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Abstract

In this thesis we study a novel cellular network architecture called “Massive
MIMO”. The characteristic of Massive MIMO architecture is to equip BSs
with a number of antennas much larger than the number of active users. As
we will see, this promising idea o↵ers enormous enhancements in spectral
and energy e�ciency, simple signal processing and more.

To understand how massive MIMO works in a wireless cellular system we
focus our study on the pioneering and award-winning paper [3] of Thomas L.
Marzetta who introduced and popularized the concept of massive MIMO. By
simulating a scenario of multicellular wireless system we see the beneficial
contribution of the use of multiple antennas in signal processing (more than
100) and learn about the problem of pilot contamination which is generated
during the channel estimation phase. This phenomenon limits the capacity
of the system and its elimination is of primary importance for engineers. To
mitigate pilot contamination we try to use a less aggressive frequency reuse
strategy in the cellular network, but as we will see, this will improve the
system in terms of interference but it will not produce the desired results in
terms of performance.

After having realized the restrictive role of pilot contamination, we study
a very interesting novel idea which is being presented in [4] and seems to
address the problem (at least at theoretical level). This is about an algorithm
which, in conjunction with an improved channel estimator, tackles the pilot
contamination problem by taking advantage of the multiple antenna dimen-
sions and exploits the side information lying in the second order statistics of
the channel vectors.
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Chapter 1

Introduction

It may be hard to believe but the first cell phone research began in 1843
when Michael Faraday conducted research to see if space could conduct
electricity. Fast forward to 1973, and Dr. Martin Cooper is credited with
inventing the first portable handset. Four years later, cell phones go public.
The first commercially automated cellular network, known as first generation
(1G), was launched in Japan by NTT in 1979, initially in the metropolitan
area of Tokyo. Within five years, the NTT network had been expanded to
cover the whole population of Japan and became the first nationwide 1G
network. In 1981, the NMT system launched in Scandinavia. NMT was the
first mobile phone network to feature international roaming. The first 1G
network in the USA launched in 1983 using the Motorola DynaTAC mobile
phone. And then several countries have followed in the early to mid-1980s.

Second Generation (2G) technology was launched in the year 1991 in
Finland, and in 1992, the new standard for Pan European digital cellular
telephony known as GSM saw its first operational successes. While the radio
signals on 1G networks are analog, radio signals on 2G networks are digital.
Three primary benefits of 2G networks over their predecessors were that
phone conversations were digitally encrypted allowing for the transfer of data
in such a way that only the intended receiver can receive and read it, 2G
systems were significantly more e�cient on the spectrum and introduced
data services for mobile, starting with SMS text messages picture messages,
and MMS (multimedia messages).

The first 3G network o↵ered for commercial use was again launched in
Japan by NTT in the year of 2001. Third Generation technology generally
refers to the standard of accessibility and speed of mobile devices. The
standards of the technology were set by the International Telecommunication
Union (ITU). This technology enables use of various services like GPS
(Global Positioning System), mobile television and video conferencing. It
not only enables them to be used worldwide, but also provides with better
bandwidth and increased speed. 4G is the fourth generation of mobile phone
communications standards. It is a successor of the 3G and provides ultra-
broadband internet access for mobile devices. The high data transfer rates
make 4G networks suitable for use in USB wireless modems for laptops and
even home internet access.

And that’s how we get to this point of time, wondering what 5G will
be? As the long-term evolution (LTE) system embodying 4G has now been
deployed and is reaching maturity, where only incremental improvements and
small amounts of new spectrum can be expected, preliminary interest and
discussions about a possible 5G standard have evolved into a full- fledged
conversation that has captured the attention and imagination of researchers
and engineers around the world.

Thanks to the annual visual network index (VNI) reports released by
Cisco, we have quantitative evidence that the wireless data explosion is
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real and will continue. Driven largely by smartphones, tablets, and video
streaming and many new applications beyond personal communications. VNI
report [1] and forecast makes plain that an incremental approach will not
come close to meeting the demands that networks will face by 2020.

So, unlike the previous four generations of cellular technology which each
one have been a major paradigm shift that has broken backward compatibility,
5G will need to be a paradigm shift that includes very high carrier frequencies
with massive bandwidths, extreme base station and device densities, and
unprecedented numbers of antennas. However, unlike the previous four
generations, it will also be highly integrative: tying any new 5G air interface
and spectrum together with LTE and WiFi to provide universal high-rate
coverage and a seamless user experience. To support this, the core network
will also have to reach unprecedented levels of flexibility and intelligence,
spectrum regulation will need to be rethought and improved, and energy and
cost e�ciencies will become even more critical considerations [2].

One key technology in which researchers have focus on to achieve the
needs of the upcoming years is massive MIMO. MIMO communication was
introduced into WiFi systems around 2006, into 3G cellular shortly thereafter
and by the time LTE was developed, MIMO was a native ingredient thereof
with two-to-four antennas per mobile device and as many as eight per Base
station (BS) sector. In essence, MIMO embodies the spatial dimension of
the communication that arises once a multiplicity of antennas are available
at Base Stations and mobile devices.

Thomas L. Marzetta was instrumental in articulating a vision in which
the number of antennas increased by more than an order of magnitude. The
proposal is to equip BSs with a number of antennas much larger than the
number of active users per time–frequency signaling resource, and, given that
under reasonable time–frequency selectivities accurate channel estimation can
be conducted for at most some tens of users per resource, this condition puts
the number of antennas per BS into the hundreds. This bold idea, initially
termed “large-scale antenna systems” but now more popularly known as
”massive MIMO” constitutes the object of our study in this thesis. As we
will see, this promising idea o↵ers enormous enhancements in spectral and
energy e�ciency with, as is always the case, a trade-o↵ between them. Also,
smoothed out channel responses because of the vast spatial diversity, which
brings about the favourable action of the law of large numbers and simple
signal processing. As it is reasonable, there are also some limiting factors the
tackling of which is a challenge for researchers, so that the massive MIMO
system can achieve its capabilities and become reality.

The revival of [3] will help us understand how massive MIMO works
in a wireless cellular system, to see the beneficial contribution of the use
of multiple antennas in signal processing (more than 100) and learn about
the problem of pilot contamination which is generated during the channel
estimation phase. This phenomenon limits the capacity of the system and
its elimination is of primary importance for engineers. One way to deal with
it is by using less aggressive frequency reuse strategy in the cellular network.
As we will see, this will improve the system in terms of interference but it
will not produce the desired results in terms of performance.

Thus, after having realized the restrictive role of pilot contamination, we
study a very interesting novel idea which is being presented in [4] and seems
to address the problem (at least at theoretical level). Since the phenomenon
is generated during the procedure of channel estimation, the authors create
an algorithm which, in conjunction with an improved channel estimator,
tackles the pilot contamination problem by taking advantage of the multiple
antenna dimensions and exploits the side information lying in the second
order statistics of the channel vectors.



Chapter 2

Wireless Communications

We begin with the definition and description of some fundamental principles
about wireless communications, which take part on the cellular system that
we will study and simulate later on. This chapter starts with Wireless
Channel Models at 2.1 and continues with MIMO systems in 2.2 and Cellular
Systems at 2.3.

2.1 Wireless Channel

The wireless channels operate through electromagnetic radiation from the
transmitter to the receiver. Electromagnetic waves di↵er in energy according
to their wavelength (frequency). Their ability to propagate is also di↵erent
at di↵erent propagation environments. A transmitted signal undergoes
changes while traveling through the propagation path to the receiver. In
cellular wireless communications, obstacles, such as houses, buildings, trees
and mountains cause reflection, di↵raction, scattering, and shadowing of
the transmitted signals and multipath propagation. Due to the multipath,
the transmitted signals arrive with di↵erent phase angles, amplitude and
time delay. The amplitude fluctuation of the received signal caused by the
frequency selective or time varying multipath channel is called fading. The
fading phenomena can be classified into two main groups known as large
scale fading and small scale fading. The large scale fading is used to describe
the signal level at the receiver after traveling over a large area (hundreds of
wavelengths). Small scale fading is used to describe the signal level at the
receiver after encountering obstacles near (several wavelengths to fractions of
wavelengths) the receiver [5], [6].

2.1.1 Large-scale Fading

Large-scale fading is the result of signal attenuation due to signal prop-
agation over large distances and di↵raction around large objects, such as
buildings and hills.

Free Space Propagation

We consider an isotropic antenna, which radiates electromagnetic energy
uniformly in all directions. The transmitter Tx and receiver Rx are located
in distance d as shown in Figure 2.1(a). In this case, the electromagnetic
waves are characterized by their ability to propagate without obstraction and
without atmospheric e↵ects. The path loss under these conditions, where the
attenuation of signal power is solely on account of expansion of the signal
wavefront, is known as free-space pathloss. In the far field of the transmitting
antenna, the free space pathloss is described by an inverse square law, which

10



2.1. WIRELESS CHANNEL 11

(a) Free Space Propagation

(b) 2-ray Model

Figure 2.1: Free Space and 2-Ray propagation.

implies that the power density of the signal decreases with the square of
distance from transmitting antenna.

During transmission over a ground plane, as is normally the case with
cellular systems, part of the radio signal gets reflected by the earth’s surface
and interferes with the primary wavefront (see Figure 2.1(b)). For such a
scenario, with reflection from a ground plane, the power density decreases
with a pathloss exponent of 4. As we see, the received power can decrease
with distance faster than d�2 in the presence of disturbances to free space. In
practice, there are several obstacles between the transmitter and the receiver
and, further, the obstacles might also absorb some power while scattering
the rest. Thus, one expects the power decay to be considerably faster than
d�2. Indeed, empirical evidence from experimental field studies suggests that
while power decay near the transmitter is like d�2, at large distances the
power decays exponentially with distance [5].

Shadow Fading

The density of obstacles between the transmit and receive antennas depends
very much on the physical environment. For example, outdoor plains have very
few of obstacles while indoor environments pose many obstacles. In a typical
urban setup, there are several large structures like buildings, mountains, hills
and trees that severely attenuate the radio signal and are creating shadow
zones that span an area much larger than the wavelength of the signal carrier.
This phenomenon is called shadow fading and causes large-scale attenuation
for the duration that the terminal remains within the shadow of the scatterer.
However, the wavefront undergoes di↵raction at the edges of the scatterer,
and some fraction of signal power is available to the terminal even when the
primary wavefront might be completely obstructed. We also use the term
slow fading, because the length of time it takes for a moving receiver to pass
through the “shadow” of these large obstacles lasts for multiple seconds or
minutes and hence occurs at a slow time-scale.

Since the location, size, and dielectric properties of the blocking objects
as well as the changes in reflecting surfaces and scattering objects that cause
the random attenuation are generally unknown, statistical models are widely
used to characterize the attenuation of shadow fading. The most common
model for this attenuation is log-normal distribution,

hshadow ⇠ lnN (µ,�2)
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This model has been confirmed empirically to accurately model the variation
in path loss or received power in both outdoor and indoor radio propagation
environments.

Figure 2.2: Multi-path Propagation.

2.1.2 Small-scale Fading

Small scale fading is a characteristic of radio propagation resulting from
the presence of reflectors and scatterers that cause multiple versions of the
transmitted signal to arrive at the receiver, each distorted in amplitude,
phase, and angle of arrival.

Multi-path Propagation

The signal is reflected, refracted, and scattered from objects that are present
in the path, creating multiple paths. Each one can have a di↵erent amount of
attenuation, delay, and fading type. The combination of these di↵erent paths
is termed multipath fading. At the receiver, the signals can add constructively
or destructively, depending upon their path. The movement of the receiver or
the transmitter, as is usual with the mobiles in cellular networks, is causing
random and rapid fluctuations in the received amplitude. We use the term
fast fading for this kind of fast changes in the channel impulse response. If
there is a large number of uncorrelated scatterers and no line of sight, as is
usually the case in heavily built-up urban areas, the in-phase and quadrature
components of the received signal with small-scale fading can be assumed to
follow independent zero-mean Gaussian distributions, also called Rayleigh
fading.

hRayleigh ⇠ CN (0,�2).

Delay Spread

The delay spread is a measure of the multipath richness of a communication
channel. It can be interpreted as the di↵erence between the time of arrival
of the earliest significant multipath component and the time of arrival of the
latest multipath component. Delay spread can be defined as shown in the
relationship below.

