

ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΟΡΥΚΤΩΝ ΠΟΡΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ ΚΡΗΤΗΣ

ΑΝΑΠΤΥΞΗ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΜΕΘΟΔΟΛΟΓΙΩΝ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΜΟΥ ΠΕΤΡΕΛΑΪΚΩΝ ΓΑΛΑΚΤΩΜΑΤΩΝ

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ:

ΠΑΣΑΔΑΚΗΣ ΝΙΚΟΛΑΟΣ (Επιβλέπων), Καθηγητής Π.Κ

Δρ. ΜΑΡΙΝΑΚΗΣ ΔΗΜΗΤΡΙΟΣ, Ε.ΔΙ.Π

Δρ. ΑΝΤΩΝΙΟΥ ΕΛΕΥΘΕΡΙΑ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΘΕΟΔΩΡΑ ΝΤΑΛΑΚΟΥ ΧΑΝΙΑ, ΦΕΒΡΟΥΑΡΙΟΣ 2017

ΕΥΧΑΡΙΣΤΙΕΣ

Επιβλέπων της παρούσας Διπλωματικής Εργασίας διετέλεσε ο Καθηγητής κ.Πασαδάκης Νικόλαος, τον οποίο ευχαριστώ θερμά για την στοχευμένη καθοδήγηση, τις συμβουλές και τις παρατηρήσεις του.

Νιώθω όμως την ανάγκη να ευχαριστήσω θερμά την κα.Χαμηλάκη Ελίνα, τον κ. Μαρινάκη Δημήτριο και την κα. Αντωνίου Ελευθερία για την καθοδήγηση τους κατά τις εργαστηριακές αναλύσεις που ήταν πάντα πρόθυμοι να με βοηθήσουν σε οποιοδήποτε πρόβλημα και αν αντιμετώπιζα.

Τέλος, την παρούσα διπλωματική την αφιερώνω στην οικογένεια μου και την ευχαριστώ για την κατανόηση και την ηθική στήριξη που μου προσέφερε καθ΄ όλη τη διάρκεια των σπουδών μου.

ΠΕΡΙΛΗΨΗ

Τα γαλακτώματα νερού σε πετρέλαιο σχηματίζονται σχεδόν σε όλες τις φάσεις της παραγωγής και επεξεργασίας πετρελαίου δημιουργώντας πολλά λειτουργικά προβλήματα ενώ η απομάκρυνση τους είναι εξαιρετικά δύσκολη. Επίσης, σχηματίζονται στις πετρελαιοκηλίδες όπου δυσκολεύουν την αντιμετώπιση τους. Για τους λόγους αυτούς η μελέτη των γαλακτωμάτων και των τρόπων αντιμετώπιση τους είναι σημαντική για τη βιομηχανία του πετρελαίου.

Στην παρούσα διπλωματική εργασία αναπτύχθηκαν εργαστηριακές μεθοδολογίες δημιουργίας γαλακτωμάτων νερού σε πετρέλαιο και μελετήθηκαν οι ιδιότητες τους (πυκνότητα, περιεκτικότητα σε νερό, ιξώδες, σταθερότητα). Ιδιαίτερα διερευνήθηκε η σχέση ανάμεσα στις ιδιότητες αυτές και στην δυνατότητα αποσταθεροποίησης των γαλακτωμάτων. Για τον προγραμματισμό των εργαστηριακής δοκιμών χρησιμοποιήθηκε η τεχνική του πειραματικού σχεδιασμού. Με βάση τα πειραματικά δεδομένα αναπτύχθηκαν ποσοτικές σχέσεις που περιγράφουν την αλληλεξάρτηση των ιδιοτήτων των γαλακτωμάτων και την σχέση τους με την σταθερότητα τους.

ΠΕΡΙΕΧΟΜΕΝΑ

E	ΥΧΑΡΙΣΤΙΕΣ	0		
П	ΕΡΙΛΗΨΗ	2		
П	EPIEXOMENA	3		
ΚΑΤΑΛΟΓΟΣ ΕΙΚΟΝΩΝ				
K	ΚΑΤΑΛΟΓΟΣ ΠΙΝΑΚΩΝ			
K	<ΑΤΑΛΟΓΟΣ ΣΧΗΜΑΤΩΝ			
ΕΙΣΑΓΩΓΗ				
K	ΕΦΑΛΑΙΟ 1: ΘΕΩΡΙΑ ΓΑΛΑΚΤΩΜΑΤΩΝ ΠΕΤΡΕΛΑΙΟΥ	10		
	1.1 ΤΙ ΕΙΝΑΙ ΤΑ ΓΑΛΑΚΤΩΜΑΤΑ ΚΑΙ ΠΩΣ ΣΧΗΜΑΤΙΖΟΝΤΑΙ	10		
	1.2 ΤΥΠΟΙ ΠΕΤΡΕΛΑΪΚΩΝ ΓΑΛΑΚΤΩΜΑΤΩΝ	10		
	1.3 ΚΑΤΗΓΟΡΙΕΣ ΓΑΛΑΚΤΩΜΑΤΩΝ	11		
	1.4 ΓΑΛΑΚΤΩΜΑΤΟΠΟΙΗΤΕΣ	12		
	1.4.1 ΕΠΙΦΑΝΕΙΟΔΡΑΣΤΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ	12		
	1.5 ΕΠΙΛΟΓΗ ΓΑΛΑΚΤΩΜΑΤΟΠΟΙΗΤΩΝ ΓΙΑ ΤΟ ΣΧΗΜΑΤΙΣΜΟ ΓΑΛΑΚΤΩΜΑΤΩΝ	13		
	1.6 ΠΑΡΑΓΟΝΤΕΣ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗ ΣΤΑΘΕΡΟΤΗΤΑ	14		
	1.6.1 ΒΑΡΥ ΠΕΤΡΕΛΑΙΟ	14		
	1.6.2 ΘΕΡΜΟΚΡΑΣΙΑ	14		
	1.6.3 ΜΕΓΕΘΟΣ ΣΤΑΓΟΝΙΔΙΟΥ	14		
	1.6.4 pH	15		
	1.7 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΚΑΙ ΦΥΣΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΓΑΛΑΚΤΩΜΑΤΩΝ	15		
	1.7.1. ΕΜΦΑΝΙΣΗ ΚΑΙ ΧΡΩΜΑ	16		
	1.8.2. ΙΞΩΔΕΣ	16		
	1.9. ΔΙΕΡΓΑΣΙΕΣ ΚΑΤΑ ΤΗΝ ΔΗΜΙΟΥΡΓΙΑ ΓΑΛΑΚΤΩΜΑΤΩΝ	. 16		
	1.9.1. ΚΡΟΚΙΔΩΣΗ	. 16		
	1.9.2. ΣΥΝΕΝΩΣΗ	. 17		
	1.9.3. ΑΝΤΙΣΤΡΟΦΗ ΦΑΣΗΣ	. 17		
	1.10 ΠΟΥ ΣΧΗΜΑΤΙΖΟΝΤΑΙ ΤΑ ΓΑΛΑΚΤΩΜΑΤΑ	. 17		
	1.10.1 ΓΑΛΑΚΤΩΜΑΤΑ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΠΑΡΑΓΩΓΗΣ ΠΕΤΡΕΛΑΙΟΥ	. 17		
	1.10.2 ΠΡΟΒΛΗΜΑΤΑ ΚΑΤΑ ΤΗΝ ΕΜΦΑΝΙΣΗ ΓΑΛΑΚΤΩΜΑΤΩΝ ΠΕΤΡΕΛΑΙΟΥ-			
	ΣΧΗΜΑΤΙΣΜΟΣ ΠΕΤΡΕΛΑΙΟΚΗΛΙΔΩΝ	18		
	1.11 Η ΣΥΜΠΕΡΙΦΟΡΑ ΤΟΥ ΠΕΤΡΕΛΑΙΟΥ ΣΤΟ ΘΑΛΑΣΣΙΟ ΠΕΡΙΒΑΛΛΟΝ	18		

1.12 ΜΕΘΟΔΟΙ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΤΩΝ ΓΑΛΑΚΤΩΜΑΤΩΝ	20		
1.14 ΒΙΒΛΙΟΓΡΑΦΙΚΗ ΕΠΙΣΚΟΠΙΣΗ ΜΕΘΟΔΟΛΟΓΙΩΝ ΔΗΜΙΟΥΡΓΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΓΑΛΑΚΤΩΜΑΤΩΝ	21		
1.14.1 ΠΡΩΤΗ ΜΕΘΟΔΟΣ	21		
1.14.2 ΔΕΥΤΕΡΗ ΜΕΘΟΔΟΣ	22		
1.14.3 ΤΡΙΤΗ ΜΕΘΟΔΟΣ	22		
1.14.4 ΤΕΤΑΡΤΗ ΜΕΘΟΔΟΣ	23		
1.14.5 ΠΕΜΠΤΗ ΜΕΘΟΔΟΣ	24		
ΚΕΦΑΛΑΙΟ 2: ΠΑΡΑΣΚΕΥΗ ΓΑΛΑΚΤΩΜΑΤΩΝ ΝΕΡΟΥ ΣΕ ΠΕΤΡΕΛΑΙΟ	26		
2.1 ΕΡΓΑΣΤΗΡΙΑΚΗ ΔΟΚΙΜΗ ΠΑΡΑΣΚΕΥΗΣ ΤΩΝ ΓΑΛΑΚΤΩΜΑΤΩΝ	26		
2.2 ΠΕΙΡΑΜΑΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ	27		
2.2.1 ΤΟ ΠΛΗΡΕΣ ΠΑΡΑΓΟΝΤΙΚΟ ΠΕΙΡΑΜΑ (Full Factorial Experimental Design)	28		
2.2.2 ΠΕΡΙΓΡΑΦΗ ΠΕΙΡΑΜΑΤΟΣ – ΠΡΟΕΤΟΙΜΑΣΙΑ ΔΕΙΓΜΑΤΩΝ	29		
ΚΕΦΑΛΑΙΟ 3: ΑΝΑΛΥΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΤΩΝ ΜΕΤΡΗΣΕΩΝ ΠΟΥ ΠΡΑΓΜΑΤΟΠΟΙΗΘΗΚΑΝ	31		
3.1 ΜΕΤΡΗΣΗ ΠΥΚΝΟΤΗΤΑΣ	31		
3.1.1 ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ	32		
3.2 ΠΡΟΤΥΠΗ ΜΕΘΟΔΟΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΝΕΡΟΥ ΣΕ ΠΕΤΡΕΛΑΙΟΕΙΔΗ ΜΕ ΑΠΟΣΤΑΞΗ ASTM D95-05	33		
3.2.1 ΣΥΝΟΨΗ ΜΕΘΟΔΟΥ	33		
3.2.2 ΔΕΙΓΜΑΤΟΛΗΨΙΑ	33		
3.2.3 ΣΗΜΑΣΙΑ ΚΑΙ ΧΡΗΣΗ	34		
3.3 ΜΕΤΡΗΣΗ ΙΞΩΔΟΥΣ	34		
3.3.1 ΟΡΓΑΝΑ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ:	36		
3.3.2 ΔΙΑΔΙΚΑΣΙΑ ΠΕΙΡΑΜΑΤΟΣ:	37		
3.4 ΦΑΣΜΑΤΟΣΚΟΠΙΑ ΥΠΕΡΥΘΡΟΥ	38		
3.4.1 ΕΙΣΑΓΩΓΗ	38		
3.4.2 ΓΕΝΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΥΠΕΡΥΘΡΗΣ ΦΑΣΜΑΤΟΣΚΟΠΙΑΣ	42		
3.4.3 ΑΡΧΕΣ ΛΕΙΤΟΥΡΓΙΑΣ ΦΑΣΜΑΤΟΣΚΟΠΙΑΣ FTIR	43		
3.4.4 ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ	44		
3.4.6 ΧΕΙΡΙΣΜΟΣ ΔΕΙΓΜΑΤΟΣ	45		
ΚΕΦΑΛΑΙΟ 4: ΠΑΡΟΥΣΙΑΣΗ-ΑΝΑΛΥΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ			
4.1 ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΩΝ ΚΥΡΙΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΕΓ ΤΗΣ ΑΠΟΚΡΙΣΗΣ	II 46		
4.2 ΥΠΟΛΟΓΙΣΜΟΣ ΕΠΙΔΡΑΣΗΣ ΠΑΡΑΓΟΝΤΩΝ ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΓΑΛΑΚΤΩΜΑΤΩΝ	47		

4.3. ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΥ ΑΠΟΤΕΛΕΣΜΑΤΟ ΠΑΡΑΓΟΝΤΩΝ ΧΡΟΝΟΣ, ΣΤΡΟΦΕΣ, ΑΛΑΤΟ	Σ ΤΩΝ ΑΛΛΗΛΕΠΙΔΡΑΣΕΩΝ ΤΩΝ ΤΗΤΑ51
4.4 ΠΑΡΟΥΣΙΑΣΗ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΤΩΝ ΦΑΣΜ	ΑΤΩΝ ΤΩΝ ΓΑΛΑΚΤΩΜΑΤΩΝ54
4.5 ΥΠΟΛΟΓΙΣΜΟΣ ΥΨΩΝ ΤΗΣ ΚΑΜΠΥΛΗΣ ΑΠΟΡΡ ΓΑΛΑΚΤΩΜΑΤΩΝ ΚΑΙ ΣΥΓΚΡΙΣΗ ΜΕ ΤΙΣ ΠΕΡΙΕΚΤΙΚΟ ΑΠΟΣΤΑΞΗΣ ASTM D95-05	ΟΦΗΣΗΣ ΝΕΡΟΥ ΤΩΝ ΦΑΣΜΑΤΩΝ ΤΩΝ ΟΤΗΤΕΣ ΝΕΡΟΥ ΜΕ ΤΗΝ ΜΕΘΟΔΟ ΤΗΣ
4.6 ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΔΙΑΓΡΑΜΜΑΤΩΝ ΤΩΝ ΙΞΩΔ	ΩΝ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΤΩΝ
ΓΑΛΑΚΤΩΜΑΤΩΝ	
ΚΕΦΑΛΑΙΟ 5	
5. ΣΥΜΕΡΑΣΜΑΤΑ	
Βιβλιογραφία/Αναφορές	
ΠΑΡΑΡΤΗΜΑ 1: ΣΥΓΚΕΝΤΡΩΤΙΚΑ ΟΙ ΤΙΜΕΣ ΤΟΥ ΧΡΟ ΑΛΑΤΟΤΗΤΑΣ ΚΑΘΩΣ ΚΑΙ ΤΩΝ ΠΥΚΝΟΤΗΤΩΝ ΚΑΙ Ι ΓΑΛΑΚΤΩΜΑΤΩΝ ΓΙΑ ΤΗΝ ΠΡΩΤΗ ΕΒΔΟΜΑΔΑ ΤΗΝ	ΟΝΟΥ ΑΝΑΔΕΥΣΗΣ, ΣΤΡΟΦΩΝ ΚΑΙ ΊΕΡΙΕΚΤΙΚΟΤΗΤΑΣ ΤΟΥ ΝΕΡΟΥ ΤΩΝ Ν ΔΕΥΤΕΡΗ ΚΑΙ ΤΗΝ ΤΡΙΤΗ75
ΠΑΡΑΡΤΗΜΑ 2: ΤΙΜΕΣ ΥΨΩΝ ΚΑΙ ΠΕΡΙΕΚΤΙΚΟΤΗΤΩ ΓΗΡΑΝΣΗΣ 0,7,14 ΚΑΙ 21 ΗΜΕΡΕΣ	ΩΝ ΤΩΝ ΓΑΛΑΚΤΩΜΑΤΩΝ ΓΙΑ ΧΡΟΝΟ
ΠΑΡΑΡΤΗΜΑ 3: ΤΙΜΕΣ ΤΩΝ ΙΞΩΔΩΝ ΤΩΝ ΓΑΛΑΚΤΩ	ΩΜΑΤΩΝ ΠΟΥ ΠΑΡΑΣΚΕΥΑΣΤΗΚΑΝ 79
ΠΑΡΑΡΤΗΜΑ 4: ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚ	ΩΝ ΦΑΣΜΑΤΩΝ ΤΩΝ ΔΕΙΓΜΑΤΩΝ 81
ΠΑΡΑΡΤΗΜΑ 5: ΠΑΡΟΥΣΙΑΣΗ ΠΙΝΑΚΩΝ ΚΑΙ ΔΙΑΓΡΑ	ΑΜΜΑΤΩΝ ΤΩΝ ΙΞΩΔΩΝ
КЕФАЛАЮ 5	Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης.
5. ΣΥΜΕΡΑΣΜΑΤΑ	Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης.
Βιβλιογραφία/Αναφορές	Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης.

ΚΑΤΑΛΟΓΟΣ ΕΙΚΟΝΩΝ

Εικόνα 1.1: Μικρογραφία ενός Γαλακτώματος νερού σε πετρέλαιο

Εικόνα 1.2: Μικρογραφία ενός Γαλακτώματος πετρελαίου σε νερό

Εικόνα 1.3: Μικρογραφία ενός σύνθετου Γαλακτώματος

Εικόνα 1.4: Διεπιφανειακή μεμβράνη που σχηματίζεται γύρω από τα σταγονίδια νερού

Εικόνα 1.11: Πετρελαιοκηλίδα κοντά στο Πας α Λουτρ της Λουιζιάνας, ατύχημα Deepwater Horizon. (Εικόνα που δείχνει σκούρο καφέ γαλάκτωμα)

Εικόνα 3.1: Ανάμιξη δειγμάτων με περιστροφικό αναμίκτη

Εικόνα 3.2: Τα δείγματα μετά την ανάμιξη

Εικόνα 3.3: Τοποθέτηση των δειγμάτων στους ογκομετρικούς κυλίνδρους

Εικόνα 3.4: Παραγοντικός σχεδιασμός για ένα σύστημα τριών παραγόντων X1, X2 και X3

Εικόνα 4.1: Πυκνόμετρο DMA 38

Εικόνα 4.2: Διαδικασία πρότυπης μεθόδου προσδιορισμού νερού σε πετρελοειδή με απόσταξη ASTM D95-05

Εικόνα 4.3: Όργανα Μέτρησης Ιξώδους

Εικόνα 4.4: Βασικοί τύποι δονήσεων τάσης και κάμψης των μοριακών δομών στην IR φασματοσκοπία

Εικόνα 4.5: Κελί εισαγωγής δείγματος

Εικόνα 5.1: Βρόγχος υστέρησης

Εικόνα 5.2: Ιξωδοελαστικό ρευστό

ΚΑΤΑΛΟΓΟΣ ΠΙΝΑΚΩΝ

Πίνακας 4.2.1: Τιμές των παραγόντων χρόνος, στροφές, αλατότητα και των ιδιοτήτων πυκνότητα και περιεκτικότητα νερού για χρόνο γήρανσης των γαλακτωμάτων=0 ημέρες

Πίνακας 4.2.2: Η επίδραση του χρόνο, των στροφών και της αλατότητας στην πυκνότητα στην πυκνότητα

Πίνακας 4.2.3: Η επίδραση του χρόνου, των στροφών και της αλατότητας στην περιεκτικότητα νερού με απόσταξη ASTM (για την πρώτη ημέρα)

Πίνακας 4.2.4: Συνοπτικά η επίδραση των τριών παραγόντων επί της πυκνότητας και της περιεκτικότητας του νερού

Πίνακας 4.3.1: Συνοπτικά τα μέσα αποτελέσματα χρόνου-αλατότητας

Πίνακας 4.3.2: Συνοπτικά τα μέσα αποτελέσματα χρόνου-στροφών

ΚΑΤΑΛΟΓΟΣ ΣΧΗΜΑΤΩΝ

Σχήμα 4.2.1: Η επίδραση του χρόνου, των στροφών και της αλατότητας στην πυκνότητα

Σχήμα 4.2.2: Η επίδραση του χρόνου, των στροφών και της αλατότητας στην περιεκτικότητα του νερού

Σχήμα 4.3.1: Διάγραμμα μέσου αποτελέσματος χρόνου-αλατότητας Σχήμα 4.3.1: Διάγραμμα μέσου αποτελέσματος χρόνου-στροφών Σχήμα 4.4.1: Καμπύλες απορρόφησης νερού για το γαλάκτωμα 3000-2-0 Σχήμα 4.4.2: Καμπύλες απορρόφησης νερού για το γαλάκτωμα 3000-10-0 Σχήμα 4.4.3: Καμπύλες απορρόφησης νερού για το γαλάκτωμα 5000-2-0 Σχήμα 4.4.4: Καμπύλες απορρόφησης νερού για το γαλάκτωμα 5000-10-0 Σχήμα 4.4.5: Καμπύλες απορρόφησης νερού για το γαλάκτωμα 5000-2-33 Σχήμα 4.4.6: Καμπύλες απορρόφησης νερού για το γαλάκτωμα 3000-10-33 Σχήμα 4.4.7: Καμπύλες απορρόφησης νερού για το γαλάκτωμα 5000-2-33 Σχήμα 4.4.8: Καμπύλες απορρόφησης νερού για το γαλάκτωμα 5000-10-33 Σχήμα 4.4.9: Καμπύλες απορρόφησης νερού για το γαλάκτωμα 4000-6-16-κ1 Σχήμα 4.4.10: Καμπύλες απορρόφησης νερού για το γαλάκτωμα 4000-6-16-κ2 Σχήμα 4.4.11: Καμπύλες απορρόφησης νερού για το γαλάκτωμα 4000-6-16-κ3 Σχήμα 4.5.1: Διάγραμμα ύψους κορυφών φασμάτων-περιεκτικότητας νερού Σχήμα 4.5.2: Διάγραμμα ύψους κορυφών φασμάτων-περιεκτικότητας νερού Σχήμα 4.5.3: Διάγραμμα ύψους κορυφών φασμάτων-περιεκτικότητας νερού Σχήμα 4.5.4: Διάγραμμα ύψους κορυφών φασμάτων-περιεκτικότητας νερού Σχήμα 4.6.1: Διάγραμμα ταχύτητας στροφών-ιξώδους Σχήμα 4.6.2: Διάγραμμα ταχύτητας στροφών-ιξώδους Σχήμα 4.6.3: Διάγραμμα ταχύτητας στροφών-ιξώδους Σχήμα 4.6.4: Διάγραμμα ταχύτητας στροφών-ιξώδους

8

Σχήμα 4.6.5: Διάγραμμα ταχύτητας στροφών-ιξώδους

Σχήμα 4.6.6: Διάγραμμα ταχύτητας στροφών-ιξώδους

ΕΙΣΑΓΩΓΗ

Τα γαλακτώματα νερού σε πετρέλαιο σχηματίζονται σχεδόν σε όλες τις φάσεις της παραγωγής και επεξεργασίας πετρελαίου και είναι αρκετά δύσκολο να απομακρυνθούν. Επίσης, σχηματίζονται στις πετρελαιοκηλίδες και περιπλέκουν την απομάκρυνσή τους, γι' αυτό το λόγο τα γαλακτώματα θα πρέπει να αποσταθεροποιούνται για την ευκολότερη αντιμετώπισή τους.

Η ανάπτυξη εργαστηριακών μεθοδολογιών δημιουργίας γαλακτωμάτων νερού σε πετρέλαιο, έγινε με σκοπό να μελετηθούν και να χαρακτηριστούν οι ιδιότητές και κατά συνέπεια η συμπεριφορά των γαλακτωμάτων αυτών, ώστε να γίνουν κατανοητές οι συνθήκες με τις οποίες αποσταθεροποιούνται.

ΚΕΦΑΛΑΙΟ 1: ΘΕΩΡΙΑ ΓΑΛΑΚΤΩΜΑΤΩΝ ΠΕΤΡΕΛΑΙΟΥ

1.1 ΤΙ ΕΙΝΑΙ ΤΑ ΓΑΛΑΚΤΩΜΑΤΑ ΚΑΙ ΠΩΣ ΣΧΗΜΑΤΙΖΟΝΤΑΙ

Τα γαλακτώματα είναι μια κατηγορία διεσπαρμένων συστημάτων που αποτελούνται απο δύο μη αναμείξιμα υγρά. Τα σταγονίδιά τους, η διεσπαρμένη φάση, διασπείρονται σε ένα υγρό μέσο, τη συνεχή φάση. Τα γαλακτώματα διαμορφώνονται από τα συστατικά τους υλικά είτε χωρίς παρέμβαση είτε, πιο συχνά, με μηχανικά μέσα όπως η ανάδευση, αρκεί τα αναμείξιμα υλικά να μην έχουν καμία ή ελάχιστη αμοιβαία διαλυτότητα. Τα γαλακτώματα σταθεροποιούνται με προσθήκη γαλακτωματοποιητικών παραγόντων που σχηματίζουν ταινίες στην επιφάνεια των σταγονιδίων και προσδίδουν σε αυτά μια μηχανική σταθερότητα. Σε γενικές γραμμές όσο εντονότερη είναι η ανάμειξη, τόσο μικρότερα σταγονίδια διεσπαρμένης φάσης διασκορπίζονται στη συνεχή φάση. Τα γαλακτώματα με τον τρόπο αυτό σχηματίζουν μια άκαμπτη διεπιφανειακή μεμβράνη εγκλεισμού των σταγονιδίων.

1.2 ΤΥΠΟΙ ΠΕΤΡΕΛΑΪΚΩΝ ΓΑΛΑΚΤΩΜΑΤΩΝ

Απαντώνται σε 3 τύπους γαλακτωμάτων :

- Γαλακτώματα πετρελαίου σε νερό (O/W)
- Γαλακτώματα νερού σε πετρέλαιο (W/O)
- Πολλαπλά ή σύνθετα γαλακτώματα

Τα γαλακτώματα πετρελαίου σε νερό αποτελούνται από σταγονίδια πετρελαίου σε μια συνεχή υδατική φάση, ενώ τα γαλακτώματα νερού σε πετρέλαιο αποτελούνται από σταγονίδια νερού σε μια συνεχή πετρελαϊκή φάση. Αυτοί οι δύο τύποι γαλακτωμάτων απαντώνται πιο συχνά. Τα γαλακτώματα πετρελαίου σε νερό μερικές φορές αναφέρονται ως ΄΄ αντίστροφα΄΄ γαλακτώματα. Τέλος, τα πολλαπλά γαλακτώματα είναι πιο σύνθετα και αποτελούνται από μικροσκοπικά σταγονίδια αιωρούμενα σε μεγαλύτερα σταγονίδια, τα οποία αιωρούνται σε μια συνεχή φάση [1].

Εικόνα 1.1: Μικρογραφία ενός γαλακτώματος νερού σε πετρέλαιο

Εικόνα 1.2: Μικρογραφία ενός γαλακτώματος πετρελαίου σε νερό

Εικόνα 1.3: Μικρογραφία ενός σύνθετου γαλακτώματος

1.3 ΚΑΤΗΓΟΡΙΕΣ ΓΑΛΑΚΤΩΜΑΤΩΝ

Τα γαλακτώματα με βάση τη σταθερότητά τους μπορούν να ομαδοποιηθούν σε 3 κατηγορίες:

- Τα σταθερά γαλακτώματα
- Τα ασταθή γαλακτώματα
- Τα μεσο-σταθερά γαλακτώματα

Ένα σταθερό γαλάκτωμα νερού σε πετρέλαιο παραμένει όπως έχει για τουλάχιστον 30 ημέρες και περιέχει συνήθως 80 wt.% νερό. Το ιξώδες ενός σταθερού γαλακτώματος είναι μεγαλύτερο από εκείνο του αρχικού πετρελαίου. Ένα ασταθές γαλάκτωμα δεν περιέχει πάνω από 10 wt.% νερό, ενώ το ιξώδες του είναι συνήθως μικρότερο από αυτό του αρχικού. Ένα μεσο-σταθερό γαλάκτωμα έχει ιδιότητες μεταξύ ασταθών και σταθερών γαλακτωμάτων και συνήθως περιέχει 60 wt.% νερό. Το συγκεκριμένο γαλάκτωμα μπορεί να "σπάσει", να διαχωρίσει δηλαδή τις φάσεις νερού-πετρελαίου, μέσα σε διάστημα 7 ημερών, χάνοντας το περισσότερο μέρος του νερού. Ένα μεσο-σταθερό γαλάκτωμα έχει συνήθως ιξώδες όχι πολύ μεγαλύτερο από εκείνο του αρχικού πετρελαίου [2].

1.4 ΓΑΛΑΚΤΩΜΑΤΟΠΟΙΗΤΕΣ

Τα παραγόμενα γαλακτώματα περιέχουν πετρέλαιο, νερό και έναν παράγοντα γαλακτωματοποίησης. Οι γαλακτωματοποιητές σταθεροποιούν τα γαλακτώματα και περιλαμβάνουν επιφανειοδραστικούς παράγοντες και λεπτοδιαμερισμένα στερεά. Για να αναμειχθούν λοιπόν δύο μη αναμείξιμα υγρά χρειάζεται και το τρίτο αυτό συστατικό, ο γαλακτωματοποιητής. Η παρουσία γαλακτωματοποιητή, ο οποίος εμποδίζει τη συνένωση των σωματιδίων, καθορίζει σε μεγάλο βαθμό το είδος και τη σταθερότητα του γαλακτώματος.

1.4.1 ΕΠΙΦΑΝΕΙΟΔΡΑΣΤΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ

Επιφανειακοί ενεργοί παράγοντες (τασιενεργά) είναι ενώσεις εν μέρει διαλυτές στο νερό και στο πετρέλαιο. Έχουν ένα υδρόφοβο τμήμα που προσελκύεται από τη φάση του πετρελαίου και ένα υδρόφιλο τμήμα που προσελκύεται από το νερό. Λόγω αυτής της μοριακής τους δομής, τα τασιενεργά τείνουν να συγκεντρώνονται στη διαχωριστική επιφάνεια πετρελαίου/νερού, όπου δημιουργούν διεπιφάνειες. Αυτό οδηγεί γενικά στη μείωση της διεπιφανειακής τάσης (Interfacial Tension) και προωθεί τη διασπορά και γαλακτωματοποίση των σταγονιδίων. Φυσικώς ενυπάρχοντες γαλακτωματοποιητές, στο αργό πετρέλαιο είναι τα:

- Ασφαλτένια και Ρητίνες
- Οργανικά Οξέα
- Βάσεις

Μιά σύγκριση των ιδιοτήτων του αρχικού πετρελαίου πριν την ανάμειξη με το νερό δείχνει ότι οι πιο σημαντικοί παράγοντες για την πρόσληψη νερού και το σχηματισμό γαλακτώματος είναι το ποσοστό των ασφαλτενίων και των ρητινών.

