
TECHNICAL UNIVERSITY OF CRETE
SCHOOL OF ELECTRONICS AND COMPUTER ENGINEERING

MICROPROCESSORS AND HARDWARE LAB

Design and Implementation of a multi-FPGA
Acceleration System for Large-scale Population

Genomics Analyses based on Linkage
Disequilibrium

Author:
Dimitrios BOZIKAS

Supervisor:
prof. Apostolos DOLLAS

Dissertation Thesis Committee:

prof. Apostolos Dollas
prof. Dionisios Pnevmatikatos

asoc. prof. Ioannis Papaefstathiou

March 7, 2017

http://www.tuc.gr
http://www.ece.tuc.gr
http://www.mhl.tuc.gr

i

Abstract

Modern sequencing technologies have contributed to the creation and rapid ex-
pansion of DNA databases, already numbering thousands of whole genomes. The
astonishing rate at which genomic data are being collected, combined with the fact
that it has outpaced Moore’s law, establishes the necessity of the development of
novel tools, capable of conducting large-scale genomics analyses efficiently. This
work addresses the computational challenges inherent to the analysis of linkage
disequilibrium (LD) levels in large-scale datasets. LD is a statistic that quantifies
the non-random association between alleles at different genomic locations. While it
contributes to a wide variety of genomics and genetics analyses, the compute- and
memory-intensive operation of counting set bits (population count) in large vectors,
required for the estimation of LD, hinders the efficient use of modern CPUs for such
analyses, mainly due to the lack of a vectorized population counter. To overcome
this obstacle, we present a novel hardware architecture for the calculation of pair-
wise LD scores based on reconfigurable logic. The proposed accelerator exploits the
ability of reconfigurable machines to be programmed at the hardware level. The
effective use of multiple levels of parallelism, combined with the efficient manipu-
lation of the data structures on memory through the transformation of the memory
layout, result in high throughput capabilities for the estimation of LD in arbitrarily
large datasets. The architecture is, subsequently, mapped onto a high-performance
heterogeneous computing platform that enables the parallel cooperation of 4 recon-
figurable devices, while, simultaneously, providing a high-speed memory interface.
The implemented accelerator is evaluated for analyses of simulated genomic data
of varying sizes, through its comparison with corresponding state-of-the-art parallel
software implementations, achieving speedups between 6.35X and 134.93X, depend-
ing on the dataset size. Concerning real-world analyses, such as scanning the 22nd
chromosome of the human genome, the accelerator is capable of potentially achiev-
ing quintupled throughput when compared to highly optimized reference software
running on multiple cores.

ii

Acknowledgements
I would like to thank my supervisor, professor Apostolos Dollas for his trust

in my abilities and his guidance during the course of this study, as well as for the
opportunity he gave me to experiment with a novel and interesting platform and
expand my horizons beyond my current field of expertise and into the fascinating
domain of genetic biology.

I would also like to express my deepest gratitude to Dr. Nikolaos Alachiotis
for his guidance, cooperation, creative conversations and the amount of time and
energy he dedicated to helping me see this work realized. Furthermore, I would
like to thank Dr. Euripides Sotiriades for his guidance and useful advice during a
large part of the pursuit of this thesis. Additionally, I would like to thank Dr. Pavlos
Pavlidis of the FORTH for his valuable input on matters of population genomics, as
well as entrusting me, along with Dr. Nikolaos Alachiotis, with the task of building
this work on their algorithm.

I would like to thank Emmanouil Kousanakis and Christos Roussopoulos for
their valuable technical advice. Without them this work would not have been fully
realized. I would also like to thank Dr. Gregory Chrysos for always happening
to be nearby when I had a technical difficulty that otherwise seemed impossible to
address. I would like to give my kind regards to all my fellow students at the office
for providing a much-needed clarity of mind when my work seemed to have reached
an impasse.

In addition, I would like to thank all my dear friends for standing beside me
when I needed their support the most.

Finally, I would like to thank my brother, Panagiotis, for his moral support and
his tolerance over the times I was a lousy roommate, and my parents and grand-
parents for supporting me materially and immaterially and always allowing me to
discover my own path in my life.

Dimitrios Bozikas
Chania, 2017

iii

Contents

Abstract i

Acknowledgements ii

List of Figures v

List of Tables vii

List of Abbreviations viii

1 Introduction 1
1.1 Motivation . 1
1.2 Scientific Contributions . 2
1.3 Thesis Organization . 3

2 Theoretical Background 4
2.1 The Structure of Linkage Disequilibrium 4

2.1.1 Biological Definition . 4
2.1.2 Data Representation . 5

2.2 Calculation of Linkage Disequilibrium Scores 7
2.2.1 Allele and Haplotype Frequencies 7
2.2.2 Measures of Linkage Disequilibrium 7

2.3 Scientific Significance and Applications 9

3 Related Work 11
3.1 Software LD Implementations . 11
3.2 Accelerators in Population Genomics . 14
3.3 The OmegaPlus LD Kernel as Reference Software 15

3.3.1 Memory Layout . 16
3.3.2 The LD Computational Core . 17
3.3.3 The Generic Algorithm . 18

4 The LD Accelerator Hardware Architecture 20
4.1 Memory Layout . 20

4.1.1 Inter-state Memory Layout Transformation 21
4.1.2 Inter-SNP Memory Layout Transformation 22

4.2 LD Accelerator Design . 23
4.2.1 Top-Level Design . 23
4.2.2 Mutation/State Counter . 27
4.2.3 Correlation Unit . 28
4.2.4 State Control . 29

4.3 Memory-Architecture Interconnect . 30
4.4 Design Space Analysis . 33

iv

5 Full System Implementation 34
5.1 The Convey HC-2ex Platform . 34

5.1.1 Co-processor Architecture . 34
5.1.2 Personalities . 36
5.1.3 Memory Controller Interface . 36

5.2 LD Accelerator Instantiation . 37
5.2.1 Pre-processing on the Host Processor 37
5.2.2 Hardware Architecture Instantiation 39

6 System Evaluation 41
6.1 System Verification . 41
6.2 Performance Evaluation . 42

7 Conclusions and Future Work 48
7.1 Conclusions . 48
7.2 Future Work . 49

A Additional Data 51

Bibliography 54

v

List of Figures

2.1 Example of an MSA that consists of an arbitrary number of sites, in-
cluding two SNPs at locations i and i+ 4, along with their respective
representations under the ISM and the FSM evolutionary models. . . 5

3.1 Example of an input file under the MS-like format. 16
3.2 Example of an input file under the FASTA format 16
3.3 Structure describing the memory organization of ISM data in OmegaPlus

for w-bit words, N number of sequences and M number of SNPs. . . . 17
3.4 Structure describing the memory organization of FSM data in OmegaPlus

for w-bit words, N number of sequences and M number of SNPs. . . . 17
3.5 Structure describing (A) the triangular correlation matrix in OmegaPlus

for M number of SNPs and (B) its organization in SNP and compute
groups. 18

3.6 Dataflow of the LD sequential algorithm, as implemented in OmegaPlus.
. 19

4.1 The two-step transformation approach of the standard OmegaPlus
memory layout to (A) an inter-state one, which facilitates processing
of multiple states, and (B) an inter-SNP one, which allows shorter data
retrieval times. 21

4.2 Top-level design of the accelerator architecture. Processing proceeds
from the bottom to the top, through four discrete pipeline stages, i.e.,
BC Stages 1 and 2 for the partial accumulation of population count
results, AHF for a final accumulation and calculation of allele and
haplotype frequencies, and a final COR stage for the floating-point
correlation calculations. 24

4.3 Block diagram of the MSC unit. As the SNP length (the number of
genomes) increases, overall acceleration performance relies on the num-
ber of MSC units operating in parallel to boost population count ca-
pacity of the FPGA. Prior to the array of 16-bit population count blocks,
dedicated logic calculates on the fly all the required pairwise combi-
nations of the input SNPs. 27

4.4 Block diagrams of the two versions of the COR unit. Diagram A
presents higher result accuracy while B requires fewer resources and
achieves lower execution times. 29

4.5 Block diagram of the State Control unit. The unit computes the num-
ber of non-zero nucleotide states of each allele under the Finite Sites
Model. 30

4.6 State diagrams of the MCFSMs for (A) reading the data of SNP A (B)
reading the data of SNP B (C) storing the LD scores back to memory. . 32

vi

5.1 Diagram of the Convey Hybrid Core System. The diagram (borrowed
from the Convey Reference Manual [13]) depicts the host processor,
the FPGA co-processor and the shared memory between the two. . . . 35

5.2 Diagram of the co-processor. The diagram (source: [13]) depicts the
three subsystems of the FPGA co-processor, the Application Engine
Hub, Memory Controllers and Application Engines. 35

5.3 Diagram of the Connections between the co-processor AEs and mem-
ory (source: [13]). 37

6.1 Speedup of the FPGA accelerator deployed on 1,2 and 4 FPGAs vs
the normal and optimized OmegaPlus 3.0.0 reference software for
datasets consisting of 10,000 SNPs and 1,000 to 1,000,000 sequences.
Additional data supporting the diagram can be found in Appendix A. 46

vii

List of Tables

4.1 Resource utilization and latency of 32-bit floating-point operators . . . 29
4.2 Resource utilization and latency of COR units A and B 30

5.1 Occupied resources on a Virtex6 LX760 FPGA by a single accelerator
instance, as well as the fully functional system. 40

6.1 Performance of the FPGA accelerator for FSM datasets consisting of
10,000 SNPs and 1,000, 100,000 and 1,000,000 sequences by deploying
1,2 and 4 FPGAs. 43

6.2 Scaling of performance of the FPGA accelerator for FSM datasets con-
sisting of 10,000 SNPs and 1,000, 100,000 and 1,000,000 sequences when
increasing the number of parallel FPGAs. 43

6.3 Performance of OmegaPlus 3.0.0 for FSM datasets consisting of 10,000
SNPs and 1,000, 100,000 and 1,000,000 sequences (Opt. = intrinsic
population counter implemented). 44

6.4 Performance of the accelerator for datasets of 5,008 sequences and a
varying number of SNPs. 44

6.5 Performance evaluation of the FPGA accelerator vs OmegaPlus 3.0.0
for FSM datasets consisting of 10,000 SNPs and 1,000, 100,000 and
1,000,000 sequences when increasing the number of parallel FPGAs
(Opt. = intrinsic population counter implemented). 45

6.6 Estimated performance comparison for analyzing 10,000 SNPs and
100,000 sequences based on ISM. 47

A.1 Performance of the FPGA accelerator for FSM datasets consisting of
10,000 SNPs and 1,000 - 1,000,000 sequences by deploying 1,2 and 4
FPGAs. 51

A.2 OmegaPlus 12-threaded execution times and throughput for a dataset
consisting of 1,055,736 SNPs and 5,008 sequences (22nd human chro-
mosome). 51

A.3 Speedup of the accelerator vs. various OmegaPlus 3.0.0 software ver-
sions for a dataset of 10,000 SNPs and 1,000 sequences (Opt. = intrinsic
population counter implemented). 52

A.4 Speedup of the accelerator vs. various OmegaPlus 3.0.0 software ver-
sions for a dataset of 10,000 SNPs and 100,000 sequences (Opt. = in-
trinsic population counter implemented). 52

A.5 Speedup of the accelerator vs. various OmegaPlus 3.0.0 software ver-
sions for a dataset of 10,000 SNPs and 1,000,000 sequences (Opt. =
intrinsic population counter implemented). 53

A.6 Speedup of the accelerator vs. the fine-grain version of OmegaPlus
3.0.0 operating on 12 cores for datasets of 10,000 SNPs (Opt. = intrinsic
population counter implemented). 53

viii

List of Abbreviations

LD Linkage Disequilibrium
SNP Single Nucleotide Polymorphism
GWAS Genome-Wide Association Studies
MSA Multiple Sequence Alignment
ISM Infinite Sites Model
FSM Finite Sites Model
HWE Hardy-Weinberg Equilibrium
MC Memory Controller
MCP Memory Controller Pair
BC Bit-Count
AHF Allele/Haplotype Frequency
MSC Mutation/State Counter
MCFSM Memory Controller Finite States Machine
AEH Application Engine Hub
AE Application Engine

ix

Dedicated to my family and friends.

1

Chapter 1

Introduction

The rapid technological advancements of recent years have paved the path for
the refinement of DNA sequencing tools. Cheaper and faster processing units, paired
with novel algorithms, have yielded cost-efficient solutions providing high accuracy
and throughput for the sequencing of vast amounts of genomic data, in a scale never
before precedented. Contemporary genomic databases already contain thousands of
whole genomes, a number which is rapidly increasing. The highly successful 1,000
genomes project [56], for example, achieved the full sequencing of the genomes of
2,504 individual humans across 26 populations by 2015, long surpassing its initial
goals. It’s successor, the 100,000 genomes project [19], has set the goal of having
sequenced 100,000 human genomes by the end of 2017, while numerous other local-
ized projects have sequenced portions of individual populations [21].

It is predicted that, by 2025, between 100 million and 2 billion genomes will have
been sequenced, of humans alone. This constitutes a four to five orders of mag-
nitude growth in ten years, classifying Genomics as one of the Big Data domains,
vastly overshadowing the growth of data sizes of the rest domains, namely Astron-
omy, Youtube and Twitter [55]. Currently, sequencing capacity doubles every seven
months [55], meaning that conventional computing machines cannot continue to
efficiently process data at this scale, as the rate by which genomic data are being
sequenced has long outpaced Moore’s Law. As a result, the need for novel custom
solutions capable of efficiently processing future large-scale datasets has arisen.

1.1 Motivation

This work is focused around a widely used statistic in population genomics
called linkage disequilibrium (LD) [34]. LD describes the non-random association
between alternative forms of a gene, known as alleles, at different loci in a pop-
ulation, giving the capability to compute correlations between mutations that are
inherited together. The practical applications of LD, either as a standalone statistic
or as the basis of subsequent analyses, are numerous. The inclusion of past evolu-
tionary events within the shape of LD in humans [49], for instance, has significant
implications for disease gene mapping. Additionally, LD achieves higher accuracy
and sensitivity than alternative statistics in analyses revolving around tests of pos-
itive selection [15]. Such analyses, when applied to populations of pathogens, may
possibly lead to the development of more effective drugs [4], through the discovery
of drug-resistant mutations in the population. In the scope of genome-wide asso-
ciation studies (GWAS) [59], focused around identifying mutations associated with
diseases, LD enables the screening of the dataset for meaningful interactions be-
tween target highly linked loci, thus reducing the computational load of subsequent
analyses.

Chapter 1. Introduction 2

LD calculations are conducted on so-called multiple sequence alignments (MSAs).
An MSA can be represented as a structure of m× l dimensions consisting of m DNA
sequences of l nucleotide sites each. If a column contains more than a single nu-
cleotide base, therefore denoting the presence of one or more mutations in the spe-
cific site, it is categorized as a single-nucleotide polymorphism (SNP). Concerning
LD-based analyses, non-polymorphic sites do not contain any meaningful informa-
tion and, as a result, the dataset must be vetted prior to such analyses, so that it only
contains SNPs. For a dataset containing m SNPs and l sequences to be correlated
by SNP pairs in its entirety, a quadratic time complexity of a factor of O(m × n2) is
expected [59].

As a result, LD calculations represent a challenging Bioinformatics subject, in
terms of both computational and memory standpoints. This is especially true in re-
lation to the ever-growing data sizes that sequencers produce. On the one hand, the
calculation of LD scores requires the application of the population count operation,
that is the enumeration of set bits in registers, on the SNP vectors. With increasing
sample sizes, this operation quickly becomes the bottleneck of the LD calculation,
due to the increased length of the SNP vectors. Furthermore, the sequencing of more
genomes inevitably leads to wider genetic variance within the dataset, thus inflating
both the number of sequences and the number of SNPs of the produced datasets.
This directly translates to increased computational and memory requirements for
processing larger datasets.

To address the issues that large datasets present, several encoding models of ge-
nomic data have been proposed, aiming for the minimization of the computational
load and the memory footprint. The infinite sites model [29] consists a widely used
and simplified encoding method, which uses a binary system to designate the pres-
ence of mutations in a population based on a single reference sequence. In this work,
however, the focus revolves around the compute-intensive, yet more informative, fi-
nite sites model (FSM) [24], which encodes each nucleotide base in its own vector,
thus allowing the account of multiple mutations per locus. This design decision is
motivated by the increase in interest around the particular model in recent biological
studies [40]. Despite the several successful attempts at optimizing the LD algorithm
and in contrast to the continuation of Moore’s law, LD still presents a challenge
for the computational sciences, mainly due to the lack of a vectorized population
counter in current microprocessor architectures [1]. Thus we attempt to present a
different approach of calculating LD by means of reconfigurable hardware.

1.2 Scientific Contributions

The scientific contribution of this work is focused on two aspects. We present
a generic FPGA-based architecture to accelerate LD computations focused on pro-
cessing arbitrarily large numbers of whole genomes. The design itself is agnostic
towards the overlying application, rendering it able to be used in a large variety of
different bioinformatics algorithms, provided the necessary minor changes. Driven
by the volume of future datasets, we present the design decisions that were con-
sidered along the development and optimization process of the architecture for the
accommodation of very large data sizes. The proposed accelerator architecture es-
timates LD under the FSM assumption, however, minor changes for ISM support
are presented. In the case of the FSM model, which is the main focus of this work,
DNA ambiguous characters (to correct for DNA sequencing errors and nucleotide
base mis-calls [27]) and missing data are accounted for.

Chapter 1. Introduction 3

We subsequently implement the proposed architecture as a single-FPGA proto-
type system and employ a Convey HC-2ex platform, exploiting its high-end mem-
ory interface and synergistic quad-FPGA setup to enhance the performance capa-
bilities of the fully implemented accelerator system. The implemented design is
coupled with an efficient parallel algorithm for computing LD at the whole-genome
scale, so as to deploy hardware acceleration efficiently for genome-wide analyses
that comprise a large number of full genomes. To evaluate the performance of the
implemented system, a series of comparisons based on simulated genomic data of
up to 1 million sequences was performed between the accelerator and reference
high-performance software implementations. Considering real-world applications,
we estimate potential performance gains our system can achieve in the analysis for
the detection of traces of positive selection in the 22nd chromosome of the human
genome, based on real world data from the 1,000 genomes project [56].

As a synopsis, due to the ever-growing volume of genomic data being collected,
along with the computational complexity of the problem at hand and the scarce
hardware architectures that currently tackle it, we attempt to provide a first step
towards a viable high-performance custom hardware architecture with real-world
application capabilities.

1.3 Thesis Organization

The remainder of this work is organized as follows. In Chapter 2 we describe the
mathematical operations and concepts for computing LD under both the ISM and
the FSM evolutionary assumptions and analyze significant LD theoretical applica-
tions. In Chapter 3 we review related work on software and hardware solutions for
population genomics and linkage analyses, while describing the LD computational
core of the OmegaPlus algorithm [2] as the basis of our LD accelerator. Chapter 4
describes the proposed accelerator architecture and the necessary memory layout
transformations that enable the efficient processing of large datasets, while Chap-
ter 5 provides a short description of the target Convey HC-2ex platform, as well as
the implementation details of the accelerator. In Chapter 6 we present the methodol-
ogy followed for the verification of the architecture in detail and evaluate the perfor-
mance of our accelerator by conducting comparisons with state-of-the-art parallel
software implementations. Finally, Chapter 7 entails the conclusions drawn from
this work, as well as proposals for improvements and possible studies that could
stem from the current one.