Tmax(t) = max
i,j

|⌧i(t)� ⌧j(t)|,
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where ⌧i and ⌧j represent the time that is needed for the longest and the
shortest path to reach the receiver.

The importance of delay spread is how it a↵ects the Inter Symbol Inter-
ference (ISI). If the symbol duration is long enough compared to the delay
spread (typically 10 times as big would be good enough), one can expect an
equivalent ISI-free channel. The correspondence with the frequency domain
is the notion of coherence bandwidth, which is the bandwidth over which the
channel can be assumed flat. Coherence bandwidth is related to the inverse
of the delay spread. The shorter the delay spread, the larger coherence
bandwidth [6].

Flat Fading and Frequency Selective Fading Channels

As we said before, we define as coherence bandwidth (Bc) the bandwidth
over which the channel can be assumed approximately constant. If Bc
is greater than the signal bandwidth, then the measure of the frequency
response of the channel is flat and at the output of the channel a↵ects only
the amplitude and the phase without introducing ISI, this type of fading is
called flat fading. If Bc is less than the signal bandwidth, then the measure
of the channel’s frequency response is not flat, in general, and the channel
introduces ISI, this type of fading is called frequency selective fading. So the
statistical model that describes the flat fading channels is

hm ⇠ CN (0,�2).

In frequency selective fading, as we said due to large delay spread the
channel introduce ISI, where in the received signal interfere signals of previous
transmitted symbols. So, if the coe�cients that interfere in the channel is l,
the channel is modeled as the sequence of l gaussian random variables with
di↵er in variance [6],

hm,l ⇠ CN (0,�2

l ).

2.2 Multiple-input Multiple-output Antenna Sys-
tem

There is a number of di↵erent antenna systems configurations that can be
used in wireless communication. These are termed SISO, SIMO, MISO and
MIMO. These di↵erent formats o↵er di↵erent advantages and disadvantages,
which can be balanced to provide the optimum solution for any given appli-
cation. The di↵erent MIMO formats require di↵erent number of antennas
as well as having di↵erent levels of complexity. Also dependent upon the
format, processing may be needed at one end of the link or the other [6], [7].

2.2.1 Single-input Single-output (SISO)

The simplest form of radio link can be defined in MIMO terms as SISO -
Single-Input Single-Output. This is e↵ectively a standard radio channel in
which the transmitter operates with one antenna as does the receiver. There
is no diversity and no additional processing required. The advantage of a
SISO system is its simplicity. It requires no processing in terms of the various
forms of diversity that may be used, however in digital communications
systems, such as wireless internet, it can cause a reduction in data speed and
an increase in the number of errors. Interference and fading will impact the
system more than a MIMO system which is using some form of diversity,
and the channel bandwidth is limited by Shannon’s law. The throughput
depends upon the channel bandwidth and the signal to noise ratio.
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Figure 2.3: Single input Multiple output.

The input-output relationship in such a system is given by:

Y = hX + n,

where X represents the transmitted symbol, Y the received signal, h the
channel between the transmitter and receiver, n ⇠ CN (0,�2

noise) the additive
noise.

2.2.2 Single-input Multiple-output (SIMO)

Figure 2.4: Single input Multiple output.

The SIMO occurs where the transmitter has a single antenna and the
receiver has multiple antennas. This is also known as receive diversity. It is
often used to enable the receiver system to combat the e↵ects of fading. It
has been used for many years with short wave listening/receiving stations to
combat the e↵ects of deep fading and interference. SIMO has the advantage
that it is relatively easy to implement although it does have some disadvan-
tages in that the processing is required in the receiver. The use of SIMO may
be quite acceptable in many applications, but where the receiver is located
in a mobile device such as a cellphone handset, the levels of processing may
be limited by size, cost and battery drain.

The input-output relationship in a system like in Figure 2.4 is given by:

Y = HX + N,
2

6664

Y
1

Y
2

...
YK

3

7775
=

2

6664

h
1

h
2

...
hK

3

7775
X +

2

6664

n
1

n
2

...
nK

3

7775
,

where N ⇠ CN (0,�2

nIK).

Two kinds of processing at the receiver are:
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• Switched diversity SIMO: Looks for the best signal among all the
signals received from di↵erent antennas at the receiving end and switches
to that antenna. This option is clearly not the optimal solution as
(K � 1) elements of the array are ignored.

• Maximum ratio combining SIMO: Combining all the signals in a
co-phased manner, with such weights for each signal level as to have the
highest achievable SNR at the receiver at all times. MRC is optimal
in terms of SNR and it is commonly used because of its simplicity
and e↵ectiveness. This is achieved by filtering the received signals

(vector Y = [Y
1

Y
2

· · · YM ]T ) with the matched filter :
ˆh

||ˆh||
, where

ĥ = [ĥ
1

ĥ
2

· · · ĥM ]T is the channel estimation vector. Thus, we have
the following input-output relationship:

X̂ =
ĥ

||ĥ||
Y.

Figure 2.5: Matched Filtering.

2.2.3 Multiple-input Single-output (MISO)

MISO is another antenna technology for wireless communications in which
multiple antennas are used at the source (transmitter) and only one antenna
is used at the destination (receiver). The advantage of using MISO is that
the multiple antennas and the redundancy coding/processing is moved from
the receiver to the transmitter. In instances such as cellphones, this can
be a significant advantage in terms of space for the antennas and reducing
the level of processing required in the receiver for the redundancy coding.
This has a positive impact on size, cost and battery life as the lower level of
processing requires less battery consumption.

The received signal raised by the relation:

Y = HX + n

Y = h
1

X
1

+ h
2

X
2

+ . . .+ hMXM + n

whereH = [h
1

h
2

· · · hM ] ,X = [X
1

X
2

· · · XM ]T and n ⇠ CN (0,�2

noise).
An e↵ective technique used by MISO systems is the transmit beamforming,

where the transmitter adds information in transmitted signal in order to
avoid the processing in the receiver. This requires the knowledge of the

channel, so the transmitter instead of X, will send X :=
ˆh

||ˆh||
X.
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Figure 2.6: Multiple input Single output.

2.2.4 Multiple-input Multiple-output (MIMO)

When there are more than one antenna at both ends of the radio link, this
is termed MIMO - Multiple-Input Multiple-Output. The use of two or more
antennas, along with the transmission of multiple signals at the source and
the destination, eliminates the trouble caused by multipath wave propagation,
and can even take advantage of this e↵ect. MIMO can be used to provide
improvements in both channel robustness as well as channel throughput. In
order to be able to fully benefit from MIMO, it is necessary to be able to
utilise coding on the channels to separate the data from the di↵erent paths.
This requires processing, but provides additional channel robustness/data
throughput.

Figure 2.7: Multiple input Multiple output.

The system is described by the input-output relationship:
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2.3 Cellular Systems

Cellular systems constitute networks which serve a large number of mobile
users interested in communicating with a common wireline network infras-
tructure. This form of wireless communication is di↵erent from radio or TV
in two important respects: first, users are interested in messages specific to
them as opposed to the common message that is broadcast in radio and TV.
Second, there is two-way communication between the users and the network.
In particular, this allows feedback from the receiver to the transmitter, which
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(a) half duplex

(b) full duplex

Figure 2.8: Half and full duplex.

is missing in radio and TV. This form of communication is also di↵erent from
the all-wireless walkie-talkie communication since an access to a wireline
network infrastructure is demanded.

A cellular network consists of a number of fixed base stations, one for each
cell. The total coverage area is divided into cells and a mobile communicates
with the base station close to it (or in some systems with the base station
which provides “stronger” channel). At the physical and medium access
layers, there are two main issues in cellular communication: multiple access
and interference management. The first issue addresses how the overall
resources (time, frequency and space) of the system are shared by the users
in the same cell (intra-cell) and the second issue addresses the interference
caused by simultaneous signal transmissions in di↵erent cells (inter-cell).
At the network layer, an important issue is that of seamless connectivity
to the mobile as it moves from one cell to the other (and thus switching
communication from one base station to the other) [5].

In addition to resource sharing between di↵erent users, there is also an
issue of how the resources are allocated between the uplink (the commu-
nication from the mobile users to the base station, also called the reverse
link) and the downlink (the communication from the base station to the
mobile users, also called the forward link). There are two natural strategies
for separating resources between the uplink and the downlink: time division
duplex (TDD) separates the transmissions in time and frequency division
duplex (FDD) achieves the separation in frequency [5].

Duplexing

Duplexing is a process of achieving two-way communication over a com-
munication channel. It takes two forms: half duplex and full duplex.

In half duplex, the two communicating parties take turns transmitting
over a shared channel. Two-way radios work this way. As one party talks,
the other listens (Figure 2.8(a)). Speaking parties often say “Over” to
indicate that they are finished and it is time for the other party to speak.
In networking, a single cable is shared as the two computers communicating
take turns sending and receiving data.

Full duplex refers to simultaneous two-way communication. The two
communicating stations can send and receive at the same time (Figure
2.8(b)). Landline telephones and cell phones work this way. Some forms of
networking permit simultaneous transmit and receive operations to occur.
This is the more desirable form of duplexing, but it is more complex and
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expensive than half duplexing. There are two basic forms of full duplexing:
frequency division duplex (FDD) and time division duplex (TDD) [8].

Frequency division duplex

FDD in wireless systems needs two separate frequency bands or channels
(Figure 2.9). A su�cient amount of guard band separates the two bands so
the transmitter and receiver do not interfere with one another. Good filtering
or duplexers and possibly shielding are a must to ensure the transmitter does
not desensitize the adjacent receiver. The greater the spectrum separation,
the more e↵ective the filters.

Although the FDD is very widely used in cellular telephone systems, such
as the widely used GSM system, it has some serious disadvantages. First
of all, FDD uses lots of frequency spectrum, at least twice the spectrum
needed by TDD. In addition, there must be adequate spectrum separation
between the transmit and receive channels. These so-called guard bands
are not useable, so they are wasteful. Given the scarcity and expense of
spectrum, that is a big negative factor of FDD.

Another disadvantage with FDD is the di�culty of using special antenna
techniques like MIMO and beamforming, and as we will see later these
technologies are a core part of the next generation cellular systems to increase
data rates. It is di�cult to make antenna bandwidths broad enough to cover
both sets of spectrum. More complex dynamic tuning circuitry is required.

Figure 2.9: The required spectrum of FDD for the uplink and downlink
channels.

Time Division Duplex

TDD uses a single frequency band for both transmit and receive. Then it
shares that band by assigning alternating time slots to transmit and receive
operations (Figure 2.10). The information to be transmitted—whether it is
voice, video, or computer data—is in serial binary format. Each time slot
may be 1 byte long or could be a frame of multiple bytes.

Because of the high-speed nature of the data, the communicating parties
cannot tell that the transmissions are intermittent. The transmissions are
concurrent rather than simultaneous.

In some TDD systems, the alternating time slots are of the same duration
or have equal DL and UL times. However, the system does not have to be
50/50 symmetric. The system can be asymmetric as required. For instance,
in Internet access, download times are usually much longer than upload times
so more or fewer frame time slots are assigned as needed. Some TDD formats
o↵er dynamic bandwidth allocation where time-slot numbers or durations
are changed on the fly as required.

The real advantage of TDD is that it only needs a single channel of fre-
quency spectrum. Furthermore, no spectrum-wasteful guard bands or channel
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Figure 2.10: Time slots of TDD.

separations are needed. The downside is that successful implementation of
TDD needs a very precise timing and synchronization system at both the
transmitter and receiver to make sure time slots do not overlap or otherwise
interfere with one another.



Chapter 3

Massive MIMO for Next
Generation Wireless Systems

Multiple-input multiple-output (MIMO) technology has been widely stud-
ied during the last two decades and has been applied to many wireless
standards, since it can significantly improve the capacity and reliability of
wireless systems, but it has yet to be adopted on a scale commensurate with
its true potential. The reason behind this is that telecommunication compa-
nies had preferred cheaper alternatives to increase throughput, but the needs
of the time, which require rapid rise in data transfer, have necessarily led to
more expensive and technologically sophisticated solutions. In this chapter,
we discuss the Massive MIMO system which is a game-changing technology
with regard to theory, systems, and implementation. The potential of this
technology is enormous and is promising to be the answer to the todays needs
in wireless communication.

