TECHNICAL UNIVERSITY OF CRETE
 Mineral Resources Engineering School

Performance of multivariate clustering methods in oil families' identification

By
Christina Karavoulia
Scientific Advisor
Prof. Nikos Pasadakis

Examination Committee:
Prof. N. Pasadakis
Prof. D. Christopoulos
Prof. V. Gaganis

Diploma thesis

Submitted in part fulfillment of the requirements for the degree of MASTER OF SCIENCE IN PETROLEUM ENGINEERING

Abstract

As science progresses, the need for analyzing multivariate data sets is growing by the minute. Multiple disciplines, either scientific or not, require the examination of large amounts of data, in a short period of time, in order to obtain useful information. During the recent few decades, multivariate statistical analysis methods have been developed, aiming to satisfy such purposes.

This dissertation deals with the implementation of multivariate data analysis methods on a given data set, derived from oil family affiliations, which originate from Williston Basin of North America. In particular, Hierarchical Clustering, k-means and Principal Component analysis have been applied on four independent models, in an attempt to extract information regarding the oil-oil correlations among the samples under study. The models used on the exploration of the compositional information were the Saturated Fraction Compositional Model, the Saturated Fraction Ratios Model, the Gasoline Range Compositional Model and the Biomarkers Compositional Model.

These standard statistical methods were found to be quite insufficient in classifying the sample set into distinct familial affiliations. For this reason, the need to examine the nature of the data set arose. Compositional data represent a category on their own as they are characterized by specific numerical properties which present significant consequences when being analyzed by standard multivariate techniques. The analysis of such type of data represents a whole new chapter in the world of statistics and the need for further examination on this matter is constantly growing.

Acknowledgments

Foremost, I would like to express my sincerest gratitude to my supervisor Prof. Nikos Pasadakis for his continuous support, the valuable comments, remarks and engagement through the learning process of this master thesis. His patience, motivation, enthusiasm, and immense knowledge helped me throughout the whole research and writing of this project.

Most importantly, I must express my very profound love and gratitude to my parents Theoni and Thanasis as well as my beloved sister Angeliki, for keeping me harmonious, providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. To my dearest friends outside the academic world, Elena and Nikos for being there whenever I was on the verge of losing my strength and for helping me putting pieces together, a simple thank you might never be enough. Polyanthi, I truly thank you for keeping me awake all these endless nights and "yelling" at me every morning to get out of bed. Studying would have been a torture without your positive and cheerful spirit. Apart from the honor to meet a great colleague, I am deeply thankful for making a friend like you.

This accomplishment would not have been possible, however, without the generous contribution of my uncle Tasos, who supported me in this step, in multiple ways. His encouragement to pursue this career path, has been the core of my persistence in carrying through this work, even at times when I felt like losing my courage.

Chania, May 2017
Christina Karavoulia

Table of Contents

AbstractAcknowledgmentsii
List of Figures iv
List of Tables vii

1. Introduction 1
2. Geological Setting of Williston Basin. 2
2.1 Stratigraphy of Williston Basin 3
2.2 Tectonic Regime of Williston Basin 6
2.3 Geochemical Classification of Oil Families in Williston Basin. 7
3. Exploratory Data Analysis 11
3.1 Multivariate Data Analysis (MDA) 11
3.1.1 Hierarchical Clustering 12
3.1.2 k-means Clustering 15
3.1.3 Principal Component Analysis (PCA) 17
4. Family Affiliations of Williston Basin Oils 19
5. Application of MDA methods; inputs and results 25
5.1 Saturated Fraction Compositional Model (SFCM) 26
5.1.1 Hierarchical Clustering on SFCM 26
5.1.2 k - means algorithm on SFCM 28
5.1.3 Principal Component Analysis on SFCM 30
5.1.4 Discussion on the performance of MDA on the SFCM 31
5.2 Saturated Fraction Ratios Model (SFRM) 31
5.2.1 Hierarchical Clustering on SFRM 31
5.2.2 k - means algorithm on SFRM 32
5.2.3 Principal Component Analysis on SFRM 33
5.2.4 Discussion on the performance of MDA on the SFRM 35
5.3 Gasoline Range Compositional Model (GRCM) 35
5.3.1 Hierarchical Clustering on GRCM 35
5.3.2 k-means algorithm on GRCM 36
5.3.3 Principal Component Analysis on GRCM 38
5.3.4 Discussion on the performance of MDA on the GRCM 39
5.4 Biomarkers Compositional Model (BCM) 39
5.4.1 Hierarchical Clustering on BCM 39
5.4.2 k-means algorithm on BCM 40
5.4.3 Principal Component Analysis on BCM 42
5.4.4 Discussion on the performance of MDA on the BCM 43
6. Compositional Data 44
6.1 The Constant Sum Constraint (CSC) - Impacts on the Analysis 44
6.2 Approaches in the Statistical Analysis of CoDa 45
6.3 The Simplex S^{D} - Fundamental Properties of CoDa Analysis 46
6.4 Perturbation and Powering 47
6.5 The Log Ratio Methodology 49
6.5.1 Additive Log Ratio Transformation (alr) 49
6.5.2 Centered Log Ratio Transformation (clr) 50
6.5.3 Isometric Log Ratio Transformation (ilr) 51
6.6 The CoDaPack v2 Software Package 51
6.6.1 Interface of the CoDaPack software 52
6.6.2 Application of the CoDaPack's routine on the Saturates' fraction 61
7. Conclusions 70
References 71
APPENDIX 80

List of Figures

Fig. 1 Location map showing the main geological and geophysical elements of Williston Basin and environs. The region of anomalous subsidence that is Williston Basin proper (Ahern and Mrkvicka, 1984) is generally coincident with the 1 km depth contour on Carboniferous strata. The region of preserved Middle Devonian Prairie Formation salt deposited in Elk Point Basin is illustrated. The inset shows the location of Williston Basin and the extent of Elk Point Basin. Samples from petroleum pools entrapped at the subcrop of the upper Paleozoic succession in southeastern Saskatchewan and southwestern Manitoba, as well as American samples constitute the sample set for this study (following Burrus et al., 1996a).2

Fig. 2 Petroleum region and crucial tectonic elements in the Williston Basin and adjacent area. Only generalized outlines of the Mississippian Madison Group Subcrop Petroleum Province and other Williston Basin petroleum provinces are indicated
Fig. 3 Contour map pf Williston Basin presenting the thickness of sediments. Contour interval is $1,000 \mathrm{ft}$. [8]
.4
Fig. 4 Diagram showing geologic time scale, major stratigraphic sequences of [3], first- and second order sea level curves from [11], and ages of petroleum source and reservoir rocks in the Williston Basin. Solid black interval in source rock column are for thick accumulations; thin lines indicate association with carbonate depositional cycles. In reservoir rock column, green is for oil and red is for gas; thin lines indicate generalized reservoir rock and do not necessarily represent the full spectrum of possible reservoirs.
E, Early; M, Middle; L, Late; Pal, Paleocene; Eoc, Eocen; Olig, Oligocene; Mio, Miocene; Plio, Pliocene (following Lawrence , et al., 2013). 5
Fig. 5 Precambrian structural configuration of the Williston Basin and surrounding area. A: Tectonic map of the northern Great Plains region [23] showing northeast-southwest strike slip faults; Williston Basin province outline is shown for scale. Ga, billion years ago. B: Map showing the configuration of Trans-Hudson orogenic belt and associated north- south trending structures of the Williston Basin (modified Nelson et al., 1993). 7
Fig. 6 Single, Complete and Average linkage graphical representations, modified after [56]. 13
Fig. $7 \mathrm{C}_{34}$ barchart for the whole sample set 20
Fig. 8 Barchart presenting C_{23} / C_{30} ratios for the whole sample set. 20
Fig. $9 \mathrm{Pr} / \mathrm{Ph}$ ratios barchart for the whole sample set 21
Fig. $10 \mathrm{Ts} / \mathrm{Tm}$ ratios barchart for the whole sample set. 22
Fig. 11 CPI profile for the whole sample set 22
Fig. 12 Odd/Even predominance for the whole sample set 22
Fig. $13 \mathrm{C}_{35}$ barchart for the whole sample set 22
Fig. $14 \mathrm{nC}_{17} / \operatorname{Pr}$ barchart for the whole sample set. 23
Fig. $15 \mathrm{nC}_{18}$ /Ph barchart for the whole sample set 23
Fig. 16 Resulting Dendrogram under the command "pre_scaling_0_1" for the Saturated fraction compositional model (SFCM) 27
Fig. 17 Dendrogram under the "pre_TSN" command for the Saturated fraction compositionalmodel (SFCM)27
Fig. 18 Silhouette plots for $\mathrm{k}=2, \mathrm{k}=3, \mathrm{k}=4$ and $\mathrm{k}=5$ clusters under the " pre_scaling_0_1"pretreatment option for the Saturated fraction compositional model (SFCM).............. 28
Fig. 19 The plot of k-means clustering for $\mathrm{k}=2$ under the "pre_scaling_0_1" pretreatmentoption for the Saturated fraction compositional model (SFCM). The?the centroid of each cluster29
Fig. 20 Table displaying to which cluster each sample belongs, for each K value of the SFCM(idx2 = k:2, idx3 = k:3, etc.)29
Fig. 21 a) Sample scores for the first to Principal Components resulting from the SaturatedFraction Compositional Model (SFCM) of selected Williston Basin petroleum oils. Colorson sample symbols indicate compositional families determined by independent analysis.Blue color represents oils of Family A, green applies for Family B oils, red for Family C oilsand yellow for Family D oils. "Pre_scaling_0_1" command was used on the data set. b)Original Variable loadings for the first to Principal Components resulting from theSaturated Fraction Compositional Model (SFCM) of selected Williston Basin petroleumoils. c) Percentage of variance explained by each Principal Component.30
Fig. 22 Resulting Dendrogram under the command "pre_scaling_0_1" for the Saturatedfraction ratios model (SFRM).31
Fig. 23 Silhouette plots for $k=2, k=3, k=4$ and $k=5$ clusters under the " pre_scaling_0_1"pretreatment option for the Saturated Fraction Ratios Model (SFRM).......................... 32
Fig. 24 The plot of k -means clustering for $\mathrm{k}=2$, of the Saturated Fraction Ratios Model (SFRM).The? ? ?symbol represents the centroid of each cluster33
Fig. 25 Table displaying to which cluster each sample belongs, for each K value of the SFRM(idx2 = k:2, idx3 = k:3, etc.)33Fig. 26 a) Sample scores for the first to Principal Components resulting from the SaturatedFraction Ratios Model (SFRM) of selected Williston Basin petroleum oils. Colors onsample symbols indicate compositional families determined by independent analysis.Blue color represents oils of Family A, green applies for Family B oils, red for Family C oils
and yellow for Family D oils. "Pre_scaling_0_1" command was used on the data set. b)Original Variable loadings for the first to Principal Components resulting from theSaturated Fraction Ratios Model (SFRM) of selected Williston Basin petroleum oils. c)Percentage of variance explained by each Principal Component.34
Fig. 27 Resulting Dendrogram under the command "pre_scaling_0_1" for the Gasoline range compositional model (GRCM) 35
Fig. 28 Resulting Dendrogram under the command "pre_scaling_0_1" for the Gasoline range compositional model (GRCM) after removing zero values 36
Fig. 29 Silhouette plots for $k=2, k=3, k=4$ and $k=5$ clusters under the " pre_scaling_0_1"pretreatment option for the Gasoline Range Compositional Model (GRCM)37
Fig. 30 Plot of k-means clustering for $k=3$, of the Gasoline Range Compositional Model (GRCM). The? ?|? ${ }^{\text {symbol reprents the centroid of each cluster }}$ 37
Fig. 31 Table displaying to which cluster each sample belongs, for each K value of the GRCM (idx2 = k:2, idx3 = k:3, etc.) 38
Fig. 32 a) Sample scores for the first to Principal Components resulting from the GasolineRange Compositional Model (GRCM) of selected Williston Basin petroleum oils. Colors onsample symbols indicate compositional families determined by independent analysis.Blue color represents oils of Family A, green applies for Family B oils, red for Family C oilsand yellow for Family D oils. "Pre_scaling_0_1" command was used on the data set. b)Original Variable loadings for the first to Principal Components resulting from theGasoline Range Compositional Model (GRCM) of selected Williston Basin petroleum oils.c) Percentage of variance explained by each Principal Component.38
Fig. 33 Resulting Dendrogram under the command "pre_scaling_0_1" for the Biomarkers compositional model (BCM). 40
Fig. 34 Silhouette plots for $k=2, k=3, k=4$ and $k=5$ clusters under the " pre_scaling_0_1" pretreatment option for the Biomarkers Compositional Model (BCM) 41
Fig. 35 Plot of k-means clustering for $k=3$, of the Biomarkers Compositional Model (BCM). The? T? 41
Fig. 36 Table displaying to which cluster each sample belongs, for each K value of the BCM (idx2 = k:2, idx3 = k:3, etc.) 42
Fig. 37 a) Sample scores for the first to Principal Components resulting from the BiomarkersCompositional Model (BCM) of selected Williston Basin petroleum oils. Colors on samplesymbols indicate compositional families determined by independent analysis. Blue colorrepresents oils of Family A, green applies for Family B oils, red for Family C oils and yellowfor Family D oils. "Pre_scaling_0_1" command was used on the data set. b) OriginalVariable loadings for the first to Principal Components resulting from the BiomarkersCompositional Model (BCM) of selected Williston Basin petroleum oils. c) Percentage ofvariance explained by each Principal Component. ... 43
Fig. 38 CoDaPack v2 main window 52
Fig. 39 Menu File 53
Fig. 40 Importing Data 53
Fig. 41 Menu: Data 54
Fig. 42 Data: Centering 54
Fig. 43 Data : Subcomposition/Closure 55
Fig. 44 Data: Amalgamation 56
Fig. 45 Data : Perturbation 56
Fig. 46 Data : Rounded Zero Replacement 57
Fig. 47 Data : Numeric to Categorical 58
Fig. 48 Data : Add numeric variables 58
Fig. 49 Data : Delete Variables 58
Fig. 50 Statistics : Compositional Statistics Summary 59
Fig. 51 Statistics: Logistic Normality tests 60
Fig. 52 Statistics : Atypicality indices 60
Fig. 53 Graphs Menu 61
Fig. 54 Ternary Principal Component Graph for C13, C14 and phytane 64
Fig. 55 Plot of the first two Principal Components for C13, C14 and phytane. 64
Fig. 56 Ternary Plot of C13, C14 and phytane 65
Fig. 57 Centered ternary plot with grid on 65
Fig. 58 ALR plot of C13, C14 and phytane 66
Fig. 59 CLR plot of C13, C14 and phytane 67
Fig. 60 ILR plot of C13, C14 and phytane. 67
Fig. 61 CLR biplot of C13, C14 and phytane 68
Fig. 62 Balance dendrogram of C13, C14 and phytane 69
List of Tables
Table 1 Table showing all groups and oil families, in correlation with the according formations, present in Williston Basin (modified by Osadetz, 1994) 9
Table 2 Several Computational methods for distance 14
Table 3 Summary of k-means clustering under the " pre_scaling_0_1" pretreatment option for the Saturated fraction compositional model (SFCM) 28
Table 4 Summary of k-means clustering under the "pre_scaling_0_1" pretreatment option on the Saturated Fraction Ratios Model (SFRM) 32
Table 5 Summary of k-means clustering under the "pre_scaling_0_1" pretreatment option on the Gasoline Range Compositional Model (GRCM) 36
Table 6 Summary of k-means clustering under the "pre_scaling_0_1" pretreatment option onthe Gasoline Range Compositional Model (GRCM)40
Table 7 Amalgamation of all variables for each component 62
Table 8 Compositional Statistics Summary 62
Table 9 Classical Statistics Summary 63
Table 10 Principal Components as Numerical results and the Cumulative proportions explained with each principal component 64
Table 11 Binary partition for ILR transformation 67
Table 12 Principal Components explained by clr. 13 , clr. 14 and phytane 68
Table 13 Numerical output of Balance Dendrogram routine, including the mean and variance69
Table 14 Default partition for the Balance Dendrogram routine 69

1. Introduction

Over the last decades an overwhelming amount of data is poured into our lives and obtaining meaningful information out if them is an imperative task for people. Multiple disciplines such as chemistry, biology, medicine etc. demand the analysis of huge amounts of data and sometimes their multivariate nature makes it difficult to analyze. For this reason, special statistical techniques have been developed in order to process information in a meaningful fashion.