4

Chapter 2

Theoretical Background

2.1 The Structure of Linkage Disequilibrium

Linkage disequilibrium (LD) quantifies the non-random association between al-
leles at different genomic locations. In the simplified case where no evolutionary
forces are acting on the genomes during reproduction, such as recombination, mu-
tation, genetic drift etc, all alleles that reside on the same chromosome are inherited
to the offspring. In reality, however, several evolutionary forces contribute to the
genetic constitution of the offspring’s generation. LD is employed to identify which
allelic combinations co-occur in a genome more frequently than expected by chance.

2.1.1 Biological Definition

According to Mendel’s Law of Independent Assortment, alleles for separate traits
are passed independently of one another from the parents to the offspring. In other
words, the biological selection of an allele for one trait has nothing to do with the se-
lection of an allele for any other trait. While this is true in principle, there have since
been discovered several violations of the law, with genetic linkage consisting the
most prominent one, stating that DNA sequences that are found in relatively short
distances of one another within a chromosome exhibit a tendency to be inherited
together during reproduction.

This can be explained when genetic recombination is taken into account. Re-
combination takes place during reproduction and refers to the possible exchange of
genetic material between the homologous chromosomes of the parents, producing
by extension a slightly different chromosome that is inherited by the offspring. In
this case, the chance that two alleles remain together during recombination is pro-
portional to the physical distance between them in the chromosome.

Furthermore, genetic material may also be subject to mutations, either sponta-
neous or induced ones. Spontaneous mutations occur mostly by chance, while in-
duced mutations may appear due to environmental factors. The scale of a mutation
is varying, while the manifestation can be in the form of deletion, duplication or
inversion of a set of genes within a chromosome or even insertion or translocation
of genes between different chromosomes. The effect of a mutation may be anything
from virtually insignificant, beneficial or even extremely harmful and the cause of
genetic disease.

When considering whole populations, several more evolutionary forces affect the
gene pool, either by chance or choice. Such forces may be genetic drift, which refers
to the change in the allele frequencies of a population due to random events, non-
random mating, where part of the population exhibits a preference in reproduction
with another part of the population that retains certain specific traits, as well as
natural selection, which occurs when specific traits in a portion of the population

Chapter 2. Theoretical Background 5

... ...

i i+4

C
C
A
A
T

T
C
A
T
G

0:
1:
2:
3:
4:

...

1
1
0
0
1

A
0
0
1
1
0

C
1
1
0
0
0

G
0
0
0
0
0

T
0
0
0
0
1

ISM FSM

0
1
1
0
1

A
0
0
1
0
0

C
0
1
0
0
0

G
0
0
0
0
1

T
1
0
0
1
0

ISM FSM

ancestral
sequence

MSA ...

A
A
A
A
A

C
C

C
C

C
C

C
C

G
G
G
G
G

A

A
A
A

A A C C G T A

FIGURE 2.1: Example of an MSA that consists of an arbitrary number
of sites, including two SNPs at locations i and i + 4, along with their
respective representations under the ISM and the FSM evolutionary

models.

facilitate a higher chance of survival and, therefore, a higher chance to pass those
traits down to the next generation.

Given all the aforementioned factors of the evolutionary process, linkage dis-
equilibrium can be defined as the statistical measure that quantifies the degree to
which alleles at different loci exhibit a non-random association. As a result, the rate
with which the described evolutionary forces occur highly influences the pattern
of LD, providing valuable information concerning allelic combinations that are both
dependent on each other and deviate from a random association expected by chance.

2.1.2 Data Representation

LD computations are conducted on data structures that consist solely of SNPs,
which we henceforth refer to as SNP maps. A SNP map is therefore a description
of the existing mutations in a population along with their respective locations in the
chromosome. The process of creating a SNP map begins with the sequencing of the
genetic material of the individuals under investigation, which generates a DNA se-
quence per individual. In order to correctly represent the genetic variations between
the collected data, an ancestral sequence must be selected as reference, thus produc-
ing a multiple sequence alignment (MSA). An example of an MSA that comprises
7 visible alignment columns and 5 sequences is shown in Figure 2.1, with hyphens
inferring to missing genomic data. Note that, out of the 7 total sites only the 2 high-
lighted can be classified as SNPs, meaning that a mutation is present on the specific
sites. The rest contain no useful information concerning LD, thus the MSA must be
screened so that the final SNP map only contains polymorphic sites (i.e., SNPs).

While SNP maps are devoid of excess uninformative data, they remain an incom-
prehensible format in regards to computer processing. Therefore two options are
presented for further encoding. The first, labeled as the infinite sites model (ISM),
represents each SNP as a single binary vector. Such an encoding is achieved by com-
paring each allele of every individual to the corresponding allele of the ancestral
sequence. If the comparison between the ancestral and a target sequence presents
different nucleotide bases for an allele, thus denoting the presence of a mutation, the
corresponding bit in the ISM alignment is set. In mathematical terms, given an allele
ai at a location i in the ancestral sequence S, the binary vector V describing SNP i is

Chapter 2. Theoretical Background 6

constructed as follows, where [] is the Iverson bracket notation:

V ai
i = {[Vi,0 = ai], [Vi,1 = ai], ..., [Vi,N−1 = ai]}. (2.1)

Assume, for instance, the ancestral sequence of Figure 2.1, employed for a hypothet-
ical analysis of the example MSA. The first SNP in the MSA, which is alignment site
i, is therefore represented by the following binary vector:

V A
1 = {1, 1, 0, 0, 1}, (2.2)

This example illustrates that, given a nucleotide base A in the ith site of the ancestral
sequence, three mutations are located in that site, at sequences zero and one with a
nucleotide base C, and at sequence five with a nucleotide base T specifically, while
sequences two and three contain the same base as the ancestral sequence.

The ISM offers a memory-efficient way of encoding large datasets in binary vec-
tors. However, the trade-off for such efficiency is represented by the abstraction
of information that occurs during the encoding process. Namely, we can deduce
from the produced vector only the location of the mutation but not the information
of the mutation itself. Furthermore, by using an ancestral sequence as a reference,
mutations are only tracked based on that reference sequence and not between the
individuals of the population under examination. One must also consider that if an
analysis of a dataset must account for missing data and/or base miss-calls, an addi-
tional vector of equal length must be created for each SNP in order to validate the
data, due to the fact that a binary encoding into a single vector does not have enough
digits to include such information.

The second encoding method of SNP maps, which comprises the finite-sites
model (FSM), utilizes a two-dimensional matrix to represent each SNP. The matrix’s
dimensions are equal to the number of sequences times four, with each of the four
sub-vectors representing the presence or absence of each nucleotide base, namely
adenine (A), guanine (G), thymine (T) and cytosine (C), at the corresponding loca-
tion on the alignment. This method does not require a reference sequence to be pre-
sented, but a binary value of "1" is inserted at a position of a base sub-vector if the
corresponding position in the alignment contains that base. Based on Equation 2.1,
a SNP is described under the FSM as follows:

Mi = {V A
i V C

i V G
i V T

i }. (2.3)

Again, Figure 2.1 illustrates the FSM encoding of our example MSA according to
Equation 2.3.

At first glance, the finite sites model could be described as inefficient given that it
requires 4 times the memory space compared to the ISM and it uses 4 bits to encode
the 4 nucleotide bases instead of 2, which would be the obvious optimal choice. The
4-bit model is chosen due to the fact that DNA sequencing errors and base mis-calls
[27] do not allow to accurately determine which of the 4 nucleotide bases exists at
each location in the genome. Therefore, a total of 16 ambiguous DNA characters
(see http://www.bioinformatics.org/sms/iupac.html) are employed in order to al-
low subsequent statistical analyses to account for such ambiguity. Furthermore, by
not using a reference sequence, mutations may be tracked between each two indi-
viduals of the population, while the information of the nucleotide bases of the whole
alignment is preserved, allowing for more intricate in-depth analyses.

http://www.bioinformatics.org/sms/iupac.html

Chapter 2. Theoretical Background 7

2.2 Calculation of Linkage Disequilibrium Scores

In order to compute the LD score of a pair of SNPs, the frequencies with which
mutations appear in each SNP and the pair combined must be deduced. These fre-
quencies are henceforth denoted as allele and haplotype1 frequencies respectively.
When these statistics are known, an LD measure can be applied in order for the final
score to be computed. For the sake of clarity, we initially describe LD when the ISM
assumption holds, as it is also the basis for the operations required for the calculation
of LD scores under the FSM model.

2.2.1 Allele and Haplotype Frequencies

In order to specify the allele and haplotype frequencies, first, the number of mu-
tations at each SNP position as well as the number of common mutations appearing
at both SNPs must be enumerated. Therefore, given a SNP at location i, the allele
mutation count C is computed by the following equation:

Ci =

N−1∑
k=0

[Vi,k = 1]. (2.4)

The aforementioned equation denotes the enumeration of set bits at locus i, or in
essence, the enumeration of mutated alleles that appear in the sample SNP. This
operation is henceforth referred to as population count operation.

Similar to Equation 2.4, albeit in a per-SNP-pair basis, the haplotype mutation
count of a pair of SNPs located at loci i and j respectively, is given by the following
equation:

Cij =

N−1∑
k=0

[Vi,k = 1][Vj,k = 1]. (2.5)

In this case, the equation represents the combined population count of the SNP pair.
From a biological standpoint, this translates to the total number of genomes that
exhibit the mutated allele at both chromosomal locations i and j.

When the allele and haplotype mutation counts are calculated, they can be nor-
malized by the total number of sequences N in the alignment and produced the
allele F and haplotype H frequencies as follows:

Fi =
Ci

N
, Hij =

Cij

N
. (2.6)

2.2.2 Measures of Linkage Disequilibrium

LD relies on the probability of independent events. Once the allele and haplotype
frequencies for SNPs i and j are known, we can then compute LD as follows:

Dij = Hij − FiFj . (2.7)

This equation calculates the difference between the probability of observing two
mutations at two chromosomal locations in the same genome and the product of
the probabilities of observing the two mutations independently. Biologically, this
represents the degree to which the two mutations are likely to be dependent on each
other, thus be inherited together during reproduction. To elaborate further, when the

1A haplotype is a set of mutations that are inherited together.

Chapter 2. Theoretical Background 8

result of Equation 2.7 is equal to zero, the mutations at the chromosomal locations
i and j occur independently of each other, thus can be said that SNPs i and j are
in linkage equilibrium. On the other hand, in the case of a non-zero outcome, the
mutations are not independent, but rather in linkage disequilibrium.

The formulation of Equation 2.7, however, is rarely used due to the fact that the
sign and range of values that D assumes varies with the frequency that mutations
occur, yielding the comparison of LD values highly problematic, even between ge-
nomic regions in the same chromosome. Even if the absolute value of D is used,
leading to positively signed results, the range of values still presents a notable limi-
tation for LD analyses. For this reason, several standardization methods have been
proposed.

Lewontin [33] suggested normalizing D by dividing it by the theoretical maxi-
mum difference between the observed and expected allele frequencies as follows:

D′ij =
D

Dm
, (2.8)

where Dm is defined according to the sign of D as:

Dm =

{
max[−FiFj ,−(1− Fi)(1− Fj)], when D < 0,

min[Fi(1− Fj), Fj(1− Fi)], when D > 0.
(2.9)

This measure significantly reduces the range of values produced and therefore con-
stitutes a more accurate metric for linkage disequilibrium because the LD scores are
disjoint from the fluctuation of allelic frequencies. However, when the sample size
is small or one of the alleles under examination is rare, the scores reported have
proven to be inflated, a fact which could potentially lead to false assumptions dur-
ing an analysis, if it is not accounted for.

Another measure and, arguably, the most widely used one, relies on the Pear-
son’s correlation coefficient, as shown by Hill and Robertson [22]. The squared Pear-
son’s coefficient represents the focus of this work and can be described as:

r2ij =
(Hij − FiFj)

2

Fi(1− Fi)Fj(1− Fj)
. (2.10)

The fact that r2 only assumes values in the range between one and zero presents mul-
tiple advantages over the rest of the proposed standardization methods. Mainly, the
comparison between different genomic regions becomes much easier, while the in-
terpretation of the scores becomes rather intuitive since values closer to one indicate
high LD, whereas values closer to zero indicate reduced association. Equation 2.10
may also be multiplied by the number of sequences N in the alignment, and, by
using Equations 2.6, it can be transformed in a simplified form as:

r2ij =
(NCij − CiCj)

2

Ci(N − Ci)Cj(N − Cj)
. (2.11)

What has been described so far consists the measurement of LD scores accord-
ing to the ISM model, which represents an approximation of the FSM assumption
regarding the occurrence of mutations. Despite its simplified SNP representation,
this approximation is designed to provide lower computational requirements and
shorter analysis times. The computation of LD scores under the FSM model is not
mathematically unrelated to the ISM. We could abstractly portray an LD score un-
der the FSM as a series of LD computations using the ISM model. Each computation
treats each pair of nucleotide bases, namely A, C, G and T, present at the pair of

Chapter 2. Theoretical Background 9

SNPs as an independent ISM score. For that reason, a score computed under the
FSM model may require up to 16 times more computations, in the case of all alleles
being present in all SNPs.

To better illustrate the FSM computation method, assume a pair of SNPs, i and j
and their respective sets of DNA characters, Si and Sj , that contain the alleles found
in this SNP pair. We may also describe the number of characters present at each
allele as the size of the character set and denote them as Vi and Vj for the sets Si and
Sj respectively. Then, using Equation 2.10, we could describe LD under the FSM
assumption as:

LDij = N
(Vi − 1)(Vj − 1)

ViVj

∑
m∈Si

∑
l∈Sj

r2ml, (2.12)

As an example, consider again Figure 2.1. In order to calculate an FSM LD score
between the two SNPs that are illustrated, we would need the character sets of the
aforementioned SNP pair, which would be Si = {A,C, T} and Si+4 = {A,C,G, T},
while their sizes are Vi = 3 and Vi+4 = 4 respectively. Note that, in this example, the
character G is absent from Si, since guanine is not present in SNP i. In this case, the
entire column referring to guanine in SNP i may be omitted, reducing the number
of ISM computations required to 12.

2.3 Scientific Significance and Applications

Linkage disequilibrium has proven, since the 1980’s, to be of high significance
to biologists and geneticists due to its properties and usefulness in a wide range of
different analyses [53]. Since technological progress has paved the path for gene-
mapping, large-scale surveys upon genomic data and even genome-wide associa-
tion studies, the plethora of factors that affect and are affected by LD have deemed it
invaluable to evolutionary biology and genetics. The information it provides when
examined throughout the whole genome can lead to deduction of a population’s his-
tory [49] and various breeding and geographic patterns [37], as it encapsulates past
evolutionary events, whereas an LD based analysis of a genomic region may shed
light on the effect of evolutionary forces [34], such as natural selection, mutation etc.

The practical applications of LD so far have yielded numerous enlightening re-
sults. The inclusion of past evolutionary events in LD measurements, for instance,
can provide valuable information for disease gene mapping by estimating the shape
of LD in the human genome [49] and by mapping the LD patterns of complex dis-
eases [57, 11]. Examples of such research around complex diseases include studies
conducted in sub-genomic areas concerning genes that possibly associate with can-
cer [7], variations of genes linked with increased cancer risk among different human
populations [30], analyses of random genetic events and their association with ele-
vated risk of developing cancer [38] and the linkage between loci that may present
susceptibility to highly complex diseases, such as type 1 diabetes [41], among oth-
ers. Furthermore, when applied as a measure in genome-wide association studies
(GWAS) or analyses of consequent data, it can further our understanding concerning
mutations affecting or leading to genetic disease [31, 10, 14].

For the same reason, LD provides valuable insight into evolutionary biology con-
cerning micro- and possibly macro-evolution of a population when its LD patterns
over several generations are examined [15]. As a result, several studies have con-
cluded on the significance of LD statistics as a means of tracking selective sweeps
based on the genetic history of a population [42, 44]. More focused studies have

Chapter 2. Theoretical Background 10

even revolved around the estimation of the contemporary effective size of a pop-
ulation [60], the deduction of the admixture history in human populations [37] or
even whether natural selection still occurs in contemporary populations [6]. Further-
more, LD may provide an indicator of the appearance of recent beneficial mutations
[58] while it is also used to detect co-evolution between interacting genes [50], that
is genes that mutate complementary in order to maintain the interaction between
them.

Finally, valuable conclusions might be extracted from the analysis of LD patterns
present in populations of harmful microorganisms [43]. In this case, further studies
might be able to achieve the engineering of more potent drugs, thus better combating
serious diseases, such as malaria.

Hopefully, through the examples presented above, we have succeeded in estab-
lishing the significance of linkage disequilibrium as a means of understanding the
genetic origin of populations as well as aiding in the struggle for their future welfare.
Therefore, we attempt to transform our theoretical understanding into a novel high-
performance hardware architecture, with the aim to effectively address the need for
faster LD calculations of large-scale datasets.

11

Chapter 3

Related Work

Due to its significance, as well as its computational complexity, linkage disequi-
librium has become the subject of focus in various Bioinformatics studies, leading to
numerous algorithmic models. Through the advancement of technology, several effi-
cient implementations have been released, mainly confined in the scope of software.
In this chapter, we attempt to present the more prominent ones, as well as relevant
hardware implementations in order to establish a clear picture of the current state of
the technological landscape around linkage disequilibrium implementations.

3.1 Software LD Implementations

The disproportion between the rate with which genomic data are being sequenced
and Moore’s law has established the need for fine-tuned high-performance software
tools capable of efficiently processing LD scores of large-scale datasets. Since the
early 2000’s several successful attempts have been made.

LDA, a java-based linkage disequilibrium analyzer, was released by Ding, Zhou
et al. [16]. The first stage of computations consists of either a Monte Carlo permu-
tation or an x2-test, depending on the user’s choice, to check whether the alleles at
each locus are in Hardy-Weinberg equilibrium (HWE)1. For those alleles that prove
to be on HWE, an expectation-maximization algorithm is deployed to calculate the
four haplotype frequencies of pairwise loci. Finally, several pairwise measures are
implemented to quantify the degree of LD, such as the aforementioned D′ and r2

described in Section 2.2.2, while significant association between two loci is tested
through a Monte Carlo simulation-based likelihood ratio test or an x2 test. LDA is
implemented as a graphical user interface, presents a significant variety of choices
to the user, allowing for analyses tailored for different needs, and is capable of pro-
ducing both text-based and graphical output. However, it lacks multi-core support
and, therefore, is not suitable for analyses of large-scale datasets.

SNPStats is a web tool developed by Sole et al. [54] for association studies anal-
yses. It is designed from a genetic epidemiology point of view and is focused on
enabling research around association studies based on both SNPs and biallelic mark-
ers. The software package is able to compute a variety of metrics referring to both
single-SNP (HWE) and multi-SNP (LD) association. The application itself is written
using PHP, while the computational core is implemented as a series of R packages.
However, the lack of parallelization of the computations hinders its performance.

VariScan, released by Hutter et al. [23], is a software suite for the analysis of
DNA polymorphisms. It implements several genetic parameters, such as summary

1HWE states that allele and genotype frequencies will remain constant across generations in the
absence of other evolutionary forces. It is not to be confused with LD, which quantifies the association
between two or more alleles.

Chapter 3. Related Work 12

statistics of nucleotide and haplotype polymorphism levels, LD-based statistics and
several coalescent-based tests of neutrality. Furthermore, VariScan allows for differ-
ent genomic regions, functional categories or chromosome locations to be analyzed
carefully. The main focus of the software revolves around searching for the genetic
footprint of natural selection through the use of the aforementioned statistics. The
software is written in ANSI C, supplemented by PERL scripts and a JAVA-based
GUI, however, it lacks modern high-performance optimizations, such as multi-core
support.