3.1 MU-MIMO

Conventional MIMO systems, known as point-to-point MIMO, require both
the transmitter and the receiver of a communication link to be equipped with
multiple antennas. There are various reasons to why this technology does
not really catch on the todays needs of wireless communication.

According to Thomas Marzetta, the problem of point-to-point MIMO
system is that it is not really scalable, because, as the number of antennas
increases, the sum throughput does not really increase significantly and the
actual MIMO performance falls further behind the theoretical gains. In
practice, as the number of antennas increases, the system is not really doing
multiplexing and just does not get the maximum number of transmit receiver
multiplexing gains. Marzetta also says that in cellular systems, it is critically
important to provide uniformly good service throughout cells and the point-
to-point system does not meet this, because multiplexing gains may disappear
near the edges of the cell, where signal levels are low relative to interference
or in a propagation environment which is dominated by scattering.

Furthermore, while MIMO has become an essential element of wireless
communication, many wireless devices cannot support multiple antennas due
to size, cost, and/or hardware limitations. More importantly, the separation
between antennas on a mobile device and even on fixed radio platforms is
often insu�cient to allow meaningful performance gains.

So, in recent years, the scientific community has turned its attention to
the so called Multi-User MIMO (MU-MIMO) system. As we see in Figure
3.1, in MU-MIMO we split one user with multiple antennas into K users
each with a single antenna. So, typically, in MU-MIMO a base station (BS)
with multiple antennas simultaneously serves a set of single-antenna users

20
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Figure 3.1: From point to point to MU-MIMO.

and the multiplexing gain can be shared by all users. In this way, expensive
equipment is only needed on the BS end of the link, and the user terminals
can be relatively cheap single-antenna devices.

Thomas Marzetta in his presentation of Massive MIMO and Beyond,
which presented in Munich’s workshop on massive MIMO in 2015, argues that
the most remarkable things of MU-MIMO is that by the splitting up the multi-
antenna user into autonomous single-antenna users does not decrease the sum-
throughput. He also said that, due to multi-user diversity, the performance of
MU-MIMO systems is generally less sensitive to the propagation environment
than in the point-to-point MIMO case. For example, under line-of-sight
propagation conditions, multiplexing gains can disappear for a point-to-point
system, but are retained in the multi-user system, provided the angular
separation of the terminals exceeds the Rayleigh resolution of the array.

However, even if the theory of multi-user MIMO was promising by a
number of researchers, as originally envisioned with roughly equal numbers of
service-antennas and terminals and frequency division duplex operation, is not
a scalable technology. Especially because there is no way to get economically
the requirement of the channel state information (CSI) at both ends, as the
number of antennas grows. In contrast with the point-to-point MIMO, which
only needs CSI at the receiver, in MU-MIMO apart from the need of CSI at
the receiver we also need CSI at the transmitter.

3.2 Massive MIMO

Figure 3.2: Single-Cell Massive MIMO.

For most MIMO implementations, the BS typically employs only a few
(i.e., fewer than 10) antennas, and the corresponding improvement in spectral
e�ciency, while important, is still relatively modest. In an e↵ort to achieve
more dramatic gains and to reap all the benefits of conventional MIMO on
a much greater scale as well as to simplify the required signal processing,
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“Massive MIMO” systems are currently investigated as a novel cellular network
architecture. Where in Massive MIMO operation each BS is equipped with
a large number of antennas, 100 or more, which simultaneously serve many
tens of terminals in the same time-frequency slot. There are many di↵erent
configurations and deployment scenarios for the placing of the antenna arrays
used by a massive MIMO system, such as linear arrays, cylindrical arrays,
distributed antennas in di↵erent buildings and more [9]. Each antenna unit
would be small and active, with antenna spacing greater than the half of the
signal wavelength so the signals to be uncorrelated. The principal findings
of recent researches have shown that the addition of more base station
antennas is always beneficial and overall massive MIMO is an enabler for
the development of future broadband networks which will be energy-e�cient,
secure, robust, and will use the spectrum e�ciently.

3.2.1 Massive MIMO benefits

Here, we mention some of the key advantages of massive MIMO systems.

Energy E�ciency

An important advantage of massive MIMO lies in its potential energy
e�ciency. The fundamental principle that makes the dramatic increase in
energy e�ciency possible is that with large number of antennas, energy
can be focused with extreme sharpness into small regions in space [9]. The
underlying physics is coherent superposition of wavefronts. By appropriately
shaping the signals sent out by the antennas, the base station can make sure
that all wavefronts collectively emitted by all antennas add up constructively
at the locations of the intended terminals, but destructively (randomly)
almost everywhere else.

On the uplink, reducing the transmit power of the terminals will drain
their batteries slower and it is shown in [10] that each single-antenna user
can scale down its transmit power proportional to the number of antennas
at the BS with perfect channel state information (CSI) or to the square
root of the number of BS antennas with imperfect CSI (in realistic scenarios
where CSI is estimated from uplink pilots), to get the same performance as a
corresponding single-input single-output system.

On the downlink, the drastically improved energy e�ciency enables the
massive MIMO systems to operate with a total output radio frequency power
two orders of magnitude less than with current technology. Much of the
electrical power consumed by a BS is spent by power amplifiers and associated
circuits and cooling systems. Hence reducing the emitted radio frequency
power would help in cutting the electricity consumption of the BS. This
matters, because the energy consumption of cellular base stations is a growing
concern worldwide. In addition, base stations that consume many orders of
magnitude less power could be powered by wind or solar, and hence easily
deployed where no electricity grid is available. As a bonus, the total emitted
power can be dramatically cut and therefore the base station will generate
substantially less electromagnetic interference. This is important owing to
the increased concerns of electromagnetic exposure [9].

Spectral E�ciency

The energy-e�ciency of a system is defined as the spectral-e�ciency divided
by the transmit power expended. Typically, increasing the spectral e�ciency
is associated with increasing the power and, hence, with decreasing the energy-
e�ciency. Therefore, there is a fundamental tradeo↵ between the energy
e�ciency and the spectral e�ciency. However, in [9], [10], the study of this
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tradeo↵ in massive MIMO multi-cellular system shows that for imperfect CSI
in the low transmit power regime can simultaneously increase the spectral-
e�ciency and energy-e�ciency. The reason that the overall spectral e�ciency
is higher than in conventional MIMO is that many tens of terminals are served
simultaneously, in the same time-frequency slot. In the first three generations
of cellular technology, the BS served multiple terminals by separating them
in time, frequency or code. Each terminal was assigned a unique fraction
of spectrum resources for communication over the forward and reverse-
links, to minimize intra-cell interference. A massive system opens up the
spatial dimension that allows it to discriminate the signals to/from each
terminal based on its location. This enables each terminal to use all available
spectrum resources, improving the throughput without the need for additional
(expensive) resources.

Simple Signal Processing

By increasing the number of BS antennas relative to the number of users
(relative to MU-MIMO) one could think that the signal processing problem
could be even more di�cult but in fact the opposite happens. In massive
MIMO, users do not need CSI and no duty of dirty paper coding. In fact, the
terminals do not have to do any signal processing at all, signal processing only
needed at the base stations. This in itself is very important as it considerably
reduces the construction requirements of phones. But there are more benefits
about signal processing in massive MIMO.

In [9], it is shown that, in large-scale MIMO, very high spectral e�ciency
can be obtained even with simple maximum-ratio combining processing at
the same time as the transmit power can be cut back by orders of magnitude
and this holds true even with imperfect CSI. The attractiveness of MRC
compared with ZF is not only its computational simplicity-multiplication of
the received signals by the conjugate channel responses, but also that it can
be performed in a distributed fashion, independently at each antenna unit.
While ZF also works fairly well for a conventional or moderately-sized MIMO
system, MRC generally does not. The reason for why MRC works so well
for massive MIMO is that the channel responses associated with di↵erent
terminals tend to be nearly orthogonal when the number of base station
antennas is large, and in the limit of an infinite number of antennas (scenario
we adopt later in our system for the simulations), the e↵ects of fast fading
and uncorrelated noise vanish [3].

Massive MIMO also enables a significant reduction of latency on the
air interface. It relies on the law of large numbers and beamforming in
order to avoid fading dips, which are due to multi-path fading and limit
the performance of wireless communications systems makes it hard to build
low-latency wireless links [9].

Low cost components in Base Stations

Another advantage of massive MIMO is that BS can be built with inex-
pensive, low-power components. Unlike the conventional systems which use
ultra-linear amplifiers, massive MIMO BS can be equipped with hundreds
of low-cost amplifiers with output power in the milli-Watt range. The con-
trast to classical array designs, which use few antennas fed from high-power
amplifiers, is significant. Also, several expensive and bulky items, such as
large coaxial cables, can be eliminated altogether. Massive MIMO reduces
the constraints on accuracy and linearity of each individual amplifier and
radio frequency chain. All what matters is their combined action. In a way,
massive MIMO relies on the law of large numbers to make sure that noise,
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fading and hardware imperfections average out when signals from a large
number of antennas are combined in the air together. The same property
that makes massive MIMO resilient against fading also makes the technology
extremely robust to failure of one or a few of the antenna units [9].

3.2.2 Limiting Factors of Massive MIMO

In massive MIMO operation there are some factors that are limiting the
performance, which need to be addressed in order to achieve system’s true
potentials.

Channel Reciprocity

For reasons we will explain below (section 4.1.3), massive MIMO is more
e�cient with TDD operation. The TDD operation relies on reciprocity of
the channel in the uplink and downlink and there appears to be a reasonable
consensus that the propagation channel itself is essentially reciprocal, unless
the propagation is a↵ected by materials with strange magnetic properties.
However, the hardware chains in the base station and terminal transceivers
may not be reciprocal between the uplink and the downlink. Calibration of
the hardware chains does not seem to constitute a serious problem and there
are calibration-based solutions that have already been tested to some extent
in practice. Specifically, [11] treats reciprocity calibration for a 64-antenna
system in some detail and claims a successful experimental implementation.

Pilot Contamination

Ideally, every terminal in a Massive MIMO system is assigned an orthogonal
pilot sequence. However, the maximum number of orthogonal pilot sequences
that can exist is upper-bounded by the duration of the coherence time.
Coherence time is the time interval in which the channel can be assumed
constant and depends on the mobility of the terminals. This time-interval
is divided between reverse-link pilots and transmitting data, either on the
forward link or the reverse link or both. So, if the coherence time su�ces
for sending about ⌧ symbols, the number of terminals that can be served
by a base station is proportional to the symbols that BS will use for pilots.
Therefore, the number of terminals that can be served in each cell is limited
by the coherence time of the channel and independent of the size of the cell
and the number of BS antennas.

It is critical for the system performance to eliminate interference from
terminals within the same cell. Thus, in order to serve the maximum number
of terminals in each cell and to eliminate intra-cell interference, we exhaust
all the available pilot sequences in all of the users in every single cell.

In a multi-cellular scenario the same band of frequencies and the same
orthogonal pilot sequences are re-used among the cells. In the course of
learning the channels of its own terminals, a base station inadvertently learns
the channel of terminals in other cells who share the same pilot sequences, or
whose pilot sequences are merely correlated with the pilot sequences of its
own terminals. Thus, while BS is transmitting data to its own terminals, it
also selectively transmits data to terminals in other cells. Similarly, when
the base station combines its reverse-link signals to receive the individual
data transmissions of its terminals, it is also coherently combining signals
from terminals in other cells. The resulting inter-cellular interference persists
even with an infinite number of antennas. This e↵ect is known as pilot
contamination and it is a fundamental problem which adversely a↵ects the
performance of the system.
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Pilot contamination as a basic phenomenon is not really specific to
massive MIMO, but its e↵ect on massive MIMO appears to be much more
profound than in classical MIMO. As we will see in our analysis below, in
which we study a scenario where a noncooperative cellular wireless network
with unlimited numbers of Base station antennas with receivers that rely on
pilot-based channel estimation, pilot contamination constitutes an ultimate
limit on performance. Due to the significance of the pilot contamination
problem in massive MIMO, a large part of researchers interested in wireless
communications have turned their attention to finding ways to combat it.
We will analyze two promising ideas below and we will see the results of their
application in the simulations below.



