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Abstract

Properties such as porosity and permeability are of utmost significance in petroleum industry.
They are important parameters for both reservoir engineering and reservoir modelling, since
they constitute the basis upon which hydrocarbon reserves, as well as hydrocarbon flow
characteristics are determined. For that reason, accurate estimation of these properties has
been the subject of continuous studies.

For the purposes of this thesis, the porosity and permeability data provided by the 10th

SPE benchmark reservoir model were used. This model is part of the PUNQ Complex
Model and is a highly heterogeneous model, consisting of two parts: A relatively permeable
Tarbert formation on top and an Upper Ness formation at the bottom. The latter comprises
of permeable anastomosed channels laid on a non–permeable background. The data were
analysed using visualization, statistical and geostatistical techniques, in order to investigate
the statistical properties and to subsequently quantify and evaluate their spatial correlation
and variability.

The exploratory analysis was carried out using classical statistics (e.g., histograms,
statistical moments, distribution fitting and scatter plots). However, the main results were
derived using geostatistical methods. Geostatistical analysis included the calculation of
various variograms (i.e., directional, anisotropic, omnidirectional and 3D variograms), and
their subsequent fitting with appropriate theoretical variogram models. In addition to this
analysis, an upscaling of the reservoir model was performed by implementing the Simplified
Renormalization method to both porosity and permeability data.

Various conclusions were drawn from this project concerning the behaviour and spatial
correlation of the reservoir, as well as the general implementation of the geostatistical
methods. The most important outcome was the confirmation of the high heterogeneity and
anisotropy characterizing the entire reservoir model. An equally significant observation was
that results depend greatly on the number and locations of data included. More specifically,
considering more data across the horizontal plane increases the interpretable information of
variogram analysis, while considering more data along the vertical direction increases the
variability. Finally, upscaling leads to coarse–grained versions of the reservoir model; such



viii

reduced dimensionality models should be further evaluated by means of subsequent flow
simulation.
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Chapter 1

Introduction

One of the main objectives of the O&G industry is acquiring an accurate image of the
underground reservoir, which includes the geometry, geology and formation attributes. The
most significant parameters for the reservoir engineer are porosity and permeability and for
this reason, their determination across the whole volume of the reservoir is the objective
of continuous studies. Porosity and permeability are determined from core samples and
lab measurements using known correlations and are subsequently used in order to model
unsampled location values, by means of averaging and interpolation methods. To correctly
extrapolate these values, the depositional environment has to be identified, utilize analog
datasets and ultimately extrapolate the statistical distributions. Prediction of rock properties
at unsampled locations is a difficult task for which, a number of concepts and assumptions is
necessary (Pyrcz and Deutsch, 2014).

Permeability is one of the most important parameters affecting reservoir performance
(Ayan et al., 1994). A number of estimation methods for permeability exist, taking into
consideration rock type and petrophysical properties like grain size, surface area and pore
size (PetroWiki, 2015a), with one of the most fundamental methods being Darcy’s Law. The
Kozeny–Carman equation relies on the pressure drop of fluids passing through a medium
and it constitutes the basis to other estimation models. Models based on grain size include
Krumbein and Monk’s equation, Berg’s model and Van Baaren’s model. Methods based
on mineralogy are included in the studies of Herron, Panda and Lake, Bryant et al. and
Cade et al. Based on surface area and water saturation, existing methods include Granberry
and Keelan’s chart, Timur’s model, Dual Water model, Kukal and Simons equation for
low–porosity systems and Nuclear Magnetic Resonance methods. Based on pore dimension,
the equations of Swanson, Winland, Pittman, Katz and Thompson exist, which incorporate
the relationship of permeability with capillary pressures and pore size, as well as the Flow
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Zone Indicator suggested by Amaefule and Altunbay (PetroWiki, 2015b). An additional
method utilizing the capillary pressures is the Leverett J-function (Leverett, 1941).

Few geologic processes are fully understood in order to allow the use of deterministic
methods (Isaaks and Srivastava, 1989), thus making application of stochastic processes
necessary. As Kamali et al. (2013) point out, there are several estimation methods, generally
classified into classical and geostatistical. Classical methods utilize classical statistics but
most of them do not exploit the spatial information in earth science datasets (Isaaks and
Srivastava, 1989). On the other hand, geostatistical methods use the spatial structure of data
in the environment to produce estimations. Three dimensional models is the best solution for
combining all existing data. The use of such models allows for a more realistic treatment
of the dependencies of different parameters and additionally, provides information on the
spatial variability of uncertainty (Kamali et al., 2013).

Geostatistical methods are useful tools, which utilize the spatial correlation of data in
order to produce complete results that can be further used in other simulation procedures.
Numerous studies have been made applying geostatistical methods for the analysis of per-
meability data and modelling of fluid flow. Jennings et al. (2000) used geostatistics to study
the permeability of hydrocarbon rich, heterogeneous Permian dolomitized shallow–water
platform Carbonate Outcrops in Texas. A permeability map of the field is valuable, since it is
used to optimize further field development (Moore and Wade, 2013). Recently, Amanipoor
(2013) used petrophysical data, including permeability, to prepare the 3D model for the
Bangestan oil reservoir in southwest of Iran. One of their notable conclusions is that the
strong similarity between actual and estimated data confirms that geostatistical methods are
appropriate tools for 3D modeling of petrophysical parameters in oil and gas reservoirs.

The study of Makse et al. (1996) presented a numerical model on permeability pattern
formation in grain flow in wind-blown or fluvial sands. As they point out, efficient hydro-
carbon recovery is influenced by the understanding of such spatial patterns. Related to that,
Saemi et al. (2007) utilized artificial neural networks combined with genetic algorithm to
estimate the permeability of the South Pars gas field in Persian Gulf.

Moving on to other methods, Oliver (1990) presented the results of averaging processes in
permeability estimation using weighted averages of permeability and based on well-test data.
Noetinger et al. (1996) proposed an averaging method relating the permeability provided by
well test interpretation with the permeability map around the well, for 3D heterogeneous
reservoirs. Later on, Babadagli (2006) estimated effective permeability of fractally distributed
2D fields using different averaging techniques, with the most accurate among his results
being the geometric mean and power averaging techniques.
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Bryant et al. (1993) worked on network models in order to replicate the microstructure of
porous media and use these models to estimate and compare permeability values, as well
as their spatial correlation. Ioannidis et al. (1996) conducted statistical analysis of porous
microstructure in order to estimate reservoir permeability and derived an empirical equation
as a function of porosity and correlation scale.

Ayan et al. (1994) examined the effects of anisotropy and heterogeneity on permeability
of Triassic Sherwood sandstone reservoir. Sweet et al. (1996) presented the study of a
heterogeneous low–permeability gas reservoir in Hyde field in southern North Sea, which
included geostatistical, as well as upscaling techniques. Renard and de Marsily (1997)
presented a review of equivalent permeability calculation methods, making a distinction
between effective and block permeability estimation techniques, which can be further applied
in upscaling procedures. Furthermore, the announcement of the 10th SPE Comparative
Solution Project was an open invitation for permeability estimation studies of a highly
heterogeneous model applying upscaling techniques. The projects that were turned in, as
well as their results were collected and presented in the report of Christie and Blunt (2001).
Moreover, Masihi et al. (2016) introduced methods to estimate the effective permeability of
heterogeneous porous media based on percolation concepts, to be used for upscaling purposes.
It is also significant to notice their classification of effective permeability estimation methods
in deterministic versus stochastic, analytical versus numerical, exact versus approximate and
local versus non–local methods.

Naturally, permeability estimation is not only useful in oil and gas exploitation but also in
water resources applications. Desbarats (1987) attempted a numerical estimation of effective
permeability in sand–shale formations, considering the cases of both spatially correlated and
uncorrelated permeabilities. More recent studies followed, like Butler (2005) who examined
three classes of methods for estimating hydraulic conductivity, a parameter which depends
on permeability and the effect of its spatial variation in saturated flow systems. Torabi
et al. (2008) demonstrated a method to estimate permeability on microscale and to map out
permeability variations in deformation bands and similar geological structures. Mariethoz
et al. (2010) proposed a direct sampling from a training image method to perform multiple–
point geostatistical simulations to continuous variables. Last but not least, Dell’Arciprete et al.
(2011) compared three different pixel–based geostatistical simulation methods commonly
used for water and oil reservoir modelling.



4 Introduction

1.1 Objectives

For the purposes of this thesis, geostatistical methods are implemented in order to understand
and quantify the spatial structure of permeability and porosity data provided by the 10th SPE
benchmark reservoir model. The first objective of this thesis is to properly visualize the
provided data, analyse them from a statistical perspective and make a distinction between the
different groups coexisting in the model. Another objective is to apply geostatistical methods
like variography on different groups of data, in order to study their spatial correlation and
after that, to treat the data accordingly, so as to prepare them for subsequent spatial modelling.
The final objective is to carry out an upscaling of the model, in order to reduce the resolution
of the information and study the behaviour of the model for each intermediate step.

1.2 Thesis Outline

The thesis is organized in the following manner. In the present Chapter, a summary of the
available literature on permeability estimation is included, as well as a description of the
basic concepts of the main properties and methods used in this study. In Chapter 2, a detailed
description of the utilized statistical and geostatistical methods is presented. Subsequently, in
Chapter 3, the data are described using visualization and statistical techniques and the results
are presented in form of Figures and Tables. In Chapter 4, the geostatistical analysis is carried
out, which constitutes of the experimental variogram analysis for various data groups of the
model and the subsequent fitting of theoretical variogram models to the experimental data.
Furthermore, upscaling procedures are applied to the model and the results are accompanied
by the proper visualization and statistical analysis. All results are properly presented in form
of Figures and Tables. Chapter 5 includes a discussion of the results, as well as the derived
conclusions of this study. Finally, the algorithms utilized for the application of the various
methods are found in Appendix A.

1.3 Basic Concepts

1.3.1 Permeability

Permeability in earth sciences is defined as a physical quantity which characterizes the
medium, usually rocks or unconsolidated material, and affects the velocity of the fluids
passing through it. This parameter is important in determining the flow characteristics of
hydrocarbons in oil and gas reservoirs. Permeability is also an indicator of the pore throat
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dimensions. It can be generally calculated in the lab using various solutions to the diffusion
equation for unsteady flow conditions or as it is mostly known by applying Darcy’s Law
under steady state conditions (Bear, 1972). Also it can be measured by means of well logging
procedures.

The factors affecting permeability are pore size, pore throat geometry and porosity. It
is denoted by the letter k and is measured in m2 (SI units), Darcy (D) or more commonly
millidarcy (mD) (oilfield units). Permeability is neither a scalar, nor a vector. Pressure is
applied triaxially and for each direction permeability can be measured, leading to a 3–by–3
symmetric tensor of second rank (Liakopoulos, 1965), which is necessary when modelling
permeability in anisotropic media (Bear, 1972).

There are three distinct categories, absolute, effective and relative permeability. Absolute
permeability refers to single phase fluid flow. Effective permeability characterizes the
flow capacity of the matrix to a particular fluid when two or more phases are present.
Relative permeability expresses the permeability of a fluid in multiphase flow over the
absolute permeability of the medium and it can change with fluid saturation. Several
models have been developed for relative permeability modelling, including the models
of Brooks–Correy, Heterogeneous Rock, Chierici, Hysteresis, Carman–Kozeny, Network
and Three–phase Relative Permeability models, as well as Honarpour et al. and Ibrahim
correlations (PetroWiki, 2016c).

1.3.2 Porosity

Porosity or void fraction is determined as the percentage of the total bulk formation volume
that can be occupied by fluids. It is a measure of the void spaces in the porous medium.
Porosity does not provide information about the connectivity of the pores. It can be deter-
mined with lab measurements mostly or with well logging methods. The factors affecting
porosity are mainly grain size and sorting, burial depth and degree of compaction. It is
presented by the greek letter Φ and it is a scalar number, varying between 0 and 1, or as a
percentage between 0 and 100%. Porosity as a system categorizes into primary, secondary,
fracture, vuggy, effective or open, ineffective or closed and dual porosity. From the aspect of
pore diameter it includes macroporosity, mesoporosity and microporosity (Anovitz and Cole,
2015; Wikipedia, 2016).

While it is different from permeability, the two parameters are strongly correlated. The
various expressions relating permeability to porosity include the equations of Krumbein
and Monk, Berg, Van Baaren, Timur, Sen et al., Kozeny–Carman, Winland and Katz and
Thompson (Ma, 2015; PetroWiki, 2015a).
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1.3.3 Stochastic Processes

Stochastic or random process is a probability model which describes phenomena that evolve
over time. It characterizes a system whose spatial variability is characterized by random
fluctuations. Its probabilistic counterpart is the deterministic process. In a stochastic process
there exists a certain amount of uncertainty. Even if the initial conditions are constant, there
are several directions in which the process may evolve (Dodge, 2006). A generalization of a
stochastic process is the random field, where the variable is no longer a simple value but can
be multidimensional vectors. In natural sciences these values are often spatially correlated,
with the correlation decreasing with distance (Vanmarcke, 2010). Stochastic processes are
utilized in modelling and simulation. They serve to capture heterogeneity, simulate facies
and petrophysical properties, honour and integrate multiple data types and also to quantify
and assess uncertainty (PetroWiki, 2016a).

Earth science phenomena involve complex processes, making them to appear as random.
However, natural processes that form reservoirs are not the result of a random process
(PetroWiki, 2016a; Statios, 2000). These random variations are the results of deterministic
depositional processes, although highly non-linear and chaotic. Only a small portion of the
variability is explained by random behavior and is described by the nugget effect (Gringarten
and Deutsch, 1999).

1.3.4 Geostatistics

Earth science data are not randomly distributed in a spatial context (Yarus and Chambers,
2006) but exhibit connectivity to a certain degree. Similarity between two points is inversely
proportional to their distance. Geostatistics is a branch of applied statistics and mathematics
that includes a set of tools for assessing and modelling spatial variability. This spatial vari-
ability includes information about heterogeneity and directionality within datasets. A more
simplistic definition is that geostatistics deals with spatially autocorrelated data (Bohling,
2005). Moreover, geostatistics provides methods to quantify and evaluate the reliability and
uncertainty of the generated models (PetroWiki, 2016b).

The significant contribution of geostatistics in petroleum industry lies in the fact that it is
utilized in the study and development of heterogeneous reservoirs and in hydrocarbon recov-
ery optimization. It constitutes one of the many methodologies incorporated into reservoir
characterization processes. One of its many advantages is the capability to incorporate 3D
seismic data. Its output is usually used in fluid–flow simulations (PetroWiki, 2016b). The
most valuable feature of geostatistics is the ability to estimate data at locations inaccessible
for measurement (Hristopulos, 2011).
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Geostatistics was originally used in the mining industry in the early 1950s, to fill in for
the insufficiency of classical statistical methods. In 1970s and due to advances in computer
industry, its use spread to other areas of earth sciences and in the mid–to–late 1980s it was
extensively used in petroleum industry, with its acceptance steadily growing (PetroWiki,
2016b). Examples of geostatistics application are flow simulation improvement (Almeida,
1999), tunnelling applications (Saratsis, 2004), rock formation characterization (Xiroudakis,
2007), subsurface temperature distribution studies (Agemar et al., 2012) and precipitation
studies (Agou, 2016).





Chapter 2

Geostatistical Methods

The methods included in geostatistical analysis constitute in a conceptual way, a general-
ization of classical statistics. The workflow in geostatistics consists of several steps which
follow an iterative path. The first step is exploratory data analysis, which serves to ensure
data integrity. The second step is spatial modelling, which includes the derivation of an
experimental (semi)variogram and matching it with a theoretical variogram model. Next is
the application of kriging, an interpolation procedure applied to predict values. Following
is conditional simulation, which is utilized to produce practical reservoir models and repro-
duce the spatial relationship and heterogeneity of various petrophysical properties. The last
step is uncertainty analysis, which measures the degree of difference between subsequent
realizations (Yarus and Chambers, 2006).

Based on the evaluation of the uncertainty analysis results and the engineer’s experience,
the initial data can be treated accordingly and the workflow can be repeated to acquire
more satisfying results. The uncertainty in the estimated results can be due to the low
number of wells and their unsuitable distribution in order to build the model, as well as the
unsuitable network of structural framework (Amanipoor, 2013). However, the main source of
uncertainty in these precedures comes from the geological structure of the reservoir itself, the
variability of petrophysical properties and the locations of the oil–water and gas–oil contacts
(Kamali et al., 2013).

2.1 Exploratory Data Analysis

While it is not a specific part of geostatistical analysis, it is considered a prerequisite.
Primary data analysis includes univariate analysis like the mean, median, standard deviation,
skewness and kurtosis and multivariate analysis, in which the relationship between two or
more variables is examined (Yarus and Chambers, 2006).
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2.1.1 Probability Density Function

The probability density function or PDF of a continuous random variable is a function which
represents the probability of a random variable taking values within an infinitesimal range. It
can be further used to estimate the probability of the random variable to take values within a
particular wider range. This probability is calculated by integrating the variable’s PDF over
the requested range. The PDF takes values from 0 up to 1 and the integral over the entire
range of values is equal to the unity (Hazewinkel, 1994). Another function very often used in
combination with the PDF is the cumulative distribution function or CDF, which represents
the probability of the random variable taking values less than or equal to a specific value.
The same concept applies when treating discrete random variables. Summarizing, the PDF
as well as the CDF are expressed by the following formulas:

PDF: Pr[a ≤ X ≤ b] =
∫ b

a
fX(x)dx (2.1)

CDF: FX(x) =
∫ x

−∞

fX(u)du (2.2)

It is obvious that random variables in earth sciences draw values from the domain of real
numbers (x ∈ R).

2.1.2 Moments

Statistical moments are deterministic functions used to express expectations over all possible
states of a random field (Agou, 2016). In classical statistics, moments are used to determine
position, spread and shape of the distributed data. In a probability distribution, the zeroth
moment represents the total probability, the first moment is the mean, second moment is
the variance, third moment is the skewness and fourth moment is the kurtosis. Higher order
moments, i.e. beyond fourth order, are used for further description of shape parameters. This
concept is related to the concept of moments in physics (Hazewinkel, 1994).

