
Technical University of Crete, Greece

School of Electrical and Computer Engineering

Architecture and Implementation of a

Distributed Complex Event Processing

System

Vasiliki Manikaki

Thesis Committee:

Professor Antonios Deligiannakis (Supervisor)

Professor Minos Garofalakis

Professor Vasilis Samoladas

Chania, April 2017

http://www.tuc.gr
http://www.ece.tuc.gr

Vasiliki Manikaki 2 April 2017

Abstract

Distributed event detection is the process of identifying specific occurrences of interest

in incoming data available at a number of distributed nodes. The traditional approach

for detecting events implies central collection and processing of data, which is impractical

for a number of reasons. Firstly, since the number of nodes might be large, collecting in-

formation centrally is not always possible or efficient. This happens because the amount

of information to be transmitted may be huge and the available bandwidth insufficient

to accommodate the transmission. Secondly, central processing of distributed data is not

balancing the cost for answering more complex queries and for big data applications the

processing speed may introduce additional latency in complex event detection. Addi-

tionally, processing all data in a distributed network in a single node generates a single

point of failure. In-situ processing for complex event detection systems is an architec-

tural scheme that can alleviate the aforementioned limitations. It provides a mechanism

for balancing the work load of both event processing and network traffic by distributing

coordinating duties to multiple nodes. The additional division of monitoring complex

queries in multiple steps, based on event frequencies, enables each node to relay just

the absolutely required events to the coordinating nodes for evaluation. Additionally,

the geometric method allows a network to monitor in a distributed way if the value of

a complex function, even nonlinear, calculated using incoming data is over or under a

specific threshold value. Thus, composite events can be distributely detected if they are

expressed as a threshold monitoring function. The geometric method imposes a set of lo-

cal constraints on each node and manages to reduce the need for communication between

the nodes as long as the constraints are satisfied.

In this work, a unified architectural integration of in-situ complex event processing

and the geometric method is implemented, using the real-time distributed computation

framework named Storm, for distributed event detection. A topology is implemented to

handle both the monitoring of complex functions as well as complex event queries using

Storm components. All necessary mechanisms for intra and inter node communication are

also addressed to facilitate the optimization objectives. Finally, the system is designed to

recover after a node transient failure and special care is taken to allow real-time system

adaptivity in case event frequencies drift significantly over time.

Acknowledgements

This thesis is the end of my long journey in finishing my studies. This degree is the

result of the effort and support of a lot of people. Here, I am going to thank those people

without whom I might not have been able to finish my studies successfully. I am so lucky

that I got many people around me who were always ready to help me.

The first person that deserves my gratitude is my supervisor, Professor Antonios

Deligiannakis for his continuous guidance, support, and encouragement during our co-

operation. I would like to express my deepest thanks for the opportunity he gave me to

deal with such an interesting topic. I am grateful for his generous help and profession-

alism throughout the elaboration of this study. It is not often that one finds an advisor

that always finds the time to listen to the little problems that unavoidably crop up in

the course of this work. I am obliged to him more than he knows. It has been a great

experience for me to work under his supervision.

I would also like to thank the rest of the members of my examination committee, Prof.

Minos Garofalakis and Prof. Vasileios Samoladas for the time they spent on reading and

evaluating this master’s thesis.

I would like to cease this opportunity to thank my fellow labmates in Softnet Lab:

Giannis Flouris and Nikos Giatrakos, for the stimulating discussions, for the sleepless

nights we were working together before deadlines, and for all the fun we have had in our

business trips.

Apart from work, these acknowledgements would not be complete without thanking

my family for their constant support, care and love. They have always encouraged me

to explore my potential and pursue my dreams. I thank my mother Giota, my father

Stratos and my sister Konstantina for supporting me spiritually throughout my life.

As for my dear Michalis, I find it difficult to express my appreciation because it is so

boundless. He is my rock. Without his love and support, I would be lost. I am grateful

to my precious Michalis, not just because he has given up so much to make my career a

priority in our lives, but because always reminded me that “it’s OK to stress just not to

stress out”.

To all of you, thanks for always being there for me.

Vasiliki

Chania 2017

To Michalis Foukarakis,

my wonderful husband, my best friend and my true Love

Vasiliki Manikaki iv April 2017

Contents

1 Introduction 1

1.1 Thesis Motivation and Contribution . 1

1.2 Thesis Outline . 2

2 Theoretical Scientific Background 5

2.1 Complex Event Processing . 5

2.1.1 Events . 6

2.1.2 Queries . 6

2.2 The Geometric Approach . 7

3 Supporting Systems 11

3.1 Apache Storm . 11

3.1.1 Main Concepts . 12

3.1.2 Stream Grouping . 13

3.1.3 Storm Architecture . 14

3.2 IBM Proactive Technology Online (Proton) 15

3.2.1 Standalone Proton . 15

3.2.2 Proton on Storm . 23

3.3 Redis . 23

4 System Architecture and Setup 25

4.1 Network Architecture . 25

4.2 Intra-Site Architecture . 27

4.3 System setup . 31

4.3.1 Optimizer . 32

4.3.2 Optimizer Input Parameters . 33

Vasiliki Manikaki v April 2017

CONTENTS

4.3.3 Plan Generation . 35

4.4 Dynamic Node Manipulation . 35

4.4.1 Registering New Nodes . 35

4.4.2 Managing Communication Failures 36

5 Geometric Monitoring Implementation 37

5.1 Function Hierarchy . 37

5.1.1 Implemented Sample Functions 40

5.2 Local Violation Detection . 42

5.2.1 Ball Technique . 42

5.2.2 Safe Zone Technique . 45

5.3 Supporting Extensibility to New Monitored Functions 48

5.4 Geometric Monitoring Operator Initialization 49

5.5 Geometric Monitoring Operator Work Flow 50

5.5.1 The Mobile Fraud Example . 51

6 Complex Event Detection Implementation 65

6.1 Topology Setup . 65

6.1.1 Push and Pull Paradigm Initialization 66

6.2 Complex Event Processing Work Flow 67

6.3 Architectural Injections for CEP adaptivity 70

6.3.1 Statistics Storage . 70

6.3.2 Proton Modifications . 72

6.3.3 Multiple Plan Support . 72

7 Conclusion 73

References 77

Vasiliki Manikaki vi April 2017

List of Figures

2.1 Local constraints using the Geometric Approach. Each node constructs

a sphere with diameter the drift vector ~u, of the node and the estimate

vector ~e,. The global statistics vector ~v, is guaranteed to lie in the convex

hull of ~e, ~u1, ~u2, ~u3, ~u4. The union of the local spheres covers the convex

hull. 8

3.1 Storm Topology (figure from: http://storm.apache.org/releases/current/

Tutorial.html). 13

3.2 Storm cluster architecture (figure from: http://storm.apache.org/releases/

current/Tutorial.html). 15

3.3 Proton Authoring Tool and Runtime Engine (figure from: https://github.

com/ishkin/Proton). 16

3.4 Architecture of Proton on Storm. 24

4.1 Architecture example with multi-star micro-coordinators. 25

4.2 Query Optimizer’s Place in the Architecture. 25

4.3 Intra-site Architecture. 28

4.4 Query Optimizer’s Work Flow. 32

4.5 Network Graph Example. 34

5.1 Function Class Hierarchy. 38

5.2 Graph of function Average (Threshold = 100) 40

5.3 Graph of function Variance (Threshold = 100) 41

5.4 Local Violation in Average Function - Ball Technique 43

5.5 Local Violation in Average Function - Ball Technique 43

5.6 No Local Violation in Average Function - Ball Technique 44

Vasiliki Manikaki vii April 2017

http://storm.apache.org/releases/current/Tutorial.html
http://storm.apache.org/releases/current/Tutorial.html
http://storm.apache.org/releases/current/Tutorial.html
http://storm.apache.org/releases/current/Tutorial.html
https://github.com/ishkin/Proton
https://github.com/ishkin/Proton

LIST OF FIGURES

5.7 No Local Violation in Average Function - Ball Technique 44

5.8 No Local Violation in Average Function - Safe Zone Technique. 46

5.9 Local Violation in Average Function - Safe Zone Technique. 46

5.10 Local Violation in Average Function - Safe Zone Technique. 46

5.11 No Local Violation in Average Function - Safe Zone Technique. 46

5.12 No Local Violation in Variance Function - Safe Zone Technique. 47

5.13 Local Violation in Variance Function - Safe Zone Technique. 47

5.14 No Local Violation in Variance Function - Safe Zone Technique. 47

5.15 Local Violation in Variance Function - Safe Zone Technique. 47

5.16 Monitoring object generation from input events. 53

5.17 Local Violation at Source Site. 54

5.18 The beginning of violation resolution. 55

5.19 Lsv pull request from GM micro-coordinator. 56

5.20 Push requested lsvs back to the micro-coordinator. 57

5.21 Calculate new estimate and send it to source sites. 58

5.22 Calculate new Threshold and send it to source sites. 59

5.23 Initial Threshold Distribution. 62

5.24 Threshold Distribution after the First Local Violation. 62

5.25 Threshold Distribution among Two Sites. 63

6.1 Continuous event processing. 68

6.2 CEP micro-coordinator pull request. 69

6.3 Push requested events from sources to micro-coordinator. 70

Vasiliki Manikaki viii April 2017

Chapter 1

Introduction

1.1 Thesis Motivation and Contribution

Complex event processing is used in distributed systems for extracting relevant informa-

tion. In this scope, many methodologies exist that achieve this purpose. However, the

most common approach, central collection and processing of information, encounters a

number of issues. First of all, it is not efficient in cases where the number of nodes is

large, since there is a huge amount of information that needs to be transmitted. Another

reason is that complex queries introduce latency during processing. Finally, the central

collecting node is prone to failure, which could prove catastrophic for the system.

An efficient way to combat these common issues that occur during complex event

processing is to perform in-situ processing and distribute the workload for processing

among nodes. This work has been conducted in the context of the FERARI1 (Flexible

Event pRocessing for big dAta aRchItectures) project, which proposes a highly scalable

distributed streaming architecture that can support efficient complex event processing

with this method [2] [3].

In this work, a system that enables realtime Complex Event Processing (CEP) for

large volume event data streams over distributed topologies has been developed. The

components of the system architecture have been described and implemented using enti-

ties of the Storm real-time distributed computation framework. The resulting topologies

1FERARI is a collaborative project within the European Commission’s FP7 ICT Work Programme:

http://www.ferari-project.eu/

Vasiliki Manikaki 1 April 2017

http://www.ferari-project.eu/

1. INTRODUCTION

describe the nodes of the system and the intra- and inter-site communication between

the nodes has been developed in an efficient way.

The first way to achieve in-situ processing is the use of the geometric method for func-

tion monitoring. This approach decomposes the monitoring problem into local constraints

that can be imposed on the geographically distributed data streams, thus achieving reduc-

tion in communication. Each node checks these constraints locally for each data received

from the stream. Collecting data centrally is only required when a local constraint on a

stream has been violated [1].

The architecture has additionally given the nodes the capability to send and receive

only the events that are required at each point in time by following a push/pull paradigm

instead of blindly sending each possibly relevant event to all potential receiver nodes. In

addition to that, in cases of temporary node failure, the system is able to continue the

processing and possibly recover the delayed events. Extending the distributed network

is also supported by the system, by adding new nodes.

Finally, in cases where the latency for the inter-site communication has changed sig-

nificantly or there is a drift in the event occurrence frequencies, the system is able to

adapt and handle changes in the event processing plans.

1.2 Thesis Outline

The thesis is structured and organized in the following chapters:

Chapter 2 describes the relevant theoretical scientific background. It covers complex

event processing concepts and the geometric approach for function monitoring.

Chapter 3 includes information on the systems and technologies that have been

utilized during the implementation of this work, which are the Apache Storm system,

IBM Proton and Redis.

Chapter 4 presents the components of the system architecture on both inter- and

intra- site level. Their composition, general functionalities setup and interaction are

described. The capability of the system to handle the addition of nodes and delayed

messages during potential communication failures at runtime is also presented.

Chapter 5 covers the methodology for implementing geometric monitoring including

a thorough example using the geometric approach.

Vasiliki Manikaki 2 April 2017

1.2 Thesis Outline

Chapter 6 describes the ordinary complex event processing work flow and the query

plan adaptivity capability of the system.

Chapter 7 concludes the thesis.

Vasiliki Manikaki 3 April 2017

1. INTRODUCTION

Vasiliki Manikaki 4 April 2017

Chapter 2

Theoretical Scientific Background

2.1 Complex Event Processing

Event processing is a method of tracking and analyzing (processing) of streams of infor-

mation (data) about things that happen. Complex Event Processing (CEP) combines

data from multiple sources to infer events or patterns for complicated situations. The

objective of CEP systems is to process Machine to Machine (M2M) data in an efficient

manner and immediately recognize the occurence of interesting situations (events).

