flows are capable of delivering equally high quality designs, provided that the time 

requirements dictated by each design process are adequately met. Yet there exists one factor where 

the HDL-based flow clearly excels: efficiency. The experiments conducted showed that the HDL-

based designs tend to utilize far less resources for a given performance level than their HLS-based 

counterparts, especially when the two high-performing ones are concerned. 

BOTTLENECK-INDUCING STAGES 

Several bottleneck-inducing stages have been identified in both design flows: 

 HLS-flow: Both the synthesis (C-to-RTL) as well as the C/RTL co-simulation phases tend to 

require unacceptably large amounts of time and/or system memory in certain cases; such are 

the cases where the design under consideration is rather complex or when resource-intensive 

directives are utilized. A consequence of the latter is that multitudes of logic or arithmetic 

elements are generated, leading to a subsequent sharp increase in the number of available 

operations that must be parallelized and scheduled, thus putting a heavy computational load 

on the compiler.  

 HDL-based flow: As far as the HDL-based flow is concerned, the time required to perform 

changes in the RTL, which can vary from relatively short to significantly long depending on the 

severity and span of the intended modifications, poses a definite bottleneck. 

USE CASE SCENARIOS 

To the author’s point of view, there exist numerous cases where the utilization of the HLS flow 

proves far more desirable than the HDL-based one; such cases include the following: 

 An initial version of a working, fully functional design is needed as quickly as possible (proof of 

concept, rapid system prototyping). 

 Quick and efficient design space exploration prior to investing significant amounts of time in 

the HDL-based flow. 

 When limiting the time requirements is of utter importance, quite possibly at the expense of 

reduced resource efficiency. 

 When high resource efficiency or fine-grained control over the design’s parameters are 

considered dispensable. 

 When a highly complex algorithm with limited parallelization options is under consideration, a 

fact that renders the HDL-based flow rather inefficient. 

 When the algorithm under consideration exposes its available parallelism in an obvious 

manner, enabling the HLS compiler to effectively extract and exploit it so as to generate a both 

highly performing and resource efficient design. 

For most other cases, the HDL-based flow is considered the design method of choice. 

It should be noted that since this was the author’s first involvement with the Vivado HLS and its 

corresponding design flow, he was rather pleased with its ever-increasing capabilities (worked with 
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both the 2015.4 and 2016.2 versions), high quality of results, straightforwardness, quick-paced 

design iterations and clean, intuitive environment.  

6.3   PERFORMANCE ASSESSMENT METHODS & PARAMETERS 
Prior to proceeding to the presentation and subsequent discussion of the performance 

characteristics of the designs obtained by each flow, it is essential to introduce the procedure that 

was followed in order to extract the actual performance-defining parameters. 

 HDL-based flow: The proper/intended functionality of the VHDL-based architectures was 

verified by both Behavioral and Post-Implementation Functional simulation; the Post-

Implementation Timing simulation is unavailable for VHDL-based designs due to the lack of 

appropriate libraries supporting this feature (Verilog support only). Each one of the 

architectures under consideration was subsequently implemented in order to acquire the 

corresponding Post-Place & Route utilization and clock parameters. All the aforementioned 

steps were performed in the Vivado IDE. 

 HLS-flow: As far as the C-based designs are concerned, the proper/intended functionality of 

the source codes was verified by “C Simulation”, while the correct operation of the generated 

RTLs was confirmed by “C/RTL co-simulation”; both these processes constitute features of the 

Vivado HLS tool. As is the case with the HDL-based flow, the obtained RTLs were subsequently 

implemented in the Vivado IDE. 

Furthermore, the utilized version of the Xilinx Vivado Design Suite was the 2016.2, while the target 

hardware platform of choice for both design flows was the Xilinx Virtex-7 330T, one of the smallest-

logic-capacity-wise-FPGAs of Xilinx’s current high-end product line. A high-end device was necessary 

due to the fact that the hardware designs, especially the high-performing HLS-based ones, have 

increased DSP requirements that only the Virtex-7 series was capable of adequately meeting. 

It should also be noted that none of the designs were actually downloaded to an FPGA, due to the 

lengthy process involved combined with the emergence of severe, unsurpassable time limitations 

during the late completion stages of the thesis; yet thorough quality and correctness screening has 

been conducted through the simulation features of the tools, as previously mentioned. 

At this point, a few words on the software, datasets as well as the related published works that were 

used to perform an “external” assessment of the results are due: 

TSPLIB: All the datasets utilized during the experimental evaluation of the performance of both the 

final hardware designs and the benchmark software as well, are part of the TSPLIB library of TSP 

instances, presented and discussed in section 4.10 of chapter 4. 

Original S2OPT: Part of the comparisons is made against the original 2007 implementation of 

S2OPT presented in [29]; this plays a key role to the estimation of the performance enhancements 

yielded by the latest generation of FPGAs, design tools and corresponding flows. 

Concorde: The primary benchmark is the 2-OPT implementation included in the Concorde TSP 

solver software package, presented and discussed in section 3.5 of chapter 3. Concorde employs 

many of the optimizations discussed in the section 4.4 of chapter 4 so as to reduce the required 

runtimes, thus giving up the guarantee of true 2-optimality. The experiments showed that 
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Concorde’s implementation of 2-OPT is highly non-deterministic, in the sense that a given input TSP 

tour does not yield a standard output TSP tour; on the contrary, the output varies largely from run-

to-run, hinting that a randomized approach is at play. In order to facilitate the fairest comparison 

conditions attainable, the following actions have been taken: 

 The source code has been tweaked in the following ways: 

o The software applies the nearest neighbor heuristic on the initial TSP tour prior to the 

starting of the actual 2-OPT heuristic by default; this feature has been disabled. 

o The overall running time reported by the software’s built-in timer includes both the 

time needed to execute the heuristic and the time required to compute the length of 

the output tour; furthermore the utilized timing function is of very crude resolution. 

This feature has been modified so as to measure only the actual CPU-time of the 

heuristic itself while the timing function has been replaced with the clock_gettime() 

function which offers nanosecond-level accuracy. 

 The performance results obtained by each dataset have been averaged over 100K 

independent runs. 

 The benchmark software under consideration was executed on a latest-generation machine 

based on a quad-core 3.4GHz Intel Core-i7 6700 CPU with 16GB of 2.4GHz DDR4 SDRAM, 

running freshly-installed Ubuntu 16.04.   

 The software was compiled with the latest version of gcc using the “-O3” and “-march=native” 

optimization flags. 

GPU-based RRHC with 2-OPT: The final part of the performance comparisons revolves around the 

GPU-based implementation of the Random Restart Hill Climbing (RRHC) metaheuristic with 

embedded 2-OPT heuristic, presented in [52]; the RRHC metaheuristic is briefly discussed in section 

3.3 of chapter 3. To enable such a comparison, the VHDL-based design had to undergo a minor 

modification that led to subsequent increases in resource utilization, thus necessitating the 

utilization of the high-capacity Xilinx Virtex-7 980T. This topic is further elaborated in the following 

section. 

6.4   PERFORMANCE RESULTS & SUBSEQUENT DISCUSSIONS 

6.4.1   COMPARISON OF THE HLS-BASED DESIGNS (RESOURCE UTILIZATIONS & CLOCKS) 
This subsection constitutes the presentation and comparison of the performance characteristics of 

the three HLS-based designs in terms of target/actual clock frequency and resource utilization. 
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Figure 27: Illustration of the impact of various target clock frequencies to the runtime of each HLS-based 
design; the dataset under consideration is berlin52. 

As it can be inferred from the figure, the low-performance, semi-pipelined LP design is favored by 

the increase in target clock frequency, despite the implied subsequent raise in the number of 

pipeline stages; the lowest runtime is achieved at a desired clock frequency of 400MHz. As far as the 

two high-performance designs are concerned, an inverse behavior is observed; although not clearly 

visible, the runtime-wise performance of both designs deteriorates as the target clock frequency 

increases. Thus, the lowest runtime is achieved at a desired clock frequency of 100MHz. 

Based on these preliminary results, all datasets were subsequently tested (i.e. synthesized and 

implemented) in each design’s appropriate clock frequency of: 

 400MHz/350MHz for the LP design; the 350MHz target stems from the fact that during the 

dataset testing phase it was quickly noted that the aforementioned frequency could not be 

achieved after surpassing the 100-city mark. Thus, for datasets larger than 100 cities, a target 

clock frequency of 350MHz instead of the originally-planned 400MHz was used. 

 100MHz for both HPA and HPB designs. 

The actually achieved clock frequencies, obtained for each HLS-based design and TSPLIB dataset 

after synthesis and implementation in the Vivado IDE (post Place & Route), are displayed in the table 

below; the datasets under consideration are 13 in total, ranging in size from 51 to 264 cities. 

0

50

100

150

200

250

300

350

400

450

100MHz 150MHz 200MHz 250MHz 300MHz 350MHz 400MHz 450MHz 500MHz

R
u

n
ti

m
e 

(μ
s)

 

Target Clock Frequency in Vivado HLS 

HLS Designs, Clock - Performance Scaling Comparison 

LP

HPA

HPB



79 
 

 Clock Frequency (MHz) 

TSPLIB dataset LP HPA HPB 

eil51 402 120 105 

berlin52 400 126 106 

eil76 397 121 105 

kroA/B/C/D/E100 372 121 108 

eil101 352 115 107 

pr107 372 118 101 

pr124 372 114 107 

pr136 366 113 103 

pr144 362 113 106 

kroA/B150 365 112 101 

pr152 364 110 100 

kroA/B200 373 113 100 

pr264 361 108 101 
 

Table 2: The actual, post-Place & Route clock frequencies reported by the Vivado IDE. Target FPGA: Virtex-7 
330T. 

All designs proved capable of attaining their requested clock frequencies, while most of them even 

surpassed it. 

The following table illustrates the resource utilization of the three designs in terms of Look Up Tables 

(LUTs), Flip-Flops (FFs) and Digital Signal Processors (DSPs); the values are obtained after the 

completion of the Place & Route phase of Vivado IDE and concern the aforementioned TSPLIB 

datasets. BRAM utilization remains minimal for all designs and datasets; thus it is not taken into 

consideration. 