Mean

Synonymous to the expected value of a distribution, the mean value is defined as the arith-
metic average of the studied sample. It is the first moment of a PDF and is considered a
measure of the central tendency of the data characterized by said distribution. It is usually
denoted by the greek letter µ . For any data set, the terms arithmetic mean, mathematical
expectation and average are usually used in the same manner. The mean is equal to the sum
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of all possible values of the random variable X, weighted by the respective probability of
each value P(x). The calculations for discrete as well as for continuous univariate variables
obey the same rules and are described as follows (Feller, 1968):

Discrete variables: µ = E[X ] = x1 p1 + x2 p2 + · · ·+ xk pk =
∞

∑
i=1

xi pi (2.3)

Continuous variables: µ = E[X ] =
∫

∞

−∞

x f (x)dx (2.4)

where, E denotes the expectation operator.
Several types of mean values exist, like the pythagorean means, which consist of the

arithmetic, the geometric and the harmonic mean. Furthermore, the means of probability
distributions, such as the ones described above. Moreover, the generalized means, which
divide into the power mean and the f–mean, the weighted arithmetic, truncated, interquartile,
function mean, mean of angles and cyclical quantities, Fréchet mean and a number of other
different mean types.

In probability distributions, the mean is frequently confused with the mode or the median,
since all of them can be referred to as average. Although these three terms coincide for
symmetrical distributions, the same does not apply for skewed distributions. In that case, the
mean is the arithmetic average of the values, as it was already defined. However, the median
is the middle value of the studied range, given that the values are ranked with increasing
order and the mode is the value with the highest probability of occurrence or the "most likely
value" (Feller, 1968).

Variance

Defined as the square root of the standard deviation of a PDF,the variance serves to measure
the spread of values around their mean. It is a second order moment of a PDF and is usually
denoted by σ2, s2, or Var(X). The variance of a random variable X is expressed as the
expectation of the squared deviation of a random variable from its mean and is formulated as
follows (Feller, 1968):

σ
2 = Var(X) = E

[
(X −µ)2]= E

[
(X −E[X ])2]= E

[
X2]− (E[X ])2 (2.5)

where, µ denotes the mean and E the expectation operator.
The significance of this moment lies in the fact that it is used along with the mean value,

to characterize distributions of random variables. In addition, it is a parameter utilized
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to compare different values and also the degree of correlation between them. Ultimately,
variance is used to as an indicator of error between measurements.

Skewness

The skewness of a distribution characterizes its shape and measures the asymmetry about
the mean. It is a statistical moment of third order and is denoted by γ1 or Skew(X). The
asymmetry coefficient or coefficient of skewness can be either positive, negative or undefined.
A positive skew results in the mode value leaning to the left and the right tail to be longer.
On the other hand, a negative skew results in the mode closer to the right and a longer left
tail. For the calculation of the skewness coefficient of a random variable X, the Pearson’s
moment coefficient formula is used (Hazewinkel, 1994; Kenney and Keeping, 1962):

γ1 = Skew(X) = E

[(
X −µ

σ

)3
]
=

µ3

σ3 =
E
[
(X −µ)3]

(E [(X −µ)2])3/2 =
µ3

µ
3/2
2

(2.6)

where, µ denotes the mean, σ the standard deviation, µ2 and µ3 the second and third central
moments of the distribution respectively and E the expectation operator.

Other methods to measure the asymmetry is the distance between the mean and the mode,
also suggested by Pearson, and the equation of Bowley, which does not depend as much as
Pearson’s on the tails of the distribution.

A significant contribution of skewness is to compare actual data with the assumed model.
Many models assume normal distribution, which implies zero skewness. Thus, any deviation
from that model can be depicted on the distribution plot (Kenney and Keeping, 1962).

Kurtosis

Kurtosis of a distribution is also a shape characteristic and indicates how peaked or flat–
topped the distribution is. However, kurtosis is more related to the length and height of
the tails. It is a fourth order moment and is denoted by γ2 or Kurt(X). The sharpness and
narrowness of the peak increase with increasing kurtosis, which can take either positive or
negative values (Kenney and Keeping, 1962). To calculate kurtosis, the following formula is
used:

γ2 = Kurt[X ] =
µ4

σ4 =
E[(X −µ)4]

(E[(X −µ)2])2 (2.7)

where, µ4 denotes the fourth central moment, σ the standard deviation, µ the mean and E
the expectation operator.
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Also, the kurtosis is bounded bellow by the squared skewness plus 1:

µ4

σ4 ≥
(

µ3

σ3

)2
+1 (2.8)

It is obvious that the standard deviation significantly influences kurtosis, since it is raised
to the fourth power. In that sense the most remote values from the mean are the most
influential. Thus, kurtosis can be considered a measure of the outliers of a distribution.

2.1.3 Probability Distributions

Probability or frequency distributions are the primary statistical tool to analyse and illustrate
raw data, since they constitute a useful form of tabulation. Rough data do not provide any
clear clues about the studied data set, so they have to be organised into classes of appropriate
size in order to display the corresponding frequency of each class (Kenney and Keeping,
1962). Characteristic parameters of any distribution are the PDF and CDF, as well as the
different order moments, which are utilized to capture the location, spread and shape of the
distribution.

Based on these parameters, the distribution can be fit to one of several theoretical distri-
bution models, which consequently can be used to estimate future behaviour. Theoretical
models have been developed for both discrete and continuous distributions. Common discrete
distributions include the models of Bernoulli, binomial, discrete uniform, geometric, hyper-
geometric, Poisson, logarithmic and many more. On the other hand, common continuous
distributions include the normal, log–normal, logarithmic, multimodal, beta, gamma, lambda,
continuous uniform, exponential, binomial, extreme value, logistic, Pareto or power law,
Nakagami, Rayleigh, Rician, Weibull, student’s t–distribution and more. For the purposes of
this thesis, only a few of them will be presented in detail.

The distribution function estimation is an interesting and important problem, as it appears
in many real problems of various scientific fields such as seismology, geology, hydrology,
environmental sciences, etc. In many cases, the distribution function appears to be in direct
relationship with the risk or nature hazard. A rich list of scientists and projects involved with
such studies are presented by Quintela-Del-Rio and Estevez-Perez (2012).

Normal Distribution

The normal or Gaussian distribution or "bell curve" is a very frequently occurring continuous
distribution, which belongs to the parametric family. It is very common in natural sciences,
making it one of the most important frequency curves. The curve consists of a single peak,
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which is bell shaped and is symmetrical about the mean. It depends on the mean µ and the
standard deviation σ , is usually denoted by N(µ,σ) and is represented by the following PDF
(Ang and Tang, 1975; Kenney and Keeping, 1962):

fX(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (2.9)

It’s simplest case, the standard normal distribution, is a distribution with µ = 0 and σ = 1,
denoted by N(0,1) and is described by the PDF:

fS(s) =
1√
2π

e−
s2
2 (2.10)

The expected value of the distribution, i.e. the mean, and the variance are presented
bellow. Odd central moments are equal to zero due to symmetry and even central moments
are given by the following formula. As a result, the skewness and kurtosis of the distribution
can be calculated using Equations 2.6 and 2.7 (Walck, 2007):

Even central moments: µ2r =
(2r)!
2rr!

σ
2r = (2r−1)!!σ2r, for r ≥ 1 (2.11)

Mean=Median=Mode: µ = E[X ] = µ1;

Variance: σ
2 = µ2; µ3 = 0; µ4 = 3σ

4 (2.12)

Skewness: γ1 =
µ3

σ3 = 0; Kurtosis: γ2 =
µ4

σ4 = 3 (2.13)

It is very common to assume that a physical phenomenon follows the normal distribution,
when the available data is insufficient for a more thorough analysis. In nature, many macro-
scopic phenomena are produced by the combined effect of numerous microscopic processes,
which brings up the Gaussian random variable (Leon-Garcia, 2008). In a way, all manner of
things appear to be distributed normally. The reason so many variables in nature tend to be
distributed normally is due to the Central Limit Theorem. However, this theorem explains
only the summation of random variables. The main reason that distinguishes the specific
distribution is that out of all distributions with mean µ , variance σ2 and support over all of
R, the normal distribution has the maximum entropy (Lyon, 2014).

The normal distribution is applied, among other cases, in gambling problems and error
representation, as well as in biology, education and sociology (Kenney and Keeping, 1962),
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in engineering applications (Ang and Tang, 1975), Monte Carlo simulations (Hastings, 1970),
multivariate statistics problems (Azzalini and Capitanio, 1999), optimization procedures
(Stewart, 1989), economics and marketing research (McDaniel and Gates, 2012) and many
more.

Logarithmic Normal Distribution

Commonly referred to as the log–normal distribution, it characterizes the distribution of a
random variable whose natural logarithm, lnX, is normally distributed. The random variable
can take only non–negative real values and the distribution displays similar properties and
limitations to the normal distribution, in the logarithm domain. It depends on the mean
λ = E[lnX ] and standard deviation ζ =

√
Var(lnX), is usually denoted by N(λ ,ζ ) and is

represented by the following PDF (Ang and Tang, 1975):

fX(x) =
1

ζ x
√

2π
e
− (lnx−λ )2

2ζ 2 (2.14)

The moments of the distribution are determined using the following formulas:

Mean: µ = e(λ+ζ 2/2) (2.15)

Variance: σ
2 = Var(X)) = eζ 2

−1 (2.16)

This distribution has a wide range of applications, for example in material resistivity,
precipitation studies or project management, fields of study which deal with positive variables
and which are often expressed by log–normal distributions.

Multimodal Distribution

This non–parametric distribution is the result of combining multiple normal distributions
with different modes and standard deviations. The desired values can be obtained using the
kernel estimator. Each distinctive peak represents a different group of the population, which
consequently indicates population heterogeneity. This model imposes minimal assumptions
on the data and as a result the PDF provides a more representative display. It is used when
a parametric distribution cannot properly describe the data or when assumptions should be
avoided (Zhu, 2005). The simplest form is the bimodal non–parametric distribution, which
consists of only two peaks. However, the kernel estimator can also be used for data that are
normally distributed.
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The form of the PDF depends mainly on the kernel function and the bandwidth parameter.
It can be modelled using the Rosenblatt–Parzen kernel estimator (Parzen, 1962), resulting in
the following function:

f̂h(x) =
1

nh

n

∑
i=1

K
(

x− xi

h

)
(2.17)

where, n denotes the sample size, K(u) the kernel smoothing function and h the bandwidth.

Some common choices for the kernel smoothing function are provided by Silverman
(1986):

Epanechnikov: K(u) = max
[

0,
3
4

(
1− 1

5
u2
)

5−
1
2

]
(2.18)

Triangular: K(u) = max[0,1−||u||] (2.19)

Gaussian: K(u) =
1√
2π

e−
u2
2 (2.20)

In order to determine the numerical moments of the distribution, the following functions
can be used (Hansen, 2009):

j-th moment of kernel: κ j(k) =
∫

∞

−∞

u jk(u)du ; u =
x− xi

h
(2.21)

Mean: µ = E[X ] =
∫

∞

−∞

x f̂ (x)dx =
1
n

n

∑
i=1

xi (2.22)

where, the mean of the PDF is the same as the sample mean.

Variance: σ
2 = E

[
X2]− (E[X ])2 =

∫
∞

−∞

x2 f̂ (x)dx−
(∫

∞

−∞

x f̂ (x)dx
)2

= σ̂
2 +h2

κ2(k) (2.23)

where, σ̂2 denotes the sample variance.

Galtung (1968) introduced a classification system for these distributions, which takes
into consideration the position and number of peaks. Zhu (2005) collected and presented
a number of multimodality tests that can be found in the statistical literature. Furthermore,
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Pyrcz and Deutsch (2014) made an important observation that, a bimodal histogram does not
imply non–stationary data, rather than it means that the data should be separated into two
groups under the condition that they display distinct statistical and geological properties.

Multimodal distributions are widely applied and are indicatively used in economics (Zhu,
2005), in earthquake and hydrology studies (Quintela-Del-Rio and Estevez-Perez, 2012), in
traffic monitoring, visual surveillance and object tracking and recognition (Elgammal et al.,
2002), in DNA data studies (Basturk et al., 2012) and in ecology and agriculture (Xu et al.,
2010).

2.2 Spatial Modelling

The modelling of spatial information is achieved with variography, or structural analysis,
whose main purpose is the identification and quantification of two–point correlations of the
data. This information is in turn used for interpolation or simulation, in order to preserve the
directions and scales of continuity. The inputs for this analysis are a grid and a set of control
points or in the case of geological applications, well locations. In other words, the required
information for this analysis are the data at the points of interest and their location in a spatial
context. In a way, variogram analysis is a distance and directional weighting problem (Yarus
and Chambers, 2006). The results of variography are reliable in large media, due to the fact
that the ergodic hypothesis, i.e. the equivalence between ensemble and spatial averages, is
justified for very large data sets, i.e. large initial population (Paleologos et al., 1996).

The primary tool used in variography is the variogram, or more accurately semivariogram,
although the latter term tends to disappear from the literature. Variography as a method
itself, is the iterative procedure of calculating, interpreting and modelling variograms. The
variogram describes the geological continuity of variables within relatively homogeneous
layers (Amanipoor, 2013) and it is the most common measure of spatial correlation used for
porosity and permeability modelling (Pyrcz and Deutsch, 2014). Preferred by geostatisticians,
the variogram tends to filter the influence of a spatially varying mean, by averaging squared
differences of the variable. In addition, the variogram can be defined in some cases that
the covariance function cannot. This is due to the intrisic hypothesis, a weaker form of
second–order stationarity of the variable (Bohling, 2005).

The variogram curve is a plot of variance as a function of distance. It is characterized
by three important components, nugget, sill and range, all of which contribute to deeper
understanding of the data. The three components are described in detail in the following
paragraphs, while their visual representation is displayed in Figure 2.1. In addition, an
accurate illustration of the correlation instances at different lag distances is described in
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Figure 2.2. These parameters are essential since the variogram can only be modelled utilizing
these three values (Pyrcz and Deutsch, 2014).

Nugget

Theoretically at zero separation (lag) distance, the variogram value is zero. However, the
existence of nugget effect or simply nugget, indicates the presence of noise, i.e. random and
uncorrelated data, at all lag distances. Numerically, the point that the variogram intersects
the y-axis of the graph is equal to the nugget. Bellow that point the data cannot be interpreted
and thus, provide no useful information (Yarus and Chambers, 2006). Main causes of this
effect are geologic features like lithology, sedimentary environments and tectonic structures
(Amanipoor, 2013), as well as measurement errors (Pyrcz and Deutsch, 2014).

Usually it characterizes feature scales smaller than the sampling interval. In geological
applications, most variables in sedimentary environments are locally continuous, thus the
nugget effect is usually limited up to about 30% (Pyrcz and Deutsch, 2014; Yarus and
Chambers, 2006). Furthermore, another useful term is the relative nugget effect, which is
defined as the nugget (C0) divided by the sill (C) (Amanipoor, 2013).

Sill

It is the inflection point of the curve at which the variogram flattens, i.e. reaches a plateau.
The value of the sill corresponds to zero correlation between data points, which can be
also realized in Figure 2.2. It is equal to the theoretical true variance of the studied sample,
which also makes it an additional validation criterion for the subsequent variogram modelling
(Yarus and Chambers, 2006). The significance of this parameter lies in the fact that the
behaviour of the variogram curve relatively to the sill, indicates the existence of trends in the
data, which will have to be treated accordingly and which is also illustrated in Figure 2.3.
One final remark is that in case of non–stationary data the variogram never reaches the sill.

Range

Correlation range or scale, describes the distance at which the variogram reaches the sill. Up
to that distance, the relationship with the variance is predictable. Points at distances greater
than the range have practically no effect on estimation. The range typically depends on
direction, with the horizontal directions displaying greater range due to increased continuity.
However, range alone is not that important, as the total shape of the variogram (Amanipoor,
2013; Yarus and Chambers, 2006).
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Fig. 2.1 Indicative vertical variogram plot describing the nugget, sill and range. Figure
retrieved from Statios (2000).

Additional parameters contributing to its final shape, are the direction of the variogram
and isotropy of the medium. While they are not required for variogram modelling, they affect
its shape and characteristics.

Directionality

Depending on the direction of the lag distances, the variogram is classified into categories.
This classification is important because information, and thus variogram properties, usually
change for different directions. Typically one variogram at a time is considered, which is
computed for all lags and all directions, irrespective of both azimuth and altitude, i.e. a 3D
variogram. The 3D variogram is the most useful tool in geological applications, since it
contains information irrespective of direction and can subsequently be used for building the
3D model of the required formation.

Restricted by direction, data pairs can be selected in such a manner as to have a particular
orientation, thus producing the directional variogram. In the case that the data points lie
on a single horizontal or vertical path, then the horizontal or vertical variogram is produced
respectively. A disadvantage of horizontal variograms is that horizontal wells rarely recognise
the stratigraphic "time lines" (Pyrcz and Deutsch, 2014). Furthermore, considering all
possible pairs, irrespective of azimuth, results in the omnidirectional variogram. Notice
that the omnidirectional variogram does not imply the same behaviour in all directions.
Nowadays, computer software has integrated the calculation of the variogram map, depicting
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the variance of all azimuths. It is not a geological map, but a polar graph of variance and
azimuth along different lag increments (Yarus and Chambers, 2006).

Isotropy

Isotropy is a property of continuous materials, which characterizes the behaviour of an
attribute with respect to different orientations. An attribute displaying the same behaviour
along all different directions is a feature of isotropic materials. On the other hand, varying
behaviour along different directions, characterizes an anisotropic material. In geological
applications, the main reasons behind anisotropy are layering, faulting and layer inclination.
Anisotropy can increase the nugget effect and also make the final variogram hard to interpret.

Different range in various parameters (Amanipoor, 2013) and directional dependency of
range (Ayan et al., 1994) establishes anisotropy. This leads to the realisation that the top view
of an isotropic variogram will be round, while of an anisotropic will be an ellipsoid. In that
sense, the variograms of two different directions for the same data sample will not coincide.
Examples of anisotropic behaviour are displayed in Figure 2.4 for regular and irregular strata.

A similar concept to isotropy is homogeneity, where the material is continuous and
isotropic along its total volume. On the other hand, a heterogeneous material is only locally
homogeneous while the total volume is not. Heterogeneity can also be determined as
positional dependency of results (Ayan et al., 1994). A common feature of hydrocarbon
reservoirs and other geological formations is high heterogeneity, caused by the complex
sedimentation processes and post–sedimentary events (Masihi et al., 2016). Examples of
such behaviour can be seen in Figure 2.4 by observing the different lenses configuration.