Some examples of CEP applications:

• Mobile and sensor networks

• Computer clusters and smart energy grids

• Network health monitoring applications

• Security attacks detection

Performance in CEP systems is very important. There are many performance metrics

such as Throughput [4], [5], [6], [7], [8] which refers to the number of events processed per

time unit, or CPU cost of the language operators [4], [8]. The aforementioned metrics

are mostly used in CEP systems that receive and process data from only one source. On

the other hand, there are CEP systems that receive data from a collection of streams

and where there is a central site that decides in which site each event will be processed.

In this case, the most common performance metrics are the Transmission Cost and the

Vasiliki Manikaki 5 April 2017

2. THEORETICAL SCIENTIFIC BACKGROUND

Detection Latency, which is the time between the occurrence of an event and its detection

from the central site.

2.1.1 Events

An event is an occurrence of interest in time within a particular system or domain [7] [8];

it is something that is contemplated as having happened in that domain or something

that has already happened.

The authors in [6] define the event tuples as e = < s ; t >, where:

• e: represents the event of interest.

• s: refers to a list of attributes.

• t: is a list of timestamps, the first timestamp represents the start of the event and

the last timestamp represents the end of it.

Typically in literature [5], [6], [7], [9] events are categorized as simple (primitive) and

complex (also called composite or deferred). Simple events are atomic occurrences of

interest, while complex events are events that summarize, represent, or denote a set

of other events (primitive and/or complex). Complex events are detected by the CEP

system based on defined patterns (rules) that involve other events.

2.1.2 Queries

CEP applications are rule-driven. Usually rules are expressed as queries that are sub-

mitted in the CEP system in order to detect complex events using a given pattern. A

complex event query is commonly expressed using the following form [4], [7], [8], [10]:

PATTERN OPERATOR (list of TypeOfEvents)

WHERE (event value constraint)

AND (another value constraint)

WITHIN (time)

RETURN (ComplexEvent or Events to return)

PATTERN OPERATOR: Includes operators such as SEQ, AND, OR and others.

Vasiliki Manikaki 6 April 2017

2.2 The Geometric Approach

More specifically the SEQ pattern operator demands the occurrence of all the involved

events to be sequential. The AND pattern operator requires all the involved events to

occur, while the OR pattern operator requires any of them to occur.

WHERE: This clause is used to define equality or inequality constraints among the

attributes of the events. The constraints can be separated by logical operators.

WITHIN: In order to fully match the pattern and successfully detect a complex event,

the events must occur within the specified time window that this pattern operator de-

fines.

RETURN: The RETURN operator specifies the complex event or list of simple events

to output.

While the events arrive on the stream that the CEP receives, the query pattern can

be partially matched. Two methods for tracking the state of a partial match are i)

Automata-based and ii) Graph-based.

2.2 The Geometric Approach

Considering a network of n nodes, each node Si (i = 1...n) maintains a local d -dimensional

vector, termed as the local statistics vector, with the j -th (j = 1...d) element of the local

statistics vector of Si denoted as ~vj,i. All sites contain a vector of the same dimensionality

(i.e., number of elements). The global statistics vector ~v is computed as the average

among all local statistics vectors. Thus, the j -th component of the global statistics

vector, denoted as ~vj is computed as: ~vj =
1

n

∑n
i=1 ~vj,i.

For the monitoring framework in [11], [12], [13], [14], [15], [16], [17] to be applicable,

any supported monitoring function f : Rd → R must be expressed over the global

statistics vector ~v (thus, over the average of all local statistics vectors). An important

feature is the wide applicability of the geometric approach, as the monitoring function

can in general be non-linear. Given a threshold T , the framework can safely determine

whether f (~v) > T.

The geometric approach decomposes the monitoring task into a set of constraints (one

per site) that each site can monitor locally. To achieve this, during the operation of the

algorithm, each site Si maintains (i) the estimate vector ~e, which is equal to the global

statistics vector ~v computed by the local statistics vectors transmitted by sites at certain

Vasiliki Manikaki 7 April 2017

2. THEORETICAL SCIENTIFIC BACKGROUND

Figure 2.1: Local constraints using the Geometric Approach. Each node constructs a

sphere with diameter the drift vector ~u, of the node and the estimate vector ~e,. The

global statistics vector ~v, is guaranteed to lie in the convex hull of ~e, ~u1, ~u2, ~u3, ~u4. The

union of the local spheres covers the convex hull.

times, and (ii) a delta vector ∆~vi, denoting the difference of the current local statistics

vector from the last local statistic vector that Si has transmitted. Based on these two

quantities, Si calculates its drift vector ~ui = ~e + ~vi. Additional optimizations have been

developed in the framework, such as the ability to balance only a portion of the network

in case of violations. In that case, an additional slack vector needs to be maintained and

included in the calculation of the drift vector.

The domain space Rd represents the potential locations of the global statistics vector

at any time. Let all points in Rd where f (~v) ≤ T be colored by the same color (i.e.,

white in Figure 2.1), while the remaining points be colored by a different color (i.e.,

green in Figure 2.1). Because the sites do not perform transmissions at each time

period, the current global statistics vector ~v is not known to the sites. However, what is

guaranteed is that ~v will always lie within the convex hull Conv(~u1, ..., ~un) of the drift

vectors and, thus, within the convex hull Conv(~e, ~u1, ..., ~un) of the drift vectors and

Vasiliki Manikaki 8 April 2017

2.2 The Geometric Approach

the estimate vector. Thus, if Conv(~e, ~u1, ..., ~un) is monochromatic (i.e., either entirely

below/equal to the threshold, or entirely above to the threshold), then all sites are certain

about the color of the function f (), since this will coincide with the color of f (~e). Of

course, each node cannot compute Conv(~e, ~u1, ..., ~un), since it is not aware of the current

drift vectors of other sites. However, an important observation [15] is that if each site

monitors the sphere B(~e, ~ui) constructed with diameter the estimate vector and its own

drift vector, then the union of these spheres covers the convex hull. Thus, it suffices for

each node to simply monitor whether its sphere is monochromatic. If all the spheres are

monochromatic, then the convex hull is also monochromatic and, thus, f (~v) has the same

color as f (~e). Otherwise, nodes transmit their local statistics vectors, and a new estimate

vector is computed and made known to all nodes.

Using Safe-Zones. The more recent work of [11], [12], [13] simplifies the local tests

performed by nodes by having each node test whether its drift vector [12], [13] or its local

statistics vector [11] lies within a convex region, also known as a safe zone. This test is

very efficient and only depends on the complexity of the bounding convex region. Nodes

do not transmit information as long as their local vectors lie within their safe zone. This

condition also makes sure that global threshold violations cannot occur unless at least

one local vector of a node lies outside the safe zone. This method is more effective than

using the simple spherical constraints, as the bounding regions that can be calculated

using a better reference vector than the estimate vector lead to fewer communications.

The most important challenge in this method is appropriately selecting large safe zones.

In the simplest case, each node has the same safe zone regardless of the data distribution,

however there have been optimizations where the shapes of the safe zones are different

for each node [18].

The work in [13] demonstrates how a safe zone can be determined by the intersection

of hyperplanes. In that case, the local test of each node simply checks that a tested

vector lies on the “correct” side of these hyperplanes.

Vasiliki Manikaki 9 April 2017

2. THEORETICAL SCIENTIFIC BACKGROUND

Vasiliki Manikaki 10 April 2017

Chapter 3

Supporting Systems

3.1 Apache Storm

Apache Storm is a distributed real-time computational framework. Storm was created at

Backtype, a social analyticscompany acquired by Twitter in 2011. It became an open-

source project on September 19, 2011 and it is used today by over 60 companies including

Twitter1, Groupon2, Alibaba3, and Spotify4. It is written in both Java and Clojure and

can be used with any programming language. The main properties of Storm are:

• Scalable: Storm can handle an enormous number of messages per second. A

topology can be scaled by adding machines and increasing its parallelism settings.

The topology’s tasks can be assigned to the new machines as soon as they are

added.

• Fault-tolerant: Storm is responsible for reassigning tasks as necessary if faults

(e.g. a worker is down) are discovered during execution of computations and for

making sure that computation can run forever unless killed.

• Guarantees no data loss: Storm never leaves any messages unprocessed. If errors

are detected the messages might be processed more than once, so it is guaranteed

that no message will be lost.

1https://twitter.com/
2http://groupon.co.uk/
3https://alibaba.com/
4https://spotify.com/

Vasiliki Manikaki 11 April 2017

https://twitter.com/
http://groupon.co.uk/
https://alibaba.com/
https://spotify.com/

3. SUPPORTING SYSTEMS

• Extremely robust: Storm clusters are easy to manage and Storm has been built

with novice users in mind.

• Programming language agnostic: Storm is implemented in Java, but it is pos-

sible to use other languages such as Python or Ruby to implement a topology.

• Simple to program: Compared to other real-time processing systems and meth-

ods, writing programs using Storm is quite simple.

• Fast: Storm has been designed with speed in mind and manages to perform real-

time processing quickly (e.g. over a million tuples processed per second per node)

and reliably.

3.1.1 Main Concepts

3.1.1.1 Streams

Streams are unbounded sequences of tuples. Tuples are named list of values of any data

type. The data types supported by Storm are all the primitive types, strings, and byte

arrays, as well as serializable custom objects. Storm allows streams to be transformed

into other streams between its components reliably.

3.1.1.2 Spouts

The role of a storm project is to process streams. Stream emission in a topology is

achieved using spouts. A spout instance can be implemented for reading from many dif-

ferent external sources such as distributed file systems, databases, messaging or queueing

frameworks, and for reading directly from a file as well. They transmit their data to

other components to process them further. Spouts can be configured to emit multiple

streams.

3.1.1.3 Bolts

A bolt is a component that receives tuples as input (from spouts or bolts) and emits

tuples as output (to other bolts). Bolts process input streams by performing a number

of tasks such as running functions, filtering, streaming aggregations, streaming joins and

others. Similarly to spouts, bolts can also be configured to emit multiple streams.

Vasiliki Manikaki 12 April 2017

3.1 Apache Storm

3.1.1.4 Topologies

A specific arrangement of spouts, bolts and their connections is called a topology and

contains the whole application logic. Figure 3.1 shows how the components of a topology

are connected. Each edge in the figure represents a stream subscription. For example,

the first spout sends data to all the first level bolts, while the second spout only sends

data to one of the first level bolts. The components of a topology are also called nodes

and run in parallel. The level of parallelism for each node is defined in the topology’s

configuration and represents the number of threads spawned to perform execution. It is

possible to adjust (decrease or increase) the worker processes without requiring restarting

the topology or cluster. A topology runs forever until it is explicitly terminated.

Figure 3.1: Storm Topology (figure from: http://storm.apache.org/releases/

current/Tutorial.html).

3.1.2 Stream Grouping

A topology needs to define which streams each bolt should receive as input. This is

achieved using stream groupings. Storm offers some built-in groupings, while custom

groupings are also supported. The built-in groupings are the following:

Vasiliki Manikaki 13 April 2017

http://storm.apache.org/releases/current/Tutorial.html
http://storm.apache.org/releases/current/Tutorial.html

3. SUPPORTING SYSTEMS

• Shuffle Grouping: In this grouping tuples evenly and randomly (round robin)

distributed across the tasks. This means that each bolt is guaranteed to get an

equal number of tuples.

• Fields Grouping: A fields grouping is able to group a stream by a subset of its

fields. This means that equal values for that subset of fields go to the same task.

• All Grouping: The tuple is sent to all tasks. All grouping is used to send signals

to bolts.

• Global Grouping: In global grouping all tasks send tuples to a single task, the

one with the lowest ID.

• None Grouping: At the time of this writing, this grouping works the same as a

shuffe grouping. In the future, bolts with this grouping will execute in the same

thread as the component (bolt or spout) they subscribe from, if possible.

• Direct Grouping: In direct grouping, tuples are emitted directly to a specific

consumer task.

• Local / Shuffle Grouping: This grouping is used to emit tuples to task in the

same worker process. If this is not possible, it works similar to shuffe grouping.

3.1.3 Storm Architecture

A Storm cluster has two kinds of nodes: the master node and the worker nodes. The

master node runs Nimbus, a daemon which is responsible for monitoring the cluster for

failures, assigning tasks to machines, and distributing code around the cluster. Worker

nodes run two types of processes: one or more Workers and a single instance of the Su-

pervisor daemon. The Supervisor starts and stops worker processes when necessary by

listening for work assigned by nimbus to the node it runs on. Each worker process exe-

cutes a subset of a topology. A running topology consists of many worker processes spread

across many machines. Storm requires a Zookeeper cluster1 which coordinates Nimbus

and the Supervisors. Zookeeper is a centralized service for maintaining configuration in-

formation, naming, providing distributed synchronization, and providing group services.

Vasiliki Manikaki 14 April 2017

3.2 IBM Proactive Technology Online (Proton)

Figure 3.2: Storm cluster architecture (figure from: http://storm.apache.org/

releases/current/Tutorial.html).

Zookeeper can also store Nimbus’s and Supervisors’ state. The cluster architecture is

shown in Figure 3.2.