Chapter 4

Noncooperative Cellular
Wireless with Unlimited
Numbers of Base Station
Antennas

In this chapter, we present the system and the analysis of [3], which
constitutes the state of the art in which references are made by the largest
amount of researches relevant to massive MIMO. We study an integrated
massive MIMO multicellular system to see how it operates and we perform
simulations to find the limits of its capacity and how this is a↵ected by pilot
contamination. Then, we present the idea of frequency re-use in the cellular
systems and we simulate to see how good it works against pilot contamination
and how much improves the capacity of the system.

Figure 4.1: Cellular Systems.

4.1 Scenario

We consider a cellular system consisting of noncooperative hexagonal cells
with frequency re-use of one, three, or seven, TDD operation, Orthogonal
Frequency Division Multiplexing (OFDM), and base station arrays comprising
M antennas where M ! 1, where each base station serves K single-antenna
terminals. We will describe all these analytically.

26
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(a) Isotropic radiation (b) Omnidiractional radiation

Figure 4.2: Radiation of Isotropic and Omnidiractional antennas.

4.1.1 Hexagonal cells

We consider a circular area filled of cells, in which each cell is hexagonal
with a radius from center to vertex of rc. The propagation models represent
a cell as a circular area but approximate cell coverage with a hexagon allows
easier analysis because hexagons can fill an area without gaps and overlaps.
In the center of the cells are positioned the base stations which consist of an
array of M omnidirectional antennas, where in the subsequent analysis M
grows without limit. Omnidirectional antennas oriented vertically are widely
used for nondirectional antennas on the surface of the Earth because they
radiate equally in all horizontal directions, while the power radiated drops
o↵ with elevation angle so little radio energy is aimed into the sky or down
toward the earth and wasted. As we see in Figure 4.2, the omnidirectional
radiation pattern is di↵erent from isotropic antennas, as an isotropic one
radiates equal power in all directions and has a ”spherical” radiation pattern.
Within each cell there are K single-antenna terminals, uniformly distributed
over the cell with the exclusion of a central disk of radius rh where supposedly
is placed the base station.

4.1.2 OFDM

We assume that OFDM is utilized. OFDM has become the dominant
signaling format for high-speed wireless communication, forming the basis
of all current WiFi standards and of LTE, and due to its qualities OFDM
constitutes a promising method for next generation cellular wireless systems.

Some of the advantages of OFDM are that first it constitutes a natural way
to cope with frequency selectivity. Second it has a computationally e�cient
implementation due to low complexity of FFT/IFFT transforms which are
needed at the transmitting and receiving process. Also, the OFDM constitutes
an excellent pair with MIMO, since OFDM allows for the spatial interference
from multi-antenna transmission to be dealt with at a subcarrier level, without
the added complication of inter-symbol interference. From a multiple access
point, OFDM invites dynamic fine-grained resource allocation schemes in the
digital domain. OFDMA (Orthogonal Frequency-Division Multiple Access)
is a multi-user version of OFDM, which o↵ers orthogonal multiple access
by assigning subsets of subcarriers to individual users. Being able to do
frequency and time slot allocation digitally also enables more adaptive and
sophisticated interference management techniques such as fractional frequency
reuse. Finally, given its near-universal adoption, industry has by now a great
deal of experience with its implementation, and tricky aspects of OFDM,
such as frequency o↵set correction and synchronization have been essentially
conquered [2].
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Figure 4.3: Subcarriers of OFDM.

For our analysis, we denote the OFDM symbol interval by Ts, the sub-
carrier spacing by �f , the useful symbol duration by Tu = 1

�f
, and the

guard interval (duration of the cyclic prefix) by Tg = Ts � Tu. We call the
reciprocal of the guard interval, when measured in subcarrier spacings, the
“frequency smoothness interval”,

NSmooth =
1

Tg�f
. (4.1)

4.1.3 Duplexing

For regular MIMO systems, multi-user precoding in the downlink and
detection in the uplink require Channel State Information at the BS. The re-
sources, time or frequency, required for channel estimation in a MIMO system
are proportional to the number of the transmit antennas and independent of
the number of the receive antennas.

If FDD is used, uplink and downlink use di↵erent frequency bands, the CSI
corresponding to the uplink and downlink is di↵erent. Channel estimation for
the uplink is done at the BS by letting all users send di↵erent pilot sequences.
The time required for uplink pilot transmission is independent of the number
of antennas at the BS. However, to get CSI for the downlink channel in
FDD systems, a two-stage procedure is required. The BS first transmits
pilot symbols to all users, and then all users feed back estimated CSI for the
downlink channels to the BS. The time required to transmit the downlink pilot
symbols is proportional to the number of antennas at the BS. As the number
of BS antennas grows large, the traditional downlink channel estimation
strategy for FDD systems becomes infeasible. For example, consider a 1 ms
x 100 kHz channel coherence interval, which can support transmission of
100 complex symbols. When there are 100 antennas at the BS, the whole
coherence interval will be used for downlink training if orthogonal pilot
waveforms are used for channels to each antenna, while there is no symbol
left for data transmission [12].

Figure 4.4: A typical protocol of Time Division Dupplex time slots.
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Fortunately, the channel estimation strategy in TDD systems can be
utilized to solve the problem, because, based on the assumption of channel
reciprocity, only CSI for the uplink needs to be estimated in BSs, and the total
training time is proportional only to the number of users and independent of
the number of antennas. A typical TDD protocol [13] is shown in Figure 4.4.
The part of “pilots” is the most important where the users transmit uplink
orthogonal pilots and the BS learns the uplink channels and by reciprocity
the downlink channels. Each BS uses this information to demultiplex the
uplink data and multiplex the downlink data. According to this protocol,
all the users in all the cells first synchronously send uplink data signals to
their base station. Next, the users send pilot sequences, BSs use these pilot
sequences to estimate CSI to the users located in their cells. Then, BSs use
the estimated CSI to detect the uplink data and to generate beamforming
vectors for downlink data transmission. Each part in Fig. 4.4 has di↵erent
duration, depending on the needs of the system.

Thus, is easy after the above analysis for someone to understand why the
TDD dominates at massive MIMO systems.

Figure 4.5: The propagation coe�cient between k-th terminal in the `-th cell,
and the m-th base station antenna of the j -th cell, in the n-th subcarrier, is
denoted by gnmjk`.

4.1.4 Propagation

Because of pilot contamination, there is a complex channel coe�cient
between each BS antenna in each cell and each terminal in every cell which
belongs in the group of same frequency reuse. Using TDD operation, the
propagation is the same for either a downlink or an uplink transmission.

As we assume that OFDM is used, we consider a flat-fading channel
model for each OFDM subcarrier. As shown in Figure 4.5, we denote the
complex propagation coe�cient between the m-th base station antenna in
the j -th cell, and the k -th terminal in the `-th cell in the n-th subcarrier
by gnmjk l which, in turn, is equal to a complex fast fading factor times an
amplitude factor that accounts for geometric attenuation and shadow fading,
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gnmjk` = hnmjk` · �
1
2
jk`, (4.2)

with n = 1, . . . , NFFT ,
m = 1, . . . ,M,
j = 1, . . . , L,
k = 1, . . . ,K,
` = 1, . . . , L,

where NFFT is the number of subcarriers, M is the number of base station
antennas in each cell, L is the number of active cells (i.e., re-using the same
band of frequencies), and K is the number of terminals in each cell. The fast
fading coe�cients, hnmjk` ⇠ CN (0, 1), are assumed to be a complex normal
random variables with zero-mean and unit-variance. With respect to the
frequency index, n, the fast fading is assumed to be piecewise-constant over
NSmooth successive subcarriers, where NSmooth is the frequency smoothness
interval (4.1). Only one pilot symbol per smoothness interval is required.
The second factor in (4.2) is assumed constant with respect to both frequency
and with respect to the index of the base station antenna since the geometric
and shadow fading change slowly over space, and it factors as follows:

�jk` =
zjk`
r�jk`

. (4.3)

Here, rjk` is the distance between the k -th terminal in the `-th cell and
the base station in the j -th cell, � is the decay exponent, and zjk` is a
log-normal random variable, i.e., the quantity 10 log

10

(zjk`) is distributed
zero-mean Gaussian with standard deviation �shad. The shadow fading
zjk` is statistically independent over all three indices. The ranges rjk` are
statistically independent over k and `, but statistically dependent over j ,
because the only randomness that a↵ects rj1k` and rj2k` is the position of
the k -th terminal in the `-th cell.

Throughout we assume that both the terminals and the base station are
ignorant of the propagation coe�cients.

4.2 Reverse-Link Pilots

As we mentioned before, CSI plays a key role in the above MIMO system,
as the knowledge of the channel is required in the base station either for
the forward-link data transmission or the reverse-link data transmission. In
channel estimation phase, terminals transmit a known sequence of symbols
(pilots) and the base station evaluates the e↵ect of the channel on these
symbols. Our analysis assumes that exactly the same set of pilot sequences
is used in all active cells, and that each cell serves the maximum possible
number of terminals. We assume that a total of ⌧ OFDM symbols are pilots
and the remainder of the coherence interval is used for transmitting data.

4.2.1 Maximum number of terminals

We note again that the number of terminals that can be served in each
cell is limited by the coherence time of the channel and independent of the
size of the cell and the number of BS antennas. So if the channel response
changed arbitrarily fast with frequency, then, over ⌧ OFDM symbols, the
base station could only learn the channel for ⌧ terminals in its cell. In general,
the channel response is constant over Nsmooth consecutive subcarriers and the
base station can learn the channel for a total of Kmax = ⌧NSmooth terminals.
This number has a simple interpretation in the time domain. The guard
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interval Tg is chosen to be greater than the largest possible delay-spread, Td

(we assume that Td = Tg). Then, according to (4.1), the maximum number
of terminals is

KMAX = ⌧NSmooth

=
⌧

Td�f
=

(⌧Ts)Tu

TdTs
=

✓
Tpilot

Td

◆✓
Tu

Ts

◆
, (4.4)

where Tpilot = ⌧Ts is the time spent on sending reverse pilots. Training
could be accomplished directly in the time-domain (i.e., without OFDM) by
transmitting impulses from a succession of di↵erent terminals spaced by the
delay-spread. The factor Tu

Ts
reflects the ine�ciency of OFDM due to the

cyclic prefix. Another interpretation for the frequency smoothness interval is
that the quantity NSmooth�f is the Nyquist sampling interval in frequency
for the time-limited channel impulse response.

The simplest way to send reverse-link pilots would be to assign each
terminal one unique time-frequency index for its pilot (e.g., one subcarrier
within each smoothness interval and within one OFDM symbol).

4.2.2 Pilot Contamination

We assume that the number of cells that are using the same band of
frequencies is L and, as we said, the total number of terminals is the same
for each cell. Furthermore, we assume synchronized transmissions and re-
ception (synchronized transmission constitutes a worse-case scenario from
the standpoint of pilot contamination). So, when the `-th cell estimates the
channel of its k-th terminal by its pilot sequence, it also decodes the signals
of L terminals from the other cells which are using the same pilot sequence.
This results in the base station to obtain a channel estimate for its k-th
terminal that is contaminated by a linear combination of channels to the
other terminals (in other cells) that share the same pilot sequence.

Let Ĝjj denote the estimate for the M ⇥K propagation matrix between
the M base station antennas of the j-th cell, and the K terminals in the
j-th cell; for notational simplicity we suppress the dependence of Ĝjj in the
sub-carrier index:

Ĝjj =
p
⇢p

LX

n=1

Gj` + Vj , (4.5)

where Gj` is the M ⇥K propagation matrix between the K terminals in the
`-th cell and the M base station antennas in the j-th cell,

[Gj`] = gnmjk`,m = 1, . . . ,M, k = 1, . . . ,K. (4.6)

Vj is M ⇥ K matrix of receiver noise whose components are zero-mean,
mutually uncorrelated, and uncorrelated with the propagation matrices, and
⇢p is a measure of pilot signal- to-noise ratio. We need not quantify ⇢p
because, as M grows without limit, the e↵ects of the noise vanish.

4.3 Frequency-reuse Factor

In an e↵ort to mitigate interference, it was proposed the separation of the
available spectrum in di↵erent parts of frequencies, which each part being
used by di↵erent clusters of cells. This method is known as frequency reuse.
Thus the number of cells that interfere is reduced to L/afactor but the same
applies to the available spectrum of each terminal, B/afactor. By using a
frequency reuse factor of afactor = 3 and afactor = 7, clustering of cells are
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(a) a
factor

= 3 (b) a
factor

= 7

Figure 4.6: Frequency reuse models.

formed like in Figure 4.6. The advantage of these formations is that the cells
of a cluster are not adjacent, the distances between them are relatively large
and, therefore, in accordance with (4.3), the power of interfering channel
diminishes.