Τα γαλακτώματα σταθεροποιούνται από το σχηματισμό στρωμάτων ασφαλτενίων γύρω από τα σταγονίδια νερού. Οι ρητίνες δεν σχηματίζουν σταθερά γαλακτώματα, όμως μπορούν να βοηθήσουν στη σταθεροποίηση γαλακτωμάτων ασφαλτενίου, δρώντας ως διαλύτες ασφαλτενίων και παρέχοντας προσωρινή σταθερότητα κατά τη διάρκεια της αργής μετανάστευσης ασφαλτενίων. Σημαντικός παράγοντας λοιπόν στο σχηματισμό γαλακτώματος είναι η κατάσταση διαλυτότητας των ασφαλτενίων [1].

Εικόνα 1.4: Διεπιφανειακή μεμβράνη που σχηματίζεται γύρω από τα σταγονίδια νερού [3].

1.5 ΕΠΙΛΟΓΗ ΓΑΛΑΚΤΩΜΑΤΟΠΟΙΗΤΩΝ ΓΙΑ ΤΟ ΣΧΗΜΑΤΙΣΜΟ ΓΑΛΑΚΤΩΜΑΤΩΝ

Η επιλογή του γαλακτωματοποιητή είναι σημαντική για το σχηματισμό του γαλακτώματος και μακροπρόθεσμα για τη σταθερότητά του. Τα γαλακτώματα μπορούν να ταξινομηθούν ανάλογα με τη φύση του γαλακτωματοποιητή ή τη δομή του συστήματος.

Οι πιο αποτελεσματικοί γαλακτωματοποιητές είναι τα μη ιοντικά επιφανειοδραστικά που μπορούν να χρησιμοποιηθούν για τη δημιουργία των γαλακτωμάτων πετρελαίου σε νερό (O/W) και των γαλακτωμάτων νερού σε πετρέλαιο (W/O). Επιπλέον μπορούν να σταθεροποιήσουν το γαλάκτωμα ενάντια στην κροκύδωση και τη συσσωμάτωση.

Ιονικά επιφανειοδραστικά όπως το δωδεκυλοθειϊκό νάτριο (SDS) μπορούν επίσης να χρησιμοποιηθούν ως γαλακτωματοποιητές (για O/W γαλακτώματα). Μη ιοντικά πολυμερή, τα οποία μερικές φορές αναφέρονται ως πολυμερικές επιφανειοδραστικές ουσίες (π.χ Plyronics), είναι επίσης πιο αποτελεσματικές στη σταθεροποίηση του γαλακτώματος, όμως μπορεί να υπάρξει δυσκολία στην παραγωγή μικρών σταγονιδίων, εκτός εάν εφαρμοστεί υψηλή ενέργεια.

Επιπρόσθετα, πολυηλεκτρολύτες μπορούν να εφαρμοστούν ως γαλακτωματοποιητές. Μίγματα πολυμερών και επιφανειοδραστικών είναι ιδανικά για την επίτευξη γαλακτωματοποίησης και σταθεροποίησης του γαλακτώματος.

Επίσης υγρές κρυσταλλικές φάσεις που μπορούν να παραχθούν με τη χρήση επιφανειοδραστικων μιγμάτων είναι πολύ αποτελεσματικές.

Τέλος, μπορούν να χρησιμοποιηθούν τα στερεά σωματίδια που μπορεί να συσσωρευτούν στη διεπιφάνεια Ο/W. Αυτά αναφέρονται ως γαλακτώματα Pickering, οπότε τα σωματίδια καθίστανται μερικώς διαβρεχόμενα από την πετρελαϊκή και απο την υδατική φάση.

Άλλες επιφανειοδραστικές ουσίες είναι από χημικές ουσίες μέσα στο σχηματισμό ή στο φρέαρ της γεώτρησης πετρελαίου όπως για παράδειγμα:

- Υγρά Γεώτρησης
- Χημικά Διέγερσης
- Αντιδιαβρωτικά
- Παράγοντες ελέγχου ασφαλτενίων και
- Λεπτοδιαμερισμένα στερεά

1.6 ΠΑΡΑΓΟΝΤΕΣ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗ ΣΤΑΘΕΡΟΤΗΤΑ

Η μέτρηση της σταθερότητας του γαλακτώματος, δηλαδή το πόσο εύκολα μπορεί να "σπάσει" ένα γαλάκτωμα, είναι μία από τις πιο σημαντικές δοκιμές που μπορούν να γίνουν σε ένα γαλάκτωμα, γιατί καθορίζει την ευκολία διαχωρισμού. Οι παράγοντες που επηρεάζουν τη σταθερότητα είναι η φύση του πετρελαίου, η θερμοκρασία, το μέγεθος των σταγονιδίων, το pH και η περιεκτικότητα σε άλατα.

1.6.1 ΒΑΡΥ ΠΕΤΡΕΛΑΙΟ

Οι φυσικοί γαλακτωματοποιητές στο αργό πετρέλαιο περιέχονται στο βαρύ κλάσμα. Επειδή υπάρχουν διαφορετικοί τύποι αργού πετρελαίου και επειδή αυτοί έχουν διαφορετικές ποσότητες βαρέων συστατικών, οι τάσεις γαλακτωματοποίησης ποικίλουν ευρέως. Πετρέλαια με μικρή ποσότητα γαλακτωματοποιητή σχηματίζουν λιγότερο σταθερά γαλακτώματα, τα οποία διαχωρίζονται σχετικά εύκολα. Άλλα πετρέλαια που περιέχουν σωστό τύπο και ποσότητα γαλακτωματοποιητή, οδηγούν στο σχηματισμό πολύ σταθερών ή αλλιώς ΄΄ σφιχτών΄΄ γαλακτωμάτων [1].

1.6.2 ΘΕΡΜΟΚΡΑΣΙΑ

Η θερμοκρασία μπορεί να επηρεάσει σημαντικά τη σταθερότητα του γαλακτώματος. Αυτή επηρεάζει τις φυσικές ιδιότητες του πετρελαίου, του νερού και της διεπιφανειακής μεμβράνης. Αυτά, με τη σειρά τους επηρεάζουν τη σταθερότητα του γαλακτώματος. Ίσως το πιο σημαντικό αποτέλεσμα της θερμοκρασίας είναι η αλλαγή του ιξώδους των γαλακτωμάτων, το οποίο μειώνεται με την αύξηση της θερμοκρασίας [3].

1.6.3 ΜΕΓΕΘΟΣ ΣΤΑΓΟΝΙΔΙΟΥ

Τα σταγονίδια ενός γαλακτώματος γενικά έχουν διαμέτρο που υπερβαίνει το 0,1 μm αλλά μπορεί να είναι και μεγαλύτερο από 100 μm. Γενικά, τα γαλακτώματα έχουν μια ευρεία κατανομή μεγέθους σταγονιδίων, παρά ένα προκαθορισμένο

μέγεθος. Η κατανομή μεγέθους των σταγονιδίων σε ένα γαλάκτωμα προσδιορίζει, σε κάποιο βαθμό, τη σταθερότητα του γαλακτώματος. Ως γενικός κανόνας, όσο μικρότερο είναι το μέσο μέγεθος των διεσπαρμένων σταγονιδίων, τόσο πιο '΄σφιχτό΄΄ ή σταθερό είναι το γαλάκτωμα και ως εκ τούτου, τόσο περισσότερος χρόνος απαιτείται για να διαχωριστεί.

Η κατανομή μεγέθους σταγονιδίων των γαλακτωμάτων μπορεί να καθοριστεί με τη μέθοδο της Μικροσκοπίας και Ανάλυσης Εικόνας. Η μικροφωτογραφία του γαλακτώματος μπορεί να ψηφιοποιηθεί και ο αριθμός του διαφορετικού μεγέθους σωματιδίων να μετρηθεί με λογισμικό ανάλυσης εικόνας [4].

1.6.4 pH

Το pH της φάσης του νερού έχει μια ισχυρή επίδραση στην σταθερότητα του γαλακτώματος. Το άκαμπτο φιλμ των γαλακτωμάτων νερού σε πετρέλαιο και των γαλακτωμάτων πετρελαίου νε νερό περιέχει οργανικά οξέα και βάσεις, ασφαλτένια και στερεά. Η προσθήκη ανόργανων οξέων και βάσεων επηρεάζει έντονα τον ιονισμό της μεμβράνης και αλλάζει ριζικά τις φυσικές ιδιότητες της. Το pH του νερού επηρεάζει την ακαμψία των διεπιφανειακών μεμβρανών. Τέλος, το pH επηρεάζει τον τύπο του γαλακτώματος που σχηματίζεται, δηλαδή χαμηλό pH (όξινο) παράγει γενικά W/O γαλακτώματα, ενώ υψηλό pH (βασικό) παράγει O/W γαλακτώματα [3].

1.7 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΚΑΙ ΦΥΣΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΓΑΛΑΚΤΩΜΑΤΩΝ

Τα χαρακτηριστικά των γαλακτωμάτων αλλάζουν συνεχώς με το χρόνο, κατά συνέπεια μεγαλύτερης ΄΄ηλικίας΄΄ γαλακτώματα παρουσιάζουν πολύ διαφορετικά χαρακτηριστικά από τα πιο φρέσκα γαλακτώματα. Τα χαρακτηριστικά του γαλακτώματος αλλάζουν επίσης όταν το υγρό υποβάλλεται σε αλλαγές της θερμοκρασίας, της πίεσης και του βαθμού ανάδευσης.

Σε ένα γαλάκτωμα, είτε το μέγεθος της σταγόνας θα πρέπει να είναι αρκετά μικρό, ώστε οι δυνάμεις των θερμικών συγκρούσεων των μορίων της συνεχούς φάσης να παράγουν κίνηση που αποτρέπει την καθίζηση, είτε τα χαρακτηριστικά της επιφάνειας των διεπιφανειών να είναι απαλλαγμένα από επιφανειοδραστικές ουσίες, αιωρούμενα σωματίδια ή κάποιο άλλο ημιδιαλυτό υλικό.

Τα γαλακτώματα του πετρελαίου χαρακτηρίζονται από διάφορες ιδιότητες όπως:

- Εμφάνιση και χρώμα
- Μέγεθος σταγονιδίου
- Ιξώδες

1.7.1. ΕΜΦΑΝΙΣΗ ΚΑΙ ΧΡΩΜΑ

Το χρώμα και η εμφάνιση είναι ένας τρόπος για να χαρακτηριστεί ένα γαλάκτωμα. Ο χαρακτηρισμός γίνεται εύκολα, αν το γαλάκτωμα μεταφερθεί σε ένα κυλινδρικό σωλήνα φυγοκέντρησης από γυαλί. Το χρώμα του γαλακτώματος μπορεί να ποικίλει ευρέως ανάλογα με την περιεκτικότητα του πετρελαίου σε νερό και των χαρακτηριστικών του πετρελαίου και του νερού. Τα συνήθη χρώματα των γαλακτωμάτων είναι σκούρο κοκκινωπό καφέ, γκρι ή σκούρο καφέ. Ωστόσο, οποιοδήποτε χρώμα μπορεί να εμφανιστεί, ανάλογα με τον τύπο του πετρελαίου σε μια συγκεκριμένη εγκατάσταση. Η φωτεινότητα των γαλακτωμάτων μερικές φορές μπορεί να το χαρακτηρίσει δηλαδή, ένα γαλάκτωμα φαίνεται γενικά θολό και αδιαφανές λόγω της σκέδασης του φωτός στη διαχωριστική επιφάνεια πετρελαίου/νερού. Όταν ένα γαλάκτωμα έχει σταγονίδια με μικρή διάμετρο (μεγάλο εμβαδόν επιφάνειας), έχει ανοιχτό χρώμα ενώ, όταν έχει σταγονίδια μεγάλης διαμέτρου (μικρό συνολικό εμβαδόν διεπιφάνειας), φαίνεται γενικά σκούρο και λιγότερο φωτεινό. Η κατανόηση των χαρακτηριστικών ενός γαλακτώματος με οπτική παρατήρηση είναι μια τέχνη που βασίζεται στην εμπειρία [4].

1.8.2. IEQ $\Delta E\Sigma$

Το ιξώδες των γαλακτωμάτων μπορεί να είναι μεγαλύτερο από το ιξώδες του πετρελαίου και του νερού, διότι τα γαλακτώματα παρουσιάζουν μη Νευτώνεια συμπεριφορά. Ένα ρευστό παρουσιάζει μη νευτώνεια συμπεριφορά όταν το ιξώδες του είναι συνάρτηση του ρυθμού διάτμησης. Τα γαλακτώματα κοιτασμάτων πετρελαίου συμπεριφέρονται ως ψευδοπλαστικά ή θιξοτροπικά υγρά (δηλαδή, καθώς ο ρυθμός διάτμησης αυξάνεται, το ιξώδες μειώνεται). Τα γαλακτώματα μπορούν να παρουσιάσουν Νευτώνεια συμπεριφορά όταν έχουν περιεκτικότητα νερού μέχρι 40 wt.%.

Η θερμοκρασία επίσης μπορεί να έχει σημαντική επίδραση στο ιξώδες του γαλακτώματος, το οποίο μειώνεται με την αύξηση της θερμοκρασίας και εξαρτάται από διάφορους παράγοντες, όπως: το ιξώδες πετρελαίου και νερού, το κλάσμα του όγκου του νερού που διασκορπίζεται, η κατανομή μεγέθους σταγονιδίων, η θερμοκρασία, ο ρυθμός διάτμησης και η ποσότητα των στερεών που υπάρχουν [4].

1.9. ΔΙΕΡΓΑΣΙΕΣ ΚΑΤΑ ΤΗΝ ΔΗΜΙΟΥΡΓΙΑ ΓΑΛΑΚΤΩΜΑΤΩΝ

1.9.1. ΚΡΟΚΙΔΩΣΗ

Η κροκίδωση αναφέρεται στη συνάθροιση των σταγονιδίων (χωρίς να υπάρχει καμία αλλαγή στο πρωταρχικό μέγεθος τους) σε μεγαλύτερες μονάδες. Είναι αποτέλεσμα των δυνάμεων Van der Waals και εμφανίζεται όταν δεν υπάρχει επαρκής άπωση για να κρατήσει τα σταγονίδια εκτός, όταν οι δυνάμεις Van der

Waals είναι μικρές. Μπορεί να είναι ''ισχυρή'' ή ''αδύναμη'' ανάλογα με το μέγεθος των δυνάμεων Van der Waals.

1.9.2. ΣΥΝΕΝΩΣΗ

Η συνένωση αναφέρεται στη διαδικασία της αραίωσης και διάσπασης του υγρού φιλμ ή μεμβράνης μεταξύ των σταγονιδίων, με αποτέλεσμα τη σύντηξη δύο ή περισσότερων σταγονιδίων σε μεγαλύτερα. Η οριακή περίπτωση για συνένωση, είναι ο πλήρης διαχωρισμός του γαλακτώματος σε 2 ξεχωριστές υγρές φάσεις. Η κινητήρια δύναμη για τη συνένωση είναι η αύξηση της επιφάνειας του φιλμ, που έχει ως αποτέλεσμα τη στενή προσέγγιση των σταγονιδίων, με την οποία οι δυνάμεις Van der Waals είναι ισχυρές και εμποδίζουν το διαχωρισμό τους.

1.9.3. ΑΝΤΙΣΤΡΟΦΗ ΦΑΣΗΣ

Ως αντιστροφή φάσης αναφέρεται η διασικασία κατά την οποία θα υπάρξει μια ανταλλαγή μεταξύ της διεσπαρμένης φάσης και του μέσου. Για παράδειγμα, ένα γαλάκτωμα νερού σε περέλαιο, με το χρόνο ή την αλλαγή των συνθηκών αναστρέφεται σε γαλάκτωμα πετρελαίου σε νερό [5].

1.10 ΠΟΥ ΣΧΗΜΑΤΙΖΟΝΤΑΙ ΤΑ ΓΑΛΑΚΤΩΜΑΤΑ

1.10.1 ΓΑΛΑΚΤΩΜΑΤΑ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΠΑΡΑΓΩΓΗΣ ΠΕΤΡΕΛΑΙΟΥ

Τα γαλακτώματα σχηματίζονται, σχεδόν σε όλες τις φάσεις της παραγωγής και επεξεργασίας πετρελαίου, μέσα στους ταμιευτήρες, στις γεωτρήσεις και στις κεφαλές των γεωτρήσεων, στις εγκαταστάσεις επεξεργασίας και στις μονάδες διαχωρισμού φυσικού αερίου-πετρελαίου, κατά τη μεταφορά μέσω αγωγών, στην αποθήκευση του αργού πετρελαίου και στην επεξεργασία του πετρελαίου.

Ωστόσο, το νερό δημιουργεί πολλά προβλήματα και συνήθως αυξάνει το κόστος παραγωγής ανά μονάδα πετρελαίου. Το παραγόμενο νερό θα πρέπει να:

- Διαχωρίστεί από το πετρέλαιο
- Απορρίφθεί κατάλληλα

Τα παραπάνω βήματα αυξάνουν το κόστος παραγωγής. Επιπλέον, το αργό πετρέλαιο πρέπει να πληρεί ορισμένες προδιαγραφές (μεταφοράς, αποθήκευσης) συμπεριλαμβανομένου του ποσοστού στο νερό, το οποίο σημαίνει ότι το παραγόμενο νερό πρέπει να διαχωρίζεται από το αργό πετρέλαιο για την κάλυψη των προδιαγραφών αυτών. Το παραγόμενο νερό μπορεί να παραχθεί ως απλό νερό ή μπορεί να παραχθεί με τη μορφή ενός γαλακτώματος. Ένα γαλάκτωμα κοιτασμάτων πετρελαίου αποτελεί μια διασπορά των σταγονιδίων του νερού στο πετρέλαιο. Τα γαλακτώματα μπορεί να είναι δύσκολο να απομακρυνθούν και μπορούν να προκαλέσουν διάφορα λειτουργικά προβλήματα στις εγκαταστάσεις, όπως τη δημιουργία υψηλών πιέσεων κατά την παραγωγή. Το πρόβλημα συνήθως επιδεινώνεται κατά τη διάρκεια του χειμώνα, λόγω των χαμηλών θερμοκρασιών που επικρατούν στην επιφάνεια.

Το αργό πετρέλαιο ποικίλει στην τάση γαλακτωματοποίησης. Κάποιες μορφές πολύ σταθερών γαλακτωμάτων είναι δύσκολο να διαχωριστούν, άλλες δεν γαλακτωματοποιούνται ή διαχωρίζονται γρήγορα. Σε ένα μη επεξεργασμένο γαλάκτωμα, η διαφορά πυκνότητας μεταξύ του πετρελαίου και του νερού θα προκαλέσει το διαχωρισμό μιας ορισμένης ποσότητας νερού από το πετρέλαιο. Ωστόσο, αν χρησιμοποιηθεί κάποια μέθοδος διαχωρισμού, ένα μικρό ποσοστό του νερού πιθανώς θα παραμείνει στο πετρέλαιο ακόμη και από παρατεταμένη καθίζηση. Το νερό που θα παραμείνει βρίσκεται σε μορφή λεπτών σταγονιδίων που έχουν εξαιρετικά χαμηλές ταχύτητες καθίζησης. Αυτά τα σταγονίδια θα είναι ευρέως διασκορπισμένα έτσι ώστε να έχουν μικρή πιθανότητα να συγκρουστούν και να συνενωθούν με μεγαλύτερα σταγονίδια.

Η ποσότητα του νερού που γαλακτωματοποιείται με το αργό πετρέλαιο στα περισσότερα συστήματα παραγωγής μπορεί να ποικίλει ευρέως και να κυμαίνεται απο <1 εως >60% κατ' όγκο (σε σπάνιες περιπτώσεις). Η πιο γνωστή ποικιλία γαλακτωμάτων νερού σε ελαφρύ αργό πετρέλαιο, πάνω από 20 API είναι από 5 έως 20% κατ' όγκο, και σε αργό πετρέλαιο που είναι βαρύτερα από 20 API είναι από 10 έως 35% κατ' όγκο [6].

1.10.2 ΠΡΟΒΛΗΜΑΤΑ ΚΑΤΑ ΤΗΝ ΕΜΦΑΝΙΣΗ ΓΑΛΑΚΤΩΜΑΤΩΝ ΠΕΤΡΕΛΑΙΟΥ-ΣΧΗΜΑΤΙΣΜΟΣ ΠΕΤΡΕΛΑΙΟΚΗΛΙΔΩΝ

Τα γαλακτώματα νερού σε πετρέλαιο μερικές φορές σχηματίζονται στις πετρελαιοκηλίδες. Αυτά τα γαλακτώματα συχνά αποκαλούνται "μους" ή "μους σοκολάτα" και περιπλέκουν την απομάκρυνση των πετρελαιοκηλίδων. Οι πετρελαιοκηλίδες μπορούν να σχηματιστούν στο θαλάσσιο χώρο μετά από ατυχήματα κατά την εξόρυξη και μεταφορά πετρελαίου (διαρροή αγωγών, ατυχήματα πετρελαιοφόρων).

1.11 Η ΣΥΜΠΕΡΙΦΟΡΑ ΤΟΥ ΠΕΤΡΕΛΑΙΟΥ ΣΤΟ ΘΑΛΑΣΣΙΟ ΠΕΡΙΒΑΛΛΟΝ

Αμέσως μετά τη διαρροή του αργού πετρελαίου ή προϊόντων του στο θαλάσσιο περιβάλλον ξεκινούν διεργασίες μετασχηματισμού του, που καταλήγουν σε ουσίες με διαφορετικές φυσικοχημικές ιδιότητες από τις αρχικές ή στην απομάκρυνση του πετρελαίου από το νερό. Από την στιγμή που θα βρεθεί το πετρέλαιο στη θάλασσα, υπόκειται αμέσως σε διεργασίες μετασχηματισμού. Οι πρώτες είναι η εξάπλωση, η εξάτμιση, η διασπορά, η γαλακτωματοποίηση, η διάλυση και η μετακίνηση. Σε επόμενο χρόνο ακολουθούν η φωτοοξείδωση, η καταβύθιση και η βιοδιάσπαση, οι οποίες και καθορίζουν την τελική τύχη του πετρελαίου στο θαλάσσιο περιβάλλον.

Το πετρέλαιο είναι ένα υγρό μίγμα υδρογονανθράκων που έχει μικρότερη πυκνότητα από το νερό και είναι δυσδιάλυτο στο νερό. Έτσι, αμέσως μόλις εκχυθεί στη θάλασσα εξαπλώνεται (spreading) στην επιφάνεια του νερού και δημιουργεί ένα λεπτό υμένιο, δηλαδή μια πετρελαιοκηλίδα. Ο ρυθμός εξάπλωσης και το πάχος της πετρελαιοκηλίδας εξαρτώνται από τη θερμοκρασία της θάλασσας και τη φύση του πετρελαίου. Ένα ελαφρύ πετρέλαιο θα εξαπλωθεί γρηγορότερα και θα σχηματίσει λεπτότερο στρώμα σε σύγκριση με ένα βαρύ πετρέλαιο. Η αύξηση της θερμοκρασίας της θάλασσας έχει ως αποτέλεσμα τη γρηγορότερη εξάπλωση και τον σχηματισμό λεπτότερου υμενίου. Παρατίθεται παράδειγμα πετρελαίου που εξαπλώθηκε σε αρκετά τετραγωνικά χιλιόμετρα μέσα σε λίγες ώρες (εικόνα 1.11).

Στην αρχή το πετρέλαιο εξαπλώνεται ως μια συνεκτική κηλίδα, η οποία γρήγορα αρχίζει να σπάει σε κομμάτια. Στην ανοιχτή θάλασσα ο αέρας δημιουργεί στενές ζώνες παράλληλες με την κατεύθυνση του ανέμου. Επίσης, καθώς το πετρέλαιο εξαπλώνεται και το πάχος της πετρελαιοκηλίδας μειώνεται, αλλάζει και το χρώμα της: από μαύρο ή σκούρο καφέ γίνεται ιριδίζον και ασημί. Γενικά, το πάχος μιας πετρελαιοκηλίδας μπορεί να είναι μικρότερο από ένα μικρόμετρο (1 μm = 10⁻⁶ m) και να φτάνει έως και μερικά χιλιοστά.

Μια πετρελαιοκηλίδα δεν παραμένει σε ένα σημείο, αλλά μετακινείται (μεταφέρεται), με ταχύτητα ίση με το 60% της ταχύτητας των ρευμάτων και το 2-4% της ταχύτητας του ανέμου. Σε κλειστές θάλασσες και εκβολές, οι παλίρροιες και τα θαλάσσια ρεύματα έχουν μεγαλύτερη επίδραση στη μετακίνηση της πετρελαιοκηλίδας σε σχέση με τον άνεμο. Επίσης, όταν το πετρέλαιο διασπαρεί στη στήλη του νερού (γαλακτωματοποίηση), η μετακίνησή του επηρεάζεται κυρίως από τα ρεύματα και όχι από τον άνεμο.

Πολλά πετρέλαια απορροφούν νερό και σχηματίζουν γαλακτώματα νερού σε πετρέλαιο. Αυτό μπορεί να αυξήσει τον όγκο του πετρελαίου έως πέντε φορές. Τα γαλακτώματα σχηματίζονται ευκολότερα όταν η συγκέντρωση νικελίου/βαναδίου στο πετρέλαιο ξεπερνά τα 15 ppm ή όταν το πετρέλαιο περιέχει ασφαλτένια σε ποσοστό μεγαλύτερο του 0,5%. Η παρουσία των συστατικών αυτών και παράλληλα άνεμοι πάνω από 3 μποφόρ καθορίζουν τον ρυθμό δημιουργίας του γαλακτώματος. Πετρέλαια με μεγαλύτερο ιξώδες, γαλακτωματοποιούνται δυσκολότερα σε σχέση με πιο ρευστά πετρέλαια. Η κίνηση του πετρελαίου λόγω των κυμάτων βοηθάει στη μείωση της διαμέτρου των σταγονιδίων του νερού, αυξάνοντας σταδιακά το ιξώδες του γαλακτώματος. Παράλληλα, τα ασφαλτένια επικαλύπτουν τα σταγονίδια του νερού και αυτό αυξάνει τη σταθερότητα του γαλακτώματος. Καθώς η ποσότητα του νερού που ενσωματώνεται στο πετρέλαιο αυξάνεται, αυξάνεται και η πυκνότητα του γαλακτώματος και τείνει προς αυτή του νερού, χωρίς όμως να την ξεπερνά. Σταθερά γαλακτώματα μπορεί να περιέχουν 70-80% νερό, είναι ημιστερεά και το χρώμα τους είναι καφέ/κόκκινο, πορτοκαλί ή κιτρινωπό. Τα λιγότερο σταθερά διαχωρίζονται σε πετρέλαιο και νερό, αν θερμανθούν από τον ήλιο σε ήρεμες καιρικές συνθήκες.

Ο σχηματισμός γαλακτωμάτων νερού σε πετρέλαιο επιβραδύνει άλλες διεργασίες μετασχηματισμού του πετρελαίου και αποτελεί τον κύριο λόγο για την παραμονή των ελαφριών και μεσαίων πετρελαίων ανέπαφων στη θάλασσα και στις ακτές [8.9].

Εικόνα 1.11: Πετρελαιοκηλίδα κοντά στο Πας α Λουτρ της Λουιζιάνας, ατύχημα Deepwater Horizon. (Εικόνα που δείχνει σκούρο καφέ γαλάκτωμα)

1.12 ΜΕΘΟΔΟΙ ΑΝΤΙΜΕΤΩΠΙΣΗΣ ΤΩΝ ΓΑΛΑΚΤΩΜΑΤΩΝ

Οι μέθοδοι που χρησιμοποιούνται στην αντιμετώπιση των γαλακτωμάτων υλοποιούνται σε 3 βασικά βήματα:

Βήμα Ι Αποσταθεροποίηση: Ένα γαλάκτωμα αποσταθεροποιείται εξουδετερώνοντας την σταθεροποιητική επίδραση του γαλακτωματοποιητή. Η σκληρή μεμβράνη ή φίλμ που περιβάλλει τα διεσπαρμένα σταγονίδια νερού πρέπει να αποδυναμωθεί και να σπάσει. Αυτό συνήθως επιτυγχάνεται με την προσθήκη

θερμότητας και/ή με μια σωστά επιλεγμένη, χημική ένωση που θα δράσει με το γαλάκτωμα.

Βήμα ΙΙ Συνένωση: Μόλις οι μεμβράνες σπάσουν, τα διεσπαρμένα σταγονίδια πρέπει να συνενωθούν με σταγονίδια αρκετά μεγαλύτερα για να εγκατασταθούν έξω από τη συνεχή φάση του πετρελαίου. Αυτό συνήθως επιτυγχάνεται επιβάλλοντας μια μέτρια ανατάραξη ή υποβάλλοντας το γαλάκτωμα σε ένα εναλλασσόμενο ηλεκτρικό πεδίο. Αυτό θα αυξήσει το ποσοστό των διεσπαρμένων σταγονιδίων. Έτσι η συνένωση θα αυξηθεί, με αποτέλεσμα να έχουμε μεγαλύτερα σταγονίδια.

• Βήμα ΙΙΙ : Διαχωρισμός βαρύτητας

Πρέπει να ακολουθηθεί μια περίοδος καθίζησης για να επιτρέψει στις συσσωματωμένες σταγόνες να εγκατασταθούν έξω από το πετρέλαιο, λόγω της διαφοράς στην πυκνότητα ανάμεσα στο νερό και το πετρέλαιο. Αυτό επιτυγχάνεται με την παροχή ενός επαρκούς χρόνου παραμονής και ευνοϊκής ροής σε μια δεξαμενή ή δοχείο που θα επιτρέψουν στις συσσωματωμένες σταγόνες νερού να διαχωριστούν από το πετρέλαιο.

Όλες οι τυχαίες μεταβλητές, όπως η επιλογή των κατάλληλων χημικών, ο ρυθμός χημικής έγχυσης, η θερμοκρασία επεξεργασίας και η πίεση, το πετρέλαιο και το ιξώδες του γαλακτώματος, ο ρυθμός ροής και τα επίπεδα των ρευστών, ελέγχονται για να εκτελεστούν αυτά τα τρία βήματα με τον πιο γρήγορο και πιο οικονομικό τρόπο [11].