Haploview, released by Barett et al. [5], is a tool for haplotype analyses written
in JAVA. Through a comprehensive GUI, the user is presented with several genomic
metrics describing the input data, such as HWE, Mendelian inheritance errors etc.
As a subsequent analysis, the program presents the option of pairwise LD calcula-
tions based on a wide array of LD measures (D′, r2, etc.) using either preset or user-
defined groups of genetic markers. Other measures are also implemented, such as
the Transmission Disequilibrium Test (TST), evaluating the presence of family-based
genetic linkage between a genetic marker and a trait. Similar to LDA, due to the time
the software was released, it suffers from a lack of a parallelized version. However,
as it is licensed as open-software, it has been updated and built upon as recently
as 2015, but its further support and development are reported as being currently
frozen.

Another algorithm for LD and genetic association analyses implemented as a
web interface is SNPAnalyzer 2.0, developed by Yoo et al. [66]. Information concern-
ing the input dataset, such as allele/haplotype frequencies and analysis of HWE, is
provided through a comprehensive user interface. The processing starts with the
estimation of haplotypes in the dataset and, in turn, one of several LD measures is
applied indicating the degree of association between a pair of SNPs. As a down-
stream analysis, haplotype estimation or LD data are used to search for genetic as-
sociation between disease and haplotypes. The software itself is user-friendly since
it implements a web-based GUI and supports both text and visual output formats.
The computational core of the software is implemented in C, while the user interface
in JAVA. However, even though it is reported that it performed better than various
other similar software of its time, its sequential code is not suited for modern large-
scale analyses.

A complete re-implementation of GenePop [48] was released by Rousset [51],
implementing a variety of DNA statistic measurements. Such statistics include sev-
eral HWE tests, tests of independence between contingency tables, either for spatial
structure or two-locus composite linkage disequilibrium, allele frequencies and gene
diversities at different hierarchical levels among others. However, despite the large
volume of statistics that are implemented and the continuous support of the soft-
ware until as recently as 2016, there is not an efficient parallel version of the software
to address the issue of processing very large datasets.

The Arlequin suite, released by Excoffier et al. [17], is a software package inte-
grating several statistics for population genetics data analysis. Such statistics include
allele/haplotype frequencies based on maximum-likelihood estimation, parameters
of a demographic or spatial expansion based on the mismatched distribution com-
puted on DNA sequences, departure from Hardy-Weinberg equilibrium and various
LD measures, among other intra- and inter-population statistics. The latest version
[18] is implemented in C++, while the output is produced in HTML format with the
option to be converted to XML, while an R package graphically represents the XML
data. Furthermore, while a GUI is present, the use of the command-line versions of
the software is advised by the authors for large-scale analyses. However, the absence

Chapter 3. Related Work 13

of multi-core support is, once again, an obstacle towards the efficient processing of
contemporary large-scale datasets.

GCTA is a tool for genome-wide trait analysis developed by Yang et al. [65].
The software is designed to address the issue of SNPs produced by GWAS not be-
ing able to fully explain the heritability of most complex human traits and diseases.
As a result, the algorithm implemented is focused on estimating the variance for a
complex trait based on SNPs on a chromosome- or genome-wide level, rather than
testing the association of each SNP to the trait. The functionality of the software in-
cludes estimating the genetic relation of genome-wide SNPs, estimating the variance
explained by genome-wide SNPs or the variance on the X chromosome as well as es-
timating LD and total heritability among others. From a computational standpoint,
even though the cited publication presented a sequential version of the application,
the software has since been updated to support multiple threads, thus operating on
multiple processor cores (see http://cnsgenomics.com/software/gcta/index.html).

PopGenome[45], released by Pfeifer et al., consists a comprehensive R package
that offers a variety of population genetics statistics, including LD. The focus of this
work is to create a unified tool consisting of a wide range of statistics, all under the
same software. Therefore, it supports a large number of widely-used input file for-
mats, exhibits powerful numerical and graphical capabilities, is platform indepen-
dent, and its open-source nature and comprehensive framework enables the easy
assimilation of new features to the package. The set of implemented functionali-
ties includes several neutrality and LD statistics, nucleotide and haplotype diversity
tests, selective sweep analysis, recombination statistics and others. Furthermore,
higher performance is achieved by implementing some computationally heavy cal-
culations in C++, instead of R scripts, and by parallelizing parts of the software, thus
enabling its multi-threaded execution. However, other features present in high-end
processors, such as vector intrinsics or advanced caching techniques, are not ex-
ploited to their full potential.

PLINK [47], a widely used software for GWAS, received a significant update
from Chang et al. [9]. PLINK 1.9, as the second-generation release is designated,
builds upon all of its predecessor’s functionalities, such as allele and genotype fre-
quency computation and testing for HWE, while it employs LD patterns as a mea-
sure to test whether missingness at a site can be predicted by the local haplotypic
background. From a performance standpoint, the software utilizes a lot of modern
high-end processor features, such as bit-level parallelism, multi-core support and ef-
ficient use of memory by storing only a portion of the data on memory at any time.
The LD measure itself is computed based on an efficient use of SSE2 vector intrinsics
that calculate the squared Pearson’s coefficient.

Finally, OmegaPlus, released by Alachiotis et al. [2], represents a scalable soft-
ware implementation that scans whole genomes for traces of positive selection based
on LD patterns. The ω statistic [28] is implemented as the measure of choice for the
search of evidence of a population being affected by a selective sweep. Due to the
way a beneficial mutation is observed to affect the genomic region surrounding, by
reducing genetic diversity in a population affected by the selective sweep [28], the
basis of the ω statistic is that a locus evaluated for traces of positive selection should
present a higher cumulative LD score in the areas flanking the mutation than the area
across the mutation, requiring a large number of pairwise LD calculations for the as-
sessment of a single locus. Several LD measures are implemented, however, the
squared Pearson’s correlation coefficient (r2) is selected as the default option by the
software. Furthermore, multiple versions of the algorithm have been implemented

http://cnsgenomics.com/software/gcta/index.html

Chapter 3. Related Work 14

in order to address certain performance issues. Apart from the sequential implemen-
tation of the algorithm, multiple parallel versions of the software have been released,
including fine-, coarse- and multi-grain implementations utilizing Pthreads, as well
as a generic parallel version built upon the OpenMP API. Furthermore, the software
efficiently uses available memory, while the computational load is balanced in differ-
ent ways depending on each of the aforementioned parallel versions. The LD core of
OmegaPlus consists the basis of the accelerator system proposed in this document,
therefore it will be elaborated upon in greater detail in Section 3.3.

3.2 Accelerators in Population Genomics

Even though the need for efficient tools that are capable of processing the ever-
growing sizes of DNA datasets has given rise to multiple high-performance software
implementations over the past two decades, the same does not hold true for the
domain of reconfigurable hardware design or heterogeneous computing systems.
While Bioinformatics, in general, has proven to be fertile ground for the develop-
ment of high-performance heterogeneous applications and hardware architectures
[46, 35, 68], the examples of such studies that are concerned with aspects of popula-
tion genetics and genomics are scarcer.

Some of these works are focused on accelerating the procedure of creating MSAs
[36, 39], which is a vital part of any subsequent GWAS analyses. A large portion
of population genetic accelerators is focused on the phenotypic effect of the depen-
dency between two genes, also known as epistasis, by utilizing GPUs [64, 25], FPGAs
[61, 26, 8] and other heterogeneous architectures [20] in an effort to provide high-
performance tools for such analyses. Other GPU-based designs are meant to study
the systematic difference in allele frequencies between populations [52], or conduct
isolation-by-migration model analyses between populations and even species [67].
Another interesting topic in population genomics consists of the simulation of the
genetic composition of a population over time. These forward simulators, as they
are called, are highly compute-intensive, but also exhibit a potential of highly par-
allel approaches, since such simulations are comprised of a large number of inde-
pendent calculations, thus allowing the utilization of modern GPUs [32] to yield
significant performance gains over corresponding CPU implementations. Another
approach to performance acceleration is the use of SIMD architectures built in mod-
ern CPUs. When attempting to verify the correct alignment of short DNA sequences
to a long genome (read mapping), for instance, it has been demonstrated [63] that an
efficient SIMD implementation, paired with bit-level parallelism, can perform bet-
ter than state-of-the-art implementations based on traditional CPU utilization, while
still yielding highly accurate results.

Even fewer studies, however, revolve around the efficient computation of LD.
Liu et al. [62] recently presented a GPU-based accelerator for pairwise LD measure-
ments. This implementation is also based on the r2 coefficient as a measure of pair-
wise SNP correlation. The design itself exploits the large amount of CUDA cores
operating in parallel on modern GPUs, while data re-organization and atomic in-
structions are deployed to efficiently use available memory bandwidth. The authors
report a thousand-fold speedup when the design is instantiated on a multi-GPU
cluster, compared to sequential CPU-based versions of LD calculators.

To the best of the author’s knowledge, the only other work addressing the com-
putational issues of LD by utilizing reconfigurable hardware architectures, is the

Chapter 3. Related Work 15

previous work by Alachiotis and Weisz [3]. The architecture developed by Alachi-
otis and Weisz is implemented, as the authors describe it, following a database-like
search model. Given two regions of the MSA, a fraction of the SNPs of one of the two
regions are pre-loaded onto the FPGA on-chip memory, acting like queries, while the
SNPs comprising the second region will be streamed through the pipeline, much like
database objects, in order to be pairwise correlated with the query SNPs. The on-chip
memory is organized in a grid of dual-port memory banks, with each port provid-
ing the query SNP data to an allele frequency calculator and one of the cores that
will calculate the pairwise LD score. The database SNPs are retrieved from the main
memory, passed through the allele frequency calculators and streamed through two
LD core grids in order to be pairwise correlated with the query SNPs. The LD core
consists of a haplotype frequency calculator, while the final allele and haplotype
frequencies contribute to the calculation of the LD score through a floating-point
implementation of the r2 LD measure.

The authors have described an extensive design space exploration process, ad-
dressing issues concerning the maximum efficiency of the accelerator. Towards that
end, double-buffering is implemented for the retrieval of the database SNPs from
memory, while the on-chip memory grid size must be carefully selected so that each
of the main memory buffers is able to fill before the data loaded on the other have
been processed. Furthermore, a sufficient number of LD cores must be instantiated
so that all pairwise scores between the query and database SNPs can be processed
without delay, while, depending on the available on-chip memory and the dataset
size, multiple iterations may be required for all SNPs of the query region to be cor-
related with the database SNPs. As a result, the authors report increased perfor-
mance compared to state-of-the-art LD software implementations when the design
is mapped to a Virtex7 FPGA.

However, the design goals of that work are different from what this study is at-
tempting to achieve. For one, the former is only concerned with data following the
ISM model and is mainly focused on processing simulated data, as it does not ac-
count for undefined or missing data along the MSA. On the contrary, our work is
focused primarily on the FSM model, supports undefined and missing data in an
effort to be better suited for real-world analyses, while potentially maintaining func-
tionality for ISM-based analyses. Furthermore, the relatively small size of on-chip
memory, even on the larger FPGAs available, limits the size of the dataset that the
pipeline can support, which, in this case, enforces a limit to the number of sequences
that are represented in the MSA. It was a conscious design decision of the authors
to optimize their architecture for optimal performance rather than the support of
larger datasets, while, on the other hand, we are focused on supporting arbitrarily
large datasets with a possible handicap on the comparative performance to the pre-
vious work. Our point of view is equally valid when considering the current trend of
increasing the dataset size, with projections of future datasets consisting of as many
as 1,000,000 sequences over the next few years.

3.3 The OmegaPlus LD Kernel as Reference Software

The OmegaPlus [2] algorithm utilizes the LD statistic to determine the associ-
ation between genomic regions as a precursor to the estimation of the degree that
target loci have been subjected to positive selection. The specific algorithm was cho-
sen as the basis for the development of the hardware accelerator for three specific
reasons. First, the support of multiple widely-used genomic data input file formats,

Chapter 3. Related Work 16

FIGURE 3.1: Example of an input file under the MS-like format.

FIGURE 3.2: Example of an input file under the FASTA format

as well as their transformation into both ISM- and FSM-based formats for more effi-
cient processing, enable the design and implementation of a system that presents a
greater variance of choices to the user by addressing specific needs of different anal-
yses. Additionally, the structure of the algorithm presented for the computation of
LD allows the easy transition from a software to a hardware implementation, as it is
subdivided as two operations: a bit-wise calculation of allele and haplotype frequen-
cies and a floating-point-based calculation of the final LD scores. Finally, through the
adoption of a user-defined memory limit for the computations, the generic version
of the software enables the calculation of LD scores to be conducted in large chunks
of data, if not the entirety of the dataset, instead of a per-SNP-pair basis. This last
feature is extremely important when considering a hardware implementation, as it
reduces the number of function calls to the hardware co-processor, therefore mini-
mizing the cumulative setup time the co-processor requires before it is able to begin
processing the data.

3.3.1 Memory Layout

OmegaPlus is able to parse a wide array of genomic data files, encoded in both
binary (ms-like, MaCS-like) and DNA (FASTA, VCF) formats. For the algorithm to
be able to process the datasets more efficiently, a compression algorithm is used to
transform the raw data into more suitable formats. In the case of binary data, which
are already in ISM format, w consecutive sequence values of a SNP are organized in
w-bit words and are then stored in contiguous memory space in a per-SNP manner,
as illustrated in Figure 3.3. For DNA data there is the option of either performing

Chapter 3. Related Work 17

data

valid

sequences
0...w-1

sequences
0...w-1

sequences
w...2w-1

sequences
w..2w-1

...

...

sequences
N-w...N-1

sequences
N-w...N-1

sequences
0...w-1

sequences
0...w-1

sequences
w...2w-1

sequences
w..2w-1

...

...

sequences
N-w...N-1

sequences
N-w...N-1

sequences
0...w-1

sequences
0...w-1

sequences
w...2w-1

sequences
w..2w-1

...

...

sequences
N-w...N-1

sequences
N-w...N-1

...

...

SNP0 SNP1 SNPM

FIGURE 3.3: Structure describing the memory organization of ISM
data in OmegaPlus for w-bit words, N number of sequences and M

number of SNPs.

A

C

sequences
0...w-1

sequences
0...w-1

sequences
w...2w-1

sequences
w..2w-1

...

...

sequences
N-w...N-1

sequences
N-w...N-1

sequences
0...w-1

sequences
0...w-1

sequences
w...2w-1

sequences
w..2w-1

...

...

sequences
N-w...N-1

sequences
N-w...N-1

sequences
0...w-1

sequences
0...w-1

sequences
w...2w-1

sequences
w..2w-1

...

...

sequences
N-w...N-1

sequences
N-w...N-1

...

...

SNP0 SNP1 SNPM

G

T

sequences
0...w-1

sequences
0...w-1

sequences
w...2w-1

sequences
w..2w-1

...

...

sequences
N-w...N-1

sequences
N-w...N-1

sequences
0...w-1

sequences
0...w-1

sequences
w...2w-1

sequences
w..2w-1

...

...

sequences
N-w...N-1

sequences
N-w...N-1

sequences
0...w-1

sequences
0...w-1

sequences
w...2w-1

sequences
w..2w-1

...

...

sequences
N-w...N-1

sequences
N-w...N-1

...

...

valid
sequences
0...w-1

sequences
w..2w-1 ...

sequences
N-w...N-1

sequences
0...w-1

sequences
w..2w-1 ...

sequences
N-w...N-1

sequences
0...w-1

sequences
w..2w-1 ...

sequences
N-w...N-1...

FIGURE 3.4: Structure describing the memory organization of FSM
data in OmegaPlus for w-bit words, N number of sequences and M

number of SNPs.

a binary deduction into an ISM model, thus adopting the previous memory layout,
or translating the data according to the FSM model. In the latter case, the data rep-
resenting each SNP are organized as 4 w-bit words, with each one representing the
presence or absence of one of the four nucleotide bases in the corresponding po-
sition in the alignment. This is denoted, in respect to a base, sequence, and SNP,
by whether the specific bit of the word is or is not set. The words are organized
in contiguous memory space, first by nucleotide base, then by SNP, as illustrated
in Figure 3.4. Note in both cases the presence of the extra valid vector, denoting
whether portions of the data contain ambiguous characters or gaps.

The computed LD scores are stored in a 2-dimensional correlation matrix with
dimensions M ×M , where M denotes the number of SNPs. Since the correlation
between a pair of SNPs is bidirectional, it only needs to be calculated once. Further-
more, the correlation of a SNP with itself yields no valuable information, therefore it
is excluded from the computations. Thus, the correlation matrix exhibits a triangular
form, as illustrated in Figure 3.5A.

3.3.2 The LD Computational Core

The LD calculation algorithm can be described as a two-step process, also illus-
trated in Figure 3.6. The first step entails the enumeration of the mutations present
in each and both SNPs that are going to be pairwise correlated. Since the SNP data
are organized in w-bit words, multiple iterations of this step are necessary until the
population count of all words comprising the SNP pair is accumulated. When the
mutation count is calculated, a simple division by the sample size produces the allele
and haplotype frequencies required for the calculation of the pairwise correlation
score.

The estimation of LD between the SNP pair consists the second step in the algo-
rithmic process. With the allele and haplotype frequencies calculated, OmegaPlus
presents a variety of LD measures, including r2, capable of quantifying the degree
of correlation between the SNP pair. At this point, under the ISM model, the com-
putation of LD is complete and the result is stored at the corresponding position in
the correlation matrix. Under the FSM model, however, this result merely represents

Chapter 3. Related Work 18

0 1 2 3 ... M-2

1
2
3

M-1

...

SNPi

SNPj

C01

C02C12

C03C13C23

...

...
...

SNPi group

C01

C02C12

C03C13C23

...

S
N

P j
 g

ro
u
p

0

0

M
/4

M/4

(A) (B)

FIGURE 3.5: Structure describing (A) the triangular correlation matrix
in OmegaPlus for M number of SNPs and (B) its organization in SNP

and compute groups.

the correlation between two nucleotide bases of the SNP pair and not the final LD
value. Therefore, multiple iterations are needed, both during the first and second
stage of the algorithm, in order to calculate the partial correlations between all 16
possible combinations of nucleotide bases present in the SNP pair. As described by
Equation 2.12, the final FSM LD score is calculated when all partial ISM scores have
been accumulated and normalized by the number of non-zero states in the SNP pair.

3.3.3 The Generic Algorithm

Besides the simplified sequential version presented in the previous section, sev-
eral parallel implementations of the OmegaPlus software have been released. The
generic version of the software, specifically, exhibits the greater potential for the
transformation into a hardware implementation due to the inclusion of one signif-
icant feature, namely the organization of SNPs into SNP groups of fixed size. As a
result, the correlation matrix can be organized in compute groups (see Figure 3.5B).
Furthermore, the user may define an upper limit to the memory footprint of the al-
gorithm. Based on that memory limit, a compute list is constructed containing a
number of compute groups, enabling the processing of the dataset to be conducted
in large groups of data. For the purpose of detecting positive selection, where bi-
ologically distant associated SNPs exhibiting a meaningful impact is improbable,
compute groups comprised of such SNPs are excluded from the compute list. For
different analyses this may well not be the case, thus appropriate actions must be
taken. Additionally, if multiple calculations on different subgenomic regions con-
tain overlapping compute groups, dedicated code organizes the compute list in a
manner that eliminates redundant computations.