2.2.1 Experimental Variogram

Data points are classified in a variety of separation distances called lags or lag distances, and
being denoted by h. For a given lag, the results of each pair are summed up and averaged and
then plotted as variance against mean lag distance. This curve is called variogram and one
half of the variogram is the so called experimental semivariogram, denoted by γ̂(h). However,
the word "variogram" is mostly used when referring to the semivariogram (Pyrcz and Deutsch,
2014; Yarus and Chambers, 2006). The variogram generated by using experimental data
retrieved from samples is called the experimental variogram and its function is described in
Equation 2.25.

The first step in estimating the experimental variogram function is to determine the
lag distance. For directional variograms this can be decided based on the geostatistician’s
experience. However, when the 3D variogram is required, the following formula can be used
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to determine the rescaled lag distance (Pyrcz and Deutsch, 2014):

h =

√(
hvert

avert

)2

+

(
hh−ma jor

ah−ma jor

)2

+

(
hh−minor

ah−minor

)2

(2.24)

where, hi are the three principal components of the distance vector and ai are the distance
range parameters for the vertical, major horizontal and minor horizontal direction respectively.
The range parameters may vary for different nested structures and are calculated or iteratively
adjusted, in order to fit all directional sample variograms.

The next step is to estimate the function of the experimental variogram (Pyrcz and
Deutsch, 2014):

γ̂(h) =
1

2N(h) ∑
N(h)

[z(u)− z(u+h))]2 (2.25)

where, N(h) denotes the number of pairs for lag h, z(u) the random function of random
variable Z of interest and u the coordinate location vector.

The generated experimental variogram is characterized by a certain nugget, range and
sill, as well as a certain shape. These are the parameters that will be used for subsequent
interpretation. As already described, directional dependence of range, indicates anisotropy.
Furthermore, the shape of the variogram in relation to the sill provides valuable information
on the possibility of an existing pattern or trend. Indicators of geological variability include
the nugget effect, geometric anisotropy, cyclicity, large-scale trends and zonal anisotropy
(Pyrcz and Deutsch, 2014). Some of these trends are represented in Figure 2.3.

Nugget Effect

The nugget effect contains information about data at points closer than the smallest exper-
imental lag. Any error in measured values, or at the location of study, as well as sparse
and uncorrelated data, contribute to an increased nugget effect. This effect was thoroughly
presented during the description of variogram parameters in Section 2.2.

Geometric Anisotropy

Geometric anisotropy is accompanied by a variogram with similar shape for the vertical and
horizontal direction. This variogram behaviour is justified as such. Depositional processes
include spatial correlation of petrophysical properties. The correlation magnitude decreases
with lag distance until a distance with no obvious correlation exists, i.e. the range. The length
scale of correlation is direction dependent. Obviously, due to layering of depositions, the
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vertical range is typically much smaller than the horizontal. Despite the fact that range is
direction dependent, the decrease pattern in correlation is often similar in different directions,
which can be explained by Walther’s Law of Facies.

Cyclicity

Cyclicity or hole effect, is observed when cyclic behaviour is captured by the variogram.
Depositional procedures usually repeat over geological time, leading to repetitive variations
of petrophysical properties. In that case, there will be an alternating positive and negative
correlation on the variogram, with increasing lag distance. Usually, the cyclic behaviour
dampens out over large distances, due to the scale of the geologic cycles (Pyrcz and Deutsch,
2014). While porosity and lithology are the main reasons behind hole effect, the increasing
number of lags can also contribute to its increase (Amanipoor, 2013). It can also be linked to
insufficient data. Extensive examples of this trend can be seen in Figure 2.4.

Large Scale Trends

Upward or downward coarsening vertical trends are an indicative example of this category.
In this case, the variogram reaches and surpasses the sill, implying that spatial correlation,
even if negative, never ceases to exist.

Zonal Anisotropy

Constitutes a subcategory of geometric anisotropy in which, the correlation range in a certain
direction surpasses the size of the formation. As a result, the variogram never reaches the
sill. Zonal anisotropy is divided into two cases, based on direction. Areal trends, which
cause the vertical variogram to never deplete the correlation along the vertical direction, and
stratigraphic layering, which affects the variogram along the horizontal direction, usually for
smaller scale features (Gringarten and Deutsch, 1999; Pyrcz and Deutsch, 2014).

All of these cases are involved in the geological interpretation of the variogram, which
will be used in variogram modelling. Usually, they appear in combination of more than one.
Some general guidelines for variogram interpretation include the exclusion of noisy results
and the utilization of a proper variogram for all distances and directions, thus a 3D variogram.
Also, any trends have to be removed, the variogram analysis will be performed using the
residual data and the trend will be added back to the estimated values.

The significant problem in variogram interpretation is the lack of data, so that a reliable
variogram can be generated. To fill this information gap, data from analog formations are
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used, i.e. from reservoirs with similar depositional settings (Pyrcz and Deutsch, 2014).
Summarizing, the experimental variogram has to be well understood, before it can be
modelled appropriately.

2.2.2 Theoretical Variogram Model

Following after the calculation and treatment of the experimental variogram, is the variogram
modelling, which produces a properly fit variogram model, ready to be used in further
geostatistical analysis. The experimental variogram alone is insufficient for this analysis
and has to be fit to an appropriate theoretical model (Amanipoor, 2013). The goal of this
procedure is to accurately capture the nugget, range and sill, as well as the shape, by using
specific functions. The most common are the spherical, exponential, Gaussian, linear and
power functions. There are additional modelling functions, but these are the only models
that ensure mathematical stability during calculations (Isaaks and Srivastava, 1989). These
functions have the property of positive definiteness, which ensures that ultimately the kriging
equations can be solved (Gringarten and Deutsch, 1999). They are described in the following
equations (Pyrcz and Deutsch, 2014) and their graphical representation appears in Figure 2.5.

Nugget Effect Model

This models the pure nugget model, in which there is no distinctive succession of the
correlation values. It is described by the function:

Γ(h) =

0 if h = 0

1 if h > 0
(2.26)

Spherical Model

Increases in a linear function and reaches a sill of 1 at a range of 1. Although the curve rises
linearly, the slope is not that steep. It is described by the function:

Γ(h) = Sph(h) =

[1.5h−0.5h3] if h ≤ 1

1 if h ≥ 1
(2.27)
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Exponential Model

Similar to the spherical, with the difference that the curve rises more abruptly and reaches
the sill asymptotically. It is described by the function:

Γ(h) = Exp(h) = 1− e−3h (2.28)

Gaussian Model

Has a parabolic shape at short distances. It is described by the function:

Γ(h) = Gau(h) = 1− e−3h (2.29)

Hole Effect Model

It is applied only for a single direction. However, it is rarely used. It is described by the
function:

Hα(h) = 1.0− cos(hπ) (2.30)

Dampened Hole Effect Model

The exponential term captures more properly the different distance scale. It also functions
only for a single direction, but it is used more frequently than the Hole Effect model. It is
described by the function:

DHd,α(h) = 1.0− exp
(
−3hα

d

)
cos(hα) (2.31)

Power Law Model

This model is characteristic of trends and fractal type behaviour. It is described by the
function:

Γ(h) = hω where 0 < ω ≤ 2 (2.32)

2.3 Kriging

After the appropriate theoretical variogram is determined and fit to experimental data, kriging
can commence. Kriging can be considered as a form of generalized linear regression, aiming
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to the generation of an optimal spatial estimator in a minimum mean–square prediction
error sense (Olea, 2009). Simply put, it is a method to reproduce the full volume of the
formation and create a map of predicted values, using data dependence and measurements at
set locations. It is the primary interpolation method used in geostatistics and functions by
utilizing more than one parameter simultaneously to estimate values of a random variable
over a spatial region (Yarus and Chambers, 2006). A significant observation is that each new
variable presented to the model calls for variogram analysis and modelling once again (Isaaks
and Srivastava, 1989). As already explained, any existing trend will have to be removed prior
to the procedure and will be ultimately added back after kriging is performed.

The main concept is to minimize the expected squared error between the true value z(u)
and the estimated value z∗(u) at a certain location. This optimization is achieved by applying
regression on the weight factors of the estimation parameters (Pyrcz and Deutsch, 2014).
However, geostatistics are used to estimate values at locations that cannot be reached and
where the true values are unknown. For this reason, for the final validation of the model,
only a certain number of known locations are used to perform the variogram analysis and
kriging and subsequently, the estimated values are compared to the true values at the rest
of the known locations. The method is most effective when applied inside the convex hull
determined by the peripheral data (Olea, 2009).

Various methods have been developed, with most of them being expressed by linear
relationships and considering weight factors for each data point. The main categories and
respective calculation formulas are described bellow (Olea, 2009):

2.3.1 Simple Kriging

Consists the primary form of kriging. In this case, a constant and known mean is assumed. It
comprises a system of linear equations, used to optimize the weight factors λ . The estimate
z∗SK(s0) at a certain location s0 is calculated by the following formula:

z∗SK(s0) = m+
n

∑
i=1

λi(z(si)−m) (2.33)

where, si denotes the location of measurement i, n the number of observations, m the mean
of Z(s) and λi the weight factor.

The weight factors are scalar numbers, which are determined through an iterative opti-
mization procedure, using the following system of equations, the so called normal system of
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equations:

∑
k
i=1 λi Cov(si,s1) = Cov(s0,s1)

∑
k
i=1 λi Cov(si,s2) = Cov(s0,s2)

...
...

∑
k
i=1 λi Cov(si,sk) = Cov(s0,sk)

Cov(s1,s1) · · · Cov(sk,s1)
... . . . ...

Cov(s1,sk) · · · Cov(sk,sk)


λ1

...
λk

=

Cov(s0,s1)
...

Cov(s0,sk)

 (2.34)

where, λi denotes the weight of measurement at the location of interest si and Cov(si,s j) the
covariance value between measurements at different locations.

After determining the respective weights, the minimum error variance is calculated by
the following formula, considering the necessary assumptions:

σ
2(s0) = Cov(s0,s0)−

k

∑
i=1

λi Cov(s0,si) (2.35)

The procedure is repeated until the minimum error variance associated with the estimation of
z∗SK(s0) is achieved. Only then can the weight factors be used in estimation. In order to be
acceptable, the variance function of Equation 2.35 has to be positive definite.

Simple kriging is characterized by a set of properties, like nonconvexity, screen effect and
global unbiasedness. It is also considered an exact interpolator, namely the error variance is
zero. It is intolerant to duplicated sites and independent of the coordinate system used (Olea,
2009).

2.3.2 Ordinary Kriging

If the weights of simple kriging sum up to the unity, the estimator is independent of the
mean value. This applies to samples with constant but unknown mean and gives rise to an
improved form of simple kriging, the ordinary kriging. The estimate z∗OK(s0) of this method
at the location s0 is given by:

z∗OK(s0) =
n

∑
i=1

λiz(si) (2.36)

where, si denotes the location of measurement i, n the number of observations and λi the
weight factor.
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The normal system of equations for optimal weights, assuming stationarity:

∑
k
i=1 λi Cov(si,s1)+µ = Cov(s0,s1)

...
...

∑
k
i=1 λi Cov(si,sk)+µ = Cov(s0,sk)

∑
k
i=1 λi = 1


Cov(s1,s1) · · · Cov(sk,s1) 1

... . . . ...
...

Cov(s1,sk) · · · Cov(sk,sk) 1
1 . . . 1 0




λ1
...

λk

µ

=


Cov(s0,s1)

...
Cov(s0,sk)

1

 (2.37)

where, λi denotes the weight of measurement at the location of interest si, Cov(si,s j) the co-
variance value between measurements at different locations and µ is the Lagrange multiplier,
which is a constant used to optimize multi–variable functions.

The minimum error variance:

σ
2(s0) = Cov(s0,s0)−

k

∑
i=1

λi Cov(s0,si)−µ (2.38)

The procedure is repeated until the minimum error variance associated with the estimation of
z∗OK(s0) is achieved.

This method has the same properties as simple kriging and additionally, the estimate
error variance for ordinary kriging is greater or equal to that of simple kriging. Also, the
observations used for estimation should lie within a close search neighbourhood, while a
proper number of observations used is considered from 3 to 25 (Olea, 2009).

2.3.3 Universal Kriging

This method, also known as kriging with trend, constitutes a full generalization of simple
kriging, as well as a further improvement of ordinary kriging. It can be applied with a neither
constant, nor known mean value. However, universal kriging should be used with caution
since increasing model complexity influences estimation uncertainty.
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An important note is that, this method is applied on the residual function Y (s), once the
trend mz(s) is removed from the random function Z(s), namely:

Residual function: Y (s) = Z(s)−mz(s) (2.39)

Trend or drift function: mz(s) = a0 +
n

∑
i=1

ai fi (2.40)

where, fi denotes the trend function and ai the trend coefficients.

The normal system of equations for optimal weights, is the following. Due to high
complexity it is presented in tabular form:

K =



CovY (s1,s1) . . . CovY (sk,s1) 1 f1(s1) . . . fn(s1)
... . . . ...

...
... . . . ...

CovY (s1,sk) . . . CovY (sk,sk) 1 f1(sk) . . . fn(sk)

1 . . . 1 0 0 . . . 0
f1(s1) . . . f1(sk) 0 0 . . . 0

... . . . ...
...

... . . . ...
fn(s1) . . . fn(sk) 0 0 . . . 0


k =

[
CovY (s0,s1) . . . CovY (s0,sk) 1 f1(s0) . . . fn(s0)

]T

x =
[
λ1 . . . λk −µ0 −µ1 . . . −µn

]T

Z =
[
Z(s1) . . . Z(sk) 0 0 . . . 0

]T
(2.41)

Normal equations: Kx = k (2.42)

Estimator: Z∗
UK = ZT x (2.43)

Estimation variance: σ
2
UK = CovY (0)−kT x (2.44)

Other estimation methods are Lognormal Kriging, Multigaussian Kriging and Indicator
Kriging, which are simply one of the aforementioned forms applied to appropriately trans-
formed data. Furthermore, Block Kriging, Cokriging, Crossvalidation, Sequential Gaussian
Simulation, Simulated Annealing, Filter Simulation, Cluster Analysis and more (Olea, 2009;
Pyrcz and Deutsch, 2014).
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2.4 Upscaling

Although it is not considered a mandatory part of geostatistical analysis, upscaling or
model scaling, is an averaging technique commonly used in combination with geostatistical
procedures. A simple definition for upscaling considers it as a procedure to shift from a
fine grid scale to a larger, coarse grid scale (Renard and de Marsily, 1997). As Farmer
(2002) points out, the upscaling problem is expressed by the need to calculate equivalent
point permeabilities without small scale heterogeneities, so that the solution of the coarse
scale problem reaches the solution of the fine scale problem. This technique is necessary
in order to move from fine grid data scale, to model scale and subsequently to flow grid
scale. The main reason for upscaling a model is to reduce the computational time and
resources of flow simulation, which is often significantly demanding, considering the high
complexity of the geological model and simulation methods. Additional applications of
upscaling are to compress model information, i.e. reduce a 3D model to a 2D map or generate
a large scale model (Pyrcz and Deutsch, 2014). Depending on the degree of scaling, two
types of permeability can be obtained. Block or upscaled permeability, which resembles the
equivalent permeability of a finite size block and equivalent permeability, which is a single
value corresponding to the whole model.

Upscaling is applied to facies, porosity, saturation and permeability data. Saturation and
porosity are sufficiently averaged using an arithmetic mean. However, since permeability
is connected to the direction of flow, an arithmetic average does not suffice in this case
and thus, a number of upscaling methods have been derived to deal with this issue. The
simplest permeability averaging techniques are arithmetic averaging, which is suited for cells
parallel to the flow, harmonic averaging, for cells in series relative to the flow and geometric
averaging, which applies to white–noise random media (Pyrcz and Deutsch, 2014). Detailed
reviews and comparison studies of upscaling methods for permeability are presented in the
studies of Renard and de Marsily (1997) and Farmer (2002). These methods fall into the
following main categories.

First and foremost, inequalities for equivalent permeability have been derived in the form
of upper and lower bounds. Such inequalities include the Wiener, Hashim and Shtrikman,
Cardwell and Parsons, Matheron and Ene bounds. Fundamentally, the Wiener bounds
state that equivalent permeability is bounded bellow by the harmonic mean and above by
the arithmetic mean of the studied data. The other methods constitute alterations of this
fundamental inequality, while taking into consideration isotropy, homogeneity, number of
phases or even direction of successive averaging. Although these methods are fast, they
restrict mostly to uniform flow.
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Heuristic methods include Sampling, a basic technique which is very common in
petroleum industry (Renard and de Marsily, 1997), and according to which, a block is
assigned the permeability measured at its center. The averaging means and power averaging
methods suggest that permeability is equal to a weighted average of the aforementioned
bounds and apply this method to two or three dimension models. Finally, the flexible grid
method, where the size of the large scale grid is modified as a function of a certain parameter,
for example permeability variance. This way, the error of scaling can be minimized. These
methods are very fast and display no significant application restrictions.

Moving on to deterministic methods, which require the assumption that the permeability
field and the boundary conditions are known. For simple permeability fields the analytical
solution of the diffusion equation is sufficient and specifically for uniform flow in stratified
media, it proves that arithmetic average is used for flow parallel to the strata, while harmonic
average for flow perpendicular to the strata (Pyrcz and Deutsch, 2014; Renard and de Marsily,
1997). Furthermore, percolation theory treats the problem from a statistical aspect, dividing
the model into permeable and non–permeable cells, while at the same time introducing the
threshold permeability, a permeability value for which, the blocks with higher permeability
form clusters connecting the two opposite sides of the model (Masihi et al., 2016). The
theory of effective media dictates that a heterogeneous medium consisting of neighbouring
homogeneous blocks can be substituted by a single inclusion with a certain permeability
value. The streamline method is used in binary sand–clay systems and determines equivalent
permeability by measuring the pressure losses due to the tortuous flow along the sand matrix.
Renormalization methods are approximate calculations of equivalent permeability, based on
repetitive series of successive unifications. Desirably, the ultimate goal is to acquire a single
block value. Additional methods include the numerical solution of the diffusion equation,
which includes the solution of partial differential equations using local and non–local methods,
and homogeneous–equation methods, which use mathematics to derive equations on the
higher scale based on equations of the given scale. Deterministic methods offer a wide field
of applications and their speed vary according to the applied method.