3.2 IBM Proactive Technology Online (Proton)

3.2.1 Standalone Proton

At IBM Research - Haifa, a complex event processing platform named Proton - IBM

Proactive Technology Online has been developed. The platform supports both event-

driven and complex event processing applications and one of its strengths is that it

responds to situations instead of just single events. Its engine component utilizes pattern

matching for series of events that occur within a dynamic time window, also known as a

context.

The project is open source, platform-independent, written in Java and is available as

both a J2EE (Java to Enterprise Edition) application and a J2SE (Java to Standared

Edition) application. A Proton development project contains the following definitions:

Vasiliki Manikaki 15 April 2017

http://storm.apache.org/releases/current/Tutorial.html
http://storm.apache.org/releases/current/Tutorial.html

3. SUPPORTING SYSTEMS

Figure 3.3: Proton Authoring Tool and Runtime Engine (figure from: https://github.

com/ishkin/Proton).

events, producers, consumers, temporal contexts, segmentation contexts, composite con-

texts, and event processing agents (EPAs). The combination of these definitions con-

stitutes an Event Processing Network (EPN), which is a directed graph with EPAs and

event classes as nodes.) The Proton engine processes these definitions and takes action

whenever needed, reporting anything that is required to the engine consumers. The above

definitions are described in more detail below.

• Events: The Proton engine continuously receives a number of events while running.

These events contain data related to the application domain (system or user’s busi-

ness) and are represented by classes where the event data is contained within the

class attributes. Event instances include both built-in attributes and user-defined

attributes. The most significant built-in attributes are the following:

– Name: The name of the relevant event class. This is the only attribute that

is mandatory. For the rest, if they have no value, the engine constructs them

and assigns a default value.

– DetectionTime: The Proton engine assigns the time of event detection to

this attribute. The value represents milliseconds that have passed since the

Vasiliki Manikaki 16 April 2017

https://github.com/ishkin/Proton
https://github.com/ishkin/Proton

3.2 IBM Proactive Technology Online (Proton)

Unix Epoch (00:00:00 Thursday, 1 January 1970), a standard way of measuring

time instants.

– OccurrenceTime: This attribute represents a date, which can possibly be

assigned to the event by the source that created it and has the value of the event

occurence time. The default value is equal to the DetectionTime attribute in

cases where the engine finds the value empty.

– Duration: If the event occurs within a time interval, this attribute measures

the duration of the event in milliseconds. The default value is 0.0.

– Certainty: This attribute can have a value between 0.0 and 1.0 and represents

the certainty of the event. The default value is 1.0.

– EventId: The event source may provide a string identification of the event.

The default value that the engine uses if the attribute has no value is an

auto-generated identifier.

– EventSource: This attribute represents the the name of the source of the

event. It has a default empty string value.

In addition to the above, as well as some other attributes such as Annotation, the

event instance can also have user-defined attributes. The only limitation is that

the user-defined attributes must not have the same name as a built-in attribute.

• Producers: Producers are entities that bring events related to the outside world

into the event-processing network. The producers utilize adapters for pushing or

pulling events into the EPN. There are three main adapter types supported:

1. File: With this adapter, the events are read from a given file. The events are

injected either at a constant rate (default file adapter) or in a more sophis-

ticated way (timed adapter) that depends on the relative difference between

the OccurenceTime attribute values of consecutive events in the file.

2. REST: This adapter is a REST client. The events are periodically retrieved

from an external REST service using GET methods. The adapter also pro-

vides a number of parameters that include information on the URL of the

REST service, the content type and the polling mode (single or batch event

instances).

Vasiliki Manikaki 17 April 2017

3. SUPPORTING SYSTEMS

3. Custom: The producer reads events using a custom, user-defined mechanism.

Apart from adapters, the producers can have a number of other parameters such as

polling interval which dictates how often the producer will retrieve events from the

source, input formatters (e.g., json, csv), delimiters to use for distinguishing event

attributes, separators, date formatters and others. Custom adapters may include

additional parameters.

• Consumers: A consumer consumes events generated by the EPN and sends them

to the outside world. Similar to the producers, consumers support a number of

adapter types. Their parameters have names and values and there are built-in

parameters and optional additional parameters. There are three types of adapters:

1. File: With this adapter, the events are written to a given file.

2. REST: This adapter is a REST client. The events are periodically sent to

an external REST service using POST methods. The adapter also provides

a number of parameters that include information on the URL of the REST

service, the content type and an optional authorization token which may be

used for authorization purposes in the POST HTTP request header.

3. Custom: The consumer writes events using a custom, user-defined mecha-

nism.

The consumers also include parameters that define the formatting of the events

(event/date formatters, delimiters, separators, etc.).

• Contexts: Contexts determine when a particular event-processing agent is rel-

evant. The event processing agents (described later) can open multiple context

instances at the same time and evaluations for each open context are made in

parallel. The contexts are divided into three types:

– Temporal contexts: A temporal context defines a time window in which the

event-processing agent is relevant. The context is started by an Initiator and

its termination is done by a Terminator. The temporal context may have

several different kinds of initiators and terminators.

Initiators belong to one of the following types:

Vasiliki Manikaki 18 April 2017

3.2 IBM Proactive Technology Online (Proton)

1. Startup: In this case, the temporal context is open at the beginning of

the run or when the event processing agent is defined.

2. Event: The initiator for the temporal context is a specific event.

3. Absolute time: This defines the exact time that the temporal context

is initiated.

Finally, the initiators employ a correlation policy, which dictates whether to

open a new temporal context if another temporal context instance of this

event processing agent is already open. The default is to not to initiate a new

temporal context if another appropriate temporal context is already active.

Terminators belong to one of the following types:

1. Event: The terminator for the temporal context is a specific event.

2. Relative time: In this case, for the temporal context to terminate, a

predefined time interval from the initiation of the temporal context has

to pass.

3. Absolute time: This defines the exact time that the temporal context

will terminate.

4. Never ends: The temporal context will remain open for the duration of

the run. This is the default option when no other terminators have been

specified for the temporal context.

The terminators specify a quantifier parameter which defines if the first, last

or every temporal context is terminated and in case of a terminating event,

there may be conditions attached to the termination. Their activation is de-

fined according to their order in the temporal context definition. When a

possible terminator event instance is detected by the Proton engine, one or

more temporal context instances of the same temporal context are terminated

or discarded. In case of normal termination, an event-processing agent can

still derive events, while in case of discard the event instances that have ac-

cumulated during this temporal context are discarded, and no detection can

occur for this temporal context instance.

– Segmentation contexts: Events that refer to the same entity are grouped

by a semantic equivalent defined by a segmentation context, according to a

Vasiliki Manikaki 19 April 2017

3. SUPPORTING SYSTEMS

set of attributes. A segmentation context value can be either an attribute or

an expression based on some attribute values of a certain event.

– Composite complex: A composite context groups one or more contexts.

• Event Processing Agents: The event-processing agents are nodes in the directed

graph of the event-processing network and have the following properties:

1. Name: A unique string that identifies the agent.

2. EPA(Operator) Type: This property defines the event detection pattern.

There are several operator types, each with its own set of properties and

operands.

(a) The Basic (Filter) operator is stateless and does not correlate between

its participant events and its function is to detect patterns if the incoming

events pass a threshold condition.

(b) The Join operator where the pattern is detected if all its listed participant

events arrive either in any order (All operator) or in the exact order of

the operands (Sequence operator).

(c) The Absence operator where the pattern is detected if none of the listed

events have arrived during the context.

(d) The Aggregation operator. An Aggregate EPA is a transformation EPA

that takes as input a collection of events and computes values by applying

functions over the input events. These computed values can be used in

the EPA condition and in its derived events.

(e) The Trend operator. Patterns that track the value of a specific attribute

over time are called Trend patterns. This operator is used to detect in-

crement, decrement, or stable patterns among a series of input events and

operates only on a single event type. It can be used to detect trends

among a minimum specified number of event instances.

The timing that patterns are detected and reported is defined by the evalua-

tion policy of the EPA. In the immediate mode, these happen immediately

as long as the conditions of the pattern composition are satisfied. The alter-

native is called deferred mode, in which the patterns are detected at the

Vasiliki Manikaki 20 April 2017

3.2 IBM Proactive Technology Online (Proton)

end of the context. The policy is defined in cases where the all, sequence, ag-

gregation and trend operators are involved. The number of times a pattern is

allowed to be detected in a context is defined in the cardinality policy. The

value of the policy attribute can be either single, where the pattern should

be detected only once or unrestricted, where there is no limit in the pattern

calculation as long as its conditions are satisfied. The policy is defined in cases

where the all, sequence, aggregation and trend operators are involved.

3. Participant Events (Operands): These are the input events to the EPA

and contain several properties, such as name (and alias), condition and con-

sumption. The Condition property is used for event filtering, ignoring the

events that participate in the EPA if they do not satisfy the condition. When

the operator type is join, aggregation or selection, the Consumption property

defines the condition for events to be reused later in the same pattern.

4. Segmentation Contexts: Semantically related events are involved in seg-

mentation contexts employed by the EPA. These events are partitioned accord-

ing to the values of the attributes (or expression) defined by the segmentation

context and for each partition the detection process is performed separately.

Each segmentation context in the EPA must have a segmentation context seg-

ment for every EPA operand and it defines matching only between the EPA’s

operands.

5. Composite Contexts: Several context instances can be open in parallel by

an EPA with a composite context. A composite context instance is open if all

the contexts listed in the composite context are matched. In the case where the

composite context contains a segmentation context, this segmentation context

should be defined over all the event initiators and event terminators of the

temporal contexts of this composite context.

6. Derived Events: These are events that are a composition of events or other

derived events, or content filtering on events, or both. They can be generated

by an EPA after pattern detection and must be specified in the EPA definition,

along with their properties (name, condition and expressions). The name

property corresponds to an already defined event, while the condition property

dictates the circumstances for event derivation, if present (the default is to

Vasiliki Manikaki 21 April 2017

3. SUPPORTING SYSTEMS

derive the event). Expressions are defined for each derived event’s attribute

and provide information on how to calculate the attribute value. The derived

event instances have the same characteristics as an input event, with user-

defined and built-in attributes which are defined in a similar way. The derived

events are re-entered as input events to the system.

EPNs are completely defined in JSON files. These files are created by the Proton Author-

ing tool and include definitions for event types, action types, EPAs, contexts, producers

and consumers. The basic format of the input JSON file is as follows:

“epn”: {
“events”: [],

“epas”: [],

“contexts”: {
“temporal”: [],

“segmentation”: [],

“composite”: []

}
}

The goal of this system is to provide support for a programmer to develop, deploy

and maintain proactive event-driven applications by responding to raw events and iden-

tifying meaningful events within contexts. This means that Proton is able to compute

and emit derived events by applying patterns defined within a context on received raw

events. Proton receives information on the occurence of events from event producers,

detects situations (conditions based on series of events that have occured within a dy-

namic time window), and outputs the detected situations to external consumers. The

Proton architecture includes a run-time engine, producer and consumer adapters and an

authoring tool (see Figure 3.3).

The main functional components of the Proton architecture and the interaction among

them are presented below:

Vasiliki Manikaki 22 April 2017

3.3 Redis

• Adapters: User-defined producers and concumers for event data are translated

into input and output adapters in Proton execution time and represent the com-

munication of Proton with external systems.

• Parallelizing agent-contexts queues: Used for parallelization of processing of

single or multiple event instances.

• Context service: For managing of context’s lifecycle -initiation of new context

partitions, termination of partitions based on events/timers, segmenting incoming

events into context groups which should be processed together.

• EPA manager: For managing Event Processing Agent (EPA) instances per con-

text partition, managing its state, pattern matching and complex event derivation

based on that state.

3.2.2 Proton on Storm

The Proton on Storm architecture is similar to the Proton standalone architecture, in-

cluding the queues, the context service and the EPA manager. These logical components

are implemented using Storm primitives such as spouts and bolts. The Proton on Storm

topology is shown in Figure 3.4. The Routing bolt has multiple independent parallel in-

stances running and determines the routing metadata of an incoming event. Afterwards,

it adds the agent name and the context name to the event tuple and sends the tuple the

next logical component which is the Context bolt. The Context bolt processes the tuple,

adds more metadata and sends the tuple to the EPA manager bolt. The EPA manager

bolt performs pattern matching and if it detects a derived event it sends it back into the

Routing bolt.

3.3 Redis

Redis1 (REmote DIctionary Server) is a NoSQL fast in-memory key-value store which is

used when performance and scaling are important. As the keys can contain strings, lists,

sets, hashes and other data structures, Redis is also known as a data structure server.

1https://redis.io/

Vasiliki Manikaki 23 April 2017

https://redis.io/

3. SUPPORTING SYSTEMS

Figure 3.4: Architecture of Proton on Storm.

Redis is used in this work for its implementation of the publish/subscribe messaging

paradigm. In it, the components that are registered as publishers send messages to

assigned channels without knowing who their receiver will be. On the other hand, the

subscribers express interest in a number of channels and receive messages through them

without knowing who sent them. This paradigm is suitable for inter-node communication,

since the publishers do not need to be aware of the nodes they are sending their mesages

to and the number of nodes throughout the run of the system may change. In this work,

Redis subscriber queues are used in the entry points of each node to receive broadcasted

information from the node network and process it accordingly.