4.4 Reverse-Link Data Transmission

In uplink operation, the K terminals in each cell independently transmit
data streams to their respective base station. The base station uses its
channel estimate to perform maximum-ratio combining and receives the
message from its own K terminals, as shown Figure 4.8. The problem is
that, due to pilot contamination, by using the estimated channel (4.5) each
base station also receives the signals from the terminals in the other cells
(Figure 4.7). So, as analysed in the next subsection, the receiving signal
su↵ers of interference from the terminals in the L� 1 cells which share the
same frequency band.

Figure 4.7: Reverse-Link interference due to pilot contamination for an
unlimited number of base station antennas: transmissions from terminals in
other cells who use the same pilot sequence interfere with the transmission
from k -th terminal in the j-th cell to his own base station.
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4.4.1 Signal Model

The j -th base station receives, within each sub-carrier, and within each
OFDM symbol, a M ⇥ 1 vector comprising transmissions from all of the
terminals in the L cells. Again, we suppress the dependence on the sub-carrier
index,

xj =
p
⇢r

LX

`=1

Gj`a` + wj , (4.7)

where a` is the M⇥1 vector of message-bearing symbols from the terminals of
the `-th cell, wj is a vector of receiver noise whose components are zero-mean,
mutually uncorrelated, and uncorrelated with the propagation matrices, and
⇢r is a measure of signal-to-noise ratio. In the subsequent analysis, we assume
that the message-bearing signals which are transmitted by the terminals are
independent and distributed as zero-mean, unit-variance, complex Gaussian.

Figure 4.8: Reverse-Link operation.

4.4.2 Maximum-ratio combining

The base station processes its received signal by multiplying it by the
conjugate-transpose of the channel estimate which, according to (4.5) and
(4.7), yields

yj = Ĝ†
jjxj

=

2

4p⇢p
LX

`1=1

Gj`1 + Vj

3

5
† 2

4p⇢r
LX

`2=1

Gj`2a`2 + wj

3

5 ,
(4.8)

where the superscript “†” denotes “conjugate transpose”. The components of
yj comprise sums of inner products between M -component random vectors.
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(a) M=100 (b) M=500

(c) M=1000 (d) M=10000

Figure 4.9: Simulations for relation 4.10 as antennas in each base station
grows from 100 to 10000. As we see, as the number of antenna grows the
elements except the diagonal are getting closer to zero.

As M grows without limit, the L
2

-norms of these vectors grow proportional
to M , while the inner products of uncorrelated vectors, by assumption, grow
at a smaller rate. For large M , only the products of identical quantities
remain significant, i.e., the propagation matrices which appear in both of the
bracketed expressions. According to (4.2) and (4.6),

1

M
G†

j`1
Gj`2 = D

1
2

�j`1

 
H†

j`1
Hj`2

M

!
D

1
2

�j`2

, (4.9)

where Hj` is the M ⇥ K matrix of fast fading coe�cients between the K
terminals of the `-th cell, and the M antennas of the j -th base station,
[Hj`]mk = hnmjkl, and D�j`

is a K ⇥ K diagonal matrix whose diagonal

elements comprise the vector [�j`]k = �jk`, k = 1, . . . ,K . As M grows
without bound we have

1

M
H†

j`1
Hj`2 ! IK�`1`2 , (4.10)

where IK is the K ⇥K identity matrix. The substitution of (4.10) and (4.9)
into (4.8) yields

1

M
p
⇢p⇢r

yj !
LX

`=1

D�j`
a` . (4.11)

The k-th component of the processed signal becomes

1

M
p
⇢p⇢r

ykj ! �jkjakj +
X

6̀=j

�jk`ak`. (4.12)

The salutary e↵ect of using an unlimited number of base station antennas
is that the e↵ects of uncorrelated receiver noise and fast fading are eliminated
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completely, and transmissions from terminals within one’s own cell do not
interfere. However transmission from terminals in other cells that use the
same pilot sequence constitute a residual interference. The e↵ective signal-
to-interference ratio (SIR), which is identical for all sub-carriers but which
depends on the indices of the cell and the terminal, is

SIRrk =
�2

jkjP
`6=j �

2

jk`

. (4.13)

The e↵ective signal-to-interference ratio is a random quantity which depends
exclusively on the random positions of the terminals. Because according to
(4.3) the �’s are only depended of distance and shadow fading coe�cients.

Note that the SIR expression (4.13) is independent of the quantities ⇢p
and ⇢r, and therefore it is independent of the transmitted powers. This is
intuitively reasonable: we are operating in a regime where performance is
limited only by inter-cell interference, so if every terminal reduces its power
by the same factor then the limit SIR is unchanged. Hence we conclude that
for an arbitrarily small transmitted energy-per-bit, the SIR (4.13) can be
approached arbitrarily closely by employing a su�cient number of antennas.

A curious thing about the e↵ective SIR is its dependence on the squares of
the �’s. This occurs because the system is operating in a purely interference-
limited rather than a noise-limited regime and because of the particular
processing which is employed. Prior to maximum ratio combining, the
desired signal and the inter-cellular interference are both proportional to the
square-roots of their respective �’s, while the receiver noise has unit-variance.
After maximum-ratio combining, the desired signal and the interference
are both proportional to their respective �’s, while the noise has standard
deviation proportional to the sum of the square-roots of the �’s. If the noise
were the dominant impairment then the SNR would be the ratio of the �2 of
the desired signal to � of the desired signal, or SNR / �. But interference
is the dominant impairment, so the SIR is proportional to a ratio of squares
of �’s.

The SIR (4.13) is constant with respect to frequency because the slow-
fading coe�cients are independent of frequency. The SIR is constant with
respect to the absolute size of the cell, for the following reason. Each of
the �-terms is inversely proportional to a range that is raised to the decay
exponent, � / 1

r� . The replacement of the range by the nondimensional
quantity, r ! r

rc
, does not alter the value of the SIR because the terms

r�c appear in both the numerator and denominator and therefore cancel.
Consequently the throughput per terminal and the number of terminals
which the base station can handle is independent of the cell-size.

4.4.3 Reverse-Link Capacity

Subject to the assumption that the terminals transmit Gaussian message-
bearing symbols, the instantaneous capacity of the terminal within each
subcarrier is equal to the logarithm of one plus the signal-to-interference ratio.
The net throughput per terminal, in units of bits/sec/terminal, accounts for
the total bandwidth and frequency re-use, the pilot overhead (the ratio of
the time spent sending data to the total slot-length), and the overhead of
the cyclic prefix:

Crk =

✓
B

↵

◆✓
Tslot � Tpilot

Tslot

◆✓
Tu

Ts

◆
log

2

(1 + SIRrk), (4.14)

where B is the total bandwidth in Hz, ↵ is the frequency re-use factor (equal
to either one, three, or seven in our subsequent analysis), Tslot is the slot
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length, Tpilot is the time spent transmitting reverse-link pilots, Tu is the
useful symbol duration, and Ts is the OFDM symbol interval, where the
times are measured in seconds.

The net sum throughput per cell, measured in bits/sec/cell, is equal to
the sum of the net throughputs per terminal.

Crsum =
KX

k=1

Crk . (4.15)

Since the number of terminals that can be served is proportional to the time
spent sending pilots, while the instantaneous sum-throughput is proportional
to the number of terminals served, it follows that net sum-throughput is
maximized by spending approximately half of the slot on sending pilots, and
half sending data.

4.5 Forward-Link Data Transmission

Figure 4.10: Forward-Link operation.

The simplest sort of massive MIMO downlink entails conjugate beamform-
ing which works very well and can be very e↵ective. In each cell, the base
station transmits data in its own terminals. It provides each antenna with
QAM symbols which intended for each of the users. So, let a

1

be the QAM
symbol which are intended for terminal T

1

, antenna
1

multiplies the symbol
a
1

by the conjugate of its estimated channel to user one, each of the other
antennas does the same thing. This happens for each terminal, so as shown
in Figure 4.10 the final transmitted signal of each antenna is the sum of the
above process. Thus, we achieve that all of the signals entailing a

1

will arrive
in phase to user one and the amplitude beamforming gain grows with M
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(number of the antennas), and they tend to arrive out of phase at the other
users. Of course, this applies for each user.

The problem is that, as shown in Figure 4.11, the transmission from the
base station in the `-th cell to its k-th terminal su↵ers interference from
transmissions from the base stations in other cells to their own k -th terminals
due to pilot contamination. So the k-th terminal in the `-th cell will also
receive the signals from all the other L� 1 cells which are intended for their
own terminals with the same pilot sequence.

Figure 4.11: Forward-Link interference due to pilot contamination for an
unlimited number of base station antennas: transmissions from base sta-
tions in other cells intended for their own k-th terminal interfere with the
transmission from the base station in the j-th cell to his k-th terminal.

4.5.1 Pre-coding Matrix

The j -th base station transmits aM⇥1 vector, Ĝ⇤
jjaj , where the superscript

“⇤” denotes “complex conjugate”, and aj is the vector of message-bearing
signals which is intended for the K terminals of the j -th cell. In practice a
normalizing factor would be included in order to conform to power constraints.
We merely assume that this normalizing factor is the same for all base
stations. As M grows without limit, the exact value of the normalizing factor
is unimportant.

4.5.2 Signal Model

The K terminals in the `-th cell receive their respective components of a
K ⇥ 1 vector comprising transmissions from all L base stations.

x` =
p
⇢f

LX

n=1

GT
j`Ĝ

⇤
jjaj + w` (4.16)

=
p
⇢f

LX

n=1

GT
j`

"
p
⇢p

LX

n=1

Gj` + Vj

#⇤
aj + w`, (4.17)

where w` is uncorrelated noise,
p
⇢f is a measure of the forward signal-to-

noise ratio, the superscript “T” denotes “unconjugated transpose”, and we
have utilized (4.5).
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We now let the number of base station antennas increase without limit,
and again we utilize (4.9) and (4.10) to conclude that

1

M
p
⇢p⇢f

x` !
LX

j=1

D�j`
aj . (4.18)

The k -th terminal in the `-th cell receives the following:

1

M
p
⇢p⇢f

xk` ! �`k`ak` +
X

j 6=`

�jk`ajk. (4.19)

The e↵ective signal-to-interference ratio is

SIRfk =
�2

`k`P
j 6=` �

2

jk`

. (4.20)

While the forward and the reverse SIRs, (4.20) and (4.13), are described
by similar-looking expressions, they in fact have somewhat di↵erent statistical
characteristics. The numerators have identical statistics. The denominator for
the reverse-link SIR (4.13) is a sum of squares of L�1 slow fading coe�cients
from di↵erent terminals to the same base station. These coe�cients are
statistically independent. The denominator for the forward-link SIR (4.20) is
a sum of squares of L� 1 slow fading coe�cients from di↵erent base stations
to the same terminal. These coe�cients are correlated because motion of the
one terminal a↵ects all of the geometric decay factors.

4.5.3 Forward-link capacity

As in 3.3.3 we translate the forward SIR into the net capacity per terminal
(bits/sec/terminal):

Cfk =

✓
B

↵

◆✓
Tslot � Tpilot

Tslot

◆✓
Tu

Ts

◆
log

2

(1 + SIRfk), (4.21)

and the net capacity per cell (bits/sec/cell):

Cfsum =
KX

k=1

Cfk . (4.22)

4.6 Simulations

As we saw, SIR constitutes the most important factor in the wireless
cellular network that we study, since it determines the throughput of the
system. What interests us most is to see how the performance is influenced
by the di↵erent frequency reuse strategy, considering also the statistical
analysis of the SIR. It is easy to assume that less aggressive frequency
reuse improves the SIR since, as we have said, reduces the number of cells
that interfere and grows the distances between them, but we do not know
how exactly this a↵ects the net capacity per terminal, since the available
bandwidth subdivided by the respective ↵ factor. Our analysis is based on
the calculation of cumulative distribution function (cdf) which helps us to
discover the probability to achieve high values of SIR (greater than a specific
value). We do the same for the net capacity per terminal. To have a more
clear view of the network throughput, we also calculate the mean net capacity
per terminal, and the mean net capacity per cell for frequency-reuses of one,
three and seven.