 LUT (%) (out of 204K) FF (%) (out of 408K) DSP (%) (out of 1120) 
TSPLIB  
dataset 

LP HPA HPB LP HPA HPB LP HPA HPB 

eil51 751  1 7033  4 11163  6 1162  1 5128  1 7117  2 8  1 56  5 208  19 

berlin52 758  1 7077  4 11257  6 1162  1 5185  1 7182  2 8  1 56  5 208  19 

eil76 814  1 10097  5 16263  8 1216  1 7566  2 10578  3 8  1 80  7 304  27 

krox100 830  1 13097  6 21541  11 1216  1 9929  2 13772  3 8  1 96  9 400  36 

eil101 823  1 13044  6 21677  11 1216  1 9999  3 13837  3 8  1 96  9 400  36 

pr107 842  1 13856  7 23346  11 1128  1 10611  3 14688  4 8  1 96  9 432  39 

pr124 854  1 15394  8 26604  13 1128  1 12136  3 17716  4 8  1 96  9 496  44 

pr136 879  1 16825  8 29386  14 1182  1 13245  3 18908  5 8  1 96  9 544  49 

pr144 878  1 17494  9 31241  15 1182  1 13972  3 19473  5 8  1 96  9 576  51 

krox150 895  1 19178  9 32670  16 1182  1 14735  4 20835  5 8  1 112  10 608  54 

pr152 888  1 19164  9 32829  16 1182  1 14856  4 20912  5 8  1 112  10 608  54 

krox200 887  1 25650 13 43064  21 1182  1 19706  5 28122  7 8  1 168  15 800  71 

pr264 936  1 32934  16 57165  28 1236  1 25733  6 37692  9 8  1 184  16 1056  94 
 

Table 3: Post Place & Route resource utilization for each HLS-based design and TSPLIB dataset; the second 
number in each column is the utilized percentage of the corresponding resource. Target FPGA: Virtex-7 330T. 

As it is evident by the table above, the resource which is in greatest demand-at least when the HPB 

design is concerned-is the DSP; this is expected due to both the large number of multiplications 
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(squares) involved in the calculation of the (squared) Euclidean distances, which are necessary for 

the computation of the Delta() function for each one of the N/4 symmetrical segments, and the fact 

that the HPB design most probably schedules all these multiplications to be executed in parallel as 

well. This, in turn, significantly raises the requirements in multiplier cores which are subsequently 

mapped to DSPs. 

The two other resources are of relatively low demand for all three designs-even for the DSP-

intensive HPB design. Remarkably, the resource requirements of the LP design remain unchanged 

and equal to 1% for all resource types and datasets. It is noted that as far as the HPA design is 

concerned, larger datasets could have admittedly been examined; yet this was deemed unavailing 

for reasons that will soon become apparent. 

6.4.2   VHDL-BASED S2OPT & COMPARISON WITH HLS-BASED DESIGNS (RESOURCE 

UTILIZATIONS & CLOCKS) 

This subsection considers the presentation of the performance characteristics of the VHDL-based 

architecture in terms of resource utilization and actual clock frequency; a comparison with the HLS-

based designs is also provided. Seven more TSPLIB datasets are introduced, thus increasing the 

upper limit of the number of cities under consideration from 264 to 2319; this applies only to the 

VHDL-based architecture, for reasons that will become apparent in the next subsection. 

 VHDL-Based Architecture  
TSPLIB dataset LUT (out of 204K) FF (out of 408K) DSP (out of 1120) Clock Freq. (MHz) 

eil51 2758     1% 2598     1% 13     1% 441 

berlin52 3503     2% 2643     1% 13     1% 455 

eil76 5093     3% 3844     1% 19     2% 433 

kroA/B/C/D/E100 5169     3% 5019     1% 25     2% 429 

eil101 5328     3% 5128     1% 26     2% 412 

pr107 5577     3% 5386     1% 27     2% 407 

pr124 6374     3% 6208     2% 31     3% 407 

pr136 7037     4% 6838     2% 34     3% 403 

pr144 7488    4% 7251     2% 36     3% 405 

kroA/B150 7789     4% 7607     2% 38     3% 408 

pr152 7785     5% 7667     2% 38     3% 413 

kroA/B200 10257     5% 10065     3% 50     5% 394 

pr264 14080     7% 13323     3% 66     6% 415 

pr299 16993     8% 15096     4% 75     7% 403 

pr439 29096     14% 22174     5% 110     10% 320 

rat783 51211     25% 39319     10% 196     18% 323 

vm1084 70920     35% 54294     13% 271     24% 319 

u1432 93606     46% 71690     18% 358     32% 313 

vm1748 114495     56% 87662     22% 437     39% 286 

u2319 152015     75% 116005     28% 580     52% 261 
 

Table 4: VHDL-based S2OPT architecture post Place & Route resource utilization and actual clock frequency 
for each TSPLIB dataset; the second number in each column is the utilized percentage of the corresponding 

resource. Target FPGA: Virtex-7 330T. 



81 
 

 

Figure 28: Post Place & Route average resource utilization per evaluated design and resource type; as far as 
the VHDL-based design is concerned, only the datasets tested with the HLS-based designs are taken into 

consideration. Target FPGA: Virtex-7 330T. 

 Design 
 HLS-LP HLS-HPA HLS-HPB VHDL 

LUT 1%   849 8%   16219 14%   27554 4%   6788 

FF 1%   1183 3%   12523 4%   17756 2%   6429 

DSP 1%   8 9%   103 46%   511 3%   32 
 

Table 5: The percentages that are illustrated in the figure above, along with their actual corresponding 
values. 

 Design 

 HLS-LP HLS-HPA HLS-HPB VHDL 

Average Clock Frequency 374MHz 116MHz 104MHz 417MHz 
 

Table 6: Post Place & Route average clock frequency per evaluated design; as far as the VHDL-based design is 
concerned, only the datasets tested with the HLS-based designs are taken into consideration. Target FPGA: 

Virtex-7 330T. 

RECAP: Based on the results presented so far on the resource utilization and attainable clock 

frequency of all the examined designs, the following inferences can be drawn: 

 The VHDL-based design boasts the second-lowest average resource utilization after the HLS-

based LP design; the two other HLS-based designs, namely the HPA and HPB designs, trail 

considerably far behind, achieving the 3rd and 4th position respectively. 
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 In all three HLS-based designs-with the partial exception of the LP design, the most sought-

after resource is the DSPs; this is not the case with the VHDL-based design, as the resource 

which is in greatest demand turns out to be the LUTs. The aforementioned fact is mainly 

attributed to the large sum of multiplexers located within both the RGU and the PEs as well. 

 The VHDL-based design managed to surpass all three HLS-based designs in terms of attainable 

clock frequency, achieving a maximum value of 455MHz in the berlin52 dataset and an 

average of 417MHz; the latter concerns only the 13 first datasets, i.e. those that were tested 

with the HLS-based designs as well. 

 All four examined designs show a clear trend of reducing clock frequency as the number of 

cities increases; as far as the VHDL-based design is concerned, this behavior is attributed to the 

issue affecting the PRU’s SGU module, which was discussed in subsection 5.5.3.2 of chapter 5. 

6.4.3   VHDL-BASED & HLS-BASED S2OPT COMPARED TO CONCORDE (RUNTIMES, 

SPEEDUPS & TOUR QUALITY) 

The subsection begins with the presentation of the results concerning the runtimes, speedups and 

tour quality obtained by all four examined designs when compared to Concorde; a subsequent, 

related discussion follows shortly after.  

 Concorde HLS-LP HLS-HPA HLS-HPB VHDL 

TSPLIB 
Runtime 

(μs) 
Runtime 

(μs) 
Speedup 

Runtime 
(μs) 

Speedup 
Runtime 

(μs) 
Speedup 

Runtime 
(μs) 

Speedup 

eil51 104 244 0.4x 41 2.5x 16 6.5x 27 3.9x 
berlin52 118 190 0.6x 30 3.9x 12 9.8x 19 6.2x 

eil76 172 500 0.3x 60 2.9x 28 6.1x 40 4.3x 
kroA100 211 857 0.2x 102 2.1x 35 6.0x 51 4.1x 
kroB100 210 998 0.2x 119 1.8x 40 5.3x 60 3.5x 
kroC100 216 1041 0.2x 124 1.7x 42 5.1x 62 3.5x 
kroD100 223 969 0.2x 116 1.9x 39 5.7x 58 3.9x 
kroE100 216 985 0.2x 118 1.8x 40 5.4x 59 3.7x 
eil101 207 1222 0.2x 147 1.4x 47 4.4x 72 2.9x 
pr107 170 887 0.2x 103 1.7x 37 4.6x 53 3.2x 
pr124 174 924 0.2x 98 1.8x 37 4.7x 49 3.6x 
pr136 225 1167 0.2x 113 2.0x 44 5.1x 56 4.0x 
pr144 185 1670 0.1x 173 1.1x 57 3.2x 75 2.5x 

kroA150 309 1964 0.2x 200 1.6x 68 4.5x 90 3.4x 
kroB150 315 2247 0.1x 228 1.4x 78 4.0x 103 3.1x 

pr152 253 2041 0.1x 208 1.2x 71 3.6x 91 2.8x 
kroA200 396 4571 0.1x 410 1.0x 143 2.8x 170 2.3x 
kroB200 395 4462 0.1x 400 1.0x 139 2.8x 166 2.4x 

pr264 319 4799 0.1x 372 0.9x 140 2.2x 133 2.4x 
pr299 391       277 1.4x 
pr439 527       388 1.4x 
rat783 1329       961 1.5x 

vm1084 2404       2143 1.2x 
u1432 1119       768 1.6x 

vm1748 4442       4341 1.1x 
u2319 1858       1805 1.1x 

 

Table 7: Runtimes and speedups of the four evaluated S2OPT designs against Concorde; the results are 
based on the post Place & Route clock reports of the Vivado IDE. 
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Figure 29: Graphical representation of the speedups obtained by the evaluated designs, when compared 
against Concorde; only the datasets that were tested with all four designs are considered. 

 Design 
 HLS-LP HLS-HPA HLS-HPB VHDL 

Average Speedup 0.2x 1.8x 4.8x 3.5x 
 

Table 8: Average speedups obtained by the evaluated designs when compared against Concorde; only the 
datasets that were tested with all four designs are considered. 

 

Figure 30: Comparison of the quality of the tours obtained by the evaluated designs (S2OPT) and Concorde; 
the quality is measured as the percentage of the output tour’s length above the optimal (error). A lower 

error translates to higher quality (closer to optimal) tour. 
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 Concorde S2OPT 

Average Error 19% 14% 
 

Table 9: Mean error of the tours yielded by both Concorde and S2OPT, averaged over the 26 tested TSPLIB 
datasets. 