The specific organization scheme enables the implementation of the algorithm
on heterogeneous architectures, such as FPGAs and GPUs, since it removes a signif-
icant portion of the communication overhead between the main and co-processor.
This is achieved through the ability to group the input data and subsequent com-
putations into large blocks, possibly containing even the whole dataset, before pro-
ceeding with their processing. Thereafter, a minimal number of function calls to

Chapter 3. Related Work 19

count set-bits in word

accumulate mutation count

mutation count for
SNP pair complete

compute ISM pairwise correlation

data format

accumulate ISM LD scores

computed all
states

YES

YES

NO

NO

FSMISM

Input

ISM LD score FSM LD score

verify valid DNA states

FIGURE 3.6: Dataflow of the LD sequential algorithm, as imple-
mented in OmegaPlus.

the co-processor needs to be facilitated, thus reducing the cumulative downtime re-
quired for the communication between the different processing units.

20

Chapter 4

The LD Accelerator Hardware
Architecture

Computing LD is a memory-bound operation, since several memory accesses
must be facilitated in order to retrieve all the data required for the calculation of the
allele and haplotype frequencies of a target SNP pair. Therefore, maximizing the
number of operations per memory access is of vital importance to the overall per-
formance of the accelerator architecture. This chapter focuses on the accelerator’s
design, starting with the description of a necessary memory layout transformation,
in order to efficiently exploit the available memory bandwidth. Thereafter, we pro-
ceed to describe the hardware architecture purposed to efficiently process the large
bulk of input data and produce the LD scores. Concluding this chapter, we discuss
the design space around our accelerator architecture.

4.1 Memory Layout

For the calculation of each LD score multiple memory accesses need to be facili-
tated in order to retrieve the total amount of the SNP pair data. Thus, the efficient use
of available memory is extremely important to the optimal operation of the acceler-
ator. As a reference, we initially consider the OmegaPlus memory layout, described
extensively in Section 3.3.1. As illustrated in Figure 4.1A, OmegaPlus stores whole
SNPs contiguously in memory. Given a sample size of N sequences and a word
width of w bits, each SNP is represented by a total of five memory blocks of size B
each, with B defined as:

B =

⌈
N

w

⌉
, (4.1)

with zero padding. The first 4 memory blocks of the SNP space in Figure 4.1A cor-
respond to the SNP data for the 4 nucleotide bases (adenine, thymine, guanine, cy-
tosine), while the fifth block contains the validation bits of the corresponding base
locations in the alignment. The validation vector is used by the software to account
for missing data, ambiguous characters or various nucleotide base miss-calls.

However, this memory layout is highly inefficient for hardware acceleration pur-
poses. For one, computations cannot proceed until the data for all four nucleotide
bases has been retrieved. With the current scheme, the SNP data would have to
be loaded by iteratively accessing these four memory blocks with strides far larger
than the memory page size, which would lead to prohibitively long overall retrieval
times. Furthermore, the validation of said data can be easily deduced in hardware
implementations from the data itself, in the form of a short series of logical opera-
tions.

Chapter 4. The LD Accelerator Hardware Architecture 21

. . .

. . .

A

C

G

T

valid

SNPi-1

SNPi+1

S
N

P
i

B

w bits

(A)

. . .

. . .

A C G T

SNPi-1

SNPi+1
S

N
P

i

4
B

(B)

0-15 0-15 0-15 0-15

w/4

SNP0
 j/M

. . .

. . .

MCPj-1

M
C

P
j

(C)

SNP1
 j/M

SNPi
 j/M

SNPs-1
 j/M

MCPj+1

. . .

. . .

inter-state layout inter-SNP layout

A C G T
16-31

A C G T
16-3116-3116-31

. . .

A C G T

zero
padding

FIGURE 4.1: The two-step transformation approach of the standard
OmegaPlus memory layout to (A) an inter-state one, which facilitates
processing of multiple states, and (B) an inter-SNP one, which allows

shorter data retrieval times.

4.1.1 Inter-state Memory Layout Transformation

The first step of the layout transformation leads to the inter-state SNP representa-
tion illustrated in Figure 4.1B. When considering the OmegaPlus layout, all w bits in
a word are indicating the presence or absence of a nucleotide base for w sequences.
The transformed layout of 4.1B now comprises words that contain the information
of all four DNA bases from w/4 sequences. If, for instance, we assume a word width
w = 64 bits and a sample size of N = 64 sequences, which leads to a memory
block size of B = 1. Then, according to the OmegaPlus layout, we would need
5 total memory blocks for all the nucleotide bases and the corresponding valida-
tion vectors, consisting of one word each, while each word would contain the SNP
or validation information of exactly all 64 sequences. According to our inter-state
transformation, this would lead to a memory layout of 1 memory block consisting
of 20 words, with each word containing the information of all four nucleotide bases,
albeit for 16 sequences.

This transformation enables a memory layout superior to the previous one in
the context of hardware architecture because it enables the deployment of custom
bit-length vector arithmetic, leading to reduced resource utilization while maximiz-
ing the data-per-cycle that reach the input of our design. To elaborate a while fur-
ther, consider the calculation of allele and haplotype frequencies as described in Sec-
tions 2.2.1. In order to compute those frequencies, we need a portion of the SNP
information for all four nucleotide bases at each moment in time. Supposing that
two w sized words can be retrieved from memory at each clock cycle, then, in the
case of the OmegaPlus memory layout, 4 clock cycles would be required in order

Chapter 4. The LD Accelerator Hardware Architecture 22

to acquire the information of all four bases and proceed with the calculation of the
frequencies. And therein lie two problems. First, it is obvious that more resources
are required in order to process w bit quantities than to process w/4 quantities in the
same manner and, secondly, those resources will be underutilized, since they would
receive data for processing only once every 4 clock cycles. However, by adopting an
inter-state layout, we introduce the capability of fully utilizing a smaller amount of
resources while processing the same volume of data per clock cycle.

4.1.2 Inter-SNP Memory Layout Transformation

The second and final transformation, depicted in Figure 4.1C, interleaves data
from all s SNPs within a genome region of interest based on the number of input
ports that the accelerator can deploy for SNP data retrieval. In this paradigm, we as-
sume that the transfer of data between the memory and the accelerator is facilitated
with the use of M pairs of memory controllers (MCPs). Each MCP is tasked with
retrieving 1/M th of the total data that correspond to the SNPs that are to be pairwise
correlated. Since the number of SNP pairs that need to be processed is user-defined
and varies across different executions, multiple iterations are needed in order to re-
trieve both the data of each SNP pair under examination at each time interval, as
well as the data required for the pairwise correlation of all assigned SNPs.

The purpose of this transformation is to achieve the minimal possible retrieval
times when fetching data from different SNPs using multiple MCPs. Consider, for
instance, the calculation of two pairwise correlation scores, one between SNPs i and
i+1 and the second between SNPs i+1 and i+2. We could speed up the process by
parallelizing the population count operation and the allele and haplotype frequency
calculations by dividing the number of words required for those computations by
the total number M of MCPs and assign only a portion of the SNP data to each MCP.
If this scenario was to be implemented using the default OmegaPlus memory layout
or the layout produced by our first transformation, the transition between the two
pairs of SNPs that need to be correlated would require at least a 4B(M −1)/M sized
leap in memory space. When considering large datasets, this quantity far exceeds
the memory page size, resulting in long retrieval times, since any sort of caching or
buffering is underutilized. This is a result of the decision to optimize the pipeline
for the minimum possible time required to correlate a pair of SNPs, by assigning
the retrieval of different regions of the dataset to different MCs. Therefore, a large
part of the dataset is of no concern to the MCP and it even presents an obstacle
to the efficient access of the memory. However, by grouping together the partial
SNP data that each MCP will be assigned to retrieve, we reduce both the size of the
memory stride for each MCP, as well as the total number of strides that are needed
for the computation of all the pairwise correlations requested, as a certain number of
backwards leaps to previous memory address is, in most cases, unavoidable in the
calculation of the LD scores for large combinations of SNPs in the dataset.

Finally, the zero padding introduced in all three memory layouts serves a triple
purpose. In the first two layouts, designated in Figure 4.1 as A and B, zero padding
represents the excess bits in the final word of each SNP, which contain no valuable
data. This becomes the case when the word length is not fully contained in number
of sequences and the last word would contain the remainder of the division, namely
less than w bits per base in the case of A and less than w/4 in the case of B. Since
zeros do not contribute to the computation of the allele or haplotype frequencies,
the excess bits are handled by simply subtracting their count from the valid sample
size.

Chapter 4. The LD Accelerator Hardware Architecture 23

In the case of the final memory layout transformation of Figure 4.1C, zero padding
is introduced for two reasons. First, when the total number of words does not fully
contain the number of MCPs, one part of the parallel logic of the design needs to per-
form one more iteration than the rest in order for all the data of the SNP pair to be
processed. In this case, instead of implementing resource-demanding control logic
for the synchronized operation of different units, the zero padding is utilized in an
effort to force all parallel units to perform the same number of iterations. The second
reason is tied to the minimum number of sequences that the accelerator can support,
as well as the depth of parallelism of the correlation unit. Depending on the number
of correlation arithmetic units, there may arise the need for resource reutilization in
order for all 16 combinations of nucleotide bases of the two SNPs to be processed. In
this case, due to the fact that the design is fully pipelined, zero padding eliminates
the hazard of having more than one scheduled operation for the correlation arith-
metic unit, a case that would arise if the dataset is smaller than a certain size. The
drawback of this technique is that it establishes a minimum execution time which
corresponds to the aforementioned minimum dataset size. In essence, every dataset
smaller than the minimum dataset can be processed correctly, however, this cannot
be accomplished faster than the minimum execution time defined by the latter. This
will become clearer to the reader after becoming familiar with the next subsection of
this chapter, describing the hardware accelerator’s design.

4.2 LD Accelerator Design

The challenge in designing the LD hardware accelerator lies in the correct de-
tection of the algorithm’s bottlenecks and the efficient use of the available mem-
ory bandwidth which, along with the optimization of the design to best tackle the
performance issues that might arise from said bottlenecks, will maximize the data
throughput of the accelerator. In this section, we attempt to describe the generic
design of our accelerator system, following a top-down approach which starts by
describing the top-level design and, subsequently, elaborating on each individual
component in a larger extent.

4.2.1 Top-Level Design

The proposed LD accelerator design, illustrated in Figure 4.2 with the datapath
starting from the bottom and moving upwards, operates on a pairwise basis, cal-
culating the LD score for a single pair of SNPs at each time. The pipelined design
is separated into four distinct stages, each attempting to efficiently parallelize the
individual computations needed for the calculation of the final pairwise LD score.
Processing starts with the counting of the DNA states as per the 4 nucleotide bases,
achieved by the first two pipeline stages, denoted as BC (Bit Count) Stages 1 and 2.
Thereafter, the required allele and haplotype frequencies are computed in the AHF
(Allele/Haplotype Frequency) stage, and the required correlation values per pair of
DNA states of different SNPs are calculated in the final COR stage. Before present-
ing the outline of each stage, note that all individual components of this architecture
are finely tuned in order to receive new data for processing once every clock cycle,
thus eliminating the need for stalls for the purpose of avoiding possible hazards.

The first stage, or BC stage 1, as denoted in the top level block diagram, imple-
ments the population count operation on the 64-bit quantities that reach the archi-
tecture’s input ports at each clock cycle. Multiple population counters operating in

Chapter 4. The LD Accelerator Hardware Architecture 24

MSC 0 BC
Stage 1

--

sync

COR
unit
0

COR
unit
N-1

COR
Stage

N to 1 adder tree

multiplier

LD score

State
Control

FIGURE 4.2: Top-level design of the accelerator architecture. Pro-
cessing proceeds from the bottom to the top, through four discrete
pipeline stages, i.e., BC Stages 1 and 2 for the partial accumulation of
population count results, AHF for a final accumulation and calcula-
tion of allele and haplotype frequencies, and a final COR stage for the

floating-point correlation calculations.

parallel calculate the number of set bits in the incoming binary vectors. SNP data
are provided via a number of 2M input ports, organized in M pairs, to facilitate
pairwise calculations. As already mentioned, each pair of ports (referred to as MCPs

Chapter 4. The LD Accelerator Hardware Architecture 25

in Section 4.1) retrieves a fraction of the entire SNP. For the purpose of processing
the incoming data, a total number of M Mutation/State Counters are deployed, each
producing a partial count of the total number of mutations/states present in the SNP
pair under examination. When considering the finite sites model, a total of 25 binary
vectors are required for the calculation of the LD scores, namely 4 vectors referenc-
ing the DNA states of SNP A, 4 referencing the DNA states of SNP B, 16 for all the
possible combinations of the per-state vectors for the pair of SNPs A and B, and 1
internally computed validation vector. Each MSC unit calculates a partial value of
all 25 vectors.

The second bit-counting stage, labeled BC stage 2, simply accumulates the M in-
dividually produced values from all M Mutation/State Counters into a single vector
for each of the 25 distinct allele, haplotype, and valid counts. This is accomplished
by implementing a total of 25 M -to-1 adder trees, with each tree accumulating all
M partial scores of one of the aforementioned vectors produced by all MSCs. The
25 partial sums that are passed to the next pipeline stage reflect all mutations or
states that have been previously counted by the M MSCs in BC Stage 1. This allows
proceeding with the remaining computational steps in the following pipeline stages
independently of the available number of input ports, thus facilitating a potential
future migration to a different device/platform. In addition to alleviating the mi-
gration overhead, organizing the enumeration step of alleles and haplotypes into a
platform-specific (BC Stage 1) and a dataset-specific stage (BC Stage 2) allows to eas-
ily support other dataset types as well, such as RNA secondary structure (6, 7 states)
or amino acids (20 states). This requires additional logic and population count in-
stances in BC Stage 1, as well as additional M-to-1 adder trees in BC Stage 2, while
the rest of the design remains largely intact.

The partial allele and haplotype counts produced by BC stage 2 are in turn ac-
cumulated in the allele/haplotype frequency stage (AHF stage). As illustrated in
the block diagram of the architecture’s top level, the AHF stage consists of 3 dis-
crete operations. First, the partial per-state sums along with the validation bits are
accumulated by utilizing a total of 25 W -bit-wide accumulators. The denoted A-
Accum units accumulate the allele counts of each individual SNP of the pair, while
H-Accum units accumulate the per-state haplotype counts between the two SNPs.
In order to yield comparable LD scores along different genomic regions within the
same chromosome, the valid SNP size per SNP pair is calculated on a pairwise ba-
sis as well, by the V S-Accum (Valid Size) accumulator, since the number of valid
pairs of bits in a SNP pair may vary, depending on the amount of missing data and
alignment gaps in both SNPs. This additional accumulation stage allows to cor-
rectly calculate the number of mutations or DNA states in large-scale datasets that
comprise thousands to millions of genomes, given that sufficiently wide accumu-
lators are deployed. However, for the calculation of the LD scores, the count of
non-mutated alleles is needed along with the count of the mutated ones. Following
Equations 2.10 and 2.11, the non-mutated allele count is computed by subtracting
the total count of the mutated ones, accumulated by the A-Accum units, from the to-
tal number of valid sequences for the SNP pair, accumulated by the VS-Accum unit.
Finally, all 33 total counts of mutated and non-mutated alleles, mutated haplotypes,
and valid samples are converted from an integer to a floating-point format. This
conversion is essential at this point of the architecture as it enables the reduction of
utilized resources, while, simultaneously, ensuring a significantly higher degree of
precision in the final results.

The final stage of the design entails the computation of the pairwise correlation

Chapter 4. The LD Accelerator Hardware Architecture 26

between the two SNPs, thus denoted as COR stage. This is achieved via the in-
stantiation of N floating-point pipelines (COR units) operating in parallel, each im-
plementing the same measure for the calculation of LD scores, which in our case is
r2. The number N of COR units must be carefully selected, as it also indicates the
number of iterations that each unit must perform in order to process all 16 pairwise
combinations. In the case of the FSM, this refers to the total combinations between
the nucleotide bases between the SNP pair, according to Equation 2.12. For this rea-
son and for the purpose of the calculation of LD in DNA datasets following the FSM
model, which is the scope of this work, N must be between 1 and 16, while it may
vary if this work is to be repurposed to accommodate different datasets, i.e., RNA,
etc. If the number of COR units is smaller than the total number of pairwise calcula-
tions required, dedicated synchronization/scheduling logic is inserted between the
AHF and COR stages, ensuring access to the available COR units in a round-robin
fashion. Instantiating a smaller number than the expected 16 COR units does not af-
fect performance due to the expected large sample size, which shifts the calculation
bottleneck to the enumeration of alleles and haplotypes, i.e., first three stages of the
accelerator pipeline. However, this implementation method would facilitate the risk
of possible hazards if new data from the AHF stage were to arrive before all previ-
ous LD calculations had been scheduled. This is the reason that the zero padding
and the minimum sequence limit has been established depending on the number of
COR and MSC units, as described in Section 4.1.2. This number can be calculated
as:

Smin = WS(NM − 1) + 1, (4.2)

where WS describes the number of sequences represented in each word, N is the
number of COR units and M the number of MSC units. As an example, if a total
number of N = 4 COR and M = 7 MSC units was to be implemented in a design
based on words containing WS = 16 sequences, this would introduce a minimum
requirement of 433 sequences.

At this point, the calculation of the partial scores for each pair of nucleotide bases
is completed. When considering the FSM model, however, additional operations are
required, as described by Equation 2.12. The 16 pairwise correlation scores pro-
duced by the COR stage must be added together, which is accomplished by an N -
to-1 adder tree. Note here that, depending on the number of COR units, the adder
tree may require an extra accumulator added to its structure in the case of less COR
units having been instantiated than the number of necessary pairwise calculations.
Furthermore, the State Control unit operating in parallel with the COR stage calcu-
lates the numbers of valid states per SNP in the pair under examination, as required
by Equation 2.12. A final multiplier completes the calculation of the LD score for the
SNP pair by multiplying the pairwise correlation of all SNP states with the number
of valid states per SNP and the final result can be scheduled to be stored in memory.

The architecture described so far is tailored and optimized for the efficient pro-
cessing of FSM datasets. However, a handful of minor changes could establish the
support of ISM data, as an added functionality. Since the estimation of LD according
to the FSM model can be seen as a series of ISM calculations, each of the partial FSM
scores produced by the COR units is essentially a pairwise LD score under the ISM.
To facilitate such a functionality, first, the ISM dataset should be organized in a form
supported by the accelerator. This could be achieved by reorganizing the dataset,
as per the memory layout transform of Figure 4.1, with each word containing the
partial data of 4 SNPs under the ISM, instead of the 4 nucleotide bases required by
the FSM. Additionally, since the accelerator provides only one output port, serial-
izer logic would have to be implemented in order of all ISM LD scores produced
simultaneously by the COR units to stored in memory through the single output
port, while a multiplexer would select the correct output, depending on the data

Chapter 4. The LD Accelerator Hardware Architecture 27

+

population
counter

24

population
counter

0

. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

A
C
G
T

A
C
G
T

SNP A

SNP B

CA
A1

CT
B1

CAT

FIGURE 4.3: Block diagram of the MSC unit. As the SNP length (the
number of genomes) increases, overall acceleration performance re-
lies on the number of MSC units operating in parallel to boost popu-
lation count capacity of the FPGA. Prior to the array of 16-bit popula-
tion count blocks, dedicated logic calculates on the fly all the required

pairwise combinations of the input SNPs.

model. Finally, the validation of the data, which transpires in BC stage 1, cannot be
facilitated without for the ISM without an additional validation vector that would
be retrieved from memory, due to the binary nature of the ISM data. Therefore the
validation of the ISM data cannot be efficiently supported by the current pipeline
without possibly hamstringing the performance of the accelerator overall. These
changes would enable the support of both FSM and ISM datasets, however, an al-
ternate pipeline dedicated to ISM data processing would definitely present greater
performance capabilities and potential application for real-world analyses.