In this project, multivariate clustering methods have been implemented on geochemical data concerning oil family affiliations that exist in Williston Basin, North America, in order to explore the oil-oil correlations. The methods which have been utilized consider both Supervised and Unsupervised learning phases. These include Hierarchical Clustering, k-means clustering, as well as Principal Component Analysis. The ultimate goal of this project is to test how well such multivariate analysis methods perform, as far as classification of the compositional data is concerned

The thesis project is organized into seven chapters. In Chapter 2 a detailed description of the geological setting of Williston Basin is presented. The stratigraphy and the tectonic regime are thoroughly described and special focus is placed upon the geochemical classification of oil families which have been recognized in the area.

Chapter 3 raises the subject of Multivariate Data Analysis (MDA). It provides a brief presentation of the principles of Hierarchical Clustering, k-means clustering as well as Principal component analysis. All the main concepts that characterize each method are included.

In Chapter 4 we discuss the matter of the existing Family Affiliations of Williston Basin. In this chapter, there is an attempt to test the criteria under which the classification of the oil families was determined.

Chapter 5 deals with the application of multivariate data analysis methods on two different models; the Saturated Fraction Component Model and the Saturated Fraction Ratios Model. All MDA methods were implemented on both models and the results are discussed briefly.

In the final Chapter (6) the subject of Compositional Data, as a special type of data, is introduced. In this chapter, we analyze the properties of Compositional Data as well as the methodology with which, such kind of data should be treated.

2. Geological Setting of Williston Basin

The Williston Basin is an intracratonic, sub-circular sag basin that comprises main part of the North American craton. In particular, it forms a large depression in the western edge of the Canadian shield, occupying much of North Dakota, northwestern South Dakota, the eastern quarter of Montana, a significant part of southern Saskatchewan, and a portion of southwestern Manitoba. Among these regions major production of oil and gas occurs. Williston Basin is characterized by Phanerozoic, carbonate and clastic sedimentation of more than $16,000 \mathrm{ft}$ strata thickness in its central part, near Watford City, North Dakota [1, 2]. Having undergone episodic and prolonged subsidence rates, it comprises a preservational basin and it is composed by six major depositional sequences, each bounded by larger structural features [2, 3, 4] (Fig. 1). The basin is neither considered structurally complex nor tectonically active and its well -established petroleum provinces, clearly described rock succession, modest burial history and simple tectonics make this an uncomplicated area to study.

Fig. 1 Location map showing the main geological and geophysical elements of Williston Basin and environs. The region of anomalous subsidence that is Williston Basin proper (Ahern and Mrkvicka, 1984) is generally coincident with the 1 km depth contour on Carboniferous strata. The region of preserved Middle Devonian Prairie Formation salt deposited in Elk Point Basin is illustrated. The inset shows the location of Williston Basin and the extent of Elk Point Basin. Samples from petroleum pools entrapped at the subcrop of the upper Paleozoic succession in southeastern Saskatchewan and southwestern Manitoba, as well as American samples constitute the sample set for this study (following Burrus et al., 1996a).

Williston Basin is discretized into the American and the Canadian portions. The American portion of the basin is influenced by major deformational features, mainly anticlines (Fig. 2). The Canadian part of Williston Basin forms a petroleum province where oil production is quite active. Petroleum accumulations mainly occur in stratigraphic traps within the Phanerozoic succession [5]. There is, however, variety of trapping features which are structurally linked to Precambrian basement [6, 1, 7]. In southwestern Manitoba and southeastern Saskatchewan, oil exists around the Mississippian subcrop. In southwestern and west-central Saskatchewan, oil exists in stratigraphic traps within latest Devonian to Mississippian, Jurassic, and Lower Cretaceous formations.

Fig. 2 Petroleum region and crucial tectonic elements in the Williston Basin and adjacent area. Only generalized outlines of the Mississippian Madison Group Subcrop Petroleum Province and other Williston Basin petroleum provinces are indicated.

2.1 Stratigraphy of Williston Basin

The Williston Basin forms a large, roughly circular depression on the North American Craton. Its sedimentology is characterized by Paleozoic and Cenozoic - Mesozoic carbonate and clastic deposition, accordingly with a thickness of strata that exceeds $16,000 \mathrm{ft}$ in the basin's core (Fig. 3).

Fig. 3 Contour map pf Williston Basin presenting the thickness of sediments. Contour interval is 1,000 ft. [8]
There are six main depositional sequences, each bounded by major unconformities [3], which can be distinguished within the Phanerozoic succession of North American portion of the basin. The formulation of unconformities resulted in numerous processes affecting its final structure, such as primary and secondary dissolution, deposition of salt and anhydrite beds, and secondary dolomitization of limestone. Clastic deposition initiated in Mesozoic and Cenozoic Eras, including mudstone, sandstone, siltstone, coal and shale. All depositional sequences are briefly described in the following paragraphs.

Sauk Sequence (Middle Cambrian - Lower Ordovician)

The Sauk sequence was deposited on the early Paleozoic miogeocline of western North America [7, 9], and is composed of Upper Precambrian sediments, interrupted by minor transgressions and regressions, which create several sub-members within the formation [10]. Saul deposition, mainly represented by Deadwood formation, includes shallow marine, coastal and alluvial plain sediments along with sandstone, mudstone and siltstone successions and finalizes due to the activity of an unconformity.

Tippecanoe Sequence (Ordovician - Silurian)

The Tippecanoe sequence marks the beginning of Ordovician clastic, carbonate and evaporitic sedimentation. From bottom to top, it consists of Winnipeg, Red River, Stony Mountain and Stonewall Formations, each unconformably overlying the other (Fig. 4). Upper Ordovician
rocks of this sequence contain important petroleum sources. Depositional processes terminate at the end of the Silurian due to major regression activity.

Fig. 4 Diagram showing geologic time scale, major stratigraphic sequences of [3], first- and second order sea level curves from [11], and ages of petroleum source and reservoir rocks in the Williston Basin. Solid black interval in source rock column are for thick accumulations; thin lines indicate association with carbonate depositional cycles. In reservoir rock column, green is for oil and red is for gas; thin lines indicate generalized reservoir rock and do not necessarily represent the full spectrum of possible reservoirs. E, Early; M, Middle; L, Late; Pal, Paleocene; Eoc, Eocen; Olig, Oligocene; Mio, Miocene; Plio, Pliocene (following Lawrence , et al., 2013).

Kaskaskia Sequence (Devonian - Mississippian)

The Kaskaskia sedimentation cycle initiated in Ordovician, continued to Jurassic and concluded due to transgressional activity. Three main transgressional events impacted on the depositional history of the sequence, during which several formations were deposited. The most significant is the Bakken Formation which represents the first major input of clastic material into the Williston Basin since the Cambrian Deadwood and Winnipeg Formations. Bakken marks a change in Kaskaskia sequence depositional patterns and sedimentation style $[12,13]$ and it is the most important interval for petroleum source rocks in the Williston Basin. In general, the Kaskaskia Sequence is stratigraphically characterized by subtidal, intertidal and rare supratidal depositional environments.

Absaroka Sequence (Pennsylvanian - Triassic)

The Absaroka Sequence includes the Tyler and the Minnesula formations and mainly occurs in the American portion of the Williston Basin. It is vastly affected by major unconformities, occurring near the end of Pennsylvanian, Permian and Triassic [14] and contains effective oil source rocks $[15,16]$.

Zuni Sequence (Jurassic - Early Tertiary [Eocene])

Two major transgressional events influenced the depositional history of the Zuni Sequence, which is characterized by shallow marine and clastic sediments. Sedimentation terminated during early Paleocene and the sands of the Dakota Group are likely the most significant targets for sequestration in the Zuni Sequence. This sequence can be locally subdivided into
two other sequences. The first includes the Jurassic, when Williston Basin changed from a large reentrant on the craton margin into an orogenic foreland [17, 18]. The lower sequence contains a time equivalent succession to the last cratonically derived miogeoclinal succession.

Tejas Sequence (Tertiary - Quaternary)

Latest Jurassic and Cretaceous successions of the Columbian and Laramide orogenic forelands [19] form the final significant depositional episode [20,21]. Thick shales of this final sequence include significant probable source rocks, but they are all immature in the Canadian Williston Basin. The first produced hydrocarbons in North Dakota were from the youngest strata in the state, glacial drift of the Tejas Sequence. However, there is no production from glacial drift today.

2.2 Tectonic Regime of Williston Basin

In order to understand the Williston Basin's evolution, structural configuration, sedimentation, and thermal patterns, one must refer to the geological history of the Precambrian basement underlying the basin.

Two critical structures have influenced the evolution of the basin; the Trans-Hudson orogenic belt [22] and the northeast-southwest trending Proterozoic lineament and structural zones
[23]. The Trans-Hudson belt sutured the Archean Superior craton to the Archean Wyoming craton (Fig. 5A, B); the resulting collision created a north-south trending strike-slip fault and shear belt. A basin center was created, caused in part by later folding of the Trans-Hudson orogenic belt and rifting [24], although Nelson et al., [25] stated that there is a lack of direct evidence of a rift.

The northeast-southwest trending Proterozoic lineament and structural zones were renamed as the Transcontinental arch, Brockton-Froid fault zone, Great Falls tectonic zone, Poplar fault, and Hinsdale fault. These Precambrian structures were reactivated during the Neoproterozoic, which resulted in the creation of new north-south and northwest-southeast trending structures.

Fig. 5 Precambrian structural configuration of the Williston Basin and surrounding area. A: Tectonic map of the northern Great Plains region [23] showing northeast-southwest strike slip faults; Williston Basin province outline is shown for scale. Ga, billion years ago. B: Map showing the configuration of Trans-Hudson orogenic belt and associated north-south trending structures of the Williston Basin (modified Nelson et al., 1993).

Numerous studies have shown that surface lineament patterns in the Northern Great Plains region, including the Williston Basin, are a result of the aforementioned reactivation of Precambrian faults during the Phanerozoic [26, 27, 28, 29]. These studies show pervasive northeast-southwest and northwest-southeast trends that are parallel to major lineaments of Proterozoic terrane. North-south trending lineaments that are parallel to the Trans-Hudson structural system are less prominent, although north-south thermal patterns are evident from present-day subsurface temperature measurements.

Based on several observations, it is believed that Precambrian tectonic events and their recurrent movement along preexisting zones of weakness played a major role in the development of most of the major fault and shear systems in the Williston Basin. Although the basin is generally reported as a depression and tectonically inactive, its final structure is thought to be mostly formed as a result of structural deformation and down-to-the-basin block faulting from Precambrian rooted structures, as well as from deformation related to the Trans-Hudson orogenic belt.

2.3 Geochemical Classification of Oil Families in Williston Basin

Classification of oil families in the Canadian portion of the Williston Basin has been attempted by a number of investigators over the past decades. Dow and Williams, in their 1974 papers,
were the first researchers to apply the 'petroleum system' concept, identifying three oil systems in the Williston Basin, relying mainly on stable isotopic and gasoline range hydrocarbon composition: Tyler, Bakken, and Winnipeg [15, 16]. Each oil system is associated with a unique oil type. Type I refers to Ordovician and Silurian oils which originate from Middle Ordovician Winnipeg shale sources. Type II oils occur in Upper Devonian, Mississippian and Mesozoic reservoirs, and are probably linked to Fammenian - Tournaisian Bakken Formation Source rocks. Type III refers to Pennsylvanian oils which originate from Tyler Formation source rocks.

Most recent studies, however, have defined at least nine oil systems in the area. Zumberge [30] and Leenheer and Zumberge [31] defined five oil families based on the study of samples from the American part of the Williston Basin, while, Osadetz et al., [32] categorized oils from the Canadian part of the Basin (southeastern Saskatchewan and southwestern Manitoba) into four compositional families (Table 1). The criteria under which the classification of the latter was conducted, include pristane/phytane ($\mathrm{Pr} / \mathrm{Ph}$) ratio, n-alkane predominance, C_{23} tricyclic/ C_{30} pentacyclic terpane ratio and prominence amongst extended hopanes.

In particular, Family A oils occur in Ordovician to Middle Devonian and Upper Ordovician formations and match solvent extracts from kukersites (marine Type I rocks) of the Late Ordovician Binghorn Group [32, 33], rather than, as initially suggested, extracts from Winnipeg shales [15, 16]. Oils of this family present diagnostic saturate fraction gas chromatograms (SFGC), low C_{23} tricyclic/ C_{30} pentacyclic terpane ratios (<0.20) and a strong C_{34} hopane prominence. They can be further subdivided into a group distinguished by low Pr and Ph , relative to faster eluting n -alkanes nC_{17} and nC_{18}, a strong odd-even predominance among n -alkanes between C_{15} and C_{20}, and a low relative abundance in higher carbon number n alkane homologues [34].

Family B oils primarily occur in Bakken reservoirs [32,35,33], they are however, also found in early Cretaceous reservoirs. They are sourced from Type II marine organic matter in the Upper Devonian-Mississippian Bakken Formation shale members. Main characteristic of this family is that it displays the highest $\mathrm{Pr} / \mathrm{Ph}(>1.50)$ and $\mathrm{C}_{23} / \mathrm{C}_{30}(>0.80)$ ratios, accompanying n -alkane and hopane profiles, without any predominance and prominence respectively.

Table 1 Table showing all groups and oil families, in correlation with the according formations, present in Williston Basin (modified by Osadetz, 1994)

Williams, 1974 Lum	Zumberge, 1983; Leeheer and Zumberge, 1987	Osadetz et al., 1992, 1994	Source rocks
Type III (Pennsylvanian oils) not studied	Not studied	Not studied	Tyler Fm. (Pennsyl.)
		Family E (Bakken oils)	Exshaw/Bakken Fm. (U. Dev.-Miss.)
Type II (Devonian, Mississippian \& Mesozoic oils)	Group 2 (Mission Canyon oils)	Family B (Bakken oils)	Bakken Fm. (U.Dev.-Miss.)
		Family C (Miss. \& Jurassic oils)	Lodgepole Fm. (L. Miss.)
Not studied	Group 4 (Nisku oils) Group 3 (Duperow oils)	Family D (Winnipegosis oils)	Winnipegosis Fm. (M.Dev.)
Type 1 (Ordovician-Silurian oils)	Group 1 (Red River oils) Group 5 (Cambrian oil)	Family A (Red River oils) Not studied	Winnipeg Gr. (M. Ord.) and Bighorn Gr. (U.Ord.) unknown (?U.Cam.-Ord)

Family C oils occur the Mississippian Madison Group and Mesozoic formations and are sourced from Type II marine rocks in the Mississipian Lodgepole formation. They present high $\mathrm{C}_{23} / \mathrm{C}_{30}$ (>0.20) ratio but, compared to Bakken sources, lower $\mathrm{Pr} / \mathrm{Ph}$ ratio (<1.1), a pronounced ($>\mathrm{nC}_{20}$) even n -alkane predominance and a strong C_{35} prominence.

Finally, Family D oils occur in Silurian to Mississippian sediments. They originate from Middle Devonian Winnipegosis Formation marine rocks, which vary in terms of depositional background. In particular, there are two kinds of settings; the platform depositional and starved basinal. Family D oils display similar terpane compositional characteristics to kukersite derived oils (abundant Pr, Ph and generally complex SFGCs), they differ however, in that they present greater relative acyclic isoprenoid and higher carbon n-alkane abundance. Oils of D Family, are further discretized into D_{1} platformal and D_{2} starved basinal, based on $\mathrm{nC}_{17} / \mathrm{Pr}$ and $\mathrm{nC18} / \mathrm{Ph}$ ratios. They display higher nC17/Pr ratios for a given nC18/Ph ratio compared to otherwise similar oils that occur in overlying Saskatchewan and Manitoba groups' strata, and they belong to the Elk Point Group of Winnipegosis reef formulations. Group D_{1} predominantly occurs in younger Devonian reservoirs, lacking however, clear source definition. Suggested possible source rocks are thin organic-rich beds in Winnipegosis platform carbonates, the Birdbear Formation, and some Upper Devonian rocks. Group D_{2} occurs in pinnacle reefs of the Middle Devonian Winnipegosis Formation and the Brightholme Member comprises the source rock. Oils having similar molecular compositions to D_{2} oils have been found in the Upper Cambrian Deadwood Formation, Silurian pools of the Nesson Anticline, and new discoveries in the Middle Ordovician Winnipeg Formation. They have, however, very different isotopic compositions of carbon and sulphur, suggesting that a stillundescribed petroleum system exists in Paleozoic strata [36]. Family D oils correlate to Groups 3,4 , and 5 of Leenheer and Zumberge [31].