OBSERVATIONS: 

 The fastest design in terms of the average speed up against Concorde is the HLS-HPB design, 

followed by the VHDL design and the HLS-HPA design; the HLS-LP design is completely out of 

competition as it is incapable of delivering any speedup, yet that was largely expected from 

the point of its inception. 

 Throughout the range of the evaluated datasets, the VHDL design performs clearly better than 

the HLS-HPA design; the same holds true for the HLS-HPB design when compared to the VHDL 

design, with the exception of the pr264 dataset, where the aforementioned trend seems to be 

reversed.  This could not be investigated further due to the fact that the target device (the 

Virtex-7 330T) had reached its full DSP-wise capacity and no larger HLS-HPB designs could be 

tested, at least not without using a higher-density FPGA, which in turn would distort the 

accuracy of the obtained results. 

 Runtime-wise, the VHDL design is on average 94% faster than its HLS-HPA counterpart and 

37% slower than the HLS-HPB design, yet it manages average resource utilization considerably 

smaller than both HLS designs under consideration, thus signifying its high levels of resource 

efficiency. 

 The aforementioned efficiency of the VHDL design enabled the evaluation of larger datasets 

containing up to 2319 cities; this was infeasible in the case of the HLS-HPB design due to 

resource limitations and indifferent in the case of the HLS-LP and HLS-HPB designs due to the 

lack of speedups. Admittedly, the speedups achieved by the VHDL design within the range of 

299 to 2319 cities are quite modest, averaging in 1.3x. The largest dataset that could be tested 

with the VHDL design in the Virtex-7 330T comprised of roughly 5000 cities, yet that was 

deemed completely unnecessary due to performance limitations. 

 All four designs exhibit an overall decline in their speedups as the number of cities within the 

dataset under consideration grows; this is attributed to the fact that they all share the 

common bottleneck induced by the SGU, as described in subsection 5.5.3.2 of chapter 5. 

 The implemented S2OPT hardware designs yield TSP tours of notably higher quality than those 

outputted by Concorde, with only a few exceptions to the rule; this is quite remarkable since 

the hardware designs do not compute the actual Euclidean distance as Concorde does, but 

rather an approximation to it (its square), which is suboptimal as discussed in the 

corresponding section of chapter 4. Yet the aforementioned designs achieve an average error 

of 14% compared to 19% managed by Concorde. 

6.4.4   VHDL-BASED S2OPT COMPARED TO ORIGINAL S2OPT  

The main topic of this subsection is the comparison of the performance characteristics of the VHDL-

based design with those reported in the corresponding original implementation of 2007 [29]; only 
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the VHDL-based design is considered as it was developed from the very beginning with the aim of 

largely resembling the original work for the sole purpose of this particular subsection. 

 Original Implementation [29] 
Virtex-2 Pro 100 

Results Of This Implementation 
Virtex-7 330T 

TSPLIB 
dataset 

Clock Frequency 
(MHz) 

Runtime 
(μs) 

Clock Frequency 
(MHz) 

Runtime 
(μs) 

Speedup 

berlin52 184 47 455 19 2.5x 

eil76 178 95 433 40 2.4x 

pr299 165 597 403 277 2.2x 
 

Table 10: Comparison of the clock frequencies and runtimes achieved by the VHDL-based design developed 
within the context of the thesis (right) with those reported in the original implementation of 2007 (left). 

Information concerning the resource utilization is intentionally omitted due to the fundamental 

differences in the internal structure of the FPGAs under consideration, which render the accurate 

comparison based on the aforementioned parameter a rather infeasible task. 

The average speedup attained by the VHDL-based implementation designed within the context of 

the thesis against the original work of 2007 [29] is roughly 2.4x, which is exactly equal to the marked 

increase in clock frequency (average of 430MHz and 176MHz respectively); this attests that the two 

implementations under consideration are indeed quite similar, since the runtime-wise performance 

gains are clearly attributed to the corresponding rise in clock frequency. 

6.4.5   RRHC: VHDL-BASED S2OPT COMPARED TO GPU-BASED 2-OPT 

The final subsection considers the partial implementation and evaluation of the 2-OPT version of the 

Random Restart Hill Climbing (RRHC) metaheuristic in reconfigurable logic (FPGA); before proceeding 

further with the discussion, a few clarifications should be made: 

 As is the case with all the implementations presented within the context of the thesis, the 

design under consideration has not been actually downloaded to an FPGA. 

 It is assumed that the 2-OPT heuristic embedded within the RRHC metaheuristic is realized 

through the VHDL-based S2OPT hardware design, which was presented in the previous 

chapter. 

 The term “partial” refers  to the fact that only the underlying computing engines, responsible 

for the parallel execution of the embedded 2-OPT heuristic have been evaluated-not the 

metaheuristic as a whole. 

The work discussed here was inspired by the equivalent GPU-based implementation presented in 

[52], which constitutes the benchmark for the subsequent evaluation of the design under 

consideration. 

Briefly explained, the basic steps of the 2-OPT based RRHC metaheuristic are the following: 

1. Compute an approximate solution to the TSP instance under consideration using the 2-OPT 

heuristic. 

2. Store the currently best (smallest overall length) solution found by the aforementioned 

heuristic.  

3. Apply a random permutation to the resulting tour. 
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4. Go to step 1 and restart the process until a solution of satisfactory quality is found. 

The parallelism offered by the scheme under consideration is twofold: 

1. Intra-2-OPT-move-evaluation parallelism, which is already exploited by the VHDL-based S2OPT 

design, and most probably by the HLS-based ones as well. 

2. Intra-2-OPT-solver parallelism, available among individual 2-OPT solvers, each one working on 

a different random permutation of the TSP tour under consideration. 

This second form of parallelism can be realized by instantiating multiple cores of the VHDL-based 

S2OPT design; these computing engines are completely independent since there is no form of 

information exchange or synchronization involved between them.  As far as the application of the 

random permutations on the tours is concerned, this can be achieved through the utilization of the 

complex dedicated datapaths within each core’s RGU; from a theoretical point of view, no major 

modifications to the internal structure of the VHDL-based design are required in order to adapt it for 

the scenario discussed here. 

Moving on, the metric used in [52] for the evaluation of the GPU-based implementation is its 

throughput, expressed in terms of the number of 2-OPT move evaluations performed per second; 

thus the unit of measurement is the Giga-Move-Evaluations per second, GME/s. This made clear that 

only the VHDL-based implementation could be considered, due to the fact that the exact knowledge 

of its underlying architecture enables the accurate computation of the number of 2-OPT move 

evaluations performed per second through the following formula: 

GME/s= 
𝑁 𝑐

2 𝑦 𝑧
 

The quantities corresponding to the variables are the following: 

 N, the number of cities within the TSP instance under consideration. 

 c, the number of the instantiated individual cores. 

 y, the number of clock cycles required for the execution of the main iteration of the S2OPT 

algorithm (the WHILE(1) loop in the terminology used in the presentation of the HLS-based 

design in chapter 5). 

 z, the clock period expressed in nanoseconds.   

Before proceeding to presentation of the results, it should be noted that those consider the peak 

theoretical throughput, based on the aforementioned formula, the post Place & Route clock reports 

generated by the Vivado IDE, and the following assumptions: 

 All #c cores operate and evaluate 2-OPT moves simultaneously, i.e. maximum utilization. 

 An abstract, high speed control entity, responsible for maintaining the best tour and 

monitoring the computing engines, is assumed; it could be realized either as a piece of 

software running on an on-fabric soft/hard-core CPU or as a dedicated hardware module. An 

external CPU is also a possibility, i.e. a heterogeneous system such as the Convey series of 

hybrid supercomputers. 
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 The bottlenecks induced by (a) the memory subsystem accessible by both the control entity 

and the computing engines and (b) the buses connecting the control entity and computing 

engines with the memory subsystem, are considered negligible. 

 GPU [52] VHDL-Based  Design (Multiple Cores) 

# 
Cities 

Throughput 
(GME/s) 

Throughput 
(GME/s) 

Speedup #Cores 
Clock 

Frequency 
(MHz) 

LUT 
(out of 
612K) 

FF (out 
of 

1.2M) 

DSP 
(out of 
3600) 

36 7.3 50.9 7x 300 339 94% 45% 75% 
62 16.6 47.3 2.9x 165 351 94% 43% 73% 

107 28.3 48.5 1.7x 100 341 96% 44% 75% 
186 38.4 45.8 1.2x 58 323 96% 45% 76% 
321 45.6 46 1.01x 35 327 97% 45% 79% 

 

Table 11: Post Place & Route performance results of the evaluated FPGA-based approach to the 2-OPT 
version of RRHC utilizing multiple independent cores of the VHDL-based S2OPT hardware design discussed in 

the previous sections. Target FPGA: Xilinx Virtex-7 980T. The GPU used in [52] is an Nvidia Tesla K40 with 
2880 stream processors running at about 800MHz. 

OBSERVATIONS: 

 The throughput of the GPU-based implementation [52] is relatively low for the smallest 

dataset under consideration, and increases as the number of cities rises, reaching the 

throughput levels achieved by the VHDL-based design near the 321-city mark; although not 

shown here, it is reported in [52] that the throughput continues to climb to a peak rate of 

around 60GME/s (8546 cities). 

 On the contrary, the throughput of the VHDL-based design remains rather high within the 

range of the tested datasets, achieving a peak rate of 50.9GME/s and an average of 

47.7GME/s; this is probably the upper limit of the design’s capabilities, as increasing the 

number of cities further will definitely lead to performance throttling due to the previously 

discussed issue affecting the SGU and the fact that the design cannot be efficiently pipelined. 

 Subsequently, the average speedup obtained by the VHDL-based design within the range of 

the evaluated datasets is 2.8x; a maximum of 7x is recorded for the smallest dataset under 

consideration and decreases rapidly as the number of cities grows. 

 All in all the GPU-based implementation scales better than the VHDL-based implementation, 

even in the best-case scenario examined here, thus rendering the latter an attractive 

alternative only in the case where small TSP instances are considered.  

  



88 
 

CHAPTER 7: CONCLUSION & FUTURE WORK 

7.1   CONCLUSION 
The objectives of the thesis were manyfold, and were achieved to a great extent: 

1. The evaluation and comparison of the HLS and HDL-based design flows in terms of both their 

inherent characteristics and the quality of the designs they produce, based on the results 

obtained by the implementation of Symmetrical 2-OPT (S2OPT). 