4.2.2 Mutation/State Counter

The Mutation/State Counter computes the partial counts of the mutated DNA
states, along with the validation bits corresponding to them. As illustrated in Fig-
ure 4.3, the MSC unit receives two inputs in the form of the W -bit data values
per SNP, each consisting of W/4 sequence data per nucleotide base under the FSM
model. The valid sample vector is calculated with two 4-input OR gates with their
outputs inserted in an AND gate, while a series of parallel AND gates compute
all the 16 pairs of haplotype values between the SNPs. As a third stage, all allele
and haplotype values are validated with the valid sample vector through the use of
AND gates. Then, all allele, haplotype, and valid sample vectors are able to pro-
ceed through a grid of 25 population counters for the partial mutation/state and
valid counts to be computed. Each population counter consists of a dual-port k × n
block ROM, where k refers to the number of bits required to enumerate the set bits

Chapter 4. The LD Accelerator Hardware Architecture 28

in a nucleotide base residing in a quarter of a word with length W/2, while n refers
to all 2W/8 different possible combinations of aligned bits in a W/8-bit-wide vector.
The W/4 output of each gate of the previous stage are split in half in order to take
advantage of the full functionality of a dual port ROM, thus halving its depth and
conserving resources. The population count ROM functions as a look-up table, with
each memory cell containing the count of set bits corresponding to its address. The
two outputs of each population count ROM are added together to produce the final
partial bitcount of the BC stage 1 described in the previous subsection.

The MSC unit is the most important unit of the architecture. The computational
bottleneck of the design lies exactly in the population count operation. With in-
creasing dataset size, the iterations needed in order to count the set bits of a SNP
pair require multiple iterations of the population count operation and, consequently,
multiple iterations through the MSC unit. Therefore, the overall performance of the
architecture is dependent and proportional to the available bandwidth and the num-
ber of parallel MSC units that complement it. Thus, it is of vital importance that the
number of implemented MSC units working in parallel be carefully selected so that
the available bandwidth is maximally utilized.

4.2.3 Correlation Unit

The correlation (COR) unit implements Equations 2.10 or 2.11, as illustrated in
Figure 4.4A and B, respectively, as a measure of binary LD scores. A single COR
unit calculates the binary r2 statistic for a pair of nucleotide bases of two SNPs. The
unit’s structure consists of a pipeline of floating-point arithmetic operators, accord-
ing to the aforementioned equations. The floating-point units are organized in a
fashion that aims to maximally exploit the parallelization of operations wherever it
is possible. Furthermore, all floating-point operators are fully parallelized, allowing
the COR unit to receive new input data per clock cycle, thus achieving the mini-
mal delay possible. As clearly visible in Figure 4.4, there are presented two distinct
implementations of the COR unit, denoted A and B, each according to one of the
two equations describing r2. Correlation unit A is based on Equation 2.10 and cal-
culates the allele and haplotype frequencies by dividing the allele and haplotype
counts by the valid sample size prior to any other operation. This method, while
relatively computationally heavy, achieves higher overall accuracy. The second cor-
relation unit implementation bypasses the frequency conversion and computes the
LD score based on the allele and haplotype counts directly, as described by Equa-
tion 2.11. Correlation unit B requires significantly fewer resources than A, while it
displays lower latency at the cost of reduced accuracy.

Both pipelines normalize the correlation coefficient by multiplying it with the
valid sample size. Therefore the value of r2 does not reside within the (0,1) set, but
rather may take any value, depending on the size of the dataset. As a reference
for comparison, implementation A is accurate on the fourth decimal digit, while
implementation B is only accurate on the second. Resource utilization and latency
comparisons for each floating-point operator, as well as between the two implemen-
tations as a whole, are presented in Tables 4.1 and 4.2, respectively. From a coding
standpoint the two implementations are interchangeable, provided that the correct
values are assigned to the delay variables in the top-level package, in order to main-
tain a correctly synchronized design.

Chapter 4. The LD Accelerator Hardware Architecture 29

sub

valid sample size

C11

CA1

CB1

CA0

CB0

binary
correlation

div H11

FA1

FB1

FA0

FB0
(A)

div

div

div

div
mult

valid sample size

C11

CA1
CB1

CA0
CB0

binary correlation

(B)

mult

mult

mult

div mult

mult

mult

mult

sub

mult

mult mult

div

FIGURE 4.4: Block diagrams of the two versions of the COR unit.
Diagram A presents higher result accuracy while B requires fewer

resources and achieves lower execution times.

TABLE 4.1: Resource utilization and latency of 32-bit floating-point
operators

Slice Logic Utilization
Operator Slices Registers LUTs DSPs Latency
subtractor 91 335 227 2 11
multiplier 36 115 109 3 6

divider 309 1359 1043 0 28

4.2.4 State Control

The State Control unit implements the first part of Equation 2.12. The equation
denotes that, under the FSM model, the number of valid nucleotide states per SNP
must be taken into account along with the count of mutated alleles and haplotypes.
As illustrated in Figure 4.5, the unit receives an input consisting of the allele base
counts for each nucleotide base of the two SNPs, as well as the valid sample size, all
calculated in the AHF stage. Since the maximum number of non-zero states is ’4’ for
each SNP, the Valid State Check unit simply examines whether any of the nucleotide
base counts amounts to zero and, therefore, reducing the appropriate valid state
count V of the corresponding SNP accordingly.

Then, the numerator and denominator of the equation must be calculated. Since
V can only hold a maximum value of 4, the multiplication of VA with VB and VA − 1
with VB − 1 does not justify the use of full multipliers. Therefore, for the purpose
of utilizing a minimum number of resources, the multiplier units are implemented
as simple look-up tables consisting of 16 states in the case of the denominator and

Chapter 4. The LD Accelerator Hardware Architecture 30

TABLE 4.2: Resource utilization and latency of COR units A and B

Slice Logic Utilization
COR unit Slices Registers LUTs DSPs Latency

A 2125 9064 7030 17 85
B 616 2384 1924 20 57

valid sample size

CAA

CBT

CAC Valid
State
Check

VA

VB

-1
-1 mult

mult

int2fp

int2fp

mult

div Valid States

FIGURE 4.5: Block diagram of the State Control unit. The unit com-
putes the number of non-zero nucleotide states of each allele under

the Finite Sites Model.

9 states in the case of the numerator, where the valid state counts are reduced by a
single numeric unit. At this point a conversion from integer to floating-point arith-
metic is necessary as the valid sample size is already formatted for floating-point
arithmetic and, mainly, due to the division that concludes the calculation of this spe-
cific part of the LD equation under the FSM. From a computational standpoint, since
the calculation of valid states shares no dependency with the rest of the COR stage,
it can be implemented in parallel to the latter, thus reducing the overall latency of
the architecture.

4.3 Memory-Architecture Interconnect

The communication between the memory and the accelerator architecture com-
prises the most significant part of this work. Due to the nature of the problem under
examination, maximizing the efficient use of available memory bandwidth is of ut-
most importance, since the enumeration of set bits in binary vectors in the scale
of datasets that the current work is aiming for is, as mentioned before, a memory-
bound operation. For this exact reason, the design of the memory interface must fa-
cilitate a high speed of data retrieval with the smallest possible downtime. Towards
that end, and based on the memory layout described in Section 4.1, the implemen-
tation that handles the memory interface can be described as two stages.

The first stage consists of the logic that communicates with the Memory Con-
trollers. Each MC is assigned an independent finite states machine (MCFSM) that
dictates the memory operations that must be facilitated. These MCFSMs can be enu-
merated as M1 MCFSMs for the retrieval of the data of SNP A, M MCFSMs for the
retrieval of the data of SNP B and one MCFSM for storing the LD scores back to the
memory, henceforth referred to as MCFSMA, MCFSMB and MCFSMW respec-
tively (see Figure 4.6). Considering the contiguous structure of the memory layout,
the best way to access the data of all pairwise SNP combinations is by calculating
the LD scores of the 2-dimensional correlation matrix in diagonals, i.e., starting with

1M refers to the number of MCPs as described in Section 4.1.

Chapter 4. The LD Accelerator Hardware Architecture 31

SNP pair [0,1], moving to pair [1,2] up until pair [N-1,N], then regressing back to
pair [0,2] and so on. This way of accessing the memory ensures that each MC will
retrieve the data of large contiguous memory spaces, thus minimizing the number of
strides between distant memory blocks to the number of diagonals of the correlation
matrix. Since the input cannot be buffered when accessing the memory backwards
and the support of arbitrarily large datasets makes the calculation of all pairwise LD
combinations without accessing previous memory addresses impossible, we believe
that this is the most efficient memory access paradigm that can be accomplished for
the scope of this work. Furthermore, by implementing the MCFSMs independently
we ensure that possible stalls of one or more MCs will not affect the rest MCs, thus
allowing each MC to follow its own pace and consequently allowing for an overall
more optimized memory access. If a more centralized MCFSM controlling all MCs at
the same time was to be implemented, that would mean that either stalls would have
to be global, thus halting the operation of MCs that would otherwise continue to op-
erate normally, or the MCFSM itself would grow into a prohibitively large amount
of states in an effort to account for the optimal operation of each individual MC.

This methodology is implemented through the differentiation of the two read
MCFSMs, MCFSMA and MCFSMB , of each MCP, as illustrated in Figure 4.6A
and 4.6B. Both share a similar structure consisting of 3 states, namely the IDLE,
READ, and ROLLBACK states. The IDLE state initializes the starting address and
waits for the execution to start. Consequently, the READ state dictates when and
from which address should new data be retrieved, while simultaneously checking if
data retrieval should be stalled, as is the case if the input buffers are about to be over-
flowed. When the input data of a whole diagonal of SNP pairs has been retrieved,
the ROLLBACK state checks if all diagonals have been processed. If the above state-
ment is true, the MCFSM returns to its IDLE state and remains there until the next
dataset is routed for processing. If the statement is false, the two MCFSMs differen-
tiate from each other. If we consider accessing a 2-dimensional triangular matrix by
diagonals, then each diagonal starts at the cell denoted as (0, j+1), where j refers to
the first cell of the previous diagonal, starting from 0, while the diagonal finishes at
the cell denoted as (i− 1, N − 1), where i refers to the last cell of the previous diag-
onal starting from N − 1. Therefore, in the case of the MCFSMA, the first address
remains the same for every diagonal, while the last address is always diminished by
the memory size of a single SNP for a MCP. Similarly, MCFSMB always stops at
the same last address, consisting the final word of the last SNP of the dataset, while
the starting address of each consequent diagonal is increased by the memory size of
a single SNP for a MCP. Finally, the MCFSMW , illustrated in Figure 4.6C, consists
of only a couple of states. The IDLE state functions in the exact same way as in the
read MCFSMs, while the STORE state simply waits until new results are ready to be
stored in memory and the MCFSM enables the controller to do so. Due to the fact
that the input data in large datasets vastly overshadow the size of the output data,
one MC dedicating to handling the results is enough.

As mentioned above, each MCFSM is implemented independently of the oth-
ers. While this feature ensures an optimal access to memory, it presents a problem
in the form of an unpredictability of the arrival time of data with a computational
dependence. The second stage of the memory interface addresses precisely this is-
sue by introducing input buffers. Each of the 2M memory ports, instead of feeding
the input directly into the accelerator, stores the data in a 128-word-deep block RAM
configured as a FIFO. The accelerator is then allowed to access the data only when all
2M buffers are not empty, thus ensuring that all dependent input data are reaching
the accelerator’s input ports simultaneously. By synchronizing the data this early

Chapter 4. The LD Accelerator Hardware Architecture 32

read data = '0'
addr = start_addr

IDLE

read data = '1'
addr = addr++

READ

read data = '0'
addr = start_addr+4B

ROLLBACK

start = '1'

start = '0'

reached last addr = '1' reached last addr = '0'

count = #iterations

count = #iterations

(B)

read data = '0'
addr = start_addr

IDLE

read data = '1'
addr = addr++

READ

read data = '0'
last_addr = prev_last_addr-4B

ROLLBACK

start = '1'

start = '0'

reached last addr = '1' reached last addr = '0'

count = #iterations

count = #iterations

(A)

store data = '0'
addr = start_addr

IDLE

start = '1'

start = '0'

store data = '1'
addr = addr++

STOREcount = #LD scores

count = #LD scores

(C)

FIGURE 4.6: State diagrams of the MCFSMs for (A) reading the data
of SNP A (B) reading the data of SNP B (C) storing the LD scores back

to memory.

in the architecture the benefit is twofold. Firstly, the need of complicated synchro-
nization and stall logic later on in the design is eliminated and, secondly, the core of
the accelerator becomes detachable and more easily modified, especially when con-
sidering future possible applications. In a similar fashion to the input buffers, the
accelerator stores the results in an output FIFO before the store MC is able to access
them and route their storage to the memory.

Chapter 4. The LD Accelerator Hardware Architecture 33

4.4 Design Space Analysis

LD is a memory-bound computation, relying on the rapid retrieval of data from
memory and their efficient processing without delay. The architecture has been in-
tentionally described up to this point as a generic design, the purpose being the
introduction of the degree of modularity that is allowed by the accelerator. At this
point it should have become clear that the level of parallelism of each individual
unit at each stage of the architecture must be carefully selected depending on the
size of the datasets that a user intends to process, as well as the hardware limita-
tions present in the form of the memory bandwidth and the size of the target device.
Furthermore, the event-driven decentralized control that every stage of the pipeline
operates under allows the replacement of each unit with modules providing differ-
ent functionalities, i.e., different LD measures, etc., to become a relatively easy task.

Under these assumptions, depending on the available bandwidth and, therefore,
the pairs of memory ports, an equal number of MSCs is required in BC Stage 1 in
order to process data at the speed of arrival. As the number of sequences increases,
the allele and haplotype frequency computations quickly become the limiting per-
formance factor, even when considering moderately sized datasets. Therefore, sub-
optimal processing/delays during the allele/state enumeration stages can have a
profound effect on the success of the acceleration system.

In a similar manner, the number of pairs of parallel input ports dictates the size
of the M-to-1 adder trees in BC Stage 2. The number of adder trees, however, as well
as the number of accumulators in the AHF stage is driven by the data type. As the
present work focuses on DNA data, we can assume a data type that consists of S = 4
states. In this case, an equal number of S adder trees and S accumulators is required
for each of the two input SNPs, as well as S2 trees and accumulators for all possible
combinations of states for the two SNPs. The additional adder tree and accumulator
pertaining to the validation bits is only required if the user opts to account for miss-
ing data and/or base miss-calls in the dataset. If this is the case, this solution, which
is specific to the proposed architecture, trades resources for a smaller memory foot-
print and shorter data retrieval times, as the alternative would require the retrieval
of the validation bit vector from memory. Considering the accumulator, its width
should be sufficiently large to accommodate the maximum possible number of mu-
tated alleles/states for a sample size N . Since non-polymorphic sites are discarded
prior to an analysis and, consequently, alignment sites with 0 or N set bits do not
exist in the data to be processed, the accumulator width must present the capability
to count up to N − 1.

In the final COR stage, the number of COR units operating in parallel may be
chosen more liberally than that of the units of the previous stages, because it does
not directly affect performance. However, instantiating more COR units than the S2

pairwise allele/state computations would not improve performance, as the excess
units would remain idle. If exactly S2 COR units are deployed, then the COR stage
is capable of fully absorbing the data produced by the previous stage, while instan-
tiating less usually does not affect performance due to the expectedly large sample
sizes, which shift the computational bottleneck to the enumeration of alleles and
haplotypes. If the number of samples is small enough to permit the previous AHF
stage to provide input to the COR stage before the previous inputs have begun pro-
cessing, only then does the COR stage become the bottleneck. However, this is not
the average use-case for which the current architecture is designed. Nevertheless,
such small sample sizes are accommodated correctly, albeit suboptimally, through
the deployment of zero padding.

34

Chapter 5

Full System Implementation

To evaluate the correct operation and performance of the proposed architecture
we paired its implementation with a high-end hybrid computing system with in-
creased performance capabilities. In this chapter, we attempt to present an overview
of the Convey HC-2ex hybrid computing platform, on which our accelerator is im-
plemented, and subsequently, proceed to describe the instantiation of the design
based on the specific features of the target platform.

5.1 The Convey HC-2ex Platform

The Convey Hybrid Core platform is a heterogeneous computing system, effi-
ciently pairing traditional general purpose CPUs with reconfigurable hardware co-
processor units, in order to increase application performance beyond what is typi-
cally possible in a standard x86 system. This is achieved by implementing a custom
hardware architecture to be routed on the FPGA co-processor, along with the corre-
sponding set of instructions, the so-called personality, and combined with the neces-
sary software running on the CPU addressing all requirements of the custom appli-
cation. While some basic personalities are provided by Convey itself, a framework to
facilitate the implementation of personalities that require specialized functionalities
depending on the needs of the application is also provided. The Personality Devel-
opment Kit (PDK) [12] provides all the hardware, software and simulation interfaces
necessary to implement a custom personality on the Convey family of products.

The system itself, as illustrated in Figure 5.1, consists of two interconnected pro-
cessor units mounted on the two sockets of a commodity motherboard. The first
socket accommodates a proprietary Intel x86 host processor along with the standard
Intel I/O chipset, while in the second resides a reconfigurable co-processor based on
FPGA technology. The co-processor includes its own high-bandwidth memory sub-
system that is incorporated into the Intel global memory space, creating the Hybrid-
Core Globally Shared Memory (HCGSM). The HC-2ex system, specifically, utilizes
an Intel Xeon E5-2642 6-core as its host processor, four Xilinx Virtex LX760 FPGAs
on its co-processor unit and a total of 64 GB DDR2 shared memory capable of pro-
viding up to 80 GB/s of memory bandwidth when all four co-processor FPGAs are
deployed.

5.1.1 Co-processor Architecture

The co-processor has three major sets of components, referred to as the Appli-
cation Engine Hub (AEH), the Memory Controllers (MCs), and the Application En-
gines (AEs), depicted in Figure 5.2. The functionality of the AEH is that of a central
hub for the co-processor. It acts as an interface to the host processor and the I/O
chipset and is responsible for the retrieval and decoding of instructions, as well as

Chapter 5. Full System Implementation 35

FIGURE 5.1: Diagram of the Convey Hybrid Core System. The di-
agram (borrowed from the Convey Reference Manual [13]) depicts
the host processor, the FPGA co-processor and the shared memory

between the two.

FIGURE 5.2: Diagram of the co-processor. The diagram (source: [13])
depicts the three subsystems of the FPGA co-processor, the Applica-

tion Engine Hub, Memory Controllers and Application Engines.

the execution of the scalar ones. Furthermore, it processes coherence and data re-
quests from the host processor while, simultaneously, routing requests for addresses
in the co-processor memory to the MCs. The 8 MCs of the co-processor support a
total of 16 DDR2 memory channels by translating virtual to physical memory ad-
dresses on behalf of the AEs. Together with the AEH, the MCs implement features
of general purpose, regardless of the personality, in an effort to ensure that impor-
tant features, such as memory protection or the communication between the host
and co-processor, are always available.