Our simulation comprises the evaluation of the signal-to-interference
ratios (4.13) and (4.20) for 105 independent trials, which translate directly
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into distributions for SIRs and capacities. We determine the set of cells that
interfere with a particular cell by finding all cells which a) reuse the same
frequency band, and b) are within eight cell-diameters of that cell. We assume
a coherence time of 500 microseconds (which could accommodate TGV -
Train à Grande Vitesse - speeds), of which three symbols are spent sending
reverse pilots, and three symbols are spent sending data, either reverse or
forward. The remaining one symbol is considered to be additional overhead.
The OFDM parameters are identical to LTE (Long- Term Evolution) forward-
link parameters: a symbol interval of Ts = 500/7 ⇡ 71.4 microseconds, a
subcarrier spacing of �f = 15kHz, a useful symbol duration Tu = 1/�f ⇡
66.7 microseconds, and a guard interval Tg = Ts � Tu ⇡ 4.76 microseconds.
The basic parameters are given in table below.

Basic Parameters
Bandwidth B 20MHz
Cell Radius rc 1600
Cell-hole Radius rh 100
Frequency Reuse Factor ↵ 1, 3, 7
Number of Cells L 343, 109, 49
Number of Subcarriers Nsmooth 14
Number of Terminals K 42
Decay Exponent � 3.8
Shadow-fading Standard Deviation �shadow 8.0dB

4.6.1 Performance

Figures 4.12 and 4.13 show the cumulative distribution of SIR for the
reverse and uplink for frequency reuse factors of one, three, and seven. From
the observation of these two figures, we conclude that the statistics of SIR are
the same for both links. As we see, the probability to have high SIR is greater
as the frequency reuse factor grows, which as we said is reasonable. Based on
the above figures it could be argued that the use of greater frequency reuse
factor will be beneficial for the cellular systems of massive MIMO operation,
but this is not right because, as we will see from the statistical analysis of
net capacity per terminal, the choice of the frequency reuse factor depends
on the standards that the system wants to meet.
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Figure 4.12: Cumulative distribution of the reverse e↵ective SIR(dB).



40 CHAPTER 4. UNLIMITED NUMBERS OF ANTENNAS

-20 0 20 40 60 80 100 120
effective signal-to-interference ratio(dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cu
m

ul
at

iv
e 

di
st

rib
ut

io
n

α=1
α=3
α=7

Figure 4.13: Cumulative distribution of the forward e↵ective SIR(dB).

Figure 4.14: Cumulative distribution of the net reverse capacity per termi-
nal(megabits/second).

Figure 4.15: Cumulative distribution of the net forward capacity per termi-
nal(megabits/second).
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The cumulative distribution of net capacity per terminal for the reverse
and uplink data transmission for frequency reuse factor of one, three, and
seven are shown in Figures 4.14 and 4.15. At first glance, it does not seem
that there is a frequency reuse factor which is clearly the best, because each
factor is o↵ering something di↵erent. We see that for ↵ = 7 the system
ensuring a high probability for a good value of capacity but has low ceiling,
compared to ↵ = 1, which o↵ers the possibility of reaching really high speed
(megabits/second).

Table 4.1 shows the mean net capacity per terminal, and per cell for
frequency-reuses of one, three, and seven. The mean capacity is identical
for reverse and forward link, which is positive, since usually there is big
discrepancy between the two links in the existing systems (peaking always
on theoretical level) [14].

Freq. Cmean Cmean

Reuse Per Terminal Per Cell
(Mbits/s) (Mbits/s)

1 80 3360
3 43 1806
7 24 1008

Table 4.1: Mean net capacity per terminal, and per cell for frequency-reuses
of one, three, and seven.

What we conclude from the study of the above figures is that larger reuse
factors are beneficial when the SIR is low, the logarithm is in its linear region,
and capacity gains due to the large increase in SIR more than o↵set the loss
due to less aggressive frequency reuse which is associated with a reduction
in the actual bandwidth that each cell utilizes. When the SIR is already
high, a greater frequency reuse factor causes a net decrease in throughput.
If the minimum guaranteed performance per terminal is a more important
consideration than the mean throughput, then a frequency reuse factor of
seven should be used.

Overall, the frequency reuse factor does not seem to be the solution of
the pilot contamination problem. The reason is that, by using this method
to mitigate the phenomenon of pilot contamination, the system lacks of its
big advantage to provide the users all the available spectrum. We said that
next generation wireless systems need to achieve rapid speeds of data and,
to achieve that, massive MIMO needs to take advantage of the large number
of BSs antennas, which opens up the spatial dimension that allows it to
discriminate the signals to/from each terminal based on its location and
enables each terminal to use all available spectrum resources.



Chapter 5

A Coordinated Approach to
Channel Estimation in
Large-scale Multiple-antenna
Systems

The study of the previous massive MIMO cellular wireless system helped
us to understand the benefits of the use of large-scale multiple-antennas in BS
and to discover the stumbling of the system, the phenomenon of pilot contam-
ination, which imposes fundamental limitations in what can be achieved with
a (non cooperative) massive MIMO system. An interesting idea to deal with
this phenomenon is presented in [4], in which a cooperation of cellular wireless
system tackles the problem by enabling a low rate coordination between
cells during the channel estimation phase. The coordination makes use of
the additional second-order statistical information about the user channels,
which are shown to o↵er a powerful way of discriminating across interfering
users with even strongly correlated pilot sequences.

As we will see, by using a conventional estimator, like the Least Squares
(LS) in the procedure of channel estimation, the mean square error (MSE)
between real and estimated channels is fairly high and it is not ameliorated by
increasing the number of antennas in the BS. In a massive MIMO system, it
is necessary to use estimators which take advantage of the multiple-antennas,
so we can get the best results by exploiting every aspect of the system. So
with that in mind, researchers have developed in [4] a Bayesian channel
estimation method which exploits the dormant side-information lying in the
second-order statistics of the users channels. This estimator has been shown
to work much better than the LS estimator, and its performance is getting
better and better by using more and more BS antennas. More importantly,
in this paper the authors demonstrate a powerful result indicating that the
exploitation of covariance information under certain subspace conditions on
the covariance matrices can lead to a complete removal of pilot contamination
e↵ects in the large number of antennas. So, inspired by these findings, they
turned their focus to create a practical algorithm to take the best out of this
estimation method. The key idea behind the new algorithm is the use of
a covariance-aware pilot assignment strategy within the channel estimation
phase itself.

More specifically, the authors show that the channel estimation per-
formance is a function of the degree to which dominant signal subspaces
pertaining to the desired and interference channel covariance overlap with
each other. Therefore, they exploit the fact that the desired user signals
and interfering user signals are received at the base station with (at least
approximately) finite-rank covariance matrices. This is typically the case in

42
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realistic scenarios due to the limited angle spread followed by incoming paths
originating from street-level users. Then, they suggest a coordinated pilot
assignment strategy that, based on covariance matrices, assigns identical
pilot sequences to appropriate selected groups of users. The gains of this
coordination are shown to depend on typical angle spread measured at the
base station and the number of base station antennas. In fact, in some
cases, this algorithm approaches the performance of interference-free channel
estimation even for moderate numbers of antennas and users.

5.1 Channel Estimation

5.1.1 Scenario

The cellular network for this scenario consists of L time-synchronized
cells with full spectrum reuse. In the center of each cell there is a base
station equipped with M antennas, which serves K single-antenna users. The
number of terminals is the same for every cell. To avoid intra-cell interference
in channel estimation phase the pilots that are used by a single-user are
mutually orthogonal to the pilots of the remain K � 1 users which belong to
the same cell. However, the same pilots are reused from cell to cell, resulting
in pilot contamination from L� 1 interfering cells.

Pilot Sequence

Each terminal transmits a known pilot sequence of length ⌧ (as we will see
later, ⌧ matches with the number of terminals in a single cell) to its own base
station which in turn evaluates the e↵ect of the channel on these symbols.
This happens simultaneously for all base stations in the cellular system. The
pilot sequence used in the `-th cell is denoted by:

sl =
⇥
sl1 sl2 · · · sl⌧

⇤T
. (5.1)

The powers of pilot sequences are assumed equal such that |sl1|2+· · ·+|sl⌧ |2 =
⌧ , for l = 1, 2, . . . , L.

Signal and Channel Models

We define the channel vector between the l-th cell user and the target base
station as hl. To simplify the notation, we assume the 1st cell is the target
cell (the one in the center), unless otherwise notified. Thus, h

1

is the desired
channel while hl, l > 1 are the interference channels. All channel vectors are
assumed to be M ⇥ 1 complex Gaussian, undergoing correlation due to the
finite multipath angle spread at the base station side [15]:

hl = R
1
2
l hWl, l = 1, 2 . . . , L, (5.2)

where hWl ⇠ CN (0, IM ) is the spatially white M ⇥ 1 SIMO channel, and
CN (0, IM ) denotes zero-mean complex Gaussian distribution with covariance
matrix IM . We make the assumption that covariance matrix Rl =

� E{hlh
H
l }

can be obtained separately for the desired and interference channels. This
could be done in practice by exploiting resource blocks where the desired user
and interference users are known to be assigned at di↵erent times. In future
networks, one may imagine a specific training design for learning second-order
statistics. Since covariance information varies much slower than fast fading,
such training may not consume a substantial amount of resources.
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So, during the pilot phase, the M ⇥ ⌧ signal received at the target base
station is

Y =
LX

l=1

hls
T
l +N, (5.3)

where N 2 CM⇥⌧ is the spatially and temporally white additive Gaussian
noise (AWGN) with zero-mean and element-wise variance �2

n.

5.1.2 Least Squares Estimation

The conventional channel estimation method of LS relies on correlating
the received signal with the known pilot sequence. Hence, using the model
in (5.3), a LS estimate for the desired channel h

1

is

bh
LS

1

= Ys⇤
1

(sT
1

s⇤
1

)�1. (5.4)

As we have said, by using the same pilot sequences in the L cells, the
conventional estimators, such as LS, su↵er from lack of orthogonality between
the desired and interfering pilots. So, due to pilot contamination the estimator
can be written as

bh
LS

1

= h
1

+
LX

l 6=1

hl +Ns⇤/⌧. (5.5)

As we see, the interfering channels leak directly into the desired channel. As
a result, the estimation is then limited by SIR. As we saw in the simulations
of Marzetta’s scenario, these estimation methods limit the ability to design
e↵ective interference-avoiding beamforming solution. So, we will need to use
something more e�cient.

5.1.3 Bayesian Estimation

This is an improved channel estimation method which, by taking advantage
of the multiple antenna dimensions and informations lying in the second order
statistics of the channel vectors, achieves the reduction of pilot contamination
e↵ect. The role of covariance matrices is to capture structure information
related to the distribution (mainly mean and spread) of the multipath angles
of arrival at the base station. Due to the typically elevated position of the
base station, rays impinge on the antennas with a finite angle-of-arrival
(AOA) spread and a user location dependent mean angle. Assuming that the
antennas of a base station are placed at the highest point in the region which
they want to serve, the angle of arrival is between [�⇡, 0].

Bayesian estimator is not a novel idea itself, as it has been presented
before in MIMO systems, but, in the paper that we present, the researchers
have turned their focus on how the Bayesian estimator works in massive
MIMO, and they study the limiting behavior of covariance-based estimates
in the presence of interference and large-scale antenna arrays, and how to
shape covariance information for the full benefit of channel estimation quality.
Subsequently, we define the Bayesian estimator for our system that we will
use to implement the algorithm which tackles the pilot contamination e↵ect.

By vectorizing the received signal and noise, our model (5.3) can be
represented as

y = S̃h+ n, (5.6)

where y = vec(Y), n = vec(N), and h 2 CLM⇥1 is obtained by stacking all
L channels into a vector. The pilot matrix S̃ is defined as

S̃ =�
⇥
s
1

⌦ IM · · · sL ⌦ IM
⇤
. (5.7)
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Applying Bayes’ rule, the conditional distribution of the channels h, given
the received training signal y, is

p(h|y) = p(h)p(y|h)
p(y)

/ p(h)p(y|h). (5.8)

We use the multivariate Gaussian probability density function (PDF) of the
random vector h and assume its rows h

1

, . . . ,hL are mutually independent,
giving the joint PDF:

p(h) =

exp

✓
�
PL

l=1

hH
l R�1

l hl

◆

⇡LM (detR
1

. . . detRL)M
. (5.9)

Note that we derive this Bayesian estimator under the standard condition
of covariance matrix invertibility, although we show later this hypothesis
is actually challenged by reality in the large-number-of-antennas regime.
Fortunately, our final expressions for channel estimators completely skip the
covariance inversion.