1.14 ΒΙΒΛΙΟΓΡΑΦΙΚΗ ΕΠΙΣΚΟΠΙΣΗ ΜΕΘΟΔΟΛΟΓΙΩΝ ΔΗΜΙΟΥΡΓΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΓΑΛΑΚΤΩΜΑΤΩΝ

Παρακάτω παρουσιάζονται χαρακτηριστικές ερευνητικές εργασίες δημιουργίας και χαρακτηρισμού γαλακτωμάτων W/O από την πρόσφατη βιβλιογραφία.

1.14.1 ΠΡΩΤΗ ΜΕΘΟΔΟΣ

Τα γαλακτώματα δημιουργήθηκαν από δείγματα αργού πετρελαίου. Αυτά παρασκευάστηκαν σε έναν περιστροφικό ανάμικτη. Η συσκευή ήταν σε ένα χώρο ελεγχόμενης θερμοκρασίας, στους 15 °C. Τα δοχεία ανάμειξης ήταν περίπου στο ένα τέταρτο πλήρης, με 600 ml αλμυρού νερού (3,3% (w / v) NaCl) και 30mL του δείγματος πετρελαίου ή προϊόντων αργού πετρελαίου. Τα δοχεία τοποθετήθηκαν στον περιστροφικό ανάμεικτη και αφέθηκαν για αρκετές ώρες (συνήθως 4), ώστε να εξισορροπηθούν θερμικώς. Τα δοχεία ήταν περίπου 24 εκατοστά σε ύψος, και η ακτίνα περιστροφής περίπου 15 εκατοστά. Μετά το πέρας του χρόνου ανάμειξης, τα γαλακτώματα συλλέχθηκαν από τα δοχεία για τη μέτρηση της περιεκτικότητας σε νερό.

Τα ρεολογικά δεδομένα έδειξαν ότι κάποια γαλακτώματα παρέμειναν σταθερά 1 χρόνο μετά την παρασκευή τους. Αυτά, σύμφωνα με προηγούμενο κεφάλαιο αναφέρονται ως σταθερά γαλακτώματα. Άλλα γαλακτώματα διατήρησαν περίπου την ίδια ποσότητα νερού κατά τον σχηματισμό, αλλά έσπασαν στη διάρκεια μιας εβδομάδας. Αυτά ήταν τα μεσο-σταθερά γαλακτώματα. Τέλος, κάποια γαλακτώματα συγκράτησαν ελάχιστο νερό κατά το χρόνο της ανάμιξης, αλλά το έχασαν πολύ αργά.

Τα μεσο-σταθερά γαλακτώματα κατέλαβαν κατά μέσο όρο 64 wt.% νερό την πρώτη ημέρα και έχασαν ένα σημαντικό ποσό, γύρω στο 3 wt.% μέσα σε μία εβδομάδα. Τα σταθερά γαλακτώματα κατέλαβαν κατά μέσο όρο 81 wt.% νερό την πρώτη ημέρα, και διατήρησαν περίπου το 77 wt.% σε μια εβδομάδα και περίπου 68% σε ένα έτος. Τα ασταθή γαλακτώματα κατέλαβαν περίπου 6-7 wt.% νερό και το διατήρησαν πάνω από μια εβδομάδα [2].

1.14.2 ΔΕΥΤΕΡΗ ΜΕΘΟΔΟΣ

Υδατικά διαλύματα με διαφορετικά ρΗ, παρασκευάσθηκαν με μίξη επαρκών ποσοτήτων υδροξειδίου του Αμμωνίου (NH₄OH), σε απιονισμένο αποσταγμένο νερό (pH: 8-13), ενώ όξινο μέσο (pH: 2-6) παρασκευάστηκε με HCl σε νερό. 60 mL της υδατικής φάσης προστέθηκαν σε 40 ml αλγερινού αργού πετρελαίου. Το μείγμα στη συνέχεια ομογενοποιείθηκε με μηχανική ανάδευσης στις 2500 rpm για 15 λεπτά στους 20 °C.

Επιπλέον 60 mL αλμυρού νερού που περιέχει 3,5% wt.% NaCl και 100 ppm επιφανειοδραστικού, προστέθηκαν σε 40 ml αργού πετρελαίου και ομογενοποιήθηκαν όπως περιγράφηκε στην προηγούμενη παράγραφο. Ένα κλάσμα του κάθε δείγματος αμέσως μεταφέρθηκε σε μια ογκομετρική φιάλη των 10 ml, η οποία αφέθηκε στους 20 ∘C, έως 24 ώρες μέχρις ότου να διαχωριστεί το νερό.

Η αστάθεια αυτού του γαλακτώματος πετρελαίου-σε-νερό προκύπτει είτε από το pH του νερού, που προκαλεί ιονισμό των πολικών ομάδων των επιφανειακών ενεργών συστατικών, είτε από την παρουσία ιονικών επιφανειοδραστικών, στη διεπιφανειακή μεμβράνη. Και οι δύο περιπτώσεις μπορούν να προκαλέσουν επαρκή ηλεκτροστατική αλληλεπιδράση, ώστε να σπάσει η διεπιφανειακή μεμβράνη [13].

1.14.3 ΤΡΙΤΗ ΜΕΘΟΔΟΣ

Για να εξασφαλιστεί η ομοιογένεια των δειγμάτων πετρελαίου, το αργό αραβικό πετρελαίο αναμίχθηκε πλήρως χρησιμοποιώντας μίξερ υψηλής ταχύτητας (Hrbil GQM) για 3 λεπτά. Η υδατική φάση παρασκευάστηκε χρησιμοποιώντας αραιωμένο

NaOH και HCl. Τα γαλακτώματα παρήχθησαν σύμφωνα με ένα πρότυπο πρωτόκολλο: 6 ml απιονισμένου νερού (σε καθορισμένο pH) και 4mL του αργού πετρελαίου προστέθηκαν με πιπέτα μέσα σε ένα δοχείο πολυπροπυλενίου των 15 mL. Το μείγμα αυτό ομοιογενοποιήθηκε με τη χρήση ενός ομογενοποιητή Virtis Hear IQ (πλάτος διακένου, 0,127 mm) στις 15.000 rpm για 3 λεπτά αρχικά στη διεπιφάνεια πετρελαίου/νερού, για 2 λεπτά στο κάτω μέρος του δοχείου, και επί 1 λεπτό ακριβώς κάτω από την διεπιφάνεια πετρελαίου/νερού στο τέλος. Αμέσως μετά την ομογενοποίηση, τα γαλακτώματα μεταφέρθηκαν σε σωλήνες φυγοκέντρησης πολυπροπυλενίου των 10 mL. Οι ποσότητες του πετρελαίου και του νερού που γαλακτωματοποιήθηκαν, ο εξοπλισμός γαλακτωματοποίησης και το ποσό της ενέργειας στην είσοδο του συστήματος που καθορίζεται στο πρωτόκολλο γαλακτωματοποίησης, προσδιορίστηκαν σε προκαταρκτικά πειράματα ώστε να εξασφαλίστεί η επαναληψιμότητα, η πλήρης γαλακτωματοποίηση των υλικών, και οι κατανομές μεγέθους των σταγονιδίων των γαλακτωμάτων που τυπικά παράγονται στα διυλιστήρια (5-50 mm).

Τα αποτελέσματα αυτής της μελέτης έδειξαν κυρίως την κατάσταση της διαλυτότητας των ασφαλτενίων στο αργό πετρέλαιο. Τα χαρακτηριστικά του αργού πετρελαίου που καθορίζουν την κατάστασης της διαλυτότητας των ασφαλτενίων είναι τα εξής: η αναλογία ρητινών προς ασφαλτενίων, οι αναλογίες αρωματικού χαρακτήρα του ακατέργαστου μέσου και των ρητινών ως προς με τα ασφαλτένια, και τέλος η συγκέντρωση των πολικών ομάδων στις ρητίνες και στα ασφαλτένια. Αυτές οι παράμετροι συσχετίστηκαν με την σταθερότητα των γαλακτωμάτων που παρήχθηκαν από το αργό πετρελαίο [14].

$1.14.4 \text{ TETAPTH ME}\ThetaO\Delta O\Sigma$

Κάποιες τεχνικές που χρησιμοποιούνται για την γαλακτωματοποίηση του βαρέως αργού πετρελαίου, δεν είναι ικανοποιητικές για την κατασκευή γαλακτώματος. Η θέρμανση συχνά είναι επιθυμητή για την γαλακτωματοποίηση του αργού πετρελαίου, και πρέπει να λαμβάνεται μέριμνα για την πρόληψη της απώλειας πτητικών και την οξείδωση των συστατικών του αργού πετρελαίου σε υψηλές θερμοκρασίες. Ένας μηχανισμός που θα μπορούσε να δημιουργήσει γαλακτώματα, σχεδιάστηκε σύμφωνα με τη μέθοδο αυτή έτσι ώστε αυτά να μπορούν να παραχθούν μέσα σε ένα φούρνο ελεγχόμενης θερμοκρασίας και να διατηρηθούν σε αδρανή ατμόσφαιρα για την πρόληψη της οξείδωση και την απώλεια των πτητικών. Η συσκευή αυτή λειτουργεί ως εξής: Ένας ηλεκτρικός κινητήρας περιστρέφει ένα δίσκο. Ένα έμβολο είναι συνδεδεμένο στο δίσκο και συνδέεται με μια ράβδο που διέρχεται από την πλευρά του φούρνου. Τα δείγματα που πρόκειται να γαλακτωματοποιηθούν τοποθετούνται επάνω και γαλακτωματοποιούνται με ανατάραξη, σε ελεγχόμενες ταχύτητες, έως 1000 rpm. Στα περισσότερα γαλακτώματα έγιναν δοκιμές με ανακίνηση για 5 λεπτά στις 600 rpm.

Η μέθοδος αυτή μας έδείξε ότι τα γαλακτώματα που δημιουργήθηκαν από αργό πετρέλαιο, σχημάτισαν μεμβράνες στην διεπαφή νερού-πετρελαίου. Αυτές οι μεμβράνες σταθεροποίησης των γαλακτωμάτων αποτελούνταν από ενδοεπιφανειακά μέσα ασφαλτενίου και ρητίνης, σε συνδυασμό με ιόντα από την υδατική φάση.

Η σταθερότητα των γαλακτωμάτων μπορεί να μειωθεί όταν μειωθεί και η ικανότητα σχηματισμού της μεμβράνης του αργού πετρελαίου. Αυτά τα φιλμ μπορούν να ελαχιστοποιηθούν ή οι φυσικές τους ιδιότητες να μεταβληθούν.

Το βέλτιστο ρΗ, στο οποίο εκτιμήθηκε ότι συμβαίνει το μέγιστο "σπάσιμο" του γαλακτώματος, εξαρτάται τόσο από το αργό πετρέλαιο όσο και από τη σύνθεση της άλμης.

Εκτός από το ρΗ, πολλοί άλλοι παράγοντες όπως το ιξώδες του πετρελαίου, η αναλογία νερού-πετρελαίου, η σύνθεση άλμης, τα στερεά, η ανάδευση, η θερμοκρασία και η γήρανση, επηρέασαν επίσης τη σταθερότητα του γαλακτώματος [15].

$1.14.5 \text{ } \text{ПЕМПТН } \text{MEOO} \Delta \text{O} \Sigma$

Τα γαλακτώματα δημιουργήθηκαν από κουβετιανό αργό πετρέλαιο. Αυτά παρασκευάστηκαν σε παρτίδες των 500 ml με διαφορετικές αναλογίες πετρελαίου που περιλάμβανε νερό της βρύσης σε ένα εύρος από 20% έως 80 vol. %. Πριν από την ανάμειξη, τα συστατικά θερμάνθηκαν σε θερμοκρασία περίπου 80 °C. Αυτή η θερμοκρασία υγροποιεί τυχόν στερεές ενώσεις και μειώνει το ιξώδες, για να διευκολύνει την ανάδευση. Τα υδατικά διαλύματα παρασκευάστηκαν με διάλυση του γαλακτωματοποιητή ή με NaOH σε βρασμένο νερό, σε θερμοκρασία περίπου 80°C . Η φιάλη ανάμειξης βυθίστηκε σε ένα λουτρό σταθερής θερμοκρασίας. Το πετρέλαιο κατόπιν προστέθηκε στο νερό και αναμείχθηκαν με το μίξερ σε ταχύτητα 1000 rpm για 5 λεπτά. Η φιάλη στη συνέχεια μεταφέρθηκε σε ένα μαγνητικό αναδευτήρα που λειτουργεί σε χαμηλότερη ταχύτητα. Η ανάδευση συνεχίστηκε κατά τη διάρκεια της διαδικασίας ψύξης για να διασφαλιστεί η ομοιογένεια του συστήματος. Μετά την ψύξη αφέθηκαν σε θερμοκρασία δωματίου ώστε οι φυσαλίδες αέρα να διαφύγουν.

Δύο δείγματα ελήφθησαν από την παρτίδα: ένα για μικροσκοπική επιθεώρηση, παρατηρώντας την σταθερότητα του γαλακτώματος σε σχέση με τον χρόνο και το άλλο για τη μέτρηση των ρεολογικών ιδιοτήτων. Η μέτρηση του ιξώδους ξεκίνησε σε χαμηλούς ρυθμούς διάτμησης και χαμηλές θερμοκρασίες. Ύστερα, ο ρυθμός διάτμησης αυξήθηκε με σταθερή θερμοκρασία. Στο τέλος της μέτρησης το δείγμα αντικαταστάθηκε με ένα νέο δείγμα που ελήφθησε από την παρτίδα. Οι ρεολογικές ιδιότητες μετρήθηκαν σε ένα εύρος θερμοκρασίας από 20 έως 80 ∘C [16]. Σύμφωνα με τις 5 μεθόδους καταλήγουμε στο συμπέρασμα πως τα γαλακτώματα πετρελαίου κατασκευάζονται από αργό πετρέλαιο. Τα σταθερά γαλακτώματα καταλαμβάνουν κατά μέσο όρο 81 wt.% νερό, τα μεσο-σταθερά 64 wt.% νερό και τα ασταθή 6-7 wt.% νερό κατά την παρασκευή τους. Επίσης, συμπεραίνουμε πως τα ασφαλτένια και οι ρητίνες σταθεροποιούν ένα γαλάκτωμα. Τέλος, άλλοι παράγοντες που φαίνεται να επηρεάζουν τη σταθερότητα των γαλακτώμάτων, είναι ο ρυθμός ανάδευσης, η σύνθεση άλμης και ο χρόνος γήρανσης του γαλακτώματος.

ΚΕΦΑΛΑΙΟ 2: ΠΑΡΑΣΚΕΥΗ ΓΑΛΑΚΤΩΜΑΤΩΝ ΝΕΡΟΥ ΣΕ ΠΕΤΡΕΛΑΙΟ

2.1 ΕΡΓΑΣΤΗΡΙΑΚΗ ΔΟΚΙΜΗ ΠΑΡΑΣΚΕΥΗΣ ΤΩΝ ΓΑΛΑΚΤΩΜΑΤΩΝ

Όπως παρουσιάζεται στο προηγούμενο κεφάλαιο, οι παράγοντες που έχουν σημαντικό ρόλο στην παρασκευή των γαλακτωμάτων είναι ο χρόνος και η ταχύτητα ανάμιξης των φάσεων καθώς και η αλατότητα του νερού που χρησιμοποιείται.

Στην παρούσα εργασία οι δοκιμές στο εργαστήριο για την παρασκευή των γαλακτωμάτων, έγιναν αρχικά με δύο πετρελαϊκά κλάσματα, το STL N₀ 7 και το LCO. Παρασκευάστηκαν δύο μίγματα από το κάθε κλάσμα πετρελαίου. Το πρώτο μίγμα περιείχε 200 mL νερού βρύσης και 33 gr NaCl, μαζί με 10 mL πετρελαίου. Το δεύτερο μίγμα περιείχε 200 mL νερού βρύσης και 33 gr NaCl, μαζί με 10 mL πετρελαίου. Το δεύτερο μίγμα περιείχε 200 mL νερού σε πετρέλαιο τοποθετήθηκαν σε έναν περιστροφικό αναμείκτη (εικόνα 2.1). Η ταχύτητα περιστροφής ρυθμίστηκε στις 43 στροφές ανά λεπτό και η ανάμειξη διήρκησε ένα 24ωρο.

Εικόνα 2.1: Ανάμειξη μιγμάτων με περιστροφικό αναμίκτη

Εικόνα 2.2: Τα μίγματα μετά την ανάμειξη

Μετά το πέρας του 24ώρου τα μίγματα μεταφέρθηκαν σε ογκομετρικούς κυλίνδρους (εικόνα 2.3), για να διαπιστωθεί αν δημιουργήθηκε γαλάκτωμα. Η διεπειφάνεια νερού-πετρελαίου παρέμεινε ώς είχε (εικόνα 2.2), χωρίς να δημιουργηθεί γαλάκτωμα (μους), προφανώς λόγω της έλλειψης φυσικών γαλακτωματοποιητών στα δείγματα του πετρελαίου ή και λόγω των σχετικά ήπιων συνθηκών ανάδευσης.

Εικόνα 2.3: Δείγματα στους ογκομετρικούς κυλίνδρους

2.2 ΠΕΙΡΑΜΑΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ

Εφόσον με την παραπάνω διαδικασία δεν δημιουργήθηκε γαλάκτωμα καταλήξαμε σε ένα νέο πειραματικό σχεδιασμό. Για την δημιουργία των γαλακτωμάτων σύμφωνα με τον πειραματικό αυτό σχεδιασμό, ο οποίος περιγράφεται αναλυτικά στις επόμενες παραγράφους, έγιναν τροποποιήσεις στους παράγοντες χρόνος, ταχύτητα ανάμειξης και αλατότητα νερού για κάθε πείραμα.

'Ενας από τους στόχους του σχεδιασμού πειραμάτων (experimental design) είναι να δώσει στον ερευνητή ή τον μηχανικό παραγωγής τα εργαλεία εκείνα που θα του επιτρέψουν να προγραμματίσει μία σειρά μετρήσεων-δοκιμών, οι οποίες θα αναδείξουν τους σημαντικούς ή τους σημαντικότερους παράγοντες που επηρεάζουν ένα σύστημα καθώς και την αλληλεξάρτησή τους.

Ως πείραμα ή πειραματική δοκιμή ορίζεται ένα σύνολο ενεργειών που έχει στόχο να αποδείξει την αλήθεια μίας ήδη γνωστής θεωρητικής σχέσης ανάμεσα σε διαφορετικά φυσικά μεγέθη ή να ανιχνεύσει την ύπαρξη κάποιας άγνωστης ως τώρα αλληλεξάρτησης ανάμεσα τους. Κάθε πειραματική δοκιμή οδηγεί στην διερεύνηση των αλληλεξαρτήσεων που υφίστανται ανάμεσα σε τουλάχιστον δύο παραμέτρους ενός φαινομένου ή συστήματος, εκ των οποίων η μία ορίζεται ως ανεξάρτητη και η δεύτερη ως εξαρτημένη. Η ανεξάρτητη ή οι ανεξάρτητες μεταβλητές, οι οποίες και μεταβάλλονται κατά την κρίση του ερευνητή, αναφέρονται στον πειραματικό σχεδιασμό ως παράγοντες (factors). Ως παράγοντας μπορεί να θεωρηθεί κάθε πειραματική συνθήκη η οποία επηρεάζει τα αποτελέσματα που λαμβάνουμε από το πείραμα. Προφανώς οι παράγοντες μπορεί να έχουν ποσοτικό ή ποιοτικό χαρακτήρα. Το πειραματικό αποτέλεσμα το οποίο εμφανίζεται ως η εξαρτημένη μεταβλητή αναφέρεται ως απόκριση (response) του συστήματος. Στην διάρκεια μίας σειράς πειραματικών δοκίμων κάθε ανεξάρτητη μεταβλητή (παράγοντας) παίρνει τιμές εντός κάποιων ορίων τα οποία εξαρτώνται από την φύση της μεταβλητής αλλά και τον στόχο του πειράματος. Κάθε μία από τις τιμές αυτές αναφέρεται σαν επίπεδο ή στάθμη (level). Κάθε επίπεδο ενός παράγοντα εξασφαλίζει μία τιμή απόκρισης του συστήματος. Η διαφορά μεταξύ δύο αποκρίσεων, που οφείλεται σε δύο διαφορετικά επίπεδα ενός παράγοντα αναφέρεται σαν αποτέλεσμα (effect) της συγκεκριμένης μεταβολής.

2.2.1 ΤΟ ΠΛΗΡΕΣ ΠΑΡΑΓΟΝΤΙΚΟ ΠΕΙΡΑΜΑ (Full Factorial Experimental Design)

Η λογική του παραγοντικού πειράματος έγκειται στην ταυτόχρονη μεταβολή περισσότερων του ενός παραγόντων αλλά με έναν "έξυπνο" τρόπο, ώστε να εξασφαλίζεται η διερεύνηση της συμπεριφοράς του συστήματος σε όλο το εύρος των τιμών που μπορούν να λάβουν οι παράγοντες του. Οι ανεξάρτητες μεταβλητές στο παραγοντικό πείραμα λαμβάνουν τιμές σε ένα περιορισμένο αριθμό επιπέδων, ο οποίος καθορίζεται από τον ερευνητή ανάλογα με την φύση του συστήματος και τον αριθμό των δοκιμών που έχει την δυνατότητα να πραγματοποιήσει. Μελετάται δηλαδή ένας ακριβώς προσδιορισμένος ως προς τα όρια του πειραματικός χώρος εκτελώντας ένα γνωστό εκ των προτέρων αριθμό πειραματικών δοκίμων. Οι στόχοι του παραγοντικού σχεδιασμού είναι αφ' ενός ο προσδιορισμός του αποτελέσματος που επιφέρει μία μεταβολή των παραγόντων στην απόκριση του συστήματος και αφ' ετέρου η μοντελοποίηση της σχέσης μεταξύ της απόκρισης από των παραγόντων. Πρέπει να επισημάνουμε ότι ως παράγοντες του συστήματος που μελετάμε μπορούν να χρησιμοποιηθούν τόσο αριθμητικές όσο και ποιοτικές (category) μεταβλητές. Με βάση τα παραπάνω προκύπτει ότι στον πλήρη παραγοντικό σχεδιασμό πειράματος μελετώνται όλοι οι δυνατοί συνδυασμοί ανάμεσα σε όλους τους παράγοντες ενός συστήματος και για όλα τα επίπεδα τιμών των μεταβλητών του. Ο πλήρης παραγοντικός σχεδιασμός για ένα σύστημα τριών παραγόντων X1, X2 και X3, ο καθένας εκ των οποίων λαμβάνει τιμές σε 2 επίπεδα, περιλαμβάνει 2³=8 δοκιμές.

Κάθε σημείο στο εσωτερικό του κύβου αντιστοιχεί σε ένα πείραμα που θεωρητικά θα ήταν επίσης δυνατόν να εκτελεσθεί. Οι κορυφές του κύβου αντιστοιχούν στις πειραματικές δοκιμές που θα εκτελεστούν. Το βασικό πλεονέκτημα του σχεδιασμού αυτού είναι ότι απαιτεί σχετικά μικρό αριθμό πειραμάτων, ενώ ταυτόχρονα διερευνά την συμπεριφορά (απόκριση) του συστήματος για όλο το εύρος του πεδίου τιμών των μεταβλητών του. Έτσι προσδιορίζονται οι περιοχές που έχουν το μεγαλύτερο ενδιαφέρον και η κατεύθυνση στην οποία πρέπει να συνεχιστεί η έρευνα. Συνήθως ακολουθεί η λεπτομερέστερη διερεύνηση των περιοχών που ενδιαφέρουν με ένα πιο "πυκνό" σε επίπεδα πειραματικό σχεδιασμό.

Η συνήθης πρακτική στον πειραματικό σχεδιασμό είναι να εισάγονται οι τιμές των παραγόντων στα διάφορα επίπεδα ανηγμένες στο διάστημα -1 έως +1. Έτσι στο σχεδιασμών δύο επίπέδων οι παράγοντες εισάγονται ως -1 και +1 ή με απλή χρήση των πρόσημων - και + για το χαμηλό και υψηλό επίπεδο αντίστοιχα. Η χρήση των παραγόντων σταθμισμένων με αυτό τον τρόπο εξασφαλίζει την συμμετοχή τους με το ίδιο βάρος σε ποσοτικά μοντέλα ανεξάρτητα από το απόλυτο μέγεθος των τιμών τους [17].

2.2.2 ΠΕΡΙΓΡΑΦΗ ΠΕΙΡΑΜΑΤΟΣ – ΠΡΟΕΤΟΙΜΑΣΙΑ ΔΕΙΓΜΑΤΩΝ

Εφόσον τα δύο προηγούμενα μίγματα δεν παρουσίασαν κανένα σημάδι γαλακτωματοποίησης, χρησιμοποιήθηκε ένα ακόμη δείγμα πετρελαίου από τη Βόρεια Θάλασσα.

Σύμφωνα με τον παραπάνω πειραματικό σχεδιασμό, το συμπέρασμα το οποίο προκύπτει είναι ότι για την παρασκευή των γαλακτωμάτων πρέπει να ληφθούν υπόψη κάποιοι βασικοί, σταθεροί παράγοντες που θα καθορίσουν τη συμπεριφορά των δειγμάτων και μπορούν να επηρεάσουν τα αποτελέσματα που θα ληφθούν από το πείραμα. Οι παράγοντες αυτοί σύμφωνα τώρα με τη βιβλιοφραφία, είναι ο αριθμός των στροφών του μέσου με το οποίο αναδεύτηκαν τα δείγματα, ο χρόνος ανάδευσης, καθώς και η αλατότητα του νερού.

Συγκεκριμένα, για την διεξαγωγή των πειραμάτων, σύμφωνα με τον πλήρης παραγοντικό σχεδιασμό πειράματος (ώστε να μελετηθούν όλοι οι δυνατοί συνδυασμοί των παραγόντων), παρασκευάστηκαν 8 δείγματα.

Για την παρασκευή των δειγμάτων χρησιμοποιήθηκαν 200 mL H₂O, το οποίο ήταν νερό της βρύσης μαζί με 33gr NaCl, καθώς και 50 mL του πετρελαίου (ίδιες ποσότητες κάθε φορά). Τέλος, για να ελεγχθεί η επαναληψιμότητα του συστήματός μας, παρασκευάστηκαν επιπλέον 3 ίδια δείγματα με τις μέσες τιμές των στροφών, του χρόνου ανάδευσης και της αλατότητας του νερού.

Ειδικότερα, έγινε ανάμειξη του πετρελαϊκού δείγματος και της ποσότητας αλατόνερου, με μίξερ, το οποίο ρυθμίστηκε στις 3000 και 5000 στροφές. Στη συνέχεια συλλέχθηκε σε δοχεία, όπου αφέθηκε για αρκετή ώρα. Παρατηρήθηκε ότι αυτό το πετρελαϊκό δείγμα Snorre oil που χρησιμοποιήθηκε στο τέλος, απέδωσε γαλακτώματα, πιθανότατα διότι περιείχε φυσικούς γαλακτωματοποιητές, όπως ασφαλτένια και ρητίνες. Για τη μέτρηση της πυκνότητας των γαλακτωμάτων χρησιμοποιήθηκε ένα ειδικό πυκνόμετρο, το DMA 38. Επιπλέον προσδιορίστηκε η περιεκτικότητα του νερού κατ'όγκο, με την πρότυπη μέθοδο προσδιορισμού νερού σε πετρελοειδή με απόσταξη ASTM D95-05. Στη συνέχεια, τα γαλακτώματα αναλύθηκαν σε φασματογράφο υπερύθρου FT-IR μοντέλο Spectrum 1000 της Perkis Elmer. Τέλος, μετρήθηκε το ιξώδες των δειγμάτων την 1^η ημέρα παρασκευής τους, με τη βοήθεια του M3500 Viscometer.

ΚΕΦΑΛΑΙΟ 3: ΑΝΑΛΥΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΤΩΝ ΜΕΤΡΗΣΕΩΝ ΠΟΥ ΠΡΑΓΜΑΤΟΠΟΙΗΘΗΚΑΝ

3.1 ΜΕΤΡΗΣΗ ΠΥΚΝΟΤΗΤΑΣ

Η πυκνότητα αποτελεί μία βασική φυσική ιδιότητα του πετρελαίου και των προϊόντων του. Τόσο η πυκνότητα (density), όσο και το ειδικό βάρος (specific gravity) χρησιμοποιήθηκαν από τα πρώτα χρόνια της ανάπτυξης της βιομηχανίας του πετρελαίου είτε μόνες είτε σε συνδυασμό με άλλα φυσικοχημικά μεγέθη για την ταξινόμηση και τον ποιοτικό χαρακτηρισμό των πετρελαιοειδών.

Η πυκνότητα ορίζεται ως η περιεχόμενη μάζα σε μία μονάδα όγκου του δείγματος σε δεδομένη θερμοκρασία και συνήθως εκφράζεται σε γραμμάρια ανά κυβικό εκατοστό. Στην πρακτική του πετρελαίου χρησιμοποιείται ευρέως η αδιάστατη σχετική πυκνότητα, η οποία ορίζεται ως ο λόγος της μάζας ορισμένου όγκου δείγματος προς την μάζα ίσου όγκου αποσταγμένου νερού. Δεδομένης της εξάρτησης της πυκνότητας από την θερμοκρασία, η σχετική πυκνότητα αναφέρεται στις θερμοκρασίες στις οποίες βρίσκονται το δείγμα και το νερό αντίστοιχα.

Αρκετά διαδεδομένο μέγεθος έκφρασης της πυκνότητας στην βιομηχανία του πετρελαίου είναι η πυκνότητα σε βαθμούς API (American Petroleum Institute), η οποία υπολογίζεται από την εξίσωση:

° API= $\frac{141,5}{spec.gravity60o/60oF}$ - 131,5

Η σχετική πυκνότητα των πετρελαίων κυμαίνεται συνήθως από 0.8 (45,3 °API) για ένα ελαφρύ πετρέλαιο μέχρι και πάνω από 1,0 (10 °API).