Chapter 5. Full System Implementation 36

On the other hand, the AEs implement the extended instructions and the custom
architecture that deliver performance for a personality. The connection between the
AEs and the AEH is established through a command bus that transfers opcodes and
scalar operands, while the connection between the AEs and the MCs is implemented
via a network of point-to-point links. The AE instruction is passed to all four AEs
which in turn process the instruction according to the implemented personality.

5.1.2 Personalities

A personality defines the set of instructions supported by the co-processor and
their behavior. It includes the loadable bit files that implement a co-processor in-
struction set, a list of the instructions supported by that personality, and an ID used
by the application to load the correct image at runtime. A personality implements
two types of instructions. The scalar instructions are common among all personali-
ties and ensure that all personalities share the same basic functionalities, while the
extended instructions provide customization for different applications and work-
loads.

All personalities share a set of common elements. The host interface that dis-
patches the co-processor instructions, which also initiate and control the execution
of the personality on the co-processor, and the return status are the same for all per-
sonalities. Furthermore, the address translation from physical to virtual addresses is
compatible with the Intel 64 specification in order for instructions to coherently share
the memory with the host processor and to ensure protection for process address
spaces, since the host processor and the I/O system are able to access co-processor
memory and vice versa.

5.1.3 Memory Controller Interface

The Memory Controller interface provides the AEs with direct access to the co-
processor memory. All 4 AEs are connected to all 8 MCs, as illustrated in Figure 5.3,
each via a 300 MHz DDR interface designed by the vendor, while each of the 8 inter-
faces is directly connected to a single MC, which, in turn, physically connects to one-
eighth of the co-processor memory. The latter corresponds to two memory DIMMs,
thus the AE personality must decode the virtual memory address in a manner that
ensures the dispatch of requests to the particular MC attached to their correspond-
ing memory block. Furthermore, to ease timing in the FPGA, the 300 MHz interface
is converted into two 150MHz memory ports to and from the AE personality. These
ports are denoted as odd and even respectively and are multiplexed onto the same
300 MHz request channel in the MC interface.

A memory request is sent from the AE to an MC interface in one of the two half-
rate ports. The platform implements 4 types of requests, namely load, store, fence,
and stall. For store operations, the write data is stored in a first-in, first-out buffer
until it is sent through the AE-MC link, while no response is returned to the AE per-
sonality. In load operations, however, a write data bus is used to store read return
control information until the load request is sent out. When the request is sent to the
MC, the read request data are transferred from the write data buffer to a read control
buffer based on a transaction ID that is subsequently used to lookup the read con-
trol information when the data requested are returned from the MC. Finally, fence
requests are sent by the AEH to enforce ordering of loads and stores to memory,
while stall requests impede the personality from sending any other requests for two
clock cycles to avoid overflowing the MC interface buffers.

Chapter 5. Full System Implementation 37

FIGURE 5.3: Diagram of the Connections between the co-processor
AEs and memory (source: [13]).

5.2 LD Accelerator Instantiation

The instantiation of the hardware LD accelerator is comprised of two distinct
phases. The first phase entails the data preparation on the host processor along with
the function call to the co-processor and the instructions that kickstart the execution
of the custom personality on the co-processor. The second phase begins with evalu-
ating the number of individual components of the design, as described in Chapter 4,
and proceeds with mapping the instantiated architecture onto the AE FPGAs.

5.2.1 Pre-processing on the Host Processor

A C-based application running on the host processor is responsible for handling
the raw genomic data and realigning the dataset into the memory layout described
in Section 4.1. Then, a memory block of the same size as the transformed dataset is
allocated on the shared co-processor memory and the dataset is subsequently copied
there, while, depending on the number of pairwise LD correlations, an equivalent
memory space for the results is allocated on both the host and co-processor memory.
To make the function call to the co-processor the following information must be
passed along to the AEs:

• A pointer to the first address of the contiguous memory space that the input
data are located.

• A pointer to the first address of the contiguous memory space that the output
data will be stored.

• The number of SNP pairs that need to be correlated.

• The number of words in memory that comprise the portion of the data of one
SNP that are assigned to one AHF unit.

Chapter 5. Full System Implementation 38

• By extension of the two previous values, the total SNP size of all the SNP data
assigned to one AHF unit, which corresponds to the total number of read op-
erations for each MC.

• A numeric value that represents the excess bits, if present, at the final word of
each SNP.

• The total number of SNPs in the dataset.

The two first variables are the pointers to the data structure that our input and out-
put data will reside in the co-processor memory. The rest of the values are constants
for each unique execution of the application and they do not need to be retrieved by
the MCs, rather they are passed as values directly to the architecture. At this point
the software has gathered all the necessary information required for the co-processor
to start processing the dataset, so the former implements a function call to the latter
through the convey-specific copcall_fmt() function. Since the number of attributes
that the copcall function may take is limited to 15 64-bit values, which will be a hin-
drance later, the 5 constants required for the execution of the application are passed
to the co-processor through 3 64-bit variables, namely V ar1, V ar2 and V ar3, and the
data are organized as follows:

• Var1 with bits 0. . . 56 holds the number of read operations.

• Var1 with bits 57. . . 63 holds the number excess bits.

• Var2 with bits 0. . . 31 holds the number of SNP pairs.

• Var2 with bits 32. . . 63 holds the SNP size.

• Var3 holds the total number of SNPs.

After the host has requested the start of the execution by the co-processor and
before the latter is able to start processing, the correct initial addresses for each MC
are assigned through a short assembly script, which also routes the constants to the
corresponding ports of the architecture. Since only one pointer is provided for the
input data memory space, this script implements scalar instructions to determine
the correct initial address for each of the two ports of each MC through the use of
a predefined step depending on the dataset size. The script ends by notifying the
co-processor that all data and initial addresses are in order, thus the AEs can start
processing the dataset. Note that each assembly instruction may be formed to refer
to any number of AEs, therefore the user may choose how many AEs will share the
workload.

Up to this point, we described the pre-processing of the dataset for the deploy-
ment of a single AE. When multiple AEs are deployed the same process is followed,
albeit with some minor differences. The first issue that needs to be addressed when
deploying multiple parallel AEs for the processing of a single dataset is the work-
load distribution between them. Ideally, if m AEs are operating, each AE should
compute 1/mth of the total pairwise LD scores. However, since each calculation of
the LD scores of a diagonal in the correlation matrix is followed by a memory roll-
back, resulting in a multiple cycle delay of the arrival of the initial data of the next
diagonal, and since diagonals vary on the number of LD scores they contain, a sim-
ple division would not suffice. For this reason, the workload is distributed through
whole diagonals and not individual LD scores. The first step of the process is to
find the 1/mth value that will be used as a bound for the distribution. Then, starting

Chapter 5. Full System Implementation 39

from the first diagonal, the number of diagonals that contain that bound is calcu-
lated and assigned to each AE. Since the upper diagonals contain more LD scores
than the lower ones, fewer diagonals will be assigned to the first AE than the last
one. However, they are essentially assigned approximately the same number of LD
scores, with the first AEs having a slightly higher workload that is balanced out by
the lower memory overhead during rollbacks as a result of the reduced number of
diagonals they are assigned to process.

Since the workload slightly varies between AEs, all constants except the number
of SNPs must be individually computed and passed to each AE. Furthermore, since
multiple AEs are producing results simultaneously, four extra constants are neces-
sary in order to dictate the initial address of the result memory space for each AE.
These facts elevate the number of the copcall function’s attributes to the maximum
allowed value of 15, which reinforces the decision to concatenate multiple constants
into single 64-bit quantities. The assembly script is structured in the same fashion
for multi-FPGA instantiations as for single-FPGA ones, with the difference that each
AE is assigned different addresses and constants, depending on the outcome of the
aforementioned workload distribution procedure.

5.2.2 Hardware Architecture Instantiation

Before the LD accelerator can be mapped on the AE FPGAs, the generic design
described in Chapter 4 must be instantiated by defining the number of MCs that
will be used and, consequently, the number of ports, AHF units, and COR units
that the implemented design will feature, as well as the width of the adder trees on
the BC stage 2. Since each AE processes a different SNP pair, the same bitfile must
be downloaded on all FPGAs. Thus, we will attempt to describe the instantiation
process for one FPGA, which remains the same for all AEs regardless of the number
of FPGAs deployed.

Each application engine has access to 16 total memory controller ports. Our im-
plementation utilizes an odd number of ports, two for each MCP and one for the
output specifically. For that reason, out of the 16 ports, the 15 are utilized delivering
to the accelerator 14 total input and one output port. To completely absorb the band-
width of the 14 input ports, 7 AHF units are instantiated, since a pair of input ports
is tasked with retrieving a portion of the data of a SNP pair. Consequently, the width
of the 25 adder trees of BC stage 2 is set to 7 in order to accumulate all partial allele,
haplotype and valid counts of the 7 AHF units of the previous stage. The number
of COR units, on the other hand, is arbitrary and unrelated to the number of ports
provided. We chose to implement 4 COR units operating in parallel with the reasons
being the extended support of moderately small FSM datasets.

At this point the accelerator is ready to be mapped onto the FPGAs. The pro-
posed architecture is described using VHDL and developed with the Xilinx ISE 12.4
interface, while the floating-point cores and memory elements are generated by the
Xilinx Core Generator. Table 5.1 details the resources utilized when the accelera-
tor is deployed as a single instance onto one Virtex6 LX760 FPGA compared to the
resources utilized when the complete system is deployed. The latter includes the
implementation of the accelerator itself, as well as the vendor-provided infrastruc-
ture of the Convey co-processor. As clearly denoted by the table above, only a small
fraction of the available resources of the FPGA are utilized for the implementation
of the architecture. This is a direct consequence of the design decision to support
arbitrarily large datasets. Thus, any attempt to implement the proposed design is

Chapter 5. Full System Implementation 40

TABLE 5.1: Occupied resources on a Virtex6 LX760 FPGA by a single
accelerator instance, as well as the fully functional system.

Single Instance Full System
Resources Amount Occupied Amount Occupied

Occupied Slices 11,778 9% 43,969 37%
Slice Registers 42,453 4% 150,932 15%

Slice LUTs 36,717 7% 124,909 26%
BRAMs (18Kb) 175 12% 437 30%

DSPs 96 11% 96 11%

bound first by the available memory bandwidth and, if the latter is large enough,
only then will the available resources become a hindrance.

The throughput of the accelerator under the FSM when 1 FPGA is utilized can
be described theoretically by a series of equations. Given the number of SNP pairs
P that need to be correlated, then the throughput, measure in LD scores per second,
is given by the following formulation:

throughput =
P

t
, (5.1)

where t refers to the time required for retrieval, processing and storage of the dataset.
The time required for I/O purposes can be calculated by means of the number of
sequences in the dataset (S), the number of nucleotide bases (b), the utilized memory
bandwidth (B), measured in bits/s, and the word size (W) as:

tIO =
2bSP +WP

B
. (5.2)

The processing time needs to be accounted for only once, since the design is fully
pipelined and presents the ability to fully absorb the available memory bandwidth.
Therefore, the design latency can be denoted as ldesign and amounts to a total of
131 clock cycles. If we account for the initial overhead until the MCs start oper-
ating (tsetup) and the total time spent on retrieving unbuffered data from memory
(trollback), then the total time t required for the processing of a dataset by 1 FPGA
under the FSM assumption is:

t = tsetup + tIO + trollback +
ldesign
F

, (5.3)

where F denotes the clock frequency under which the architecture operates.

41

Chapter 6

System Evaluation

With the conclusion of the instantiation process of the design, the architecture
needs to be properly vetted for correct operation and, eventually, evaluated con-
cerning its performance in comparison with reference software when processing a
wide array of datasets. Hereby we describe the verification process followed during
the implementation of the accelerator and present a series of performance compar-
isons between the full accelerator system and two state-of-the-art high-performance
software for LD analyses, OmegaPlus and PLINK.

6.1 System Verification

The development process of the accelerator design was accompanied by continu-
ous simulations that verified the correct operation of each individual module before
it was connected to the rest of the architecture. All individual modules and stages of
the architecture implementation before the full system was completed were tested
through waveforms using the Xilinx ISim 12.4 simulator. For the sake of verifying
the system’s operation, a spreadsheet modeling the individual stages described in
Chapter 2 given minimum datasets was developed. This model allowed the cross-
reference between the theoretical results and the ones produced by the implemented
architecture at all intermediate stages of the design, therefore enabling the verifica-
tion of the accelerator’s operation at every point on the pipeline. The fully imple-
mented system’s operation was at first verified using ModelSim SE-64 6.5c, along
with a simulation infrastructure provided by Convey Computers, since the full op-
eration of the implementation on the target platform needed to be simulated. By
performing extensive simulations of the system and its components, it’s correct and
synchronized operation was assured before attempting to map it onto the actual
platform, thus minimizing the chance of the latter malfunctioning.

After concluding with certainty that the simulations of the architecture confirm
the proper operation of the design in regards to result correctness, it was ready to be
mapped onto the AE FPGAs. In order to reduce the risk of malfunction due to incor-
rect operation of the full system, the final verification process was subdivided into
3 stages. The first stage entails the verification of the software running on the host
processor without a function call to the co-processor. It is an important step which
ensures that the dataset is handled correctly and the correct constants are calculated
before attempting to pass them to the co-processor for processing. Furthermore,
it is essential that enough memory space has been allocated in both the main and
the shared memory, in order to accommodate all input and output data before pro-
ceeding with their processing. The second verification stage addressed the proper
retrieval and storing of data to and from the AEs. Instead of the full architecture,

Chapter 6. System Evaluation 42

a small design implementing a few simple computations was mapped onto the FP-
GAs in order to verify the correct operation of the memory controllers and the FSMs
dictating their functionality. This step was necessary as erroneous data management
could very easily lead to incorrect behavior from the accelerator and, possibly, even
system-wide crashes. The full system was finally implemented and tested during
the third stage, where its complete operation was verified by cross-referencing the
results produced by small datasets with their corresponding known expected val-
ues calculated through the means of the theoretical methods detailed in Chapter 2
of this document. Finally, with a working prototype in place, small-scale optimiza-
tion improvements were implementing, attempting to reach higher operating clock
frequencies. The achieved stable clock frequency is 149.9 MHz, with 150 MHz being
an upper bound imposed by the Convey platform.

The Convey platform consists a complicated system since it is a hybrid comput-
ing machine pairing traditional high-end CPUs with vendor-specific multi-FPGA-
based co-processing in the form of both the MC interface and the AEs themselves.
Factoring in the scale of complexity that encompasses LD calculations, as well as the
relatively short amount of experience of the author concerning such intricate sys-
tems, each stage of the verification process, from the simplest module to the whole
architecture mapped on multiple AE FPGAs, needed to be extensive. The process
described in this section of the present document ensured that, by verifying each
part of the architecture as it was being implemented, fewer errors were introduced
in the later stages of its development, which would otherwise be harder to address
because of the increasing complexity of the design as it was approaching complete-
ness.

6.2 Performance Evaluation

The problem of computing LD scores, as mentioned multiple times in this docu-
ment, is memory-bound. For this reason, the Convey platform was specifically cho-
sen for its high-speed memory interface, providing a bandwidth of up to 80 GB/s.
Pairing this feature with an efficient highly parallelized architecture for LD analysis
is theorized to lead to increased throughput when processing very large datasets.
To support this hypothesis, the accelerator system is evaluated through the per-
formance comparison with 2 efficient parallel algorithms for LD analyses, namely
OmegaPlus and PLINK. In addition, the architecture is mapped to 1,2 and 4 AE FP-
GAs in order to demonstrate the scalability of the design when deployed on multiple
parallel machines.

To evaluate the performance of the accelerator under the FSM model, OmegaPlus
3.0.0 [2] was used as the reference software. Table 6.1 details the execution times and
throughput of the hardware implementation when the accelerator is deployed for
LD analyses of datasets consisting of up to 1,000,000 sequences. Similar data are
presented in Table 6.3 concerning analyses of the same datasets conducted with the
fine grain version of OmegaPlus, as well as the optimized fine grain version of the
software (Opt.), which implements the Intel intrinsic population count instruction
_mm_popcnt_u64, while multiple threads are deployed. For the purpose of the soft-
ware execution, the testing workstation deployed was comprised by two Intel Xeon
E5-2620 6-core processors running at 2.00 GHz and 24 GB of main memory.

From the data presented in the aforementioned tables, several conclusions can
be deduced concerning the performance of the accelerator system. Concerning the
scaling of the performance when multiple FPGAs are deployed, a linear increase

Chapter 6. System Evaluation 43

TABLE 6.1: Performance of the FPGA accelerator for FSM datasets
consisting of 10,000 SNPs and 1,000, 100,000 and 1,000,000 sequences

by deploying 1,2 and 4 FPGAs.

LD exec. time (s) Throughput (kLD/s)
FPGAs 103 105 106 103 105 106

1 4.23 298.74 2964.85 11829.62 167.45 16.86
2 2.23 152.72 1482.26 22428.30 327.37 33.73
4 3.37 111.59 842.25 14816.03 448.02 59.36

TABLE 6.2: Scaling of performance of the FPGA accelerator for FSM
datasets consisting of 10,000 SNPs and 1,000, 100,000 and 1,000,000

sequences when increasing the number of parallel FPGAs.

Speedup (X)
FPGAs 103 105 106

1->2 1.90 1.96 2.00
2->4 0.66 1.37 1.76
1->4 1.25 2.68 3.52

of throughput was expected to accompany the increase of parallel FPGAs process-
ing the same dataset. However, Table 6.2 presents two discrete deviations from the
expected behavior of the system. Firstly, while in small datasets an increase of the
number of FPGAs utilized from 1 to 2 is followed by a 1.9x speedup, this is not the
case when an equivalent increase from 2 to 4 FPGAs is implemented. On the con-
trary, a decrease of performance is observed with the throughput plummeting from
approximately 22.4 million LD scores per second to just 14.8 million. This behavior
can only be attributed to the increased synchronization overhead required to utilize
4 AEs instead of 2 in conjunction with the very low execution times that are required
for analyses of small sample sizes, amounting to just a few seconds. With the grad-
ual increase of the sample size, however, it is safe to conclude that more devices
translate to improved performance, since the computation-to-synchronization ratio
becomes favorable due to excessive computational requirements.

The second observation that can be made is that the overall performance gain
from deploying multiple FPGAs is not as high as expected. As was previously the
case, performance for analyses of smaller datasets seems to benefit less from the
deployment of multiple parallel machines due to the increased setup and synchro-
nization overhead. On the other hand, when processing larger datasets, the speedup
gained by utilizing a larger number of AEs tends to match the theoretical expected
values, reaching a 2x and 3.52x speedup when utilizing 2 and 4 FPGAs instead of
1 respectively. Besides the static temporal overhead needed to setup and synchro-
nize multiple machines, the increase of relative performance when analyzing larger
datasets and the decrease of the former when deploying multiple FPGAs is caused
by a common factor, namely a mediocre optimization of the method that distributes
the workload between the AEs. This is better illustrated in Figure 6.4, were the ex-
ecution times and throughput of the accelerator system is showcased for datasets
comprised of a fixed number of sequences and varying number of SNPs. In this
case, while the overall execution time is expected to increase with increasing sample
sizes, the throughput of the system should remain the same when the same number

Chapter 6. System Evaluation 44

TABLE 6.3: Performance of OmegaPlus 3.0.0 for FSM datasets consist-
ing of 10,000 SNPs and 1,000, 100,000 and 1,000,000 sequences (Opt.

= intrinsic population counter implemented).