2. The estimation of the performance enhancements yielded by the latest generation of FPGAs 

and design tools, using the work conducted in [29] (original S2OPT) as a reference point. 

3. The assessment of how well the architecture presented in [29] (original S2OPT)-which was 

redesigned and re-implemented for the purposes of this thesis -fares against both the classic 

Concorde and a state-of-the-art GPU-based 2-OPT implementation as well [52], almost a 

decade after its inception. 

4. The exploration of how effectively the architecture presented in [29] (original S2OPT) scales as 

the length of the TSP tour increases, a question that constituted part of the future work of the 

aforementioned publication. 

The conclusions drawn are the following: 

1. In general, both design flows are equally capable of delivering high quality of results, if their 

corresponding timing requirements are sufficiently met. The HLS flow, realized through the 

Xilinx Vivado HLS, is under constant improvement and is more flexible and time-efficient than 

the HDL-based flow which is realized through the Xilinx Vivado IDE. On the other hand, the 

latter poses the classic, long-proven approach to hardware design, with powerful capabilities 

and exceptional levels of control over the design under development, which simply cannot be 

matched by its counterpart. 

2. Within the context of the application under consideration, there was a marked average 

increase of 2.4x in the attainable clock frequency, resulting from the switching from the 

venerable yet aging Xilinx Virtex-2 Pro FPGA utilized in [29] to the much newer Xilinx Virtex-7 

FPGA; remarkably, this led to an exact 2.4x average reduction in the required execution times. 

3. The hardware architecture under consideration proved fairly capable, achieving speedups in 

the range of 1.1x to nearly 10x when compared against Concorde, depending on the dataset 

used and the implementation version. As far as the GPU-based implementation is concerned 

[52], the speedups attained from the VHDL-based design varied from 1.01x to 7x; in both cases 

the best performance figures were obtained during the evaluation of small TSP instances, 

hinting that the hardware architecture is more suitable for small scale TSPs. 

4. The results obtained by both design flows show a clear trend of decreasing performance as the 

number of cities within the TSP tour under consideration rises; this behavior is largely attested 

to the fact that the hardware designs cannot be efficiently pipelined due to the highly iterative 

nature of the Symmetrical 2-OPT algorithm that causes the aforementioned pipeline to fill and 

empty at every such iteration.  

7.2   FUTURE WORK 
Possible future extensions to the work presented in this thesis include the following: 
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 The inclusion of the hardware required for the computation of the square root of the 

Euclidean distance and the examination of its subsequent impact on the performance 

characteristics of the designs obtained by both design flows. 

 Explore how the hardware architecture under consideration could be modified in order to 

support 2.5/r/3-OPT moves and provide corresponding FPGA-based implementations. 

 The design of an FPGA-based implementation of a metaheuristic such as Iterated Local Search 

or Simulated Annealing embedding the 2-OPT hardware architecture under consideration. 
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APPENDIX 

A.1   MATLAB SCRIPT UTILIZED IN “APPROACH A” DISCUSSED IN SECTION 

4.13, CHAPTER 4. 
%Georgios Malandrakis Miller, School of ECE, Technical University of Crete 
close all; 
clear all; 
clc 

  
%Set the iteration/experiment count and max 2D coordinates. 
ITERS= 10^6; 
MAX_COORD= 2^16; 

  
%Initialize the required structures. 
delta_EUC_SQ= inf(ITERS,1); 
delta_EUC= inf(ITERS,1); 

  
%Perform 1M iterations/experiments. 
for i=1:ITERS 
    %Randomly generate 4 points in the 2D Euclidean space. 
    A= [randi(MAX_COORD) randi(MAX_COORD)]; 
    B= [randi(MAX_COORD) randi(MAX_COORD)]; 
    C= [randi(MAX_COORD) randi(MAX_COORD)]; 
    D= [randi(MAX_COORD) randi(MAX_COORD)]; 

  
    %Consider that initially the points above are connected in this sense: 
    % 
    %   A<->B<->C<->D<->A 
    % 
    %Now consider that we decide to "break" the path between points A,B 
    %and C,D and connect them the only other possible way, ie.: 
    % 
    %   A<->C<->B<->D<->A 
    % 
    %thus simulating a 2-OPT move. 
    % 
    %The "old" distances would be dist(A,B) and dist(C,D) while the "new"  
    %distances will be dist(A,C) and dist(B,D). 
    % 
    %Now we move on to compute these distances, first by using the square 
    %of the Euclidean distance as the cost fucntion and then by using the 
    %standard Euclidean distance. 

     
    %Computing the distances using the square of the Euclidean distance. 
    distOLD1_EUC_SQ= (A(1)-B(1))^2 + (A(2)-B(2))^2; 
    distOLD2_EUC_SQ= (C(1)-D(1))^2 + (C(2)-D(2))^2; 
    distNEW1_EUC_SQ= (A(1)-C(1))^2 + (A(2)-C(2))^2; 
    distNEW2_EUC_SQ= (B(1)-D(1))^2 + (B(2)-D(2))^2; 

  
    %Computing the distances using the standard the Euclidean distance. 
    distOLD1_EUC= sqrt((A(1)-B(1))^2 + (A(2)-B(2))^2); 
    distOLD2_EUC= sqrt((C(1)-D(1))^2 + (C(2)-D(2))^2); 
    distNEW1_EUC= sqrt((A(1)-C(1))^2 + (A(2)-C(2))^2); 
    distNEW2_EUC= sqrt((B(1)-D(1))^2 + (B(2)-D(2))^2); 

  
    %To evaluate if the aforementioned move is length-reducing or not, we 
    %need to compute the difference between the sum of the "new" distances  
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    %and the sum of the "old" distances. That is 
    % 
    %   delta= (dist(A,C)+dist(B,D)) - (dist(A,B)+dist(C,D)) 
    % 
    %If the quantity above is negative, then the 2-OPT move is length 
    %reducing and should be applied. Otherwise, it should be avoided. 
    delta_EUC_SQ(i)= ((distNEW1_EUC_SQ + distNEW2_EUC_SQ) - 

(distOLD1_EUC_SQ + distOLD2_EUC_SQ)); 
    delta_EUC(i)= ((distNEW1_EUC + distNEW2_EUC) - (distOLD1_EUC + 

distOLD2_EUC)); 
end 

  
%Now we compute which of the 1M moves were length-reducing, by assigning a 
%logical '1' in every negative "delta" value, in both cases. 
delta_EUC_SQ_NEG= (delta_EUC_SQ < 0); 
delta_EUC_NEG= (delta_EUC < 0); 

  
%We then compute the error vector by subtracting the Squared Euclidean 
%results from the standard Euclidean results: 
error_vector= delta_EUC_NEG - delta_EUC_SQ_NEG; 

  
%This way we are able to distinguish between the 2-OPT moves that were 
%applied in the standard Euclidean case but not in the Squared Euclidean, 
%and vice-versa. 
ERR1= sum(error_vector<0); 
ERR2= sum(error_vector>0); 

 
disp(['Number of 2-OPT moves applied in the standard Euclidean case but not 

in the squared Euclidean: ',num2str(ERR2),' or 

',num2str(ERR2/ITERS*100),'%']); 
disp(['Number of 2-OPT moves applied in the squared Euclidean case but not 

in the standard Euclidean: ',num2str(ERR1),' or 

',num2str(ERR1/ITERS*100),'%']); 

 

 
Number of 2-OPT moves applied in the standard Euclidean case but not in the 

squared Euclidean: 46575 or 4.6575% 

Number of 2-OPT moves applied in the squared Euclidean case but not in the 

standard Euclidean: 46279 or 4.6279% 

>> 

 

Arithmetic Example from the berlin52 instance of TSPLIB: 

A=(25,230) B=(525,1000) C=(510,875) D=(560,365) 

distAB_OLD1_EUC_SQ= (525-25)
2
 + (1000-230)

2
= 500

2 
+ 770

2
= 250000 + 592900= 

842900 

distAB_OLD1_EUC= √842900= 918 

distCD_OLD2_EUC_SQ= (510-560)
2
 + (875-365)

2
= (-50)

2
 + 510

2
= 2500 + 260100= 

262600 

distCD_OLD2_EUC= √262600= 513 
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distAC_NEW1_EUC_SQ= (25-510)
2 
+ (230-875)

2
= (-485)

2
 + (-645)

2
= 235225 + 

416025= 651250 

distAC_NEW1_EUC= √651250= 807 

distBD_NEW2_EUC_SQ= (525-560)
2
 + (1000-365)

2
= (-35)

2
 + (635)

2
= 1225 + 

403225= 404450 

distBD_NEW2_EUC= √404450= 636 

delta_EUC_SQ= (distAC_NEW1_EUC_SQ + distBD_NEW2_EUC_SQ) – 

(distAB_OLD1_EUC_SQ + distCD_OLD2_EUC_SQ)= (651250 + 404450) – (842900 + 

262600)= 1055700 – 1105500= -49800 < 0 => Length reducing move. 

delta_EUC= (distAC_NEW1_EUC + distBD_NEW2_EUC) – (distAB_OLD1_EUC + 

distCD_OLD2_EUC)= (807 + 636) – (918 + 513)= 1443 – 1431= 12 > 0 =>  

No length reducing move  

 

delta_EUC_SQ ≠ delta_EUC 

 

A.2   HLS DESIGNS EVALUATIONS 
The performance and utilization results obtained by the following evaluations are based on the 

berlin52 TSPLIB dataset; the target hardware platform is a Xilinx Virtex-7 330T with a default clock 

constraint of 100MHz (10ns). The following is a "light" version of the spreadsheet used during the 

development of the HLS-based hardware architectures; the original spreadsheet contained extra 

columns displaying per-loop pipeline-related information as well as remarks made by the author on 

the effectiveness, impact and usefulness of the various source code revisions, directives and their 

combinations, used for guidance, search space pruning and decision-making purposes. The "light" 

version is presented instead of the original due to space, illustration and clarity concerns. The "X" 

visible in the results of numerous evaluations implies that the design under consideration was either 

implemented successfully but failed to perform as intended (single "X" in the Latency column), or 

could not be implemented at all (multiple "X"s) due to fatal software errors. The number within the 

parenthesis that follows the description of many of the evaluations denotes the source code revision 

upon which the given directive(s) was (were) tested. 