Η πυκνότητα εξαρτάται από την χημική σύσταση του πετρελαίου. Γενικά, η αύξηση της περιεκτικότητας σε αρωματικά οδηγεί σε αύξηση της πυκνότητας, αντίθετα η αύξηση της περιεκτικότητας σε κορεσμένα συστατικά οδηγεί στην μείωση της. Η πυκνότητα μιγμάτων από διαφορετικά κλάσματα πετρελαίου δεν μπορεί να υπολογιστεί πάντα προσθετικά. Σε κάποια μίγματα (π.χ. εξάνιο και βενζόλιο) παρατηρείται αύξηση του όγκου, ενώ σε άλλα (μίγματα ελαφρών και βαρέων κλασμάτων) μείωση.

Σύμφωνα με την μέθοδο η μέτρηση πραγματοποιείται με χρήση αυτόματου πυκνόμετρου αποτελούμενου από ένα σωλήνα σχήματος U, ο οποίος ταλαντώνεται εντός ηλεκτρομαγνητικού πεδίου και από ένα σύστημα ηλεκτρονικής μέτρησης της συχνότητας ταλάντωσης. Η συχνότητα της ταλάντωσης του σωλήνα μεταβάλλεται όταν εισαχθεί σε αυτό ποσότητα δείγματος και εξαρτάται μόνο από την πυκνότητα

και τη θερμοκρασία του δείγματος στο σωλήνα. Η μεταβολή στην συχνότητα ταλάντωσης με την βοήθεια ψηφιακού επεξεργαστή μετασχηματίζεται σε τιμή πυκνότητας του δείγματος με βάση την καμπύλη βαθμονόμησης του οργάνου η οποία παράγεται από μετρήσεις πρότυπων συστατικών γνωστής πυκνότητας.

3.1.1 ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ

Το δείγμα εισάγεται με την βοήθεια σύριγγας (1mL) στο σωλήνα U του πυκνόμετρου (εικόνα 3.1) μέχρι να γεμίσει αποφεύγοντας τον σχηματισμό φυσαλίδων μέσα στον σωλήνα. Στην οθόνη του οργάνου αναγράφεται η πυκνότητα και η θερμοκρασία του δείγματος. Αδειάζουμε το πυκνόμετρο από το δείγμα με τη βοήθεια της σύριγγας και καθαρίζουμε με εξάνιο και ακετόνη [18].

Ενώ οι τεχνικές προδιαγραφές του είναι οι εξής:

- Μέτρηση έυρους 0-3 g / cm3
- Ακρίβεια
- Πυκνότητα ± 0,001 g / cm3
- Θερμοκρασία ± 0,3 ° C, ± 0.5 ° F
- Επαναληψιμότητα
- Πυκνότητα ± 0,0002 g / cm3
- Θερμοκρασία ± 0,1 ° C, ± 0,2 ° F
- Μέτρηση της θερμοκρασίας 15-40 ° C, 59 έως 104 ° F
- Χρόνος 0,5 έως 3,5 min
- Πίεση μέχρι 10 bar, μέχρι 150 psi
- Ελάχιστο ποσό δείγματος. 0,7 ml
- Χρόνος μέτρησης ανά δείγμα 1 έως 8 λεπτά (Συμπερ. Γέμισμα και καθαρισμό)
- Διαστάσεις (M x Π x Y) 280 x 210 x 270 χιλιοστά, 11,0 x 8,3 x 10,6 ίντσες
- Βάρος περίπου 10 kg, περίπου. 22 lbs
- Τροφοδοσία 85-260 VAC, 48-65 Hz
- Κατανάλωση ισχύος 20 VA
- Έξοδος δεδομένων Δύο RS 232 διεπαφές για εξωτερικό εκτυπωτή ή/και υπολογιστή

Εικόνα 3.1: Πυκνόμετρο DMA 38

3.2 ΠΡΟΤΥΠΗ ΜΕΘΟΔΟΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΝΕΡΟΥ ΣΕ ΠΕΤΡΕΛΑΙΟΕΙΔΗ ΜΕ ΑΠΟΣΤΑΞΗ ASTM D95-05

3.2.1 ΣΥΝΟΨΗ ΜΕΘΟΔΟΥ

Η μέθοδος αυτή καλύπτει τον προσδιορισμό νερού σε κλίμακα από 0 έως 25% κατ' όγκο σε πετρελαιοειδή, πίσσες και βιτουμενιούχα υλικά με χρήση απόσταξης. Το δείγμα βράζεται σε reflux με ένα διαλύτη αδιάλυτο στο νερό (ξυλόλιο, ή μίγμα τολουολίου:ξυλολίου=20:80, ή μίγμα πετρελαικού αποστάγματος (η επιλογή του διαλύτη εξαρτάται από το είδος του δείγματος) ο οποίος αποστάζεται μαζί με το νερό, συμπυκνώνεται και διαχωρίζεται σε μια ογκομετρημένη παγίδα όπου προσδιορίζεται ο όγκος του νερού που έχει συλλεχθεί (εικόνα 3.2).

3.2.2 ΔΕΙΓΜΑΤΟΛΗΨΙΑ

Σε ένα ογκομετρικό κύλινδρο μετρώνται 10 mL δείγματος και μεταφέρονται σε σφαιρική φιάλη των 250 mL. Γίνεται πλύσιμο του ογκομετρικού κυλίνδρου με 50 mL και δύο φορές με 25 mL ξυλόλιο (100 mL συνολικά). Διαλύτης και δείγμα αδειάζονται στη σφαιρική φιάλη, προστίθενται πέτρες βρασμού και στήνεται η συσκευή της απόσταξης χρησιμοποιώντας την κατάλληλη παγίδα. Η παγίδα που θα χρησιμοποιηθεί εξαρτάται από τον όγκο του νερού που περιμένουμε να έχει το δείγμα. Παρέχεται θερμότητα στη συσκευή τόση ώστε να έχουμε συμπύκνωση με ρυθμό 2-5 σταγόνες / δευτερόλεπτο. Η απόσταξη συνεχίζεται έως ότου εξαφανιστεί κάθε ποσότητα νερού από όλα τα μέρη της συσκευής εκτός από την παγίδα, και ο όγκος του νερού παραμένει σταθερός για 5 λεπτά. Αν συνεχίζει να υπάρχει λίγα λεπτά. Όταν η συλλογή του νερού ολοκληρωθεί, αφήνεται η συσκευή να έλθει σε θερμοκρασία περιβάλλοντος και μετράται ο όγκος του νερού.

3.2.3 ΣΗΜΑΣΙΑ ΚΑΙ ΧΡΗΣΗ

Η γνώση της περιεκτικότητας σε νερό των προϊόντων πετρελαίου είναι σημαντική για την διύλιση, την αγορά, την πώληση και τη μεταφορά των προϊόντων.

Εικόνα 3.2: Διαδικασία πρότυπης μεθόδου προσδιορισμού νερού σε πετρελοειδή με απόσταξη ASTM D95-05

3.3 ΜΕΤΡΗΣΗ ΙΞΩΔΟΥΣ

Η λέξη ιξώδες προέρχεται από τη λέξη ιξός (τη γνωστή κολλώδη ουσία που περιβάλλει κάποιους καρπούς) και σημαίνει το κολλώδες.

Γενικά όμως με τον όρο ιξώδες στη Χημεία και στη Φυσική χαρακτηρίζεται μία από τις ιδιότητες της ύλης, ιδίως των υγρών αλλά και των αερίων, και συγκεκριμένα η αντίσταση που παρουσιάζουν κατά τη ροή τους. Για παράδειγμα, διαφορετικα ρέουν το μέλι, το λάδι και το νερό.

Η αντίσταση αυτή που παρουσιάζουν τα ρευστά οφείλεται στις εσωτερικές τριβές των μορίων τους από δυνάμεις συνοχής, σε βαθμό που το ίδιο το ιξώδες ν΄ αποτελεί μέτρο αντίστασης του ρευστού στη ροή και που για τα υγρά εξετάζεται ιδιαίτερα από την Υδροδυναμική.

Το μέτρο του ιξώδους είναι ο συντελεστής συνεκτικότητας ή συντελεστής εσωτερικής τριβής ή συντελεστής ιξώδους του υγρού. Όσο πιο παχύρρευστο είναι

ένα υγρό, τόσο μεγαλύτερο ιξώδες λέμε ότι έχει, π.χ. το μέλι έχει μεγαλύτερο ιξώδες από το λάδι.

Το ιξώδες μετριέται με ειδικό όργανο που λέγεται ιξωδόμετρο [19].

Η επιστήμη της ρεολογίας εξετάζει τα φαινόμενα παραμόρφωσης (εξαλλοίωσης σχήματος) όλων των μορφών της ύλης, αλλά η σημαντικότερη εφαρμογή της είναι η μελέτη της συμπεριφοράς ροής μέσω σωλήνων και καναλιών μεταφοράς ρευστών. Το ενδιαφέρον επικεντρώνεται στη σχέση μεταξύ πίεσης και ρυθμού ροής, καθώς και τις επιπτώσεις των ρεολογικών ιδιοτήτων του ρευστού στις παραπάνω παραμέτρους.

Υπάρχουν δυο βασικές διαφορετικές συμπεριφορές:

- Το καθεστώς στρωτής ή γραμμικής ροής σε χαμηλές ταχύτητες ροής.
- Το καθεστώς τυρβώδους ροής σε υψηλές ταχύτητες.

Σύντομη περιγραφή των ρεολογικών μοντέλων:

Νευτώνειο Μοντέλο:

Οι δυνάμεις τριβής που αναπτύσσονται σε απλά Νευτώνεια ρευστά χαρακτηρίζονται από το δυναμικό ιξώδες του ρευστού. Χαρακτηριστικά παραδείγματα τέτοιων ρευστών είναι το νερό, τα αέρια και το πετρέλαιο.

Αρχικά, ο Νεύτωνας διατύπωσε το Νευτώνειο μοντέλο, που ισχύει για σχετικά χαμηλές ταχύτητες (και παροχές) σε στρωτή ροή. Στα Νευτώνεια μοντέλα η διατμητική τάση τ, είναι απευθείας ανάλογη της βαθμίδας ή κλίσης της ταχύτητας (τ = μ.γ).

Το ιξώδες εκφράζεται σε poises.

Μη Νευτώνειο Μοντέλο:

Αιωρήματα όπως οι πολφοί γεώτρησης, μπογιές, ρευστά τρόφιμα, διάφορα καλλυντικά, το υγρό τσιμέντο, το αίμα κ.α που περιέχουν σωματίδια με μέγεθος μεγαλύτερο των μορίων σε σημαντικές συγκεντρώσεις δεν υπακούουν στο νόμο του Νεύτωνα και χαρακτηρίζονται ως μη νευτώνεια ρευστά. Στα ρευστά αυτά, το μετρούμενο ιξώδες προσδιορίζεται ως $\mu_{\alpha} = \frac{\tau}{\nu}$ και ονομάζεται φαινόμενο ιξώδες.

- Αν το φαινόμενο ιξώδες ελαττώνεται με την αύξηση της ταχύτητας τότε το ρευστό ονομάζεται ψευδοπλαστικό.
- Αν το φαινόμενο ιξώδες αυξάνεται με την αύξηση της ταχύτητας τότε το ρευστό ονομάζεται εκτατό.
- Αν το φαινόμενο ιξώδες ελαττώνεται με το χρόνο κατόπιν αύξησης της ταχύτητας σε νέα τιμή το ρευστό ονομάζεται θιξοτροπικό.
- 4) Αν το φαινόμενο ιξώδες αυξάνεται με το χρόνο κατόπιν αύξησης της ταχύτητας σε νέα τιμή το ρευστό ονομάζεται ρεοπηκτικό.

3.3.1 ΟΡΓΑΝΑ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ:

Εικόνα 3.3: Όργανα Μέτρησης Ιξώδους

Για τη μέτρηση του ιξώδους των γαλακτωμάτωνπου, χρησιμοποιήθηκε ένα ψηφιακό αυτόματο όργανο της Grace Instruments. Το συγκεκριμένο μοντέλο είναι το M3500a και είναι ένα κλασσικό ομοαξονικό κυλινδρικό περιστροφικό ιξωδόμετρο τύπου Couette (εικόνα 3.3). Το δείγμα καταλαμβάνει τον δακτυλιοειδή χώρο μεταξύ δύο κυλίνδρων. Ο εξωτερικός κύλινδρος ή περιστρεφόμενο κάλυμμα κινείται με σταθερή περιστροφική ταχύτητα. Η περιστρεφόμενη κίνηση του καλύμματος, όταν ο δακτύλιος περιέχει ρευστό, ασκεί ροπή στον εσωτερικό κύλινδρο, ο οποίος καλείται <<Bob>>. Ένα ελατήριο στρέψης αντιστέκεται στην δύναμη που τείνει να περιστρέψει το Bob. Το όργανο μετράει την μετατόπιση του Bob. Οι σταθερές του οργάνου (διαστάσεις και σταθερά ελατηρίου) έχουν ρυθμιστεί έτσι ώστε το πλαστικό ιξώδες και η τάση διολίσθησης να συνδέονται μεταξύ τους χρησιμοποιώντας τα αποτελέσματα των μετρήσεων στους συγκεκριμένους ρυθμούς περιστροφής 300 και 600 στροφών το λεπτό (rpm).

Τα βασικότερα πλεονεκτήματα του συγκεκριμένου ιξωδόμετρου είναι τα εξής:

- Έχει ένα εύρος στροφών από 0,02-600rpm συνεχόμενα και όχι μεμονωμένες τιμές.
- Φέρει θερμαινόμενο δοχείο για ρύθμιση σε θερμοκρασίες πέρα από την θερμοκρασία περιβάλλοντος.
- Διαθέτει λογισμικό που επιτρέπει τη ρύθμιση των παραμέτρων του πειράματος μέσω Η/Υ καθώς και τη δυνατότητα εκτέλεσης πειράματος σε πραγματικό χρόνο.
- Τα δεδομένα συλλέγονται σε ψηφιακή μορφή και βάση δεδομένων για περαιτέρω επεξεργασία.

3.3.2 ΔΙΑΔΙΚΑΣΙΑ ΠΕΙΡΑΜΑΤΟΣ:

Τα δείγματα που χρησιμοποιήθηκαν δεν χρειάστηκαν περαιτέρω επεξεργασία για την μέτρηση του ιξώδους. Το ειδικό θερμαινόμενο δοχείο του ιξωδομέτρου πληρώθηκε και με τα βήματα που θα περιγραφούν παρακάτω έγιναν οι μετρήσεις σε θερμοκρασία περιβάλλοντος. Σύμφωνα με τις οδηγίες του API που προαναφέρθηκε, ορίστηκαν στο λογισμικό του οργάνου (μέσω του H/Y που είναι συνδεδεμένος με το ιξωδόμετρο) κάποια συγκεκριμένα βήματα (steps) χρονικής διάρκειας 60 sec και με σταθερή ταχύτητα περιστροφής του rotor sleeve για κάθε βήμα. Η ταχύτητα στο πρώτο βήμα είναι 600 rpm και ορίστηκε στο όργανο πόσες μετρήσεις θέλαμε να πάρει μέσα στο διάστημα των 60sec. Στη συγκεκριμένη περίπτωση, αλλά και γενικότερα, 6 μετρήσεις σε κάθε βήμα (1 ανά 10 sec) ήταν ικανοποιητικός αριθμός. Σε κάθε βήμα επίσης ορίστηκε και η επιθυμητή θερμοκρασία του ρευστού μας ή απλά και μόνο την θερμοκρασία περιβάλλοντος. Παρακάτω φαίνονται τα βήματα αλλά και οι ταχύτητες περιστροφής που ορίστηκαν σύμφωνα με την μεθοδολογία.

Αριθμός βήματος	Ταχύτητα καλύμματος (rpm)	Διάρκεια (sec)
1	600	60
2	300	60
3	100	60
4	60	60
5	6	60
6	3	60

Το όργανο μετρά ταυτόχρονα, την διατμητική τάση, που ασκείται στον εσωτερικό συμπαγή κύλινδρο από το ρευστό (με μετατροπή της απόκλισης του ελατηρίου λόγω της ροπής που αναπτύσσεται από το κινούμενο ρευστό στον εσωτερικό κύλινδρο, όπως αναπτύχθηκε στην αρχή λειτουργίας του οργάνου), την θερμοκρασία, το ιξώδες κατευθείαν σε κάθε χρονική στιγμή μέτρησης και την δύναμη γέλης. Ταυτόχρονα μας υπολογίζει τον ρυθμό διάτμησης σε κάθε βήμα μετατρέποντας την περιστροφική ταχύτητα που του έχουμε ορίσει σε sec^{-1.}

Δίνοντας επομένως τις διάφορες περιστροφικές ταχύτητες στο περιστροφικό κάλυμμα, δημιουργείται μια διατμητική τάση από το ρευστό στον εσωτερικό κύλινδρο του οργάνου, έτσι σε αναφορά που τελικά μπορούμε να πάρουμε από το όργανο έχουμε τιμές της τ για κάθε βαθμίδα ταχύτητας γ. Έχουμε δηλαδή ζεύγη τιμών τ – γ από τα οποία μπορεί να κατασκευαστεί ένα διάγραμμα και να τοποθετηθούν τα ζεύγη αυτά των τιμών. Από την μορφή της καμπύλης που προσαρμόζεται στα δεδομένα, προκύπτουν τα συμπεράσματά μας για το ρεολογικό μοντέλο στο οποίο ανήκει η συμπεριφορά του ρευστού μας. [20].

3.4 ΦΑΣΜΑΤΟΣΚΟΠΙΑ ΥΠΕΡΥΘΡΟΥ

3.4.1 ΕΙΣΑΓΩΓΗ

Η φασματοσκοπία υπέρυθρου (infrared spectroscopy, IR) αποτελεί μία αναλυτική τεχνική διερεύνησης της μοριακής σύνταξης (δομής) και ταυτοποίησης των οργανικών, κυρίως, ενώσεων. Κύρια πεδία εφαρμογής της φασματοσκοπίας υπερύθρου είναι οι τομείς της οργανικής και της φαρμακευτικής χημείας. Σήμερα, το φασματοφωτόμετρο υπερύθρου αποτελεί ένα αναπόσπαστο όργανο μέτρησης κάθε αναλυτικού εργαστηρίου και κάθε εργαστηρίου βιομηχανίας, που δραστηριοποιείται σε εφαρμογές της οργανικής χημείας. Η υπέρυθρη ακτινοβολία ανακαλύφθηκε το 1800 από τον Sir William Herschel με πειράματα θερμικής αγωγιμότητας. Την εποχή εκείνη η φύση της ακτινοβολίας δεν ήταν ακόμα γνωστή. Ο Herschel διεξήγαγε πειράματα με σκοπό την ανάλυση της ηλιακής ακτινοβολίας με γυάλινο πρίσμα. Κατά την διάρκεια των πειραμάτων, τοποθετώντας θερμόμετρα σε διαδοχικές θέσεις του φάσματος, ανακάλυψε ότι το θερμόμετρο μετά το κόκκινο άκρο σημείωνε την υψηλότερη θερμοκρασία, υποδεικνύοντας την ύπαρξη μεγαλύτερης ροής θερμότητας. Με αυτό το απλό πείραμα ανακαλύφθηκε η υπέρυθρη περιοχή του ηλεκτρομαγνητικού φάσματος και συγχρόνως κατασκευάστηκε το πρώτο υπέρυθρο φασματοφωτόμετρο [21].

Αργότερα, με άλλα πειράματα ο Herchel μέτρησε την απορρόφηση της υπέρυθρης ακτινοβολίας από διάφορες ουσίες. Ωστόσο, δεν ήταν σε θέση να αξιολογήσει την

ανακάλυψή του και κυρίως τις πληροφορίες που μπορούσε να πάρει για τη μοριακή δομή των οργανικών ενώσεων από την απορρόφηση αυτού του είδους της ακτινοβολίας. Πριν εκτιμηθεί η σημασία της υπέρυθρης απορρόφησης, έπρεπε να κατανοηθεί καλύτερα η θεωρία και η φύση της ακτινοβολίας. Χρειάστηκε σχεδόν ένας αιώνας για να αναπτυχθούν η απαιτούμενη θεωρία, οι τεχνικές και η οργανολογία της υπέρυθρης ανάλυσης. Στις αρχές του 1903 ο William W. Colbentz, ένας νέος ερευνητής στο Cornell University, βελτίωσε τις πειραματικές τεχνικές και άρχισε τη μέτρηση των φασμάτων απορρόφησης διαφόρων καθαρών ουσιών. Το 1905 δημοσίευσε την πρώτη συλλογή φασμάτων απορρόφησης 131 ενώσεων [22]. Από το 1905 και μετά οι χημικοί που ασχολούνται με θέματα οργανικής χημείας, θεωρούν την υπέρυθρη φασματοσκοπία σαν μια μέθοδο ταυτοποίησης των ενώσεων και η χημική βιομηχανία χρησιμοποιεί τα φασματοφωτόμετρα υπερύθρου για την ποσοτική ανάλυση των οργανικών ενώσεων.

Είναι γνωστό ότι, όταν τα μόρια των ενώσεων εκτεθούν σε ακτινοβολία της οποίας το μήκος κύματος βρίσκεται στην περιοχή του υπέρυθρου φάσματος, τότε το μόριο απορροφά ένα μέρος της ακτινοβολίας και κατ' επέκταση της ενέργειας που αυτή φέρει. Με αυτόν τον τρόπο προκαλούνται διεγέρσεις μεταξύ των διαφόρων ενεργειακών σταθμών του μορίου. Οι διεγέρσεις αυτές περιλαμβάνουν δονήσεις και περιστροφές των δεσμών των ατόμων του μορίου. Ωστόσο, παρά την απορρόφηση ΙR ακτινοβολίας και την διέγερσή του, το μόριο εξακολουθεί να παραμένει στην θεμελιώδη ηλεκτρονική κατάσταση, δηλαδή τα ηλεκτρόνια δεν αλλάζουν στάθμη. Η περιοχή της υπέρυθρης ακτινοβολίας είναι η περιοχή του φάσματος που εκτείνεται από το ορατό μέχρι τα μικροκύματα, δηλαδή η φασματική περιοχή από 0,7 - 1000μm, ή σε κυματαριθμούς είναι 13300 - 10cm-1.

Η υπέρυθρη περιοχή του φάσματος της ακτινοβολίας υποδιαιρείται σε τρεις επιμέρους περιοχές:

1) την περιοχή του εγγύς υπέρυθρου (NIR, Near Infrared Spectroscopy), που εκτείνεται στην περιοχή των μηκών κύματος 0,75 - 2,5μm, ή αλλιώς στην περιοχή των κυματαριθμών 13300 - 4000 cm-1.

2) την θεμελιώδη περιοχή (IR, Mid-Infrared Spectroscopy), ή μέσο υπέρυθρο, που εκτείνεται στην περιοχή των μηκών κύματος 2,5 - 25μm, ή αλλιώς στην περιοχή των κυματαριθμών 4000 - 400cm-1, που είναι η συνηθέστερα χρησιμοποιούμενη στην Χημεία

3) την περιοχή του άπω υπέρυθρου (FIR, Far Infrared Spectroscopy), που εκτείνεται στην περιοχή των μηκών κύματος από 25 - 1000 μm, ή στην περιοχή των κυματαριθμών 400 -10 cm-1.

Η ευρεία χρήση της φασματοσκοπίας υπερύθρου στην θεμελιώδη περιοχή οφείλεται στο γεγονός ότι αυτή η περιοχή έχει την κατάλληλη ενέργεια για να ενεργοποιήσει τα μόρια και να προκαλέσει δονήσεις των δεσμών των ατόμων τους. Βασική προϋπόθεση για να απορροφήσουν υπέρυθρη ακτινοβολία οι δεσμοί των ατόμων κάποιας ένωσης είναι να μεταβάλλεται η διπολική ροπή τους. Εάν αυτό δε γίνεται, τότε οι δεσμοί δεν θα απορροφήσουν υπέρυθρη ακτινοβολία και η δόνηση θεωρείται ανενεργή στο υπέρυθρο. Όσο μεγαλύτερη είναι η μεταβολή της διπολικής ροπής, τόσο ισχυρότερη είναι η απορρόφηση. Ωστόσο, παρά την απορρόφηση ακτινοβολίας από τους δεσμούς των ατόμων των μορίων, τα άτομα εξακολουθούν να παραμένουν στην θεμελιώδη ηλεκτρονική κατάσταση. Για να γίνει καλύτερα κατανοητό το φαινόμενο της δόνησης των δεσμών μεταξύ των ατόμων ενός μορίου, θα θεωρηθεί ένας απλός διατομικός δεσμός σαν ένα ελατήριο που φέρει δυο μάζες στα άκρα του. Αν το σύστημα του ελατηρίου και των μαζών τεθεί σε παλμική κίνηση, τότε οι δονήσεις του συστήματος αυτού, μπορούν να περιγραφούν από τον νόμο της απλής αρμονικής ταλάντωσης του Hooke:

 $F = k^*XT$

Όπου,

F: η δύναμη επαναφοράς του ελατηρίου

k: η σταθερά του ελατηρίου και

ΧΤ: η συνολική μετατόπιση του ελατηρίου, ή αλλιώς η επιμήκυνση ή επιβράχυνση του ελατηρίου

Το είδος και η ένταση των δονήσεων των δεσμών σε ένα μόριο, όταν απορροφούν υπέρυθρη ακτινοβολία, είναι χαρακτηριστικά για κάθε είδος δεσμού, όπως και οι περιοχές μηκών κύματος της ακτινοβολίας. Συνεπώς, η απορρόφηση που παρουσιάζεται σε διάφορες περιοχές του υπερύθρου φάσματος μίας ένωσης, εξαρτάται από το είδος και τον αριθμό των δεσμών που περιέχονται στα μόρια της. Με βάση τα παραπάνω, γίνεται σαφές πως το φάσμα απορρόφησης μίας ένωσης είναι χαρακτηριστικό της σύστασής της και μπορεί να χρησιμοποιηθεί για την ταυτοποίηση της. Χαρακτηριστικά πεδία εφαρμογής της φασματοσκοπίας υπερύθρου είναι τα μίγματα οργανικών ενώσεων, όπως το πετρέλαιο, όπου γίνεται ταυτοποίηση των ομάδων των υδρογονανθράκων που περιέχουν. Τα είδη των δονήσεων που παρουσιάζονται στα μόρια των διαφόρων ενώσεων μπορούν να υποδιαιρεθούν στις ακόλουθες κατηγορίες (εικόνα 3.4):

Α. Δονήσεις τάσης (stretching vibrations) οι οποίες παράγονται όταν δύο συνδεδεμένα άτομα πάλλονται συνεχώς μεταξύ τους, μεταβάλλοντας τη μεταξύ τους απόσταση κατά μήκος του άξονα του δεσμού. Οι δονήσεις αυτές μπορεί να είναι είτε μεμονωμένες, όπως συμβαίνει στον δεσμό Ο – Η είτε συζευγμένες, όπως

για παράδειγμα η ομάδα του μεθυλενίου. Οι συζευγμένες δονήσεις διακρίνονται σε συμμετρικές (symmetric stretching) και ασύμμετρες (asymmetric stretching).

B. Δονήσεις κάμψης (bending vibrations) οι οποίες χαρακτηρίζονται από μία συνεχή μεταβολή της γωνίας μεταξύ δύο δεσμών και διακρίνονται στους εξής τέσσερις τύπους:

- Δονήσεις ψαλιδιού ή παραμόρφωσης (scissoring or deformation vibrations) οι οποίες παράγονται όταν δύο άτομα που είναι συνδεδεμένα με ένα κεντρικό άτομο κινούνται εμπρός πίσω εντός του επιπέδου ισορροπίας (inplane) και προς τη μεταξύ τους διεύθυνση.
- Δονήσεις αιώρησης (rocking vibrations) οι οποίες συμβαίνουν όταν μία μη γραμμική δομική μονάδα τριών ατόμων δονείται εμπρός και πίσω εντός του επιπέδου ισορροπίας (in-plane) που σχηματίζεται από τα άτομα και τους δύο δεσμούς.
- Δονήσεις σείσης (wagging vibrations) οι οποίες παράγονται όταν μία μη γραμμική δομική μονάδα τριών ατόμων δονείται εκτός του επιπέδου ισορροπίας (out-of-plane) που σχηματίζεται από τα άτομα και τους δύο δεσμούς.

Δονήσεις συστροφής (twisting vibrations) οι οποίες λαμβάνουν χώρα όταν μία δομική μονάδα τριών ατόμων συστρέφεται γύρω από τον δεσμό σύνδεσης με το υπόλοιπο τμήμα του μορίου εκτός του επιπέδου ισορροπίας (out-of-plane).

Εικόνα 3.4: Βασικοί τύποι δονήσεων τάσης και κάμψης των μοριακών δομών στην IR φασματοσκοπία.

Κατά τον συμβολισμό, το (+) σημαίνει κίνηση πάνω από το επίπεδο της σελίδας ενώ το (–) σημαίνει κίνηση έξω από αυτό [23].

3.4.2 ΓΕΝΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΥΠΕΡΥΘΡΗΣ ΦΑΣΜΑΤΟΣΚΟΠΙΑΣ

Η φασματοσκοπία υπερύθρου αποτελεί μία από τις πιο διαδεδομένες αναλυτικές μεθόδους και χρησιμοποιείται για τη μελέτη και τον χαρακτηρισμό υλικών σε πολύ μεγάλο εύρος επιστημονικών πεδίων όπως στην οργανική και ανόργανη Χημεία, στη Βιολογία, στις Τηλεπικοινωνίες και στον τομέα της Ηλεκτρονικής. Εφόσον το φάσμα υπερύθρου αποτελεί το «δακτυλικό αποτύπωμα» (fingerprint) κάθε μορίου, η IR φασματοσκοπία είναι πολύ χρήσιμο εργαλείο για τον χαρακτηρισμό της μοριακής δομής και την ταυτοποίηση μιας μεγάλης ποικιλίας ανόργανων, οργανικών, βιολογικών και άλλων υλικών που μπορεί να περιλαμβάνουν δομικά υλικά, κεραμικά, γυαλί, επιστρώσεις, λεπτά υμένια, μέταλλα, σύνθετα υλικά, πολυμερή,

συνθετικές και βιολογικές μεμβράνες κ.ά. Η εξέταση και ταυτοποίηση χημικών ενώσεων με την IR φασματοσκοπία μπορεί να εφαρμοστεί τόσο σε ερευνητικό επίπεδο όσο και σε επίπεδο ποιοτικού και ποσοτικού ελέγχου σε μεγάλο πλήθος βιομηχανικών εφαρμογών όπως στη φαρμακευτική βιομηχανία, στη βιομηχανία τροφίμων και ποτών για τον ποιοτικό και ποσοτικό έλεγχο, στη βιομηχανία και παραγωγή χρωμάτων, στη βιομηχανία πολτού και χαρτιού, στον τομέα της περιβαλλοντικής έρευνας, στον τομέα της επιστήμης και τεχνολογίας των πολυμερών, στις ιατρικές επιστήμες και στον επιστημονικό χώρο της αρχαιολογική έρευνας [24,25].