Last but not least, stochastic methods consider the variables of interest as randomly
varying in space, thus making these methods a way to deal with the uncertainty accompanying
the partial knowledge of the model (Renard and de Marsily, 1997). These methods include the
rule of geometric averaging, which is considered one of the few exact solutions, approximated
analytical results and conjectures, and block permeability estimation methods, which make
use of the expectation, covariance and cross–variance of block and local permeability. Other
methods include the spectral method, perturbation method, field theory, Monte Carlo method
and more. These methods apply mostly to uniform flow and offer a fair solution speed.
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2.4.1 Simplified Renormalization

Renormalization originates from statistical physics, however its application was expanded
to the calculation of equivalent permeability. This method is based on the averaging of
permeability values and unification of blocks in an iterative manner. Starting from a given
grid, a coarser discretized grid is acquired, repeating until the desired size is reached or until
an ultimate single value, equivalent for the whole model is determined. Since there is no
exact formulation, the solutions are considered approximate. Although renormalization is
simple and popular, it often underestimates permeability (Renard and de Marsily, 1997).
Several forms of this method have been derived, however for the purposes of this thesis only
a certain one will be described.

Renard et al. (1997) proposed the method of Simplified Renormalization, according to
which, the upscaling is carried out through successive grouping of two cells. Should these
cells be in parallel to the flow direction, the arithmetic average is used, otherwise if they are
in series with respect to the flow direction, the harmonic average is used. Simply put, if the
flow vector penetrates the interface of two cells, they are harmonically averaged. The two
types of average are represented in Equations 2.45 and 2.46. At every iteration, the direction
of averaging changes, while the order is always kept constant, for example the first averaging
is done along X–direction, then Y and finally Z, with the same order at every iteration. It
is self–evident that depending of the choice of averaging succession, the final result can
be different. A summarizing image of the described method for a two dimensional plane
appears in Figure 2.6.

Arithmetic Average: µa =
1
n

n

∑
i=1

xi (2.45)

Harmonic Average: µh =
1

1
n ∑

n
i=1

1
xi

(2.46)

where, xi denotes the random variable and n the population.
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Fig. 2.2 The variogram describes the correlation instances at different lag distances, using the
respective scatterplots corresponding to three lag vectors on a typical variogram. Correlation
is denoted by ρ . Note that bellow the sill correlation is positive, while above the sill it is
negative. Figure retrieved from Pyrcz and Deutsch (2014).
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Fig. 2.3 Experimental variograms displaying different types of trends. Dash–dotted horizontal
line represents the sill. Variance values are normalized. Figure retrieved from Pyrcz and
Deutsch (2014).
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Fig. 2.4 variograms displaying different hole effect types for different geological formations.
Dashed line represents the variogram of the X–direction, dotted line represents the variogram
of Y–direction, solid horizontal line represents the sill. White areas represent high values of
the attribute of interest and grey areas represent low values. Figure retrieved from Amanipoor
(2013).
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Fig. 2.5 Different types of theoretical variogram models. Variance values are normalized.
Figure retrieved from Pyrcz and Deutsch (2014).
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Fig. 2.6 Visualization of the Simplified Renormalization upscaling method, applied on a
2D plane. The image also describes how equivalent permeability depends on successive
averaging order. Figure retrieved from Mahmud et al. (2015).



Chapter 3

Data Description

The primary step to geostatistical studies is data description and analysis. This procedure
allows for a clear and complete view of the problem at hand. Data description includes
visualization of data using color indices with either 2D surfaces like contour or section plots,
or 3D models with the ability to navigate through the different layers. Moreover, histogram
and data distribution plots, as well as respective statistical moments determination contribute
to better understanding of the data.

For the purposes of this thesis, the 10th SPE benchmark reservoir model was used. The
available dataset of the model is divided into four groups, one for porosity values, hereinafter
referred to as Phi, and three for permeability, one for each principal direction, hereinafter
referred to as PermX, PermY and PermZ. Porosity values range from 0–0.5 or 0–50%, while
permeability values range from 6.65e-08–20000mD. Due to the nature of permeability as a
petrophysical property, data are better treated and understood after applying logarithm. This
specific treatment method is justified in Subsection 3.1.1. Moreover, the model consists of
two distinct formations and as such, each formation is studied separately.

3.1 Tenth SPE Model

The 10th SPE benchmark reservoir model is a fine grid geological model, originally created as
part of the PUNQ project and was initially meant to be used in upscaling projects. The model
has a simple orthogonal geometry, with no top structure or faults being present. The model
dimensions are 1200ft–by–2200ft–by–170ft, while a single fine scale cell has dimensions
20ft–by–10ft–by–2ft. In total, the fine scale grid has a size of 60–by–220–by–85 cells
(1122000 cells). The coordinate system is orthogonal, with X for width, Y for lentgh and Z
for height of the model. The top 70ft (35 layers– 462000 cells), represent a Tarbert formation,
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while the bottom 100ft (50 layers– 660000 cells), represent an Upper Ness formation (SPE,
2000).

Permeability shows large variation of about 8–12 orders of magnitude, with significant
differences in the distribution types between the upper and lower layers. It is notable that
no single statistical moment, like the arithmetic, harmonic or geometric average, is able to
represent the effective permeability of the different layers. However, the latter is bounded by
the arithmetic and harmonic means of the permeability distribution function (Masihi et al.,
2016).

3.1.1 PUNQ Project

The model is a part of the PUNQ Complex Model, a half synthetic made up field. The
Model’s structure is based on Beatrice Field near the north east coast of Scotland, it was
designed as a stratigraphic analogue of a Brent–type field and its properties were generated
by algorithms developed by Norwegian Computing Center. The Brent sequence resembles
the ones found in most North Sea UKCS fields and has a total thickness of 656ft (200m)
plus some additional feet occupied by underlying and overlying shales. The Brent group is
divided in five formations from bottom to top, the Broom, Rannoch, Etive, Ness and Tarbert
formation (Vollset and Dore, 1984). Subsequently, the Ness formation is divided into three
distinct parts, lower, middle and upper. The division of the Brent group into five formations
reflects the regressive–transgressive cycle. An important note is that the 3D geomodel was
based on well observations (Bos and project team, 1999).

The code used for the subsequent stochastic simulation of porosity and permeability,
constitutes a subset of the GRUS project (Lia et al., 1997). The stochastic model treated
each zone separately. Porosity was modelled by Gaussian random fields with trends in
expectation, while for permeability, log–Gaussian fields with log–transformed data were
used. In particular, they were generated by sequential Gaussian co–simulation and back–
transformation of the associated normal score values. Furthermore, heterogeneous layers
were also derived from Gaussian random fields. Only vertical trends were used, describing
the change of the mean value as a function of depth, while horizontal correlation was chosen
by experience. In order to simulate the fluvial formation lithology, a marked point process
was used to distribute the channel systems. The channels were distributed until global criteria,
like the net–to–gross ratio, were satisfied (Bos and project team, 1999).
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3.1.2 Tarbert Formation

This formation represents a prograding near–shore environment, coarsening upward, offlap-
ping sequence (Christie and Blunt, 2001; SPE, 2000), possibly in part reworked delta plain
deposits. The sedimentary sequence is similar to the Rannoch and Etive formations but with
a different depositional setting. It consists of grey to brown relatively massive fine to medium
grained sandstone with subordinate thin siltstone, shale and coal beds and some calcareous
bands. The base of the formation lies at the top of the last fining upward unit of the Ness
formation, which is either an argillaceous bed or a coal bed. The geological age is Bajocian
to Bathonian. (Vollset and Dore, 1984).

As far as flow properties are concerned, the formation divides practically into permeable
sand facies and low–permeable shale and coal facies. The main two lithologies are barrier
sands and lagoonal clays, in about equal proportions. No significant trends are present,
although indications of lateral trends are evident. The formation has a thickness of about
115ft (35m). Porosity is assumed to follow a normal distribution with typical values around
25–30%, while permeability follows a log–normal distribution with values around 1–10
Darcies respectively. Further information on the modelling formulation of porosity and
permeability distributions can be found in the final report of the PUNQ Complex Model
project (Bos and project team, 1999).

3.1.3 Upper Ness Formation

The Ness formation is described as a fluvial system made of well sorted highly permeable
long correlation anastomosed sandstone channels, imposed on a low–permeable background
of shales and coal (Masihi et al., 2016). It consists of a heterolithic sequence of interbedded
very fine to medium sandstones, shales, mudstones, siltstones and coals, deposited in a
delta–top setting and includes a wide range of subgroups, like lagoonal muds, distributory
channels, levees, mouth bars and lagoonal shoals. The formation is divided in three parts, a
lower interbedded unit called the Lower Ness, the middle part called Mid–Ness shale and
an upper sandstone unit called the Upper Ness. Only the Lower and Upper Ness parts are
considered as appropriate reservoir units. The Ness formation represents the last part of the
primary phase of northward progradation of the Brent delta and the onset of its retrogradation.
Finally, the geological age of the formation is Bajocian (Glennie, 1998; Vollset and Dore,
1984).

Common features of this formation are coarsening and fining upward sequences, as well
as small scale cross–bedding, horizontal bedding and synsedimentary deformation. The
shales are silty, fissile and frequently pyritic, while there are also some indications of marine
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influence. The upper contact with the massive cleaner sandstone of the overlying Tarbert
formation may consist a minor disconformity (Vollset and Dore, 1984). Due to the high
heterogeneity of the formation, it can be characterized as a labyrinth type reservoir. All three
parts of the formation have a total thickness of 328ft (100m). The Mid–Ness shale is an
impermeable layer about 33ft (10m) thick, lying approximately in the middle of the total
thickness of the formation. Typical porosity values for the channels are about 20–30% and
permeability values about 1–2 Darcies, while the background has low and insignificant flow
properties, as explained previously. Thorough information on the modelling procedure of
porosity and permeability distributions can be found in the final report of the PUNQ Complex
Model project (Bos and project team, 1999).

3.2 Visualisation of Data

Using the program Slice–o–Matic in Matlab environment (Ludlam, 2001), several images of
the model were captured for different layers and are presented in the following Figures. Due
to the program’s notation X and Y axis refer to the length and width of the model respectively,
as opposed to the general notation of this thesis. In all data groups the heterogeneity of the
Tarbert formation, as well as the anastomosed channels of the Upper Ness formation are
clearly visible. Furthermore, the resulting images for all data groups are similar in shape
and structure, whereas permeability on X and Y direction are almost identical. Another
important observation is that the channel width and occupied area decreases with increasing
layer height. In addition, the position of the channels is not fixed, but varies for each layer. A
3D perspective for each one of the four properties is presented in Figures 3.1a through 3.1d.
Low values are denoted by blue color, increasing to red color. The individual formation
layers are further described in the following Subsections.

3.2.1 Tarbert Formation

The heterogeneous structure of the Tarbert formation is visible throughout the whole height
of the formation. Generally, there is a big variation in porosity and permeability both in value
and in spatial distribution. An important notice is that low and high porosity areas coincide
with low and high permeability areas respectively. Indicatively, layers 1 and 17 appear in
Figures 3.2 and 3.3. Layer 35, which is the top of the formation, appears in Figure 3.1. Low
values are denoted by blue color, increasing to red color.
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(a) Phi–Gross volume (b) PermX–Gross volume

(c) PermY–Gross volume (d) PermZ–Gross volume

Fig. 3.1 Visualisation of the 3D perspective of porosity and permeability data.

3.2.2 Upper Ness Formation

The variation of channel distribution is clear throughout the height of the formation. The
channels extend parallel to the length of the model and their structure changes on each
layer. As height increases, the channels occupy even less area of the respective layer. The
permeability of X and Y direction are almost identical for this formation as well. Indicatively,
layers 1, 20, 35 and 50 appear in Figures 3.4 through 3.7. Low values are denoted by blue
color, increasing to red color.

3.3 Exploratory Data Analysis

For each formation, the statistical moments for porosity and permeability values were
calculated. Subsequently histograms were constructed and the best fit probability distribution
was determined, using the Distribution Fitting Tool in Matlab environment. Finally, scatter
plots using porosity and permeability data were built, in order to acquire an image of the
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(a) T_Phi–Layer 1 (b) T_PermX–Layer 1

(c) T_PermY–Layer 1 (d) T_PermZ–Layer 1

Fig. 3.2 Visualisation of porosity and permeability data of the first (bottom) layer of the
Tarbert formation.

correlation between each pair of properties. The results are summarized in the form of Tables
and Figures. It is important to constantly keep in mind that permeability data were used only
after applying logarithm to the original data, unless it is specifically stated otherwise.

3.3.1 Tarbert Formation

To begin with, the statistical moments were calculated and are presented in Table 3.1. Porosity
appears in decimal representation and permeability is expressed in miliDarcies (mD). After
that, the construction of the histogram and fitting with the proper distribution function was
carried out. The respective histograms are represented in Figures 3.8a through 3.8d, while
the numerical results of the fitting appear in Table 3.2. Finally, the respective scatter plots are
presented in Figures 3.9a through 3.9c.

According to Table 3.2, porosity follows a normal distribution, while permeability follows
a log–normal distribution, considering that logarithm has already been applied to permeability
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(a) T_Phi–Layer 17 (b) T_PermX–Layer 17

(c) T_PermY–Layer 17 (d) T_PermZ–Layer 17

Fig. 3.3 Visualisation of porosity and permeability data of the 17th layer of the Tarbert
formation.

data. These observations fall in line with the PUNQ project modelling principles, described
in Subsection 3.1.1. The multimodal non–parametric distribution appears to be a better fit to
the Phi, PermX and PermY data, as displayed in Figure 3.8. A sufficient explanation is that,
as described in the previous chapter, the multimodal distribution constitutes a combination of
multiple normal distributions and in addition, it is best applied to discrete data. Thus, the
data are still characterized by a normal and log–normal distribution respectively.

Permeability in Z–direction is characterized by a bimodal distribution. This suggests the
existence of two distinct data groups with different degree of permeability, which can also
be realized to a certain degree by observing the layer plots of the Tarbert formation. This
behaviour is justified by the fact that sediments are usually distributed in a bimodal fashion
and in addition to that, that layering leads to expect a bimodal distribution (Lake et al., 1991).
Moreover, the lithology of the formation, which comprises of permeable and non–permeable
facies, can also explain the bimodal distribution.
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(a) UN_Phi–Layer 1 (b) UN_PermX–Layer 1

(c) UN_PermY–Layer 1 (d) UN_PermZ–Layer 1

Fig. 3.4 Visualisation of porosity and permeability data of the first (bottom) layer of the
Upper Ness formation.

The respective scatter plots indicate a positive strong relationship between porosity and
permeability data, considering the shape of the data clusters, which tends to align with the
diagonal (Rumsey, 2016). The scatter plot between porosity and permeability of Z–direction,
appearing in Figure 3.9c, provides an additional indication about the two distinct data clusters,
which cause the bimodal distribution of PermZ data.

Table 3.1 Tarbert formation statistical parameters. Porosity appears in decimal representation
and permeability is expressed in miliDarcies (mD).

Data Min Max Mean Median Mode Variance Skewness Kurtosis
T_phi 0.0 0.5 0.19 0.19 0.0 0.0065 0.042 2.78
T_permX 7.13e-04 20000 356.49 25.38 20000 2.55e+06 9.139 99.5
T_permY 7.13e-04 20000 356.49 25.38 20000 2.55e+06 9.139 99.5
T_permZ 7.13e-08 6000 94.09 0.0042 6000 2.21e+05 9.407 104.81
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(a) UN_Phi–Layer 20 (b) UN_PermX–Layer 20

(c) UN_PermY–Layer 20 (d) UN_PermZ–Layer 20

Fig. 3.5 Visualisation of porosity and permeability data of the 20th layer of the Upper Ness
formation.

Table 3.2 Tarbert formation distribution parameters. The parentheses describe an alternative
distribution fit. Porosity appears in decimal representation, permeability is measured in
miliDarcies (mD) and data are analysed after applying logarithm.

Data Distribution Type Parameters

T_phi
Normal

(Unimodal non–parametric)
µ=0.1908, σ2=0.006527

(bandwidth=0.0064)

T_permX
Normal

(Unimodal non–parametric)
µ=3.258, σ2=5.616
(bandwidth=0.185)

T_permY
Normal

(Unimodal non–parametric)
µ=3.258, σ2=5.616
(bandwidth=0.185)

T_permZ Bimodal non–parametric bandwidth=0.364

3.3.2 Upper Ness Formation

Once again, the statistical moments were calculated and are presented in Table 3.3. Porosity
appears in decimal representation and permeability is expressed in miliDarcies (mD). Subse-
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(a) UN_Phi–Layer 35 (b) UN_PermX–Layer 35

(c) UN_PermY–Layer 35 (d) UN_PermZ–Layer 35

Fig. 3.6 Visualisation of porosity and permeability data of the 35th layer of the Upper Ness
formation.

quently, the construction of the histogram and fitting with the proper distribution function
was carried out. The histograms are represented in Figures 3.10a through 3.10d, while the
numerical results of the fitting appear in Table 3.4. The respective scatter plots are presented
in Figures 3.11a through 3.11c.

In this case, Phi, PermX and PermY, all display bimodal distributions, with the only
difference being that for porosity the two data groups are not very distinct. This can be easily
explained by the fact that the lithology of the Upper Ness formation comprises of two very
distinct groups, the permeable channels and the non–permeable background. However, the
distribution of PermZ displays an additional peak. This can be justified by the existence
of the permeable channels and non–permeable background, combined with the effect of
layering (Lake et al., 1991). As already mentioned, the multimodal distribution results from
combining multiple normal distributions, meaning that the formation is locally characterized
by normal distributions. Thus, the result falls once again in line with the modelling principles
described in Subsection 3.1.1.
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(a) UN_Phi–Layer 50 (b) UN_PermX–Layer 50

(c) UN_PermY–Layer 50 (d) UN_PermZ–Layer 50

Fig. 3.7 Visualisation of porosity and permeability data of the 50th layer (top) of the Upper
Ness formation.

The respective scatter plots appearing in Figures 3.11a through 3.11c display a positive,
however not very strong relationship, as the data are not so strictly aligned with the diagonal
(Rumsey, 2016). In all three plots the respective data clusters appearing in the histograms are
obvious.

Table 3.3 Upper Ness formation statistical parameters. Porosity appears in decimal represen-
tation and permeability is expressed in miliDarcies (mD).