As previously mentioned, the compositional classification of the Williston Basin petroleum, relied much on terpane, sterane, and select n - and iso- alkane characteristics. The original classification by Williams [16], however, took into consideration the gasoline range fraction
(GRH) and later studies, based on that scheme, came to agree that families A - D and families B - C were inseparable and consistent with oil Types I and II [37]. Most recent work, depends on multivariate statistical methods, such as Principal Component Analysis (PCA), combined with geological information, in an attempt to enhance the independent interpretation of GRH and SFH fractions [32, 38]. Findings show that, while Family A oils can be uniquely classified, oils from Families B, C and D present insufficient characteristics for independent classification. Especially the composition of Family C seems to be quite heterogenous, often overlapping with families B and D [39].

This is attributed to the mixing of oils derived from different sources, without however, the extent to which this process occurs, having been defined [38]. A characteristic example of that mixing is the relative effectiveness of Bakken and Lodgepole petroleum systems [40, 41]. While part of the scientific community suggests that mixing is rare in the American portion of the basin [42, 43, 44], there is another part, proposing that major mixing is possible, without an impact on the biomarker traits $[45,46]$. What is to account for the inability to precisely define the extend of mixing sources, is either the neglection of current interpretive techniques or the semi-quantitative confirmation of the biomarker based classification in the GRH and SFH [34, 39].

3. Exploratory Data Analysis

Analysis of Data (DA) constitutes the science of collecting, organizing and examining raw data under the purpose of obtaining useful and usable information for decision-making by users. The analysis may describe and summarize the data, identify relationships among variables, compare and identify differences between them as well as forecast outcomes. Data analytics is distinguished from data mining, which is a particular data analysis technique, by the scope, purpose and focus of the analysis. The target of Data Mining is rather predictive than descriptive. Data miners sort through huge data sets using sophisticated software to identify undiscovered patterns and establish hidden relationships. Data analytics focuses on inference, the process of deriving a conclusion based solely on what is already known by the researcher. Statistician John Turkey defined the term "Data Analysis" in 1961 as: "Procedures for analyzing data, techniques for interpreting the results of such procedures, ways of planning the gathering of data to make its analysis easier, more precise or more accurate, and all the machinery and results of (mathematical) statistics which apply to analyzing data."

Turkey [47] distinguished in Data Analysis techniques and procedures, two major groups: Exploratory Data Analysis (EDA) and Confirmatory Data Analysis (CDA). In EDA analysts make a few assumptions under the purpose of suggesting hypotheses and according to Turkey it is a rather detective work. In contrast, CDA "quantifies the extent to which deviations from a model could be expected to occur by chance" [48]. Confirmatory Data Analysis utilizes the traditional statistical tools of inference, significance, and confidence.

As a scientific tool, DA can be further subdivided in alternate groups. Therefore, based on the quantity of variables examined, Data Analysis can be dichotomized into Univariate (UDA) and Multivariate (MDA). Univariate data analysis is conducted when one variable is used for one observation. Subsequently, it makes sense to state that Multivariate data analysis is used when more than one outcome variables are measured and it is concerned with the study of association among sets of measurements. It is referred to as any statistical technique used to analyze data that arises from more than one variable.

3.1 Multivariate Data Analysis (MDA)

This project will focus on MDA techniques that will be implemented on the given data set and the outcomes will be examined thoroughly. Multivariate Data Analysis can fall into two phases: Unsupervised learning and Supervised learning. The goal of unsupervised learning is the detection of hidden structure in unlabeled data and encompasses many techniques that seek to summarize and explain key features of the data (i.e. Clustering Analysis, PCA). Supervised learning is a task of inferring a function from labeled training data. Each example on training data is a pair consisting of an input object (typically a vector) and a desired output value (i.e. Classification Analysis). In general, supervised methods are used when the aim is the construction of a model to be used to classify future samples [49].

There are several clustering techniques established by the scientific community, all governed by some kind of taxonomy [50,51]. A major distinction among them involves the Hierarchical and the Partitional approaches, which are based on whether the set of produced clusters is nested or unnested. A Hierarchical clustering leads to a set of nested clusters that are
organized as a tree, whereas a Partitional clustering formulates a division of the set of data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset. Characteristic examples of algorithms derived from the aforementioned approaches are agglomerative or divisive, deterministic or stochastic, incremental or non-incremental, monothetic or polythetic and hard or fuzzy [51].

3.1.1 Hierarchical Clustering

Hierarchical Clustering Analysis is an unsupervised technique that examines the interpoint distances between all of the data objects and generates a tree diagram or dendrogram on which, that information is visualized. It can be considered both as a sequence of nested partitions and the similarity levels at which these change [51, 52]. Hierarchical clustering algorithms are either bottom-up (agglomerative) or top-down (divisive). At each step of the agglomerative hierarchical approach each subject is treated as a singleton cluster which is successively merged into the closest cluster [51, 49, 53]. This process is repeated until all clusters have been merged into a singleton cluster that contains all subjects. The alternate divisive approach, begins with a single cluster containing all subjects, and at each step, the cluster splits until N clusters form (each with a single subject).

The criterion under which clusters are merged or split, differentiates at each case. Since the bottom-up approach agglomerates pairs of clusters with the minimum distance, measures of similarity and dissimilarity have to be taken into account. Those measures are defined by linkage functions which have a direct impact on the whole clustering procedure. They affect the way clusters are merged together and subsequently the final cluster solution. Therefore, linkage measures will be discussed extensively in the process.

The following notation is given in order for the various linkages to be described:

- Cluster r is formed from clusters p and q.
- n_{r} is the number of objects in cluster r
- $X_{r i}$ is the $i^{\text {th }}$ object in cluster r

Single Linkage (Nearest Neighbor) functions utilize the shortest distance between any two objects in a pair of clusters [54,55]:

$$
d(r, s)=\min \left(\operatorname{dist}\left(x_{r i}, x_{s j}\right)\right), i \in\left(i, \ldots, n_{r}\right), j \in\left(1, \ldots, n_{s}\right)
$$

The similarity under which two clusters merge is the similarity of their most similar objects and the merge criterion is local. Single linkage is a bottom-up (agglomerative) process where the number of clusters is reduced by one at each step.

Complete Linkage (Furthest Neighbor/Maximum Method) functions utilize the furthest distance between any two objects in a pair of clusters [55]:

$$
d(r, s)=\max \left(\operatorname{dist}\left(x_{r i}, x_{s j}\right)\right), i \in\left(i, \ldots, n_{r}\right), j \in\left(1, \ldots, n_{s}\right)
$$

Accordingly, in complete linkage method, the similarity under which two clusters fuse, is the similarity of their most dissimilar objects and the merge criterion is non-local, that is, the entire structure of clustering can affect the way how clusters fuse.

Average linkage functions utilize the averaged distance between all pairs of the two clusters' members [55]:

$$
d(r, s)=\frac{1}{n_{r} n_{s}} \sum_{i=1}^{n_{r}} \sum_{j=1}^{n_{s}} \operatorname{dist}\left(x_{r i} x_{s j}\right)
$$

There is also, an average linkage method within groups, proposed by Sokal \& Michener [55], which takes into consideration the variability present within each cluster. This method will not be further discussed.

All the three methods mentioned above (single, complete and average) use a proximity matrix as input and the inter-cluster distances used are presented in Fig. 6.

Fig. 6 Single, Complete and Average linkage graphical representations, modified after [56].

Centroid linkage (Unweighted Pair-Group Method using the centroid approach- UPGMC) utilizes the Euclidean distance between the centroids of the two clusters:

$$
d(r, s)=\left\|\widetilde{x_{r}}+\widetilde{x_{s}}\right\|_{2}
$$

where $\widetilde{x_{r}}=\frac{1}{n_{r}} \sum_{i=1}^{n_{r}} x_{r i}$
As single linkage method, centroid linkage also represents an agglomerative approach to hierarchical clustering. This approach uses a data matrix, in contrast to the previous ones, rather than a proximity matrix and involves merging clusters with the most similar mean vectors.

Median linkage (Weighted Pair-Group Method using the centroid approach) functions also utilize the Euclidean distance between the weighted centroids of the two clusters:

$$
d(r, s)=\left\|\widetilde{x_{r}}-\widetilde{x_{s}}\right\|_{2}
$$

where $\widetilde{x_{r}}$ and $\widetilde{x_{s}}$ are weighted centroids for the clusters r and s. If cluster r was created by combining clusters p and $\mathrm{q}, \widetilde{x_{r}}$ is defined recursively as:

$$
\widetilde{x_{r}}=\frac{1}{2}\left(\widetilde{x_{p}}+\widetilde{x_{q}}\right)
$$

Apart from the Euclidean distance, other proximity measures may be used for the Centroid and the Median linkage approaches, they would, however, lack interpretation in terms of the raw data [56]. The following table (Table 2) presents a brief description of various proximity measures used in linkages.

Table 2 Several Computational methods for distance

Distance measures	Formula		
Euclidean Distance	$\\|a-b\\|_{2}=\sqrt{\sum_{i=1}^{n}\left(a_{i}-b_{i}\right)^{2}}$		
Squared Euclidean Distance	$\\|a-b\\|_{2}^{2}=\sum_{i=1}^{n}\left(a_{i}-b_{i}\right)^{2}$		
Manhattan/City block	$\\|a-b\\|_{1}=\sum_{i=1}^{n}\left\|a_{i}-b_{i}\right\|$		
DIstance	$\\|a-b\\|_{\infty}=$ max $\left\|a_{i}-b_{i}\right\|$		
Maximum Distance	$\sqrt{(a-b)^{T} S^{-1}(a-b)}$ where S is the covariance matrix		
Mahalanobis Distance			

Ward's Method aims to minimize the variance between clusters by utilizing an incremental sum of squares: that is, the increase in the total within-cluster sum of squares as a result of joining two clusters [57]. The within-cluster sum of squares is defined as the sum of the squared distances between all objects in the cluster and the centroid of the cluster. The sum of squares measure is equivalent to the following distance measure $d(r, s)$, which is the formula linkage:

$$
d(r, s)=\sqrt{\frac{2 n_{r} n_{s}}{\left(n_{r}+n_{s}\right)}}\left\|\widetilde{x_{r}}+\widetilde{x_{s}}\right\|_{2}
$$

Where:

- $\left\|\widetilde{x_{r}}+\widetilde{x_{s}}\right\|_{2}$ is the Euclidean distance
- $\quad \widetilde{x_{r}}$ and $\widetilde{x_{s}}$ are the centroids of the clusters r and s
- $\widetilde{n_{r}}$ and $\widetilde{n_{s}}$ are the number of elements in clusters r and s

In some references, factor of 2 multiplying $n_{r} n_{s}$ is not utilized by Ward's method. The linkage function uses this factor so that the distance between two singleton clusters is the same as the Euclidean distance. Ward's method differs from the centroid approach in clustering, in that centroids are weighted by $n_{r} n_{s} /\left(n_{r}+n_{s}\right)$ when computing distances between centroids, where n_{r} and n_{s} are the numbers of objects in the two clusters r and s.

Finally, Weighted Average Linkage (WPGMA) utilizes a recursive definition for the distance between two clusters [58]. If cluster r was created by combining clusters p and q, the distance between r and another cluster s is defined as the average of the distance between p and s and the distance between q and s :

$$
d(r, s)=\frac{(d(p, s)+d(q, s))}{2}
$$

There are several other hierarchical approaches, related to the ones described above. There is the Sum-of-Squares Approach $[59,60]$ which differs from Ward's method in that it is based on the sum of squares within each cluster rather than the increase in sum of squares in the merged cluster. Another flexible method defined by values of the parameters of a general recurrence formula has also been introduced by Lance and Williams [61] but in this project, it will not be discussed any further.

3.1.2 k - means Clustering

The k-means algorithm is one of the most used clustering algorithms and it was first described by Macqueen [62]. It was designed to cluster numerical data in which each cluster has a center called the mean. k-means belongs to the partitional (non-hierarchical) clustering methods [50], which are fundamentally different from the hierarchical ones. Partitional clustering methods generate a single partition of the data in an attempt to recover natural groups in the data. While hierarchical clustering methods require only the proximity matrix among the data points, partitional techniques expect the data in the form of a pattern matrix.
k-means [62] is one of the simplest unsupervised learning algorithms, which is used to solve the well-known clustering problem. The goal of k -means method is to divide the data into k distinct groups (clusters) so that observations within a group are similar, whilst observations between groups are different. The value of k (number of clusters) may or may not be specified. In most cases, it is assumed to be fixed. As an algorithm, it is rather iterative than hierarchical, which means that at each stage of the algorithm data points are assigned to a fixed number of clusters (whereas in hierarchical clustering, the number of clusters ranges from the number of data points down to a single cluster). The method allows the reallocation of data objects from one cluster to another, which is not the case at hierarchical clustering.

There is an error function behind this reallocation of data objects. It proceeds, for a given initial k clusters, by allocating the remaining data to the nearest clusters and then repeatedly changing the membership of the clusters according to the error function until the error function does not change significantly or the membership of the clusters no longer changes. The conventional k -means algorithm $[63,64]$ is briefly described below.

Let D be a data set with n instances, and let $C_{1}, C_{2}, \ldots, C_{k}$ be the k disjoint clusters of D. Then the error function is defined as

$$
E=\sum_{i=1}^{k} \sum_{x \in C i} d(\boldsymbol{x}, \mu(C i)),
$$

where $\mu(\mathrm{Ci})$ is the centroid of cluster $\mathrm{Ci} . \mathrm{d}(\mathbf{x}, \mu(\mathrm{Ci}))$ denotes the distance between \mathbf{x} and $\mu(\mathrm{Ci})$, and it can be one of the many distance measures, a typical choice of which is the Euclidean distance.

Given a set of observations, k-means clustering aims to partition n observations into k clusters so that the total distance between the group's members and its corresponding centroid, representative of the group, is minimized. The component to be minimized is the withincluster sum of squares (WCSS):

$$
\sum_{j=1}^{k} \sum_{i=1}^{n}\left\|x_{i}^{j}-c_{j}\right\|^{2}
$$

where the term $\left\|x_{i}^{j}-c_{j}\right\|^{2}$ provides the distance between any data point and the cluster's centroid.

Each cluster is associated with a centroid, which is the mean of the points in the cluster. Each point is assigned to the cluster with the closest centroid. The first step of k-means is to select as initial cluster centers K, randomly selected documents, the seeds (initialization phase). The algorithm then moves the cluster centers around in space in order to minimize WCSS (iteration phase). This is accomplished iteratively by repeating the following steps until a stopping criterion is met: reassigning documents to the cluster with the closest centroid; and recomputing each centroid based on the current members of its cluster. Firstly, WCSS decreases in the reassignment step, since each vector is assigned to the closest centroid, so the distance it contributes to WCSS decreases. Secondly, it decreases in the re-computation step because the new centroid is the vector \vec{v} for which $\mathrm{WCSS}_{\mathrm{k}}$ reaches its minimum. Ultimately, k-means converges for the common similarity measures to a local minimum point after a finite number of iterations (normally the first few) [65]. Convergence and some probability properties regarding the k-means algorithm are also discussed in Pollard [66, 67], and Serinko \& Babu, [68]. García-Escudero and Gordaliza [69] discussed the robustness properties of the k-means algorithm.

The complexity of the whole procedure is summarized in the following expression:

$$
O\left(n * K^{*} I^{*} d\right)
$$

Where: $n=$ number of points
$\mathrm{K}=$ number of clusters
I= number of iterations
d= number of attributes
Choosing the right initial number of centroids is very important as it controls the performance of the algorithm. If there are K 'real' clusters (especially when K is large), then the probability of selecting one centroid from each cluster is relatively small. Particularly, if clusters are of the same size, n, then the aforementioned probability is as follows:

$$
P=\frac{\text { number of ways to select one centroid from each cluster }}{\text { number of ways to select } K \text { centroids }}=\frac{K!n^{K}}{(K n)^{K}}=\frac{K!}{K^{K}}
$$

There are several approaches to this problem such as multiple runs, sampling and usage of hierarchical clustering to determine the initial centroid number, selection of more than k initial centroids and re-selection among these (the most widely separated), postprocessing and/or bisecting k-means. Some methods for selecting good initial centers are proposed in Babu and Murty [70] and Bradley and Fayyad [71]. Pena et al. [72] provide a comparison of four initialization methods: a random method, Forgy's approach [56], Macqueen's approach [62], and Kaufman's approach [73]. Other initialization methods are presented in Khan and Ahmad [74].