3.4.3 ΑΡΧΕΣ ΛΕΙΤΟΥΡΓΙΑΣ ΦΑΣΜΑΤΟΣΚΟΠΙΑΣ FTIR

Η φασματοσκοπία λοιπόν είναι μια τεχνική ανάλυσης που παρέχει πληροφορίες σχετικά με τη μοριακή δομή και τους χημικούς δεσμούς των υλικών. Αυτά τα υλικά μπορούν να είναι οργανικά ή ανόργανα. Το FTIR χρησιμοποιείται κυρίως για τον προσδιορισμό αγνώστων υλικών.

Η τεχνική FTIR λειτουργεί στο γεγονός ότι χημικοί δεσμοί και ομάδες χημικών δεσμών των μορίων δονούνται σε ορισμένες (χαρακτηριστικές) συχνότητες. Ειδικότερα, τα μόρια που είναι εκτεθειμένα σε υπέρυθρες ακτίνες απορροφούν τις ακτίνες σε συχνότητες που είναι μοναδικές σε αυτά τα μόρια. Η ανάλυση μπορεί να πραγματοποιηθεί σε αέρια, υγρά και στερεά. Ως αποτέλεσμα, η φασματοσκοπία FTIR είναι μια πολύ χρήσιμη τεχνική για τον προσδιορισμό αγνώστων συστατικών ενός μίγματος.

Κατά τη διάρκεια της φασματοσκοπίας FTIR, ένα μέρος του δείγματος υποβάλλεται σε μία διαμορφωμένη υπέρυθρη ακτίνα . Η διαπερατότητα του δείγματος και η ανάκλαση των υπέρυθρων ακτίνων σε διαφορετικές συχνότητες μεταφράζεται σε ένα οικόπεδο απορρόφησης υπερύθρου. Το οικόπεδο αυτό αναφέρεται ως το προκύπτον διάγραμμα φάσματος FTIR . Αποτελείται από κορυφές και κοιλάδες που μπορούν να αναλυθούν και να συνδυαστούν με γνωστές υπογραφές των προσδιορισμένων υλικών.

Τα φασματοφωτόμετρα υπερύθρου FTIR ανήκουν στην κατηγορία των φασματοφωτομέτρων, που δεν έχουν επιλογέα μήκους κύματος (μονοχρωμάτορα) και χρησιμοποιούν τον μετασχηματισμό Fourrier για την δημιουργία του φάσματος. Στο όργανο αυτό αντί του μονοχρωμάτορα, χρησιμοποιείται το σαρωτικό συμβολόμετρο του Michelson με το οποίο αναλύεται η υπέρυθρη ακτινοβολία.

Η ανάλυση κατά Fourier ή αλλιώς ο μετασχηματισμός Fourier είναι η ανάλυση μιας μαθηματικής συνάρτησης ή μιας πειραματικής καμπύλης με την μορφή μιας τριγωνομετρικής σειράς. Χρησιμοποιείται ως μέθοδος προσδιορισμού των αρμονικών συστατικών ενός πολύπλοκου περιοδικού κύματος, όπως αυτό που προέρχεται από τα φασματοφωτόμετρα FTIR [22].

ΣΥΝΤΟΜΟΣ ΠΙΝΑΚΑΣ ΣΥΧΝΟΤΗΤΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΟΜΑΔΩΝ

Δεσμός	Είδος ένωσης	Εύρος συχνοτήτων, cm ⁻¹	Ένταση
С-Н	Αλκάνια	2850-2970	Ισχυρή
		1340-1470	Ισχυρή
С–Н	Αλκένια $\left(\ge C = C \lt H \right)$	3010-3095	Μέτρια
	Anno Ann Grantomy anno a	675-995	Ισχυρή
С-Н	Αλκίνια (-C≡C-H)	3300	Ισχυρή
С-Н	Αρωματικοί δακτύλιοι	3010-3100	Μέτρια
		690-900	Ισχυρή
O-H	Μονομερείς αλκοόλες, φαινόλες	3590-3650	Κυμαινόμενη
	Αλκοόλες, φαινόλες με δεσμούς υδρογόνου	3200-3600	Κυμαινόμενη, μερικές φορές πλατιά
	Μονομερή καρβοξυλικά οξέα	3500-3650	Μέτρια
	Καρβοξυλικά οξέα με δεσμούς υδρογόνου	2500-2700	Πλατιά
N-H	Αμίνες, αμίδια	3300-3500	Μέτρια
C=C	Αλκένια	1610-1680	Κυμαινόμενη
C=C	Αρωματικοί δακτύλιοι	1500-1600	Κυμαινόμενη
$C \equiv C$	Αλκίνια	2100-2260	Κυμαινόμενη
C-N	Αμίνες, αμίδια	1180-1360	Ισχυρή
C≡N	Νιτρίλια	2210-2280	Ισχυρή
С-О	Αλκοόλες, αιθέρες, καρβοξυλικά οξέα, εστέρες	1050-1300	Ισχυρή
C=O	Αλδεΰδες, κετόνες, καρβοξυλικά οξέα, εστέρες	1690-1760	Ισχυρή
NO ₂	Νιτροενώσεις	1500-1570	Ισχυρή
Biometr		1300-1370	Ισχυρή

3.4.4 ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ

Η φασματοσκοπική ανάλυση πραγματοποιήθηκε στο φασματοφωτόμετρο υπερύθρου FTIR Spectrum 1000 της εταιρείας Perkin-Elmer με ανιχνευτή DGTS (δευτεριωμένης θειϊκης τριγλυκίνης). Τα δείγματα εισήχθησαν χρησιμοποιώντας μία οριζόντια κυψελίδα ολικής ανάκλασης HATR (Pike Technologies) με κρύσταλλο σεληνιούχου ψευδαργύρου (ZnSe). Τα δείγματα αναλύθηκαν στην φασματική περιοχή των 4000 - 650cm-1, με βήμα 2cm-1 και αριθμό σαρώσεων

Αρχικά τοποθετείται η κυψελίδα και λαμβάνεται το φάσμα του background. Στη συνέχεια γεμίζεται η κυψελίδα με το γαλάκτωμα και λαμβάνεται το φάσμα του (scan sample). Το λογισμικό του οργάνου αφαιρεί αυτόματα από αυτό το φάσμα background ώστε να φαίνονται οι απορροφήσεις που οφείλονται μόνο στο γαλάκτωμα.

3.4.5 ΠΛΕΟΝΕΚΤΗΜΑΤΑ ΧΡΗΣΗΣ ΛΟΓΙΣΜΙΚΟΥ SPECTRUM

Η χρήση υπολογιστή στην φασματοφωτομετρία FTIR προσφέρει την δυνατότητα ταχείας λήψης πολλαπλών φασμάτων, υπολογισμού του μέσου όρου τους, επεξεργασίας και αποθήκευσης των δεδομένων. Αυτό συνεπώς οδηγεί στη μέτρηση φασμάτων υψηλής ποιότητας. Είναι δυνατή επίσης η αφαίρεση φασμάτων (difference spectroscopy), η σύγκρισή τους με άλλα που βρίσκονται σε συγκεκριμένο αρχείο καθώς και η αναζήτηση φασμάτων από συγκεκριμένη ηλεκτρονική βιβλιοθήκη.

3.4.6 ΧΕΙΡΙΣΜΟΣ ΔΕΙΓΜΑΤΟΣ

Τα δείγματα, τα οποία μπορεί να είναι σε αέρια, υγρή ή στερεή κατάσταση, τοποθετούνται πάνω σε κυψελίδες (εικόνα 3.5), οι οποίες είναι συναρμολογούμενες και διαθέτουν πλαίσια ρύθμισης διαδρομής (αποστάτες, spacers) από Teflon ώστε να είναι δυνατή η ρύθμιση της οπτικής διαδρομής. Για τις κυψελίδες αυτές: Δεν αγγίζονται οι επιφάνειες των παραθύρων, φυλλάσονται σε ξηραντήρα, αποφεύγεται η χρήση υγροσκοπικών υγρών και διαλυμάτων, για τον καθαρισμό τους γίνεται έκπλυση με κατάλληλο οργανικό διαλύτη και ξήρανση με διαβίβαση ξηρού αζώτου και όχι αέρα και τέλος γεμίζονται και αδειάζονται με σύριγγα [26].

Εικόνα 3.5: Κελί εισαγωγής δείγματος

ΚΕΦΑΛΑΙΟ 4: ΠΑΡΟΥΣΙΑΣΗ-ΑΝΑΛΥΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

Στο κεφάλαιο αυτό παρουσιάζονται ο υπολογισμός επίδρασης των παραγόντων χρόνος,στροφές και αλατότητα στην πυκνότητα και την περιεκτικότητα του νερού με τη μέθοδο προσδιορισμού νερού σε πετρελαιοειδή με απόσταξη ASTM D95-05, καθώς και ο υπολογισμός του αποτελέσματος των αλληλεπιδράσεων των παραγόντων που προαναφέρθηκαν για χρόνο γήρανσης των γαλακτωμάτων: 0 ημέρες, 7 ημέρες, 14 ημέρες και 21 ημέρες.

4.1 ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΩΝ ΚΥΡΙΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΕΠΙ ΤΗΣ ΑΠΟΚΡΙΣΗΣ

Η μεταβολή της απόκρισης ενός συστήματος, η οποία οφείλεται στην αλλαγή ενός παράγοντα από την χαμηλότερη στην υψηλότερη τιμή του αναφέρεται ως κύριο αποτέλεσμα του παράγοντα αυτού και υπολογίζεται ως ο μέσος όρος των αποτελεσμάτων του συγκεκριμένου παράγοντα για όλους τους συνδυασμούς των υπόλοιπων παραγόντων. Ανάλογα με το μέγεθος του αποτελέσματος οι παράγοντες χαρακτηρίζονται σημαντικοί ή μη. Το κύριο αποτέλεσμα ενός μεμονωμένου παράγοντα ισούται με την διαφορά των μέσων όρων των αποκρίσεων του συστήματος στο υψηλό επίπεδο (επίπεδο +) και το χαμηλό επίπεδο (επίπεδο -) τιμών του. Όπως φαίνεται παρακάτω στον πίνακα 4.1.1 κάθε ζεύγος διαδοχικών πειραμάτων αναδεικνύει την επίδραση του χρόνου στην πυκνότητα, δεδομένου ότι οι άλλο δύο παράγοντες διατηρούνται σταθεροί.

Η μορφή του πειραματικού πλάνου, όπως παρουσιάζεται στον πίνακα αυτό ονομάζεται πρότυπη μορφή (standard form). Σύμφωνα με την μορφή αυτή ο πρώτος παράγοντας εμφανίζεται με διαδοχικά πρόσημα μείον και συν, ο δεύτερος με διαδοχικά ζεύγη μείον και συν αντίστοιχα ενώ ο τρίτος παράγοντας εισάγεται με διαδοχικές τετράδες αρνητικών και θετικών πρόσημων.

Στην εικόνα 4.1 παρουσιάζεται γραφικά το πλήρες παραγοντικό πείραμα με τις συνθήκες των δοκιμών που επιλέχθηκαν.

Εικόνα 4.1: Παραγοντικός σχεδιασμός για ένα σύστημα τριών παραγόντων X1, X2 και X3

4.2 ΥΠΟΛΟΓΙΣΜΟΣ ΕΠΙΔΡΑΣΗΣ ΠΑΡΑΓΟΝΤΩΝ ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΓΑΛΑΚΤΩΜΑΤΩΝ

Παρουσιάζονται σε πίνακα αναλυτικά οι τιμές των παραγόντων χρόνος, στροφές και αλατότητα για κάθε γαλάκτωμα, οι οποίοι καθορίζουν τη συμπεριφορά τους, αλλά και οι μετρήσεις της πυκνότητας καθώς και της περιεκτικότητας του νερού με τη μέθοδο προσδιορισμού νερού σε πετρελαιοειδή με απόσταξη ASTM D95-05, για την πρώτη ημέρα δημιουργίας των γαλακτωμάτων.

Στη συνέχεια παρουσιάζονται οι τιμές των κύριων αποτελεμάτων που προκύπτουν από την επίδραση του χρόνου ανάδευσης για τη δημιουργία των γαλακτωμάτων, των στροφών ανάδευσης αλλά και της αλατότητας του νερού στην πυκνότητα αυτών αλλά και στην περιεκτικότητα του νερού που προκύπτει με τη μέθοδο προσδιορισμού νερού σε πετρελαιοειδή με απόσταξη ASTM D95-05 για την πρώτη ημέρα δημιουργίας των γαλακτωμάτων.

Πίνακας 4.2.1: Τιμές των παραγόντων χρόνος, στροφές, αλατότητα και των ιδιοτήτων πυκνότητα και περιεκτικότητα νερού για χρόνο γήρανσης των γαλακτωμάτων=0 ημέρες

ΑΡΙΘΜΟΣ ΠΕΙΡΑΜΑΤΟΣ	XPONOΣ (min)	ΣΤΡΟΦΕΣ (rpm)	AAATOTHTA (%)	ПҮКNOTHTA (gr/cm ³)	ПЕРІЕКТІКОТНТА NEPOY (mL)
1	2	3000	0	0.9241	4.1
2	10	3000	0	0.9414	5.6
3	2	5000	0	0.9282	5.0
4	10	5000	0	0.9467	5.6
5	2	3000	33	0.9420	4.9
6	10	3000	33	0.9489	5.8
7	2	5000	33	0.9495	6.0
8	10	5000	33	0.9561	6.7

Στον παρακάτω πίνακα 4.2.2 παρουσιάζονται οι επιδράσεις των παραγόντων χρόνος, στροφές και αλατότητα ξεχωριστά στην πυκνότητα (όπου συμβολίζεται με y) για χρόνο γήρανσης των γαλακτωμάτων=0 ημέρες.

Πίνακας 4.2.2: Η επίδραση του χρόνο, των στροφών και της αλατότητας στην πυκνότητα στην πυκνότητα

ΕΠΙΔΡΑΣΗ ΧΡΟΝΟΥ	ΣΤΡΟΦΕΣ	ΑΛΑΤΟΤΗΤΑ		
y2-y1=0.9414-0.9241=	3000	0		
0.0173				
y4-y3=0.9467-0.9282=	5000	0		
0.00185				
y6-y5=0.9489-0.9420=	3000	33		
0.0069				
y8-y7=0.9561-0.9495=	5000	33		
0.0066				
ΚΥΡΙΟ ΑΠΟΤΕΛΕΣΜΑ= 0.0	0123			
ΕΠΙΔΡΑΣΗ ΣΤΡΟΦΩΝ	ΧΡΟΝΟΣ	ΑΛΑΤΟΤΗΤΑ		
y3-y1=0.9282-0.9241=	2	0		
0.0041				
y4-y2=0.9467-0.9414=	10	0		
0.0053				
y7-y5=0.9495-0.9420=	2	33		
0.0075				
y8-y6=0.9561-0.9489=	10	33		
0.0072				
ΚΥΡΙΟ ΑΠΟΤΕΛΕΣΜΑ= 0.	0060			
ΕΠΙΔΡΑΣΗ ΑΛΑΤΟΤΗΤΑΣ	ΧΡΟΝΟΣ	ΣΤΡΟΦΕΣ		
y5-y1=0.9420-0.9241=	2	3000		
0.0179				
y6-y2=0.9489-0.9414=	10	5000		
0.0075				
y7-y3=0.9495-0.9282=	2	3000		
0.0213				
y8-y4=0.9561-0.9467=	10	5000		
0.0094				
ΚΥΡΙΟ ΑΠΟΤΕΛΕΣΜΑ= 0.0140				

Στον πίνακα 4.2.3 παρουσιάζονται οι επιδράσεις των παραγόντων χρόνος, στροφές και αλατότητα στον προσδιορισμό νερού με απόσταση ASTM (όπου συμβολίζεται με x), για χρόνο γήρανσης των γαλακτωμάτων=0 ημέρες.

Πίνακας 4.2.3: Η επίδραση του χρόνου, των στροφών και της αλατότητας στην περιεκτικότητα νερού με απόσταξη ASTM (για την πρώτη ημέρα)

ΕΠΙΔΡΑΣΗ ΧΡΟΝΟΥ	ΣΤΡΟΦΕΣ	ΑΛΑΤΟΤΗΤΑ	
x2-x1=5.6-4.1= 1.5	3000	0	
x4-x3=5.6-5= 0.6	5000	0	
x6-x5=5.8-4.9= 0.9	3000	33	
x8-x7=6.7-6= 0.7	5000	33	
ΚΥΡΙΟ ΑΠΟΤΕΛΕΣΜΑ= 0.9	9		
ΕΠΙΔΡΑΣΗ ΣΤΡΟΦΩΝ	ΧΡΟΝΟΣ	ΑΛΑΤΟΤΗΤΑ	
x3-x1=5-4.1= 0.9	2	0	
x4-x2=5.6-5.6= 0	10	0	
x7-x5=6-4.9= 1.1	2	33	
x8-x6=6.7-5.8= 0.9	10	33	
ΚΥΡΙΟ ΑΠΟΤΕΛΕΣΜΑ= 0.7			
ΕΠΙΔΡΑΣΗ ΑΛΑΤΟΤΗΤΑΣ	ΧΡΟΝΟΣ	ΣΤΡΟΦΕΣ	
x5-x1=4.9-4.1= 0.8	2	3000	
x6-x2=5.8-5.6= 0.2	10	5000	
x7-x3=6-5= 1	2	3000	
x8-x4=6.7-5.6= 1.1	10	5000	
ΚΥΡΙΟ ΑΠΟΤΕΛΕΣΜΑ= 0.2	7		

Στον παρακάτω πίνακα 4.2.3 παρουσιάζονται συγκεντρωμένα τα κύρια αποτελέσματα της επίδρασης του χρόνου ανάμιξης, της έντασης των στροφών και της αλατότητας στην πυκνότητα και στην περιεκτικότητα του νερού.

Πίνακας 4.2.4: Συνοπτικά η επίδραση των τριών παραγόντων επί της πυκνότητας και της περιεκτικότητας του νερού

	ΠΥΚΝΟΤΗΤΑ	ΠΕΡΙΕΚΤΙΚΟΤΗΤΑ
ΧΡΟΝΟΣ	0.0123	0.9
ΣΤΡΟΦΕΣ	0.0060	0.7
ΑΛΑΤΟΤΗΤΑ	0.0140	0.7

Τα κύρια αποτελέσματα προκύπτουν από το μέσο όρο των παραπάνω πράξεων για τα γ και x. Από την εξέταση των παραπάνω αποτελεσμάτων συμπεραίνουμε ότι η αλατότητα επηρρεάζει κυρίως την πυκνότητα (κύριο αποτέλεσμα=0.0140) και δευτερευόντως ο χρόνος ανάμιξης(κύριο αποτέλεσμα=0.0123), ενώ ακόμα λιγότερο η ένταση των στροφών (κύριο αποτέλεσμα=0.0060). Επίσης συμπεραίνουμε ότι ο χρόνος ανάμειξης επηρεάζει κυρίως την περιεκτικότητα του νερού (κύριο αποτέλεσμα=0.9) και δευτερευόντως η αλατότητα (κύριο αποτέλεσμα=0.7) και η ένταση των στροφών (κύριο αποτέλεσμα=0.7)

Στα παρακάτω σχήμα 4.2.1 φαίνεται η επίδραση του χρόνου, των στροφών και της αλατότητας στην πυκνότητα για χρόνο γήρανσης των γαλακτωμάτων=0 ημέρες.

Σχήμα 4.2.1: Η επίδραση του χρόνου, των στροφών και της αλατότητας στην πυκνότητα

Στο παρακάτω σχήμα 4.2.2 φαίνεται η επίδραση του χρόνου ,των στροφών και της αλατότητας στην περιεκτικότητα του νερού για χρόνο γήρανσης των γαλακτωμάτων=0 ημέρες.

Σχήμα 4.2.2: Η επίδραση του χρόνου, των στροφών και της αλατότητας στην περιεκτικότητα του νερού

4.3. ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΥ ΑΠΟΤΕΛΕΣΜΑΤΟΣ ΤΩΝ ΑΛΛΗΛΕΠΙΔΡΑΣΕΩΝ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΧΡΟΝΟΣ, ΣΤΡΟΦΕΣ, ΑΛΑΤΟΤΗΤΑ

Σε πολλές περιπτώσεις η μεταβολή κάποιου παράγοντα επιφέρει και αλλαγή στο μέγεθος της επίδρασης κάποιου άλλου παράγοντα. Για παράδειγμα η επίδραση του χρόνου μπορεί να είναι διαφορετική υπό διαφορετικές τιμές κάποιου άλλου παράγοντα, όπως οι στροφές. Προφανώς ένας επιτυχής πειραματικός σχεδιασμός πρέπει να περιλαμβάνει και την διερεύνηση και την "ποσοτικοποίηση" των αποτελεσμάτων που οφείλονται σε αλληλοεπιδράσεις των παραγόντων. Ως αποτέλεσμα της αλληλοεπίδρασης του χρόνου, των στροφών και της αλατότητας στην πυκνότητα και στον προσδιορισμό νερού με απόσταξη ASTM αναφέρεται η ημιδιαφορά των μέσων όρων των αποτελεσμάτων του κάθε παράγοντα για τις δύο

Για την πρώτη ημέρα παρασκευής των γαλακτωμάτων: Μέσο αποτέλεσμα του χρόνου με την αλατότητα 0:

$$\frac{y^2 - y^1 + y^4 - y^3}{2} = \frac{0.9414 - 0.9241 + 0.9467 - 0.9282}{2} = 0.0179$$

Μέσο αποτέλεσμα του χρόνου με την αλατότητα 33:

 $\frac{y6 - y5 + y8 - y7}{2} = \frac{0.9489 - 0.9420 + 0.9561 - 0.9495}{2} = 0.00675$

Στον πίνακα 4.3.1 που ακολουθεί φαίνονται συγκεντρωτικά τα μέσα αποτελέσματα του χρόνου με την αλατότητα.

Πίνακας 4.3.1:	Συνοπτικά τ	τα μέσα	αποτελέσματα	χρόνου-αί	λατότητας
muunus 4.3.1.	2010/11/14	ια μεσα	unotencoputu	Aporoo ui	utotiftus

	ΑΛΑΤΟΤΗΤΑ 0	ΑΛΑΤΟΤΗΤΑ 33	
ΧΡΟΝΟΣ	0.0179	0.00675	

Στο παρακάτω σχήμα 4.3.1 φαίνεται το μέσο αποτέλεσμα της αλληλεπίδρασης του χρόνου με την αλατότητα, για χρόνο γήρανσης των γαλακτωμάτων=0 ημέρες.

Σχήμα 4.3.1: Διάγραμμα μέσου αποτελέσματος χρόνου-αλατότητας

Σύμφωνα με το παραπάνω διάγραμμα συμπεραίνουμε πως όσο μικρότερη είναι η αλατότητα του νερού τόσος περισσότερος είναι ο χρόνος ανάδευσης για τη δημιουργία γαλακτώματος. Το μέσο αποτέλεσμα του χρόνου με την αλατότητα 33 είναι 0.0179, ενώ το μέσο αποτέλεσμα του χρόνου με την αλατότητα 0 είναι 0.00675.

Με όμοιο τρόπο υπολογίζεται η αλληλεπίδραση του χρόνου με τις στροφές:

Μέσο αποτέλεσμα του χρόνου με τις 3000 στροφές:

$$\frac{y2 - y1 + y6 - y5}{2} = \frac{0.9414 - 0.9241 + 0.9489 - 0.9420}{2} = 0.0121$$

Μέσο αποτέλεσμα του χρόνου με τις 5000 στροφές:

$$\frac{y4 - y3 + y8 - y7}{2} = \frac{0.9467 - 0.9282 + 0.9561 - 0.9495}{2} = 0.0119$$

Στον πίνακα 4.3.2 που ακολουθεί φαίνονται συγκεντρωτικά τα μέσα αποτελέσματα του χρόνου με τις στροφές.

_/		,	• •	,	,
$\Pi_{i} \cup \alpha \vee \alpha \land A = 2 \cdot S$	πυρατικά τα	νιιćσα	αποτελέσμα	τα νοόνου	στοριών
πνακάς 4.5.2. Ζ	.υνυπικά π	ι μευα	αποτελεσμα		-0100000
,		,		70	

	3000 ΣΤΡΟΦΕΣ	5000 ΣΤΡΟΦΕΣ	
ΧΡΟΝΟΣ	0.0121	0.0119	

Στο παρακάτω σχήμα 4.3.2 φαίνεται το μέσο αποτέλεσμα της αλληλεπίδρασης του χρόνου με τις στροφές, για χρόνο γήρανσης των γαλακτωμάτων=0 ημέρες.

Σχήμα 4.3.2: Διάγραμμα μέσου αποτελέσματος χρόνου-στροφών

Σύμφωνα με το παραπάνω διάγραμμα συμπεραίνουμε πως όσες περισσότερες είναι οι στροφές ανάδευσης τόσος λιγότερος είναι ο χρόνος που απαιτείται για τη δημιουργία γαλακτώματος. Το μέσο αποτέλεσμα του χρόνου με τις 5000 στροφές είναι 0.0119, ενώ το μέσο αποτέλεσμα του χρόνου με τις 3000 στροφές είναι 0.0121. Ωστόσο, παρατηρούμε πως η διαφορά είναι αρκετά μικρή, άρα οι στροφές δεν καθορίζουν σημαντικά το χρόνο ανάδευσης.

4.4 ΠΑΡΟΥΣΙΑΣΗ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΤΩΝ ΦΑΣΜΑΤΩΝ ΤΩΝ ΓΑΛΑΚΤΩΜΑΤΩΝ

Στα παρακάτω σχήματα παρουσίαζονται οι καμπύλες απορρόφησης νερού για χρόνο γήρανσης 0 ημέρες, για χρόνο γήρανσης 7 ημέρες, για χρόνο γήρανσης 14 ημέρες και για χρόνο γήρανσης 21 ημέρες.

Γαλάκτωμα 3000-2-0

Σχήμα 4.4.1: Καμπύλες απορρόφησης νερού για το γαλάκτωμα 3000-2-0

Γαλάκτωμα 3000-10-0

Σχήμα 4.4.2: Καμπύλες απορρόφησης νερού για το γαλάκτωμα 3000-10-0

Γαλάκτωμα 5000-2-0

Σχήμα 4.4.3: Καμπύλες απορρόφησης νερού για το γαλάκτωμα 5000-2-0

Γαλάκτωμα 5000-10-0

Σχήμα 4.4.4: Καμπύλες απορρόφησης νερού για το γαλάκτωμα 5000-10-0

Γαλάκτωμα 3000-2-33

Σχήμα 4.4.5: Καμπύλες απορρόφησης νερού για το γαλάκτωμα 3000-2-33

Γαλάκτωμα 3000-10-33

Σχήμα 4.4.6: Καμπύλες απορρόφησης νερού για το γαλάκτωμα 3000-10-33

Σχήμα 4.4.7: Καμπύλες απορρόφησης νερού για το γαλάκτωμα 5000-2-33

Γαλάκτωμα 5000-10-33

Σχήμα 4.4.8: Καμπύλες απορρόφησης νερού για το γαλάκτωμα 5000-10-33

Γαλάκτωμα 4000-6-16-κ1

Σχήμα 4.4.9: Καμπύλες απορρόφησης νερού για το γαλάκτωμα 4000-6-16-κ1

Γαλάκτωμα 4000-6-16-κ2

Σχήμα 4.4.10: Καμπύλες απορρόφησης νερού για το γαλάκτωμα 4000-6-16-κ2

Σχήμα 4.4.11: Καμπύλες απορρόφησης νερού για το γαλάκτωμα 4000-6-16-κ3

4.5 ΥΠΟΛΟΓΙΣΜΟΣ ΥΨΩΝ ΤΗΣ ΚΑΜΠΥΛΗΣ ΑΠΟΡΡΟΦΗΣΗΣ ΝΕΡΟΥ ΤΩΝ ΦΑΣΜΑΤΩΝ ΤΩΝ ΓΑΛΑΚΤΩΜΑΤΩΝ ΚΑΙ ΣΥΓΚΡΙΣΗ ΜΕ ΤΙΣ ΠΕΡΙΕΚΤΙΚΟΤΗΤΕΣ ΝΕΡΟΥ ΜΕ ΤΗΝ ΜΕΘΟΔΟ ΤΗΣ ΑΠΟΣΤΑΞΗΣ ASTM D95-05

Παρουσιάζονται τα διαγράμματα του ύψους της χαρακτηριστικής καμπύλης απορρόφησης νερού των γαλακτωμάτων νερού σε πετρέλαιο, που μελετήθηκαν με το πρόγραμμα Essential FTIR, για χρόνο γήρανσης των γαλακτωμάτων: 0 ημέρες, 7 ημέρες, 14 ημέρες και 21 ημέρες, με τις περιεκτικοτήτες του νερού με τη μέθοδο προσδιορισμού νερού σε πετρελαιοειδή με απόσταξη ASTM D95-05. Τα φάσματα των γαλακτωμάτων παρουσιάζονται συγκεντρωτικά στο **ΠΑΡΑΡΤΗΜΑ 1**, ενώ συγκεντρωτικά στο **ΠΑΡΑΡΤΗΜΑ 2** παρουσιάζονται οι τιμές των μέγιστων υψών των καμπυλών απορρόφησης νερού των φασμάτων των γαλακτωμάτων και των περιεκτικοτήτων νερού με τη μέθοδο προσδιορισμού νερού σε πετρελαιοειδή με απόσταξη ASTM D95-05.