Vasiliki Manikaki 24 April 2017

Chapter 4

System Architecture and Setup

4.1 Network Architecture

Figure 4.1: Architecture example with

multi-star micro-coordinators.

Figure 4.2: Query Optimizer’s Place in

the Architecture.

This work attempts to develop an architecture that is able to support in-situ pro-

cessing of distributed, continuous data streams in a flexible scalable and communication

efficient way. In this section, the basic components of this architecture will be presented.

The distributed environment of the architecture comprises a number of potentially

geographically dispersed data collection entities, termed sites (also known as network

Vasiliki Manikaki 25 April 2017

4. SYSTEM ARCHITECTURE AND SETUP

nodes or just nodes) that participate in complex event processing. All the sites consti-

tute a streaming cloud platform with an installed topology as described in section 4.2.

One of the sites, however, has an additional functionality enabling it to act as a query

Optimizer. This query Optimizer is an essential part of the architecture, as it enables

the generation of optimal plans that efficiently balance communication cost and com-

plex event detection latency. Each site of the network is responsible for monitoring its

own stream of events and the Optimizer is responsible for providing plans that manage

inter-site communication for the timely detection of complex events. In essence, it breaks

down a global Complex Event Processing Expression to sub-queries that are distributed

to local sites and define the Complex Event Processing Expression to be monitored at

each local site.

The query Optimizer is considered as a distinct, daemon-like entity in the architecture.

Despite the fact that the Optimizer resides in a specific site of the distributed network,

its inclusion in this site does not affect the remaining fuctionality of that site. Therefore,

this allows, for conceptual reasons, to consider the Optimizer cut off the underlying

distributed architecture and be treated as a distinct object (not as part of a specific site)

that can interact with all the sites. This distinction can be seen in Figure 4.2.

Additionally, in order to facilitate the in-situ processing, the Optimizer selects a

number of sites that act as CEP coordinator sites (namely micro-coordinators or mini-

coordinators). These sites are responsible for answering specific parts of a query and

for supporting all necessary communication for detecting complex events regardless of

the source that generated them. Any of the existing sites can take the role of micro-

coordinator and there may be many micro-coordinators inside the network. The CEP

coordinators are able to communicate (link) with every source site that is needed for plan

execution. Each micro-coordinator essentially is the central node of a star network topol-

ogy, therefore the whole architecture constitutes a multi-star topology. In Figure 4.1, such

an architectural scheme can be seen, where there are three micro-coordinators (marked

as “CEP Coordinator”) that are linked with every site (marked as “CEP Source”) that is

needed for plan execution. It is important to mention that each site may simultaneously

be a source site and a CEP micro-coordinator, depending on the Optimizer’s planning.

A micro-coordinator is, in essence, a site where operators upon event types are in-

stalled. This means that it expects the other sites to send it event types that are relevant

i.e., events involved in the installed operator. The best communication paradigm to use

Vasiliki Manikaki 26 April 2017

4.2 Intra-Site Architecture

for this purpose is called push/pull [9] and the Optimizer produces plans that take full

advantage of it. In this paradigm, the Optimizer instructs the micro-coordinators, which

in turn instruct the source sites, which instances of event types to send immediately

(push mode events) and for which event types communication should be postponed (pull

request). The push/pull paradigm is efficient because if the micro-coordinator instructed

the rest of the sites to communicate all events involved in the installed operator when they

occurred, it would greatly increase the communication cost. Furthermore, if the micro-

coordinator postponed the transmission of an event tuple to the micro-coordinator, it

would delay the evaluation of the installed operator(s), increasing a potential event’s

detection latency.

Another key element of the architecture is the use of communication efficient dis-

tributed methods for monitoring global functions by a partitioning of the global func-

tions to distributed local functions that communicate only if needed. This is achieved

using geometric monitoring techniques (described in section 2.2) generally used in de-

tecting events, which are emitted when a function, computed over the data of different

distributed nodes, has crossed a specific global threshold. For this purpose, all the sites

have been designed to support generic geometric monitoring tasks, i.e. each monitoring

task is defined using a vector of statistics derived at the sites, a function to be applied

on the average of these vectors and a threshold value.

4.2 Intra-Site Architecture

The architecture’s intra-site processing is built on top of a streaming cloud platform,

namely Apache Storm. Each site runs its own Storm instance, including its own Zookeeper

and Nimbus nodes. A Storm site instance runs both the Proton CEP and a block of com-

ponents that are involved in the complex event processing and implement the push/pull

paradigm and the geometric monitoring operators. Since it was important to keep the

architecture as generic as possible, whether a site is also a micro-coordinator or not does

not affect the composition of its Storm components. However, the Geometric Monitoring

(GM) operator is more complex than the other supported operators, therefore it requires

a few additional components for its implementation.

The intra-site architecture is described in this section. Each site’s Storm topology

contains spouts, which read data from files or receive events from other sites and several

Vasiliki Manikaki 27 April 2017

4. SYSTEM ARCHITECTURE AND SETUP

different bolts, as illustrated in figure 4.3. A site’s Storm topology comprises the follow-

ing components:

Figure 4.3: Intra-site Architecture.

4.2.0.1 Input Spout

The Input spout is the intra-site architecture’s event entry point. Its task is to parse

event definitions generated from remote data sources, create the corresponding primitive

events and propagate them to the Proton CEP engine.

4.2.0.2 TimeMachine Bolt

The TimeMachine bolt acts as a buffer component for the architecture that stores three

different kinds of information:

• Events received from the CEP engine. These events are potentially requested by

the CEP micro-coordinator sites and this component’s task is to forward them to

the requested sites.

Vasiliki Manikaki 28 April 2017

4.2 Intra-Site Architecture

• lsv values that are produced from the GateKeeper. When a GM operator is de-

ployed in the system, the TimeMachine is required to buffer the lsv values for each

monitoring function.

• Statistics. The TimeMachine stores some statistics that the Optimizer requires for

producing new more optimal plans for the sites.

Additionally, the TimeMachine maintains a state for each monitoring function that holds

one of two values, either “pause” or “play”, which enables it to pause and replay the data

that feed the GateKeeper in case of a violation occurrence.

4.2.0.3 GateKeeper Bolt

The GateKeeper bolt is a component that is used only in cases where the GM operator

is involved. This component is responsible for detecting local violations and initiating

local violation resolution procedures. Practically, the role of this bolt is to investigate

whether the monitoring function at the local node is above or below the local threshold

previously received from the GM micro-coordinator.

The events that the GateKeeper receives come from the TimeMachine bolt. The

GateKeeper’s task is to verify that the monitoring function computed on the event data

does not cross the threshold value and as long as the local threshold has not been passed,

no output is produced. If the received values surpass the threshold, the GateKeeper

reports the lsv value to the Communicator bolt, which proceeds to negotiate with the

GM micro-coordinator.

The GM operator is placed at a specific node (GM micro-coordinator). In this node,

the role of the GateKeeper bolt is twofold. Apart from the previously described function-

ality, this bolt is also responsible for resolving local violations and detecting when they

result in a global constraint violation. Additionally, as time passes, the coordinator part

of the GateKeeper bolt adjusts the local threshold for each node. The nodes in which

local violations are more frequently detected, receive a higher threshold value, which

generally reduces the number of local violations for these nodes and the communication

load.

Vasiliki Manikaki 29 April 2017

4. SYSTEM ARCHITECTURE AND SETUP

4.2.0.4 Communicator Bolt

The Communicator bolt is the only component of the intra-site architecture with the

ability to send messages to other nodes. To achieve that, it includes a Redis sender.

Redis is the tool in the architecture that is used for inter-site communication.

The first responsibility of the Communicator bolt is to interact with the GM micro-

coordinator, i.e. to resolve local violations and to participate in the resolution of violations

that originated at other nodes. When the Communicator is invoked, either due to a local

violation reported by the GateKeeper, or due to a lsv request sent by the Coordinator,

it sets the TimeMachine to the “pause” state. Once the violation recovery procedure

has been completed, the Communicator changes the state of the TimeMachine to the

“play” state and the GateKeeper continues to receive aggregate update events starting

at the value held by the time pointer at the TimeMachine when it first transitioned to

the “pause” state.

Due to its unique ability to communicate with the other sites of the network, the

Communicator’s second responsibility is to request events from other nodes that are

relevant to the requesting node’s installed operator. Furthermore, it propagate events

that are required from other nodes in order to execute query plans and in order to manage

overlapping pull requests for the same event types, it is equipped a structure reserving

the pull requests.

4.2.0.5 PushAndPull Spout

The PushAndPull spout is the component that receives pushed events from other sites

(through Redis) and feeds them to the Proton CEP engine.

4.2.0.6 RedisPubSub Spout

The RedisPubSub spout (also known as Communicator spout) is the main listener com-

ponent of the inter-site communication. It receives messages from different sources and

sends them through Storm to the appropriate bolts for further processing. The Redis-

PubSub spout is the component that receives the initialization messages coming from

the query Optimizer which include all the necessary information for the initialization of

the node. Once the Communicator spout receives this information, it forwards it to all

the components that need it for their initialization. Furthermore, in GM source nodes,

Vasiliki Manikaki 30 April 2017

4.3 System setup

this spout also listens to all the messages coming from the GM micro-coordinator, i.e.

LSV requests, violation resolutions and new threshold values. If a node is also a GM

micro-coordinator site, then its RedisPubSub spout registers an additional Redis listener

in order to receive the messages destined for the GM micro-coordinator, i.e. local vio-

lation reports and LSV values. These messages are then forwarded to the coordinator

part of the GateKeeper bolt. Finally, this spout is the component that receives event

requests from other nodes sent from their Communicator bolt, concerning the push/pull

paradigm, as described in section 6.2.

4.2.0.7 Routing Bolt

The Routing bolt is the first component of the Proton CEP engine developed in IBM

Haifa and is responsible for routing all events to the CEP processing bolts. All the

events either primitive coming from sources, derived coming from the EPAManager bolt

or pushed events coming from other sites pass through this bolt. The Routing bolt has

been upgraded to support the push/pull functionality, the collection of statistics and

query plan adaptivity.

4.2.0.8 Context Bolt

The Context bolt implements the context service functional component of Proton. It

receives input from the Routing bolt and is responsible for managing of context’s lifestyle.

4.2.0.9 EPAManager Bolt

The EPAManager bolt is the third and last component of the CEP topology. This bolt,

after receiving events from the Context bolt, performs pattern matching and if it detects

a derived event it routes it back to the Routing bolt.

4.3 System setup

In the previous section, the architecture and system components have been described.

The setup of the network and the sites’ role (source or coordinating sites) in it are defined

by the Optimizer, which supervises the whole network and is described in the following

sections.

Vasiliki Manikaki 31 April 2017

4. SYSTEM ARCHITECTURE AND SETUP

4.3.1 Optimizer

The Optimizer has its own Apache Storm topology that consists of the Optimizer spout

and the Optimizer bolt, as illustrated in Figure 4.4. The basic focus of the Optimizer

is to provide a set of optimal plans and subsequently supervise the plans’ performance.

The query Optimizer needs two basic sets of information as input parameters in order to

execute the plan generation algorithms; the network parameters and the set of queries.

Those two pieces of information, which is a priori knowledge of the network, is fed into

the query Optimizer through external communication and read by the Optimizer spout.

The external communication can take whichever form is suitable (e.g., Sockets, REST

communication, etc.). Once this information is received by the Optimizer spout, it is

sent through Storm messages to the Optimizer bolt of the query Optimizer where all the

algorithms for plan generation are executed. In the next section, the parameters required

from the Optimizer for network setup are described.

Figure 4.4: Query Optimizer’s Work Flow.

Vasiliki Manikaki 32 April 2017

4.3 System setup

4.3.2 Optimizer Input Parameters

The Optimizer input parameters can be the result of two different programs running

outside of the desired network and are sent to the Optimizer spout with the aforemen-

tioned external communication method. The Optimizer expects all parameters to have

been received before the plan generation process begins, namely the network parame-

ters which give an overall picture of the network distributed sites, as well as their input

event streams and additionally the set of queries that the user needs to impose upon

the event streams. At this point, the Optimizer can create an outline of the network (a

network graph) and an outline of the query set (an event detection graph), two necessary

structures for the plan generation process.

4.3.2.1 Network Parameters

The network parameters are divided into two sections. The first section includes informa-

tion concerning each site and its connectivity with all other sites (measured in latency)

and provides an overview of the underlying distributed network. The second section con-

tains the type of the incoming events for each site along with their respective frequency

and provides a first view of event distribution across the distributed sources. Although

both communication latencies and event frequencies may vary or change significantly

over time, it is necessary for the plan generation algorithms to have a first view of the

parameters upon which they should optimize performance.