Silhouette analysis is a method for selecting the number of clusters for k-means clustering. It can be used as a tool to study the separation distance between the resulting clusters. The silhouette plot displays a measure of how close each point in one cluster is to points in the neighboring clusters and thus provides a way to assess parameters like number of clusters visually. This measure has a range of [-1, 1].

Silhouette coefficients (as these values are referred to as) near +1 indicate that the sample is far away from the neighboring clusters. A value of 0 indicates that the sample is on or very close to the decision boundary between two neighboring clusters and negative values indicate that those samples might have been assigned to the wrong cluster. In other words, a value of +1 is ideal and -1 is the least preferred. Hence, the higher the value, the better is the cluster configuration.

The silhouette value for the $\mathrm{i}^{\text {th }}$ point, Si , is defined as
$\mathrm{Si}=\left(\mathrm{b}_{\mathrm{i}}-\mathrm{a}_{\mathrm{i}}\right) / \max \left(\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}}\right)$
where a_{i} is the average distance from the $\mathrm{i}^{\text {th }}$ point to the other points in the same cluster as i , and $b i$ is the minimum average distance from the $i^{\text {th }}$ point to points in a different cluster, minimized over clusters.

A disadvantage of k-means algorithm is that it is sensitive to the presence of outliers and when clusters are of different size, different density or non-globular it might be disfunctional. For this reason, pretreatment and postprocessing of data is essential when implementing kmeans, especially on high-dimensional data. Also, working only on numerical data restricts some applications of the k-means algorithm.

All in all, k-means is a greedy, computationally efficient technique, being the most popular representative-based clustering algorithm.

3.1.3 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) constitutes a multivariate statistical technique, probably one of the most popular in the chemometric literature, used by various scientific disciplines, in order to identify patterns and relationships within a data set [75, 76]. It is an unsupervised learning method which aims to reduce the dimensionality of a high-dimensional data set consisting of a large number of interrelated variables and at the same time to retain as much as possible of the variation present in the data set. In mathematical terms, this is accomplished by manipulating a data matrix in such a way that the variation or spread of data objects (i.e. the description of their interpoint distances) is described by as few dimensions as possible. In addition to data reduction, Principal Component Analysis forms a transformation technique
of data, also used for simplification, modelling, outlier detection (identification of their class membership), variable selection, classification, prediction and unmixing of constant sum mixtures (curve resolution) [77, 78, 79].

The information that PCA extracts from the mathematical manipulation of the data matrix, is expressed by a new orthogonal set of variables (PC axes), known as the Principal Components (PCs) [76]. These are new variables that are uncorrelated and ordered such that the first few retain most of the variation present in all of the original variables. Principal components are obtained as linear combinations of the original variables and each one of them is characterized by certain properties. For example, the first PC contains the maximum amount of possible variance in the data set, in one direction and successive PCs describe decreasing amounts of variation. Each data object has coordinates, defined by the original variables, which are relative to the new principal component axes (scores). What is more, PC axes are influenced by variables and this is because the formulation of each axis is based on combinations among the original measurement variables. Variables' contribution to PC axes depends mainly on the relative orientation between those two elements. Hence, parallel arrangement (in space) of the variable and PC axes, means that minimum variation is contained in the PC and accordingly, orthogonal arrangement of the two, means maximum variation. Finally, the maximum PC quantity to be calculated, is at the same time, the minimum quantity of data objects or variables (six habits).

The PCs are defined as follows. Let $\mathbf{v}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{d}}\right)^{\prime}$ be a vector of d random variables, where ' is the transpose operation. The first step is to find a linear function $\mathbf{a}^{\prime}{ }_{1 v}$ of the elements of \mathbf{v} that maximizes the variance, where \mathbf{a}_{1} is a d-dimensional vector $\left(a_{11}, a_{12}, \ldots, a_{1 d}\right)^{\prime}$, so

$$
\mathrm{a}_{1}^{\prime} v=\sum_{i=1}^{d} a_{1 i} u_{i}
$$

After finding $\mathbf{a}^{\prime}{ }_{1} \mathbf{v}, \mathbf{a}^{\prime}{ }_{2} \mathbf{v}, \ldots, \mathbf{a}^{\prime}{ }_{j-1} \mathbf{v}$, we look for a linear function $\mathbf{a}^{\prime}{ }_{j} \mathbf{v}$ that is uncorrelated with $\mathbf{a}^{\prime}{ }_{1} \mathbf{v}, \mathbf{a}^{\prime}{ }_{2} \mathbf{v}, \ldots, \mathbf{a}^{\prime}{ }_{j-1} \mathbf{v}$ and has maximum variance. Then we will find d such linear functions after d steps. The j th derived variable $\mathbf{a}^{\prime} \mathbf{j} \mathbf{v}$ is the j th PC. In general, most of the variation in \mathbf{v} will be accounted for by the first few PCs. To find the form of the PCs, we need to know the covariance matrix \sum of \mathbf{v}. In most realistic cases, the covariance matrix \sum is unknown, and it will be replaced by a sample covariance matrix. For $j=1,2, \ldots, d$, it can be shown that the $j^{\text {th }}$ $P C$ is given by $z_{j}=\mathbf{a}^{\prime}{ }_{j} \mathbf{v}$, where \mathbf{a}_{j} is an eigenvector of \sum corresponding to the $j^{\text {th }}$ largest eigenvalue λ_{j}.

4. Family Affiliations of Williston Basin Oils

The sample set under study consists of four compositional families, A, B, C and D, each containing 44, 11, 38 and 27 oil samples, respectively (a total of 120 oil samples - see Appendix). Family A oil samples belong to Red River and Yeoman formations. Family B oil samples belong to Bakken and Lodgepole formations while samples of family D belong to Winnipegosis formations. Oil samples of family C belong to various formations, such as Midale, Tilston, Bakken, Frobisher, Ratcliffe, Lodgepole, and Madison formations. The exploration of the compositional data was conducted on the main hydrocarbons of the gasoline range, the n-alkanes in the saturated fraction of the oils, as well as the biomarker's content of this sample set.

As far as the gasoline range is concerned, it represents the number of hydrocarbons containing less than twelve carbon atoms, and are often referred to as light hydrocarbons. In highly thermally mature oils, this range constitutes almost the 100% of the oil composition and therefore geochemical characterization of such oils is carried out based on these compounds.

The saturated fraction of hydrocarbons (SFH) is comprised of either the linear, branched or cyclic hydrocarbons. SFH contains the structural group of n-alkanes (usually between $\mathrm{C}_{12}-\mathrm{C}_{35}$) as well as the pristane (Pr) and phytane (Ph) isoprenoid compounds, measured in geochemical studies along with n-alkanes, due to their geochemical significance. In the analysis, the lighter n -alkanes were excluded and only the $\mathrm{C}_{13}-\mathrm{C}_{32}$ alkanes were considered.

Biomarkers are a group of compounds, found in oils and rock extracts. They have a variety of applications in petroleum exploration. Such applications are in source-rock correlation and/or in the inference of characteristics of the source rock that generated an oil, without examining the source rock itself. Specifically, biomarkers in an oil can reveal the relative amount of oilprone vs. gas-prone organic matter in the source kerogen, the age of the source rock, the environment of deposition, the lithology of the source rock (carbonate vs. shale), and the thermal maturity of the source rock during generation. Such data may be key inputs to effective basin modelling of a prospect or block. In this study, the sterane and hopane parts of the biomarkers' range have been examined thoroughly.

Before performing Multivariate Data Analysis (MDA) on the given oil sample set, an attempt was made in order to test the criteria under which the classification of the four family affiliations of Williston Basin, was determined in previous studies. The biomarker based classification of the four families relies on various compositional criteria, including Pr/Ph ratio, tricyclic to pentacyclic C_{23} / C_{30} ratio, n-alkane predominance and prominence amongst extended hopanes and many other, extensively described in the following paragraphs. Empty spaces on the barcharts presented below, correspond either to zero component values for specific samples, or to infinite numbers, generated during the calculative ratio calculations.

The compositional character of each family is unique and this is evident from their n-alkane distributions, biomarker signature as well as their gasoline range characteristics, in general [39, 32]. Family A oils display diagnostic saturate fraction gas chromatograms (SFGC) and are fairly distinguishable from the other families by their overall n-alkane profile (centered at $\mathrm{C}_{13^{-}}$ C_{17}) and CPI values (average CPI: 1.59) [39, 32]. According to Obermajer et al., (2000), they
also present a smooth extended hopane profile with a steady decrease in the concentration of $\mathrm{C}_{31}+$ homologues with increasing carbon numbers [39]. In addition, Family A oils, are characterized by a C_{34} hopane prominence, according to Osadetz et al., [32]. Homohopane distributions have been used to distinguish oils from different organic facies of the same source rock. Such distributions are sensitive and may be altered due to various factors such as thermal maturity and API gravity. Judging from the barchart (Fig. 7), Family A oils display a high C_{34} homohopane distribution, but, in addition, oils from Family D, present an even stronger prominence on this compound (Fig. 7). The behavior of C_{34} for Families B and C is similar to that of Family A.

Fig. $7 C_{34}$ barchart for the whole sample set.

Another diagnostic feature of this group is its very low concentration of acyclic isoprenoids relative to n -alkanes, presenting the lowest $\mathrm{Pr} / \mathrm{C}_{17}$ and $\mathrm{Ph} / \mathrm{nC}_{18}$ ratios among all families [39]. The corresponding barcharts (Fig. 14, Fig. 15), in which these ratios have been plotted, is in agreement with this fact. According to Osadetz et al., [32], the C_{23} tricyclic/ C_{30} pentacyclic terpanes ratio, especially for Families A and B, is very distinct, differentiating them from the rest family groups. From the corresponding barchart, it is indeed observed that Family A oils display very low values of $\mathrm{C}_{23} / \mathrm{C}_{30}$, whereas Family B displays the highest peaks for the same ratio (Fig. 8). What is also noticeable from the $\mathrm{C}_{23} / \mathrm{C}_{30}$ barchart, is that Family D oils, similarly to Family A, present very low values for this ratio.

Fig. 8 Barchart presenting C_{23} / C_{30} ratios for the whole sample set.

Family B oils, according to Obermajer et al., [39], differ from the rest in that they present a smooth n-alkane distribution with a maximum in the $\mathrm{C}_{13}-\mathrm{C}_{17}$ range, lacking any homohopane prominence, which is in agreement with Osadetz et al., [32]. According to Obermajer et al., [39], there are variations in 17a(H)-trisnorhopane (Tm) over 18a(H)-trisnorhopane (Ts), compared to the rest oils. From the respective barchart (Fig. 10) we observe that there are indeed, intense variations within this Family affiliation, the density of the specimens, however, is not adequate enough in order to confirm the clear distinction of this family from the rest. The calculative process of the code has produced the NaN notation, resulting in non-plotted samples. The $T s / T m$ ratio profiles of the rest Families (A, C and D) show almost equivalent variations.

Another characteristic of Family B oils, is that they obtain values above unity for the $\mathrm{Pr} / \mathrm{Ph}$ ratio [32]. This ratio is one of the most common correlation parameters, utilized as an indicator of depositional environment [80]. Variations may reflect multiple degrees of oxidation during the early stages of chlorophyll degradation. It is one of the most commonly utilized correlation parameters, indicative of the source rock's depositional environment [80]. Being sensitive to diagenetic conditions, values of $\mathrm{Pr} / \mathrm{Ph}$ ratios substantially below unity are considered to indicative of petroleum origin and/or highly reducing depositional environments. Very high $\mathrm{Pr} / \mathrm{Ph}$ ratios (>3) reflect source material of terrestrial origin. $\mathrm{Pr} / \mathrm{Ph}$ ratios ranging between 1-3 reflect oxidizing depositional environments [81]. According to Lijmbach [82] low Pr/Ph values (<2) reflect aquatic depositional environments including marine, fresh and brackish water (reducing conditions), intermediate values (2-4) reflect fluviomarine and coastal swamp environments, whereas very high values (up to 10) are related to peat swamp depositional environments (oxidizing conditions). From the corresponding barchart (Fig. 9), we observe that, contrary to Family C, Families A, B and D present similar, above unity values for this ratio, which is in agreement with Osadetz et al., [32]. At the same time, however, Family B oils display the highest peaks (Fig. 9).

Fig. 9 Pr/Ph ratios barchart for the whole sample set.

Fig. 10 Ts/Tm ratios barchart for the whole sample set.

Fig. 11 CPI profile for the whole sample set.

Fig. 12 Odd/Even predominance for the whole sample set.

Fig. $13 C_{35}$ barchart for the whole sample set.

Main characteristic of Family C is the strong C_{35} prominence [32], which is confirmed by the respective barchart (Fig. 13). The lowest C_{35} homohopane distribution is indicative of Family A oils, as shown. According to Osadetz et al., [32] and Obermajer et al., [39], these oils obtain lower $\mathrm{Pr} / \mathrm{Ph}$ values in comparison to the rest, and in particular, less than unity. This fact holds true, as we observe from the corresponding barchart (Fig. 9), confirming at the same time that Family C oils display a strong and consistent predominance of $\mathrm{Ph} / \mathrm{Pr}$ ratio.

Additionally, oils of this familial group also display an even/odd n-alkane predominance [32]. The composition and distribution of n-alkanes carbon numbers reflect the source of kerogenic organic matter, sedimentary environment, and maturity of the rocks. Traditional geochemists feel that the odd/even carbon number predominance of n-alkane decreases as rocks mature. The OEP (odd/even predominance) of mature source rocks is close to 1 . However, the odd carbon number predominance appears in Upper Ordovician source rocks, and an even carbon number predominance is found in Cambrian - Lower Ordovician source rocks. Family C oils are characterized by an even/odd n-alkanes predominance and this is confirmed by both the CPI and OEP, respective barcharts (Fig. 11, Fig. 12).

Fig. $14 n^{n} C_{17} / \operatorname{Pr}$ barchart for the whole sample set.

Fig. $15 n C_{18} /$ Ph barchart for the whole sample set.
Oils from Family D display a distinctive stratigraphic occurrence and have been subdivided into two separate groups D_{1} and D_{2}, based on $\mathrm{nC}_{17} / \operatorname{Pr}$ and $\mathrm{C}_{18} / \mathrm{Ph}$ ratios [32]. The corresponding barcharts (Fig. 14, Fig. 15) present the distributions of these ratios amongst the whole sample set. What is more, D_{1} and D_{2} oils, depending on the pools they occur, either in Madison or Birdbear, they display $\mathrm{Pr} / \mathrm{Ph} \leq 1.0$ and $\mathrm{Pr} / \mathrm{Ph}>1.1$, respectively. This is indeed, evident, from the corresponding barchart (Fig. 9).

Reviewing the barcharts presented before, it would be important to state that based on individual geochemical characteristics, the four families can be indeed uniquely identified at a great extent. However, it would be a challenge to investigate if a clear classification can be obtained, by applying this time, multivariate data analysis (MDA) on raw data.

In the next chapters, we implement several multivariate methods on the given data set and examine the results, that each method produces. Hierarchical clustering, k-means and Principal Component Analysis are applied on four independent models that were developed for this purpose; the Saturated Fraction Compositional Model, the Saturated Fraction Ratios Model, the Gasoline Range Compositional Model and the Biomarkers Compositional Model. All of the steps that were followed are extensively described.

5. Application of MDA methods; inputs and results

The core of this project is the investigation of the oil-oil correlations among compositional data of a sample set from Williston Basin, by using multivariate statistical analysis methods. Oil-oil correlations are based on compositional criteria and examine whether a genetic relationship exists among a group of oil samples. In particular, Hierarchical Clustering, kmeans and PCA have been employed in order to explore compositional data from the gasoline range (GRH), saturated hydrocarbons (SFH) and biomarker traits of 120 oil samples from the Williston Basin Petroleum province. The samples examined in this study are from four, previously defined, compositional families (A-D) [34].

For the application of MDA methods on the sample set, a MATLAB code created in the "Hydrocarbons Chemistry and Technology Research Unit", of the School of Mineral Resources of the TUC, was utilized. All necessary adjustments and modifications were applied in order for the code to work.