Στο παρακάτω σχήμα 4.5.1 φαίνεται το διάγραμμα ύψους κορυφών φασμάτων με την περιεκτικότητας του νερού των γαλακτωμάτων, για χρόνο γήρανσης=0 ημέρες

Σχήμα 4.5.1: Διάγραμμα ύψους κορυφών φασμάτων-περιεκτικότητας νερού

Στο παρακάτω σχήμα 4.5.2 φαίνεται το διάγραμμα ύψους κορυφών φασμάτων με την περιεκτικότητας του νερού των γαλακτωμάτων, για χρόνο γήρανσης=7 ημέρες

Σχήμα 4.5.2: Διάγραμμα ύψους κορυφών φασμάτων-περιεκτικότητας νερού

Στο παρακάτω σχήμα 4.5.3 φαίνεται το διάγραμμα ύψους κορυφών φασμάτων με την περιεκτικότητας του νερού των γαλακτωμάτων, για χρόνο γήρανσης=14 ημέρες

Σχήμα 4.5.3: Διάγραμμα ύψους κορυφών φασμάτων-περιεκτικότητας νερού

Στο παρακάτω σχήμα 4.5.4 φαίνεται το διάγραμμα ύψους κορυφών φασμάτων με την περιεκτικότητας του νερού των γαλακτωμάτων, για χρόνο γήρανσης=21 ημέρες

Σχήμα 4.5.4: Διάγραμμα ύψους κορυφών φασμάτων-περιεκτικότητας νερού

Από το παραπάνω διαγράμματα 4.5.1, 4.5.2, 4.5.3, 4.5.4 παρατηρούμε πως όσο αυξάνεται το ύψος των κορυφών τόσο μεγαλύτερη είναι η περιεκτικότητα του νερού. Γενικά η πρώτη καμπύλη που παρατηρείται στα φάσματα είναι η καμπύλη απορόφησης νερού. Όσο μειώνεται η καμπύλη αυτή και η κορυφή πέφτει σε χαμηλότερες τιμές, τόσο μεγαλύτερο μέρος νερού χάνεται από το γαλάκτωμα.

4.6 ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΔΙΑΓΡΑΜΜΑΤΩΝ ΤΩΝ ΙΞΩΔΩΝ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΤΩΝ ΓΑΛΑΚΤΩΜΑΤΩΝ

Παρουσίαζονται τα διαγράμματα των ιξωδών των γαλακτωμάτων, κατηγοροποιημένοι με κοινό στοιχείο τους παράγοντες χρόνος, στροφές και αλατότητα ξεχωριστά, ώστε να παρατηρηθεί η συμπεριφορά τους με βάση τους παράγοντες αυτούς. Το ιξώδες των γαλακτωμάτων μετρήθηκε μόνο την 1η ημέρα παρασκευής.

Στο παρακάτω σχήμα 4.6.1 απεικονίζεται το διάγραμμα ταχύτητας στροφώνιξώδους με βάση τις στροφές ανάμιξης 3000 rpm για τα γαλακτώματα 3000-2-0, 3000-10-0, 3000-2-33, 3000-10-33. Οι μετήσεις για το γαλάκτωμα 3000-10-33 δεν λήφθηκε υπόψιν στο διάγραμμα.

Σχήμα 4.6.1: Διάγραμμα ταχύτητας στροφών-ιξώδους

Από το παραπάνω διάγραμα παρατηρούμε πως τα γαλακτώματα παρουσιάζουν θιξοτροπική συμπεριφορά. Συγκεκριμένα το γαλάκτωμα 3000-10-0 παρουσιάζει εντονότερη θιξοτροπική συμπεριφορά από τα άλλα δύο γαλακτώματα, τα οποία τείνουν προς τη νευτώνεια συμπεριφορά. Εφόσον το γαλάκτωμα 3000-10-0 παρασκευάστηκε με χρόνο ανάμιξης 10 min και τα άλλα δύο με χρόνο ανάμιξης 2 min, συμπεραίνουμε πως κύριο ρόλο για την εντονότερη θιξοτροπική συμπεριφορά του είχε ο χρόνος.

Στο παρακάτω σχήμα 4.6.2 απεικονίζεται το διάγραμμα ταχύτητας στροφώνιξώδους με βάση τις στροφές ανάμιξης 5000 rpm για τα γαλακτώματα 5000-2-0, 5000-10-0, 5000-2-33, 5000-10-33.

Σχήμα 4.6.2: Διάγραμμα ταχύτητας στροφών-ιξώδους

Από το παραπάνω διάγραμα παρατηρούμε πως τα γαλακτώματα παρουσιάζουν έντονη θιξοτροπική συμπεριφορά. Εφόσον κύριο χαρακτηριστικό τους ήταν οι στροφές ανάμιξης οι οποίες ήταν 5000 rpm συμπεραίνουμε πως κύριο ρόλο για την θιξοτροπική συμπεριφορά τους είχαν οι στροφές ανάμιξης. Παρατηρούμε επίσης πως τα γαλακτώματα αυτά εμφανίζουν βρόγχο υστέρησης λόγω μη αντιστρεπτής μεταβολής στο ρευστό. Τα μεγαλύτερα σταγονίδια έσπασαν σε μικρότερα λόγω διάτμισης.

Στο παρακάτω σχήμα 4.6.3 απεικονίζεται το διάγραμμα ταχύτητας στροφώνιξώδους με βάση το χρόνο ανάμιξης 2 min για τα γαλακτώματα 3000-2-0, 5000-2-0, 3000-2-33, 5000-2-33.

Από το παραπάνω διάγραμα παρατηρούμε πως τα γαλακτώματα παρουσιάζουν θιξοτροπική συμπεριφορά. Συγκεκριμένα τα γαλακτώματα 5000-2-33 και 5000-2-0 παρουσιάζουν εντονότερη θιξοτροπική συμπεριφορά από τα άλλα δύο γαλακτώματα. Τα γαλακτώματα 3000-2-33 και 3000-2-0 ωστόσο τείνουν προς τη νευτώνεια συμπεριφορά. Εφόσον τα γαλακτώματα 5000-2-0 και 5000-2-33 παρασκευάστηκαν με στροφές ανάμιξης 5000 rpm συμπεραίνουμε πως κύριο ρόλο για την εντονότερη θιξοτροπική συμπεριφορά τους είχαν οι στροφές ανάμιξης.

Στο παρακάτω σχήμα 4.6.4 απεικονίζεται το διάγραμμα ταχύτητας στροφώνιξώδους με βάση το χρόνο ανάμιξης 10 min για τα γαλακτώματα 3000-10-0, 5000-10-0, 3000-10-33, 5000-10-33. Οι μετήσεις για το γαλάκτωμα 3000-10-33 δεν λήφθηκε υπόψιν στο διάγραμμα.

Σχήμα 4.6.4: Διάγραμμα ταχύτητας στροφών-ιξώδους

Στο παραπάνω διάγραμμα φαίνεται ξανά πως τα γαλακτώματα που παρασκευάστηκαν με στροφές ανάμιξης 5000 rpm παρουσιάζουν εντονότερη θιξοτροπική συμπεριφορά και βρόγχο υστέρησης.

Στο παρακάτω σχήμα 4.6.5 απεικονίζεται το διάγραμμα ταχύτητας στροφώνιξώδους με βάση την αλατότητα νερού ‰ για τα γαλακτώματα 3000-2-0, 3000-10-0, 5000-2-0, 5000-10-0.

Σχήμα 4.6.5: Διάγραμμα ταχύτητας στροφών-ιξώδους

Στο παραπάνω διάγραμμα φαίνεται ξανά πως το γαλάκτωμα 3000-2-0 τείνει προς τη νευτώνεια συμπεριφορά. Το γαλάκτωμα 5000-10-0 παροθσιάζει την εντονότερη θιξοτροπική συμπεριφορά με βρόγχο υστέρησης. Στο παρακάτω σχήμα 4.6.6 απεικονίζεται το διάγραμμα ταχύτητας στροφώνιξώδους με βάση την αλατότητα νερού 33‰, για τα γαλακτώματα 3000-2-33, 3000-10-33, 5000-2-33, 5000-10-33. Οι μετήσεις για το γαλάκτωμα 3000-10-33 δεν λήφθηκε υπόψιν στο διάγραμμα.

Σχήμα 4.6.6: Διάγραμμα ταχύτητας στροφών-ιξώδους

Τέλος όπως και πριν τα γαλακτώματα παρουσιάζουν θιξοτροπική συμπεριφορά και το γαλάκτωμα 3000-2-33 να τείνει προς τη νευτώνεια.
ΚΕΦΑΛΑΙΟ 5

5. ΣΥΜΕΡΑΣΜΑΤΑ

Οι μετρήσεις που έγιναν για τα γαλακτώματα μας δίνουν πληροφορίες για την σταθερότητα τους. Θα πρέπει να κρίνουμε αν αυτά είναι σταθερά, ασταθή ή μεσοσταθερά.

Σύμφωνα με τα αποτελέσματα μας, τα γαλακτώματα νερού σε πετρέλαιο που παρασκευάστηκαν δείχνουν να είναι μεσο-σταθερά γαλακτώματα. Πιο συγκεκριμένα τα γαλακτώματα κατέλαβαν (κατά μέσο όρο) το 60% του νερού και έχασαν το μεγαλύτερο μέρος αυτού (περίπου το 30%) σε διάστημα 7 ημερών. Το ποσοστό μείωσης νερού φαίνεται από τα διαγράμματα φασμάτων αλλά και από την πρότυπη μέθοδο προσδιορισμού νερού σε πετρελαιοεϊδή με απόσταξη ASTM D95-05. Όσο μεγαλύτερος ήταν ο χρόνος ανάδευσης, ο αριθμός των στροφών και το ποσοστό της αλατότητας, τόσο πιο σταθερό ήταν το γαλάκτωμα. Με το πέρας το εμβομάδων τα γαλακτώματα έχαναν σταδιακά το ποσοστό νερού που καταλάμβαναν. Στο τέλος της τρίτης εβδομάδας οι δύο φάσεις νερού και πετρελαίου είχαν σχεδόν διαχωριστεί πλήρως, και μπορούσαν εύκολα να διακριθούν με γυμνό μάτι.

Επίσης συμπεραίνεται πως τα γαλακτώματά μας, όπως φαίνεται από τα Διαγράμματα Διατμητικής τάσης-Ρυθμού διάτμισης συγκαταλέγονται στα θιξοτροπικά μη νευτωνικά ρευστά. Η σχέση μεταξύ της διατμητικής τάσης και του ρυθμού παραμόρφωσης δεν είναι γραμμική ή αλλιώς η καμπύλη τ / γ δεν είναι ευθεία γραμμή. Είναι ρευστά των οποίων η διατμητική τάση εξαρτάται από τον τοπικό ρυθμό διάτμησης αλλά και από την διάρκεια της διάτμησης και το ιξώδες τους μειώνεται με την πάροδο του χρόνου όταν υφίστανται διάτμηση. Αυτό συνέβει γιατί διαταράχτηκαν οι δυνάμεις συνάφειας μεταξύ των σταγονιδίων των γαλακτωμάτων κατά τη διασπορά με αποτέλεσμα να απομακρυνθούν τα σταγονίδια μεταξύ τους. Επίσης, σε πολλά γαλακτώματα παρατηρήθηκε βρόγχος υστέρησης στα διαγράμματα ιξωδών. Πιθανότατα στα γαλακτώματα αυτά τα σταγονίδια τους έσπασαν σε μικρότερα λόγω της διατμητικής τάσης. Βρόγχος υστέρησης εμφανίζεται όταν παρατηρείται μη αντιστρεπτή μεταβολή στο ρευστό. Πιθανότατα όμως τα ρευστά μας παρουσίασαν θιξοτροπική συμπεριφορά, διότι τα σταγονίδια τους παραμορφώθηκαν. Σε υψηλούς ρυθμούς διάτμισης ενδέχεται να υπάρξουν ελαστικές παραμορφώσεις, έτσι ώστε να διευκολυνθεί η ροή. Δηλαδή τα αρχικά στρογγυλά σταγονίδια να έγιναν πιο πεπλατυσμένα.

Τέλος, αξίζει να σημειωθεί, ότι μπορούν να παρασκευαστούν πιο σταθερά γαλακτώματα που θα διατηρούν το μεγαλύτερο μέρος του νερού για μεγάλο χρονικό διάστημα, εάν αυξήθεί ο χρόνος, στροφές ανάδευσης αλλά και πιθανότατα το ποσοστό της αλατότητας του νερού.

Βιβλιογραφία/Αναφορές

[1] Sunil Kokal, SPE, Saudi Aramco: Crude oil Emulsions: A state-Of-The-Art-Review

[2] Merv Fingas,, Ben Fieldhouse: Studies on crude oil and petroleum product emulsions: Water resolution and rheology

[3] Stability of oil emulsions

[4] Oil emulsions

[5] Tharwat F. Tadros: Emulsion Formation, Stability, and Rheology

[6] Petrowiki

[7] National Research Council (2003). Oil in the sea III: inputs, fates, and effects. Washington: Ocean Studies Board and Marine Board, The National Academies Press.

[8] Clark R. B. (2003). Marine Pollution, in collaboration with Frid, Ch. & Attrill, M., Oxford: Oxford University Press.

[9] ITOPF (2011a). Fate of Marine Oil Spills. Technical Information Paper, The International Tanker Owners Pollution Federation, http://www.itopf.com/knowledge-resources/documents-guides/document/tip-2fate-of-marine-oil-spills/ (Ανάκτηση Οκτ. 2015).

[10] Τοπουζέλης, Κ., Καραθανάση, Β., Παυλάκης, Π., Ρόκος, Δ. (2005). Ανάπτυξη τηλεσκοπικού συστήματος ραντάρ για τον εντοπισμό πετρελαιοκηλίδων στις ελληνικές θάλασσες, Εισήγηση στο συνέδριο Heleco '05, ΤΕΕ, Αθήνα, 3-6 Φεβρουαρίου 2005.

[11] H. Vernon Smith, Kenneth E. Arnold: Crude Oil Emulsions.

[12] Θ. Τυροβολά, Φ. Ζαννίκος: «ΟΙ ΠΡΟΟΠΤΙΚΕΣ ΔΙΕΙΣΔΥΣΗΣ ΤΩΝ ΓΑΛΑΚΤΩΜΑΤΟΠΟΙΗΜΕΝΩΝ ΚΑΥΣΙΜΩΝ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΕΦΟΔΙΑΣΤΙΚΗ ΑΛΥΣΙΔΑ», Εργαστήριο Τεχνολογίας Καυσίμων και Λιπαντικών, Σχολή Χημικών Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο, 10682 Αθήνα.

[13] RAMANATHAN SAMPATH, PH.D: INVESTIGATION OF PHASE AND EMULSION BEHAVIOR, SURFACTANT RETENTION, AND CONDENSATE RECOVERY FOR CONDENSATE/WATER/ETHANOL MIXTURES.

[14] Joseph D. McLean and Peter K. Kilpatrick: Effects of Asphaltene Solvency on Stability of Water-in-Crude-Oil Emulsions, Department of Chemical Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905. [15] J. E. STRASSNER: Effect of pH on Interfacial Films and Stability of Crude Oil-Water Emulsions.

[16]Elbigaly and I.S. Nashawi: Rheological Characterization of Kuwaiti Oil-Lakes Oil and Their Emulsions, SPE, Petroleum Engineering Department, Kuwait University, and, M.A. Tantawy, College of Petroleum and Mining Engineering, Suez, Egypt.

[17] Πασαδάκης: Τεχνική Φυσικών Διεργασιών, Φεβρουάριος 2008.

[18] Νίκος Πασαδάκης, Ελένη Χαμηλάκη: Ορυκτά Καύσιμα, Εργαστήριο Ανάλυσης Πυρήνων και Ρευστών Υπόγειων Ταμιευτήρων, Εργαστηριακές Σημειώσεις.

[19] Βικιπαίδεια-Ιξώδες

[20] ΒΑΣΙΛΕΙΟΣ Χ. ΚΕΛΕΣΙΔΗΣ, ΕΦΑΡΜΟΣΜΕΝΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΣΗΜΕΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟΥ, ΧΑΝΙΑ, ΦΕΒΡΟΥΑΡΙΟΣ 2009.

[21] Βαλαβανίδης Αθ.Π. : Φασματοσκοπία Οργανικών Ενώσεων (2006).

[22] Βαλαβανίδης Αθ.Π. : Βασικές Αρχές Μοριακής Φασματοσκοπίας Και Εφαρμογές Στην Οργανική Χημεία (1990).

[23] Harris and M.D. Bertolucci, Symmetry and Spectroscopy: An Introduction to Vibrational and Electronic Spectroscopy. Dover Publications, INC, New York, 1978

[24] S. Thomas et al., Characterisation of polymer blends with FTIR spectroscopy. Characterisation of polymer blends: Miscibility, Morphology and Interfaces. Eds. S. Thomas, Y. Grohens, P. Jyotishkumar, Online ISBN: 9783527645602, 2014.

[25] V.A. Escobar Barrios et al., FTIR – An Essential Characterization Technique for Polymeric Materials. Infrared Spectroscopy. Materials Science, Engineering and Technology. T. Theophanides (Ed.).

[26] Κων/νος Τσιτσιλιάνης, Ουρανία Κούλη: ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΡΩΝ, Ενότητα: Ταυτοποίηση πολυμερών με την υπέρυθρη φασματοσκοπία, FTIR, Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών, Πανεπιστήμιο Πατρών.

ΠΑΡΑΡΤΗΜΑ 1: ΣΥΓΚΕΝΤΡΩΤΙΚΑ ΟΙ ΤΙΜΕΣ ΤΟΥ ΧΡΟΝΟΥ ΑΝΑΔΕΥΣΗΣ, ΣΤΡΟΦΩΝ ΚΑΙ ΑΛΑΤΟΤΗΤΑΣ ΚΑΘΩΣ ΚΑΙ ΤΩΝ ΠΥΚΝΟΤΗΤΩΝ ΚΑΙ ΠΕΡΙΕΚΤΙΚΟΤΗΤΑΣ ΤΟΥ ΝΕΡΟΥ ΤΩΝ ΓΑΛΑΚΤΩΜΑΤΩΝ ΓΙΑ ΤΗΝ ΠΡΩΤΗ ΕΒΔΟΜΑΔΑ ΤΗΝ ΔΕΥΤΕΡΗ ΚΑΙ ΤΗΝ ΤΡΙΤΗ.

Πίνακας 1.1: Τιμές των παραγόντων χρόνος, στροφές, αλατότητα και των ιδιοτήτων πυκνότητα και περιεκτικότητα νερού για χρόνο γήρανσης των γαλακτωμάτων=7 ημέρες

ΑΡΙΘΜΟΣ ΠΕΙΡΑΜΑΤΟΣ	XPONOΣ (min)	ΣΤΡΟΦΕΣ (rpm)	AAATOTHTA (%)	ПҮКNOTHTA (gr/cm ³)	ПЕРІЕКТІКОТНТА NEPOY (mL)
1	2	3000	0	0.9211	2.0
2	10	3000	0	0.9388	2.4
3	2	5000	0	0.9495	2.4
4	10	5000	0	0.9648	3.0
5	2	3000	33	0.9488	3.1
6	10	3000	33		
7	2	5000	33		
8	10	5000	33		

Πίνακας	1.2:	Τιμές	των	παραγόντων	χρόνος,	στροφές,	αλατότητα	και	των	ιδιοτήτων
πυκνότηι	τα και	περιει	κτικότ	ητα νερού για	ι χρόνο γη	<i>ίρανσης</i> τα	ον γαλακτωμ	άτωι	<i>ı=</i> 14 ı	ημέρες

ΑΡΙΘΜΟΣ ΠΕΙΡΑΜΑΤΟΣ	XPONOΣ (min)	ΣΤΡΟΦΕΣ (rpm)	AAATOTHTA (%)	ПҮКNOTHTA (gr/cm ³)	ПЕРІЕКТІКОТНТА NEPOY (mL)
1	2	3000	0	0.9273	1.9
2	10	3000	0	0.9515	2.2
3	2	5000	0	0.9502	2.1
4	10	5000	0	0.9655	2.9
5	2	3000	33	0.9580	2.9
6	10	3000	33	0.9635	3.6
7	2	5000	33	0.9603	3.4
8	10	5000	33	0.9779	3.9

ΑΡΙΘΜΟΣ ΠΕΙΡΑΜΑΤΟΣ	XPONOΣ (min)	ΣΤΡΟΦΕΣ (rpm)	AAATOTHTA (%)	ПҮКNOTHTA (gr/cm³)	ΠΕΡΙΕΚΤΙΚΟΤΗΤΑ NEPOY (mL)
1	2	3000	0	0.9216	0.5
2	10	3000	0	0.9487	0.9
3	2	5000	0	0.9509	0.9
4	10	5000	0	0.9635	1.4
5	2	3000	33	0.9686	1.2
6	10	3000	33	0.9660	3.1
7	2	5000	33	0.9687	2.9
8	10	5000	33	0.9785	3.3

Πίνακας 1.3: Τιμές των παραγόντων χρόνος, στροφές, αλατότητα και των ιδιοτήτων πυκνότητα και περιεκτικότητα νερού για χρόνο γήρανσης των γαλακτωμάτων=21 ημέρες

ΠΑΡΑΡΤΗΜΑ 2: ΤΙΜΕΣ ΥΨΩΝ ΚΑΙ ΠΕΡΙΕΚΤΙΚΟΤΗΤΩΝ ΤΩΝ ΓΑΛΑΚΤΩΜΑΤΩΝ ΓΙΑ ΧΡΟΝΟ ΓΗΡΑΝΣΗΣ 0,7,14 ΚΑΙ 21 ΗΜΕΡΕΣ

Πίνακας 2.1: Τιμές υψών και περιεκτικοτήτων των γαλακτωμάτων για χρόνο γήρανσης=0 ημέρες

Samples	Μέγιστο Ύψος	Μέγιστο Πλάτος	Περιεκτικότητα
	(απορρόφηση)	(κυματαριθμός cm ⁻¹)	νερού (mL)
1	0.1154	3369	4.1
2	0.1003	3374	5.6
3	0.0566	3369	5.0
4	0.2799	3372	5.6
5	0.0466	3365	4.9
6	0.2498	3383	5.8
7	0.6719	3373	6.0
8	0.3730	3371	6.7
K1	0.2564	3378	4.9
К2	0.2678	3372	4.5
K3	0.2984	3377	4.2

Πίνακας 2.2: Τιμές υψών και περιεκτικοτήτων των γαλακτωμάτων για χρόνο γήρανσης=7 ημέρες

Samples	Μέγιστο Ύψος	Μέγιστο Πλάτος	Περιεκτικότητα
	(απορρόφηση)	(κυματαριθμός cm⁻¹)	νερού (mL)
1	0.0309	3374	2.0
2	0.0371	3366	2.4
3	0.0382	3362	2.4
4	0.0626	3381	3.0
5	0.0423	3359	3.1
6			
7			
8			
K1	0.1528	3381	3.6
К2	0.1132	3378	3.1
K3	0.1469	3379	2.9

γήρανσης=14 ημέρες						
Samples	ΜέγιστοΎψος	Μέγιστο Πλάτος	Περιεκτικότητα			
	(απορρόφηση)	(κυματαριθμός cm ⁻¹)	νερού (mL)			
1	0.0294	3349	1.9			
2	0.0359	3366	2.2			
3	0.414	3363	2.1			

3385

3388

3389

3377

3367

3379

3379

3381

2.9

2.9

3.6

3.4

3.9

1.4

1.2 1.2

0.0639

0.0503

0.1462

0.1233

0.1071

0.0919

0.0884

0.0964

4

5

6

7

8

К1

K2

К3

Πίνακας 2.3: Τιμές υψών και περιεκτικοτήτων των γαλακτωμάτων για χρόνο γήρανσης=14 ημέρες

Πίνακας	2.4:	Τιμές	υψών	και	περιεκτικοτήτων	των	γαλακτωμάτων	για	χρόνο
γήρανσης	=21 I	ημέρες							

Samples	Μέγιστο Ύψος (απορρόφηση)	Μέγιστο Πλάτος (κυματαριθμός cm ⁻¹)	Περιεκτικότητα νερού (mL)
1	0.0319	3358	0.5
2	0.0279	3365	0.9
3	0.0444	3368	0.9
4	0.0572	3370	1.4
5	0.0574	3384	1.2
6	0.0743	3372	3.1
7	0.0869	3381	2.9
8	0.1187	3363	3.3
K1	0.1422	3381	1.4
K2	0.0948	3378	1.2
K3	0.1504	3377	1.1

ΠΑΡΑΡΤΗΜΑ 3: ΤΙΜΕΣ ΤΩΝ ΙΞΩΔΩΝ ΤΩΝ ΓΑΛΑΚΤΩΜΑΤΩΝ ΠΟΥ ΠΑΡΑΣΚΕΥΑΣΤΗΚΑΝ

Πίνακας 3.1: Τιμές ιξώδους των γαλακτωμάτων που παρασκευάστηκαν με στροφές ανάμιξης 3000 rpm

Στροφές (rpm)	3000-2-0	3000-10-0	3000-2-33
10	142	352	113
30	124	308	127
50	115	279	122
100	106	244	115
200	18	208	104
300	104	186	97
600	92	146	85
300	95	189	101
100	106	240	117
50	112	268	123

Πίνακας 3.2: Τιμές ιξώδους των γαλακτωμάτων που παρασκευάστηκαν με στροφές ανάμιξης 5000 rpm

Στροφές (rpm)	5000-2-0	5000-10-0	5000-2-33	5000-10-33
10	304	636	778	803
30	277	478	643	674
50	254	410	570	608
100	223	323	483	523
200	194	250	401	436
300	180	215	348	390
600	150	158	197	273
300	201	251	339	409
100	260	392	448	528
50	293	489	518	601

Πίνακας 3.3: Τιμές ιξώδους των γαλακτωμάτων που παρασκευάστηκαν με χρόνο ανάμιξης 2 min

Στροφές (rpm)	3000-2-0	5000-2-0	3000-2-33	5000-2-33
10	142	304	113	778
30	124	277	127	643
50	115	254	122	570
100	106	223	115	483
200	18	194	104	401
300	104	180	97	348
600	92	150	85	197
300	95	201	101	339
100	106	260	117	448
50	112	293	123	518

Πίνακας 3.4: Τιμές ιξώδους των γαλακτωμάτων που παρασκευάστηκαν με χρόνο ανάμιξης 10 min

Στροφές (rpm)	3000-10-0	5000-10-0	5000-10-33
10	352	636	803
30	308	478	674
50	279	410	608
100	244	323	523
200	208	250	436
300	186	215	390
600	146	158	273
300	189	251	409
100	240	392	528
50	268	489	601

Πίνακας 3.5: Τιμές ιξώδους των γαλακτωμάτων που παρασκευάστηκαν με αλατότητα νερού 0‰.

Στροφές (rpm)	3000-2-0	3000-10-0	5000-2-0	5000-10-0
10	142	352	304	636
30	124	308	277	478
50	115	279	254	410
100	106	244	223	323
200	18	208	194	250
300	104	186	180	215
600	92	146	150	158
300	95	189	201	251
100	106	240	260	392
50	112	268	293	489

Πίνακας 3.6: Τιμές ιξώδους των γαλακτωμάτων που παρασκευάστηκαν με αλατότητα νερού 33‰.

Στροφές (rpm)	3000-2-33	5000-2-33	5000-10-33
10	113	778	803
30	127	643	674
50	122	570	608
100	115	483	523
200	104	401	436
300	97	348	390
600	85	197	273
300	101	339	409
100	117	448	528
50	123	518	601

ΠΑΡΑΡΤΗΜΑ 4: ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΦΑΣΜΑΤΩΝ ΤΩΝ ΔΕΙΓΜΑΤΩΝ

Σχήμα 4.1: Χαρακτηριστικό φάσμα του αρχικού πετρελαϊκου δείγματος

Στο παραπάνω σχήμα 1 απεικονίζεται το φάσμα του αρχικού πετρελαϊκού δείγματος, πριν τη παρασκευή των γαλακτωμάτων.

Στα παρακάτω σχήματα απεικονίζονται τα φάσματα των γαλακτωμάτων που παρασκευάστηκαν, για χρόνο γήρανσης= 0 ημέρες με μαύρο χρώμα, για χρόνο γήρανσης= 7 ημέρες με μπλε χρώμα, για χρόνο γήρανσης= 14 ημέρες με κόκκινο χρώμα και τέλος για χρόνο γήρανσης= 21 ημέρες με πράσινο χρώμα. Για τα samples 6,7 και 8 δεν πραγματοποιήθηκαν οι μετήσεις για την πρώτη εβδομάδα. • Για το sample 1:

Σχήμα 2: Χαρακτηριστικό φάσμα του sample 1 για χρόνο γήρανσης του γαλακτώματος 0 ημέρες, 7 ημέρες, 14 ημέρες και 21 ημέρες

Σχήμα 3: Προβολή όλων των φασμάτων για το sample 1 (με μεγαλύτερη λεπτομέρεια)

• Για το sample 2:

Σχήμα 4: : Φάσμα του sample 2 για χρόνο γήρανσης του γαλακτώματος 0 ημέρες, 7 ημέρες, 14 ημέρες και 21 ημέρες

Σχήμα 5: Προβολή όλων των φασμάτων για το sample 2 (με μεγαλύτερη λεπτομέρεια)

• Για το sample 3:

Σχήμα 6: Φάσμα του sample 3 για χρόνο γήρανσης του γαλακτώματος= 0 ημέρες, για χρόνο γήρανσης 7 ημέρες, 14 ημέρες και 21 ημέρες

Σχήμα 7: Προβολή όλων των φασμάτων για το sample 3 (με μεγαλύτερη λεπτομέρεια)

• Για το sample 4:

Σχήμα 8: Φάσμα του sample 4, για χρόνο γήρανσης του γαλακτώματος 0 ημέρες, 7 ημέρες, 14 ημέρες και 21 ημέρες

Σχήμα 9: Προβολή όλων των φασμάτων για το sample 4 (με μεγαλύτερη λεπτομέρεια)

• Για το sample 5:

Σχήμα 10: Φάσμα του sample 5, για χρόνο γήρανσης του γαλακτώματος 0 ημέρες, 7 ημέρες, 14 ημέρες και 21 ημέρες

Σχήμα 11: Προβολή όλων των φασμάτων για το sample 5 (με μεγαλύτερη λεπτομέρεια)

• Για το sample 6:

Σχήμα 12: Φάσμα του sample 6 για χρόνο γήρανσης του γαλακτώματος 0 ημέρες, 14 ημέρες και 21 ημέρες.