OmegaPlus 3.0.0
LD exec. time (s) Throughput (kLD/s)

threads 103 105 106 103 105 106

1 151.11 11307.24 113647.76 330.84 4.42 0.44
2 80.98 5824.79 56736.29 617.40 8.58 0.88
4 42.47 2921.36 29176.21 1177.04 17.11 1.71
8 21.57 1528.04 14883.85 2317.43 32.72 3.37
12 22.64 1689.48 11920.92 2208.58 29.59 4.19

OmegaPlus 3.0.0 Opt.
LD exec. time (s) Throughput (kLD/s)

threads 103 105 106 103 105 106

1 72.71 3960.23 39818.63 687.61 12.62 1.26
2 41.92 2048.73 19813.02 1192.57 24.40 2.52
4 21.64 1080.31 10000.93 2310.09 46.28 5.00
8 15.67 707.69 5351.34 3191.08 70.65 9.34
12 10.56 594.61 4303.89 4734.14 84.08 11.62

TABLE 6.4: Performance of the accelerator for datasets of 5,008 se-
quences and a varying number of SNPs.

LD exec. time (s) Throughput (mLD/s)
Number of SNPs Number of Pairs 1 2 4 1 2 4

1000 499500 0.16 0.08 0.05 3.05 5.98 10.14
5000 12497500 4.08 2.07 1.19 3.06 6.04 10.50

10000 49995000 16.30 8.26 4.70 3.07 6.05 10.64
20000 199990000 65.22 32.98 20.41 3.07 6.06 9.80

of AEs are utilized. This is better explained when we consider that the throughput
is defined as the number of LD scores the system can produce in 1 second. Since
the relation of the number of SNPs in the dataset to the processing time of the data
is linear, provided that the number of sequences remains fixed, then the ratio of LD
scores per time unit should remain fixed. However, as the experimental results sug-
gest, there are minor fluctuations on the throughput measurements, even among
analyses with the same number of sequences and utilized AEs. This is a result of
the presence of various synchronization and initialization overheads, such as the
time needed to process and decode the initial instructions for the function call to the
co-processor, the increasing number of memory leaps that are larger than a single
memory page when the number of SNPs increases, and the time required to copy
datasets of varying size from the main to the shared memory and vice versa, which
is included in our measurements. A more significant observation is that the de-
viance of the throughput from an average value grows as more FPGAs are utilized.
This is a direct result of a poor optimization of the workload distribution among the
AEs. However, it still happens to a minor degree and is not harmful to the overall
performance of the accelerator.

Chapter 6. System Evaluation 45

TABLE 6.5: Performance evaluation of the FPGA accelerator vs
OmegaPlus 3.0.0 for FSM datasets consisting of 10,000 SNPs and
1,000, 100,000 and 1,000,000 sequences when increasing the number
of parallel FPGAs (Opt. = intrinsic population counter implemented).

Speedup (X) vs OmegaPlus 3.0.0
threads

sample size FPGAs 1 2 4 8 12
1 35.76 19.16 10.05 5.11 5.36

103 2 67.79 36.33 19.05 9.68 10.16
4 44.78 24.00 12.59 6.39 6.71
1 37.85 19.50 9.78 5.12 5.66

105 2 74.03 38.14 19.13 10.01 11.06
4 101.32 52.20 26.18 13.69 15.14
1 38.33 19.14 9.84 5.00 4.02

106 2 76.67 38.28 19.68 10.01 8.04
4 134.93 67.38 34.63 17.61 14.15

Speedup (X) vs OmegaPlus 3.0.0 Opt.
threads

sample size FPGAs 1 2 4 8 12
1 17.20 9.92 5.12 3.71 2.50

103 2 32.62 18.81 9.71 7.02 4.73
4 21.55 12.42 6.41 4.64 3.13
1 13.26 6.86 3.62 2.37 1.99

105 2 24.59 13.42 7.07 4.64 3.89
4 33.65 18.36 9.68 6.34 5.33
1 13.43 6.68 3.37 1.80 1.80

106 2 26.85 13.37 6.75 3.61 3.61
4 47.26 23.53 11.87 6.35 6.35

In regards to the performance of the accelerator compared to the OmegaPlus soft-
ware when deployed for analyses of gradually increasing sample sizes, the FPGA
implementation achieves higher bit-count capacity and, therefore, better overall per-
formance, as detailed in Table 6.5. The table is comprised by the speedup achieved
when the accelerator is mapped on 1, 2 and 4 FPGAs compared to the normal and op-
timized fine-grain version OmegaPlus 3.0.0 software. The performance gain, while
not particularly impressive (approximately 5-6X when comparing the fastest ver-
sions of both implementations for large datasets), they are within the expected range.
The design decision to support arbitrarily large sample sizes forbids any further op-
timization of the architecture, thus establishing the current design as optimal, since
it absorbs the maximum amount of memory bandwidth possible for the target plat-
form. For this reason, in order to achieve higher execution times, either the available
memory bandwidth should be increased, followed by an equivalent increase of the
parallelism in the accelerator’s pipeline, or the whole design perspective should un-
dergo a focus shift. Furthermore, when examining analyses of a wider range of
sample sizes, as illustrated in Figure 6.1, an increase in sample size slowly but surely
is followed by a stabilization of the performance gain over the reference software.
This is expected as both the software and the hardware accelerator exhibit a linear
relation between the dataset size and its processing time, while on datasets whose
size does not permit efficient use of the cache hierarchy on the commercial CPUs,

Chapter 6. System Evaluation 46

●
● ●

●
● ●

●

● ● ●

0

5

10

15

20

25

1 2.5 5 10 25 50 100 250 500 1000

Sequences (x103)

S
pe

ed
up

● 1 FPGA vs OP

1 FPGA vs OP Opt.

2 FPGAs vs OP

2 FPGAs vs OP Opt.

4 FPGAs vs OP

4 FPGAs vs OP Opt.

FIGURE 6.1: Speedup of the FPGA accelerator deployed on 1,2 and 4
FPGAs vs the normal and optimized OmegaPlus 3.0.0 reference soft-
ware for datasets consisting of 10,000 SNPs and 1,000 to 1,000,000 se-
quences. Additional data supporting the diagram can be found in

Appendix A.

FPGAs appear to gain an advantage due to their performance stability.
For the performance evaluation of our architecture would it be deployed to pro-

cess datasets according to the ISM model, PLINK 1.9 [9] was chosen over OmegaPlus
3.0.0 since it outperforms the latter when more than 4 CPU cores are deployed [3].
However PLINK computes LD based on genotypes and not alleles, thus exhibiting
increased complexity in comparison with the allele-based OmegaPlus implemen-
tation under the FSM. Note, however, that the speedup of our accelerator system
reported in this case refers to mere estimates of its performance under the ISM
model, based on previous analyses conducted under the FSM model. To ensure a
fair comparison with the ISM implementations, we include the evaluation results of
the previous hardware implementation by Alachiotis and Weisz [3] as reported by
the authors (Table 6.6). The test platforms for the ISM evaluation were a workbench
featuring an Intel Xeon E5-2630 6-core processor running at 2.60 GHz with 32 GB
of main memory for the PLINK 1.9 measurements, while the LD accelerator [3] was
mapped to a Virtex7 VX980T FPGA.

The reported evaluation scores between the 3 ISM implementations clearly lean

Chapter 6. System Evaluation 47

TABLE 6.6: Estimated performance comparison for analyzing 10,000
SNPs and 100,000 sequences based on ISM.

PLINK 1.9 LD Accel. [3] HW speedup
threads Exec. Time kLD/s 1 FPGA 1 FPGA 4 FPGAs

1 389.1 128 159.3 20.9 56.0
2 297.6 168 121.4 15.9 42.7
4 180.2 277 73.6 9.7 25.9
8 109.4 456 44.7 5.9 15.7

12 88.3 566 36.0 4.7 12.7

in favor of the LD accelerator presented by Alachiotis and Weisz [3], as it achieves a
speedup of 36X versus PLINK operating on 12 threads, while our accelerator po-
tentially achieves a mere 4.7X speedup utilizing a single FPGA versus the same
software. However, the design point of the two hardware accelerators differs to a
significant degree. On the one hand, the work of Alachiotis and Weisz is focused
on maximizing throughput performance for moderate sample sizes, while only as-
suming complete ISM data. In our work the focus is to support arbitrarily large
sample sizes while considering missing data and alignment gaps to allow potential
deployment in future real-world large-scale analyses. Furthermore, our architecture
is optimized for accommodating primarily FSM datasets, with the support for ISM
data being a potential extra functionality.

To this end, we report expected performance gains from the potential deploy-
ment of the multi-FPGA accelerator system in a real-world analysis for the detec-
tion of positive selection on the 22nd human chromosome. The dataset from the
1,000 genomes project [56] containing that information comprises 5,008 sequences
and 1,055,736 SNPs. The generic version of OmegaPlus 3.0.0 with the Intel intrin-
sic population counter implemented operating on 12 cores achieves a throughput
of 1.88 million LD/s. As illustrated in Table 6.4, the hardware accelerator system
achieves throughputs between 9.8 and 10.64 million LD/s when all 4 FPGAs are
utilized, yielding a speedup of approximately 5X compared to the aforementioned
software.

48

Chapter 7

Conclusions and Future Work

Linkage disequilibrium computations constitute a subject that is characterized
by complex calculations. However it is of high significance to the biological and
Bioinformatics community due to the genetic information it represents and the wide
range of further analyses it can enable. In a landscape of ever-increasing genomic
dataset sizes, developing tools that are able to efficiently process sample sizes num-
bering millions of DNA sequences presents a noble challenge to computer engineers
worldwide. By concluding this work, we attempt to further the search of a highly
efficient tool for genomic association analyses through the means of developing cus-
tom computing machines.

7.1 Conclusions

With conventional CPUs falling out of favor due to their limitations concern-
ing the disproportion between Moore’s law and the rate that DNA data are being
sequenced, as well as the absence of custom instructions, such as a vectorized pop-
ulation counter, a custom architecture based on reconfigurable logic would provide
a more efficient alternative through the exploitation of multiple degrees of parallel
operations combined with a high bandwidth memory interface for the retrieval and
analysis of large-scale sample sizes.

The current work attempted to design and develop such a system and deploy
it for analyses based on simulated data, while evaluating its potential real-world
application. The implementation process entailed the gradual design of the archi-
tecture following a top-down approach. The first stages were focused on detecting
the individual key calculations comprising LD and which of them would consti-
tute the bottlenecks of the accelerator. Each stage ventured deeper in the pipeline,
describing its computational elements with higher detail. Parallelized components
were introduced in key junctions of the pipeline where the dataflow would come to
a halt due to bottlenecks, i.e. population count etc. Only then was the accelerator
ready to be instantiated following a bottom-up approach for easier debugging and
faster development.

A high-end hybrid computing system with increased computational capacity
was selected to accommodate the architecture in order to fully exploit its capabilities
for the parallelization of the operations required for the estimation of LD. The com-
bination of a high-bandwidth memory interface with an architecture featuring mul-
tiple levels of computational parallelism (population count, allele/haplotype fre-
quencies, multiple FPGAs) proved to perform better than state-of-the-art software
running on high-end CPUs. Even thought the design was not tailored for extreme
performance efficiency, but rather focused on a combination of high performance
and the support of sample sizes that will become staple for genomic analyses over

Chapter 7. Conclusions and Future Work 49

the next few years, it still managed to process large datasets 5 times faster than its
current software counterparts.

In addition, both the user-oriented nature of reconfigurable machines, as well as
the overall modular structure of the design encourage further design space explo-
ration of the LD architecture. Since the LD statistic is so widely used, presenting a
design that could be altered and improved upon on the fly by a knowledgeable user
is considered an important feature of the accelerator. This approach was only pos-
sible due to the FPGA-specific feature of sharing the modularity of general purpose
processors and implementing it on a hardware level while contesting the efficiency
and performance of ASICs without inheriting their finality.

Thus, the most important conclusion of this work would have to be that anal-
yses, such as LD and a lot of other biological computations, that require complex
algorithms, yet when broken down, consisting of a large amount of repetitive sim-
ple calculations, highly benefit from the development of custom application-specific
pipelines that exploit the capacity of reconfigurable devices for cheap and efficient
parallel implementations with custom-width arithmetic addressing exactly the ap-
plication’s requirements. Both the previous work of Alchiotis and Weisz [3] and the
current work represent, in our opinion, important steps towards the exploration of
custom accelerators in LD analyses. However, we don’t consider this work to be
the ultimate tool of such analyses, but rather a small contribution to the fields of re-
configurable computing and Bioinformatics that is to be improved upon, as hybrid
computing seems to be entering its most fruitful era yet.

7.2 Future Work

The work described in this manuscript, while novel to the field of Bioinformat-
ics, since only a few FPGA-based implementations of LD architectures have been
presented thus far, is not considered as the penultimate research upon the subject.
Several propositions for future continuation of our architecture can be proposed,
which, despite being out of the scope of the current study, could constitute interest-
ing research subjects and even lead to significant advances in Bioinformatics.

First and foremost, the presented accelerator can be improved upon in a multi-
tude of different ways. Similarly to the previous work of Alachiotis and Weisz [3], a
memory grid can be inserted between the MCs and the AEs, which will be used to
store whole SNPs, while additional LD cores can be instantiated per FPGA for the
efficient processing of multiple SNP pairs simultaneously. The supported dataset
size will be significantly reduced, even more so in the case of FSM-based analyses,
however, the throughput of the accelerator is expected to be significantly increased.
Nevertheless, depending on the scale of the dataset, the user would be presented
with the option to choose between the implementation that best suits his analysis.

Additionally, the LD accelerator can be used as a basis for the further implemen-
tation of additional population genomics statistics. The implementation of the ω
statistic implemented in OmegaPlus is, possibly, the most obvious example. Given
the platform that our accelerator was instantiated on, there two routes may be fol-
lowed towards that end. The one entails the implementation of the ω statistic and
the dynamic programming algorithm applied on the correlation matrix on hard-
ware. This is expected to lead to a slight increase in performance for datasets smaller
than the size of the shared memory, since an analysis of this magnitude would re-
quire only one function call to the co-processor. For larger analyses, an argument
for another parallel approach could be made. By organizing the computations into

Chapter 7. Conclusions and Future Work 50

compute lists, the software could handle the calculation of the ω statistics referring
to one compute list, while the co-processor calculated the LD scores of the next. This
could be achieved by utilizing multi-threading in a fashion that allows for one thread
to facilitate the function call to the AEs, while the rest work in parallel towards the
calculation of the ω values.

As a next step in the evolution of the architecture, several of the aforementioned
features can be combined into one design implementing multiple statistics. How-
ever, due to the nature of different statistics and various variables dependent on the
dataset, such a multi-purpose tool would present significant fluctuation in the per-
formance of different parts of the architecture and, possibly, shifting the bottleneck
between them as different analyses are conducted. To address such issues, an in-
teresting and ambitious proposition would entail an architecture that would be able
to adapt on demand through partial reconfiguration, in order to meet the computa-
tional demands of different analyses and varying dataset sizes.

Lastly, the LD accelerator could be implemented on different heterogeneous plat-
forms. Due to the need of a large amount of relatively simple computations dur-
ing the calculation of allele and haplotype frequencies, a platform providing a great
number of processing cores, such as GPUs, even if they are running at a lower speed
than conventional CPUs, could lead to a significant performance gain. This argu-
ment can only be strengthened by the release of High Bandwidth Memory technol-
ogy for GPUs, theorized to provide a bandwidth of up to 512 GB/s until 2020.

Concluding this study, we can only be hopeful for the future of hardware de-
sign, as more interesting advances in high-performance computing are underway.
The progress in heterogeneous architectures and the efficient pairing of CPUs and
FPGAs, that this work has barely grazed upon, can only lead to a blissful yearning
for further experimentation around novel ideas and designs.

51

Appendix A

Additional Data

TABLE A.1: Performance of the FPGA accelerator for FSM datasets
consisting of 10,000 SNPs and 1,000 - 1,000,000 sequences by deploy-

ing 1,2 and 4 FPGAs.

FPGA Performance
LD exec. time (s) Throughput (kLD/s)

sequences (x103) 1 2 4 1 2 4
1 4.23 2.23 3.37 11829.62 22428.30 14816.03

2.5 8.27 4.25 2.51 6044.89 11759.72 19928.46
5 16.30 8.26 4.70 3067.16 6050.54 10639.62

10 30.80 15.51 8.99 1623.14 3223.71 5561.19
25 75.23 37.59 22.77 664.58 1329.89 2195.60
50 149.49 75.82 55.63 334.44 659.41 898.76

100 298.74 152.72 111.59 167.35 327.37 448.02
250 742.42 371.22 213.96 67.34 134.68 233.66
500 1483.54 741.69 416.16 33.70 67.41 120.13
1000 2964.85 1482.26 842.25 16.86 33.73 59.36

TABLE A.2: OmegaPlus 12-threaded execution times and throughput
for a dataset consisting of 1,055,736 SNPs and 5,008 sequences (22nd

human chromosome).

software version number of pairs LD exec. time (s) Throughput (mLD/s)
fine-grain 1610858086 1648.68 0.98

fine-grain Opt. 1610858086 1041.61 1.55
generic 1643288612 2287.02 0.72

generic Opt. 1744192036 927.23 1.88

Appendix A. Additional Data 52

TABLE A.3: Speedup of the accelerator vs. various OmegaPlus 3.0.0
software versions for a dataset of 10,000 SNPs and 1,000 sequences

(Opt. = intrinsic population counter implemented).

Throughput Speedup of accelerator for
software version threads LD exec. time (s) (kLD/s) 4 FPGA 2 FPGAs 1 FPGAs

sequential 1 151.12 330.84 44.78 67.79 35.76
sequential Opt. 1 72.71 687.62 21.55 32.62 17.20

2 80.98 617.40 24.00 36.33 19.16
fine-grain 4 42.47 1177.05 12.59 19.05 10.05

8 21.57 2317.43 6.39 9.68 5.10
12 22.64 2208.58 6.71 10.16 5.36
2 41.92 1192.57 12.42 18.81 9.92

fine-grain Opt. 4 21.64 2310.09 6.41 9.71 5.12
8 15.67 3191.08 4.64 7.03 3.71

12 10.56 4734.14 3.13 4.74 2.50
2 125.12 399.57 37.08 56.13 29.61

generic 4 65.17 767.12 19.31 29.24 15.42
8 35.31 1415.70 10.47 15.84 8.36

12 33.65 1485.95 9.97 15.09 7.96
2 41.83 1195.22 12.40 18.77 9.90

generic Opt. 4 22.19 2253.31 6.58 9.95 5.25
8 12.73 3927.34 3.77 5.71 3.01

12 13.26 3769.91 3.93 5.95 3.14

TABLE A.4: Speedup of the accelerator vs. various OmegaPlus 3.0.0
software versions for a dataset of 10,000 SNPs and 100,000 sequences

(Opt. = intrinsic population counter implemented).

Throughput Speedup of accelerator for
software version threads LD exec. time (s) (kLD/s) 4 FPGA 2 FPGAs 1 FPGAs

sequential 1 11307.24 4.42 101.32 74.03 37.85
sequential Opt. 1 3960.23 12.62 35.49 25.93 13.26

2 5824.79 8.58 52.20 38.14 19.50
fine-grain 4 2921.36 17.11 26.18 19.13 9.78

8 1528.04 32.72 13.69 10.01 5.12
12 1689.48 29.59 15.14 11.06 5.66
2 2048.73 24.40 18.36 13.42 6.86

fine-grain Opt. 4 1080.31 46.28 9.68 7.07 3.62
8 707.69 70.65 6.34 4.63 2.37

12 594.61 84.08 5.33 3.89 1.99
2 10332.57 4.84 92.59 67.65 34.58

generic 4 5374.83 9.30 48.16 35.19 17.99
8 2831.49 17.66 25.37 18.54 9.48

12 2265.21 22.07 20.30 14.83 7.58
2 2103.77 23.77 18.85 13.78 7.04

generic Opt. 4 1118.27 44.71 10.02 7.32 3.74
8 686.11 72.87 6.15 4.49 2.30

12 640.47 78.06 5.74 4.19 2.14

Appendix A. Additional Data 53

TABLE A.5: Speedup of the accelerator vs. various OmegaPlus 3.0.0
software versions for a dataset of 10,000 SNPs and 1,000,000 se-

quences (Opt. = intrinsic population counter implemented).