From the sample set under study, four independent models were developed in order to explore different compositional information. The models used for the identification of petroleum systems were: a) Saturated Fraction Compositional Model (SFCM) b) Saturated Fraction Ratios Model (SFRM), c) Gasoline Range Compositional Model (GRCM) and d) Biomarkers Compositional Model (BCM). SFCM embodies original variables derived from the gas chromatographic analysis of the Saturated Fraction of Hydrocarbons (SFH). It takes into account peak areas of n-alkanes, $\mathrm{nC}_{13}-\mathrm{nC}_{24}$, pristane (Pr) and phytane (Ph). The SFRM contains the most commonly utilized compositional ratios and factors derived from the gas chromatographic analysis of the SFH (Pr/Ph, n- $\mathrm{C}_{17} / \mathrm{Pr}, \mathrm{n}-\mathrm{C}_{18} / \mathrm{Ph}, \mathrm{CPI} n-\mathrm{C}_{14-20}, \mathrm{CPI} n-\mathrm{C}_{22-32}$). GRCM includes variables derived solely from GRH compositional data. The parameters reflect internal variations for compounds with the same number of carbon atoms to minimize possible variations due to sample handling and experimental conditions. Finally, BCM contains all variables derived from biomarkers' traits of the oil sample set.

The approach under which all statistical methods were applied, was that of trial and error in order to achieve a "clear clustering" (if possible) of the oil samples. A pretreatment scheme of the sample set was considered necessary in order to reformat the original data file and prepare data for clustering. This is because the data set consists of peak areas that are analysis-dependent. As a consequence, only by preprocessing the data, we get meaningful statistical results, since all components are put under the same scale. The idea is that if different components of data (features) have different scales, then derivatives tend to align along directions with higher variance, which leads to poorer/slower convergence. The chemometric software package that was utilized, offered various pretreatment options, all of which were originally applied on the sample set, in order to examine which one produces the best classifying solution. While only the results from one preprocessing option will be presented, all pretreatment schemes which were utilized, are briefly described below.

Command "pre_scaling_0_1": It refers to the subtraction of the minimum value and the division of each column by the range. The results of this pretreatment scheme are going to be presented in the upcoming chapters.

Command "norm_variables_0_1": It refers to the subtraction of the minimum value and the division of each variable by the range.

Command "pre_minusMean": It concerns the subtraction of the mean value from each variable.

Command "pre_PQN" (Probabilistic quotient normalization): It refers to the division of each sample with the sum of the sample's variables. The calculative process takes into consideration the median value of each column.

Command "pre_CLR" (Centered log-ratio normalization): It concerns the division of each sample with the sum of the sample's variables. It differs, however, from "pre_PQN" in that it takes into consideration the geometric mean of each column.

Command "Subtract_sample_min": It refers to the subtraction from each sample of its minimum value.

Command "pre_TSN" (total sum normalization): It concerns the division of each sample with the sum of the samples' variables.

Command "pre_max": This matlab command refers to the division of each sample with the maximum value of the samples' variables.

5.1 Saturated Fraction Compositional Model (SFCM)

5.1.1 Hierarchical Clustering on SFCM

The subtraction of the minimum value from the subset and division of each variable by the range ("pre_scaling_0_1" command) resulted in the following dendrogram (Fig. 16). Average linkage with a correlation coefficient were combined

It is evident that the oil samples from all four family affiliations overlap, presenting no clear distinction. In particular, there is a slight overlap of samples from Families B (B1014, B1993, B2121, B2179, B1879, B1874) and D (D1275, D1276, D1289, D1313, D1288, D1290, D1291) with Family A. The original clustering solution detected outlier values (samples C599, D2595 and C566), removing which from the sample set and reprocessing it under the same pretreatment, made no difference on the clustering solution.

Fig. 16 Resulting Dendrogram under the command "pre_scaling_0_1" for the Saturated fraction compositional model (SFCM).

As observed, the algorithm failed to discriminate distinct familial affiliations among the given oil sample set, under this pretreatment scheme. In order to test how Hierarchical Clustering would offer the best clustering solution, many other pretreatment schemes were also applied on the data set and as a procedure, this was also followed in the upcoming MDA methods. The following dendrogram resulted from the division of each sample with the sum of the samples' variable - Total Sum Normalization ("pre_TSN" command of the chemometric software package). City block distance and Centroid linkage were combined and the produced dendrogram displays a relatively good distinction of Family A. It fails, however, to distinguish amongst Families B, C and D, which, once again, overlap one another (Fig. 17).

Fig. 17 Dendrogram under the "pre_TSN" command for the Saturated fraction compositional model (SFCM).
An interesting feature of the dendrogram in Fig. 17, is that it displays a non-monotonic tree. This occurs when the distance from the union of two clusters, r and s, to a third cluster is less than the distance between r and s. In this case, in a dendrogram drawn with the default orientation, the path from a leaf to the root node takes some downward steps. Usually, the centroid and median methods (as in this case) can produce a cluster tree that is not monotonic and if this happens, it is better to utilize another linkage method. In our case, however (Fig. 17), the centroid linkage, which was automatically chosen by the chemometric software package, produced a dendrogram which classified sufficiently samples of Family A. All other pretreatment options failed in this task significantly.

5.1.2 k - means algorithm on SFCM

k-means clustering was then performed under the same pretreatment option ("pre_scaling_0_1") resulting in the following features (Fig. 18, Fig. 19, Table 3).

Table 3 Summary of k-means clustering under the " pre_scaling_0_1" pretreatment option for the Saturated fraction compositional model (SFCM).

K-values	Best distances sums	Average silhuette values
$\mathrm{K}=2$	594.077	0,566689
$\mathrm{~K}=3$	41.787	0,539449
$\mathrm{~K}=4$	345.548	0,503212
$\mathrm{~K}=5$	290.114	0,467112

The silhouette plots for $\mathrm{K}=2, \mathrm{~K}=3, \mathrm{~K}=4$ and $\mathrm{K}=5$ clusters are shown in the following figure (Fig. 18). An insufficient choice of an initial K value would result in clusters below average silhouette scores or even wide fluctuations in the size of the silhouette plots. This is the criteria under which, each clustering solution is evaluated as sufficient or insufficient.

Fig. 18 Silhouette plots for $k=2, k=3, k=4$ and $k=5$ clusters under the "pre_scaling_0_1" pretreatment option for the Saturated fraction compositional model (SFCM).

From the silhouette plots (Fig. 18), we observe that, in general, the obtained silhouette values fall in the range of 0.1-0.9. The size of the silhouette plots does not present wide fluctuations for each case, and negative values are present in all clustering solutions. The two - cluster solution has an average silhouette value of 0.566689 , being the highest amongst the others (Table 3). This is an indication that grouping into two clusters using k-means is more efficient compared to grouping into three, four or five clusters. It is not, however, sufficient enough, as we would expect, grouping into four clusters to be the best solution. In Fig. 20 we can observe, which cluster each sample is assigned to.

Fig. 19 The plot of k-means clustering for $k=2$ under the "pre_scaling_0_1" pretreatment option for the Saturated fraction compositional model (SFCM). The \otimes symbol represents the centroid of each cluster.

Fig. 19 represents the plot of k -means clustering, for the case of $\mathrm{k}=2$. Taking into consideration the average silhouette value, $\mathrm{k}=2$ is the most efficient clustering solution. However, by observing the plot, we could say that there is no clear boundary between the two clusters and samples overlap with each other.

Fig. 20 Table displaying to which cluster each sample belongs, for each K value of the SFCM (idx2 = k:2, idx3 = k:3, etc.)

Taking into consideration that the most sufficient clustering solution is that of $\mathrm{k}=2$ (idx=2) and according to Fig. 20, all samples from Family A oils are assigned to one cluster. The vast majority of Family C oil samples are assigned to a different cluster with a few exemptions (C540, C543). The discretization of these two families is relatively sufficient, but as far as Family D and B oil samples are concerned, they overlap with A and C considerably, as samples from both families are assigned to both clusters.

5.1.3 Principal Component Analysis on SFCM

Sample scores describe a position in principal component space, and each original variable has loadings that describe their contribution to each principal component. The sample score of the first two principal components and the respective loading diagrams are presented in figure (Fig. 21a, b). The percentages of variation attributed to each of the Principal Components are shown in Fig. 21c.

Fig. 21 a) Sample scores for the first to Principal Components resulting from the Saturated Fraction Compositional Model (SFCM) of selected Williston Basin petroleum oils. Colors on sample symbols indicate compositional families determined by independent analysis. Blue color represents oils of Family A, green applies for Family B oils, red for Family C oils and yellow for Family D oils. "Pre_scaling_0_1" command was used on the data set. b) Original Variable loadings for the first to Principal Components resulting from the Saturated Fraction Compositional Model (SFCM) of selected Williston Basin petroleum oils. c) Percentage of variance explained by each Principal Component.

SFCM sample scores of the first two PCs explain almost 85 per cent of the variance (Fig. 21c). There are linear gradients observed in the data by comparing the sample scores of the first two principal components of the SFCM. These gradients indicate that both distinctive family characteristics and linear compositional variations of the original variables exist within each family. Sample scores of Family A oils exhibit the most coherent grouping and are characterized by a positive gradient defined by positive PC1 scores and positive PC2 scores. Family C oils are also characterized by a positive gradient whereas Family B and D are defined by a negative gradient. The mild gradients of Families B, C and D exhibit positive PC1 scores, as Family A, but negative PC2 scores. There is a considerable overlap of Family B with Family D and a slight overlap of Family C with Family D. What is more, for a given value of PC1 Families C and D have more negative PC2 scores but this is not enough to be uniquely distinguishable.

As far as variable loadings are concerned, they are a tool used for the understanding of the role and importance of the original variables. The original variable loadings for the SFCM distinguish between a preponderance of lighter versus heavier n-alkanes (Fig. 21b). $\mathrm{C}_{13}-\mathrm{C}_{17}$
alkanes are characterized by strongly positive PC1 and PC2 loadings but C_{16} and C_{17} exhibit negative PC3 values. Probably all these variable loadings control the gradients that separates independently defined oil families. The variable with the higher weight (0.1034) among the 22 variables of the SFCM, is alkane C_{13} with strongly positive PC1, PC2 and PC3 loadings.

5.1.4 Discussion on the performance of MDA on the SFCM

To summarize, Hierarchical Clustering, k-means and Principal Component analysis were applied on the Saturated Fraction Component Model. Both in Hierarchical Clustering and PCA, Family A oils presented the most coherent group, being sufficiently separated from the rest familial affiliations. Families B and D overlapped significantly while also in both cases there appeared a slight overlap between families C and D. The method which completely failed to distinguish among the four oil families ($\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D) was k - means clustering. The clustering solution produced only two clusters and according to which cluster each sample was assigned, k-means presents only 25% of success. Out of the three statistical methods, k-means was the one to produce the most insufficient results.

5.2 Saturated Fraction Ratios Model (SFRM)

5.2.1 Hierarchical Clustering on SFRM

The following dendrogram is the outcome of the "pre_scaling_0_1" command (Fig. 22). Average linkage along with Euclidean distance as a measure of proximity, were combined.

Family A is clearly distinguished from the rest. Family C considerably overlaps with Families B and D. All pretreatment schemes that were applied on the data set, behaved similarly producing almost the same results when Hierarchical Clustering was performed; all distinguished Family A quite sufficiently, but exhibited a slight overlap amongst Families B, C and D.

Fig. 22 Resulting Dendrogram under the command "pre_scaling_0_1" for the Saturated fraction ratios model (SFRM).

5.2.2 k - means algorithm on SFRM

Under the same pretreatment scheme ("pre_scaling_0_1" command), k-means algorithm was applied and below we present the results.

Table 4 Summary of k-means clustering under the "pre_scaling_0_1" pretreatment option on the Saturated Fraction Ratios Model (SFRM).

K-values	Best distances sums	Average silhuette values
K=2	184.117	0,727318
$\mathrm{~K}=3$	115.198	0,691804
$\mathrm{~K}=4$	$832.004 \mid 831.205$	0,715499
$\mathrm{~K}=5$	649.877	0,702406

The silhouette plots for $\mathrm{K}=2, \mathrm{~K}=3, \mathrm{~K}=4$ and $\mathrm{K}=5$ clusters are presented in the following figure (Fig. 23).

Fig. 23 silhouette plots for $k=2, k=3, k=4$ and $k=5$ clusters under the "pre_scaling_0_1" pretreatment option for the Saturated Fraction Ratios Model (SFRM).

From the silhouette plots (Fig. 23), we observe that in all cases we obtain silhouette values above 0.6 and negative silhouette coefficients are always present. Average silhouette values are similar for all clustering solutions, with a maximum of 0,727318 for $\mathrm{K}=2$ (Table 4). This is an indication that under the "pre_scaling_0_1" pretreatment scheme, grouping into two clusters using k-means is more efficient compared to grouping into three, four or five clusters. In Fig. 25 we can observe, which cluster each sample is assigned to.

In Fig. 24 the plot of k-means clustering, for the case of $\mathrm{k}=2$ is presented with different colors for sample members that belong to different clusters.

Fig. 24 The plot of k-means clustering for $k=2$, of the Saturated Fraction Ratios Model (SFRM). The \otimes symbol represents the centroid of each cluster.

Fig. 25 Table displaying to which cluster each sample belongs, for each K value of the SFRM (idx2 = k:2, idx3 = k:3,
etc.)
Based on the average silhouette values, the most efficient clustering solution is that of $\mathrm{k}=2$ (idx=2). According to Fig. 25, all samples from Family A oils are assigned to cluster one. Almost all of Family C oil samples are assigned to cluster two (only sample C1705 is assigned to cluster 1). Oil samples from family B are all assigned to cluster 2 , whereas family D oil samples are assigned in both clusters.

5.2.3 Principal Component Analysis on SFRM

The original variables used in the Saturate Fraction Ratios Model (SFRM) include the compositional factors $\mathrm{Pr} / \mathrm{Ph}, \mathrm{nC}_{17} / \mathrm{Pr}, \mathrm{nC}_{18} / \mathrm{Ph}$ and the carbon preference indices for both lighter $\left(\mathrm{nC}_{14}-\mathrm{nC}_{20}\right)$ and heavier $\left(\mathrm{nC}_{22}-\mathrm{nC}_{30}\right)$ alkanes of the saturated fraction hydrocarbons. The
sample scores of the first two principal components and the respective loading diagrams are presented in Fig. 26. The percentages of variation attributed to each of the Principal Components are shown in Fig. 26c.

Fig. 26 a) Sample scores for the first to Principal Components resulting from the Saturated Fraction Ratios Model (SFRM) of selected Williston Basin petroleum oils. Colors on sample symbols indicate compositional families determined by independent analysis. Blue color represents oils of Family A, green applies for Family B oils, red for Family C oils and yellow for Family D oils. "Pre_scaling_0_1" command was used on the data set. b) Original Variable loadings for the first to Principal Components resulting from the Saturated Fraction Ratios Model (SFRM) of selected Williston Basin petroleum oils. c) Percentage of variance explained by each Principal Component.

SFRM sample scores of the first two PCs explain 83 per cent of the variance (Fig. 26c). There are two linear gradients observed in the data by comparing the sample scores of the first two principal components of the SFRM; a dispersed positive gradient displayed by samples with positive PC1 scores and PC2 scores less than 0, and a relatively tight negative gradient consisting of both positive PC1 and PC2 scores. As in the SFCM, these gradients also indicate that distinctive family characteristics and linear compositional variations of the original variables exist within each family. When the samples are compared to the biomarker-based oil families, Family A is once again clearly distinguished by consistently positive PC1 and PC2 scores and a linear variation between them. Only sample D2626 overlaps with this group, however. Family D oils are also characterized by a general positive gradient, while Families B and D are defined by mainly a positive gradient. All gradients exhibit high positive PC1 scores but, Families B, C and D exhibit negative PC2 scores. As in the SFCM, the fields of PC1 and PC2 in Family C overlap those of Families B and D, effectively obscuring their separation. However, Family C samples appear to fall along a positively correlated gradient in PC1 vs PC2 space.

The original variable loadings for the SFRM indicate a lack of discriminating power of the $\mathrm{nC}_{17} / \mathrm{Pr}$ and $\mathrm{nC}_{18} / \mathrm{Ph}$ with respect to Families B and C , which opposes to Osadezt et al. [32], who claim that this biomarker parameter is highly effective as far as the discrimination among these affiliations is concerned.

5.2.4 Discussion on the performance of MDA on the SFRM

MDA methods on the Saturated Fraction Ratios Model seemed to perform in a similar manner as in the Saturated Fraction Compositional Model. In all three methods Family A was significantly distinguished in contrast to the rest familial affiliations. Only sample D2626, in PCA overlapped with family A samples. As far as k-means is concerned, even though it discretizes family A, as a whole, it failed in considerably in separating families B, C and D. It produced a two-cluster solution.