 
Clock 

Period 
BRAM_18K DSP48E FF LUT 

Latency 

C SOURCE REVISIONS             

0_INITIAL SOURCE VERSION 8.23ns 0 8 1198 1240 261933 

1_REDUNDANT ARRAY & VARIABLE REMOVAL PLUS 
PARTIAL FOR-LOOP MERGING 

8.23ns 0 8 643 900 235539 

2_REVAMPED IO WITH FIFO SUPPORT 8.23ns 4 8 661 978 208867 

3_ARBITRARY PRECISION VARIABLES & #RESOURCE 
DIRECTIVE COMPATIBILITY 

8.25ns 2 2 637 847 170023 

4_UNIFIED CITY COORDS IN SINGLE 30bit VALUE 
USING BIT MANIPULATION METHODS 

8.25ns 2 2 631 789 170023 

5_CFUNC FUNCTION REDESIGN WITH EXTENDED & 
MORE EXPRESSIVE FUNCTIONALITY 

8.59ns 2 8 475 696 130930 
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6_FURTHER PARTIAL FOR-LOOP MERGING 8.59ns 2 8 417 720 106035 

       
5X_5 PLUS WRAPPED ARRAY (CT & SWAPS) 

ACCESSES/UPDATES 
8.59ns 2 8 508 714 130930 

       

       

       DIRECTIVES EVALUATIONS 
      

       

#PIPELINE (3)             

PIPELINE S2OPT function 8.25ns 2 2 3881 5998 104445 

PIPELINE S2OPT & CFUNC functions 8.25ns 2 2 3881 5998 104445 

PIPELINE EVERYTHING (S2OPT & CFUNC functions + 
WHILE/MAIN loop & FOR/SUB loops) 

8.25ns 2 2 3873 5978 104445 

PIPELINE FOR/SUB loops 8.25ns 2 2 714 898 129837 

PIPELINE FOR/SUB loops & CFUNC function 8.25ns 2 2 714 898 129837 

PIPELINE FOR/SUB loops & CFUNC function & 
WHILE/MAIN loop 

8.25ns 2 2 3744 5047 104450 

       
#DATAFLOW (3) 

      
DATAFLOW S2OPT function 8.25ns 4 2 639 835 170024 

DATAFLOW S2OPT & CFUNC function X X X X X X 

DATAFLOW WHILE/MAIN loop X X X X X X 

DATAFLOW FOR/SUB loops X X X X X X 

       

#RESOURCE (3)             

MULTIPLIER CORES 
      

FUNCTION= CFUNC-> VARIABLE(S)= multA & multB-> 
CORE= Mul-> LATENCY= 0 

8.25ns 2 2 673 847 170023 

FUNCTION= CFUNC-> VARIABLE(S)= multA-> CORE= 
MuL_LUT-> LATENCY= 0 

8.43ns 2 1 637 1103 170023 

FUNCTION= CFUNC-> VARIABLE(S)= multA & multB-> 
CORE= MuL_LUT-> LATENCY= 0 

7.61ns 2 0 637 1389 170023 

FUNCTION= CFUNC-> VARIABLE(S)= multA & multB-> 
CORE= MuL_LUT-> LATENCY= 5 

8.29ns 2 0 639 1420 273607 

FUNCTION= CFUNC-> VARIABLE(S)= multA & multB-> 
CORE= MuL_*nS-> LATENCY= 0 

8.24ns 2 2 515 907 170023 

FUNCTION= CFUNC-> VARIABLE(S)= multA & multB-> 
CORE= MuL_*nS-> LATENCY= 5 

8.2ns 2 2 775 908 273607 

FUNCTION= CFUNC-> VARIABLE(S)= multA & multB-> 
CORE= DSP48-> LATENCY= 0 

8.25ns 2 2 637 847 170023 

FUNCTION= CFUNC-> VARIABLE(S)= multA & multB-> 
CORE= DSP48-> LATENCY= 4 

8.25ns 2 2 637 847 170023 

       
ADDER CORES 

      
FUNCTION= CFUNC-> VARIABLE= add-> CORE= 

AddSub-> LATENCY= 0 
8.64ns 2 2 517 877 170023 

FUNCTION= CFUNC-> VARIABLE= add-> CORE= 
AddSub_*nS-> LATENCY= 0 

8.69ns 2 2 517 882 170023 

FUNCTION= CFUNC-> VARIABLE= add-> CORE= 
AddSub_*nS-> LATENCY= 5 

7.35ns 2 2 544 909 293029 
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FUNCTION= CFUNC-> VARIABLE= add-> CORE= 
AddSub_DSP-> LATENCY= 0 

8.43ns 2 3 517 847 170023 

FUNCTION= CFUNC-> VARIABLE= add-> CORE= 
AddSub_DSP-> LATENCY= 5 

8.43ns 2 3 517 847 170023 

       
#ARRAY PARTITION (3) 

      
TYPE= COMPLETE-> DIMENSION(S)= 1 & 2-> 

VARIABLE(S)= IT & FT 
8.25ns 2 2 639 1343 170127 

TYPE= COMPLETE-> DIMENSION(S)= 1-> 
VARIABLE(S)= CT 

8.66ns 0 8 10983 24646 115019 

TYPE= COMPLETE-> DIMENSION(S)= 1 & 2-> 
VARIABLE(S)= CT 

8.66ns 0 8 10983 24646 115019 

TYPE= COMPLETE-> DIMENSION(S)= 1-> 
VARIABLE(S)= SWAPS 

8.25ns 2 2 677 909 169525 

       

#INLINE (5)             

CFUNC 9.81ns 2 32 1109 923 111508 

       
#LOOP_FLATTEN (5) 

      
COULD NOT BE APPLIED DUE TO MULTIPLE LOOPS 

WITHIN A GIVEN LEVEL       

       

#LOOP_MERGE (5)             

COULD NOT BE APPLIED DUE TO THE EXISTENCE OF 
NON-TRIVIAL CODE BETWEEN LOOPS 

            

       
#LOOP_UNROLL (5) 

      
READIN, FACTOR= COMPLETE 8.59ns 2 8 481 937 130851 

WHILE, FACTOR= COMPLETE 8.59ns 2 8 481 716 130930 

CSWA, FACTOR= COMPLETE 9.07ns 3 8 552 810 118729 

CSWA, FACTOR= 2 9.3ns 2 8 522 821 124954 

CSWA, FACTOR= 5 8.71ns 2 8 697 1052 126448 

CSWA, FACTOR= 10 9.07ns 2 8 891 1299 123958 

UPDA, FACTOR= COMPLETE 8.59ns 2 8 567 883 130398 

       

#ALLOCATION (5)             

CORE= DSP-> LIMIT= 4 X X X X X X 

CORE= DSP-> LIMIT= 1 X X X X X X 

       
#ARRAY_PARTITION REVISITED & 

VARIABLE TYPE IMPACT ASSESSMENT (5)       

TYPE= AUTOMATIC, VARIABLE= CT 8.59ns 2 8 475 696 130930 

TYPE= GLOBAL, VARIABLE= CT 8.59ns 2 8 475 696 130930 

TYPE= STATIC, VARIABLE= CT 8.59ns 2 8 475 696 130930 

TYPE= STATIC + GLOBAL, VARIABLE= CT 8.59ns 2 8 475 696 130930 

       
VAR. TYPE= AUTOMATIC-> VARIABLE= CT & 

ARRAY_PARTITION-> TYPE= COMPLETE 
8.59ns 0 8 11914 14778 151377 
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VAR. TYPE= GLOBAL-> VARIABLE= CT & 
ARRAY_PARTITION-> TYPE= COMPLETE 

8.59ns 0 8 3514 5328 151377 

VAR. TYPE= STATIC-> VARIABLE= CT & 
ARRAY_PARTITION-> TYPE= COMPLETE 

8.59ns 0 8 3514 5328 151377 

VAR. TYPE= STATIC + GLOBAL-> VARIABLE= CT & 
ARRAY_PARTITION-> TYPE= COMPLETE 

8.59ns 0 8 3514 5328 151377 

       EVALUATION OF #ARRAY_PARTITION 
APPLIED TO CT ARRAY + FOR/SUB LOOPS 

PIPELINING (5,5X) 

 

            

AP: ARRAY_PARTITION, B: BLOCK TYPE, x: FACTOR 
[e.g. APB8]       

AP: ARRAY_PARTITION, CYC: CYCLICAL TYPE, x: 
FACTOR [e.g. APCYC16]       

AP: ARRAY_PARTITION, COMP: COMPLETE TYPE, x: 
FACTOR [e.g. APC]       

FORPIPELINE: FOR/SUB LOOPS PIPELINING 
      

INLINE: INLINE THE CFUNC FUNCTION 
      

       
APB2 (5) 8.59ns 4 8 1036 1668 433211 

APB4 (5) 8.59ns 4 12 1334 2473 X 

APB8 (5) 8.68ns 6 11 2492 4356 X 

APB10 (5) 8.59ns 2 13 2487 4364 486646 

APB12 (5) 8.59ns 10 14 2209 4074 X 

APB13 (5) 8.62ns 0 8 12626 80833 109023 

APB14 (5) X X X X X X 

APB15 (5) 8.62ns 0 8 12665 48137 121722 

APB16 (5) 8.62ns 0 8 12665 48137 121722 

APB32 (5) 8.62ns 0 8 12665 48137 121722 

       
APCYC2 (5) 8.59ns 4 8 831 1322 131174 

APCYC4 (5) 8.59ns 8 8 878 1959 123953 

APCYC8 (5) 8.59ns 16 8 1158 5119 176031 

APCYC10 (5) 8.59ns 16 20 1937 5359 X 

APCYC12 (5) 8.59ns 2 20 9755 18174 X 

APCYC13 (5) 8.59ns 0 14 15572 33112 446667 

APCYC14 (5) 8.59ns 0 20 18748 40013 697545 

APCYC15 (5) 8.59ns 0 20 11636 19455 X 

APCYC16 (5) 8.59ns 0 8 15580 33941 125691 

APCYC32 (5) X X X X X X 

       
APC (5) 8.59ns 0 8 13906 17417 144615 

       
FORPIPELINE (5) 8.59ns 2 8 526 745 65595 

       
FORPIPELINE + APB2 (5) 8.59ns 4 8 1222 1744 109668 

FORPIPELINE + APB4 (5) 8.59ns 4 12 1897 2881 X 

FORPIPELINE + APB6 (5) 8.59ns 6 9 2549 3811 X 
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FORPIPELINE + APB8 (5) 8.68ns 8 11 3093 4995 X 