Using (5.6), we obtain:

p(y|h) =
exp
�
� (y� S̃h)H(y� S̃h)/�2

n

�

(⇡�2

n)
M⌧

. (5.10)

Combining the equations (5.9) and (5.10), (5.8) can be rewritten as

p(y|h) = exp(�l(h))AB, (5.11)

where A =� (⇡�2

n)
M⌧ , B =� ⇡LM (detR

1

. . . detRL)M = ⇡LM (detR)M , and

l(h) =� hHR̄h+ (y� S̃h)H(y� S̃h)/�2

n, (5.12)

in which R =� diag(R
1

, . . . ,RL), R̄ =� R�1.
By using the maximum a posteriori (MAP) decision rule, the Bayesian

estimator yields the most probable value given the observation y:

bh = arg
h2CLM⇥1
max p(h|y)

= arg
h2CLM⇥1
min l(h)

= (�2

nILM +RS̃
H
S̃)�1RS̃

H
y.

(5.13)

Interestingly, the Bayesian estimate as shown in (5.13) coincides with the
minimum mean square error (MMSE) estimate, which has the form

bh
MMSE

= RS̃
H
(S̃RS̃

H
+ �2

nI⌧M )�1y. (5.14)

Expressions (5.13) and (5.14) are equivalent thanks to the matrix inversion
identity (I+AB)�1A = A(I+BA)�1.

The previous expression describes the simultaneous estimation of interfer-
ing channels and desired channel. In our analysis, by using matched filters, we
require only the knowledge of the desired channel, and consider the interfer-
ence channels as nuisance parametres. So, the single user channel estimation
in shown below. The pilot sequence reused in all L cells is considered:

s =
⇥
s
1

s
2

· · · s⌧
⇤T

. (5.15)

Similar to (5.7), we define a training matrix S̄ =� s⌦ IM . Note that S̄
H
S̄ =

⌧IM . Then the vectorized received training signal at the target base station
can be expressed as

y = S̄

LX

l=1

hl + n. (5.16)



46 CHAPTER 5. COORDINATED CHANNEL ESTIMATION

Since the Bayesian and the MMSE estimators are identical, we omit the
derivation and simply give the expression of this estimator for the desired
channel h

1

only:

bh
1

= R
1

S̄
H
✓
S̄

✓ LX

l=1

Rl

◆
Ŝ
H
+ �2

nI⌧M

◆�1

y (5.17)

= R
1

✓
�2

nIM + ⌧
LX

l=1

Rl

◆�1

S̄
H
y. (5.18)

In the following, we examine the degradation caused by the pilot contami-
nation on the estimation performance. In particular, we point out the role
played by the use of covariance matrices in dramatically reducing the pilot
contamination e↵ects under certain conditions on the rank structure.

We are interested in the mean squared error (MSE) of the proposed
estimators, which can be defined as: M =� E{kĥ � hk2F }, or for the single

user channel estimate M
1

=� E{kĥ
1

� h
1

k2F }.
The MSE of (5.13) is

M = tr

(
R

✓
ILM +

S̃
H
S̃

�2

n

R

◆�1

)
. (5.19)

Specifically, when identical pilots are used in all cells, the MSEs are

M = tr

(
R

✓
ILM +

⌧JLL ⌦ IM
�2

n

R

◆�1

)
, (5.20)

M
1

= tr

(
R

1

�R2

1

✓
�2

n

⌧
IM +

LX

l=1

Rl

◆�1

)
, (5.21)

where JLL is a L⇥ L unit matrix consisting of all 1s. Of course, it is clear
from (5.20) and (5.21) that the MSE is not dependent on the specific design
of the pilot sequence, but on its power. We can readily obtain the channel
estimate of (5.18) in an interference-free scenario, by setting interference
terms to zero:

bh
no int

1

= R
1

(�2

nIM + ⌧R
1

)�1S̄
H
(S̄h

1

+ n), (5.22)

where the superscript “no int” refers to the “no interference case”, and the
corresponding MSE:

Mno int

1

= tr

(
R

1

✓
IM +

⌧

�2

n

R
1

◆�1

)
. (5.23)

5.2 Coordinated Pilot Assignment

Now we will try to build step-by-step the functionality on which rests the
success of the algorithm.

5.2.1 Angle-of-Arrival and Channel model

We said that in every Base Station there exists a large number of anten-
nas. These are smart antennas positioned uniformly in linear array with
supercritical antenna spacing (less than or equal to half wavelength). Smart
Antennas are phased array antennas with smart signal processing algorithms
used to identify the angle of arrival (AOA) of the signal. AOA estimation is
the process of determining the direction of an incoming signal from mobile
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Figure 5.1: Angle of Arrival.

devices to the Base Transceiver Station. In this process, we determine the
time “phase” di↵erence of arrival (TDOA) at individual elements of the
antenna array, as shown in Figure 5.1, and, from these delays, the angle (or
direction) of the mobile devices can be calculated.

Hence, the multipath channel model for the large scale analysis is expressed
as

hi =
1p
P

PX

p=1

a(✓ip)↵ip, (5.24)

where P is the number of i.i.d. paths, ↵ip ⇠ CN (0, �2i ) are independent over
channel index i and path index p, where �2i is the i-th channel’s average
attenuation. a✓ is the steering vector

a(✓) =�

2

66664

1

e�j2⇡D
�
cos(✓)

...

e�j2⇡
(M�1)D

�
cos(✓)

3

77775
, (5.25)

where D is the antenna spacing at the base station and � is the signal
wavelength, such that D  �/2. ✓ip 2 [0,⇡] is a random AOA. Note that
we can limit angles to [0,⇡], because any ✓ 2 [�⇡, 0] can be replaced by �✓,
giving the same steering vector.

5.2.2 Theorem

Figure 5.2: Theorem.
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Assume the multipath angle of arrival ✓ yielding channel hj , j = 1, . . . , L,
in (5.24), is distributed according to an arbitrary density pj(✓) with bounded
support, i.e., pj(✓) = 0 for ✓ /2 [✓min

j , ✓max
j ] for some fixed ✓min

j  ✓max
j 2

[0,⇡]. If the L � 1 intervals [✓min
i , ✓max

i ], i = 2, . . . , L are strictly with
non-overlapping with the desired channel’s AOA interval [✓min

1

, ✓max
1

], we
have

lim
M!1

bh
1

= bh
no int

1

. (5.26)

Based on the above theorem, we conclude that the performance of the
Bayesian channel estimation is sensitive to the degree with which the signals
of the desired and interference channels bump in the BS antennas. The
authors of [4] prove that in the ideal case in which the AOA of the desired
and the interference channels do not overlap with each other, then, if the
antenna-array of BSs is large, the pilot contamination e↵ect temps to vanish.
This is also confirmed by our simulations in section 5.3.

Proof :

We said before that we made the assumption that Ri =
� E{hlh

H
l }, so

from the channel model (5.24), we get

Ri =
�2i
P

PX

p=1

E{a(✓ip)a(✓ip)H} = �2i E{a(✓i)a(✓i)H},

where ✓i has the PDF pi(✓) for all i = 1, . . . , L. The proof of Theorem 1
relies on three intermediate lemmas which exploit the eigenstructures of the
covariance matrices. The essential ingredient is to exhibit an asymptotic (at
large M) orthonormal vector basis for Ri constructed from steering vectors
at regularly sampled spatial frequencies.

Lemma 1. Define ↵ =�
⇥
1 e�j⇡x · · · e�j⇡(M�1)x

⇤T
and A =� span{↵(x), x 2

[�1, 1]}. Given b
1

, b
2

2 [�1, 1] and b
1

< b
2

, define B =� span{↵(x), x 2
[b
1

, b
2

]}, then

• dim{A} = M

• dim{B} ⇠ (b
2

� b
1

)M/2 when M grows large.

Lemma 1 characterizes the number of dimensions a linear space has, which
is spanned by ↵(x), in which x plays the role of spatial frequency.

Lemma 2. With a bounded support of AOAs, the rank of channel
cavariance matrix Ri satisfies

rank(Ri)

M
 di, as M !1

where di is defined as

di =
� (cos(✓min

i )� cos(✓max
i ))

D

�
.

Lemma 2 indicates that for large M , there exists a null space null(Ri) of
dimension (1� di)M .

Lemma 3. The null space null(Ri) includes a certain set of unit-norm
vectors:

null(Ri) � span

⇢
a(�)p
M

, 8� /2 [✓min
i , ✓max

i ]

�
, as M !1

This lemma indicates that multipath components with AOA outside the AOA
region for a given user will tend to fall in the null space of its covariance
matrix in the large-number-of-antennas case.
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We now return to the proof of Theorem 1. Ri can be decomposed into

Ri = Ui⌃iU
H
i , (5.27)

where Ui is the signal eigenvector matrix of size M ⇥mi, in which mi  diM .
⌃i is an eigenvector matrix of size mi ⇥mi. Due to Lemma 3 and the fact
that densities pi(✓) and p

1

(✓) have non-overlapping supports, we have

UH
i U

1

= 0, 8i 6= 1, as M !1. (5.28)

Combining the channel estimate (5.18) and the channel model (5.16), we
obtain

bh
1

= R
1

✓
�2

nIM + ⌧

LX

l=1

Rl

◆�1

S̄
H
✓
S̄

LX

i=1

hi + n

◆
. (5.29)

According to (5.28), matrices R
1

and
PL

l=2

Rl span orthogonal subspaces in
the large M limit. Therefore, we place ourselves in the asymptotic regime of
M , when ⌧

PL
l=2

Rl can be eigen-decomposed according to

⌧

LX

l=2

Rl = W⌃WH . (5.30)

where W is the eigenvector matrix such that WHW = I and span{W}
is included in the orthogonal complement of span{U

1

}. Now denote V
the unitary matrix corresponding to the orthogonal complement of both
span{W} and span{U

1

}, so that the M ⇥M identity matrix can now be
decomposed into:

IM = UH
1

U
1

+WWH +VVH (5.31)

Thus, for large M ,

bh
1

⇠ U
1

⌃
1

UH
1

(�2

nU1

UH
1

+ �2

nVVH + �2

nWWH

+ ⌧U
1

⌃
1

UH
1

+W⌃WH)�1

✓
⌧

LX

i=1

hi + S̄
H
n

◆

Due to asymptotic orthogonality between U
1

, W, and V,

bh
1

⇠ U
1

⌃
1

(�2Im1 + ⌧⌃
1

)�1UH
1

(⌧
LX

i=1

hi + S̄
H
n)

⇠ U
1

⌃
1

(�2Im1 + ⌧⌃
1

)�1⌧(UH
1

h
1

+
LX

i=2

UH
1

hi +
S̄
H
n
1

⌧
).

However, since bhi ⇢ span{a(✓), 8✓ 2 [✓min
i , ✓max

i ]}, we have from Lemma 3

that ||UH
1 hi||

||UH
1 h1||

! 0, for i 6= 1 when M !1.

Therefore

lim
M!1

bh
1

= ⌧U
1

⌃
1

(�2

nIm1 + ⌧⌃
1

)�1

✓
UH

1

h
1

+
S̄
H
n

⌧

◆
,

which is identical to bh
no int

1

if we apply the EVD decomposition (5.27) for
R

1

in (5.22). This proves Theorem 1. (For the proof of the lemmas see the
appendices of [4])

The authors also believe that, although antenna calibration is needed as
a technical assumption in the theorem, orthogonality of covariances signal
subspaces will occur in non-tightly calibrated settings provided the AOA
regions do not overlap.
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Figure 5.3: Coordinated Pilot Assignment.

5.2.3 Algorithm of Coordinated Pilot Assignment

Inspired by this theorem, the authors of [4] have invented an algorithm
which improves the performance of Bayesian channel estimation in cellular
systems and tackles the pilot contamination e↵ect. This algorithm uses a
coordination protocol of assigning pilot sequences to the users in the L cells,
with the aim to satisfy the non-overlapping AOA constraint of the theorem, by
taking advantage of the covariance informations and the property of subspace
orthogonality. Recall that each individual pilot sequence corresponds to one,
and only one, user of each cell. So the role of this coordination is to optimise
the clustering of terminals which use the same pilot sequence, so that the
degree of their signal subspaces of covariance matrices do not overlap with
each other.