The network parameters file is a csv file with one line per site and the following for-

mat:

siteName ; nameOfTheSite ; links ; anotherSiteName ; interSiteLatency ; events ;

eventName ; evenNameFrequency.

The keywords sitename, links and events cannot be altered whereas the rest are vari-

ables and are set accordingly. For the purposes of demonstration, the following csv file

will produce the simple star-topology network depicted in Figure 4.5:

Network parameters csv example file:

siteName ; site1 ; events ; CallPOPDWH ; 0.04;

siteName ; site2 ; events ; CallPOPDWH ; 0.09;

siteName ; site3 ; events ; CallPOPDWH ; 0.09;

siteName ; site4 ; events ; CallPOPDWH ; 0.15;

Vasiliki Manikaki 33 April 2017

4. SYSTEM ARCHITECTURE AND SETUP

siteName ; cent1 ; links ; site4 ; 14 ; site3 ; 13; site2 ; 12 ; site1 ; 11 ; events ; CallPOPDWH

; 0.1;

Figure 4.5: Network Graph Example.

4.3.2.2 Set of Queries

The set of queries is typically a JSON file. This input JSON file contains the description

of an EPN (Event Processing Network), which consists of all the submitted queries in

the form of EPAs (Event Processing Agents). Each EPA has its own input and output

(derived) events as well as the derivation logic (meaning the operator and the temporal

and/or segmentation context of derivation). The events (raw and derived) are specified

along with every attribute they carry. All the existing contexts in the various EPA’s are

also specified in the input JSON file as well as the optimization parameters based on

which the plan generation algorithms will run. The basic format of the input JSON file

is as follows:

“epn”: {
“optimization”: { },
“events”: [],

“epas”: [],

“contexts”: {

Vasiliki Manikaki 34 April 2017

4.4 Dynamic Node Manipulation

“temporal”: [],

“segmentation”: [],

“composite”: []

}
}

4.3.3 Plan Generation

The plan generation process is the query Optimizer’s main task. More specifically, the

Optimizer creates a globally optimal (given the optimization objective) distributed plan

for answering the given queries. This globally optimal plan is then broken down to

each site’s plan, subsequently transformed to JSON files ready to be shipped to each

site for system setup. Additionally, if a GM operator exists within the input EPN, it is

transformed to a configuration file which is also sent to each site. The main work of the

Optimizer is finalized with the shipment of an EPN JSON file for each site along with

the GM configuration files (if a GM operator is specified) through Redis communication

channels.

4.4 Dynamic Node Manipulation

The capability to extend the network of nodes with new sites has been implemented.

Furthermore, the system has been built to handle node or communication failures. It

covers the case where a node has been requested from other remote nodes to send some

events and due to network transient failure it is unable to do so for a time.

4.4.1 Registering New Nodes

Laboratory setups assume that the number of sites participating in the monitoring task

is fixed and known in advance. However, the system enables the extension of the network

by adding new nodes. To achieve this, the Optimizer spout is always listening for input

concerning the insertion of new nodes to the network. This input is an extension of

the network parameters file as described in section 4.3.2.1. It contains all the required

information regarding the new node in relation to the existing nodes. An example network

parameters file for a new node named cent3 is shown below:

Vasiliki Manikaki 35 April 2017

4. SYSTEM ARCHITECTURE AND SETUP

siteName ; cent3 ; links ; cent1; 25 ; events; CallPOPDWH; 0.0009 ;

The file is then sent to the Optimizer bolt. The Optimizer bolt, after receiving this file

and producing new plans, it sends them to the whole network for setup as described in

section 6.1.

4.4.2 Managing Communication Failures

Since the Communicator component is able to recognize if communication issues exists

due to Redis being used for inter-site communication, it has the capability to delay

sending requested events until the problem has been fixed. It includes a queue structure

that buffers the postponed events and their timestamp of the moment they would have

been sent if there was no communication problem. When the communication issue has

been resolved, the Communicator empties its queue of events and sends them to the

requested nodes in the order they were stored. The messages that carry the events include

the time delay that occurred due to the communication failure so that the receiving nodes

can be made aware that there was a delay for these events.

Vasiliki Manikaki 36 April 2017

Chapter 5

Geometric Monitoring

Implementation

This chapter describes in more detail the geometric approach for function monitoring over

a distributed system. The first three sections describe the implementation details about

handling the monitoring functions. The first section describes the monitoring functions,

their class hierarchy and their methods and attributes. The second section presents the

methodology for detecting local violations. Finally, the third section describes the ability

of the system to dynamically add new functions and select which function to monitor at

runtime.

In the fourth section of this chapter, the node’s setup for supporting the GM operator

is described. Finally, in the last section the GM operator work flow is presented through

an example, which poses a distributed counter problem that aims to detect all the sub-

scribers of a cellular network that have made more than a given amount of calls in the

last n hours. The method used by the TimeMachine bolt which handles the time delays,

as well as the two implemented methods that allow the GM Coordinator to distribute

the global threshold in a dynamic way are described at the end of this chapter.

5.1 Function Hierarchy

To allow the dynamic addition and monitoring of new functions, the function class hi-

erarchy has been designed appropriately, focusing on facilitating the extension of the

Vasiliki Manikaki 37 April 2017

5. GEOMETRIC MONITORING IMPLEMENTATION

Function
+monitoringVariables : FunctionState
+nodeData: NodeState[*]

+F(X:Real[*]): Real
+hasLocalViolation(NodeID:Integer): Boolean
+deleteNode(NodeID:Integer): Boolean
+update(NodeID:Integer,Tuple:Tuple): void

SafeZoneFunction

+safeZones: ConvexRegion[*]

+hasLocalViolation(NodeID:Integer): Boolean
+computeSafeZones(): void

BallFunction

+hasLocalViolation(NodeID:Integer): Boolean

ConvexRegion

+powers: Real[*]
+factors: Real[*]

+hasSafeZoneViolation(estimate:Real[*],drift:Real[*],inequality :String): Boolean

VarianceBall

+F(Real[*]): Real

VarianceSafeZone

+F(Real[*]): Real
+computeSafeZones(): void

FunctionState
+threshold: Real
+inequality: String = (">", "<", ">=", "<=")
+estimate: Real[*]

+setEstimate(newEstimate:Real[*]): void

NodeState
+lsv: Real[*]
+dv: Real[*]
+drift: Real[*]
+lastSent: Real[*]
+lastValues: Tuple[*]
+lsvSise: Integer

+ updateLSV(): void
+update(Tuple): void
+updateLastSent(): void
+updateDV(): void
+setDriftVector(): void

VarianceBNodeState

+updateLsv(): void

VarianceSZNodeState

+updateLsv(): void

Figure 5.1: Function Class Hierarchy.

available implemented function classes. The UML class diagram of figure 5.1 shows the

implemented hierarchy.

The abstract class Function represents the core elements that the geometric approach

contains. In this class, the abstract method F must be provided for all developed functions

and simply returns the value of the function, computed over a multidimensional point

in the input domain. When an instance of a function is created, this is done by also

specifying two important parameters: a threshold value and a parameter inequality,

which may obtain one of four possible values “>”, “<”, “≤”, “≥”. A distributed event is

then detected when the condition f(v) inequality threshold becomes true. For example,

when inequality = ‘‘ >”, an event is detected when f(v) > threshold. Once an event

is detected, it remains valid for the entire time until another global violation occurs,

meaning that the monitored condition has stopped being true.

In order to minimize the implementation overhead when adding new monitoring func-

tions, a significant part of the functionality of the geometric approach has been imple-

mented in the architecture, either at the most general Function class, or at the two

abstract classes BallFunction and SafeZoneFunction.

The most general Class (Function) contains two types of variables. The monitoringVariables

parameter contains information related to the function input parameters (threshold,

Vasiliki Manikaki 38 April 2017

5.1 Function Hierarchy

inequality) and the estimate vector estimate. The nodeData parameter contains the

following information for the node:

• The most recently received data (lastValues variable in the NodeState class).

The addition of this data is done through the update method. All stored tuples

are accompanied by the corresponding timestamp that specifies when they were

produced.

• The current local statistics vector (lsv) of the node. This is calculated, if re-

cent data arrives, through the abstract method updateLSV. For each new declared

function, this method must be defined in a subclass of NodeState. The parameter

lsvSize specifies the dimension of the lsv vector.

• Parameters relevant to the geometric approach, such as the drift vector drift,

the delta vector dv from the last transmission of this node, a vector lastSent

containing the last transmitted lsv vector, and the corresponding methods that

update the values of these parameters.

Besides the abstract F method that has already been mentioned, the class Function

also contains some additional methods. The abstract hasLocalViolation method an-

swers whether a local violation has occurred using the geometric approach. The hasLocalViolation

method is defined in a different way for the two subclasses of Function. The BallFunction

and SafeZoneFunction classes contain important functionality regarding the detection

of events. The hasLocalViolation method is implemented in both the BallFunction,

as well in the SafeZoneFunction subclasses.

Any function that wants to use the original technique with the spheres simply needs

to:

1. Create a subclass of BallFunction that provides the code for the F method

2. Create a subclass of NodeState that provides the code for the updateLSV method

The SafeZoneFunction class inherits the BallFunction class to accommodate the

case where a function is defined that uses a safe zone only when the estimate vector

lies on one side of the threshold, while checking for a local violation using the spheres

in the other case. A safe zone is determined by the intersection of one or more convex

Vasiliki Manikaki 39 April 2017

5. GEOMETRIC MONITORING IMPLEMENTATION

regions (class ConvexRegion). Given the value of lsvSize, and two vectors factors and

powers (having a dimensionality of lsvSize+1 and lsvSize, respectively) each convex

region is defined as the set of points P that satisfy a multivariate polynomial of the form:∑lsvSize
i=1 factors[i] ∗ P [i]factors[i] = factors[lsvSize].

When developing the code for a function that uses safe zones, one simply needs to:

1. Create a subclass of SafeZoneFunction and provide the code for the F method

2. Create a subclass of NodeState that provides the code for the updateLSV method

3. Provide the method computeSafeZones that computes the safe zone to use when-

ever the estimate vector is updated.

With this hierarchy, it is now possible to implement monitored conditions over func-

tions with little implementation effort.

5.1.1 Implemented Sample Functions

5.1.1.1 Average Ball Function

Figure 5.2: Graph of function Average (Threshold = 100)

This is a subclass of Ball Function, in which the objective is to determine whether a

two-dimensional estimate vector has an L2 norm lower/greater than a given threshold.

In this function, the LSV structure stores the last two values that have been received.

Vasiliki Manikaki 40 April 2017

5.1 Function Hierarchy

The index (0 or 1) of LSV where the most recent value is stored is alternating between

the two indices. For example, the first value received is stored in LSV[0], the second in

LSV[1], the third in LSV[0], the fourth in LSV[1] and so on. This function is defined as:

LSV [0] ∗ LSV [0] + LSV [1] ∗ LSV [1].

Practically, this function tries to determine if the actual average of LSV is inside the

sphere with radius
√
threshold. An example graph of the average function is shown in

Figure 5.2

5.1.1.2 Average Safe Zone Function

This is a subclass of Safe Zone Function. The only difference from Average Ball Function

is the way local violations are detected. This class implements the computeSafeZones()

method and uses the computed safe zones to investigate for local violations. The imple-

mentations of updateLSV() and f() remain the same as in Average Ball Function.

5.1.1.3 Variance Ball Function

Figure 5.3: Graph of function Variance (Threshold = 100)

Vasiliki Manikaki 41 April 2017

5. GEOMETRIC MONITORING IMPLEMENTATION

This is a subclass of Ball Function, In this function, the LSV structure stores the

square of the last value that has been received for each Node ID (LSV[0]) and the last

value itself (LSV[1]). This function is defined as:

LSV [0]− LSV [1] ∗ LSV [1].

An example graph of the variance function is shown in Figure 5.3

5.1.1.4 Variance Safe Zone Function

This is a subclass of Safe Zone Function. Similar to the Average Safe Zone Function, this

class implements updateLSV(), f() and computeSafeZones() to detect local violations for

the variance function using the safe zone technique.

5.2 Local Violation Detection

Two methods are used to detect a local violation. In both cases, a threshold T is defined.

5.2.1 Ball Technique

In this method, a ball is constructed which is centered at:

estimate+ driftV ector

2

has a radius of: ∥∥∥∥estimate− driftV ector2

∥∥∥∥
and a grid is applied inside the ball. The local constraint on each node is set as follows:

each node investigates if the value of the monitored function on the estimate vector and

the value of the monitored function on all the ball’s points, at that time, are on the

same side of the threshold. Depending on whether it is considered a local violation if

the function’s value is equal to the threshold, there are two cases: In the first case, the

function value’s equality with the threshold is classified in the region above the threshold.