Data Min Max Mean Median Mode Variance Skewness Kurtosis
UN_phi 0.0 0.4 0.156 0.146 0.0 0.0097 0.252 2.032
UN_permX 6.65e-04 20000 354.96 7.193 20000 1.68e+06 9.264 114.49
UN_permY 6.65e-04 20000 354.96 7.193 20000 1.68e+06 9.264 114.49
UN_permZ 6.65e-08 6000 33.47 9.18e-04 2.0 5.65e+04 16.376 341.29
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(a) T_Phi distribution (b) T_PermX distribution

(c) T_PermY distribution (d) T_PermZ distribution

Fig. 3.8 Histograms and fitted PDFs of the respective data groups of the Tarbert formation.
Permeability is measured in miliDarcies (mD) and data are analysed after applying logarithm.

Table 3.4 Upper Ness formation distribution parameters. Porosity appears in decimal repre-
sentation, permeability is measured in miliDarcies (mD) and data are analysed after applying
logarithm.

Data Distribution Type Parameters
UN_phi Bimodal non–parametric bandwidth=0.00872
UN_permX Bimodal non–parametric bandwidth=0.4108
UN_permY Bimodal non–parametric bandwidth=0.4108
UN_permZ Trimodal non–parametric bandwidth=0.4586
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(a) T_PermX–T_Phi scatter (b) T_PermY–T_Phi scatter

(c) T_PermZ–T_Phi scatter

Fig. 3.9 Scatter plots between porosity and permeability data of the Tarbert formation. The
respective data clusters are obvious. Permeability is measured in miliDarcies (mD) and data
are analysed after applying logarithm.
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(a) UN_Phi distribution (b) UN_PermX distribution

(c) UN_PermY distribution (d) UN_PermZ distribution

Fig. 3.10 Histograms and fitted PDFs of the respective data groups of the Upper Ness
formation. Permeability is measured in miliDarcies (mD) and data are analysed after applying
logarithm.
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(a) UN_PermX–UN_Phi scatter (b) UN_PermY–UN_Phi scatter

(c) UN_PermZ–UN_Phi scatter

Fig. 3.11 Scatter plots between porosity and permeability data of the Upper Ness formation.
The respective data clusters are obvious. Permeability is measured in miliDarcies (mD) and
data are analysed after applying logarithm.





Chapter 4

Geostatistical Analysis

Exploratory data analysis is followed by geostatistical analysis. The aim of this step, also
referred to as spatial modelling, is the construction of the experimental variogram and fitting
it to an appropriate theoretical variogram model, which will be ultimately used in kriging
procedures. Considering the two different formations, the analysis is once again carried out
separately. It has to be pointed out in advance that, distance is expressed in number of cells,
porosity ranges from 0 to 1 and permeability is measured in miliDarcies (mD), whereas data
are analysed after applying logarithm, unless it is stated otherwise.

4.1 Variogram Analysis

Variography includes the derivation of the experimental variogram based on the different
porosity and permeability data and the subsequent fitting to a theoretical variogram model.
This analysis was executed considering data at various locations and directions, such that
the results will be as objective as possible, while at the same time sufficient enough to be
comparable against each other. The results are presented in the form of Figures and Tables,
in order to give a clear image of the behaviour of each formation.

The different experimental variograms required for the analysis were derived using the
program Experimental (Semi-) Variogram in Matlab environment (Schwanghart, 2008),
while the variogram fitting was carried out using the program Variogramfit again in Matlab
environment (Schwanghart, 2009).

4.1.1 Experimental Variogram

The simplest variogram calculated is the directional or marginal variogram in which, all
points of interest lie on a single direction. For both formations, for each property and for each
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direction, a set of 100 marginal variograms were constructed and combined and subsequently
the mean variogram of the respective direction was derived. Finally, the mean variograms of
the three different directions were plot together for a more summarizing image. Each one of
these 100 marginal variograms corresponds to a single core sample, which includes all data
points along the respective direction, i.e. 60 points for the X–direction (width), 220 for the
Y–direction (length) and 35 or 50 respectively for the Z–direction (height). These 100 cores
are parallel to each other and were retrieved from a rectangular 10–by–10 grid with equal
intermediate distances.

Creating a 3D plot of multiple variograms for different azimuths across a plane gives rise
to the anisotropic variogram. This plot provides important clues about the isotropy of the
formation. A round anisotropic variogram suggests isotropic material, while an ellipsoidal
anisotropic variogram indicates anisotropic material. Anisotropic variograms were calculated
for different layers of both formations.

Another type of variogram that was calculated is the omnidirectional variogram, which
takes into consideration all data pairs across a plane, irrespective of azimuth. This type of
variogram, like the anisotropic variogram, is applied to horizontal planes, since sediments
are deposited horizontally. Layers can acquire inclination but only due to tectonic events.
In addition to that, both the the Tarbert and the Upper Ness formations display horizontal
layering and thus a vertical omnidirectional variogram would be pointless.

Adding data from different layers to the omnidirectional variogram results in the 3D
variogram. Although constructing this variogram based on a finite number of core samples
would be more realistic, it was realized that such a method would result in indistinct var-
iogram curves, thus introducing increasing difficulty and further complicating variogram
interpretation. For this reason, the 3D variogram was calculated for four subvolumes of both
formations. The first, basic subvolume, was a simple rectangular parallelepiped with dimen-
sions 20–by–70–by–20 cells for the Tarbert and 20–by–70–by–30 cells for the Upper Ness
formation, while the other three were modified versions of the basic subvolume, elongated
on directions X, Y and Z respectively. Each one of these four subvolumes includes less than
one quarter of the formation volume, where each quarter is produced by dividing the model
in half across the X and Y–directions. A more clarifying image of the procedure appears
in Figure 4.1 The model is approximately symmetrical along the Y–direction (with respect
to the Y–Z plane), so such a partition is acceptable. The purpose of this partition is to not
include the same points more than once in different variograms. This type of variogram
takes into consideration data points irrespective of both azimuth and altitude and so, it is
considered the most common variogram used in further spatial modelling procedures.
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As data taken into consideration for variogram calculation increases, so does the required
computational power and time. For this reason, for any data group used in each case, only
a limited number of sampling points (or subsamples) was taken into consideration. It was
observed that a number of 2000 subsamples would provide sufficient results, concerning
the shape and smoothness of the variogram, as well as its other parameters. An indicative
plot to support this observation appears in Figure 4.2. However, marginal variograms are an
exception to this rule, since all respective data points were used for their calculation.

The set maximum correlation distance is split into several lag distance bins in order to
construct each variogram. It was observed that increasing number of bins only affected
the smoothness of the variogram curve but not the resulting parameter values, which are of
main interest. Thus, keeping computational resources in mind, a number of 20 lag distance
bins was deemed sufficient. The respective minimum lag distance is equal to the maximum
correlation distance divided by the number of bins, i.e. h = (maxdist)/20. An indicative plot
used to justify this decision appears in Figure 4.3.

Fig. 4.1 Descriptive image of the partition of each formation and the four subvolumes used
for calculating the 3D variograms.

Tarbert Formation

The marginal variograms for porosity and permeability on each of the three directions
are presented in Figures 4.4 through 4.7. Each Figure represents 100 combined marginal
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variograms, plot together with the mean variogram, for each principal direction, as well as
the three mean variograms plot together for comparison. It is obvious that the sill displays a
wide variation. Also, PermX and PermY show almost identical behaviour. Finally, the mean
variogram of each Z–direction shows a rather noisy curve, in contrast with the corresponding
X and Y–direction where the curve is smoother, for all four properties.

The anisotropic variograms for layers 1, 10, 20, 30 and 35 of all four properties are
presented in Figures 4.8 through 4.12. The colour distribution of the top view, as well as
of the more general 3D view indicates the degree of anisotropy of each layer. Anisotropic
behaviour is obvious in all examined layers, with the exception of layer 35 of PermZ, which
displays a lesser degree of anisotropy in comparison to the other variograms, as shown in
Figure 4.12d. Furthermore, the general trend observed is that variance is increased along
the X–direction of the model, compared to the Y–direction, for all layers with only a few
exceptions.

The horizontal omnidirectional variograms for layers 1, 10, 20, 30 and 35 of all four prop-
erties are presented in Figures 4.13 through 4.17. All layers and properties are characterized
by rather smooth variogram curves and small nugget. Once again PermX and PermY have
similar behaviour. It is also noteworthy that PermZ displays a greater nugget in comparison
to PermX and PermY, for all examined layers.

The derived 3D variograms appear in Figures 4.18 through 4.21. Subvolume 1 (basic)
includes the cells X:6–25, Y:21–90, Z:11–30, subvolume 2 (elongated towards Y–direction)
includes the cells X:36–55, Y:1–110, Z:11–30, subvolume 3 (elongated towards X–direction)
includes the cells X:1–30, Y:131–200, Z:11–30 and finally, subvolume 4 (elongated towards
Z–direction) includes the cells X:36–55, Y:131–200, Z:1–35. Porosity variograms reach
the sill relatively faster than permeability variograms for subvolumes 1 and 2. However, for
subvolumes 3 and 4 the respective variograms display similar behaviour, which leads to the
conclusion that data are stronger correlated as length(Y) of the subvolume increases, rather
than width(X) or height(Z).

Upper Ness Formation

The marginal variograms for porosity and permeability on each of the three directions are
presented in Figures 4.22 through 4.25. Each Figure represents 100 combined marginal
variograms, plot together with the mean variogram, for each principal direction, as well as
the three mean variograms plot together for comparison. In this formation, the wide variation
of the sill is obvious as well. Also, once more, PermX and PermY display very similar results.
The mean variogram of Z–directions is not as smooth as that of X and Y–directions.
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The anisotropic variograms for layers 1, 10, 20, 30, 40 and 50 of all four properties are
presented in Figures 4.26 through 4.31. The colour distribution of the top view, as well as
of the more general 3D view indicates the degree of anisotropy of each layer. Anisotropic
behaviour is obvious in most examined layers, with only a few exceptions where there is
a lesser degree of anisotropy. In this case as well, variance generally increases towards
X–direction (width) of the model, compared to the Y–direction (length), for all layers.

The horizontal omnidirectional variograms for layers 1, 10, 20, 30, 40 and 50 of all four
properties are presented in Figures 4.32 through 4.37. Most layers and properties display
smooth variogram curves and relatively small nugget with a few exceptions. PermX and
PermY show very similar behaviour.

The calculated 3D variograms appear in Figures 4.38 through 4.41. Subvolume 1 (basic)
includes the cells X:6–25, Y:21–90, Z:11–40, subvolume 2 (elongated towards Y–direction)
includes the cells X:36–55, Y:1–110, Z:11–40, subvolume 3 (elongated towards X–direction)
includes the cells X:1–30, Y:131–200, Z:11–40 and finally, subvolume 4 (elongated towards
Z–direction) includes the cells X:36–55, Y:131–200, Z:1–50. The variograms of each prop-
erty for the same subvolume display fairly similar behaviour, which is mostly characterized
by a large nugget, small range for subvolumes 2 and 4, and greater range for subvolumes 1
and 3. These observations suggest that a lot of noisy and uninterpretable in short distance
data exist in the Upper Ness formation and also that correlation strengthens with increasing
width(X) of the formation.

4.1.2 Theoretical Variogram Model

After the required experimental variograms have been derived they have to be fitted to the
appropriate theoretical variogram models, in order to determine the required nugget, sill
and range. Since the variogram models are expected to be further used in 3D modelling,
it is pointless to fit any other than the 3D variogram. For that reason, indicatively, the
experimental variograms of the first Subvolume of all four properties for both formations
have been fit to an appropriate theoretical model.

The program used (Schwanghart, 2009) includes nine different possible theoretical
models. Each variogram was tried out with all nine models and the best fit was determined
using the Coefficient of Determination or R2 of goodness of fit, which was calculated
simultaneously by the program. This coefficient ranges from 0 to 1, while fitting quality
improves as it reaches the unity (Magee, 1990). An indicative plot of porosity variogram
fitting for the Tarbert formation appears in Figure 4.42, where the nine available models are
displayed. Finally, the numerical results of R2 are presented in summarizing Tables, while
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the fitted 3D variograms, as well as the respective modelling parameters, are presented in
Figures and Tables for both formations.

Tarbert Formation

The 3D variogram of each property was fit to each one of the nine available models and
the determination coefficients for each fit are summarized in Table 4.1. The Exponential
model is the best fit to porosity, as well as permeability variograms, since it results in
the determination coefficient closest to the unity. The fitted variograms are represented in
Figures 4.43a through 4.43d, while the respective modelling parameters of interest, namely
the nugget, sill and range, are presented in Table 4.2.

An initial observation is that all properties were best fitted with an Exponential model.
Furthermore, PermX and PermY once again display similar behaviour. Last but not least, the
displayed nugget is relatively small, while range varies for each property.

Table 4.1 Summarizing table of R2 values derived from the fitting of the 3D variogram of
first Subvolume to a theoretical model, for the Tarbert formation.

Data Blinear Circular Spherical Pentaspherical Exponential
T_phi 0.8961 0.925 0.9299 0.9354 0.9641
T_permX 0.9016 0.92 0.9276 0.9338 0.962
T_permY 0.8995 0.9181 0.9278 0.9365 0.9728
T_permZ 0.9194 0.9283 0.9334 0.9392 0.9717

Data Gaussian Whittle Stable Matern
T_phi 0.9292 0.9561 0.9454 0.9561
T_permX 0.8881 0.9389 0.9254 0.9389
T_permY 0.8969 0.9518 0.9357 0.9518
T_permZ 0.9324 0.9623 0.9502 0.9623

Table 4.2 Variogram modelling parameters of the first Subvolume of porosity and permeability
for Tarbert formation.

Data Model Nugget Sill Range
T_phi Exponential 0.0016 0.0051 2.9327
T_permX Exponential 1.4313 3.5207 7.4516
T_permY Exponential 1.2209 3.7321 6.6353
T_permZ Exponential 4.3938 26.1665 2.2036
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Upper Ness Formation

The 3D variogram of each property was fit to the nine available models and the determination
coefficients for each fit are summarized in Table 4.3. Based on these results, the best fit
model for porosity is the Stable model, for permeability of X–direction the Gaussian and
for permeability of both Y and Z–direction the Pentaspherical. The fitted variograms are
presented in Figures 4.44a through 4.44d, while the respective modelling parameters of
interest, namely the nugget, sill and range, are presented in Table 4.4.

The first observation is that not all properties fit best to the same theoretical model, which
can be caused due to the high heterogeneity of the formation, or even due to the number of
sampling points used. The estimated nugget ranges from small to moderate values, while
the range seems to be close for PermY and PermZ, which were fitted to the same theoretical
variogram model.

Table 4.3 Summarizing table of R2 values derived from the fitting of the 3D variogram of the
first Subvolume to a theoretical model, for the Upper Ness formation.

Data Blinear Circular Spherical Pentaspherical Exponential
UN_phi 0.9838 0.9871 0.99 0.9921 0.9878
UN_permX 0.9853 0.9896 0.9922 0.9939 0.9798
UN_permY 0.9863 0.9924 0.9947 0.9962 0.9887
UN_permZ 0.9781 0.9815 0.9843 0.9859 0.9756

Data Gaussian Whittle Stable Matern
UN_phi 0.9928 0.994 0.9958 0.994
UN_permX 0.9944 0.9878 0.9929 0.9878
UN_permY 0.9953 0.9925 0.9958 0.9925
UN_permZ 0.9839 0.9795 0.9839 0.9795

Table 4.4 Variogram modelling parameters of the first Subvolume of porosity and permeability
for Upper Ness formation.

Data Model Nugget Sill Range
UN_phi Stable 0.003 0.0063 2.9889
UN_permX Gaussian 6.3982 9.2346 3.7273
UN_permY Pentaspherical 3.1547 12.0522 8.2222
UN_permZ Pentaspherical 13.4164 20.812 7.9973
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4.2 Upscaling

In order to carry out the upscaling of permeability of the model, Simplified Renormalization
was applied in combination with Wiener bounds, to determine the minimum and maximum
equivalent permeability of the upscaled model. The procedure included the successive
averaging of cell pairs along X, then along Y and finally along Z–direction in an iterative
manner. Cells parallel to the flow direction were arithmetically averaged, otherwise if they
were in series with respect to the flow they were harmonically averaged. More specifically,
for PermX harmonic averaging was applied along X–direction, for PermY along Y–direction
and for PermZ along Z–direction. Especially for upscaling porosity, the same procedure
was applied, however all values were arithmetically averaged. The upscaling algorithm is
included in the Appendix. It has to be clarified that the algorithm utilized the original data
without logarithm, which was only applied subsequently in order to study the corresponding
statistical parameters.

For both formations and all four properties, the results of each iteration are presented
in the form of 3D images of the model, histogram plots of the upscaled data and tables
containing the respective statistical parameters and moments. For comparison, the fine grid
parameters of all four properties have been described in detail in Chapter 3. It is remarkable
that each iteration reduces significantly the number of grid blocks, about 8 times with each
rerun.

4.2.1 Tarbert Formation

The results of each iteration are presented as follows, while the last iteration constitutes of a
single equivalent value for each property. A total of eight iterations were required to reach
the ultimate equivalent value. With each successive iteration data became coarser and the
3D images became more indistinct as expected. The multimodal distribution appears to be a
better fit than the normal distribution to all respective data histograms.

1st iteration

The resulting model has dimensions 30–by–110–by–18 blocks (59400 blocks). Images of
the model appear in Figures 4.45a through 4.45d. The range of upscaled data as well as
the respective statistical moments are presented in Table 4.5. Finally, the resulting data
histograms are displayed in Figures 4.46a through 4.46d, while the respective parameters
of the fit distributions are summarized in Table 4.6. As expected, the general shape of the
upscaled data distributions does not differ from the fine grid model, although in this case the
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low permeability peak of PermZ data is smaller than the high permeability peak. The 3D
images already seem more "pixelated" than the fine grid model images.

Table 4.5 Tarbert formation statistical parameters after the first iteration of upscaling. Porosity
appears in decimal representation and permeability is expressed in miliDarcies (mD).

Data Min Max Mean Median Mode Variance Skewness Kurtosis
T_phi 0.0 0.4446 0.1909 0.1898 0.1366 0.0039 0.1019 2.7767
T_permX 0.0046 20000 311.62 36.69 20000 1.25e+06 8.0787 87.3584
T_permY 0.005 20000 321.07 38.08 20000 1.301e+06 7.9123 83.63
T_permZ 6.503e-07 6000 91.95 6.4612 6000 1.164e+05 7.782 81.3767

Table 4.6 Tarbert formation distribution parameters after the first iteration of upscaling. The
parentheses describe an alternative distribution fit. Porosity appears in decimal representation,
permeability is measured in miliDarcies (mD) and data are analysed after applying logarithm.