FORPIPELINE + APB10 (5) 10.22ns 4 132 3117 5009 116159 

FORPIPELINE+APB12 (5) 10.22ns 10 14 2477 4374 X 

FORPIPELINE+APB13 (5) 8.59ns 0 8 13306 86514 50406 

FORPIPELINE+APB14 (5) X X X X X X 

FORPIPELINE+APB16 (5) 8.59ns 0 8 13306 53818 50406 

FORPIPELINE+APB32 (5) 8.59ns 0 8 11478 41274 49659 

       
FORPIPELINE + APCYC2 (5) 8.59ns 4 8 913 1365 103443 

FORPIPELINE + APCYC4 (5) 8.59ns 8 8 946 2110 103194 

FORPIPELINE + APCYC6 (5) 8.59ns 12 24 2880 5090 X 

FORPIPELINE + APCYC8 (5) 9.54ns 16 8 1046 5038 103194 

FORPIPELINE + APCYC10 (5) 10.9ns 20 20 2434 5739 X 

FORPIPELINE + APCYC12 (5) 8.59ns 8 20 13383 24513 X 

FORPIPELINE + APCYC13 (5) 8.59ns 0 14 11281 38160 X 

FORPIPELINE + APCYC14 (5) 8.59ns 0 20 14455 48368 63868 

FORPIPELINE + APCYC16 (5) 8.59ns 0 8 11866 40670 49161 

FORPIPELINE + APCYC32 (5) 
      

       
FORPIPELINE + APC (5X) 8.59ns 0 8 10636 19056 49161 

       
APB2 (5X) 8.59ns 0 8 1083 1056 1124513 

APB4 (5X) 8.59ns 0 12 1470 2139 X 

APB6 (5X) 8.59ns 0 9 1416 1591 X 

APB8 (5X) 8.59ns 0 9 1346 1432 1117541 

APB10 (5X) X X X X X X 

APB12 (5X) X X X X X X 

APB13 (5X) 8.59ns 0 8 2086 603 117178 

APB14 (5X) X X X X X X 

APB15 (5X) X X X X X X 

APB16 (5X) X X X X X X 

APB32 (5X) X X X X X X 

       
APCYC2 (5X) 8.59ns 0 8 747 741 256697 

APCYC4 (5X) 8.59ns 0 8 1255 1903 X 

APCYC6 (5X) 8.59ns 0 14 1474 1528 1103555 

APCYC8 (5X) 8.59ns 0 8 1113 1207 249725 

APCYC10 (5X) 8.59ns 0 10 1450 1514 1064711 

APCYC12 (5X) 8.59ns 0 10 2116 1370 1127252 

APCYC13 (5X) 8.59ns 0 13 2657 1065 845148 

APCYC14 (5X) 8.59ns 0 13 2657 1637 845148 

APCYC15 (5X) 8.59ns 0 13 2657 1893 845148 

APCYC16 (5X) 8.59ns 0 8 2086 1443 117178 

APCYC32 (5X) 8.59ns 0 8 2086 4187 117178 
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APC (5X) 8.59ns 0 8 2526 9831 116680 

       
FORPIPELINE (5X) 8.59ns 2 8 551 763 65595 

       FORPIPELINE + APB2 (5X) 8.59ns 0 8 1393 2134 1243134 

FORPIPELINE + APB4 (5X) 8.59ns 0 12 1713 2708 X 

FORPIPELINE + APB6 (5X) 8.59ns 0 9 2018 2907 1246122 

FORPIPELINE + APB8 (5X) 8.59ns 0 9 1753 2580 1242636 

FORPIPELINE + APB10 (5X) 
      

FORPIPELINE + APB12 (5X) 
      

FORPIPELINE + APB13 (5X) 8.59ns 0 8 2112 640 95474 

FORPIPELINE + APB14 (5X) X X X X X X 

FORPIPELINE + APB15 (5X) X X X X X X 

FORPIPELINE + APB16 (5X) X X X X X X 

FORPIPELINE + APB32 (5X) X X X X X X 

       
FORPIPELINE + APCYC2 (5X) 8.59ns 0 8 717 766 194328 

FORPIPELINE + APCYC4 (5X) 8.59ns 0 8 1177 2130 141788 

FORPIPELINE + APCYC6 (5X) 8.63ns 0 14 1829 2590 1174907 

FORPIPELINE + APCYC8 (5X) 8.59ns 0 8 1101 1230 193830 

FORPIPELINE + APCYC10 (5X) 8.59ns 0 10 1833 2596 1171919 

FORPIPELINE + APCYC12 (5X) 8.59ns 0 10 2520 2551 1170356 

FORPIPELINE + APCYC13 (5X) 8.59ns 0 13 2996 1783 861913 

FORPIPELINE + APCYC14 (5X) 8.59ns 0 13 2996 2351 861913 

FORPIPELINE + APCYC15 (5X) 8.59ns 0 13 2996 2607 861913 

FORPIPELINE + APCYC16 (5X) 8.59ns 0 8 2112 1480 95474 

FORPIPELINE + APCYC32 (5X) 8.59ns 0 8 2112 4224 95474 

       
FORPIPELINE + APC (5X) 8.59ns 0 8 3858 9862 94976 

       #INLINE REVISITED (5,5X) 
      

CFUNC INLINE (5X) 9.07ns 2 32 1116 947 117982 

CFUNC INLINE & FORPIPELINE (5X) 9.07ns 2 32 1137 989 64599 

       
CFUNC INLINE (5) 9.81ns 2 32 1126 942 111508 

CFUNC INLINE & FORPIPELINE (5X) 9.81ns 2 32 1165 974 63603 

       #UNROLL REVISITED (5,5X)             

UNROLL FOR/SUB LOOPS  (5) 9.07ns 0 64 6475 6018 4782 

PIPELINE WHILE/MAIN  LOOP (5) 24.62ns 0 104 7594 8318 1298 

PIPELINE WHILE/MAIN LOOP & INLINE CFUNC (5) 58.66ns 0 208 4703 8199 302 

CFUNC INLINE & UNROLL FOR/SUB LOOPS (5) 9.75ns 0 208 9149 7334 2292 

       
UNROLL FOR/SUB LOOPS  (5X) 9.52ns 1 8 1328 3490 188819 
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PIPELINE WHILE/MAIN  LOOP (5X) 9.07ns 1 16 1513 3626 135380 

PIPELINE WHILE/MAIN LOOP & INLINE CFUNC (5X) 9.07ns 1 208 5878 6578 135380 

CFUNC INLINE & UNROLL FOR/SUB LOOPS (5X) 9.07ns 1 208 5908 6609 182345 

       
#INLINE APPLIED TO CFUNC + 

#ARRAY_PARTITION APPLIED TO CT ARRAY  
(5,5X) 

 

      

CFUNC INLINE + APB2 (5) 9.07ns 4 32 1565 1871 420263 

CFUNC INLINE + APB4 (5) X X X X X X 

CFUNC INLINE + APB8 (5) X X X X X X 

CFUNC INLINE + APB16 (5) 9.75ns 0 32 11485 46901 115248 

CFUNC INLINE + APB32 (5) 9.75ns 0 32 11740 34523 115248 

       
CFUNC INLINE + APCYC2 (5) 9.75ns 4 32 1160 1566 117977 

CFUNC INLINE + APCYC4 (5) 9.89ns 8 32 1183 2339 111005 

CFUNC INLINE + APCYC8 (5) 9.89ns 16 32 1470 5289 163083 

CFUNC INLINE + APCYC16 (5) 9.75ns 0 32 14502 32711 119217 

CFUNC INLINE + APCYC32 (5) X X X X X X 

       
CFUNC INLINE + APC (5) 9.75ns 0 32 12828 16157 138141 

       
CFUNC INLINE + APB2 (5X) 9.81ns 0 32 1778 1443 1105589 

CFUNC INLINE + APB4 (5X) 9.89ns 0 36 1898 2413 X 

CFUNC INLINE + APB8 (5X) 10.14ns 0 33 2082 1826 1105091 

CFUNC INLINE + APB16 (5X) X X X X X X 

CFUNC INLINE + APB32 (5X) 
      

       
CFUNC INLINE + APCYC2 (5X) 9.81ns 0 32 1442 1128 237773 

CFUNC INLINE + APCYC4 (5X) 9.89ns 0 32 1642 2159 X 

CFUNC INLINE + APCYC8 (5X) 10.14ns 0 32 1848 1601 237275 

CFUNC INLINE + APCYC16 (5X) 9.75ns 0 32 2584 1835 113194 

CFUNC INLINE + APCYC32 (5X) 9.75ns 0 32 2723 3679 113692 

       
CFUNC INLINE + APC (5X) 9.07ns 0 32 2825 10141 110206 

       #UNROLL APPLIED TO FOR/SUB LOOPS+ 
#ARRAY_PARTITION APPLIED TO CT ARRAY 

(5,5X) 
 

            

APB2 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6476 6018 4782 

APB4 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782 

APB6 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782 

APB8 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782 

APB10 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782 

APB12 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782 
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APB13 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782 

APB14 + UNROLL_SUB_LOOPS (5) X X X X X X 

APB15 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782 

APB16 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782 

APB32 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782 

       
APCYC2 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782 

APCYC4 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782 

APCYC6 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782 

APCYC8 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782 

APCYC10 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782 

APCYC12 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782 

APCYC13 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782 

APCYC14 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782 

APCYC15 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782 

APCYC16 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782 

APCYC32 + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782 

       
APC + UNROLL_SUB_LOOPS (5) 9.07ns 0 64 6470 5998 4782 

       
APB2 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 8 1822 4802 943301 

APB4 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 10 1936 4806 943301 

APB6 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 9 2057 4981 943301 

APB8 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 9 2212 5090 943301 

APB10 + UNROLL_SUB_LOOPS (5X) X X X X X X 

APB12 + UNROLL_SUB_LOOPS (5X) X X X X X X 

APB13 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 104 5770 18179 74005 

APB14 + UNROLL_SUB_LOOPS (5X) X X X X X X 

APB15 + UNROLL_SUB_LOOPS (5X) X X X X X X 

APB16 + UNROLL_SUB_LOOPS (5X) X X X X X X 

APB32 + UNROLL_SUB_LOOPS (5X) X X X X X X 

       
APCYC2 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 8 1451 3562 189317 

APCYC4 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 8 1572 3574 189317 

APCYC6 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 10 2065 4952 895981 

APCYC8 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 8 1813 3788 189317 

APCYC10 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 10 2303 5102 895981 