5.3 Gasoline Range Compositional Model (GRCM)

5.3.1 Hierarchical Clustering on GRCM

Applying the Hierarchical Clustering algorithm on GRCM, produced the following dendrogram (Fig. 27). Single linkage with Euclidean distance were combined this time.

From the figure, we notice that oil samples from all four family affiliations overlap, presenting no clear distinction. In this case, we also observe that a few samples from C and D are excluded from the clustering solution (samples B1873, B1874, B1014, C1390, and D842).

Fig. 27 Resulting Dendrogram under the command "pre_scaling_0_1" for the Gasoline range compositional model (GRCM).

These components presented zero values for all variables. To examine how the model would perform without these values, they were removed from the data set and then hierarchical clustering was implemented again. The following dendrogram is the result.

Fig. 28 Resulting Dendrogram under the command "pre_scaling_0_1" for the Gasoline range compositional model (GRCM) after removing zero values.

Implementing the algorithm produced another two outlier samples from family D (samples D1312 and D2885). Family A oil samples, however, seem to distinguish from the rest, but not sufficiently enough, as there is a slight overlap with samples from family D. As far as families B, C and D are concerned, there is a considerable overlap among them.

5.3.2 k-means algorithm on GRCM

Implementing the k -means algorithm on the Gasoline range compositional model produced the following results. Components with zero values (as mentioned before) were kept out of the analysis.

Table 5 Summary of k-means clustering under the "pre_scaling_0_1" pretreatment option on the Gasoline Range Compositional Model (GRCM).

K-values	Best distances sums	Average silhuette values
K=2	60,1718	0.4438
K=3	49,6733	0.4572
K=4	43,5093	0.4510
K=5	38,3703	0.4271

The silhouette plots for $\mathrm{K}=2, \mathrm{~K}=3, \mathrm{~K}=4$ and $\mathrm{K}=5$ clusters are presented in the following figure (Fig. 23).

Fig. 29 Silhouette plots for $k=2, k=3, k=4$ and $k=5$ clusters under the "pre_scaling_0_1" pretreatment option for the Gasoline Range Compositional Model (GRCM).

From the silhouette plots (Fig. 29), we observe that generally we obtain silhouette values in the range of 0.01-0.8. Negative silhouette coefficients are present in all cases. Average silhouette values are close for all clustering solutions, with a maximum of 0.4572 for $\mathrm{K}=3$ (Table 5). The outcome of this analysis, infers that grouping into three clusters using k-means is more efficient compared to grouping into two, four or five clusters. In Fig. 31 we can observe, which cluster each sample is assigned to.

In Fig. 30 we observe the clustering solution of k-means for $k=3$. The figure shows the three clusters along with their centroids.

Fig. 30 Plot of k-means clustering for $k=3$, of the Gasoline Range Compositional Model (GRCM). The \otimes symbol represents the centroid of each cluster.

Fig. 31 Table displaying to which cluster each sample belongs, for each K value of the GRCM (idx2 = k:2, idx3 $=k: 3$, etc.)

Even though the three-cluster solution seems to be the most efficient out of the analysis, from the plot we observe that the clusters present no clear boundaries from one another. The overlapping among samples is evident. Fig. 31 confirms this fact as it presents in which of the three clusters, each sample is assigned to.

5.3.3 Principal Component Analysis on GRCM

The sample scores of the first two principal components and the respective loading diagrams are presented in Fig. 32. The percentages of variation attributed to each of the Principal Components are shown in Fig. 32c.

Fig. 32 a) Sample scores for the first to Principal Components resulting from the Gasoline Range Compositional Model (GRCM) of selected Williston Basin petroleum oils. Colors on sample symbols indicate compositional families determined by independent analysis. Blue color represents oils of Family A, green applies for Family B oils, red for Family C oils and yellow for Family D oils. "Pre_scaling_0_1" command was used on the data set. b) Original Variable loadings for the first to Principal Components resulting from the Gasoline Range Compositional Model (GRCM) of selected Williston Basin petroleum oils. c) Percentage of variance explained by each Principal Component.

GRCM sample scores of the first two PCs explain 82 per cent of the variance (Fig. 32c). There is generally one linear gradient observed in the data by comparing the sample scores of the first two principal components of the GRCM; a dispersed negative gradient displayed by samples with positive PC1 scores and PC2 scores both positive and negative. Family A is once again clearly distinguished by consistently positive PC1 and PC2 scores and a linear variation between them. The gradient exhibits high positive PC1 scores but for Families B, C and D exhibits also negative PC2 scores. The gradients of Families B, C and D overlap each other's scores resulting in the obscureness of their separation.

The variable loadings for the GRCM indicate that PC1 is controlled strongly by loadings attributed to the relative concentration of n-alkanes and branched and cyclic alkanes. High negative PC1 loadings are characteristic of the GRH n-alkanes, while the cyclic and branched alkanes with 6 to 8 carbon atoms are characterized by strong positive values. In our case the GRCM fails in the task of classifying the four family affiliations.

5.3.4 Discussion on the performance of MDA on the GRCM

Although in several studies (e.g. [38]) the Gasoline Range Compositional Model appears to be successful in classifying efficiently oil samples of the four family affiliations recognized in Williston Basin, in our case it substantially fails. All statistical methods that were implemented on this model, classified relatively sufficiently only family A. Families B, C and D presented a significant overlap, both one to another, but also with Family A. This is evident from the dendrogram of Fig. 28 as well as from Fig. 32a. The overlapping of oil families is incredibly apparent in the k-means plot (Fig. 30), where there is no distinct cluster.

5.4 Biomarkers Compositional Model (BCM)

The biomarkers of the given sample set were examined in multiple ways; firstly as a whole and secondly in their separate parts of steranes and hopanes. The results that each model produced were similar, as far as the classification of oil families, is concerned. For this reason, only the results from BCM will be presented in the upcoming paragraphs, as the most characteristic.

5.4.1 Hierarchical Clustering on BCM

Applying the Hierarchical Clustering algorithm on BCM, produced the following dendrogram (Fig. 27). Average linkage with Euclidean distance were combined this time.

Clustering X, Measuring Method : Euclidean - Metric Method: Average - Verification: 0.90828

Fig. 33 Resulting Dendrogram under the command "pre_scaling_0_1" for the Biomarkers compositional model (BCM).

Hierarchical clustering on BCM seems to separate relatively well Family C oils. Only sample B1443 (of Family B) overlaps with family C. The dendrogram illustrates an overlapping of Family D with Family A and the rest of Family B samples form a small group which is interrupted by sample D2885.

5.4.2 k-means algorithm on BCM

Implementing the k-means algorithm on the Biomarkers compositional model produced the following results.

Table 6 Summary of k-means clustering under the "pre_scaling_0_1" pretreatment option on the Gasoline Range Compositional Model (GRCM).

K-values	Best distances sums	Average silhuette values
$\mathrm{K}=2$	250.993	0.5503
$\mathrm{~K}=3$	15.438	0.6665
$\mathrm{~K}=4$	131.334	0.5865
$\mathrm{~K}=5$	113.741	0.5425

The silhouette plots for $\mathrm{K}=2, \mathrm{~K}=3, \mathrm{~K}=4$ and $\mathrm{K}=5$ clusters are presented in the following figure (Fig. 23).

From the silhouette plots (Fig. 34), we observe that generally the highest silhouette values we obtain almost reach the value of 0.9 . Fluctuations in the width of clusters is present in all cases and so are negative silhouette coefficients. Average silhouette values fall in the range of $0.5425-0.665$, with 0.665 being the maximum for $\mathrm{K}=3$ (Table 6). The outcome of this analysis, infers that grouping into three clusters using k-means is more efficient compared to grouping into two, four or five clusters. In Fig. 36 we can observe, which cluster each sample is assigned to.

Fig. 34 Silhouette plots for $k=2, k=3, k=4$ and $k=5$ clusters under the "pre_scaling_0_1" pretreatment option for the Biomarkers Compositional Model (BCM).

Fig. 35 illustrates the clustering solution of k-means for $k=3$. The figure shows the three clusters along with their centroids.

Fig. 35 Plot of k-means clustering for $k=3$, of the Biomarkers Compositional Model (BCM). The \otimes symbol represents the centroid of each cluster

Fig. 36 Table displaying to which cluster each sample belongs, for each K value of the BCM (idx2 = k:2,idx3 = k:3, etc.)

Fig. 35 illustrates the three-cluster solution that silhouette analysis produced as the most efficient. The clusters do not exhibit clear boundaries and overlapping is evident. Fig. 36 supports the overlapping fact as it illustrates in detail in which cluster each sample is assigned to.

5.4.3 Principal Component Analysis on BCM

The sample scores of the first two principal components and the respective loading diagrams are presented in Fig. 32. The percentages of variation attributed to each of the Principal Components are shown in Fig. 32c.

BCM sample scores of the first two PCs explain almost 90 per cent of the variance (Fig. 37c). By comparing the sample scores of the first two principal components of the BCM, we observe no clear distinction among families. All families exhibit high positive PC1 scores and all of them present both negative and positive PC2 scores. Family B (green symbols on the PC plot) exhibit solely negative PC2 scores. Family A overlaps here mainly with family D and a few samples of family D overlap with family C. Scores of family B are quite dispersed in the plot.

Fig. 37 a) Sample scores for the first to Principal Components resulting from the Biomarkers Compositional Model (BCM) of selected Williston Basin petroleum oils. Colors on sample symbols indicate compositional families determined by independent analysis. Blue color represents oils of Family A, green applies for Family B oils, red for Family C oils and yellow for Family D oils. "Pre_scaling_0_1" command was used on the data set. b) Original Variable loadings for the first to Principal Components resulting from the Biomarkers Compositional Model (BCM) of selected Williston Basin petroleum oils. c) Percentage of variance explained by each Principal Component.

5.4.4 Discussion on the performance of MDA on the BCM

The Biomarkers Compositional Model appears to be successful in classifying relatively well oil family C. All methods produced similar results as far as this classification pattern is concerned. Families A and D overlap significantly, while family B overlaps slightly with family D.

All in all, the performance of MDA methods was insufficient, failing in all models to classify the samples into four familial affiliations. Based on common compositional information, it seems that unsupervised methods fail to cluster these oils. They cannot be implemented blindly without additional information. For this reason, in the next chapter we examine the compositional character of the given data set in an alternative approach.

6. Compositional Data

As discussed in the previous chapters, MDA methods failed in the task of classifying the data set into distinct oil family affiliations. This applies to all the compositional models and is probably attributed to the nature of the data, which fall into a special category of data; the Compositional Data. The Saturates Fraction Ratios Model is excluded from this category and none of the following information concerns this model.

Compositional Data (CoDa) are a type of multivariate data, the components of which represent proportions or fractions of a whole. Such data come in a closed form, meaning that they sum to a constant value (e.g. one if measured in parts per unit or 100 if measured in percentages). However, the term Compositional Data, covers all those vectors representing parts of a whole which only carry information on the relative (and not the absolute) frequencies, with which different and positive components occur.

Typical examples of Coda are geochemical elements in geology, data corresponding to categories of sedimentary particle-size distributions, proportions of fossil species in two or more assemblages, body composition (fat, sugar, etc.) in medicine, nutrient-balance ionomics (measurement of the total elemental composition of an organism to address biological problems) in agriculture, genotype frequency in genetics, chemical compositions in chemistry, and many more other. This type of data is generally widespread in disciplines supporting modeling, classification or discrimination and is characterized by specific numerical properties that have significant consequences for any statistical analysis [85] [86] [87] [88] [89] [90] [91]. Their fundamental properties are briefly reviewed in the upcoming paragraphs.

6.1 The Constant Sum Constraint (CSC) - Impacts on the Analysis

As mentioned before, Compositional Data only convey relative information as they represent part of a whole, and their unique properties are a corollary of this fact. They concern data consisting of vectors of always positive components, often subject to a constant (unit-) sum constraint; they must sum to one because they are proportions. Their main difference to unconstrained variables is that they are never free to vary independently, which in turn imposes constraints upon their variance-covariance structure (Aitchison 1986, chapter 3). The constant sum constraint forces at least one of their covariance to obtain a negative value. The result is at least one correlation or coefficient between elements, is also negative. This is explained as a consequence of the Euclidean Foundation of classical statistics, where the scale is absolute and not relative.

In particular, for a D-part composition $\left[x_{1}, \ldots, x_{D}\right]$ with the component sum $x_{1}+\ldots+x_{D}=1$, since

$$
\operatorname{cov}\left(x_{1}, x_{1}+\ldots+x_{D}\right)=0
$$

we have

$$
\operatorname{cov}\left(x_{1}, x_{2}\right)+\ldots+\operatorname{cov}\left(x_{1}, x_{D}\right)=-\operatorname{var}\left(x_{1}\right) .
$$

The right-hand side here is negative except for the trivial case where the first component is constant.

The fact that data are closed, induces invalid correlations and as a result, all methods based on the covariance or correlation matrix of vectors of observations, are inappropriate to examine and analyze Compositional Data in crude or raw form (e.g. as simple percentages) [92]. Conventional statistical methods present uncertainty in the analysis of compositional data, as far as the results are concerned. The main reason is because it is not possible to distinguish between the spurious effects caused by the constant sum constraint and the effects that would be attributed to natural processes. Rock [90] in his paper describes some of the problems: trends and clusters on petrological ternary and principal components diagrams can have little or no geological significance; dendrograms produced by cluster analysis can be severely biased; results from discriminant analysis are likely to be illusory; any correlation coefficient will be affected to an unknown degree by spurious effects induced by the constant sum constraint, etc. In general, problems appear with all methods based on regression and multivariate analysis which rely on an assumption of multivariate normality. Such methods refer to Factor Analysis, Discriminant Analysis or Principal Component Analysis and they seem to perform better on unconstrained random variables.

6.2 Approaches in the Statistical Analysis of CoDa

In the early 1980's the analysis of Compositional Data began to obtain a more efficient form. The key to such analysis is the relative magnitudes and variations of the parts in a D-part composition, rather than their absolute values. Thus, the information provided is essentially about ratios and any meaningful function (scale-invariant) of a composition should be expressed under such terms. The principal justification for using ratios of components is the Sub-Compositional coherence, which is a fundamental property of Aitchison's approach to compositional data analysis. Ratios are unaltered in the process of forming sub-compositions $\left(s_{\mathrm{i}} / \mathrm{s}_{\mathrm{j}}=\mathrm{u}_{\mathrm{i}} / \mathrm{u}_{\mathrm{j}}\right)$ which should mean that there exists some form of covariance structure based upon them.

However, mathematically and statistically speaking, ratios are somewhat difficult to handle. For example, between $\operatorname{var}\left(u_{i} / u_{j}\right)$ and $\operatorname{var}\left(u_{j} / u_{i}\right)$ there does not exist any simple relationship. Therefore, in order to overcome this difficulty, Aitchison was the first to introduce the logratio method, because of the simplicity of relationships such as

$$
\operatorname{var}\left\{\log \left(\mathrm{x}_{\mathrm{i}} / \mathrm{x}_{\mathrm{i}}\right)\right\}=\operatorname{var}\left\{\log \left(\mathrm{x}_{\mathrm{j}} / \mathrm{x}_{\mathrm{i}}\right)\right\}
$$

Since there is also a one-to-one correspondence between compositions and a full set of logratios, for example,

$$
\left[y_{1} \ldots y_{D-1}\right]=\left[\log \left(x_{1} / x_{D}\right) \ldots \log \left(x_{D-1} / x_{D}\right)\right]
$$

with inverse

$$
\left[x_{1} x_{2} \ldots x_{D}\right]=\left[\exp \left(y_{1}\right) \ldots \exp \left(y_{D-1}\right)+1\right] /\left\{\exp \left(y_{1}\right)+\ldots+\exp \left(y_{D-1}\right)+1\right\}
$$

any problem or hypothesis concerning compositions can be fully expressed in terms of log ratios and vice versa.

The proposed methodology is simple; first transform each of the compositions (ui,..., ud) to their log-ratio vectors and then apply standard multivariate procedures upon them. The conclusions of the unconstrained multivariate analysis can then be translated back into conclusions about the compositions, and the analysis is complete.

The aforementioned methodology represents a transformation technique, widely utilized in statistics. Starting with McAlister [93] and his logarithmic transformation, the lognormal distribution and the significance of the geometric mean, the log-ratio transformation comes in line with a long tradition of statistical methodology.