Data Distribution Type Parameters

T_phi
Normal

(Unimodal non–parametric)
µ=0.1909, σ2=0.0039
(bandwidth=0.0076)

T_permX
Normal

(Unimodal non–parametric)
µ=3.6573, σ2=4.3658
(bandwidth=0.2423)

T_permY
Normal

(Unimodal non–parametric)
µ=3.6932, σ2=4.3628
(bandwidth=0.2425)

T_permZ Bimodal non–parametric bandwidth=0.4242

2nd iteration

The resulting model has dimensions 15–by–55–by–9 blocks (7425 blocks). Images of
the model appear in Figures 4.47a through 4.47d. The range of upscaled data as well as
the respective statistical moments are presented in Table 4.7. Finally, the resulting data
histograms are displayed in Figures 4.48a through 4.48d, while the respective parameters
of the fit distributions are summarized in Table 4.8. Once again the general shape of the
upscaled data distributions remains the same and in addition, the low permeability peak of
PermZ is significantly smaller. The 3D images get even more pixelated.

3rd iteration

The resulting model has dimensions 8–by–28–by–5 blocks (1120 blocks). Images of the
model appear in Figures 4.49a through 4.49d. The range of upscaled data as well as
the respective statistical moments are presented in Table 4.9. Finally, the resulting data
histograms are displayed in Figures 4.50a through 4.50d, while the respective parameters of
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Table 4.7 Tarbert formation statistical parameters after the second iteration of upscaling.
Porosity appears in decimal representation and permeability is expressed in miliDarcies
(mD).

Data Min Max Mean Median Mode Variance Skewness Kurtosis
T_phi 0.0506 0.3615 0.1909 0.1899 0.0506 0.0024 0.1158 2.799
T_permX 0.2194 12075 280.66 49.28 0.2194 6.643e+05 6.4707 55.811
T_permY 0.2137 11948 297.73 53.2907 0.2137 7.218e+05 6.2363 52.021
T_permZ 8.894e-06 3613.6 88.0107 11.9645 8.894e-06 6.645e+04 5.9451 47.493

Table 4.8 Tarbert formation distribution parameters after the second iteration of upscaling.
The parentheses describe an alternative distribution fit. Porosity appears in decimal represen-
tation, permeability is measured in miliDarcies (mD) and data are analysed after applying
logarithm.

Data Distribution Type Parameters

T_phi
Normal

(Unimodal non–parametric)
µ=0.1909, σ2=0.0024
(bandwidth=0.0088)

T_permX
Normal

(Unimodal non–parametric)
µ=4.0107, σ2=3.1658
(bandwidth=0.3118)

T_permY
Normal

(Unimodal non–parametric)
µ=4.0752, σ2=3.1648
(bandwidth=0.3114)

T_permZ Bimodal non–parametric bandwidth=0.4035

the fit distributions are summarized in Table 4.10. The general shape of the upscaled data
distributions remains the same and in addition, the low permeability peak of PermZ tends to
flatten out. The 3D images get even more pixelated and resemble little of the fine grid image
any more.

Table 4.9 Tarbert formation statistical parameters after the third iteration of upscaling. Poros-
ity appears in decimal representation and permeability is expressed in miliDarcies (mD).

Data Min Max Mean Median Mode Variance Skewness Kurtosis
T_phi 0.0724 0.3025 0.1898 0.1869 0.0724 0.0015 0.162 3.0201
T_permX 0.5447 5885 226.31 57.238 0.5447 2.715e+05 5.0703 36.169
T_permY 0.866 5739.8 247.02 60.51 0.866 3.161e+05 4.8168 32.322
T_permZ 7.279e-05 1793.5 76.55 16.265 7.279e-05 3.259e+04 4.5094 27.878

4th iteration

The resulting model has dimensions 4–by–14–by–3 blocks (168 blocks). Images of the model
appear in Figures 4.51a through 4.51d. The range of upscaled data as well as the respective
statistical moments are presented in Table 4.11. Finally, the resulting data histograms
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Table 4.10 Tarbert formation distribution parameters after the third iteration of upscaling. The
parentheses describe an alternative distribution fit. Porosity appears in decimal representation,
permeability is measured in miliDarcies (mD) and data are analysed after applying logarithm.

Data Distribution Type Parameters

T_phi
Normal

(Unimodal non–parametric)
µ=0.1898, σ2=0.00152

(bandwidth=0.0096)

T_permX
Normal

(Unimodal non–parametric)
µ=4.1656, σ2=2.4303
(bandwidth=0.3793)

T_permY
Normal

(Unimodal non–parametric)
µ=4.2559, σ2=2.4061
(bandwidth=0.3794)

T_permZ Bimodal non–parametric bandwidth=0.4727

are displayed in Figures 4.52a through 4.52d, while the respective parameters of the fit
distributions are summarized in Table 4.12. The general shape of the distributions remains
the same and the low permeability peak of PermZ gets progressively smaller. The 3D images
become vague at this point.

Table 4.11 Tarbert formation statistical parameters after the fourth iteration of upscaling.
Porosity appears in decimal representation and permeability is expressed in miliDarcies
(mD).

Data Min Max Mean Median Mode Variance Skewness Kurtosis
T_phi 0.103 0.2767 0.1884 0.1853 0.1030 0.0012 0.1446 2.8908
T_permX 1.1306 2588.7 174.29 48.67 1.131 1.23e+05 4.3394 25.4932
T_permY 2.7526 2999.3 201.801 59.92 2.753 1.516e+05 4.161 24.403
T_permZ 0.05 881.62 64.901 15.783 0.05 1.856e+04 3.764 19.213

Table 4.12 Tarbert formation distribution parameters after the fourth iteration of upscaling.
The parentheses describe an alternative distribution fit. Porosity appears in decimal represen-
tation, permeability is measured in miliDarcies (mD) and data are analysed after applying
logarithm.

Data Distribution Type Parameters

T_phi
Normal

(Unimodal non–parametric)
µ=0.1884, σ2=0.00125

(bandwidth=0.0131)

T_permX
Normal

(Unimodal non–parametric)
µ=4.1155, σ2=1.9969
(bandwidth=0.5081)

T_permY
Normal

(Unimodal non–parametric)
µ=4.2889, σ2=1.9602
(bandwidth=0.4822)

T_permZ Unimodal non–parametric bandwidth=0.6801
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5th iteration

The resulting model has dimensions 2–by–7–by–2 blocks (28 blocks). Images of the model
appear in Figures 4.53a through 4.53d. The range of upscaled data as well as the respective
statistical moments are presented in Table 4.13. Finally, the resulting data histograms
are displayed in Figures 4.54a through 4.54d, while the respective parameters of the fit
distributions are summarized in Table 4.14. All histograms have more or less the same shape
and the 3D images have become indistinct.

Table 4.13 Tarbert formation statistical parameters after the fifth iteration of upscaling.
Porosity appears in decimal representation and permeability is expressed in miliDarcies
(mD).

Data Min Max Mean Median Mode Variance Skewness Kurtosis
T_phi 0.1234 0.2485 0.1866 0.1837 0.1234 6.678e+04 0.0122 3.758
T_permX 2.7957 640.1 102.969 47.581 2.7957 2.235e+04 2.581 8.957
T_permY 4.1812 888.16 150.331 70.983 4.1812 4.482e+04 2.373 7.9365
T_permZ 0.1262 358.22 50.338 16.868 0.1262 8.048e+03 2.6376 9.0161

Table 4.14 Tarbert formation distribution parameters after the fifth iteration of upscaling. The
parentheses describe an alternative distribution fit. Porosity appears in decimal representation,
permeability is measured in miliDarcies (mD) and data are analysed after applying logarithm.

Data Distribution Type Parameters

T_phi
Normal

(Unimodal non–parametric)
µ=0.1866, σ2=0.00067
(bandwidth=0.00764)

T_permX
Normal

(Unimodal non–parametric)
µ=3.9577, σ2=1.3939
(bandwidth=0.4636)

T_permY
Normal

(Unimodal non–parametric)
µ=4.291, σ2=1.5992
(bandwidth=0.6061)

T_permZ
Normal

(Unimodal non–parametric)
µ=2.5986, σ2=3.5905
(bandwidth=0.8691)

6th iteration

The resulting model has dimensions 1–by–4–by–1 blocks (4 blocks), thus it is represented
by a linear arrangement of blocks. The resulting block values appear in Table 4.15. The
difference between PermX and PermY can be due to the different flow direction along which,
data are harmonically averaged.
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Table 4.15 Tarbert formation block values after the sixth iteration of upscaling. Porosity
appears in decimal representation and permeability is expressed in miliDarcies (mD).

Data Block 1 Block 2 Block 3 Block 4
T_phi 0.1784 0.2063 0.1820 0.1728
T_permX 51.8361 86.4913 51.9715 17.3997
T_permY 57.9514 335.0546 58.1501 37.7507
T_permZ 9.1877 21.0869 12.0048 1.3786

7th iteration

The resulting model has dimensions 1–by–2–by–1 blocks (2 blocks), once again a linear
arrangement of blocks. The resulting block values appear in Table 4.16.

Table 4.16 Tarbert formation block values after the seventh iteration of upscaling. Porosity
appears in decimal representation and permeability is expressed in miliDarcies (mD).

Data Block 1 Block 2
T_phi 0.1924 0.1774
T_permX 69.1637 34.6858
T_permY 98.8122 45.7808
T_permZ 15.1373 6.6917

8th iteration

The final iteration results in a single equivalent value for the whole model. The respective
values for each property along with the corresponding Wiener bounds are presented in
Table 4.17. All equivalent values fall into the suggested bounds.

Table 4.17 Tarbert formation equivalent values after the eighth iteration of upscaling, com-
bined with Wiener bounds. Porosity appears in decimal representation and permeability is
expressed in miliDarcies (mD).

Data Wiener Bounds Equivalent ValueLower Upper
T_phi – – 0.1849
T_permX 1.5884 356.4888 51.9247
T_permY 1.5884 356.488 62.5715
T_permZ 1.761e-04 94.0889 10.9145
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4.2.2 Upper Ness Formation

The results of each iteration are presented in the following subsections, while the last iteration
constitutes of a single equivalent value for each property. A total of eight iterations were
required to reach the ultimate equivalent value. With each successive iteration data become
coarser and the 3D images become more indistinct.

1st iteration

The resulting model has dimensions 30–by–110–by–25 blocks (82500 blocks). Images of
the model appear in Figures 4.55a through 4.55d. The range of upscaled data as well as
the respective statistical moments are presented in Table 4.18. Finally, the resulting data
histograms are displayed in Figures 4.56a through 4.56d, while the respective parameters
of the fit distributions are summarized in Table 4.19. The general shape of the upscaled
data distributions does not differ significantly from the fine grid model and in addition, the
distrbution peaks seem to be more equalized between them than before upscaling. The 3D
images already seem more pixelated than the fine grid model images.

Table 4.18 Upper Ness formation statistical parameters after the first iteration of upscaling.
Porosity appears in decimal representation and permeability is expressed in miliDarcies
(mD).

Data Min Max Mean Median Mode Variance Skewness Kurtosis
UN_phi 0.0 0.389 0.1564 0.1547 0.0 0.0062 0.1015 2.0502
UN_permX 0.0036 19601 246.32 47.46 0.0036 4.58e+05 8.8699 128.401
UN_permY 0.0038 19600 294.75 58.83 0.0038 5.997e+05 7.663 94.663
UN_permZ 4.485e-07 5134.7 32.876 0.0291 3.159e-06 1.899e+04 12.119 226.38

Table 4.19 Upper Ness formation distribution parameters after the first iteration of upscaling.
Porosity appears in decimal representation, permeability is measured in miliDarcies (mD)
and data are analysed after applying logarithm.

Data Distribution Type Parameters
UN_phi Bimodal non–parametric bandwidth=0.0107
UN_permX Bimodal non–parametric bandwidth=0.4326
UN_permY Bimodal non–parametric bandwidth=0.4233
UN_permZ Trimodal non–parametric bandwidth=1.091

2nd iteration

The resulting model has dimensions 15–by–55–by–13 blocks (10725 blocks). Images of
the model appear in Figures 4.57a through 4.57d. The range of upscaled data as well as
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the respective statistical moments are presented in Table 4.20. Finally, the resulting data
distributions are displayed in Figures 4.58a through 4.58d, while the respective parameters
of the fit distributions are summarized in Table 4.21. The general shape of the upscaled data
distributions is similar to that of the fine grid model, while all distributions appear to shift
weight from low to higher permeability. The medium permeability peak of PermZ tends to
flatten out. The 3D images already become more pixelated than those of the fine grid model.

Table 4.20 Upper Ness formation statistical parameters after the second iteration of upscaling.
Porosity appears in decimal representation and permeability is expressed in miliDarcies
(mD).

Data Min Max Mean Median Mode Variance Skewness Kurtosis
UN_phi 0.0065 0.3253 0.1544 0.1554 0.1657 0.004 -0.0397 2.0664
UN_permX 0.0095 13988 159.23 64.045 0.0095 1.156e+05 12.481 340.962
UN_permY 0.0125 14451 232.87 101.18 0.0125 2.055e+05 8.611 161.32
UN_permZ 1.411e-06 3404.7 31.65 7.8232 1.411e-06 7.008e+03 12.147 316.701

Table 4.21 Upper Ness formation distribution parameters after the second iteration of up-
scaling. Porosity appears in decimal representation, permeability is measured in miliDarcies
(mD) and data are analysed after applying logarithm.

Data Distribution Type Parameters
UN_phi Bimodal non–parametric bandwidth=0.0125
UN_permX Bimodal non–parametric bandwidth=0.386
UN_permY Bimodal non–parametric bandwidth=0.346
UN_permZ Trimodal non–parametric bandwidth=0.4472

3rd iteration

The resulting model has dimensions 8–by–28–by–7 blocks (1568 blocks). Images of the
model appear in Figures 4.59a through 4.59d. The range of upscaled data as well as
the respective statistical moments are presented in Table 4.22. Finally, the resulting data
distributions are displayed in Figures 4.60a through 4.60d, while the respective parameters
of the fit distributions are summarized in Table 4.23. The general shape of the upscaled
data distributions is still close to that of the fine grid model, while all distributions keep
shifting weight from low to higher permeability. Porosity tends to a single peak distribution,
however the multimodal distribution still fits better the distribution of the data. In addition,
the medium permeability peak of PermZ has flattened out almost completely. The 3D images
have become even more pixelated and the channels are barely recognizable.
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Table 4.22 Upper Ness formation statistical parameters after the third iteration of upscaling.
Porosity appears in decimal representation and permeability is expressed in miliDarcies
(mD).

Data Min Max Mean Median Mode Variance Skewness Kurtosis
UN_phi 0.0215 0.2585 0.1497 0.1515 0.0215 0.0022 -0.1475 2.2678
UN_permX 0.0273 1131.1 98.121 65.714 0.0273 1.416e+04 2.764 16.84
UN_permY 0.0376 3691 182.2 124.39 0.0376 5.115e+04 4.346 46.51
UN_permZ 4.92e-06 1201.6 29.008 16.949 4.92e-06 2.481e+03 10.324 207.25

Table 4.23 Upper Ness formation distribution parameters after the third iteration of upscaling.
The parentheses describe an alternative distribution fit. Porosity appears in decimal represen-
tation, permeability is measured in miliDarcies (mD) and data are analysed after applying
logarithm.

Data Distribution Type Parameters

UN_phi
Unimodal non–parametric

(Normal)
bandwidth=0.0126

(µ=0.1497, σ2=0.0022)
UN_permX Bimodal non–parametric bandwidth=0.3641
UN_permY Bimodal non–parametric bandwidth=0.3207
UN_permZ Trimodal non–parametric bandwidth=0.3484

4th iteration

The resulting model has dimensions 4–by–14–by–4 blocks (224 blocks). Images of the model
appear in Figures 4.61a through 4.61d. The range of upscaled data as well as the respective
statistical moments are presented in Table 4.24. Finally, the resulting data distributions
are displayed in Figures 4.62a through 4.62d, while the respective parameters of the fit
distributions are summarized in Table 4.25. The shape of the upscaled data distributions
is not similar any more to that of the fine grid model. The low permeability peaks have
all severely reduced, while PermZ includes a lot of sparse data between the low and high
permeability peaks. Last but not least, the 3D images have become quite vague.

Table 4.24 Upper Ness formation statistical parameters after the fourth iteration of upscaling.
Porosity appears in decimal representation and permeability is expressed in miliDarcies
(mD).

Data Min Max Mean Median Mode Variance Skewness Kurtosis
UN_phi 0.0561 0.221 0.1441 0.1463 0.0561 0.0013 -0.1386 2.442
UN_permX 0.0753 366.86 62.569 52.145 0.0753 4.087e+03 1.577 6.308
UN_permY 0.0972 744.52 144.91 129.01 0.0972 1.565e+04 1.332 5.912
UN_permZ 1.412e-05 306.48 25.498 21.404 1.412e-05 895.08 4.463 37.817
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Table 4.25 Upper Ness formation distribution parameters after the fourth iteration of upscal-
ing. The parentheses describe an alternative distribution fit. Porosity appears in decimal
representation, permeability is measured in miliDarcies (mD) and data are analysed after
applying logarithm.

Data Distribution Type Parameters

UN_phi
Unimodal non–parametric

(Normal)
bandwidth=0.013

(µ=0.144, σ2=0.0013)
UN_permX Bimodal non–parametric bandwidth=0.3916
UN_permY Bimodal non–parametric bandwidth=0.3504
UN_permZ Bimodal non–parametric bandwidth=0.3484

5th iteration

The resulting model has dimensions 2–by–7–by–2 blocks (28 blocks). Images of the model
appear in Figures 4.63a through 4.63d. The range of upscaled data as well as the respective
statistical moments are presented in Table 4.26. Finally, the resulting data distributions
are displayed in Figures 4.64a through 4.64d, while the respective parameters of the fit
distributions are summarized in Table 4.27. At this point, the data display little information
in comparison to the fine grid model, porosity approaches a uniform distribution and the
distinct low permeability peak does not appear in PermY data. In PermZ distribution the
medium permeability peak has reappeared, however that could very well be considered an
over–statement. The 3D images display no clear information about the formation.

Table 4.26 Upper Ness formation statistical parameters after the fifth iteration of upscaling.
Porosity appears in decimal representation and permeability is expressed in miliDarcies
(mD).