Then, a local violation occurs if the following condition is true:

Vasiliki Manikaki 42 April 2017

5.2 Local Violation Detection

if((F(estimate) < T and F(all ball’s point) ≥ T) or

(F(estimate) ≥ T and F(all ball’s point) < T))

In the second case, the function value’s equality with the threshold is classified in the

region below the threshold and a local violation occurs if the following condition is true:

if((F(estimate) ≤ T and F(all ball’s point) > T) or

(F(estimate) > T and F(all ball’s point) ≤ T))

If there is at least one ball’s point that violates this constraint then the node detects a

local violation and emits a notification to the GM Coordinator. In the following figures

it is investigated if there are local violations for the average function. The first two

cases (Figures 5.4 and 5.5) show two local violations in which it is apparent that the

ball (sphere) is not monochromatic. While the function’s value on the estimate vector

(f(e)) is below the threshold T , there are some ball points for which the function is over

the threshold. In Figures 5.6 and 5.7 there is no local violation because f(e) and the

function’s value on all the ball’s points are on the same side of T .

Figure 5.4: Local Violation in Average

Function - Ball Technique
Figure 5.5: Local Violation in Average

Function - Ball Technique

Vasiliki Manikaki 43 April 2017

5. GEOMETRIC MONITORING IMPLEMENTATION

Figure 5.6: No Local Violation in Aver-

age Function - Ball Technique
Figure 5.7: No Local Violation in Aver-

age Function - Ball Technique

Vasiliki Manikaki 44 April 2017

5.2 Local Violation Detection

5.2.2 Safe Zone Technique

In this method, safe zones induced by the combination of the monitored function and the

threshold value are defined. The area where f(v) < T is denoted as the admissible region,

while the area where f(v) ≥ T is denoted as the inadmissible region. If f(estimate)

lies in the admissible/inadmissible region and that region is convex, then this entire

area can be used as a safe zone. Otherwise, one can define a proper subset of the

admissible/inadmissible region, covering the location of the estimate vector, that is convex

and utilize it as a safe zone. If f(estimate) and f(driftV ector) lie on the same side of

the safe zone, then there is no local violation. If there aren’t any defined safe zones, then

the ball technique is used instead.

For the above functions, when f(estimate) lies inside a function area, the function

area itself is considered a safe zone (Figures 5.8, 5.9, 5.12, 5.13). In the case where the

estimate vector is outside the function area, the safe zones are defined separately for each

function. In the average function, the safe zone is defined as the plane perpendicular to

the estimate vector that passes through the point
√

T∗estimte
||estimate|| (Figures 5.10 and 5.11). On

the other hand, in the variance function the safe zone is defined as the plane perpendicular

to the x axis that passes through the threshold (The “V ar(X + a) = V ar(X)” property

of the variance function allows moving the estimate vector to always have a zero mean

after a synchronization, in this way it is only needed to check if LSV[0] has increased by

a given max amount) (Figures 5.15 and 5.14).

Vasiliki Manikaki 45 April 2017

5. GEOMETRIC MONITORING IMPLEMENTATION

Figure 5.8: No Local Violation in Aver-

age Function - Safe Zone Technique.

Figure 5.9: Local Violation in Average

Function - Safe Zone Technique.

Figure 5.10: Local Violation in Average

Function - Safe Zone Technique.

Figure 5.11: No Local Violation in Av-

erage Function - Safe Zone Technique.

Vasiliki Manikaki 46 April 2017

5.2 Local Violation Detection

Figure 5.12: No Local Violation in Vari-

ance Function - Safe Zone Technique.

Figure 5.13: Local Violation in Variance

Function - Safe Zone Technique.

Figure 5.14: No Local Violation in Vari-

ance Function - Safe Zone Technique.

Figure 5.15: Local Violation in Variance

Function - Safe Zone Technique.

Vasiliki Manikaki 47 April 2017

5. GEOMETRIC MONITORING IMPLEMENTATION

5.3 Supporting Extensibility to New Monitored Func-

tions

Since one of the goals of this system is to support the detection of distributed events,

it was important not to limit the monitoring capabilities of the system to just a set of

functions installed during the system deployment, but also to enable the monitoring of an

unlimited number of functions. The previous sections described two of those functions,

the average function and the variance function. This section will describe and explains

the methodology deployed in this work regarding the dynamic loading of .jar files for

any new monitored functions from the bolts involved in the distributed event detection

process.

To add a new monitoring function to the system, an implementer needs to do the follow-

ing:

1. Implement a subclass of Function: The system provides the Function ab-

stract class and uses its abstract methods to perform monitoring. The already

implemented Average and Variance functions derive from Function. The bolts keep

a hash map of monitoring functions which are all subclasses of Function. This

means that if such subclasses of Function are loaded by the system, they can be

used and be monitored normally.

2. Create a .jar file containing the implemented class: After implementing the

subclass(es), the implementer must package them into a .jar file so that they can

be loaded dynamically.

3. Distribute the .jar file to all machines involved: The new .jar file needs to

be accessible by the system, which means that all the machines are required to

have access to the function implementation inside the .jar. To achieve this, the

implementer needs to put the file in an accessible location which has to be defined

and be known in advance so that all the machines will have access to it.

In case a bolt is instructed to monitor a function, it would first check for the required

.jar file at a local directory and, if not found there, would then search for it at the global

specified location. This process allows the system to continuously add new monitoring

functions without having to restart or affect the deployed topology.

Vasiliki Manikaki 48 April 2017

5.4 Geometric Monitoring Operator Initialization

5.4 Geometric Monitoring Operator Initialization

The Geometric Monitoring Operator initialization requires the communication of four

different components, the Optimizer, the RedisPubSubSpout, the GateKeeper and the

TimeMachine. In order, the responsibility of each component is:

• The Optimizer sends the configuration file to all the sites that participate in the

network. This file includes all the necessary information for setting up the geometric

operators that may be involved in the system.

The parameters included in the GM configuration file are listed below:

– globalThreshold: The global threshold value, which is split into local thresh-

olds, one for each node, such that their sum is equal to the global threshold.

– numBillingNodes: The number of sites that participate in the function mon-

itoring procedure.

– equalityInAboveThresholdRegion: The inequality parameter described in

section 5.1

– defLSVValue: When the GM coordinator requests from the site to send their

LSV values, it is possible that some sites have not yet received any monitoring

data and for this reason they need an default lsv value to transmit to the

coordinator. The most common default lsv value is zero.

– dynamicThreshold: It is a boolean variable that determines the threshold

distribution strategy between the sites. The two implemented strategies are

described in section 5.5.1.2.

– functionName: The name of the monitoring function.

– functionLocation: The location of the implementation of the monitoring

function. It can be either a local path or a globally accessible path (e.g.,

network drive, distributed file system).

– isCoordinator: This parameter determines whether the local site that re-

ceives the configuration file has the additional role and functionalities of the

GM micro-coordinator. If the parameter is false, then the site acts only as a

GM source site.

Vasiliki Manikaki 49 April 2017

5. GEOMETRIC MONITORING IMPLEMENTATION

• The RedisPubSubSpout receives the configuration file and forwards it to the

other three bolts. The parameters that each bolt requires are different.

• The GateKeeper receives information about the monitoring function, the initial

threshold value and the default local statistics vector (lsv) value to be used initially

since the monitoring is performed at each site. During event processing, the Gate-

Keeper produces additional lsv values that are then sent to the TimeMachine. In

the coordinating part of the GateKeeper (GM coordinator), the additional informa-

tion required is the number of sites that are monitoring the GM and, optionally, if

the dynamic threshold functionality will be used so that threshold splitting among

the source sites will be performed.

• The TimeMachine buffers the received lsv values and is also responsible for paus-

ing and replaying the data in case of local violation occurrence. For this reason it

requires information regarding the monitoring function in order to set the relevant

structures that buffer the lsv values.

More details about the functionality and work flow of the GM operator will be presented

in section 5.5.

5.5 Geometric Monitoring Operator Work Flow

The Geometric Monitoring (GM) operator is different from ordinary complex event

queries and requires an elaborate work flow, which will be described in this section.

The Optimizer creates geometric monitoring plans and sends them to the GM micro-

coordinator sites, which have the GM operator installed. Even though the sites are

designated as GM micro-coordinator sites, they still function as source sites. The basic

site components (bolts) that participate in the plan are the GateKeeper, the TimeMa-

chine and the Communicator. The typical geometric monitoring work flow, as dictated

by the plans, is divided into two steps:

• In the first step, the designated sites continuously monitor the assigned thresholds

and detect local violations. When local violations occur, the local statistics vectors

of the sites are sent to the coordinating site.

Vasiliki Manikaki 50 April 2017

5.5 Geometric Monitoring Operator Work Flow

• The second step deals with local violation resolution in the event of violation de-

tection. If it is determined that the local violation is also global, a complex event

that designated this fact is generated.

The next section presents a specific example of geometric monitoring operator work flow

and describes the messages and events that are propagated throughout the system and

the whole procedure in more detail.

5.5.1 The Mobile Fraud Example

The GM monitoring operator work flow example that is going to be investigated in this

section concerns the detection of mobile network subscribers with an abnormally high

rate of outgoing calls. The example is as follows. A mobile network provider has set up a

network of mobile cell towers (i.e. the nodes/sites in the system). The objective for this

example is to monitor the number of calls that a customer has made within a predefined

time interval, in order to detect potential fraudulent usage, which may be the case if

counting the number of calls yields a number that exceeds a given threshold. Due to the

fact that customers of the mobile network move around, their mobile phones are connected

to different cell towers according to their location. A first simple approach to determine

the total number of calls for each customer during the specified time window would be to

calculate the call counters of all cell towers to a single central site. However, centralizing

the counters requires a network with a prohibitively large communication capacity due

to the substantial amount of phones, rendering the simple approach infeasible. The best

solution is to apply the previously described in-situ processing semantics which allow for

multiple local conditions to be monitored individually at each site. Using this approach,

as long as the local constraints are satisfied, no communication is necessary, as all global

counts are below the threshold for the monitored time interval and can be omitted. Only

in the case where a local threshold is violated an alarm is raised, starting a resolution

protocol. This strategy reduces the need for constant communication and eases the

requirements on communication capacity.

In more detail, the strategy employs the following methodology:

In order to detect subscribers with an abnormally high rate of outcoming calls, the Opti-

mizer generates a GM configuration file that contains the parameters describing the GM

operator. An example of the configuration file is presented below:

Vasiliki Manikaki 51 April 2017

5. GEOMETRIC MONITORING IMPLEMENTATION

globalThreshold=50

numBillingNodes=5

equalityInAboveThresholdRegion=false

defLSVValue=0.0f

dynamicThreshold=false

functionName=eu.ferari.examples.distributedcount.function.IdentityFunction

functionLocation=D:/jarakia/IdentityFunction.jar

isCoordinator=false

monitoringObject=LocalCounter

According to the information in the configuration file example, the global site thresh-

old is equal to 50 and the number of sites is 5, which means that each site is initially

assigned a local threshold of 10. The parameter equalityInAboveThresholdRegion is set

to false, meaning that if the local call count is equal to the threshold (10), then no local

violation occurs. There is a local violation only when more than 10 calls are counted.

After the initialization phase is finished and all the components have been set up by

receiving the parameters they require, the sites can start processing events. In the mo-

bile fraud example, the input data is generated from the interaction of a user’s cell phone

with the mobile network.

1. The Input spout is fed with the call data and generates events (callData events)

which represent these calls. These events are forwarded to the ProtonOnStorm

which generates a counter for each phone number, representing the number of events

for that client in the time window. These counters are referred to as LocalCounter

events. The ProtonOnStorm sends these local counters through CounterUpdate

messages to the TimeMachine. Unless the corresponding counter for a phone in the

TimeMachine is flagged as paused, its value is then propagated to the GateKeeper

as shown in Figure 5.16.

Vasiliki Manikaki 52 April 2017

5.5 Geometric Monitoring Operator Work Flow

Figure 5.16: Monitoring object generation from input events.

2. The GateKeeper bolt is responsible for investigating if any of the phones has sur-

passed the number of calls that has been set as the local threshold of the site.

For this purpose, the geometric monitoring function that is monitored in this ex-

ample is the identity function, which has been implemented as a subclass of the

BallFunction class described in section 5. In this example, at some point one of

the sites has detected a local violation for phone 1 (see Figure 5.17). In this case,

the GateKeeper passes a message to the Communicator to inform it about the local

violation occurence.

Once the Communicator receives the information about the local violation detec-

tion from the GateKeeper bolt, it creates a pause message and forwards it to the

TimeMachine so that it pauses event emission for the threshold-violating phone - in

this case phone 1. The TimeMachine event emission to the GateKeeper is paused

until the violation has been resolved.

3. The TimeMachine, after receiving the pause message from the Communicator and

Vasiliki Manikaki 53 April 2017

5. GEOMETRIC MONITORING IMPLEMENTATION

Figure 5.17: Local Violation at Source Site.

pausing the state of phone 1, it sends a pause confirmation message back to the

Communicator which contains the lsv value for the counter that caused the local

violation, the timestamp that represents the time that this event has occurred and

the node in which the violation has occurred. The Communicator, in turn, sends

the lsv value that it received from the TimeMachine to The GM Coordinator, in-

forming it about the local violation occurence (see Figure 5.18).