6.3 The Simplex S^{D} - Fundamental Properties of CoDa Analysis

There has been much debate against transformation techniques over the scientific community [$94,95,96,97,98,99,100,101,102,103]$. However, while most of them are still valid, new approaches have been developed towards the statistical analysis of compositional data. Staying-in-the-simplex approach, represents part of them, offering the advantage of keeping the analysis free of dependence upon transformations and results in unconstrained multivariate analysis. Therein, compositional data analysis is conducted within a simple algebraic-geometric structure on the simplex. At this point, the term simplex has to be defined.

One of the main differences between compositional and unconstrained data, is the sample space within which, each type lies. The natural sample space of CoDa is the (restricted) unit simplex \mathbf{S}^{d} (while unconstrained data belong to the real space R). The simplex is a basic geometric element in a Euclidean space, and is defined as

$$
S^{D}=\left\{x=\left[x_{1}, x_{2}, \ldots, x_{D}\right] \in \mathbb{R}^{D} \mid x_{i}>0, \iota=1,2 \ldots, D ; \sum_{l=1}^{D} x_{i}=\varkappa\right\}
$$

The constant $\mathcal{\psi}$ simplex is positive and arbitrary. Frequent values for $\mathcal{\psi}$ are 1 (per unit), 100 (percent, $\%$), 1000, etc. The simplex S^{D} is a line segment in one dimension ($\mathrm{D}=1$), a triangle in two dimensions ($D=2$), a tetrahedron in three dimensions ($D=3$), and so on. As far the superscript in the S^{D} is concerned, it accounts for the effective dimension of D-part compositions and is often reduced to D-1, due to the unit-sum constraint. A unit-simplex is defined as

$$
S^{D}=\left\{\left[x_{1}, \ldots, x_{D}\right]: x_{i}>0(\imath=1,2 \ldots, D) \mid x_{1}+\cdots+x_{D}=1\right\}
$$

With this representation, scale invariance is an element to be ensured by formulating all statements concerning compositions in terms of ratios of components.

Scale invariance is one the fundamental principles governing the compositional data analysis according to Aitchison. What scale variance addresses, is that statistical inferences about compositional data should not depend upon the scale of the data.

More specifically, two vectors of D positive real components $x, y \in R D+\left(x_{i}, y \geq 0\right.$ for all $i=1$, $2, \ldots, D)$, are compositionally equivalent if there exists a positive scalar $\lambda \in R+$ such that $x=$ $\lambda \cdot y$ and, equivalently, $C(x)=C(y)$. It is highly reasonable to ask our analyses to yield the same result, independently of the value of λ. This is what Aitchison (1986) called scale invariance.

A function $f(\cdot)$ is scale-invariant if for any positive real value $\lambda \in R+$ and for any composition x $\in S D$, the function satisfies $f(\lambda x)=f(x)$, i.e. it yields the same result for all vectors compositionally equivalent. This can only be achieved if $f(\cdot)$ is a function only of log-ratios of the parts in x (equivalently, of ratios of parts) [102, 104]. According to Aitchison, apart from scale invariance, there are also two other conditions that should be satisfied in order for any statistical method to be performed on compositional data; permutation invariance and subcompositional coherence.

A function is permutation-invariant if it yields equivalent results when the order of parts of the composition is changed. Two examples might illustrate what "equivalent" means here. If we are computing the distance between our initial sandstone and our final sand compositions, this distance should be the same if we work with [Q, F, R] or if we work with [F, R, Q] (or any other permutation of the parts). On the other side, if we are interested in the change occurred from sandstone to sand, results should be equal after reordering. A classical way to get rid of the singularity of the classical covariance matrix of compositional data is to erase one component: this procedure is not permutation-invariant, as results will largely depend on which component is erased.

Before examining the topic of sub-compositional incoherence, the definition of subcomposition must be given. A composition only representing some of the possible components is called a sub-composition and most of real compositional data is actually representing a sub-composition, as we never analyze each and every possible component of our samples. Sub-compositions represent the marginals of compositional data analysis. Two compositions (a greater and a smaller one) sharing common parts (therefore, the smaller is the sub-composition) should produce common correlations for these parts, regardless of whether we analyzed only that sub-composition or a larger composition containing other parts. This is what coherence means. If this is not the case, then there is what is expressed as sub-compositional incoherence.

6.4 Perturbation and Powering

In any sample space there is, only certain operations can be performed. For example, in real space R^{D} translation and scalar multiplication are the most commonly used operations. However, the typical algebraic/geometric operations (addition/translation, product/scaling, scalar product/orthogonal projection, Euclidean distance) used to deal with conventional real vectors are neither sub-compositionally coherent nor scaling invariant. The simplex is a sample space characterized by a different, compositional geometry and such operations would not be adequate for any analysis within it. Two fundamental groups of operations for the simplex are the perturbation operations, analogous to translation in the real space, and power transformation, analogous to multiplication by a scalar in the real space. These operational sets were introduced by Aitchison [89], they underpin the complete algebraic geometric structure of the simplex and both require in their definition the closure operation [104, 105]. Closure is nothing but the operation responsible for the constant sum constraint as it divides each component of a vector by the sum of the components and represents the projection of a vector with positive components onto the simplex.

For any two equivalent compositions x and X, in the same compositional class, there is a scale relationship $\left(X_{1}, \ldots, X_{D}\right)=\left(a x_{1}, \ldots, a x_{D}\right)$ for some $a>0$, where each component of x is scaled by the same factor a to obtain the corresponding component of X. For any two compositions X and X in different compositional classes c and Ca similar, but differential, scaling relationship $\left(x_{1}, \ldots, X_{D}\right)=\left(p_{1} x_{1}, \ldots, p_{D} x_{D}\right)$ can always be found, simply by taking $p_{i}=X_{i} / x_{i}(i=1, \ldots, D)$.Denoting the operation between the positive perturbing vector $p=\left(p_{1}, \ldots, p_{D}\right)$ and the composition x by \oplus we have $p \oplus x=\left(p_{1} x_{1}, \ldots, p_{D} x_{D}\right)$ and $X=p \oplus x$. Such a perturbation operator is then easily adapted to the simplex simply by defining $p \oplus u=\left(p_{1} u_{1}, \ldots, p_{D} u_{D}\right) /\left(p_{1} u_{1}+\ldots+p_{D} u_{D}\right)$. Note that the roles of p and u are interchangeable in this definition and we can conveniently restrict p to lie in the simplex S^{d}. Perturbations thus defined form a group, with p^{-1}, the inverse of p, defined as $\left(p_{1}^{-1}, \ldots, p_{D}{ }^{-1}\right) /\left(p_{1}^{-1}+\ldots+p_{D}{ }^{-1}\right)$ and the identity perturbation as (1/D, ... $, 1 / D)$.Moreover, for any two compositions u, U there is a unique perturbation $p \in S^{d}$ such that $\mathrm{U}=\mathrm{p} \oplus \mathrm{u}$ and $\mathrm{u}=\mathrm{p}^{-1} \oplus \mathrm{U}$, where $\mathrm{p}=\mathrm{U} \oplus \mathrm{u}^{-1}$. Thus, the perturbation $\mathrm{U} \oplus \mathrm{u}^{-1}$, or equivalently X $\oplus \mathrm{x}^{-1}$ characterizes the change from c to C ; the change from X to x is simply the inverse perturbation $\mathrm{U} \oplus \mathrm{u}^{-1}$.

Powering or power transformation, as mentioned before, is the second fundamental operational group in the simplex. First, we define the power operation and then consider its relevance in compositional data analysis. For any real number $a \in R^{1}$ and any composition $x \in S^{D}$, we define:

$$
X=\alpha \otimes X=C\left[x_{1}^{\alpha} \ldots X_{D}{ }^{\alpha}\right]
$$

as the a-power transform of x. Such an operation arises in compositional data analysis in two distinct ways. First it may be of relevance directly because of the nature of the sampling process. More indirectly the power transformation can be useful in describing regression relations for compositions.

It is clear that powering \otimes and perturbation \bigoplus play a significant role as far as the geometry of S^{D} is concerned. Powering is an external operation whereas perturbation is an internal one, and it would be meaningless to establish that they define a vector or linear space structure on S^{D}. In particular, the \bigoplus operation defines an abelian group with identity $e=[1, \ldots, 1] / D$. Both operational groups are marked by certain properties, which will now be addressed.

$$
x \oplus y=y \oplus x,(x \oplus y) \oplus z=x \oplus(y \oplus z), a \otimes(x \oplus y)=(a \otimes x) \oplus(a \otimes y)
$$

The operator Θ is the inverse of \oplus and is defined by:

$$
x \Theta y=C\left[x_{1} / y_{1} \ldots x_{D} / y_{D}\right]
$$

and plays an important role in the construction of compositional residuals.

The structure can be extended by the introduction of the simplicial metric

$$
\Delta: S^{D} x S^{D} \rightarrow R \geq 0
$$

Defined as follows:

$$
\Delta(x, y)=\left[\sum_{i=1}^{D}\left\{\log \frac{x_{i}}{g(x)}-\log \frac{y_{i}}{g(y)}\right\}^{2}\right]^{1 / 2}=\left[\sum_{i<j}^{D}\left\{\log \frac{x_{i}}{x_{j}}-\log \frac{y_{i}}{y_{j}}\right\}^{2}\right]^{1 / 2}\left(x, y \in S^{D}\right)
$$

where $g()$ is the geometric mean of the components of the composition. The metric Δ satisfies the usual metric axioms:

- Positivity: $\Delta(x, y)>0(x \neq y), \Delta(x, y)=0(x=y)$
- Symmetry: $\Delta(x, y)=\Delta(y, x)$
- Power relationship: $\Delta(a \otimes x, a \otimes y)=|a| \Delta(x, y)$
- Triangular inequality: $\Delta(x, z)+\Delta(z, y) \geq \Delta(x, y)$

The fact that this metric has also desirable properties relevant and logically necessary, such as scale, permutation and perturbation invariance and sub-compositional dominance, for meaningful statistical analysis of compositional data is now well established and the relevant properties are recorded briefly here:

- Permutation invariance: $\Delta(x P, y P)=\Delta(x, y)$, for any permutation matrix P.
- Perturbation invariance: $\Delta(x \oplus p, y \oplus p)=\Delta(x, y)$, where p is any perturbation.
- Sub-compositional dominance: if $s x$ and $s y$ are similar, say (1, . . , C)-Subcompositions of x and y, then $\Delta S^{C}\left(s_{x}, s_{y}\right) \leq \Delta_{S}{ }^{\mathrm{D}}(\mathrm{x}, \mathrm{y})$.

6.5 The Log Ratio Methodology

The constant-sum constraint is a mathematical property embedded in any compositional data set, causing problems on the analysis of such a type of data. Aitchison [106, 107, 89] showed that the effects of this constraint on the covariance and correlation matrices disappear, if the raw percentage data are expressed as logarithms of ratios, where the denominator is the geometric mean of the percentages in each sample.

For applying statistical methods designed for the Euclidean geometry on compositional data, as wells as for representing them in the Aitchison geometry on the simplex, some kind of transformations are first necessary. The main idea that leads to such transformations is to find a basis (or a generating system) and to express compositions in coefficients of such a basis (coordinate system). This class of mappings is widely known under the term log ratio transformations. There are three types to be presented in the upcoming paragraphs: a) the additive log ratio transformation (alr) and inverse b) the centered log ratio transformation (clr), and finally, c) the isometric log-ratio transformation (ilr). All of them move the operations of perturbation and power transformation to the usual vector addition and scalar multiplication. However, only the latter two transformations move the whole Aitchison geometry to the Euclidean one, i.e. including the Aitchison inner product. As the proposed transformations are one-to-one transformations, the obtained results are usually backtransformed to the simplex in order to simplify the interpretation.

6.5.1 Additive Log Ratio Transformation (alr)

The additive log ratio (alr) transformation transforms raw compositional data from simplex to real (Euclidean) space. Alr transformation is also capable of performing its inverse
transformation (from real space to simplex) with its inverse ALR-1 (Aitchison, 2003). ALR differs from other transformations in that it maps a composition in the D-part simplex none isometrically to a D-1, dimensional Euclidean vector. As it maps, the last part is treated as a common denominator to the others, which means that in case the denominator changes, then the $A L R$ transformations obtained, would be different. The additive log ratio transformation follows the idea to construct a (non-orthonormal) basis which is very easy to interpret, since the relation to the original $\mathrm{D}-1$ first parts is preserved. Thus, for a composition x , a special case of the additive log ratio (alr) transformation [89] to $\mathrm{R}^{\mathrm{D}-1}$, is defined as:

$$
\operatorname{alr}(x)=\left(\ln \frac{x_{1}}{x_{D}}, \ldots, \ln \frac{x_{D-1}}{x_{D}}\right)^{\prime}
$$

In this equation, there is a division of each of the first D-1 components by the final component. It is easy to see that also another part can be used as ratio part in the denominator. It is usually chosen in such a way that the interpretation of the result is facilitated. Note that different alr transformations are related by linear transformations (see, e.g., Filzmoser and Hron, 2008).

The inverse transformation $A L R^{-1}: R^{D-1} \rightarrow S^{D}$ is

$$
x=\operatorname{alr}^{-1}(x)=C\left[\exp \left(y_{1}\right), \exp \left(y_{2}\right) \ldots \exp \left(y_{D-1}\right) 1\right]
$$

, where C is the closure operation. When data are in their transformed state, they can be analyzed by all those statistical methods not relying on a distance. The drawback of alr transformation is that it is not an isometric transformation from the simplex. It lacks symmetry and orthogonality dew to the use of a common numerator or denominator. This weakness could be solved by use of an appropriate metric with oblique coordinates in real ALRspace, but that is not a standard practice [91].

6.5.2 Centered Log Ratio Transformation (clr)

Taking a generating system on the simplex leads to the centered log ratio (clr) transformation (Aitchison, 1986) to R^{D},

$$
\operatorname{clr}(x)=\left[\ln \frac{x}{g(x)}-\cdots-\ln \frac{x_{D}}{g(x)}\right]
$$

, where $g(x)$ is the geometric mean of the parts involved:

$$
g(x)=\left(\prod_{i=1}^{D} x_{i}\right)^{1 / D}=\exp \left(\frac{1}{D} \sum_{i=1}^{D} \ln x_{i}\right)
$$

,or with the inverse transformation ($c l^{-1}$), from real space (clr coefficients) to the simplex (raw data) (Aitchison, 1986). The clr coordinates represent a generating system, not a basis, and therefore clr coordinates sum up to zero [108], i.e. we get a constrained transformed vector. As a result, correlations and covariances between clr parts are not sub-compositionally coherent.

6.5.3 Isometric Log Ratio Transformation (ilr)

The calculation of ilr coordinates is more complex and the generation of specific expressions is dominated by different rules. With ilr the data are transformed from the simplex to real space, as ilr coordinates, or conversely applying the inverse ilr ${ }^{-1}$. Both features are defined by a sequential binary partition [108, 109]. The ilr transformation is defined as:

$$
i \operatorname{lir}(x)=(y 1, y 2, \ldots, y D-1) \in R^{D-1}
$$

where $y_{i}=\sum_{j=1}^{D} y_{i j} \ln x_{j}, i=1,2, \ldots D-1$ and

$$
\psi_{i, j}=\sqrt{\frac{s_{i}}{r_{i}\left(s_{i}+r_{i}\right)}} \text { if at step } i \text { the part } j \text { is }+1
$$

or

$$
\psi_{i, j}=-\sqrt{\frac{s_{i}}{r_{i}\left(s_{i}+r_{i}\right)}} \text { if at step } i \text { the part } j \text { is }-1
$$

or

$$
\psi_{i, j}=0 \text { if at step } i \text { the part } j \text { is } 0
$$

with r_{i} the number of parts at step i as +1 , and s_{i} the number of parts at step i as -1 .
The ilr ${ }^{-1}$ transformation is defined as:
$\mathrm{X}=\mathrm{ilr}{ }^{-1}(\mathrm{y})=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{D}}\right) \in \mathrm{S}^{\mathrm{D}}$, where $\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{D}}\right]=\operatorname{Cexp}\left[\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots, \mathrm{z}_{\mathrm{D}}\right], z_{j}=\sum_{j=1}^{D-1} \psi_{i j} y_{;}, \mathrm{C}$ stands for the closure operation [89].