Data Min Max Mean Median Mode Variance Skewness Kurtosis
UN_phi 0.1052 0.1776 0.1441 0.1437 0.1052 5.038e-04 -0.0642 1.702
UN_permX 4.308 115.74 46.231 42.45 4.308 908.44 0.4266 2.364
UN_permY 26.904 286.44 133.44 126.6 26.904 5164.2 0.4913 2.153
UN_permZ 4.277e-05 82.041 19.771 14.209 4.277e-05 455.1 0.9404 3.495

6th iteration

The resulting model has dimensions 1–by–4–by–1 blocks (4 blocks), thus it is represented
by a linear arrangement of blocks. The resulting block values appear in Table 4.28. The
difference between PermX and PermY can be caused by the harmonic averaging, which is
applied along different flow directions.
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Table 4.27 Upper Ness formation distribution parameters after the fifth iteration of upscaling.
Porosity appears in decimal representation, permeability is measured in miliDarcies (mD)
and data are analysed after applying logarithm.

Data Distribution Type Parameters
UN_phi Unimodal non–parametric bandwidth=0.017
UN_permX Bimodal non–parametric bandwidth=0.3964
UN_permY Unimodal non–parametric bandwidth=0.4167
UN_permZ Trimodal non–parametric bandwidth=1.0623

Table 4.28 Upper Ness formation block values after the sixth iteration of upscaling. Porosity
appears in decimal representation and permeability is expressed in miliDarcies (mD).

Data Block 1 Block 2 Block 3 Block 4
UN_phi 0.1451 0.1442 0.1427 0.1444
UN_permX 38.7261 44.7238 41.5534 35.9065
UN_permY 147.2840 137.0625 111.9781 137.8747
UN_permZ 1.5684 5.2680 2.2246 3.8282

7th iteration

The resulting model has dimensions 1–by–2–by–1 blocks (2 blocks), resulting again in a
linear arrangement of blocks. The block values appear in Table 4.29. The difference between
PermX and PermY remains the approximately same.

Table 4.29 Upper Ness formation block values after the seventh iteration of upscaling.
Porosity appears in decimal representation and permeability is expressed in miliDarcies
(mD).

Data Block 1 Block 2
UN_phi 0.1447 0.1435
UN_permX 41.7249 38.7300
UN_permY 141.9895 123.5844
UN_permZ 3.4182 3.0264

8th iteration

The final iteration results in a single equivalent value for the whole model. The respective
values for each property along with the corresponding Wiener bounds are presented in
Table 4.30. The difference between PermX and PermY has increased insignificantly. All
equivalent values fall into the suggested bounds.
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Table 4.30 Upper Ness formation equivalent values after the eighth iteration of upscaling,
combined with Wiener bounds. Porosity appears in decimal representation and permeability
is expressed in miliDarcies (mD).

Data Wiener Bounds Equivalent ValueLower Upper
UN_phi – – 0.1441
UN_permX 0.124 354.96 40.228
UN_permY 0.124 354.96 132.15
UN_permZ 1.241e-05 33.474 3.222
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Fig. 4.2 Indicative 3D variogram plots with different number of used sampling points, for a
subvolume (X:15–45, Y:50–150, Z:15:25) of porosity of Tarbert formation.

Fig. 4.3 Indicative variogram plots with different number of lag distance bins, for a subvolume
(X:15–45, Y:50–150, Z:15:25) of porosity of Tarbert formation. Respective minimum lag
distance is equal to h = maxdist/bins.
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Fig. 4.4 Combined marginal variograms of 100 core samples for porosity of Tarbert formation,
for the three principal directions. The black line represents the mean variogram.

Fig. 4.5 Combined marginal variograms of 100 core samples for permeability of X–direction
of Tarbert formation, for the three principal directions. The black line represents the mean
variogram.
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Fig. 4.6 Combined marginal variograms of 100 core samples for permeability of Y–direction
of Tarbert formation, for the three principal directions. The black line represents the mean
variogram.

Fig. 4.7 Combined marginal variograms of 100 core samples for permeability of Z–direction
of Tarbert formation, for the three principal directions. The black line represents the mean
variogram.
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(a) T_Phi–Layer 1

(b) T_PermX–Layer 1

(c) T_PermY–Layer 1

(d) T_PermZ–Layer 1

Fig. 4.8 Top and 3D view of anisotropic variogram of the first (bottom) layer for porosity
and permeability of the Tarbert formation.
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(a) T_Phi–Layer 10

(b) T_PermX–Layer 10

(c) T_PermY–Layer 10

(d) T_PermZ–Layer 10

Fig. 4.9 Top and 3D view of anisotropic variogram of the 10th layer for porosity and perme-
ability of the Tarbert formation.
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(a) T_Phi–Layer 20

(b) T_PermX–Layer 20

(c) T_PermY–Layer 20

(d) T_PermZ–Layer 20

Fig. 4.10 Top and 3D view of anisotropic variogram of the 20th layer for porosity and
permeability of the Tarbert formation.
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(a) T_Phi–Layer 30

(b) T_PermX–Layer 30

(c) T_PermY–Layer 30

(d) T_PermZ–Layer 30

Fig. 4.11 Top and 3D view of anisotropic variogram of the 30th layer for porosity and
permeability of the Tarbert formation.
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(a) T_Phi–Layer 35

(b) T_PermX–Layer 35

(c) T_PermY–Layer 35

(d) T_PermZ–Layer 35

Fig. 4.12 Top and 3D view of anisotropic variogram of the 35th (top) layer for porosity and
permeability of the Tarbert formation.
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(a) T_Phi–Layer 1 (b) T_PermX–Layer 1

(c) T_PermY–Layer 1 (d) T_PermZ–Layer 1

Fig. 4.13 Omnidirectional variograms of the first (bottom) layer for porosity and permeability
of the Tarbert formation.

(a) T_Phi–Layer 10 (b) T_PermX–Layer 10

(c) T_PermY–Layer 10 (d) T_PermZ–Layer 10

Fig. 4.14 Omnidirectional variograms of the 10th layer for porosity and permeability of the
Tarbert formation.
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(a) T_Phi–Layer 20 (b) T_PermX–Layer 20

(c) T_PermY–Layer 20 (d) T_PermZ–Layer 20

Fig. 4.15 Omnidirectional variograms of the 20th layer for porosity and permeability of the
Tarbert formation.

(a) T_Phi–Layer 30 (b) T_PermX–Layer 30

(c) T_PermY–Layer 30 (d) T_PermZ–Layer 30

Fig. 4.16 Omnidirectional variograms of the 30th layer for porosity and permeability of the
Tarbert formation.
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(a) T_Phi–Layer 35 (b) T_PermX–Layer 35

(c) T_PermY–Layer 35 (d) T_PermZ–Layer 35

Fig. 4.17 Omnidirectional variograms of the 35th (top) layer for porosity and permeability of
the Tarbert formation.
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(a) T_Phi–Subvolume 1 (b) T_PermX–Subvolume 1

(c) T_PermY–Subvolume 1 (d) T_PermZ–Subvolume 1

Fig. 4.18 3D variograms of the first (basic) subvolume (X:6–25, Y:21–90, Z:11–30) for
porosity and permeability of the Tarbert formation.

(a) T_Phi–Subvolume 2 (b) T_PermX–Subvolume 2

(c) T_PermY–Subvolume 2 (d) T_PermZ–Subvolume 2

Fig. 4.19 3D variograms of the second (elongated towards X–direction) subvolume (X:36–55,
Y:1–110, Z:11–30) for porosity and permeability of the Tarbert formation.
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(a) T_Phi–Subvolume 3 (b) T_PermX–Subvolume 3

(c) T_PermY–Subvolume 3 (d) T_PermZ–Subvolume 3

Fig. 4.20 3D variograms of the third (elongated towards Y–direction) subvolume (X:1–30,
Y:131–200, Z:11–30) for porosity and permeability of the Tarbert formation.

(a) T_Phi–Subvolume 4 (b) T_PermX–Subvolume 4

(c) T_PermY–Subvolume 4 (d) T_PermZ–Subvolume 4

Fig. 4.21 3D variograms of the fourth (elongated towards Z–direction) subvolume (X:36–55,
Y:131-200, Z:1–35) for porosity and permeability of the Tarbert formation.
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Fig. 4.22 Combined marginal variograms of 100 core samples for porosity of Upper Ness
formation, for the three principal directions. The black line represents the mean variogram.

Fig. 4.23 Combined marginal variograms of 100 core samples for permeability of X–direction
of Upper Ness formation, for the three principal directions. The black line represents the
mean variogram.
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Fig. 4.24 Combined marginal variograms of 100 core samples for permeability of Y–direction
of Upper Ness formation, for the three principal directions. The black line represents the
mean variogram.

Fig. 4.25 Combined marginal variograms of 100 core samples for permeability of Z–direction
of Upper Ness formation, for the three principal directions. The black line represents the
mean variogram.
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(a) UN_Phi–Layer 1

(b) UN_PermX–Layer 1

(c) UN_PermY–Layer 1

(d) UN_PermZ–Layer 1

Fig. 4.26 Top and 3D view of anisotropic variogram of the first (bottom) layer for porosity
and permeability of the Upper Ness formation.
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(a) UN_Phi–Layer 10

(b) UN_PermX–Layer 10

(c) UN_PermY–Layer 10

(d) UN_PermZ–Layer 10

Fig. 4.27 Top and 3D view of anisotropic variogram of the 10th layer for porosity and
permeability of the Upper Ness formation.
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(a) UN_Phi–Layer 20

(b) UN_PermX–Layer 20

(c) UN_PermY–Layer 20

(d) UN_PermZ–Layer 20

Fig. 4.28 Top and 3D view of anisotropic variogram of the 20th layer for porosity and
permeability of the Upper Ness formation.
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(a) UN_Phi–Layer 30

(b) UN_PermX–Layer 30

(c) UN_PermY–Layer 30

(d) UN_PermZ–Layer 30

Fig. 4.29 Top and 3D view of anisotropic variogram of the 30th layer for porosity and
permeability of the Upper Ness formation.
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(a) UN_Phi–Layer 40

(b) UN_PermX–Layer 40

(c) UN_PermY–Layer 40

(d) UN_PermZ–Layer 40

Fig. 4.30 Top and 3D view of anisotropic variogram of the 40th layer for porosity and
permeability of the Upper Ness formation.
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(a) UN_Phi–Layer 50

(b) UN_PermX–Layer 50

(c) UN_PermY–Layer 50

(d) UN_PermZ–Layer 50

Fig. 4.31 Top and 3D view of anisotropic variogram of the 50th (top) layer for porosity and
permeability of the Upper Ness formation.
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(a) UN_Phi–Layer 1 (b) UN_PermX–Layer 1

(c) UN_PermY–Layer 1 (d) UN_PermZ–Layer 1

Fig. 4.32 Omnidirectional variograms of the first (bottom) layer for porosity and permeability
of the Upper Ness formation.

(a) UN_Phi–Layer 10 (b) UN_PermX–Layer 10

(c) UN_PermY–Layer 10 (d) UN_PermZ–Layer 10

Fig. 4.33 Omnidirectional variograms of the 10th layer for porosity and permeability of the
Upper Ness formation.
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(a) UN_Phi–Layer 20 (b) UN_PermX–Layer 20

(c) UN_PermY–Layer 20 (d) UN_PermZ–Layer 20

Fig. 4.34 Omnidirectional variograms of the 20th layer for porosity and permeability of the
Upper Ness formation.

(a) UN_Phi–Layer 30 (b) UN_PermX–Layer 30

(c) UN_PermY–Layer 30 (d) UN_PermZ–Layer 30

Fig. 4.35 Omnidirectional variograms of the 30th layer for porosity and permeability of the
Upper Ness formation.
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(a) UN_Phi–Layer 40 (b) UN_PermX–Layer 40

(c) UN_PermY–Layer 40 (d) UN_PermZ–Layer 40

Fig. 4.36 Omnidirectional variograms of the 40th layer for porosity and permeability of the
Upper Ness formation.

(a) UN_Phi–Layer 50 (b) UN_PermX–Layer 50

(c) UN_PermY–Layer 50 (d) UN_PermZ–Layer 50

Fig. 4.37 Omnidirectional variograms of the 50th (top) layer for porosity and permeability of
the Upper Ness formation.
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(a) UN_Phi–Subvolume 1 (b) UN_PermX–Subvolume 1

(c) UN_PermY–Subvolume 1 (d) UN_PermZ–Subvolume 1

Fig. 4.38 3D variograms of the first (basic) subvolume (X:6–25, Y:21–90, Z:11–40) for
porosity and permeability of the Upper Ness formation.

(a) UN_Phi–Subvolume 2 (b) UN_PermX–Subvolume 2

(c) UN_PermY–Subvolume 2 (d) UN_PermZ–Subvolume 2

Fig. 4.39 3D variograms of the second (elongated towards X–direction) subvolume (X:36–55,
Y:1–110, Z:11–40) for porosity and permeability of the Upper Ness formation.
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(a) UN_Phi–Subvolume 3 (b) UN_PermX–Subvolume 3

(c) UN_PermY–Subvolume 3 (d) UN_PermZ–Subvolume 3

Fig. 4.40 3D variograms of the third (elongated towards Y–direction) subvolume (X:1–30,
Y:131–200, Z:11–40) for porosity and permeability of the Upper Ness formation.

(a) UN_Phi–Subvolume 4 (b) UN_PermX–Subvolume 4

(c) UN_PermY–Subvolume 4 (d) UN_PermZ–Subvolume 4

Fig. 4.41 3D variograms of the fourth (elongated towards Z–direction) subvolume (X:36–55,
Y:131–200, Z:1–50) for porosity and permeability of the Upper Ness formation.
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Fig. 4.42 Different theoretical variogram models fitted to the 3D variogram of the first
Subvolume of porosity for Tarbert formation. Exponential model is the best fit as justified in
Table 4.1. Squares represent the experimental data and solid line represents the theoretical
model.
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(a) T_Phi–Exponential (b) T_PermX–Exponential

(c) T_PermY–Exponential (d) T_PermZ–Exponential

Fig. 4.43 Experimental variograms fitted to theoretical models, for the first Subvolume of
porosity and permeability for Tarbert formation. Modelling parameters are presented in
Table 4.2. Squares represent the experimental data and solid line represents the theoretical
model.
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(a) UN_Phi–Stable (b) UN_PermX–Gaussian

(c) UN_PermY–Pentaspherical (d) UN_PermZ–Pentaspherical

Fig. 4.44 Experimental variograms fitted to theoretical models, for the first Subvolume of
porosity and permeability for Upper Ness formation. Modelling parameters are presented in
Table 4.4. Squares represent the experimental data and solid line represents the theoretical
model.
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(a) T_Phi upscale 1–3D view (b) T_PermX upscale 1–3D view

(c) T_PermY upscale 1–3D view (d) T_PermZ upscale 1–3D view

Fig. 4.45 3D images of porosity and permeability of the Tarbert formation after the first
iteration of upscaling.

(a) T_Phi upscale 1–distribution (b) T_PermX upscale 1–distribution

(c) T_PermY upscale 1–distribution (d) T_PermZ upscale 1–distribution

Fig. 4.46 Distribution of porosity and permeability data of the Tarbert formation after the
first iteration of upscaling.
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(a) T_Phi upscale 2–3D view (b) T_PermX upscale 2–3D view

(c) T_PermY upscale 2–3D view (d) T_PermZ upscale 2–3D view

Fig. 4.47 3D images of porosity and permeability of the Tarbert formation after the second
iteration of upscaling.

(a) T_Phi upscale 2–distribution (b) T_PermX upscale 2–distribution

(c) T_PermY upscale 2–distribution (d) T_PermZ upscale 2–distribution

Fig. 4.48 Distribution of porosity and permeability data of the Tarbert formation after the
second iteration of upscaling.
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(a) T_Phi upscale 3–3D view (b) T_PermX upscale 3–3D view

(c) T_PermY upscale 3–3D view (d) T_PermZ upscale 3–3D view

Fig. 4.49 3D images of porosity and permeability of the Tarbert formation after the third
iteration of upscaling.

(a) T_Phi upscale 3–distribution (b) T_PermX upscale 3–distribution

(c) T_PermY upscale 3–distribution (d) T_PermZ upscale 3–distribution

Fig. 4.50 Distribution of porosity and permeability data of the Tarbert formation after the
third iteration of upscaling.
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(a) T_Phi upscale 4–3D view (b) T_PermX upscale 4–3D view

(c) T_PermY upscale 4–3D view (d) T_PermZ upscale 4–3D view

Fig. 4.51 3D images of porosity and permeability of the Tarbert formation after the fourth
iteration of upscaling.

(a) T_Phi upscale 4–distribution (b) T_PermX upscale 4–distribution

(c) T_PermY upscale 4–distribution (d) T_PermZ upscale 4–distribution

Fig. 4.52 Distribution of porosity and permeability data of the Tarbert formation after the
fourth iteration of upscaling.
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(a) T_Phi upscale 5–3D view (b) T_PermX upscale 5–3D view

(c) T_PermY upscale 5–3D view (d) T_PermZ upscale 5–3D view

Fig. 4.53 3D images of porosity and permeability of the Tarbert formation after the fifth
iteration of upscaling.

(a) T_Phi upscale 5–distribution (b) T_PermX upscale 5–distribution

(c) T_PermY upscale 5–distribution (d) T_PermZ upscale 5–distribution

Fig. 4.54 Distribution of porosity and permeability data of the Tarbert formation after the
fifth iteration of upscaling.
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(a) UN_Phi upscale 1–3D view (b) UN_PermX upscale 1–3D view

(c) UN_PermY upscale 1–3D view (d) UN_PermZ upscale 1–3D view

Fig. 4.55 3D images of porosity and permeability of the Upper Ness formation after the first
iteration of upscaling.

(a) UN_Phi upscale 1–distribution (b) UN_PermX upscale 1–distribution

(c) UN_PermY upscale 1–distribution (d) UN_PermZ upscale 1–distribution

Fig. 4.56 Distribution of porosity and permeability data of the Upper Ness formation after
the first iteration of upscaling.
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(a) UN_Phi upscale 2–3D view (b) UN_PermX upscale 2–3D view

(c) UN_PermY upscale 2–3D view (d) UN_PermZ upscale 2–3D view

Fig. 4.57 3D images of porosity and permeability of the Upper Ness formation after the
second iteration of upscaling.