Vasiliki Manikaki 54 April 2017

5.5 Geometric Monitoring Operator Work Flow

Figure 5.18: The beginning of violation resolution.

4. After the Coordinator is informed about the local violation occurrence of mobile

phone 1, the second phase of the geometric monitoring functionality starts. The

Coordinator sends a lsv request message to all the sites except from the one that

caused the violation and asks for their lsv values for phone 1, at the timewindow

that the violation occurred. This message arrives at the Communicator spout (Re-

disPubSubSpout) of the sites and is forwarded to the Communicator bolt of each

of these sites. The Communicator bolt of each site that receives this message, after

receiving it, informs the TimeMachine about the local violation for phone 1 by

sending a pause message as illustrated in Figure 5.19.

Vasiliki Manikaki 55 April 2017

5. GEOMETRIC MONITORING IMPLEMENTATION

Figure 5.19: Lsv pull request from GM micro-coordinator.

5. When the TimeMachine receives the pause message from the Communicator, it

flags the state of phone 1 as “pause” and stops the event emission for this phone.

Afterwards, it creates a pause confirmation message that contains the lsv value for

phone 1 and for the time window in which the violation occurred and sends it to

the Communicator. The Communicator, in turn, sends the lsv that it just received

to the coordinating site (see Figure 5.20).

Vasiliki Manikaki 56 April 2017

5.5 Geometric Monitoring Operator Work Flow

Figure 5.20: Push requested lsvs back to the micro-coordinator.

6. The TimeMachine, after receiving the lsv values from all the sites, it handles the

monitoring violation resolution and after calculating a new estimate, it sends it

back to them. The sites receive the new estimate through their Communicator

spout, which forwards it to the GateKeeper of the site (see Figure 5.21).

Vasiliki Manikaki 57 April 2017

5. GEOMETRIC MONITORING IMPLEMENTATION

Figure 5.21: Calculate new estimate and send it to source sites.

7. After the violation resolution is finished, the Coordinator calculates new threshold

values for each site, which are distributed to the GateKeeper and Communicator

bolt of the sites through their Communicator spout. The reception of the new

threshold value in the Communicator bolt marks the violation resolution. The

Communicator at this point informs the TimeMachine with a play message, so that

it will set phone 1 to the “play” state and resume event emission for that phone.

5.5.1.1 Time Machine Mechanism Handling Time Delays

To ensure the correctness of monitoring tasks even through processing and communi-

cation delays, the TimeMachine component contains a mechanism for handling these

irregularities. The problem can be described with an example. Assuming that at a given

time t1 node n1 detects a local constraint violation, the Coordinator may be forced to

request the local statistics vector value from another node n2. This request is commu-

nicated through the network and there may be communication delays. If the time t2

Vasiliki Manikaki 58 April 2017

5.5 Geometric Monitoring Operator Work Flow

Figure 5.22: Calculate new Threshold and send it to source sites.

that node n2 receives the request has a significant difference from t1 due to processing

and communication delays, then the value of the local statistics vector that n2 currently

has may be different than the value that it had at time t1, which it needs to send back.

Moreover, after the initial n1 local constraint violation resolution, it is possible that the

local constraints at n2 have changed. If that is the case, the node n2 will have to resume

all processing activity starting from time t1. The TimeMachine has been appropriately

equipped to handle these cases, even through race conditions that may occur.

For the functionality to work, there are two assumptions. First, the clocks of all

the nodes are considered synchronized. Second, there is a maximum time delay for

each message, denoted by ∆ and measured in seconds. Since the objective is to detect

local constraint violations considering that all the events are given timestamps and are

processed centrally, the nodes report to the Coordinator both about the occurence of

violation events and the exact time they happened. The Coordinator then specifies the

time for which it needs the local statistics vector values from the nodes. This time can

be as early as 2∆ seconds before the current time. For the nodes to be able to provide

the correct value, they store in their TimeMachine component the local statistics vector

Vasiliki Manikaki 59 April 2017

5. GEOMETRIC MONITORING IMPLEMENTATION

values of the last 2∆ seconds. In addition to this functionality, the TimeMachine, after

violation resolution, is able to resume processing for the events that have occured right

after the violation detection for the latest threshold value.

The Coordinator is able to distinguish between conflicting constraint violation occur-

rences between different nodes to avoid race conditions. To do that, it tries to verify that

it is handling the earliest detected threshold crossing, ignoring later ones until the first

has been resolved. Similarly, the nodes reply to local statistics vector requests made at

the earliest time possible and cancel all later violation resolution processes.

These methods verify the correctness of the event processing procedure by ensuring

that the earliest threshold crossings are handled first and all subsequent updates are

processed according to the newly determined thresholds.

5.5.1.2 Dynamic Threshold Allocation

The standard threshold allocation procedure divides the global threshold into pieces equal

to the number of nodes present in the system, so that their sum is equal to the global

threshold. This is the initial default value of the local threshold for each node. After a

successful violation occurence and resolution, nodes may receive different updated local

threshold values. If the number of nodes is denoted by n, the global threshold by g and

the local threshold at each node by di, then initially (di = g
n
).

The coordinator is informed by a node about a threshold crossing for client j and

receives the local statistics vector value of the node for this specific client. Then, it

requests all the local statistics vectors from the other nodes for the same client. When

it receives all this information, it calculates the global statistics vector for the client and

the new threshold values for the nodes. The local statistics vector for the client j at node

i is denoted by cji , the global statistics vector for j is denoted by cj (which is also the sum

of all local statistics vectors) and the value δj is defined as δj = g−cj
n

. The coordinator

calculates the value cji + δj as the new threshold for client j. The sum of the new local

thresholds is equal to g. If the value for δj is negative (i.e., the global statistics vector

for j has crossed the global threshold), then the nodes will notify the coordinator when

the monitoring function values go below the new threshold, while if δj is positive, this

happens when the values go above the new threshold.

Vasiliki Manikaki 60 April 2017

5.5 Geometric Monitoring Operator Work Flow

The above method is the default implemented method for dynamic threshold alloca-

tion. To make better use of the locality of data (mobile calls serviced by cell towers) used

in the mobile fraud use case, a different version has been implemented which may detect

less overall local violations. A network of cell towers is considered where the objective is

to monitor the number of calls for each customer in a specific time period. All the cell

towers receive an initial threshold value of zero instead of dividing the global threshold

value equally among all the sites. The global threshold is distributed only among the

towers that service a specific client’s calls. The reason is that, in most cases, a customer

will use his/her cell phone around only a few specific cell towers (sites) and most other

towers of the network will never service calls for this customer. For each client that per-

forms the first call serviced by a site, a local violation will be detected because the site’s

initial threshold value is zero. After the violation resolution, the new global threshold

value will be shared equally between all the sites that have detected at least one call for

this client.

In a more specific example, a network of 4 towers is considered and the global threshold

value is equal to 100 (the global threshold value), as depicted in Figure 5.23. A user

performs a phone call around cell tower 1 and a local violation is detected, since the

local threshold at this site is equal to zero. After the violation has been resolved, tower

1 receives a new threshold value for this customer, which is equal to 100, since tower 1

is the only tower that has detected calls from this client so far (see Figure 5.24). After

a while, the user changes location and performs a phone call which is detected by tower

2. Due to tower 2 having a threshold value of zero at this point, a local violation occurs.

After its resolution, since this client has made phone calls around towers 1 and 2, the

global threshold value is distributed evenly among those two sites, setting their local

threshold value equal to 50 each for this client (see Figure 5.25).

Vasiliki Manikaki 61 April 2017

5. GEOMETRIC MONITORING IMPLEMENTATION

Figure 5.23: Initial Threshold Distribution.

Figure 5.24: Threshold Distribution after the First Local Violation.

Vasiliki Manikaki 62 April 2017

5.5 Geometric Monitoring Operator Work Flow

Figure 5.25: Threshold Distribution among Two Sites.

Vasiliki Manikaki 63 April 2017

5. GEOMETRIC MONITORING IMPLEMENTATION

Vasiliki Manikaki 64 April 2017

Chapter 6

Complex Event Detection

Implementation

This chapter will describe the ordinary complex event processing work flow, including

the initial system setup. Moreover, the system capability to adapt the CEP plans is

presented.

6.1 Topology Setup

As described in chapter 4.2, each site’s Storm topology contains a RedisPubSubSpout

spout, which is responsible for receiving the necessary information from the query Opti-

mizer and for shipping it to the rest of the topology’s components in order for them to

be set.

Once the RedisPubSubSpout spout receives the JSON file, it subsequently forwards

it to the Proton on Storm module (CEP Engine) for setup. All three components of the

CEP engine, the Routing bolt, the Context bolt and the EPAManager bolt require the

JSON file for the initialization of their structures, since it contains all EPN definitions,

including definitions for event types, EPAs and contexts.

Apart from the CEP engine, the module that receives as input the stream of events,

namely the Input spout, must also receive the JSON file since the knowledge of the exact

event definition is necessary for incoming event parsing. With the reception of the JSON

file, each topology is ready to receive input events for query evaluation.

Vasiliki Manikaki 65 April 2017

6. COMPLEX EVENT DETECTION IMPLEMENTATION

6.1.1 Push and Pull Paradigm Initialization

6.1.1.1 Pull Mode

The Optimizer plans form an NFA of multiple states in order to facilitate the monitoring

of events in stages and thus avoid unnecessary communication. In this NFA, each state

represents the monitoring of a set of events and transitions between states represent

the monitoring of a new set of events. A transition occurs after the detection of all

the involved events within the specified time window. This transition becomes possible

with the split of the involved EPA into multiple connected EPAs with new intermediate

derived events marking the state transitions. These events generate pull requests and

contain an attribute called “Intermediate”, which the Routing bolt looks for in order

to be able to recognize them.

The Routing bolt, as mentioned in section 4.2.0.7 is a Proton on Storm component

which has been modified to support the push/pull functionality. It includes a structure

called EventsToPull that maps each intermediate event with a set of events to request.

Upon detecting an intermediate derived event for the first time, the Routing bolt investi-

gates which EPAs include this event as input and stores the remaining input event types

for these EPAs in the EventsToPull structure. This way, for each incoming intermediate

derived event, the events that need to be requested from other sites are known.

Each time the Routing bolt detects an intermediate derived event, it sends a pull

request message to the Communicator, who is responsible for communicating with every

involved site and pulling the requested events. The pull request message contains three

types of information:

1. The event type that is in push mode.

2. The push receivers (micro-coordinators that need this event type for evaluation).

3. The window duration in which this event is in push mode.

6.1.1.2 Push Mode

The first state in a multi-state NFA formed by the query plan is always in push mode.

For the later states of the NFA to be activated, all the events of the previous steps

have to be detected within the specified time window. For the initialization of the push

Vasiliki Manikaki 66 April 2017

6.2 Complex Event Processing Work Flow

functionality, the event description of the events inside the JSON file includes an attribute

called PushToCoordinators. The Optimizer fills in the PushToCoordinators attribute

with a string of comma separated values which contain the site names that this particular

event is going to be pushed to when detected. When the Routing bolt receives the JSON

file during initialization, it sends a pull request message to the local node’s Communicator

bolt for each event type that contains this attribute. This pull request message is similar

to the one described in the previous section, however, the window duration in which the

event is in push mode is, by default, infinite.

6.2 Complex Event Processing Work Flow

In order to implement the push/pull functionality and for the system to work properly,

the TimeMachine is required to store the events which come from the CEP module. The

events with their detection timestamps are sorted and stored in buffers (hash map struc-

tures), one for each event type. The TimeMachine is additionally required to implement

a time-based mechanism for recovering past events within a timespan and to ship events

of interest to coordinating sites, as dictated by the push mode functionality. Pull re-

quests are generated upon state transition of the NFA query plan from the Proton on

Storm module and emitted to the Communicator. For forwarding the pull requests, the

Communicator contains a structure reserving the pull requests in order to avoid sending

time overlapping pull requests for the same event types. The Routing bolt is the most

appropriate component for handling the pull requests, since it is the one that receives all

the intermediate derived events inside the Proton on Storm topology. The Routing bolt

can detect when a derived event that is also a state transition is generated by the CEP

engine, so that it can inform the Communicator about the new pull request.

The push and pull work flow is described below.

1. The Input spout of each site receives the events as a stream and forwards them to

the Routing bolt of the Proton on Storm CEP module for processing. After process-

ing, the Routing bolt propagates them to the TimeMachine module for buffering

purposes. This process is continuous and occurs in every site regardless of possibly

assigned coordinating tasks as depicted in Figure 6.1 using dashed lines.

Vasiliki Manikaki 67 April 2017

6. COMPLEX EVENT DETECTION IMPLEMENTATION

Figure 6.1: Continuous event processing.

2. The site which has been assigned as the coordinator executes the query plans it

has received from the Optimizer. For plans that include more than one state, the

first state is always in push mode (as described in section 6.1.1.2), while the rest

are activated along with the full detection of the events involved in the previous

states within the time window. State transitions in the NFA formed by the query

plan generate pull requests, which the Routing bolt emits to the Communicator.