Let G =� {1, ...,K}, then Kl 2 G denotes the index of the user in the l-th
cell who is assigned the pilot sequence s. The set of selected users is denoted
by U in what follows. For a given user set U , the authors define a network
utility function

F (U) =�
|U|X

j=1

Mj(U)
tr {Rjj(U)}

, (5.32)

where |U| is the cardinal number of the set U . Mj(U) is the estimation
MSE for the desired channel at the j-th base station, with a notation readily
extended from Mj in (5.21), where this time cell j is the target cell when
computing Mj . Rjj(U) is the covariance matrix of the desired channel at
the j-th cell.

The approach that have been followed is:

Data: KL2 covariance matrices R.

U = ;
for l = 1, . . . , L do

arg
k2G
min F (U [ {k})

U  U [ {Kl}
end

Result: The set U with the L users, who will be assigned the pilot
sequence s.
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As we see, the coordinated pilot assignment in order to satisfy the conditions
of the theorem, minimises the sum of (5.32) by choosing users whose the
covariance matrices show maximum signal subspace orthogonality. Getting
started with the first cell, the system chooses the user with the most powerful
channel (the trace of a covariance matrix equals with the power of the
channel), after that the algorithm is scanning the terminals of another cell
and chooses the one who shows the maximum signal subspace orthogonality
with the K

1

and also has strong channel with its base station. The same
happens with the remaining cells, searching in each one for the user who
combined better with those who have already been selected.

As it is reasonable, the performance will improve by increasing the number
of users, as it becomes more likely to find users with discriminable second-
order statistics.

5.3 Simulations

Due to computational complexity, we are limited in the number of the cells
that we consider. So in this scenario, the most that we consider are seven
hexagonal cells with M number of base station antennas.

The basic parameters are given in Table below.

Basic Parameters
Cell Radius 1000m
Cell Edge SNR 20dB
Distance from a user to its BS 800m
Number of Terminals 10
Number of Paths 50
Path Loss Exponent 3
Carrier Frequency 2GHz
Antenna Spacing �/2

For our simulations, we use the channel model of (5.24). So, the channel
vector between the u-th user in the l-th cell and the target base station is

hlu =
1p
P

PX

p=1

a(✓lup)↵lup, (5.33)

where ✓lup and ↵lup are the AOA and the attenuation of the p-th path between
the u-th user in the l-th cell and the target base station, respectively. Note
that the variance of ↵lup, 8p, is �2lu, which includes the distance-based path
loss �lu between the user and the target base station (which can be anyone
of the L cells):

�lu =
↵

d�lu
, (5.34)

where dlu is the geographical distance. � is the path-loss exponent. ↵ is a
constant dependent on the prescribed average SNR at cell edge. In order
to preserve fairness between users and avoid having high-SNR users being
systematically assigned the considered pilot, we use the ↵ factor to provide
each user in every cell similar SNR to the others.

We consider two types of AOA distributions, a bounded one (Uniform)
and a non-bounded one (Gaussian):

1) Uniform distribution: For the channel hlu, the AOAs are uniformly
distributed over [✓̄lu � ✓

�

, ✓̄lu + ✓
�

], where ✓̄lu is the mean AOA and the
✓
�

is the angle spreads. The same angle spread apply to both desired and
interference channels. The characteristic of the usage uniform distribution,
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is that AOAs are bounded by a standard angle spread, and thus does not
consist a realistic option, since is likely the signal to hit an object and follow
an undefined path. Nevertheless, this will help us to verify the theorem
and take a first taste of the coordinated approach in channel estimation by
making easier the finding of users with non-overlapping channels.

2) Gaussian distribution: For the channel coe�cients hlu, the AOAs of
all P paths are i.i.d. Gaussian random variables with mean ✓lu and standard
deviation �. The standard deviation of AOA is the same either for desired
or interference channels. Using this distribution we take more representative
results of what the coordinated pilot assignment can achieve since it covers
every possible angle which a channel path can follow in real conditions.

5.3.1 Numerical Results of Normalized Channel Estimation
Error

To evaluate the proposed channel estimation scheme, we first use the below
normalized channel estimation error

err =� 10 log
10

0

B@

LP
j=1

||bhjj�hjj ||2F
LP

j=1
||hjj ||2F

1

CA , (5.35)

where hjj and bhjj are the desired channel at the j-th base station and its
estimate respectively. Note that after the clustering of the users, we consider
the normalized channel estimation error as the sum of the estimation error
for each desired channel in each cell, and not for one specific cell which it
could be a chance to have advantage over others. This leads us to assess the
situation in a more comprehensive manner.

First we confirm the theorem with a 2-cell network. Within each cell
there is only one user, fixed in 90 degrees and 800 metres away from the
BS. All P channels are uniformly distributed with ✓

�

= 20. By having
fixed users’ positions and bounded angle spread at 20 degrees, we secure the
non-overlapping between desired and interfering multipaths. As we see in
Figure 5.4 the Covariance-aided Bayesian (CB) estimation in this scenario is
identical with the one in an interference-free network, and much better of LS
estimation as the number of BS antennas grows.

Figure 5.4: Estimation MSE vs BS antenna number in 2-cell network, fixed
positions of two users, uniformly distributed AOAs with ✓

�

= 20 degrees.
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We are then testing the coordinated pilot assignment (CPA) in a 2-
cell network for uniform distribution AOAs with ✓

�

= 10 degrees and for
a Gaussian distribution with � = 10 degrees in Figure 5.5 (a) and (b)
respectively.

(a) Uniformly distributed AOAs with ✓� = 10 degrees.

(b) Gaussian distributed AOAs with � = 10 degrees.

Figure 5.5: Estimation MSE vs antenna number, 2-cell network.

As we see, the gains of CB and CPA compared to the classical estimator
are substantial, and are getting better as the antenna number grows. Overall,
the CB estimation and the coordinated one are better in Uniform distribution
AOAs than in Gaussian due to the non-boundedness of the Gaussian PDF,
which makes it harder to find users with absolutely non-overlapping channels.
The most important finding is that the coordinated pilot assignment matches
the performance of CB interference free scenario, which means that pilot
contamination e↵ect tends to vanish in the large-antenna-array case.

The di↵erence between the two AOAs’ distributions, raises the need of
seeing how the standard deviation influence the performance of CB and CPA
estimations. We choose the Gaussian distribution because as we mention
before consists a more realistic model. We simulate a 7-cell network and a
fixed number of M=10 BS antennas.

As expected, the performances of CB and CPA reduced dramatically as
the standard deviation grows. As we see in Figure 5.6, the estimation error
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Figure 5.6: Estimation MSE vs standard deviation of Gaussian distributed
AOAs with M=10, 7-cell network.

is a monotonically increasing function of �. This makes sense since in large
values of � there will be paths of the desired channels which will overlap with
paths of the interference channels. That is also why the estimation error of
CPA is approaching and eventually identified with CB’s for � = 90, because
it is impossible to find users whose their channels do not overlap.

5.3.2 Numerical Results of the downnlink per-cell rate

Having confirmed that in massive MIMO the CB estimation works better
than conventional LS estimator in terms of estimation error, and that CPA
achieves even better results in tackling the pilot contamination e↵ect, we will
now check the per-cell rate of the downlink for the three estimators (LS, CB,
CPA). Assuming standard MRC beamformer based on the channel estimates
we define the per-cell rate as follows :

C =�

LP
j=1

log
2

(1 + SINRj)

L

where SINRj is the received signal-to-noise-plus-interference ratio by the
scheduled user in the j-th cell.

As we see in Figures 5.7 and 5.8, the better functioning of CB and CPA
in comparison to LS is also confirmed in per-cell rate. Specifically, in Figure
5.7 we see that as the number of antennas grows, while the performance
of LS stays constant, the performances of CB and CPA are getting better.
A�rming once again the CB’s usefulness in massive MIMO.

In Figure 5.8, we examine the impact of standard deviation of Gaussian
AOAs on the per-cell rate of the downlink. As in the corresponding diagram
of estimation error (Figure 5.6), it is confirmed again the destructive e↵ect
of high standard deviation in CB and CPO estimations.

What we conclude from the study of [4] and our simulations is that
Covariance-aided Bayesian estimation exploits much better the spatial di-
mension of massive MIMO than the conventional estimators. The theorem
that the authors introduce in [4] and we present in section 5.2.2 seems very
useful for exploitation in massive MIMO. The Coordinated Pilot Assignment
seems to exploit greatly this Theorem and to improve the performance of
CB. Nevertheless, it should be considered how this will work in a network
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Figure 5.7: Per-cell rate vs antenna number, 2-cell network, Gaussian dis-
tributed AOAs with � = 10 degrees.

Figure 5.8: Per-cell rate vs standard deviation of Gaussian distributed AOAs
with M=10, 7-cell network.

with many more cells, and if the improvement which will achieve, compared
to the complexity of its functionality, worth it.

The coordination of the users requires the exchange of information between
base stations, which in combination with the processing that is needed in a
server in order to complete the clustering and the assignment of the pilots,
takes time. If we assume that the number of the cells, and the number of the
users, in fact they will be much larger than in our scenario, it is reasonable to
think if the coherence time is big enough to estimate the channels, coordinate
the users and send data.

The most important hurdle that requires solution, is the need of knowledge
of the individual covariance matrices, which constitutes a fundamental factor
of CB’s operation. As we mentioned before, there is no specific training
design for learning second-order statistics [4]. So if we want to apply CB and
CPA in the future networks, we have to find a solution for this first.



Chapter 6

Conclusions

To discover the capabilities and needs of massive MIMO we started
our study from the pioneering and award-winning paper [3] of Thomas
L. Marzetta, who introduced and popularized the concept of ”massive (mul-
tiuser) MIMO”.

We saw that the assumption of an unlimited number of antennas at the
base station greatly simplifies the analysis, and it illustrates the desirable
e↵ects of operating with a large excess of antennas compared with terminals.
By using an unlimited number of antennas, we saw that the e↵ects of
uncorrelated receiver noise and fast fading are eliminated completely, so
transmissions from terminals within one cell do not interfere. The acquisition
of channel state information, which leads to the phenomenon known as pilot
contamination, constitutes fundamental limitation on what can be achieved
by a noncooperative cellular multiuser MIMO system and is not treated just
from the increase of antennas. Since the transmissions are not influenced by
noise and intra-cell interference, the performance is only limited by inter-cell
interference expressed by the random quantity SIR.

With a view to boost the SIR and tackle the pilot contamination e↵ect
Thomas L. Marzetta proposed the method of frequency reuse. By using less
aggressive frequency reuse factor, clustering the cells in three or seven di↵erent
groups, we ensure greater probability for a terminal to have high SIR but
this results in lesser mean net capacity per terminal. This happens because
by using frequency reuse factor greater than one, the available bandwidth
of each user subdivided by the same factor. So, regardless of SIR’s increase,
we lose the big advantage of massive MIMO system which is to enable each
terminal to use all available spectrum resources, because it opens up the
spatial dimension that allows it to discriminate the signals to/from each
terminal based on its location.

Realising that pilot contamination e↵ect constitute a major bottleneck for
overall performance of massive MIMO systems and that frequency reuse is
not a solution, we then turned our focus to study solutions which tackle the
pilot contamination problem. Since the pilot contamination problem stems
from procedure of channel estimation, we find a very interesting coordinated
approach of channel estimation in [4]. It is about an algorithm which tackles
the pilot contamination problem by enabling a low-rate coordination between
cells during the channel estimation phase itself. The coordination makes use
of the additional second-order statistical information about the user channels,
which are shown to o↵er a powerful way of discriminating across interfering
users with even strongly correlated pilot sequences. The simulations showed
that this coordinated approach in the channel estimation phase achieves
amazing results even with small antenna array in BSs which become even
better as the number of antennas grows large, approaching the interference-
free results and in some special cases become identical to them.
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Overall, massive MIMO seems to be an importand part of the future
network, since we have seen that o↵ers many advantages and increases
dramatically the cell capacity. So as we approach the time that 5G will be in
use, researchers of all over the world are trying to find solution to tackle the
pilot contamination e↵ect, and generally to make massive MIMO functional.
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