APCYC12 + UNROLL_SUB_LOOPS (5X) X X X X X X 

APCYC13 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 121 8697 19753 X 

APCYC14 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 123 8943 20953 X 

APCYC15 + UNROLL_SUB_LOOPS (5X) X X X X X X 

APCYC16 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 104 5787 21558 74005 

APCYC32 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 104 5787 29118 74005 

       
APC + UNROLL_SUB_LOOPS (5X) 9.07ns 0 104 6475 4602 73507 

#INLINE APPLIED TO CFUNC + #UNROLL 
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APPLIED TO FOR/SUB LOOPS + 
#ARRAY_PARTITION APPLIED TO CT ARRAY 

(5,X) 

INLINE + APB2 + UNROLL_SUB_LOOPS (5) 10.14ns 0 208 9020 7964 2043 

INLINE + APB4 + UNROLL_SUB_LOOPS (5) 10.14ns 0 208 9020 7964 2043 

INLINE + APB6 + UNROLL_SUB_LOOPS (5) 10.14ns 0 208 9020 7964 2043 

INLINE + APB8 + UNROLL_SUB_LOOPS (5) 10.14ns 0 208 9020 7964 2043 

INLINE + APB10 + UNROLL_SUB_LOOPS (5) 10.14ns 0 208 9020 7964 2043 

INLINE + APB12 + UNROLL_SUB_LOOPS (5) 10.14ns 0 208 9020 7964 2043 

INLINE + APB13 + UNROLL_SUB_LOOPS (5) 9.75ns 0 208 9149 7334 2292 

INLINE + APB14 + UNROLL_SUB_LOOPS (5) X X X X X X 

INLINE + APB15 + UNROLL_SUB_LOOPS (5) 9.75ns 0 208 9149 7334 2292 

INLINE + APB16 + UNROLL_SUB_LOOPS (5) 9.75ns 0 208 9149 7334 2292 

INLINE + APB32 + UNROLL_SUB_LOOPS (5) 9.75ns 0 208 9149 7334 2292 

       

INLINE + APCYC2 + UNROLL_SUB_LOOPS (5) 10.14ns 0 208 9020 7964 2043 

INLINE + APCYC4 + UNROLL_SUB_LOOPS (5) 10.14ns 0 208 9020 7964 2043 

INLINE + APCYC6 + UNROLL_SUB_LOOPS (5) 10.14ns 0 208 9020 7964 2043 

INLINE + APCYC8 + UNROLL_SUB_LOOPS (5) 10.14ns 0 208 9020 7964 2043 

INLINE + APCYC10 + UNROLL_SUB_LOOPS (5) 10.14ns 0 208 9020 7964 2043 

INLINE + APCYC12 + UNROLL_SUB_LOOPS (5) 10.14ns 0 208 9020 7964 2043 

INLINE + APCYC13 + UNROLL_SUB_LOOPS (5) 9.75ns 0 208 9149 7334 2292 

INLINE + APCYC14 + UNROLL_SUB_LOOPS (5) 9.75ns 0 208 9149 7334 2292 

INLINE + APCYC15 + UNROLL_SUB_LOOPS (5) 9.75ns 0 208 9149 7334 2292 

INLINE + APCYC16 + UNROLL_SUB_LOOPS (5) 9.75ns 0 208 9149 7334 2292 

INLINE + APCYC32 + UNROLL_SUB_LOOPS (5) 9.75ns 0 208 9149 7334 2292 

       
INLINE + APC + UNROLL_SUB_LOOPS (5) 9.75ns 0 208 9149 7334 2292 

       
INLINE + APB2 + UNROLL_SUB_LOOPS (5X) 9.75ns 0 208 6376 7911 942305 

INLINE + APB4 + UNROLL_SUB_LOOPS (5X) 9.75ns 0 210 6505 7933 942305 

INLINE + APB6 + UNROLL_SUB_LOOPS (5X) 9.75ns 0 209 6628 8108 942305 

INLINE + APB8 + UNROLL_SUB_LOOPS (5X) 9.75ns 0 209 6757 8199 942305 

INLINE + APB10 + UNROLL_SUB_LOOPS (5X) X X X X X X 

INLINE + APB12 + UNROLL_SUB_LOOPS (5X) X X X X X X 

INLINE + APB13 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 208 7476 18999 73507 

INLINE + APB14 + UNROLL_SUB_LOOPS (5X) X X X X X X 

INLINE + APB15 + UNROLL_SUB_LOOPS (5X) X X X X X X 

INLINE + APB16 + UNROLL_SUB_LOOPS (5X) X X X X X X 
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INLINE + APB32 + UNROLL_SUB_LOOPS (5X) X X X X X X 

       
INLINE + APCYC2 + UNROLL_SUB_LOOPS (5X) 9.75ns 0 208 5999 6671 182345 

INLINE + APCYC4 + UNROLL_SUB_LOOPS (5X) 9.75ns 0 208 6119 6683 182345 

INLINE + APCYC6 + UNROLL_SUB_LOOPS (5X) 9.75ns 0 210 6617 8061 894985 

INLINE + APCYC8 + UNROLL_SUB_LOOPS (5X) 9.75ns 0 208 6361 6897 182345 

INLINE + APCYC10 + UNROLL_SUB_LOOPS (5X) 9.75ns 0 210 6855 8211 894985 

INLINE + APCYC12 + UNROLL_SUB_LOOPS (5X) X X X X X X 

INLINE + APCYC13 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 236 10998 22897 X 

INLINE + APCYC14 + UNROLL_SUB_LOOPS (5X) 10.14ns 0 228 10099 18156 776386 

INLINE + APCYC15 + UNROLL_SUB_LOOPS (5X) 10.14ns 0 228 10099 19866 776386 

INLINE + APCYC16 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 208 7476 22239 73507 

INLINE + APCYC32 + UNROLL_SUB_LOOPS (5X) 9.07ns 0 208 7476 29529 73507 

       
INLINE + APC + UNROLL_SUB_LOOPS (5X) 9.75ns 0 208 7908 5874 73009 

       
#INLINE APPLIED TO CFUNC + 

#ARRAY_PARTITION APPLIED TO FOR/SUB 
LOOPS + #PIPELINE APPLIED TO FOR/SUB 

LOOPS 
(5,X) 

 

            

INLINE + APB2 + PIPELINE_SUB_LOOPS (5) 9.07ns 4 32 1774 1928 109170 

INLINE + APB4 + PIPELINE_SUB_LOOPS (5) 9.89ns 4 36 2410 3030 X 

INLINE + APB6 + PIPELINE_SUB_LOOPS (5) 9.89ns 6 33 3109 4167 X 

INLINE + APB8 + PIPELINE_SUB_LOOPS (5) 9.89ns 8 35 3711 5193 X 

INLINE + APB10 + PIPELINE_SUB_LOOPS (5) 10.22ns 8 37 3575 5231 115661 

INLINE + APB12 + PIPELINE_SUB_LOOPS (5) 10.22ns 10 38 2919 4606 X 

INLINE + APB13 + PIPELINE_SUB_LOOPS (5) 9.07ns 0 32 13754 86800 50406 

INLINE + APB14 + PIPELINE_SUB_LOOPS (5) X X X X X X 

INLINE + APB15 + PIPELINE_SUB_LOOPS (5) 9.07ns 0 32 13754 54104 50406 

INLINE + APB16 + PIPELINE_SUB_LOOPS (5) 9.07ns 0 32 13754 54104 50406 

INLINE + APB32 + PIPELINE_SUB_LOOPS (5) 9.07ns 0 32 11948 41592 50157 

       
INLINE + APCYC2 + PIPELINE_SUB_LOOPS (5) 9.13ns 4 32 1319 1595 102198 

INLINE + APCYC4 + PIPELINE_SUB_LOOPS (5) 9.89ns 8 32 1334 2360 102198 

INLINE + APCYC6 + PIPELINE_SUB_LOOPS (5) 9.89ns 12 48 3264 5186 X 

INLINE + APCYC8 + PIPELINE_SUB_LOOPS (5) 9.89ns 16 32 1406 5284 102198 

INLINE + APCYC10 + PIPELINE_SUB_LOOPS (5) 10.9ns 20 44 2908 6189 X 

INLINE + APCYC12 + PIPELINE_SUB_LOOPS (5) 9.89ns 8 44 13731 24923 X 

INLINE + APCYC13 + PIPELINE_SUB_LOOPS (5) 9.07ns 0 38 11657 38514 X 

INLINE + APCYC14 + PIPELINE_SUB_LOOPS (5) 9.07ns 0 44 15001 48612 63370 

INLINE + APCYC15 + PIPELINE_SUB_LOOPS (5) 9.07ns 0 44 11950 23269 X 

INLINE + APCYC16 + PIPELINE_SUB_LOOPS (5) 9.07ns 0 32 12332 40908 49161 
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INLINE + APCYC32 + PIPELINE_SUB_LOOPS (5) X X X X X X 