The Communicator is then responsible for informing all sites (including itself) that

produce this event type, that it is interested in such events in a given time window.

Then the pull request is sent from the Communicator of the coordinating site to the

Communicator of all sites that produce that type of event through their Commu-

nication spout (Figure 6.2). Upon arrival, the pull request is sent to the buffering

module (i.e. the TimeMachine) which will switch to push mode for the requested

events for the requested timespan.

Vasiliki Manikaki 68 April 2017

6.2 Complex Event Processing Work Flow

Figure 6.2: CEP micro-coordinator pull request.

3. Once in push mode, the TimeMachine checks whether the requested events have

already occurred within the specified timespan and forwards them back to the co-

ordinating site’s PushAndPull spout through the source’s Communicator (Figure

6.3). At the same time, the TimeMachine remains on push mode until the pull

request’s timespan expires and whenever an event of interest is detected, it is im-

mediately forwarded back to the micro-coordinator.

Vasiliki Manikaki 69 April 2017

6. COMPLEX EVENT DETECTION IMPLEMENTATION

Figure 6.3: Push requested events from sources to micro-coordinator.

6.3 Architectural Injections for CEP adaptivity

As described above in section 4.3.2 the Optimizer requires information regarding the

input type events and their frequency in each site as well as each site’s connectivity with

all other sites in order to generate the most optimal plan for each site. However, it is

possible that the plans perform in a sub-optimal manner. The reason for the sub-optimal

behaviour of the system may have two origins. The first one is if the latency for the

inter-site communication has changed significantly and the second is if there is a drift in

the event occurrence frequencies. In both cases, if the gain is significantly higher than

the cost of switching the plans, the Optimizer must create new plans and ship them to

the topologies.

6.3.1 Statistics Storage

In order for the Optimizer to know when and why to generate new, more optimal plans,

the sites periodically collect statistics information and send it to the Optimizer. Each

Vasiliki Manikaki 70 April 2017

6.3 Architectural Injections for CEP adaptivity

site’s Routing bolt has been modified so that the site can collect the required statistics

for more efficient plan generation. In this work, a simple event type counter statistic

has been implemented, but more statistics can be easily integrated, even using elab-

orate structures. To support more complex statistics, the Statistics class has been

made abstract and includes an abstract method called updateStatistics which must

be implemented by the Statistics subclasses. These subclasses can be loaded either

statically or dynamically. In the first case, the subclass is available to all nodes of the

system before running, while in the second case, its implementation is loaded at runtime

using a method similar to the one described in section 5.3.

The Routing bolt needs some information regarding the statistics gathering and for-

warding process. This information comes from the Optimizer during topology setup

phase through a configuration file that has the following form:

statisticsClass=com.ibm.hrl.proton.routing.CountStatistics

jarLocation=null

epoch=1

eType=events

The first two parameters represent the statistics class to use for collecting the statistics

and location of the .jar file where the class implementation resides. The epoch parame-

ter determines after how many eTypes the statistics will be sent to the Timemachine for

buffering. The eType paramater can by default be either events or seconds, but Statistics

subclasses can make use of other values.

The Routing bolt is the component in which the statistics are collected since it is the

only component in the architecture that has access to all the events that pass through

the system (raw, derived and pushed). Then, they are transmitted to the TimeMachine

through Storm messages and they are buffered. Once the statistics gathering process has

reached a certain amount of input, it is sent to the Optimizer so that it can evaluate the

current plan’s performance and decide on if new plans are required.

Vasiliki Manikaki 71 April 2017

6. COMPLEX EVENT DETECTION IMPLEMENTATION

6.3.2 Proton Modifications

For the system to adapt to potential new plan generation, it is necessary to modify the

Proton CEP engine. Since intermediate results may have been produced by the micro-

coordinator, before the plan is adapted all old temporal contexts must have terminated

in order to avoid missing the production of complex events. For that reason, whenever

new plans are generated by the query Optimizer, the previous’ plan temporal context

should remain active in parallel with the new plan until the first terminates.

All relevant Proton structures have been modified to accommodate the new function-

ality. In more detail, each structure x has become a hashmap with keys equal to plan ids

and values equal to x structures. Furthermore, all Storm messages sent and received by

system components include a plan id parameter, which is used by the components as the

key for their hashmaps so that they process the correct plans.

With these modifications, the CEP is able to process more than one set of plans

in parallel without any limitation on the number of concurrent active plans. After the

temporal context of old plans has terminated, the plan id is removed from the hashmaps.

6.3.3 Multiple Plan Support

Similar methodology has been applied to the rest of the architecture to support CEP

plan adaptivity and potential processing of plans in parallel. For this purpose, all the

messages that participate in intra-site and inter-site communication include the plan id

parameter that specifies the plan that the message participates in. Moreover, all the

structures that are relevant to the push/pull paradigm or the GM operator have been

implemented in a similar way, making them hashmaps with keys equal to the plan ids

and values equal to the corresponding data that relates to the plan.

Vasiliki Manikaki 72 April 2017

Chapter 7

Conclusion

This thesis has presented a complex event processing system and architecture that enables

realtime complex event processing capabilities for large volume event data streams over

distributed topologies. The components of the system have been developed using the

Storm event processing framework and the communication protocol between the different

Storm topologies that comprise the system nodes has been established. The architecture

aims to provide communication-efficient methods utilizing in-situ processing, avoiding

the need to collect data in a central node.

The architecture supports event processing and monitoring where the monitoring

task has been decomposed into local constraints that can be imposed on geographically

distributed data streams. The geometric method employed in this scope has been im-

plemented and allows local processing in nodes where communication is required only in

cases where the local constraints are violated.

Another implemented method for efficient communication between the system nodes

is the adoption of the push/pull paradigm. In this methodology, the nodes send and

receive only the events that are required at each point in time instead of blindly sending

each possibly relevant event to all potential receiver nodes. Finally, to enable scalability,

efficiency and robustness, the system is able to add new nodes to the system, adapt

in cases where inter-site communication latency or event occurrence frequencies have

changed and recover in case of node failure.

Vasiliki Manikaki 73 April 2017

7. CONCLUSION

Vasiliki Manikaki 74 April 2017

References

[1] Bothe, Sebastian, Vasiliki Manikaki, Antonios Deligiannakis, and Michael Mock. “To-

wards Flexible Event Processing in Distributed Data Streams.” In EDBT/ICDT

Workshops, pp. 111-117. 2015. 2

[2] Flouris, Ioannis, Vasiliki Manikaki, Nikos Giatrakos, Antonios Deligiannakis, Minos

Garofalakis, Michael Mock, Sebastian Bothe et al. “FERARI: A Prototype for Com-

plex Event Processing over Streaming Multi-cloud Platforms.” In Proceedings of the

2016 International Conference on Management of Data, pp. 2093-2096. ACM, 2016.

1

[3] Flouris, Ioannis, Vasiliki Manikaki, Nikos Giatrakos, Antonios Deligiannakis, Minos

Garofalakis, Michael Mock, Sebastian Bothe et al. “Complex event processing over

streaming multi-cloud platforms: the FERARI approach: demo.” In Proceedings of

the 10th ACM International Conference on Distributed and Event-based Systems, pp.

348-349. ACM, 2016. 1

[4] Agrawal, Jagrati, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman. “Efficient pat-

tern matching over event streams.” In Proceedings of the 2008 ACM SIGMOD inter-

national conference on Management of data, pp. 147-160. ACM, 2008. 5, 6

[5] Mei, Yuan, and Samuel Madden. “Zstream: a cost-based query processor for adap-

tively detecting composite events.” In Proceedings of the 2009 ACM SIGMOD Inter-

national Conference on Management of data, pp. 193-206. ACM, 2009. 5, 6

[6] Schultz-MG’Eller, Nicholas Poul, Matteo Migliavacca, and Peter Pietzuch. “Dis-

tributed complex event processing with query rewriting.” In Proceedings of the Third

Vasiliki Manikaki 75 April 2017

REFERENCES

ACM International Conference on Distributed Event-Based Systems, p. 4. ACM, 2009.

5, 6

[7] Wu, Eugene, Yanlei Diao, and Shariq Rizvi. ”High-performance complex event pro-

cessing over streams.” In Proceedings of the 2006 ACM SIGMOD international con-

ference on Management of data, pp. 407-418. ACM, 2006. 5, 6

[8] Zhang, Haopeng, Yanlei Diao, and Neil Immerman. “On complexity and optimization

of expensive queries in complex event processing.” In Proceedings of the 2014 ACM

SIGMOD international conference on Management of data, pp. 217-228. ACM, 2014.

5, 6

[9] Akdere, Mert, Ugur Cetintemel, and Nesime Tatbul. “Plan-based complex event de-

tection across distributed sources.” Proceedings of the VLDB Endowment 1, no. 1

(2008): 66-77. 6, 27

[10] Zhang, Haopeng, Yanlei Diao, and Neil Immerman. “Recognizing patterns in streams

with imprecise timestamps.” Proceedings of the VLDB Endowment 3, no. 1-2 (2010):

244-255. 6

[11] Keren, Daniel, Guy Sagy, Amir Abboud, David Ben-David, Assaf Schuster, Izchak

Sharfman, and Antonios Deligiannakis. “Geometric monitoring of heterogeneous

streams.” IEEE Transactions on Knowledge and Data Engineering 26, no. 8 (2014):

1890-1903. 7, 9

[12] Keren, Daniel, Izchak Sharfman, Assaf Schuster, and Avishay Livne. “Shape sensi-

tive geometric monitoring.” IEEE Transactions on Knowledge and Data Engineering

24, no. 8 (2012): 1520-1535. 7, 9

[13] Lazerson, Arnon, Izchak Sharfman, Daniel Keren, Assaf Schuster, Minos Garofalakis,

and Vasilis Samoladas. “Monitoring distributed streams using convex decomposi-

tions.” Proceedings of the VLDB Endowment 8, no. 5 (2015): 545-556. 7, 9

[14] G. Sagy, D. Keren, I. Sharfman, and A. Schuster. Distributed threshold querying of

general functions by a difference of monotonic representation. Proc. VLDB Endow.,

4, November 2010. 7

Vasiliki Manikaki 76 April 2017

REFERENCES

[15] Sharfman, Izchak, Assaf Schuster, and Daniel Keren. A geometric approach to

monitoring threshold functions over distributed data streams. ACM Transactions on

Database Systems (TODS) 32.4 (2007):23. 7, 9

[16] Sharfman, Izchak, Assaf Schuster, and Daniel Keren. “Aggregate threshold queries

in sensor networks.” In Parallel and Distributed Processing Symposium, 2007. IPDPS

2007. IEEE International, pp. 1-10. IEEE, 2007. 7

[17] Keren, Daniel, Izchak Sharfman, Assaf Schuster, and Avishay Livne. “Shape sensi-

tive geometric monitoring.” IEEE Transactions on Knowledge and Data Engineering

24, no. 8 (2012): 1520-1535. 7

[18] Keren, Daniel, Guy Sagy, Amir Abboud, David Ben-David, Izchak Sharfman, and

Assaf Schuster. “Safe-Zones for Monitoring Distributed Streams.” In BD3@ VLDB,

pp. 7-12. 2013. 9

Vasiliki Manikaki 77 April 2017

REFERENCES

Vasiliki Manikaki 78 April 2017

	1 Introduction
	1.1 Thesis Motivation and Contribution
	1.2 Thesis Outline

	2 Theoretical Scientific Background
	2.1 Complex Event Processing
	2.1.1 Events
	2.1.2 Queries

	2.2 The Geometric Approach

	3 Supporting Systems
	3.1 Apache Storm
	3.1.1 Main Concepts
	3.1.2 Stream Grouping
	3.1.3 Storm Architecture

	3.2 IBM Proactive Technology Online (Proton)
	3.2.1 Standalone Proton
	3.2.2 Proton on Storm

	3.3 Redis

	4 System Architecture and Setup
	4.1 Network Architecture
	4.2 Intra-Site Architecture
	4.3 System setup
	4.3.1 Optimizer
	4.3.2 Optimizer Input Parameters
	4.3.3 Plan Generation

	4.4 Dynamic Node Manipulation
	4.4.1 Registering New Nodes
	4.4.2 Managing Communication Failures

	5 Geometric Monitoring Implementation
	5.1 Function Hierarchy
	5.1.1 Implemented Sample Functions

	5.2 Local Violation Detection
	5.2.1 Ball Technique
	5.2.2 Safe Zone Technique

	5.3 Supporting Extensibility to New Monitored Functions
	5.4 Geometric Monitoring Operator Initialization
	5.5 Geometric Monitoring Operator Work Flow
	5.5.1 The Mobile Fraud Example

	6 Complex Event Detection Implementation
	6.1 Topology Setup
	6.1.1 Push and Pull Paradigm Initialization

	6.2 Complex Event Processing Work Flow
	6.3 Architectural Injections for CEP adaptivity
	6.3.1 Statistics Storage
	6.3.2 Proton Modifications
	6.3.3 Multiple Plan Support

	7 Conclusion
	References