Σχήμα 13: Προβολή όλων των φασμάτων για το sample 6 (με μεγαλύτερη λεπτομέρεια)

• Για το sample 7:

Σχήμα 14: Φάσμα του sample 7, για χρόνο γήρανσης του γαλακτώματος 0 ημέρες, 14 ημέρες και 21 ημέρες

Σχήμα 15: Προβολή όλων των φασμάτων για το sample 7 (με μεγαλύτερη λεπτομέρεια)

• Για το sample 8:

Σχήμα 16: Φάσμα του sample 8, για χρόνο γήρανσης του γαλακτώματος 0 ημέρες, 14 ημέρες και 21 ημέρες

Σχήμα 17: Προβολή όλων των φασμάτων για το sample 8 (με μεγαλύτερη λεπτομέρεια)

• Για το sample k1:

Σχήμα 18: Φάσμα του sample k1, για χρόνο γήρανσης του γαλακτώματος 0 ημέρες, 7 ημέρες, για 14 ημέρες και 21 ημέρες

Σχήμα 19: Προβολή όλων των φασμάτων για το sample k1 (με μεγαλύτερη λεπτομέρεια)

• Για το sample k2:

Σχήμα 20: Φάσμα του sample k2, για χρόνο γήρανσης του γαλακτώματος 0 ημέρες, 7 ημέρες, 14 ημέρες και ημέρες

Σχήμα 21: Προβολή όλων των φασμάτων για το sample k2 (με μεγαλύτερη λεπτομέρεια)

• Για το sample k3:

Σχήμα 22: Φάσμα του sample k3, για χρόνο γήρανσης του γαλακτώματος 0 ημέρες, 7 ημέρες, 14 ημέρες και 21 ημέρες

Σχήμα 23: Προβολή όλων των φασμάτων για το sample κ3 (με μεγαλύτερη λεπτομέρεια)

ΠΑΡΑΡΤΗΜΑ 5: ΠΑΡΟΥΣΙΑΣΗ ΠΙΝΑΚΩΝ ΚΑΙ ΔΙΑΓΡΑΜΜΑΤΩΝ ΤΩΝ ΙΞΩΔΩΝ

Το ιξώδες των δειγμάτων μετρήθηκε μόνο την 1η ημέρα παρασκευής τους και όχι μετά το πέρας της πρώτης, της δεύτερης και τρίτης εβδομάδας διότι δεν υπήρχε αρκετή ποσότητα δείγματος. Το διάγραμμα για το δείγμα 6 δεν συμπεριλήφθηκε λόγω σφάλματος της μέτρησης.

Step	Step	Total	Тетр	Shear	Speed	Shear	Viscosity
	Time	Time		Rate		Stress	
	(S)	(S)	(C°)	(1/S)	(Rpm)	(dyn/cm2)	(cP)
1	1	1	27,777778	170,23	100	30	17,623215
2	60	61	27,222222	1,70E-	1,00E-	5	146860131
				06	06		
2	120	121	27,222222	1,70E-	1,00E-	5	146860131
				06	06		
3	9	130	27,222222	5,1069	3	5	97,906721
3	19	140	27,222222	5,1069	3	5	97,906721
3	29	150	27,222222	5,1069	3	5	97,906721
3	39	160	27,222222	5,1069	3	5	97,906721
3	49	170	27,222222	5,1069	3	5	97,906721
3	59	180	27,222222	5,1069	3	5	97,906721
4	8	188	27,222222	8,5115	5	5	58,74404
4	18	198	27,222222	8,5115	5	5	58,74404
4	28	208	27,222222	8,5115	5	5	58,74404
4	38	218	27,222222	8,5115	5	5	58,74404
4	48	228	27,222222	8,5115	5	5	58,74404
4	58	238	27,222222	8,5115	5	5	58,74404
5	8	246	27,222222	17,023	10	5	29,372023
5	18	256	27,222222	17,023	10	10	58,744046
5	28	266	27,222222	17,023	10	5	29,372023
5	38	276	27,222222	17,023	10	10	58,744046
5	48	286	27,222222	17,023	10	5	29,372023
5	58	296	27,222222	17,023	10	5	29,372023
6	7	303	27,222222	51,069	30	10	19,58135
6	17	313	27,222222	51,069	30	10	19,58135
6	27	323	27,222222	51,069	30	10	19,58135
6	37	333	27,222222	51,069	30	15	29,372025
6	47	343	27,222222	51,069	30	10	19,58135
6	57	353	27,222222	51,069	30	10	19,58135
7	6	359	27,222222	85,115	50	20	23,49762
7	16	369	27,222222	85,115	50	20	23,49762
7	26	379	27,222222	85,115	50	15	17,623215
7	36	389	27,222222	85,115	50	20	23,49762

— ¹ ·······	1	!			^		
$1 \prod \sqrt{\alpha} K \alpha C$	5 1 10	ιοομαιαση	Πετορσείων	νια το αονικ	η πετηεί	ιαικό όεινμ	IN
mulana	J. 1. 110	pooluon	μειρησεων			ιαίλο οςίγμ	u

7	46	399	27,222222	85,115	50	20	23,49762
7	56	409	27,222222	85,115	50	20	23,49762
8	5	414	27,222222	170,23	100	30	17,623215
8	15	424	27,222222	170,23	100	30	17,623215
8	25	434	27,222222	170,23	100	30	17,623215
8	35	444	27,222222	170,23	100	30	17,623215
8	45	454	27,222222	170,23	100	30	17,623215
8	55	464	27,222222	170,23	100	35	20,560418
9	4	468	27,222222	340,46	200	60	17,623216
9	14	478	27,222222	340,46	200	60	17,623216
9	24	488	27,222222	340,46	200	60	17,623216
9	34	498	27,222222	340,46	200	60	17,623216
9	44	508	27,222222	340,46	200	60	17,623216
9	54	518	27,222222	340,46	200	60	17,623216
10	3	521	27,222222	510,69	300	85	16,644148
10	13	531	27,222222	510,69	300	85	16,644148
10	23	541	27,222222	510,69	300	85	16,644148
10	33	551	27,222222	510,69	300	85	16,644148
10	43	561	27,222222	510,69	300	85	16,644148
10	53	571	27,222222	510,69	300	85	16,644148
11	2	573	27,222222	1021,38	600	165	16,154614
11	12	583	27,222222	1021,38	600	160	15,665081
11	22	593	27,222222	1021,38	600	160	15,665081
11	32	603	27,222222	1021,38	600	155	15,175547
11	42	613	27,222222	1021,38	600	160	15,665081
11	52	623	27,222222	1021,38	600	155	15,175547
12	1	624	27,222222	510,69	300	80	15,665081
12	11	634	27,222222	510,69	300	80	15,665081
12	21	644	27,222222	510,69	300	80	15,665081
12	31	654	27,222222	510,69	300	80	15,665081
12	41	664	27,222222	510,69	300	80	15,665081
12	51	674	27,222222	510,69	300	80	15,665081
13	10	684	27,222222	170,23	100	30	17,623215
13	20	694	27,222222	170,23	100	30	17,623215
13	30	704	27,222222	170,23	100	30	17,623215
13	40	714	27,222222	170,23	100	30	17,623215
13	50	724	27,222222	170,23	100	30	17,623215
13	60	734	27,222222	170,23	100	35	20,560418
14	9	743	27,222222	85,115	50	20	23,49762
14	19	753	27,222222	85,115	50	15	17,623215
14	29	763	27,222222	85,115	50	20	23,49762
14	39	773	27,222222	85,115	50	15	17,623215
14	49	783	27,222222	85,115	50	20	23,49762
14	59	793	27,222222	85,115	50	15	17,623215

Στο παρακάτω σχήμα παρουσιάζεται το διάγραμμα διατμητικής τάσης-ρυθμού διάτμισης για το αρχικό περελαϊκό δείγμα

Σχήμα 5.1: Διάγραμμα Διατμητικής τάσης-Ρυθμού διάτμισης για το αρχικό περελαϊκόδείγμα

Στη συνέχεια παρουσιάζονται οι μετρήσεις και τα διαγράμματα για κάθε γαλάκτωμα. Οι τίτλοι των διαγραμμάτων αντιστοιχούν στον αριθμό των στροφών, στον χρόνο ανάδευσης καθώς και στο ποσοστό της αλατότητας αυτών.

• Για το sample 1:

	2 - /	,	1 4
Πινακας 5	$2 \cdot 11 \alpha_{00} \alpha_{00} \sigma_{00}$	Πετυμαείων Λια	to sample 1
mu anay 5.	.2		to sumple r

Step	Step	Total	Temp	Shear	Speed	Shear	Viscosity
	Time	Time		Rate		Stress	
	(S)	(S)	(C°)	(1/S)	(Rpm)	(dyn/cm2)	(cP)
1	1	1	22,777778	170,23	100	160	93,99048
2	60	61	22,777778	1,702E-	1E-06	0	0
				06			
2	120	121	22,777778	1,702E-	1E-06	0	0
				06			
3	9	130	22,777778	5,1069	3	10	195,8134
3	19	140	22,777778	5,1069	3	10	195,8134
3	29	150	22,222222	5,1069	3	10	195,8134
3	39	160	22,777778	5,1069	3	10	195,8134
3	49	170	22,777778	5,1069	3	10	195,8134
3	59	180	22,777778	5,1069	3	10	195,8134
4	8	188	22,777778	8,5115	5	15	176,2321
4	18	198	22,777778	8,5115	5	15	176,2321
4	28	208	22,777778	8,5115	5	15	176,2321
4	38	218	22,777778	8,5115	5	15	176,2321
4	48	228	22,777778	8,5115	5	10	117,4881
4	58	238	22,777778	8,5115	5	20	234,9762
5	7	245	22,777778	17,023	10	25	146,8601
5	17	255	22,777778	17,023	10	25	146,8601
5	27	265	22,777778	17,023	10	25	146,8601
5	37	275	22,777778	17,023	10	20	117,4881
5	47	285	22,777778	17,023	10	25	146,8601
5	57	295	22,777778	17,023	10	25	146,8601
6	6	301	22,777778	51,069	30	65	127,2788
6	16	311	22,777778	51,069	30	60	117,4881
6	26	321	22,777778	51,069	30	65	127,2788
6	36	331	22,777778	51,069	30	65	127,2788
6	46	341	22,777778	51,069	30	65	127,2788
6	56	351	22,777778	51,069	30	60	117,4881
7	5	356	22,777778	85,115	50	100	117,4881
7	15	366	22,777778	85,115	50	100	117,4881
7	25	376	22,777778	85,115	50	100	117,4881
7	35	386	22,777778	85,115	50	95	111,6137
7	45	396	22,777778	85,115	50	95	111,6137
7	55	406	22,777778	85,115	50	95	111,6137
8	4	410	22,777778	170,23	100	180	105,7393
8	14	420	22,777778	170,23	100	180	105,7393
8	24	430	22,777778	170,23	100	180	105,7393
8	34	440	22,777778	170,23	100	180	105,7393
----	----	-----	-----------	---------	-----	-----	----------
8	44	450	22,777778	170,23	100	180	105,7393
8	54	460	22,777778	170,23	100	180	105,7393
9	3	463	22,777778	340,46	200	325	95,45908
9	13	473	22,777778	340,46	200	335	98,39629
9	23	483	22,777778	340,46	200	345	101,3335
9	33	493	22,777778	340,46	200	350	102,8021
9	43	503	22,777778	340,46	200	360	105,7393
9	53	513	22,777778	340,46	200	365	107,2079
10	2	515	22,777778	510,69	300	510	99,86489
10	12	525	22,777778	510,69	300	515	100,844
10	22	535	22,777778	510,69	300	525	102,8021
10	32	545	22,777778	510,69	300	540	105,7393
10	42	555	22,777778	510,69	300	550	107,6974
10	52	565	22,777778	510,69	300	555	108,6765
11	1	566	22,777778	1021,38	600	935	91,54281
11	11	576	22,777778	1021,38	600	945	92,52188
11	21	586	22,777778	1021,38	600	945	92,52188
11	31	596	22,777778	1021,38	600	945	92,52188
11	41	606	22,777778	1021,38	600	940	92,03235
11	51	616	22,777778	1021,38	600	935	91,54281
12	10	626	22,777778	510,69	300	515	100,844
12	20	636	22,777778	510,69	300	500	97,90675
12	30	646	22,777778	510,69	300	485	94,96955
12	40	656	22,777778	510,69	300	475	93,01142
12	50	666	22,777778	510,69	300	470	92,03235
12	60	676	22,777778	510,69	300	465	91,05328
13	10	686	22,777778	170,23	100	180	105,7393
13	20	696	22,777778	170,23	100	180	105,7393
13	30	706	22,777778	170,23	100	180	105,7393
13	40	716	22,777778	170,23	100	180	105,7393
13	50	726	23,333333	170,23	100	180	105,7393
13	60	736	23,333333	170,23	100	180	105,7393
14	9	745	23,333333	85,115	50	95	111,6137
14	19	755	23,333333	85,115	50	95	111,6137
14	29	765	23,333333	85,115	50	95	111,6137
14	39	775	23,333333	85,115	50	95	111,6137
14	49	785	23,333333	85,115	50	95	111,6137
14	59	795	23,333333	85,115	50	95	111,6137

Σχήμα 5.2: Διάγραμμα Διατμητικής τάσης-Ρυθμού διάτμισης το sample 1

• Για το sample 2:

Πίνακας 5.3: Παρουσίαση μετρήσεων για το το sample 2	
--	--

Step	Step	Total	Temp	Shear	Speed	Shear	Viscosity
	Time	Time		Rate		Stress	
	(S)	(S)	(°F)	(1/S)	(Rpm)	(lb/100ft2)	(cP)
1	1	1	73	170,23	100	98,136	276,097
2	60	61	73	1,702E-	1E-06	0	0
				06			
2	120	121	73	1,702E-	1E-06	0	0
				06			
3	9	130	73	5,1069	3	5,22	489,5336
3	19	140	73	5,1069	3	5,22	489,5336
3	29	150	73	5,1069	3	4,176	391,6269
3	39	160	73	5,1069	3	4,176	391,6269
3	49	170	73	5,1069	3	5,22	489,5336
3	59	180	73	5,1069	3	5,22	489,5336
4	8	188	73	8,5115	5	7,308	411,2083
4	18	198	73	8,5115	5	8,352	469,9523
4	28	208	73	8,5115	5	7,308	411,2083
4	38	218	73	8,5115	5	7,308	411,2083
4	48	228	73	8,5115	5	8,352	469,9523
4	58	238	73	8,5115	5	7,308	411,2083
5	7	245	73	17,023	10	12,528	352,4643
5	17	255	73	17,023	10	12,528	352,4643
5	27	265	73	17,023	10	12,528	352,4643
5	37	275	73	17,023	10	12,528	352,4643
5	47	285	73	17,023	10	12,528	352,4643
5	57	295	73	17,023	10	12,528	352,4643
6	6	301	73	51,069	30	32,364	303,5109
6	16	311	73	51,069	30	33,408	313,3016
6	26	321	73	51,069	30	32,364	303,5109
6	36	331	73	51,069	30	33,408	313,3016
6	46	341	73	51,069	30	33,408	313,3016
6	56	351	73	51,069	30	32,364	303,5109
7	5	356	73	85,115	50	50,112	281,9714
7	15	366	73	85,115	50	50,112	281,9714
7	25	376	73	85,115	50	49,068	276,097
7	35	386	73	85,115	50	49,068	276,097
7	45	396	73	85,115	50	50,112	281,9714
7	55	406	73	85,115	50	49,068	276,097
8	4	410	73	170,23	100	87,696	246,725
8	14	420	73	170,23	100	86,652	243,7878
8	24	430	73	170,23	100	86,652	243,7878

8	34	440	73	170,23	100	86,652	243,7878
8	44	450	73	170,23	100	86,652	243,7878
8	54	460	73	170,23	100	85,608	240,8506
9	3	463	73	340,46	200	147,204	207,0728
9	13	473	73	340,46	200	148,248	208,5414
9	23	483	73	340,46	200	147,204	207,0728
9	33	493	73	340,46	200	147,204	207,0728
9	43	503	73	340,46	200	148,248	208,5414
9	53	513	73	340,46	200	147,204	207,0728
10	2	515	73	510,69	300	198,36	186,0228
10	12	525	73	510,69	300	198,36	186,0228
10	22	535	73	510,69	300	198,36	186,0228
10	32	545	73	510,69	300	198,36	186,0228
10	42	555	73	510,69	300	197,316	185,0438
10	52	565	73	510,69	300	198,36	186,0228
11	1	566	74	1021,38	600	319,464	149,7973
11	11	576	74	1021,38	600	309,024	144,902
11	21	586	74	1021,38	600	309,024	144,902
11	31	596	74	1021,38	600	311,112	145,8811
11	41	606	74	1021,38	600	311,112	145,8811
11	51	616	74	1021,38	600	312,156	146,3706
12	10	626	74	510,69	300	201,492	188,96
12	20	636	74	510,69	300	202,536	189,9391
12	30	646	74	510,69	300	202,536	189,9391
12	40	656	74	510,69	300	202,536	189,9391
12	50	666	74	510,69	300	201,492	188,96
12	60	676	74	510,69	300	201,492	188,96
13	10	686	74	170,23	100	84,564	237,9134
13	20	696	74	170,23	100	85,608	240,8506
13	30	706	74	170,23	100	85,608	240,8506
13	40	716	74	170,23	100	85,608	240,8506
13	50	726	74	170,23	100	85,608	240,8506
13	60	736	74	170,23	100	85,608	240,8506
14	9	745	74	85,115	50	46,98	264,3482
14	19	755	74	85,115	50	48,024	270,2226
14	29	765	74	85,115	50	48,024	270,2226
14	39	775	74	85,115	50	46,98	264,3482
14	49	785	74	85,115	50	48,024	270,2226
14	59	795	74	85,115	50	48,024	270,2226

Σχήμα 5.3: Διάγραμμα Διατμητικής τάσης-Ρυθμού διάτμισης το sample 2

• Για το sample 3:

	Step	Total		Shear		Shear	
Step	Time	Time	Temp	Rate	Speed	Stress	Viscosity
	(S)	(S)	(C°)	(1/S)	(Rpm)	(dyn/cm2)	(cP)
1	1	1	21,66667	170,23	100	350	205,6042
2	60	61	22,22222	1,7E-06	1E-06	0	0
2	120	121	22,77778	1,7E-06	1E-06	0	0
3	9	130	22,22222	5,1069	3	20	391,6269
3	19	140	22,22222	5,1069	3	20	391,6269
3	29	150	22,22222	5,1069	3	20	391,6269
3	39	160	22,77778	5,1069	3	20	391,6269
3	49	170	22,77778	5,1069	3	20	391,6269
3	59	180	22,77778	5,1069	3	15	293,7202
4	8	188	22,77778	8,5115	5	30	352,4642
4	18	198	22,77778	8,5115	5	25	293,7202
4	28	208	22,77778	8,5115	5	35	411,2083
4	38	218	22,77778	8,5115	5	30	352,4642
4	48	228	22,22222	8,5115	5	25	293,7202
4	58	238	22,77778	8,5115	5	30	352,4642
5	7	245	22,77778	17,023	10	55	323,0923
5	17	255	22,77778	17,023	10	50	293,7202
5	27	265	22,77778	17,023	10	50	293,7202
5	37	275	22,22222	17,023	10	50	293,7202
5	47	285	22,77778	17,023	10	50	293,7202
5	57	295	22,77778	17,023	10	55	323,0923
6	6	301	22,77778	51,069	30	145	283,9296
6	16	311	22,77778	51,069	30	145	283,9296
6	26	321	22,77778	51,069	30	140	274,1389
6	36	331	22,77778	51,069	30	140	274,1389
6	46	341	22,77778	51,069	30	140	274,1389
6	56	351	22,77778	51,069	30	140	274,1389
7	5	356	22,77778	85,115	50	220	258,4738
7	15	366	22,77778	85,115	50	215	252,5994
7	25	376	22,77778	85,115	50	215	252,5994
7	35	386	22,77778	85,115	50	215	252,5994
7	45	396	22,77778	85,115	50	215	252,5994
7	55	406	22,77778	85,115	50	215	252,5994
8	4	410	22,77778	170,23	100	375	220,2902
8	14	420	22,77778	170,23	100	380	223,2274
8	24	430	22,77778	170,23	100	380	223,2274
8	34	440	22,77778	170,23	100	380	223,2274
8	44	450	22,77778	170,23	100	380	223,2274

Πίνακας 5.4: Παρουσίαση μετρήσεων για το to sample 3

8	54	460	22,77778	170,23	100	380	223,2274
9	3	463	22,77778	340,46	200	645	189,4496
9	13	473	22,77778	340,46	200	660	193 <i>,</i> 8554
9	23	483	22,77778	340,46	200	660	193 <i>,</i> 8554
9	33	493	22,77778	340,46	200	665	195,324
9	43	503	22,77778	340,46	200	665	195,324
9	53	513	22,77778	340,46	200	670	196,7926
10	2	515	22,77778	510,69	300	900	176,2322
10	12	525	22,77778	510,69	300	915	179,1694
10	22	535	22,77778	510,69	300	920	180,1484
10	32	545	22,77778	510,69	300	920	180,1484
10	42	555	22,77778	510,69	300	930	182,1066
10	52	565	22,77778	510,69	300	930	182,1066
11	1	566	22,77778	1021,38	600	1525	149,3078
11	11	576	22,77778	1021,38	600	1520	148,8183
11	21	586	22,77778	1021,38	600	1520	148,8183
11	31	596	22,77778	1021,38	600	1535	150,2869
11	41	606	22,77778	1021,38	600	1540	150,7764
11	51	616	23,33333	1021,38	600	1545	151,2659
12	10	626	23,33333	510,69	300	1025	200,7088
12	20	636	23,33333	510,69	300	1025	200,7088
12	30	646	23,33333	510,69	300	1025	200,7088
12	40	656	23,33333	510,69	300	1025	200,7088
12	50	666	23,33333	510,69	300	1025	200,7088
12	60	676	23,33333	510,69	300	1025	200,7088
13	9	685	23,33333	170,23	100	440	258,4738
13	19	695	23,33333	170,23	100	440	258,4738
13	29	705	23,33333	170,23	100	445	261,411
13	39	715	23,33333	170,23	100	445	261,411
13	49	725	23,33333	170,23	100	445	261,411
13	59	735	23,33333	170,23	100	445	261,411
14	8	743	23,33333	85,115	50	245	287,8458
14	18	753	23,33333	85,115	50	250	293,7203
14	28	763	23,33333	85,115	50	250	293,7203
14	38	773	23,33333	85,115	50	250	293,7203
14	48	783	23,33333	85,115	50	250	293,7203
14	58	793	23,33333	85,115	50	250	293,7203

Σχήμα 5.4: Διάγραμμα Διατμητικής τάσης-Ρυθμού διάτμισης το sample 3

• Για sample 4:

Step	Total		Shear		Shear	
Time	Time	Temp	Rate	Speed	Stress	Viscosity
(S)	(S)	(C°)	(1/S)	(Rpm)	(dyn/cm2)	(cP)
1	1	23,888889	170,23	100	520	305,4691
			1,7023E-			
60	61	23,888889	06	1E-06	0	0
			1,7023E-			
120	121	23,888889	06	1E-06	0	0
9	130	23,888889	5,1069	3	45	881,1605
19	140	23,888889	5,1069	3	50	979,0672
29	150	23,888889	5,1069	3	50	979,0672
39	160	23,888889	5,1069	3	40	783,2538
49	170	23,888889	5,1069	3	40	783,2538
59	180	23,888889	5,1069	3	45	881,1605
8	188	23,888889	8,5115	5	75	881,1606
18	198	23,888889	8,5115	5	60	704,9285
28	208	23,888889	8,5115	5	60	704,9285
38	218	23,888889	8,5115	5	70	822,4166
48	228	23,888889	8,5115	5	70	822,4166
58	238	23,888889	8,5115	5	60	704,9285
7	245	23,888889	17,023	10	110	646,1845
17	255	23,888889	17,023	10	105	616,8125
27	265	23,888889	17,023	10	110	646,1845
37	275	23,888889	17,023	10	110	646,1845
47	285	23,888889	17,023	10	105	616,8125
57	295	23,888889	17,023	10	110	646,1845
6	301	23,888889	51,069	30	245	479,7431
16	311	23,888889	51,069	30	245	479,7431
26	321	23,888889	51,069	30	245	479,7431
36	331	23,888889	51,069	30	245	479,7431
46	341	23,888889	51,069	30	245	479,7431
56	351	23,888889	51,069	30	240	469,9524
5	356	23,888889	85,115	50	355	417,0828
15	366	23.888889	85.115	50	350	411.2084
25	376	23.888889	85.115	50	345	405.334
35	386	23.888889	85.115	50	350	411.2084
45	396	23.888889	85.115	50	345	405.334
55	406	23,888889	85.115	50	350	411.2084
4	410	23.888889	170.23	100	550	323,0923
14	420	23,888889	170,23	100	550	323,0923
	Step Time (S) 1 60 120 9 120 9 19 29 39 49 59 48 28 38 48 58 7 17 27 37 47 57 6 16 26 36 45 57 57 57 57 57 57 57 55 45 55 45 55 41	Step Time (S)Total Time (S)1Time (S)1111606112012191309130914029150391604917059180818818198282083821848228582387245172552726537275472855729563011631126321363314634156351472855729563011631126321363314634156356453665540645396554064441044420	StepTotalTempTimeTemp(S)(C°)123,888891123,88889606123,88889913023,88889913023,88889914023,88889914023,888891914023,888891916023,888893916023,888893916023,888893916023,88889391882382381819823,888893821823,888893821823,888893821823,88889392532,888893725523,888893727523,888893727523,888893633123,888893633133836331338363313388893536635123,888893536635123,888893536635123,888893536635123,888893536635123,888893536635123,888893536635323,8888935 <t< td=""><td>StepTotalTempRateTimeTempRate(S)(C°)(1/S)123,88889170,2311123,8888906623,888890661,7023E-12012123,88889066913023,888895,1069914023,888895,10691914023,888895,1069916023,888895,1069916023,888895,1069917023,888895,1069918023,888895,1069918023,888895,1069918023,888895,1069918023,888895,1069918023,888898,51151819823,888898,51151819823,888898,51151821823,888898,51151821823,888898,51151821823,8888917,0231724523,8888917,0231725523,8888917,0231725523,8888917,0231631123,8888951,0691631123,8888951,0691631123,8888951,0691631123,8888951,0691631123,8888951,0691631123,8888951,0691631123,8888951,069</td><td>StepTotalTotalShearShearTimeTimeTempRateSpeed(S)(C)(1/S)(Rpm)123,88889170,23100123,88889170,23E10060060123,888890.061E-061200121223,888895,1069331200121223,888895,106933120123,888895,10693331202116023,888895,106933120323,888895,1069333120323,888895,1069333120323,888895,10693331303106023,888895,106933140323,888895,1069333150323,888898,51155518198823,888898,511518198823,888898,51151821823,8888917,023101422,823,8888917,02311523,8888917,02310011631123,8888917,023117225523,8888917,02311823,8888917,02310011922623,8888917,02311023,888917,02310011123,888917,02310011123,888951,0693011123,8888951,0693011123,888</td><td>Step Ime<b< td=""></b<></td></t<>	StepTotalTempRateTimeTempRate(S)(C°)(1/S)123,88889170,2311123,8888906623,888890661,7023E-12012123,88889066913023,888895,1069914023,888895,10691914023,888895,1069916023,888895,1069916023,888895,1069917023,888895,1069918023,888895,1069918023,888895,1069918023,888895,1069918023,888895,1069918023,888898,51151819823,888898,51151819823,888898,51151821823,888898,51151821823,888898,51151821823,8888917,0231724523,8888917,0231725523,8888917,0231725523,8888917,0231631123,8888951,0691631123,8888951,0691631123,8888951,0691631123,8888951,0691631123,8888951,0691631123,8888951,0691631123,8888951,069	StepTotalTotalShearShearTimeTimeTempRateSpeed(S)(C)(1/S)(Rpm)123,88889170,23100123,88889170,23E10060060123,888890.061E-061200121223,888895,1069331200121223,888895,106933120123,888895,10693331202116023,888895,106933120323,888895,1069333120323,888895,1069333120323,888895,10693331303106023,888895,106933140323,888895,1069333150323,888898,51155518198823,888898,511518198823,888898,51151821823,8888917,023101422,823,8888917,02311523,8888917,02310011631123,8888917,023117225523,8888917,02311823,8888917,02310011922623,8888917,02311023,888917,02310011123,888917,02310011123,888951,0693011123,8888951,0693011123,888	Step Ime <b< td=""></b<>

Πίνακας 5.5: Παρουσίαση μετρήσεων για το το sample 4

8	24	430	23,888889	170,23	100	550	323,0923
8	34	440	23,888889	170,23	100	550	323,0923
8	44	450	23,888889	170,23	100	550	323,0923
8	54	460	23,888889	170,23	100	550	323,0923
9	3	463	23,888889	340,46	200	850	249,6622
9	13	473	23,888889	340,46	200	850	249,6622
9	23	483	23,888889	340,46	200	850	249,6622
9	33	493	23,888889	340,46	200	850	249,6622
9	43	503	23,888889	340,46	200	855	251,1308
9	53	513	23,888889	340,46	200	855	251,1308
10	2	515	23,888889	510,69	300	1095	214,4158
10	12	525	23,888889	510,69	300	1090	213,4367
10	22	535	23,888889	510,69	300	1095	214,4158
10	32	545	23,888889	510,69	300	1100	215,3949
10	42	555	23,888889	510,69	300	1105	216,3739
10	52	565	23,888889	510,69	300	1115	218,3321
11	1	566	23,888889	1021,38	600	1670	163,5043
11	11	576	23,888889	1021,38	600	1580	154,6927
11	21	586	23,888889	1021,38	600	1595	156,1613
11	31	596	23,888889	1021,38	600	1610	157,6299
11	41	606	23,888889	1021,38	600	1620	158,6089
11	51	616	23,888889	1021,38	600	1630	159,588
12	10	626	23,888889	510,69	300	1280	250,6413
12	20	636	23,888889	510,69	300	1285	251,6204
12	30	646	23,888889	510,69	300	1285	251,6204
12	40	656	23,888889	510,69	300	1285	251,6204
12	50	666	23,888889	510,69	300	1280	250,6413
12	60	676	23,888889	510,69	300	1280	250,6413
13	10	686	23,888889	170,23	100	655	384,7735
13	20	696	23,888889	170,23	100	665	390,6479
13	30	706	23,888889	170,23	100	670	393,5851
13	40	716	23,888889	170,23	100	670	393,5851
13	50	726	23,888889	170,23	100	670	393,5851
13	60	736	23,888889	170,23	100	670	393,5851
14	9	745	23,888889	85,115	50	415	487,5756
14	19	755	23,888889	85,115	50	415	487,5756
14	29	765	23,888889	85,115	50	415	487,5756
14	39	775	23,888889	85,115	50	415	487,5756
14	49	785	23,888889	85,115	50	420	493,45
14	59	795	23,888889	85,115	50	415	487,5756