Throughput Speedup of accelerator for
software version threads LD exec. time (s) (kLD/s) 4 FPGA 2 FPGAs 1 FPGAs

sequential 1 113647.77 0.44 134.93 76.67 38.33
sequential Opt. 1 39818.63 1.26 47.26 26.85 13.43

2 56736.29 0.88 67.38 38.28 19.14
fine-grain 4 29176.21 1.71 34.63 19.68 9.84

8 14883.85 3.37 17.61 10.01 5.00
12 11920.92 4.19 14.15 8.04 4.02
2 19813.02 2.52 23.53 13.37 6.68

fine-grain Opt. 4 10000.93 5.00 11.87 6.75 3.37
8 5351.34 9.34 6.35 3.61 1.80

12 4303.89 11.62 5.11 2.90 1.45
2 103219.19 0.48 122.64 69.69 34.84

generic 4 52442.28 0.95 62.29 35.39 17.69
8 27544.45 1.82 32.70 18.58 9.29

12 20051.70 2.49 23.81 13.53 6.76
2 20560.45 2.43 24.41 13.87 6.93

generic Opt. 4 10986.13 4.55 13.04 7.41 3.71
8 5775.98 8.66 6.86 3.90 1.95

12 4974.38 10.05 5.91 3.36 1.68

TABLE A.6: Speedup of the accelerator vs. the fine-grain version of
OmegaPlus 3.0.0 operating on 12 cores for datasets of 10,000 SNPs

(Opt. = intrinsic population counter implemented).

sequences Throughput Speedup of accelerator for
(x103) software version LD exec. time (s) (kLD/s) 4 FPGA 2 FPGAs 1 FPGAs

2.5 fine-grain 39.13 1277.75 15.60 9.20 4.73
fine-grain Opt. 18.89 2646.02 7.53 4.44 2.28

5 fine-grain 78.67 635.53 16.74 9.52 4.83
fine-grain Opt. 32.59 1534.23 6.93 3.94 2.00

10 fine-grain 133.50 374.48 14.85 8.61 4.33
fine-grain Opt. 54.74 913.36 6.09 3.53 1.78

25 fine-grain 353.41 141.46 15.52 9.40 4.70
fine-grain Opt. 128.86 387.99 5.66 3.43 1.71

50 fine-grain 726.63 68.80 13.06 9.58 4.86
fine-grain Opt. 343.87 145.39 6.18 4.54 2.30

250 fine-grain 3092.87 16.17 14.45 8.33 4.17
fine-grain Opt. 1112.45 44.94 5.20 3.00 1.50

500 fine-grain 6019.10 8.31 14.46 8.12 4.06
fine-grain Opt. 2149.91 23.25 5.17 2.90 1.45

54

Bibliography

[1] Nikolaos Alachiotis, Thom Popovici, and Tze Meng Low. “Efficient Compu-
tation of Linkage Disequilibria as Dense Linear Algebra Operations”. In: High
Performance Computational Biology (HICOMB) (2016).

[2] Nikolaos Alachiotis, Alexandros Stamatakis, and Pavlos Pavlidis. “OmegaPlus:
a scalable tool for rapid detection of selective sweeps in whole-genome datasets”.
In: Bioinformatics 28.17 (2012), pp. 2274–2275.

[3] Nikolaos Alachiotis and Gabriel Weisz. “High Performance Linkage Disequi-
librium: FPGAs Hold the Key”. In: Proceedings of the 2016 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays. ACM. 2016, pp. 118–127.

[4] Md Tauqeer Alam et al. “Selective sweeps and genetic lineages of Plasmodium
falciparum drug -resistant alleles in Ghana.” In: The Journal of infectious diseases
203.2 (Jan. 2011), pp. 220–7. ISSN: 1537-6613. DOI: 10.1093/infdis/jiq038.
URL: http://jid.oxfordjournals.org/content/203/2/220.long.

[5] Jeffrey C Barrett et al. “Haploview: analysis and visualization of LD and hap-
lotype maps”. In: Bioinformatics 21.2 (2005), pp. 263–265.

[6] Jonathan P Beauchamp. “Genetic evidence for natural selection in humans in
the contemporary United States”. In: Proceedings of the National Academy of Sci-
ences 113.28 (2016), pp. 7774–7779.

[7] Penelope E Bonnen et al. “Haplotype and linkage disequilibrium architecture
for human cancer-associated genes”. In: Genome research 12.12 (2002), pp. 1846–
1853.

[8] Fabio Cancare, Alessandro Marin, and Donatella Sciuto. “Dedicated hardware
accelerators for the epistatic analysis of human genetic data”. In: Embedded
Computer Systems (SAMOS), 2011 International Conference on. IEEE. 2011, pp. 102–
109.

[9] Christopher C Chang et al. “Second-generation PLINK: rising to the challenge
of larger and richer datasets”. In: Gigascience 4.1 (2015), p. 7.

[10] Charles C Chung et al. “Genome-wide association studies in cancer-current
and future directions”. In: Carcinogenesis (2009), bgp273.

[11] Andrew G Clark. “Finding genes underlying risk of complex disease by link-
age disequilibrium mapping”. In: Current opinion in genetics & development 13.3
(2003), pp. 296–302.

[12] Convey Computer Corporation. Convey PDK Reference Manual v5.2. 2012. URL:
http://www.conveysupport.com/alldocs/ConveyPDKReferenceManual.
pdf.

[13] Convey Computer Corporation. Convey Reference Manual v1.1. 2012. URL: http:
//www.conveysupport.com/alldocs/ConveyReferenceManual.
pdf.

http://dx.doi.org/10.1093/infdis/jiq038
http://jid.oxfordjournals.org/content/203/2/220.long
http://www.conveysupport.com/alldocs/ConveyPDKReferenceManual.pdf
http://www.conveysupport.com/alldocs/ConveyPDKReferenceManual.pdf
http://www.conveysupport.com/alldocs/ConveyReferenceManual.pdf
http://www.conveysupport.com/alldocs/ConveyReferenceManual.pdf
http://www.conveysupport.com/alldocs/ConveyReferenceManual.pdf

BIBLIOGRAPHY 55

[14] Olivia Corradin et al. “Combinatorial effects of multiple enhancer variants in
linkage disequilibrium dictate levels of gene expression to confer susceptibil-
ity to common traits”. In: Genome research 24.1 (2014), pp. 1–13.

[15] Jessica L Crisci et al. “The impact of equilibrium assumptions on tests of selec-
tion”. In: Frontiers in genetics 4 (2013).

[16] Keyue Ding et al. “LDA—a java-based linkage disequilibrium analyzer”. In:
Bioinformatics 19.16 (2003), pp. 2147–2148.

[17] Laurent Excoffier, Guillaume Laval, and Stefan Schneider. “Arlequin (version
3.0): an integrated software package for population genetics data analysis”. In:
Evolutionary bioinformatics 1 (2005).

[18] Laurent Excoffier and Heidi EL Lischer. “Arlequin suite ver 3.5: a new series
of programs to perform population genetics analyses under Linux and Win-
dows”. In: Molecular ecology resources 10.3 (2010), pp. 564–567.

[19] Genomics England. The 100,000 genomes project. 2015. URL: https://www.
genomicsengland.co.uk/the-100000-genomes-project/.

[20] Jorge González-Domínguez et al. “Parallel Pairwise Epistasis Detection on
Heterogeneous Computing Architectures”. In: IEEE Transactions on Parallel and
Distributed Systems 27.8 (2016), pp. 2329–2340.

[21] Daniel F Gudbjartsson et al. “Large-scale whole-genome sequencing of the
Icelandic population”. In: Nature genetics 47.5 (2015), pp. 435–444.

[22] W. G. Hill and Alan Robertson. “Linkage disequilibrium in finite populations”.
In: Theoretical and Applied Genetics 38.6 (1968), pp. 226–231. ISSN: 1432-2242.
DOI: 10.1007/BF01245622. URL: http://dx.doi.org/10.1007/
BF01245622.

[23] Stephan Hutter, Albert J Vilella, and Julio Rozas. “Genome-wide DNA poly-
morphism analyses using VariScan”. In: BMC bioinformatics 7.1 (2006), p. 409.

[24] Thomas H Jukes and Charles R Cantor. “Evolution of protein molecules”. In:
Mammalian protein metabolism 3.21 (1969), p. 132.

[25] Tony Kam-Thong et al. “GLIDE: GPU-based linear regression for detection of
epistasis”. In: Human heredity 73.4 (2012), pp. 220–236.

[26] Jan Christian Kässens et al. “High-speed exhaustive 3-locus interaction epis-
tasis analysis on FPGAs”. In: Journal of Computational Science 9 (2015), pp. 131–
136.

[27] David R Kelley, Michael C Schatz, and Steven L Salzberg. “Quake: quality-
aware detection and correction of sequencing errors”. In: Genome biology 11.11
(2010), p. 1.

[28] Yuseob Kim and Rasmus Nielsen. “Linkage disequilibrium as a signature of
selective sweeps”. In: Genetics 167.3 (2004), pp. 1513–1524.

[29] Motoo Kimura. “The number of heterozygous nucleotide sites maintained in
a finite population due to steady flux of mutations”. In: Genetics 61.4 (1969),
p. 893.

[30] Rick A Kittles et al. “Extent of linkage disequilibrium between the androgen
receptor gene CAG and GGC repeats in human populations: implications for
prostate cancer risk”. In: Human genetics 109.3 (2001), pp. 253–261.

[31] Leonid Kruglyak. “Prospects for whole-genome linkage disequilibrium map-
ping of common disease genes”. In: Nature genetics 22.2 (1999), pp. 139–144.

https://www.genomicsengland.co.uk/the-100000-genomes-project/
https://www.genomicsengland.co.uk/the-100000-genomes-project/
http://dx.doi.org/10.1007/BF01245622
http://dx.doi.org/10.1007/BF01245622
http://dx.doi.org/10.1007/BF01245622

BIBLIOGRAPHY 56

[32] David S Lawrie. “Accelerating Wright-Fisher forward simulations on the graph-
ics processing unit”. In: bioRxiv (2016), p. 042622.

[33] R. C. Lewontin. “THE INTERACTION OF SELECTION AND LINKAGE. I.
GENERAL CONSIDERATIONS; HETEROTIC MODELS”. In: Genetics 49.1 (1964),
pp. 49–67. ISSN: 0016-6731. eprint: http://www.genetics.org/content/
49/1/49.full.pdf. URL: http://www.genetics.org/content/49/
1/49.

[34] RC Lewontin and Kenichi Kojima. “The evolutionary dynamics of complex
polymorphisms”. In: Evolution (1960), pp. 458–472.

[35] Isaac TS Li, Warren Shum, and Kevin Truong. “160-fold acceleration of the
Smith-Waterman algorithm using a field programmable gate array (FPGA)”.
In: BMC bioinformatics 8.1 (2007), p. 185.

[36] Scott Lloyd and Quinn O Snell. “Accelerated large-scale multiple sequence
alignment”. In: BMC bioinformatics 12.1 (2011), p. 466.

[37] Po-Ru Loh et al. “Inferring admixture histories of human populations using
linkage disequilibrium”. In: Genetics 193.4 (2013), pp. 1233–1254.

[38] Jiachun Lu et al. “Polymorphisms and haplotypes of the NBS1 gene are asso-
ciated with risk of sporadic breast cancer in non-Hispanic white women< 55
years”. In: Carcinogenesis 27.11 (2006), pp. 2209–2216.

[39] Atabak Mahram and Martin C Herbordt. “FMSA: FPGA-accelerated ClustalW-
based multiple sequence alignment through pipelined prefiltering”. In: Field-
Programmable Custom Computing Machines (FCCM), 2012 IEEE 20th Annual In-
ternational Symposium on. IEEE. 2012, pp. 177–183.

[40] Lisha A Mathew et al. “Why to account for finite sites in population genetic
studies and how to do this with jaatha 2.0”. In: Ecology and evolution 3.11 (2013),
pp. 3647–3662.

[41] Grant Morahan et al. “Linkage disequilibrium of a type 1 diabetes susceptibil-
ity locus with a regulatory IL12B allele”. In: Nature genetics 27.2 (2001), pp. 218–
221.

[42] Rasmus Nielsen et al. “Genomic scans for selective sweeps using SNP data”.
In: Genome research 15.11 (2005), pp. 1566–1575.

[43] Pamela Orjuela-Sánchez et al. “Single-nucleotide polymorphism, linkage dis-
equilibrium and geographic structure in the malaria parasite Plasmodium vi-
vax: prospects for genome-wide association studies”. In: BMC genetics 11.1
(2010), p. 65.

[44] Pavlos Pavlidis, Jeffrey D Jensen, and Wolfgang Stephan. “Searching for foot-
prints of positive selection in whole-genome SNP data from nonequilibrium
populations”. In: Genetics 185.3 (2010), pp. 907–922.

[45] Bastian Pfeifer et al. “PopGenome: an efficient Swiss army knife for population
genomic analyses in R”. In: Molecular biology and evolution (2014), msu136.

[46] Gerd Pfeiffer et al. “A massively parallel architecture for bioinformatics”. In:
International Conference on Computational Science. Springer. 2009, pp. 994–1003.

[47] Shaun Purcell et al. “PLINK: a tool set for whole-genome association and
population-based linkage analyses”. In: The American Journal of Human Genetics
81.3 (2007), pp. 559–575.

http://www.genetics.org/content/49/1/49.full.pdf
http://www.genetics.org/content/49/1/49.full.pdf
http://www.genetics.org/content/49/1/49
http://www.genetics.org/content/49/1/49

BIBLIOGRAPHY 57

[48] Michel Raymond and François Rousset. “GENEPOP (version 1.2): population
genetics software for exact tests and ecumenicism”. In: Journal of heredity 86.3
(1995), pp. 248–249.

[49] David E Reich et al. “Linkage disequilibrium in the human genome”. In: Na-
ture 411.6834 (2001), pp. 199–204.

[50] Rori V Rohlfs, Willie J Swanson, and Bruce S Weir. “Detecting coevolution
through allelic association between physically unlinked loci”. In: The American
Journal of Human Genetics 86.5 (2010), pp. 674–685.

[51] Francois Rousset. “genepop’007: a complete re-implementation of the genepop
software for Windows and Linux”. In: Molecular ecology resources 8.1 (2008),
pp. 103–106.

[52] Jiawei Shen, Zhiqiang Li, and Yongyong Shi. “SHEsisPCA: A GPU-Based Soft-
ware to Correct for Population Stratification that Efficiently Accelerates the
Process for Handling Genome-Wide Datasets”. In: Journal of Genetics and Ge-
nomics 42.8 (2015), pp. 445–453.

[53] Montgomery Slatkin. “Linkage disequilibrium—understanding the evolution-
ary past and mapping the medical future”. In: Nature Reviews Genetics 9.6
(2008), pp. 477–485.

[54] Xavier Solé et al. “SNPStats: a web tool for the analysis of association studies”.
In: Bioinformatics 22.15 (2006), pp. 1928–1929.

[55] Zachary D Stephens et al. “Big data: astronomical or genomical?” In: PLoS Biol
13.7 (2015), e1002195.

[56] Peter H Sudmant et al. “An integrated map of structural variation in 2,504
human genomes”. In: Nature 526.7571 (2015), pp. 75–81.

[57] Joseph D Terwilliger and Kenneth M Weiss. “Linkage disequilibrium mapping
of complex disease: fantasy or reality?” In: Current Opinion in Biotechnology 9.6
(1998), pp. 578–594.

[58] Sarah A Tishkoff et al. “Haplotype diversity and linkage disequilibrium at hu-
man G6PD: recent origin of alleles that confer malarial resistance”. In: Science
293.5529 (2001), pp. 455–462.

[59] Peter M Visscher et al. “Five years of GWAS discovery”. In: The American Jour-
nal of Human Genetics 90.1 (2012), pp. 7–24.

[60] Robin S Waples and Phillip R England. “Estimating contemporary effective
population size on the basis of linkage disequilibrium in the face of migra-
tion”. In: Genetics 189.2 (2011), pp. 633–644.

[61] Lars Wienbrandt et al. “FPGA-based acceleration of detecting statistical epis-
tasis in GWAS”. In: Procedia Computer Science 29 (2014), pp. 220–230.

[62] Fang Liu1 Jue Wang Xian-Yu, Lang1 Chi-Xue Bin Hai-Nan, and Zhao2 Jin-
Sheng Lai. “Fast Computing of Linkage Disequilibrium on GPU”. In: ().

[63] Hongyi Xin et al. “Shifted Hamming distance: a fast and accurate SIMD-friendly
filter to accelerate alignment verification in read mapping”. In: Bioinformatics
(2015), btu856.

[64] Haiming Xu et al. “Detection of epistatic and gene-environment interactions
underlying three quality traits in rice using high-throughput genome-wide
data”. In: BioMed research international 2015 (2015).

BIBLIOGRAPHY 58

[65] Jian Yang et al. “GCTA: a tool for genome-wide complex trait analysis”. In: The
American Journal of Human Genetics 88.1 (2011), pp. 76–82.

[66] Jinho Yoo et al. “SNPAnalyzer 2.0: a web-based integrated workbench for link-
age disequilibrium analysis and association analysis”. In: BMC bioinformatics
9.1 (2008), p. 290.

[67] Chunbao Zhou et al. “gPGA: GPU Accelerated Population Genetics Analy-
ses”. In: PloS one 10.8 (2015), e0135028.

[68] Stephanie Zierke and Jason D Bakos. “FPGA acceleration of the phylogenetic
likelihood function for Bayesian MCMC inference methods”. In: BMC bioinfor-
matics 11.1 (2010), p. 184.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Scientific Contributions
	Thesis Organization

	Theoretical Background
	The Structure of Linkage Disequilibrium
	Biological Definition
	Data Representation

	Calculation of Linkage Disequilibrium Scores
	Allele and Haplotype Frequencies
	Measures of Linkage Disequilibrium

	Scientific Significance and Applications

	Related Work
	Software LD Implementations
	Accelerators in Population Genomics
	The OmegaPlus LD Kernel as Reference Software
	Memory Layout
	The LD Computational Core
	The Generic Algorithm

	The LD Accelerator Hardware Architecture
	Memory Layout
	Inter-state Memory Layout Transformation
	Inter-SNP Memory Layout Transformation

	LD Accelerator Design
	Top-Level Design
	Mutation/State Counter
	Correlation Unit
	State Control

	Memory-Architecture Interconnect
	Design Space Analysis

	Full System Implementation
	The Convey HC-2ex Platform
	Co-processor Architecture
	Personalities
	Memory Controller Interface

	LD Accelerator Instantiation
	Pre-processing on the Host Processor
	Hardware Architecture Instantiation

	System Evaluation
	System Verification
	Performance Evaluation

	Conclusions and Future Work
	Conclusions
	Future Work

	Additional Data
	Bibliography