       
INLINE + APC + PIPELINE_SUB_LOOPS (5) 9.07ns 0 32 11102 19312 49161 

       
INLINE + APB2 + PIPELINE_SUB_LOOPS (5X) 9.07ns 0 32 2421 2530 1243134 

INLINE + APB4 + PIPELINE_SUB_LOOPS (5X) 9.89ns 0 36 2200 3030 X 

INLINE + APB6 + PIPELINE_SUB_LOOPS (5X) 9.17ns 0 33 3050 3321 X 

INLINE + APB8 + PIPELINE_SUB_LOOPS (5X) 9.85ns 0 33 2785 2994 X 

INLINE + APB10 + PIPELINE_SUB_LOOPS (5X) X X X X X X 

INLINE + APB12 + PIPELINE_SUB_LOOPS (5X) X X X X X X 

INLINE + APB13 + PIPELINE_SUB_LOOPS (5X) 9.07ns 0 32 2714 1018 95474 

INLINE + APB14 + PIPELINE_SUB_LOOPS (5X) X X X X X X 

INLINE + APB15 + PIPELINE_SUB_LOOPS (5X) X X X X X X 

INLINE + APB16 + PIPELINE_SUB_LOOPS (5X) 9.07ns 0 32 2714 1018 95474 

INLINE + APB32 + PIPELINE_SUB_LOOPS (5X) X X X X X X 

       
INLINE + APCYC2 + PIPELINE_SUB_LOOPS (5X) 9.07ns 0 32 1663 1173 194826 

INLINE + APCYC4 + PIPELINE_SUB_LOOPS (5X) 9.89ns 0 32 1721 2400 140792 

INLINE + APCYC6 + PIPELINE_SUB_LOOPS (5X) 9.07ns 0 38 2861 3004 1175405 

INLINE + APCYC8 + PIPELINE_SUB_LOOPS (5X) 9.17ns 0 32 2043 1644 194826 

INLINE + APCYC10 + PIPELINE_SUB_LOOPS (5X) 9.07ns 0 34 2865 3010 1175405 

INLINE + APCYC12 + PIPELINE_SUB_LOOPS (5X) 9.07ns 0 34 3552 2939 1243134 

INLINE + APCYC13 + PIPELINE_SUB_LOOPS (5X) 9.07ns 0 37 3737 2197 826411 

INLINE + APCYC14 + PIPELINE_SUB_LOOPS (5X) 9.07ns 0 37 3556 2757 826411 

INLINE + APCYC15 + PIPELINE_SUB_LOOPS (5X) 9.07ns 0 37 3556 3013 826411 

INLINE + APCYC16 + PIPELINE_SUB_LOOPS (5X) 9.07ns 0 32 2714 1858 95474 

INLINE + APCYC32 + PIPELINE_SUB_LOOPS (5X) 9.07ns 0 32 2853 4638 95474 

       
INLINE + APC + PIPELINE_SUB_LOOPS (5X) 9.07ns 0 32 4296 10156 95474 

       #LOOP_MERGE RETRY (5) 
      

ALL SOURCE CODE WITHIN THE FOR/SUB LOOPS TO 
ENABLE #LOOP_MERGE 

8.59ns 2 8 792 969 130432 

ALL SOURCE CODE WITHIN THE FOR/SUB LOOPS TO 
ENABLE #LOOP_MERGE + FORPIPELINE 

8.59ns 3 8 900 1093 95500 

       
BALANCED PERFORMANCE DESIGN 

EVALUATIONS, #UNROLL, #PIPELINE, 
#INLINE 

(5) 
 

UNROLL: COMPLETE UNROLL. 
UNROLL xZ: UNROLL WITH A FACTOR Z 

(PARTIAL UNROLL). 
THE CODENAMES WITHIN THE BRACKETS {} 

REFER TO CERTAIN FOR/SUB LOOPS. THE 
KEYWORD “REST” REFERS TO THE REST OF THE 
FOR/SUB LOOPS NOT MENTIONED WITHIN THE 
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BRACKETS {}.IN THE CASE WHERE SUCH 
BRACKETS DO NOT EXIST, IT IS IMPLIED THAT 

THE DIRECTIVE UNDER CONSIDERATION IS 
APPLIED TO ALL FOR/SUB LOOPS. 

#INLINE APPLIES TO CFUNC 
 

FORPIPELINE + UNROLL {CSWAB} 9.52ns 3 8 622 899 75555 

FORPIPELINE + UNROLL x2 {CSWAB} 9.30ns 2 8 557 923 88005 

FORPIPELINE + UNROLL x4 {CSWAB} 9.07ns 2 8 662 1002 85017 

FORPIPELINE + UNROLL x8 {CSWAB} 9.52ns 2 8 1127 1784 88503 

       
FORPIPELINE + UNROLL {CSWAB UPDAB} 9.07ns 2 96 3671 4309 50157 

FORPIPELINE + UNROLL x2 {CSWAB UPDAB} 9.30ns 2 8 685 1069 93981 

FORPIPELINE + UNROLL x4 {CSWAB UPDAB} 9.07ns 2 8 928 1365 88005 

FORPIPELINE + UNROLL x8 {CSWAB UPDAB} 9.52ns 2 8 1661 2527 89499 

       
FORPIPELINE + UNROLL {CSWAB} + INLINE 9.81ns 3 208 4832 3876 56631 

FORPIPELINE + UNROLL x2 {CSWAB} + INLINE 9.81ns 2 48 1559 1340 71571 

FORPIPELINE + UNROLL x4 {CSWAB} + INLINE 9.81ns 2 80 2427 1943 65595 

FORPIPELINE + UNROLL x8 {CSWAB} + INLINE 9.81ns 2 144 4417 3779 75555 

       
FORPIPELINE + UNROLL {CSWAB UPDAB} + INLINE 9.07ns 2 208 5641 4997 48663 

FORPIPELINE + UNROLL x2 {CSWAB UPDAB} + INLINE 9.81ns 2 48 1687 1492 77547 

FORPIPELINE + UNROLL x4 {CSWAB UPDAB} + INLINE 9.81ns 2 80 2693 2306 68583 

FORPIPELINE + UNROLL x8 {CSWAB UPDAB} + INLINE 9.81ns 2 144 4951 4522 76551 

       
FORPIPELINE {CSWAB} + UNROLL REST 8.59ns 2 8 6684 6059 48171 

FORPIPELINE {CSWAB} + UNROLL x2 REST 8.59ns 2 8 723 997 77296 

FORPIPELINE {CSWAB} + UNROLL x4 REST 8.59ns 2 8 978 1501 76523 

FORPIPELINE {CSWAB} + UNROLL x8 REST 8.59ns 2 8 1548 2513 70782 

FORPIPELINE {CSWAB} + UNROLL x16 REST 8.59ns 2 8 1568 3127 66294 

FORPIPELINE {CSWAB} + UNROLL x32 REST 8.59ns 2 8 2421 5567 65294 

       
FORPIPELINE {CSWAB UPDAB} + UNROLL REST 8.59ns 2 8 6656 5911 52590 

FORPIPELINE {CSWAB UPDAB} + UNROLL x2 REST 8.59ns 2 8 595 849 71320 

FORPIPELINE {CSWAB UPDAB} + UNROLL x4 REST 8.59ns 2 8 712 1145 73535 

FORPIPELINE {CSWAB UPDAB} + UNROLL x8 REST 8.59ns 2 8 1014 1781 69786 

FORPIPELINE {CSWAB UPDAB} + UNROLL x16 REST 8.59ns 2 8 1436 2861 67290 

FORPIPELINE {CSWAB UPDAB} + UNROLL x32 REST 8.59ns 2 8 2289 5333 66290 

       
FORPIPELINE {CSWAB} + UNROLL REST + INLINE 9.81ns 2 32 7473 6011 46677 

FORPIPELINE {CSWAB} + UNROLL REST x2 + INLINE 9.81ns 2 32 1345 1231 75304 

FORPIPELINE {CSWAB} + UNROLL REST x4 + INLINE 9.81ns 2 32 1600 1719 74531 

FORPIPELINE {CSWAB} + UNROLL REST x8 + INLINE 9.81ns 2 32 2170 2752 68970 

FORPIPELINE {CSWAB} + UNROLL REST x16 + INLINE 9.81ns 2 32 2160 3297 64302 

FORPIPELINE {CSWAB} + UNROLL REST x32 + INLINE 9.81ns 2 32 3013 5737 63302 
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FORPIPELINE {CSWAB UPDAB} + UNROLL REST + 
INLINE 

9.81ns 2 32 7387 6831 51096 

FORPIPELINE {CSWAB UPDAB} + UNROLL REST x2 + 
INLINE 

9.81ns 2 32 1217 1089 69328 

FORPIPELINE {CSWAB UPDAB} + UNROLL REST x4 + 
INLINE 

9.81ns 2 32 1334 1385 71543 

FORPIPELINE {CSWAB UPDAB} + UNROLL REST x8 + 
INLINE 

9.81ns 2 32 1636 1999 67794 

FORPIPELINE {CSWAB UPDAB} + UNROLL REST x16 + 
INLINE 

9.81ns 2 32 2058 3100 65298 

FORPIPELINE {CSWAB UPDAB} + UNROLL REST + 
INLINE 

9.81ns 2 32 2911 5571 64298 

       
UNROLL ALL x2 9.3ns 2 8 737 1136 99706 

UNROLL ALL x4 9.07ns 2 8 1097 1763 95945 

UNROLL ALL x8 9.52ns 2 8 2132 3562 93690 

UNROLL ALL x16 9.07ns 2 96 4564 6443 51582 

UNROLL ALL x32 9.07ns 2 96 5417 8883 50852 

       
UNROLL ALL x2 + INLINE 9.81ns 2 48 1739 1559 83272 

UNROLL ALL x4 + INLINE 9.81ns 2 80 4862 2704 76523 

UNROLL ALL x8 + INLINE 9.81ns 2 144 5422 5557 80742 

UNROLL ALL x16 + INLINE 9.75ns 2 208 65529 6521 50358 

UNROLL ALL x32 + INLINE 9.07ns 2 208 7388 8961 49358 

       
PARTIAL SUBFUNCTION MERGING 
SOURCE VERSION EVALUATION (6) 

 
      

PIPELINE FOR/SUB LOOPS 8.59ns 2 8 476 723 72069 

PIPELINE FOR/SUB LOOPS + APC 9.71ns 0 8 11364 15120 37956 

PIPELINE FOR/SUB LOOPS + APC + INLINE 20.43ns 0 32 8192 15463 31482 

UNROLL ALL SUB/FOR LOOPS 9.07ns 0 88 7094 6715 4782 

INLINE + UNROLL ALL SUB/FOR LOOPS 9.75ns 0 208 9250 7334 2043 

       FINAL DESIGN VERSIONS             

LOW PERFORMANCE/LOW UTILIZATION   [LP] 
      

PIPELINE FOR/SUB LOOPS   (5)    8.59ns 2 8 543 764 65595 

       
HIGHER PERFORMANCE/MEDIUM UTILIZATION   

[HPA]       

UNROLL ALL SUB/FOR LOOPS  + #RESOURCE= 
AddSub @ CFUNC ADDITIONS (6) 

8.22ns 0 56 5806 7099 3786 

       
HIGHEST PERFORMANCE/HIGHEST 

UTILIZATION   [HPB]       

UNROLL ALL SUB/FOR LOOPS + INLINE  + 
#RESOURCE= AddSub @ CFUNC ADDITIONS (6) 

8.74ns 0 208 8383 12728 1296 
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