Σχήμα 5.5: Διάγραμμα Διατμητικής τάσης-Ρυθμού διάτμισης το sample 4

• Για το sample 5:

	Step	Total		Shear		Shear	
Step	Time	Time	Temp	Rate	Speed	Stress	Viscosity
	(S)	(S)	(C°)	(1/S)	(Rpm)	(dyn/cm2)	(cP)
1	1	1	23,88889	170,23	100	195	114,5509
					1,00E-		
2	60	61	23,88889	1,70E-06	06	0	0
					1,00E-		
2	120	121	23,88889	1,70E-06	06	0	0
3	9	130	23,88889	5,1069	3	5	97,90672
3	19	140	23,88889	5,1069	3	5	97,90672
3	29	150	23,88889	5,1069	3	5	97,90672
3	39	160	23,88889	5,1069	3	5	97,90672
3	49	170	23,88889	5,1069	3	5	97,90672
3	59	180	23,88889	5,1069	3	5	97,90672
4	8	188	23,88889	8,5115	5	10	117,4881
4	18	198	23,88889	8,5115	5	10	117,4881
4	28	208	23,88889	8,5115	5	10	117,4881
4	38	218	23,88889	8,5115	5	10	117,4881
4	48	228	23,88889	8,5115	5	10	117,4881
4	58	238	23,88889	8,5115	5	10	117,4881
5	7	245	23,88889	17,023	10	20	117,4881
5	17	255	23,88889	17,023	10	20	117,4881
5	27	265	23,88889	17,023	10	20	117,4881
5	37	275	23,88889	17,023	10	15	88,11607
5	47	285	23,88889	17,023	10	20	117,4881
5	57	295	23,88889	17,023	10	20	117,4881
6	6	301	23,88889	51,069	30	60	117,4881
6	16	311	23,88889	51,069	30	65	127,2788
6	26	321	23,88889	51,069	30	65	127,2788
6	36	331	23,88889	51,069	30	65	127,2788
6	46	341	23,88889	51,069	30	70	137,0695
6	56	351	23,88889	51,069	30	65	127,2788
7	5	356	23,88889	85,115	50	105	123,3625
7	15	366	23,88889	85,115	50	105	123,3625
7	25	376	23,88889	85,115	50	105	123,3625
7	35	386	23,88889	85,115	50	100	117,4881
7	45	396	23,88889	85,115	50	105	123,3625
7	55	406	23,88889	85,115	50	105	123,3625
8	4	410	23,88889	170,23	100	195	114,5509
8	14	420	23,88889	170,23	100	195	114,5509

Πίνακας 5.6: Παρουσίαση μετρήσεων για το το sample 5

8	24	430	23,88889	170,23	100	195	114,5509
8	34	440	23,88889	170,23	100	195	114,5509
8	44	450	23,88889	170,23	100	195	114,5509
8	54	460	23,88889	170,23	100	195	114,5509
9	3	463	23,88889	340,46	200	355	104,2707
9	13	473	24,44444	340,46	200	355	104,2707
9	23	483	23,88889	340,46	200	355	104,2707
9	33	493	23,88889	340,46	200	355	104,2707
9	43	503	23,88889	340,46	200	355	104,2707
9	53	513	23,88889	340,46	200	355	104,2707
10	2	515	23,88889	510,69	300	500	97,90675
10	12	525	23,88889	510,69	300	495	96,92769
10	22	535	23,88889	510,69	300	495	96,92769
10	32	545	24,44444	510,69	300	495	96,92769
10	42	555	23,88889	510,69	300	495	96,92769
10	52	565	23,88889	510,69	300	495	96,92769
11	1	566	24,44444	1021,38	600	875	85,66841
11	11	576	23,88889	1021,38	600	860	84,19981
11	21	586	24,44444	1021,38	600	870	85,17888
11	31	596	24,44444	1021,38	600	875	85,66841
11	41	606	24,44444	1021,38	600	875	85,66841
11	51	616	24,44444	1021 <i>,</i> 38	600	880	86,15794
12	10	626	24,44444	510,69	300	515	100,844
12	20	636	23,88889	510,69	300	515	100,844
12	30	646	24,44444	510,69	300	515	100,844
12	40	656	24,44444	510,69	300	515	100,844
12	50	666	23,88889	510,69	300	515	100,844
12	60	676	24,44444	510,69	300	510	99,86489
13	9	685	23,88889	170,23	100	200	117,4881
13	19	695	24,44444	170,23	100	200	117,4881
13	29	705	24,44444	170,23	100	200	117,4881
13	39	715	24,44444	170,23	100	200	117,4881
13	49	725	24,44444	170,23	100	200	117,4881
13	59	735	23,88889	170,23	100	200	117,4881
14	8	743	24,44444	85,115	50	105	123,3625
14	18	753	24,44444	85,115	50	105	123,3625
14	28	763	24,44444	85,115	50	105	123,3625
14	38	773	24,44444	85,115	50	105	123,3625
14	48	783	24,44444	85,115	50	105	123,3625
14	58	793	24,44444	85,115	50	105	123,3625

Σχήμα 5.6: Διάγραμμα Διατμητικής τάσης-Ρυθμού διάτμισης το sample 5

• Για το sample 7:

Step	Step	Total		Shear		Shear	
	Time	Time	Temp	Rate	Speed	Stress	Viscosity
-	(S)	(S)	(C°)	(1/S)	(Rpm)	(dyn/cm2)	(cP)
1	1	1	23,88889	170,23	100	645	378,89913
				1,7023E-			
2	60	61	23,88889	06	1E-06	0	0
				1,7023E-			
2	120	121	23,88889	06	1E-06	0	0
3	9	130	23,88889	5,1069	3	75	1468,6008
3	19	140	23,88889	5,1069	3	70	1370,6941
3	29	150	23,88889	5,1069	3	75	1468,6008
3	39	160	23,88889	5,1069	3	75	1468,6008
3	49	170	23,88889	5,1069	3	65	1272,7874
3	59	180	23,88889	5,1069	3	65	1272,7874
4	8	188	23,88889	8,5115	5	85	998,64869
4	18	198	23,88889	8,5115	5	95	1116,1368
4	28	208	23,88889	8,5115	5	105	1233,6248
4	38	218	23,88889	8,5115	5	90	1057,3927
4	48	228	23,88889	8,5115	5	75	881,16061
4	58	238	23,88889	8,5115	5	100	1174,8808
5	7	245	23,88889	17,023	10	140	822,41665
5	17	255	23,88889	17,023	10	135	793,04462
5	27	265	23,88889	17,023	10	130	763,6726
5	37	275	23,88889	17,023	10	140	822,41665
5	47	285	23,88889	17,023	10	130	763,6726
5	57	295	23,88889	17,023	10	120	704,92856
6	6	301	23,88889	51,069	30	325	636,39388
6	16	311	23,88889	51,069	30	325	636,39388
6	26	321	23,88889	51,069	30	330	646,18455
6	36	331	23,88889	51,069	30	335	655,97523
6	46	341	23.88889	51.069	30	325	636.39388
6	56	351	23.88889	51.069	30	330	646.18455
7	5	356	23.88889	85.115	50	490	575.6917
7	15	366	23.88889	85.115	50	485	569.81729
7	25	376	23.88889	85.115	50	485	569.81729
7	35	386	23.88889	85.115	50	485	569.81729
7	45	396	23.88889	85,115	50	485	569.81729
7	55	406	23.88889	85 115	50	480	563,94289
, x	<u>کا</u>	<u>400</u> Δ10	23 88889	170 22	100	20- 820	487 57562
8	14	420	23.88889	170,23	100	825	484.63843
	_ <u> </u>	.20			±00	025	

Πίνακας 5.7: Παρουσίαση μετρήσεων για το to sample 7

8	24	430	23,88889	170,23	100	820	481,70122
8	34	440	23,88889	170,23	100	820	481,70122
8	44	450	23,88889	170,23	100	820	481,70122
8	54	460	23,88889	170,23	100	815	478,76402
9	3	463	23,88889	340,46	200	1380	405,33396
9	13	473	23,88889	340,46	200	1370	402,39676
9	23	483	23,88889	340,46	200	1370	402,39676
9	33	493	23,88889	340,46	200	1365	400,92815
9	43	503	23,88889	340,46	200	1360	399,45955
9	53	513	23,88889	340,46	200	1355	397,99095
10	2	515	24,44444	510,69	300	1810	354,42245
10	12	525	23,88889	510,69	300	1795	351,48524
10	22	535	23,88889	510,69	300	1780	348,54804
10	32	545	23,88889	510,69	300	1765	345,61084
10	42	555	23,88889	510,69	300	1765	345,61084
10	52	565	24,44444	510,69	300	1760	344,63177
11	1	566	23,88889	1021,38	600	2685	262,87963
11	11	576	23,88889	1021,38	600	2150	210,49952
11	21	586	24,44444	1021,38	600	1945	190,42864
11	31	596	23,88889	1021,38	600	1840	180,14843
11	41	606	24,44444	1021,38	600	1750	171,33682
11	51	616	23,88889	1021,38	600	1680	164,48335
12	10	626	24,44444	510,69	300	1725	337,7783
12	20	636	23,88889	510,69	300	1740	340,7155
12	30	646	23,88889	510,69	300	1740	340,7155
12	40	656	24,44444	510,69	300	1735	339,73643
12	50	666	23,88889	510,69	300	1730	338,75737
12	60	676	24,44444	510,69	300	1720	336,79923
13	10	686	24,44444	170,23	100	760	446,45479
13	20	696	23,88889	170,23	100	760	446,45479
13	30	706	24,44444	170,23	100	765	449,39199
13	40	716	24,44444	170,23	100	765	449,39199
13	50	726	24,44444	170,23	100	765	449,39199
13	60	736	24,44444	170,23	100	765	449,39199
14	9	745	24,44444	85,115	50	440	516,94765
14	19	755	24,44444	85,115	50	445	522,82205
14	29	765	23,88889	85,115	50	440	516,94765
14	39	775	24,44444	85,115	50	440	516,94765
14	49	785	23,88889	85,115	50	440	516,94765
14	59	795	23,88889	85,115	50	440	516,94765

Σχήμα 5.7: Διάγραμμα Διατμητικής τάσης-Ρυθμού διάτμισης το sample 7

• Για το sample 8:

	Step	Total		Shear		Shear	
Step	Time	Time	Temp	Rate	Speed	Stress	Viscosity
	(S)	(S)	(C°)	(1/S)	(Rpm)	(dyn/cm2)	(cP)
1	1	1	23,88889	170,23	100	670	393,5851
					1,00E-		
2	60	61	23,88889	1,70E-06	06	0	0
					1,00E-		
2	120	121	23,88889	1,70E-06	06	0	0
3	9	130	23,88889	5,1069	3	75	1468,601
3	19	140	23,88889	5,1069	3	65	1272,787
3	29	150	23,88889	5,1069	3	75	1468,601
3	39	160	23,88889	5,1069	3	75	1468,601
3	49	170	23,88889	5,1069	3	65	1272,787
3	59	180	23,88889	5,1069	3	65	1272,787
4	8	188	23,88889	8,5115	5	90	1057,393
4	18	198	23,88889	8,5115	5	90	1057,393
4	28	208	23,88889	8,5115	5	85	998,6487
4	38	218	23,88889	8,5115	5	85	998,6487
4	48	228	23,88889	8,5115	5	85	998,6487
4	58	238	23,88889	8,5115	5	100	1174,881
5	7	245	23,88889	17,023	10	145	851,7887
5	17	255	23,88889	17,023	10	135	793,0446
5	27	265	23,88889	17,023	10	140	822,4166
5	37	275	23,88889	17,023	10	140	822,4166
5	47	285	23,88889	17,023	10	130	763,6726
5	57	295	23,88889	17,023	10	130	763,6726
6	6	301	23,88889	51,069	30	355	695,1379
6	16	311	23,88889	51,069	30	350	685,3473
6	26	321	23,88889	51,069	30	340	665,7659
6	36	331	23,88889	51,069	30	345	675,5566
6	46	341	23,88889	51,069	30	335	655,9752
6	56	351	23,88889	51,069	30	340	665,7659
7	5	356	23,88889	85,115	50	520	610,9381
7	15	366	23,88889	85,115	50	520	610,9381
7	25	376	23,88889	85,115	50	520	610,9381
7	35	386	23,88889	85,115	50	515	605,0637
7	45	396	23,88889	85,115	50	515	605,0637
7	55	406	23,88889	85,115	50	515	605,0637
8	4	410	23,88889	170,23	100	900	528,6965
8	14	420	23,88889	170,23	100	895	525,7593

Πίνακας 5.8: Παρουσίαση μετρήσεων για το το sample 8

8	24	430	23,88889	170,23	100	890	522,8221
8	34	440	23,88889	170,23	100	885	519,8849
8	44	450	23,88889	170,23	100	885	519,8849
8	54	460	23,88889	170,23	100	885	519,8849
9	3	463	23,88889	340,46	200	1490	437,6432
9	13	473	23,88889	340,46	200	1490	437,6432
9	23	483	23,88889	340,46	200	1485	436,1746
9	33	493	23,88889	340,46	200	1485	436,1746
9	43	503	23,88889	340,46	200	1485	436,1746
9	53	513	23,88889	340,46	200	1480	434,706
10	2	515	23,88889	510,69	300	1975	386,7317
10	12	525	23,88889	510,69	300	1980	387,7107
10	22	535	23,88889	510,69	300	1985	388,6898
10	32	545	23,88889	510,69	300	1985	388,6898
10	42	555	23,88889	510,69	300	2000	391,627
10	52	565	23,88889	510,69	300	2010	393,5851
11	1	566	23,88889	1021,38	600	3120	305,4691
11	11	576	23,88889	1021,38	600	2905	284,4191
11	21	586	24,44444	1021,38	600	2815	275,6075
11	31	596	24,44444	1021,38	600	2595	254,068
11	41	606	23,88889	1021,38	600	2660	260,432
11	51	616	24,44444	1021,38	600	2655	259,9424
12	10	626	23,88889	510,69	300	2090	409,2502
12	20	636	23,88889	510,69	300	2095	410,2293
12	30	646	23,88889	510,69	300	2095	410,2293
12	40	656	24,44444	510,69	300	2090	409,2502
12	50	666	23,88889	510,69	300	2080	407,2921
12	60	676	24,44444	510,69	300	2075	406,313
13	9	685	23,88889	170,23	100	900	528,6965
13	19	695	24,44444	170,23	100	900	528,6965
13	29	705	24,44444	170,23	100	895	525,7593
13	39	715	23,88889	170,23	100	900	528,6965
13	49	725	24,44444	170,23	100	900	528,6965
13	59	735	24,44444	170,23	100	900	528,6965
14	8	743	23,88889	85,115	50	510	599,1893
14	18	753	23,88889	85,115	50	510	599,1893
14	28	763	24,44444	85,115	50	515	605,0637
14	38	773	23,88889	85,115	50	510	599,1893
14	48	783	23,88889	85,115	50	515	605,0637
14	58	793	23,88889	85,115	50	510	599,1893

Σχήμα 5.8: Διάγραμμα Διατμητικής τάσης-Ρυθμού διάτμισης το sample 8

• Για το sample κ1:

Πίνακας 5.9: Παρουσίαση μετρήσεων για το to sample κ1

	Step	Total		Shear		Shear	
Step	Time	Time	Temp	Rate	Speed	Stress	Viscosity
	(S)	(S)	(C°)	(1/S)	(Rpm)	(dyn/cm2)	(cP)
1	1	1	25,55556	170,23	100	655	384,7735
				1,7023E-			
2	60	61	25,55556	06	1E-06	0	0
				1,7023E-			
2	120	121	25,55556	06	1E-06	0	0
3	9	130	25,55556	5,1069	3	80	1566,508
3	19	140	25,55556	5,1069	3	70	1370,694
3	29	150	25,55556	5,1069	3	70	1370,694
3	39	160	25,55556	5,1069	3	70	1370,694
3	49	170	25,55556	5,1069	3	70	1370,694
3	59	180	25	5,1069	3	70	1370,694
4	8	188	25	8,5115	5	95	1116,137
4	18	198	25	8,5115	5	90	1057,393
4	28	208	25	8,5115	5	85	998,6487
4	38	218	25	8,5115	5	100	1174,881
4	48	228	25	8,5115	5	95	1116,137
4	58	238	25	8,5115	5	85	998 <i>,</i> 6487
5	7	245	25	17,023	10	145	851,7887
5	17	255	25	17,023	10	135	793 <i>,</i> 0446
5	27	265	25	17,023	10	130	763,6726
5	37	275	25	17,023	10	140	822,4166
5	47	285	25	17,023	10	130	763,6726
5	57	295	25	17,023	10	135	793 <i>,</i> 0446
6	6	301	25	51,069	30	325	636,3939
6	16	311	25	51,069	30	325	636,3939
6	26	321	25	51 <i>,</i> 069	30	320	626,6032
6	36	331	25	51 <i>,</i> 069	30	320	626,6032
6	46	341	25	51 <i>,</i> 069	30	325	636,3939
6	56	351	25	51 <i>,</i> 069	30	320	626,6032
7	5	356	25	85,115	50	500	587,4405
7	15	366	25	85,115	50	500	587,4405
7	25	376	25	85,115	50	495	581,5661
7	35	386	25	85,115	50	495	581,5661
7	45	396	25	85,115	50	495	581,5661
7	55	406	25	85,115	50	490	575,6917

8	4	410	25	170,23	100	860	505,1988
8	14	420	25	170,23	100	855	502,2616
8	24	430	25	170,23	100	850	499,3244
8	34	440	25	170,23	100	850	499,3244
8	44	450	25	170,23	100	850	499,3244
8	54	460	25	170,23	100	850	499,3244
9	3	463	25	340,46	200	1455	427,363
9	13	473	25	340,46	200	1450	425,8944
9	23	483	25	340,46	200	1445	424,4258
9	33	493	25	340,46	200	1445	424,4258
9	43	503	25	340,46	200	1440	422,9572
9	53	513	25	340,46	200	1440	422,9572
10	2	515	24,44444	510,69	300	1935	378,8991
10	12	525	25	510,69	300	1915	374,9829
10	22	535	25	510,69	300	1900	372,0457
10	32	545	25	510,69	300	1880	368,1294
10	42	555	25	510,69	300	1875	367,1503
10	52	565	25	510,69	300	1870	366,1713
11	1	566	25	1021,38	600	2935	287,3563
11	11	576	25	1021,38	600	2405	235,4657
11	21	586	25	1021,38	600	2295	224,696
11	31	596	25	1021,38	600	2275	222,7379
11	41	606	25	1021,38	600	2290	224,2065
11	51	616	25	1021,38	600	2290	224,2065
12	10	626	25	510,69	300	1860	364,2131
12	20	636	25	510,69	300	1890	370,0875
12	30	646	25	510,69	300	1900	372,0457
12	40	656	25	510,69	300	1900	372,0457
12	50	666	25	510,69	300	1900	372,0457
12	60	676	25	510,69	300	1895	371,0666
13	9	685	25	170,23	100	830	487,5756
13	19	695	25	170,23	100	830	487,5756
13	29	705	25	170,23	100	830	487,5756
13	39	715	25	170,23	100	835	490,5128
13	49	725	25	170,23	100	835	490,5128
13	59	735	25	170,23	100	835	490,5128
14	8	743	25	85,115	50	465	546,3197
14	18	753	25	85,115	50	470	552,1941
14	28	763	25	85,115	50	470	552,1941
14	38	773	24,44444	85,115	50	470	552,1941
14	48	783	25	85,115	50	470	552,1941
14	58	793	25	85,115	50	470	552,1941

Σχήμα 5.9: Διάγραμμα Διατμητικής τάσης-Ρυθμού διάτμισης το sample κ1

• Για το sample k2:

Πίνακας 5.10: Παρουσίαση μετ	ρήσεων για το	то sample к2
------------------------------	---------------	--------------

	Step	Total		Shear		Shear	
Step	Time	Time	Тетр	Rate	Speed	Stress	Viscosity
	(S)	(S)	(C°)	(1/S)	(Rpm)	(dyn/cm2)	(cP)
1	1	1	22,77778	170,23	100	615	361,2759
					1,00E-		
2	60	61	22,77778	1,70E-06	06	0	0
					1,00E-		
2	120	121	22,77778	1,70E-06	06	0	0
3	9	130	22,77778	5,1069	3	55	1076,974
3	19	140	22,77778	5,1069	3	45	881,1605
3	29	150	22,77778	5,1069	3	45	881,1605
3	39	160	22,77778	5,1069	3	50	979,0672
3	49	170	22,77778	5,1069	3	40	783,2538
3	59	180	22,77778	5,1069	3	45	881,1605
4	8	188	22,77778	8,5115	5	65	763,6725
4	18	198	22,77778	8,5115	5	70	822,4166
4	28	208	22,77778	8,5115	5	70	822,4166
4	38	218	22,77778	8,5115	5	65	763,6725
4	48	228	22,77778	8,5115	5	55	646,1844
4	58	238	22,77778	8,5115	5	75	881,1606
5	7	245	22,77778	17,023	10	115	675 <i>,</i> 5565
5	17	255	22,77778	17,023	10	105	616,8125
5	27	265	22,77778	17,023	10	115	675,5565
5	37	275	22,77778	17,023	10	110	646,1845
5	47	285	22,77778	17,023	10	105	616,8125
5	57	295	22,77778	17,023	10	110	646,1845
6	6	301	22,77778	51,069	30	265	518,9058
6	16	311	22,77778	51,069	30	260	509,1151
6	26	321	22,77778	51,069	30	260	509,1151
6	36	331	22,77778	51,069	30	260	509,1151
6	46	341	22,77778	51,069	30	260	509,1151
6	56	351	22,77778	51,069	30	260	509,1151
7	5	356	22,77778	85,115	50	395	464,078
7	15	366	22,77778	85,115	50	390	458,2036
7	25	376	22,77778	85,115	50	390	458,2036
7	35	386	22,77778	85,115	50	395	464,078
7	45	396	22,77778	85,115	50	385	452,3292
7	55	406	22,77778	85,115	50	385	452,3292

8	4	410	22,77778	170,23	100	655	384,7735
8	14	420	22,77778	170,23	100	650	381,8363
8	24	430	22,77778	170,23	100	645	378,8991
8	34	440	22,77778	170,23	100	645	378,8991
8	44	450	22,77778	170,23	100	640	375,9619
8	54	460	22,77778	170,23	100	645	378,8991
9	3	463	22,77778	340,46	200	1035	304,0005
9	13	473	22,77778	340,46	200	1020	299,5947
9	23	483	22,77778	340,46	200	1010	296,6575
9	33	493	22,77778	340,46	200	1010	296,6575
9	43	503	22,77778	340,46	200	1010	296,6575
9	53	513	22,77778	340,46	200	1005	295,1889
10	2	515	22,77778	510,69	300	1320	258,4738
10	12	525	22,77778	510,69	300	1275	249,6622
10	22	535	22,77778	510,69	300	1260	246,725
10	32	545	22,77778	510,69	300	1255	245,746
10	42	555	22,77778	510,69	300	1255	245,746
10	52	565	22,77778	510,69	300	1255	245,746
11	1	566	22,77778	1021,38	600	1905	186,5124
11	11	576	22,77778	1021,38	600	1540	150,7764
11	21	586	22,77778	1021,38	600	1490	145,8811
11	31	596	22,77778	1021,38	600	1500	146,8601
11	41	606	22,77778	1021,38	600	1510	147,8392
11	51	616	22,77778	1021,38	600	1510	147,8392
12	10	626	22,77778	510,69	300	1305	255,5366
12	20	636	22,77778	510,69	300	1320	258,4738
12	30	646	22,77778	510,69	300	1325	259,4529
12	40	656	22,77778	510,69	300	1325	259,4529
12	50	666	22,77778	510,69	300	1325	259,4529
12	60	676	22,77778	510,69	300	1320	258,4738
13	9	685	22,77778	170,23	100	645	378,8991
13	19	695	23,33333	170,23	100	655	384,7735
13	29	705	23,33333	170,23	100	660	387,7107
13	39	715	23,33333	170,23	100	665	390,6479
13	49	725	23,33333	170,23	100	660	387,7107
13	59	735	23,33333	170,23	100	660	387,7107
14	8	743	23,33333	85,115	50	380	446,4548
14	18	753	22,77778	85,115	50	390	458,2036
14	28	763	23,33333	85,115	50	385	452,3292
14	38	773	22,77778	85,115	50	385	452,3292
14	48	783	23,33333	85,115	50	390	458,2036
14	58	793	22,77778	85,115	50	385	452,3292

Σχήμα 5.10: Διάγραμμα Διατμητικής τάσης-Ρυθμού διάτμισης το sample κ2

• Για το sample κ3:

πινακάς 5.11. παρουσιαση μετρησεών για το το sumple κ	Πίνακας 5.11: Παροι	ισίαση μετρήσεων	ν για το το sa	mple к3
---	---------------------	------------------	----------------	---------

	Step	Total		Shear		Shear	
Step	Time	Time	Temp	Rate	Speed	Stress	Viscosity
	(S)	(S)	(C°)	(1/S)	(Rpm)	(dyn/cm2)	(cP)
1	1	1	21,66667	170,23	100	765	449,392
					1,00E-		
2	60	61	21,66667	1,70E-06	06	0	0
					1,00E-		
2	120	121	21,66667	1,70E-06	06	0	0
3	9	130	21,66667	5,1069	3	65	1272,787
3	19	140	21,66667	5,1069	3	60	1174,881
3	29	150	21,66667	5,1069	3	65	1272,787
3	39	160	21,66667	5,1069	3	60	1174,881
3	49	170	21,66667	5,1069	3	55	1076,974
3	59	180	21,66667	5,1069	3	50	979,0672
4	8	188	21,66667	8,5115	5	90	1057,393
4	18	198	21,66667	8,5115	5	95	1116,137
4	28	208	21,66667	8,5115	5	70	822,4166
4	38	218	21,66667	8,5115	5	75	881,1606
4	48	228	21,11111	8,5115	5	90	1057,393
4	58	238	21,66667	8,5115	5	80	939,9046
5	7	245	21,66667	17,023	10	125	734,3006
5	17	255	21,66667	17,023	10	115	675,5565
5	27	265	21,11111	17,023	10	125	734,3006
5	37	275	21,11111	17,023	10	120	704,9286
5	47	285	21,11111	17,023	10	115	675 <i>,</i> 5565
5	57	295	21,11111	17,023	10	120	704,9286
6	6	301	21,11111	51,069	30	300	587,4405
6	16	311	21,11111	51,069	30	300	587,4405
6	26	321	21,11111	51,069	30	295	577 <i>,</i> 6498
6	36	331	21,11111	51,069	30	300	587,4405
6	46	341	21,11111	51,069	30	290	567 <i>,</i> 8592
6	56	351	21,11111	51,069	30	290	567,8592
7	5	356	21,11111	85,115	50	445	522,8221
7	15	366	21,11111	85,115	50	445	522,8221
7	25	376	21,11111	85,115	50	445	522,8221
7	35	386	21,11111	85,115	50	440	516,9476
7	45	396	21,11111	85,115	50	440	516,9476
7	55	406	21,11111	85,115	50	435	511,0732

8	4	410	21,11111	170,23	100	775	455,2664
8	14	420	21,11111	170,23	100	770	452,3292
8	24	430	21,11111	170,23	100	765	449,392
8	34	440	21,11111	170,23	100	765	449,392
8	44	450	21,11111	170,23	100	760	446,4548
8	54	460	21,11111	170,23	100	760	446,4548
9	3	463	21,11111	340,46	200	1305	383,3049
9	13	473	21,11111	340,46	200	1285	377,4305
9	23	483	21,11111	340,46	200	1280	375,9619
9	33	493	21,11111	340,46	200	1270	373,0247
9	43	503	21,11111	340,46	200	1270	373,0247
9	53	513	21,11111	340,46	200	1265	371,5561
10	2	515	21,66667	510,69	300	1725	337,7783
10	12	525	21,11111	510,69	300	1660	325,0504
10	22	535	21,11111	510,69	300	1635	320,1551
10	32	545	21,11111	510,69	300	1630	319,176
10	42	555	21,11111	510,69	300	1625	318,1969
10	52	565	21,11111	510,69	300	1625	318,1969
11	1	566	21,11111	1021,38	600	2665	260,9215
11	11	576	21,11111	1021 <i>,</i> 38	600	2225	217,8425
11	21	586	21,11111	1021,38	600	2150	210,4995
11	31	596	21,11111	1021,38	600	2135	209,0309
11	41	606	21,11111	1021,38	600	2135	209,0309
11	51	616	21,11111	1021,38	600	2140	209,5205
12	10	626	21,11111	510,69	300	1630	319,176
12	20	636	21,11111	510,69	300	1650	323,0923
12	30	646	21,11111	510,69	300	1655	324,0714
12	40	656	21,11111	510,69	300	1660	325 <i>,</i> 0504
12	50	666	21,11111	510,69	300	1655	324,0714
12	60	676	21,11111	510,69	300	1655	324,0714
13	9	685	21,11111	170,23	100	735	431,7688
13	19	695	21,11111	170,23	100	740	434,706
13	29	705	21,11111	170,23	100	745	437,6432
13	39	715	21,11111	170,23	100	745	437,6432
13	49	725	21,11111	170,23	100	745	437,6432
13	59	735	21,11111	170,23	100	745	437,6432
14	8	743	21,11111	85,115	50	415	487,5756
14	18	753	21,11111	85,115	50	420	493,45
14	28	763	21,11111	85,115	50	420	493,45
14	38	773	21,11111	85,115	50	420	493,45
14	48	783	20,55556	85,115	50	420	493,45
14	58	793	21,11111	85,115	50	420	493,45

Σχήμα 5.11: Διάγραμμα Διατμητικής τάσης-Ρυθμού διάτμισης το sample κ3