(a) UN_Phi upscale 2–distribution (b) UN_PermX upscale 2–distribution

(c) UN_PermY upscale 2–distribution (d) UN_PermZ upscale 2–distribution

Fig. 4.58 Distribution of porosity and permeability data of the Upper Ness formation after
the second iteration of upscaling.
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(a) UN_Phi upscale 3–3D view (b) UN_PermX upscale 3–3D view

(c) UN_PermY upscale 3–3D view (d) UN_PermZ upscale 3–3D view

Fig. 4.59 3D images of porosity and permeability of the Upper Ness formation after the third
iteration of upscaling.

(a) UN_Phi upscale 3–distribution (b) UN_PermX upscale 3–distribution

(c) UN_PermY upscale 3–distribution (d) UN_PermZ upscale 3–distribution

Fig. 4.60 Distribution of porosity and permeability data of the Upper Ness formation after
the third iteration of upscaling.



4.2 Upscaling 109

(a) UN_Phi upscale 4–3D view (b) UN_PermX upscale 4–3D view

(c) UN_PermY upscale 4–3D view (d) UN_PermZ upscale 4–3D view

Fig. 4.61 3D images of porosity and permeability of the Upper Ness formation after the
fourth iteration of upscaling.

(a) UN_Phi upscale 4–distribution (b) UN_PermX upscale 4–distribution

(c) UN_PermY upscale 4–distribution (d) UN_PermZ upscale 4–distribution

Fig. 4.62 Distribution of porosity and permeability data of the Upper Ness formation after
the fourth iteration of upscaling.
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(a) UN_Phi upscale 5–3D view (b) UN_PermX upscale 5–3D view

(c) UN_PermY upscale 5–3D view (d) UN_PermZ upscale 5–3D view

Fig. 4.63 3D images of porosity and permeability of the Upper Ness formation after the fifth
iteration of upscaling.

(a) UN_Phi upscale 5–distribution (b) UN_PermX upscale 5–distribution

(c) UN_PermY upscale 5–distribution (d) UN_PermZ upscale 5–distribution

Fig. 4.64 Distribution of porosity and permeability data of the Upper Ness formation after
the fifth iteration of upscaling.



Chapter 5

Conclusions & Discussion

The goal of this thesis was the implementation of geostatistical methods in order to analyse
the porosity and permeability data of the 10th SPE benchmark reservoir model and derive con-
clusions about the behaviour and spatial correlation of these data, as well as the implications
and requirements associated with geostatistical analysis.

Concerning the spatial structure and behaviour of the data, each formation displayed
distinct behaviour. For the top Tarbert formation, porosity was normally, while permeability
on X and Y directions was lognormaly distributed. Furthermore, after applying logarithm
to the data, permeability on Z direction was bimodally distributed. The lower part of the
model, namely the Upper Ness formation, constituted of permeable anastomosed channels
laid on a non–permeable background, which resulted in a bimodal distribution of porosity.
Moreover, after applying logarithm to the data, permeability on X and Y directions followed
a bimodal, while permeability on Z direction followed a trimodal distribution. It was realized
that the effect of layering during sedimentation resulted in the additional distribution peak for
vertical permeability, for both the Tarbert and the Upper Ness formation. Furthermore, the
heterogeneity and anisotropy on both parts of the model was recognizable in all studied layers.
Finally, porosity and permeability displayed a medium to strong and positive correlation for
both formations.

Geostatistical analysis of both formations provided valuable results, confirming the
aforementioned observations about heterogeneity and anisotropy of the model through the
anisotropic variograms. It was realized by the directional, anisotropic and omnidirectional
variograms that random and uncorrelated data, expressed by the nugget, were not significantly
numerous. However for the 3D variograms the nugget was relatively increased, sometimes
even greater than one third of the sill. Moreover, correlation range was not too great,
something that can be justified by high heterogeneity. The variogram fitting procedure
led mainly to the conclusion that the Tarbert formation could be mostly modelled by an
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Exponential theoretical variogram, while the proper variogram model for the Upper Ness
formation varied, with the most frequent being the Pentaspherical. It was also realized that
the modelled range never exceeded a value of nine fine grid cells and in addition, that porosity
reached the sill in smaller ranges than permeability. Last but not least, permeability along the
two principal horizontal directions displayed almost identical behaviour for most conducted
tests.

Several observations were made concerning the variogram analysis procedure itself.
It was realized that the nugget decreased, while variogram smoothness increased, when
reducing the sampling domain of the variogram. Also, increasing the maximum lag distance
would cause an increase to the resulting nugget. The number of lag distance bins, into which
the maximum distance was split, affected only the smoothness of the curve, but not the
values. Due to anisotropy, heterogeneity and layering, increasing the thickness or height
of the sampling domain would result in increasing variability and thus an increased nugget.
However, specifically for the Upper Ness formation, sampling domains closer to the top
displayed reduced variability relatively to the lower levels. This is explained by the structure
of the anastomosed channel system. With increasing height, the channels cover increasingly
less area of each layer, thus reducing relative variability. Furthermore, variance was increased
along the width, compared to the length of the model. On the contrary, increasing the number
of considered points along the length of the model would generally improve the total image
of the variogram. Even though permeability was studied upon applying logarithm, it was
realized that variogram plots were identical either with or without the logarithm.

Finally, upscaling provided interesting results as well. First and foremost, it was realized
that each successive iteration significantly decreased the resolution of the model, reducing
the total number of grid cells about eight times. This is a remarkable observation, since it
proves the benefits of upscaling to flow simulation. Also, since the method depended on
the direction of successive averaging, the final outcome could also vary, depending on the
decided combination of averaging directions. A total of eight iterations were required to
obtain a single equivalent value for the whole formation, while after the fifth iteration, each
property was represented by a linear arrangement of blocks. Even from the first iteration, the
grid resolution reduction was obvious, while after the third iteration the resemblance to the
original data was minimum.

Variogram analysis turned out to be a flexible method to quantify and evaluate the spatial
correlation of a formation or more generally a 3D model. As a sequel to this study, kriging
could be implemented using the derived fit variogram models in order to reproduce the
3D reservoir model, followed by proper validation in order to evaluate the accuracy of the
applied kriging methods, as well as the uncertainty introduced by each intermediate step. An
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additional suggestion could be to use the upscaled models in flow simulations, in order to
compare the results between each different degree of upscaling. These results could be also
compared with the results of the 10th SPE Comparative Solution Project.
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Appendix A

Calculation Algorithms

The utilized algorithms for statistical analysis and construction of the different variograms,
as well as the algorithm for upscaling are presented in the following sections. All algorithms
were developed and run in Matlab environment.

Loading the Data

The datasets obtained from the 10th SPE Comparative Solution Project website (SPE, 2000)
contain porosity data in the form a 187000–by–6 array and permeability data in the form a
561000–by–6 array. The latter array contains the permeability datasets for all three directions,
thus they have to be split up first. The procedure required to load the data is the following:

1 load('spe_perm.dat'); %load permeability dataset

2 load('spe_phi.dat'); %load porosity dataset

3

4 %Separate the 3 datasets of permeability

5 permX=spe_perm(1:187000,:);

6 permY=spe_perm(187001:374000,:);

7 permZ=spe_perm(374001:end,:);

8

9 %Reshape to the model's dimensions(60x220x85) and flip the vertical

10 %direction so that Tarbert formation goes on top.

11 permX=reshape(permX',60,220,85); %Reshape to the model's dimensions

12 permX=flipdim(permX,3); %flip vertical direction

13 permY=reshape(permY',60,220,85);

14 permY=flipdim(permY,3);

15 permZ=reshape(permZ',60,220,85);

16 permZ=flipdim(permZ,3);



124 Calculation Algorithms

17 phi=reshape(spe_phi',60,220,85);

18 phi=flipdim(phi,3);

19

20 %Separate the Tarbert and Upper Ness formations in different datasets.

21 T_phi=phi(:,:,51:85);

22 T_permX=permX(:,:,51:85);

23 T_permY=permY(:,:,51:85);

24 T_permZ=permZ(:,:,51:85);

25 UN_phi=phi(:,:,1:50);

26 UN_permX=permX(:,:,1:50);

27 UN_permY=permY(:,:,1:50);

28 UN_permZ=permZ(:,:,1:50);

Visualisation & Statistical Analysis

The visualisation of the data is achieved using the program Slice–o–Matic (Ludlam, 2001).
Subsequently, in order to carry out the statistical analysis, the required moments were
calculated using the following commands:

1 a=load(T_phi); %load the studied dataset

2

3 %Visualisation of the data

4 sliceomatic(a) %for porosity

5 sliceomatic(log(a)) %for permeability

6

7 %Statistical Analysis

8 b=reshape(a,1,[]); %reshape to vector

9 log_val=log(b); %apply logarithm to permeability (for distribution fitting)

10 MIN=min(b)

11 MAX=max(b)

12 Mean=mean(b)

13 Median=median(b)

14 Mode=mode(b)

15 Variance=var(b)

16 Skew=skewness(b)

17 Kurt=kurtosis(b)

18 Size=size(b)

19 Num_elements=numel(b)

20 dfittool %launch Matlab's Distribution Fitting Tool

21 sliceomatic(a) %visualise porosity data

22 sliceomatic(log(a)) %visualise permeability data
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Directional Variogram

In order to derive and combine the numerous directional variograms into the so called
variogram cloud, as well as the mean variograms, the following code was used in combination
with the program Experimental (Semi-) Variogram (Schwanghart, 2008):

1 function [val,dist,num,meanval]=variogram_cloud(A,direction,m,c,r);

2 % This script will acquire (c*r) core samples on a set direction and

3 % create a variogram cloud.

4 %

5 %Define the initial prerequisites

6 % A: the dataset under study

7 % direction: 'X'(width) or 'Y'(length) or 'Z'(elevation)

8 % m: the maximum number of grid cells in the required direction

9 % c: number of vertical samples (columns)

10 % r: number of horizontal samples (rows)

11 %

12 x=(1:1:m)'; %Define the distance vector (variable x of variogram.m script)

13 % Obtain a core sample and reshape into column vector (variable

14 % y of variogram.m script). (i-1) & (j-1) change the

15 % matrix rows and columns.

16 for j=1:r

17 for i=1:c

18 if strcmp(direction,'Y')

19 y=reshape(A(3+round((size(A,1)-3)/c)*(i-1),:,3+...

20 round((size(A,3)-3)/r)*(j-1)),[],1);

21 elseif strcmp(direction,'X')

22 y=reshape(A(:,3+round((size(A,2)-3)/c)*(i-1),3+...

23 round((size(A,3)-3)/r)*(j-1)),[],1);

24 elseif strcmp(direction,'Z')

25 y=reshape(A(3+round((size(A,1)-3)/c)*(i-1),3+...

26 round((size(A,2)-3)/r)*(j-1),:),[],1);

27 end

28 variogram(x,y); %Experimental (Semi-) Variogram program

29 val(1:20,(j-1)*c+i)=ans.val; %Store the val-values

30 dist(1:20,(j-1)*c+i)=ans.distance; %Store the distance- values

31 end

32 end

33 %Replace all the Not-a-Numbers (NaN)

34 NaNs=find(isnan(val(:,1))); %Find and exclude NaNs from distance vector

35 for i=1:size(NaNs,1)

36 val(NaNs(i),:)=(val(NaNs(i)-1,:)+val(NaNs(i)+1,:))/2;



126 Calculation Algorithms

37 end

38 %Store the mean values

39 for i=1:size(dist,1);

40 meanval(i)=mean(val(i,:));

41 end

42 %Plot the Variogram Cloud

43 for i=1:100

44 plot(dist(:,i),val(:,i),'g')

45 hold on;

46 title('Normal Vertical Axis')

47 hold on;

48 plot(dist(:,1),meanval,'k','LineWidth',1.2) %Plot mean variogram

49 xlabel('h');

50 ylabel('\gamma (h)');

51 end

52 end

3D variogram

Although the 3D variogram was calculated by the program Experimental (Semi-) Variogram
(Schwanghart, 2008), data had to be prepared in order to meet the required input formulation
as such:

1 function [coord,values,corecrd,coreval]=td_variogram(A,elements,nc)

2 % Prepare the data for the 3D variogram

3 % A=the array under study

4 % elements='all' for all elements, 'cores' for a number of sample cores

5 % nc=number of cores

6 %

7 %Assign individual point coordinates to each line of the matrix (x y z)

8 coord=zeros(numel(A),3);

9 n=0;

10 for i=1:size(A,1);

11 for j=1:size(A,2);

12 for k=1:size(A,3);

13 n=n+1; %Go to the next line for each iteration

14 coord(n,:)=[i j k];

15 end

16 end

17 end

18 %Assign the corresponding attribute values to a column vector
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19 values=zeros(numel(A),1);

20 for i=1:numel(A)

21 values(i)=A(coord(i,1),coord(i,2),coord(i,3));

22 end

23 %Decide whether to use all the elements or only limited core samples

24 if strcmp(elements, 'cores')

25 a=size(coord,1)/size(A,3);

26 b=round(a/(nc+0.1*nc)); %Divide the matrix into groups of size(A,3).

27 %Add a 10% margin so the code will not crash.

28 corecrd=zeros(nc*size(A,3),3);

29 coreval=zeros(nc*size(A,3),1);

30 for i=1:nc

31 for j=1:size(A,3)

32 %Core coordinates

33 corecrd((i-1)*size(A,3)+j,:)=coord(b*size(A,3)*i+j,:);

34 end

35 end

36 for i=1:size(corecrd,1)

37 %Corresponding core values

38 coreval(i)=A(corecrd(i,1),corecrd(i,2),corecrd(i,3));

39 end

40 elseif strcmp(elements, 'all')

41 end

Variogram Fitting

The variogram fitting, following the 3D variogram construction, was executed using the
program Variogramfit (Schwanghart, 2009). The required nugget, sill, range and Coefficient
of Determination were obtained in the following manner:

1 %Only a specific subvolume of the formation property is used.

2 [coord, values]=td_variogram(T_phi(6:25,21:90,11:30),'all',100);

3

4 %Experimental (Semi-) Variogram program

5 variogram(coord,values,'plotit',false,'maxdist',28,'subsample',2000);

6 h=ans.distance; % store lag distances

7 gammaexp=ans.val; % store gamma values

8

9 %Store range(a), sill(c), nugget(n) and output structure

10 %array(S) resulting from the fitting.

11 [a c n S]=variogramfit(h,gammaexp,[],[],[],'solver','fminsearchbnd',...
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12 'nugget',0,'plotit',true,'model','blinear');

13 Rsq=S.Rs; %Coefficient of Determination - R^2

Upscaling

In order to implement the upscaling procedure described in Chapter 2, the following code
was used:

1 function [UP,lower_bound,upper_bound]=upscaling(UP,flow_dir,iterations)

2 % Simplified Renormalization (in 3D) according to Renard et al. (1997).

3 % A: the studied model (3D array)

4 % flow_dir (flow direction): 'X'-width, 'Y'-length, 'Z'-height,

5 % 'poro' for POROSITY(only arithmetic averages)

6 % iterations: number of iterations. Ultimately one single value is obtained,

7 % equal to the equivalent effective permeability.

8 % First average for X, then for Y, then for Z and iterate.

9 % IMPORTANT: Permeability data is used without logarithm.

10 %

11 %Define Wiener bounds (only for equivalent values)

12 lower_bound=harmmean(reshape(UP,[],1));

13 upper_bound=mean(reshape(UP,[],1));

14 % Comence upscaling

15 for n=1:iterations;

16 % average along X axis (width)

17 U1=zeros(ceil(size(UP,1)/2),size(UP,2)/2,size(UP,3)/2); %preallocate memory

18 for k=1:size(UP,3);

19 for j=1:size(UP,2);

20 for i=1:ceil(size(UP,1)/2);

21 if i==ceil(size(UP,1)/2); %i is the last one

22 if mod(size(UP,1),2)==1 %size is odd

23 U1(i,j,k)=UP(2*i-1,j,k);

24 else %size is even

25 if strcmp(flow_dir, 'X')

26 U1(i,j,k)=harmmean([UP(2*i-1,j,k) UP(2*i,j,k)]);

27 else

28 U1(i,j,k)=mean([UP(2*i-1,j,k) UP(2*i,j,k)]);

29 end

30 end

31 else %i is not the last one

32 if strcmp(flow_dir, 'X')

33 U1(i,j,k)=harmmean([UP(2*i-1,j,k) UP(2*i,j,k)]);
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34 else

35 U1(i,j,k)=mean([UP(2*i-1,j,k) UP(2*i,j,k)]);

36 end

37 end

38 end

39 end

40 end

41 % average along Y axis (length)

42 U2=zeros(size(UP,1)/2,ceil(size(UP,2)/2),size(UP,3)/2);

43 for k=1:size(UP,3);

44 for j=1:ceil(size(UP,2)/2);

45 for i=1:size(U1,1);

46 if j==ceil(size(UP,2)/2); %j is the last one

47 if mod(size(UP,2),2)==1 %size is odd

48 U2(i,j,k)=U1(i,2*j-1,k);

49 else %size is even

50 if strcmp(flow_dir, 'Y')

51 U2(i,j,k)=harmmean([U1(i,2*j-1,k) U1(i,2*j,k)]);

52 else

53 U2(i,j,k)=mean([U1(i,2*j-1,k) U1(i,2*j,k)]);

54 end

55 end

56 else %j is not the last one

57 if strcmp(flow_dir, 'Y')

58 U2(i,j,k)=harmmean([U1(i,2*j-1,k) U1(i,2*j,k)]);

59 else

60 U2(i,j,k)=mean([U1(i,2*j-1,k) U1(i,2*j,k)]);

61 end

62 end

63 end

64 end

65 end

66 % average along Z axis

67 U=zeros(size(UP,1)/2,size(UP,2)/2,ceil(size(UP,3)/2));

68 for k=1:ceil(size(UP,3)/2);

69 for j=1:size(U2,2);

70 for i=1:size(U2,1);

71 if k==ceil(size(UP,3)/2); %k is the last one

72 if mod(size(UP,3),2)==1 %size is odd

73 U(i,j,k)=U2(i,j,2*k-1);

74 else %size is even

75 if strcmp(flow_dir, 'Z')

76 U(i,j,k)=harmmean([U2(i,j,2*k-1) U2(i,j,2*k)]);

77 else
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78 U(i,j,k)=mean([U2(i,j,2*k-1) U2(i,j,2*k)]);

79 end

80 end

81 else %k is not the last one

82 U(i,j,k)=mean([U2(i,j,2*k-1) U2(i,j,2*k)]);

83 end

84 end

85 end

86 end

87 UP=U; %rename the array in order to rerun the iterations

88 end
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