6.6 The CoDaPack v2 Software Package

Over the last years, a new methodological approach has been developed for the statistical analysis of compositional data, based on the approach introduced in the early eighties by John Aitchison. This methodology is not straightforward to use with standard statistical packages. For this reason, in this project, we examine a new freeware software, The Compositional Data Package, which implements at this moment the most elementary of mentioned statistical methods. The features of this new software are very wide:

- Transformations between the real space to the simplex or vice versa such as the alr, clr and ilr transformations.
- Operations inside the simplex like centering, perturbation, power transformation, amalgamation, subcomposition (closure) or rounded zero replacement.
- 2-D and 3D graphical outputs like ternary diagrams, alr plots, clr plots, biplots, plots of principal components.
- Compositional Descriptive Statistics.

The software has been developed by members of the Research Group on Compositional Data Analysis at the Dept. Informàtica, Matemàtica Aplicada i Estadística (IMAE-UdG) under the projects Compositional Data Analysis and Related methods (CODA-RETOS) and Compositional and Spatial Data Analysis (COSDA). The core of the group belongs to the University of Girona (UdG), and includes members from the Technical University of Catalonia (UPC), and Biomathematics \& Statistics Scotland (BioSS).

6.6.1 Interface of the CoDaPack software

This time the analysis will be conducted only on a small part of the data set, in order to examine briefly, how a different treatment approach would impact on the data. There will be a comparison of the results between the classical statistical analysis and the compositional statistical approach. For this attempt, the Saturate Fraction Compositional Model (SFCM) was selected, and in the next paragraphs there will be a presentation of the interface of the software package.

Data could be imported from Excel files or recovered from previous sessions. The observations are organized in rows and the variables in columns. CoDaPack v2 main window (Fig. 38) has four parts. On the very top there are the menus, on the left the active data frame and the name of its variables. The bigger part is the right side. On top of this part there is the place where alphanumerical results are placed, and on bottom there is the data.

Fig. 38 CoDaPack v2 main window.
In order to run a CoDaPack routine we first import the data. The software stores a set of data on Data Frames or Tables. It is possible to have opened more than one Data frame. A set of

Data frames could be saved as a Workspace and also it could be recovered by means of the item button Open Workspace (Fig. 39).

Each Data frame contains the name of variables and its numerical values. As far as the missing values are concerned, there are two kinds; non-detected or non-available data and there is a specific symbol to distinguish them. Non-detected data should begin with a character prefix, for example <, followed by the value of low detection limit while Non-Available data should use a symbol, for example "NA".
A. CoDaPack v2.02.04

File Data Statistics Graphs Help

Fig. 39 Menu File
Data frames may be imported and exported from Excel files. After data are imported, (Fig. 40) we must indicate in which row starts the data, if there are labels, non-available symbol and non-detected prefix. At any time, we may can delete a Data Frame from the active workspace. The exportation saves the names of the variables into the first row of an Excel file and the data in rows below variable names.

Another part of the menu which is utilized in this project, is the Data menu (Fig. 41). In general, this menu manages three kinds of routines: 1) transformations of the data from the simplex
to the real space and vice versa, 2) operations inside the simplex and 3) management of variables.

(CoDaPack v2.02.04							
File	Data	Statistics Graphs Help					
Datc		Transformations		ALR			
C13		Centering		CLR Versi	Version 2.02.04		
C14		Subcomposition/Closure		ILR re is being develop			
C15		Amalgamation					
C17		Perturbation					
Pr		Power transformation					
C 18		Set detection limit					
C19		Rounded zero replacement					
C20							
C21		Numeric to categorical					
C22		Categorical to Numeric		C13	C14	C15	C16
4				\%15.uU	$\angle 400.00$	0 21 Y.U0	s00y.u0
C25		Add Numeric Variables		5854.00	6289.00	8055.00	6005.00
C26		Delete variables		3672.00	3861.00	4965.00	3634.00
C27			100	1865.00	2858.00	3872.00	3127.00
C28			101	2858.00	4003.00	5313.00	3970.00
C29			102	1879.00	2440.00	3128.00	2325.00
$\xrightarrow{-20}$			103	5069.00	6455.00	8124.00	5821.00

Fig. 41 Menu: Data
The software package offers various options as far as the data analysis is concerned (Fig. 41). Beginning with the Data Menu, Centering is a feature with which the data are centered, that is, they are perturbed by the center or closed geometric mean of the data (Fig. 42).

Fig. 42 Data: Centering
This routine centers the data set, that is, it returns the data set Y formed by the D-part compositions $y=g N(X)^{-1} \otimes X$, where

$$
g N(X)=C\left[\left(\prod_{k=1}^{N} x_{k 1}\right)^{1 / N}, \ldots,\left(\prod_{k=1}^{N} x_{k D}\right)^{1 / N}\right]
$$

is the closed geometric mean of the data set X. The center of the set Y is e, the barycenter of the simplex; e.g. for $D=3$ the geometric center of a ternary diagram is [0:333; 0:333; 0:333]. If Show Center is activated this routine writes the center of the parts selected on the output window.

The feature Subcompostion/Closure the data is closed, i.e. data are converted into parts of some whole summing to a given constant, $Y=C(X)$: This constant is, by default 1:0 but could be entered by the user by means of the Closure form. If S parts, $S<D$; are selected, a subcomposition with S-parts is obtained (Fig. 43).

Fig. 43 Data : Subcomposition/Closure
The Amalgamation feature amalgamates some columns of the data (Fig. 44). The result of amalgamation of some of the parts of a D-composition selected by the user is the sum of those parts. Amalgamation should be used only as a first step in preparing the data for further analysis, as this operation is non-linear in the Aitchison geometry and might lead to inconsistent results if compared to analysis made without amalgamation.

Fig. 44 Data: Amalgamation
With the Perturbation feature a vector perturbs the data. The output is a matrix of D-part compositions
?

$$
y=\boldsymbol{p} \quad \boldsymbol{x}=C\left[p_{1} x_{1} p_{2} x_{2}, \ldots, p_{D} x_{D}\right],
$$

where C stands for the closure operation, and p is a given D-part composition. The user has to indicate on Perturbation box the vector p, which has to be the same length as the compositions x .

Fig. 45 Data : Perturbation
The Power Transformation feature applies a power transformation to the data. For $a \in R$; the power transformation returns

$$
\mathrm{a} \otimes \mathrm{x}=C\left[x_{1}^{a}, x_{2}^{a}, \ldots, x_{D}^{a}\right]
$$

In this option, we have to indicate the constant of the operation on the Power box.

The Rounded Zero Replacement applies a transformation to the data to avoid zeros (Fig. 46). This transformation involves substituting an observation x, with zeros in some parts, by an observation y using the expression:

$$
y_{i}=\left\{\begin{array}{cc}
\delta_{i}, & \text { if } x_{i}=0 \\
x_{i}\left(1-\frac{\Sigma x_{j}=0^{\delta_{j}}}{C_{x}}\right), & \text { if } x_{i}>0
\end{array}\right\}
$$

where δi is the replacement value for the i-th part defined by the user and $C x$ the components sum of observation x . This routine applies to non-detected data (the software distinguishes between non-available and non-detected data). There is an individual constant δi for each non-detected value, that is stored on the data frame.

Fig. 46 Data : Rounded Zero Replacement
The Numeric to Categorical feature transforms the selected variables into strings and overwrites the results on the same variables.

Transformations	
Centering	
Subcomposition/Closure	
	Amalgamation
	Perturbation
	Power transformation
	Set detection limit
	Rounded zero replacement
	Numeric to categorical
	Categorical to Numeric
	Add Numeric Variables
	Delete variables

Fig. 47 Data : Numeric to Categorical
The Numeric to Categorical feature, on the other hand, transforms the selected variables coded with a string into numerical ones, and overwrites the result on the same variables.

The Add Numeric Variables feature, imports date to the data set by a simple copy-paste action (Fig. 48).

Fig. 48 Data : Add numeric variables
Finally, the Delete Variables routine deletes the variables the user selects from the workspace (Fig. 49).

Fig. 49 Data : Delete Variables
The CoDaPack software includes a Statistics Menu. The first option is the Compositional Statistics Summary (Fig. 50). This menu produces two types of descriptive statistics: the first related to logratios (Variation Array, CLR variance and Total Variance) and the second related
to compositional descriptive statistics (Centre, Min, Max and quartiles). This routine is utilized and the results are presented in the next chapter.

Fig. 50 Statistics : Compositional Statistics Summary

1. Variation Array: Returns a matrix where the upper diagonal contains the logratio variances and the lower diagonal contains the logratio means. That is, the ij -th component of the upper diagonal is var $\left[\ln \left(X_{i}=X_{j}\right)\right]$; and the $i j$-th component of the lower diagonal is $E\left[\ln \left(X_{i}=X_{j}\right)\right]$, where $i, j=1,2, \ldots, D$.
2. CLR Variances: Returns, for each part, the sum of logratio variances that involve it. Thus, for the i-th clr component $\xi \mathrm{i}$ we have

$$
\operatorname{var}\left(\xi_{i}\right)=\frac{1}{2 D} \sum_{i=1, j \neq 1}^{D} \operatorname{var}\left[\ln \left(X_{i} / X_{j}\right)\right]
$$

3. Total Variance: The sum of all clr Variances is the Total Variance totvar.
4. Centre: Returns the center of the data set, that is, $\widehat{\xi}=C\left[g_{1} g_{2}, \ldots, g_{D}\right]$, where $g_{i}=$ $\left(\prod_{k=1}^{N} x_{k i}\right)^{1 / N}$ stands for the geometric mean of part $X i$ in data set X. The data set X has been previously closed.
5. Minimum and Maximum: For each part of the data set X it returns the maximum and the minimum of the closed data set.
6. Quartiles: For each part of the data set X it returns the first quartile Q1, the median Q2 and the third quartile Q3 of the closed data set. The user has to select the columns to close and where to put the results. There are two buttons in this routine:

The output of the routine is placed on the output part. It includes a color classification of the logratio variances (elements of the upper diagonal of Variation Array). It is assumed that the logarithm of the logratio variances follow a t-student distribution, then dark blue colores those elements below percentile 5 , light blue from percentile 5 to 25 , light red form percentiles 75 to 95 and dark red up to percentile 95 .

The menu Classical Statistics Summary produces standard descriptive statistics, including mean (arithmetic), standard deviation, covariance matrix, Min, Max and quartiles). The output of the routine is placed on the output part.

The Additive-Logistic normality test feature allows the user to perform a test for logistic normality of a D-part composition (Fig. 51). It includes all marginal, univariate distributions (with a total of ($D-1$) tests); all bivariate angle distributions (with a total of $D(D-1) / 2$ tests); and the (D-1)-dimensional radius distribution. For each kind of test the Anderson-Darling, Cramer-von Misses and Watson statistics are computed and their significance is given.

Fig. 51 Statistics: Logistic Normality tests
The Atypicality Indices feature obtains the atypical observations and their indices under the assumption of Additive Logistic Normal distribution of the selected parts (Fig. 52). The user has to select the columns to calculate its atypical observations and the threshold of atypicality (usually $0: 95$) has to be given.

Fig. 52 Statistics : Atypicality indices
The last part in the Menu section is the Graphs Section (Fig. 53). The options this software offers, enable the user to create graphs in independent windows. The can customize the appearance of each graph and, in some cases, plot the observations in the graph according to a previous classification. These graphs can be zoomed and, in 3D, rotated.

Fig. 53 Graphs Menu
To perform a zoom in a graph it is possible to use the slider scroll at the bottom of the graph or just using the scroll wheel of the mouse. It is also possible to rotate a figure by means of the left button of the mouse. Holding the left mouse button and moving it the graph rotates following the direction of the mouse. If the graph is 2D then the figure just moves inside the windows without rotation. To move the graph inside the window holding the left mouse button and simultaneously holding the ALT key. Furthermore, the graphs can be saved by means of snapshots of what windows have each moment. This can be done with the menu File-Snapshot and the files produced could be in jpeg, eps, png and bitmap formats. The same menu File includes a submenu Configuration that allows to customize the elements of the graph like lines and labels by means of changing size and colors.

The Graphs menu will not be further presented here, as many of the options will be used straight on the data set, and the outcome will be discussed.

6.6.2 Application of the CoDaPack's routine on the Saturates' fraction

To examine how compositional data behave when treated according to Aitchison, only a part of the whole data was used; the Saturates' fraction (see Appendix). Components with zero values were removed from this data set, as they would cause problems to the transformation operations. In particular, samples A549, A1711,A1724, A2268, A2283, A2284, A2468, A2469, B515, B554, B014, B1279, B2121, B2122, C540, C1465 and finally, C1473 were removed.

The first step is to use the Amalgamation option. As mentioned before, amalgamation should be applied on the data to prepare them before further analysis. Amalgamation is equal to addition in R. The results are presented in the following table (Table 7).

	A549	A550	A920	A1140	A1710	A1711	A1712	A1723	A1724	A1725	A2268	A2269	A2270	A2283	A2284	A2313	A2362	A2363	A2364	A2424
amalg	24574.0	164351.0	95894.0	118237.0	84688.0	96204.0	130134.0	58253.0	65913.0	66642.0	39317.0	24519.0	41602.0	53986.0	62386.0	65691.0	79984.0	76814.0	78769.0	239513.0
	A2425	A2426	A2427	A2428	A2429	A2430	A2431	A2432	A2433	A2434	A2435	A2436	A2468	A2469	A2470	A2611	A2627	A2706	A2884	A2892
amalg	229793.0	252557.0	255369.0	288556.0	147814.0	212470.0	152544.0	103844.0	142061.0	202393.0	284439.0	171464.0	94280.0	255283.0	348520.0	51185.0	115613.0	64207.0	137398.0	121527.0
	A2895	A2896	A2897	A2898	B515	B554	B1014	B1279	B1393	B1443	B2121	B2122	B2887	B1873	B1874	C495	C499	C503	C511	C513
amalg	239946.0	141455.0	191406.0	104755.0	63637.0	85889.0	37508.0	24213.0	83605.0	63678.0	18410.0	22286.0	37639.0	39058.0	40661.0	73354.0	80288.0	124331.0	300295.0	200714.0
	C529	C540	C548	C553	C557	C566	C574	C575	C579	C582	C589	C596	C711	C714	C721	C722	C725	C1386	C1387	C1388
amalg	286154.0	74231.0	152070.0	253089.0	268887.0	181418.0	133703.0	233839.0	124065.0	124764.0	49701.0	70429.0	69213.0	95710.0	201581.0	69094.0	53147.0	124722.0	162462.0	224475.0
	C1389	C1390	C1465	C1466	C1467	C1468	C1469	C1470	C1471	C1472	C1473	C1705	C1715	D756	D800	D801	D802	D841	D842	D924
amalg	93596.0	135161.0	33821.0	26273.0	16547.0	20901.0	77669.0	18958.0	22813.0	19675.0	15327.0	101468.0	80685.0	101365.0	164064.0	206299.0	87376.0	89224.0	56791.0	45470.0
	D1173	D1273	D1274	D1275	D1276	D1288	D1289	D1290	D1291	D1312	D1313	D1335	D1364	D1365	D1385	D2471	D2472	D2595	D2626	D2885
amalg	54842.0	33217.0	85176.0	47918.0	49561.0	52781.0	52667.0	41060.0	31760.0	82846.0	66946.0	45664.0	79499.0	117301.0	244337.0	403272.0	93609.0	83301.0	79110.0	139966.0

The next options utilized are the Compositional Statistics Summary and the Classical Statistics Summary (Table 8, Table 9).

Table 8 Compositional Statistics Summary

									Compositional NA's:															
									${ }_{\text {Sample size: }}$															
									95															
									Statistics															
									Center															
									C13	C14	C15	C16	C17	Pr										
									0.0653	0.0869	0.1131	0.1035	0.1227	0.0265										
									C18	Ph	C19	C20	C21	C22										
									0.0676	0.0305	0.0771	0.0463	0.0375	0.0355										
									C23	C24	C25	C26	C27	C28										
									0.0300	0.0290	0.0266	0.0233	0.0200	0.0168										
									C29	C30	C31	C32	C31	C32										
Variation array:									0.0145	0.0116	0.0086	0.0072	0.0086	0.0072										
Variance $\ln \left(\mathrm{X}_{\mathrm{i}} / \mathrm{X} \mathrm{j}\right)$			C15	C16	C17	Pr	C18	Ph	C19	C20	C21	C22	C23	C24	C25	C26	C27	C28	C29	C30	C31			
xilXj	C13	C14																				C32	clr variances	
c13		0.2668	0.2975	0.4900	0.5675	15.260	0.9115	20.073	0.9388	12.839	15.900	14.883	16.916	16.127	16.077	16.570	16.381	17.318	15.840	16.146	15.135	18.519	10.099	
C14	0.2860		0.1872	0.2844	0.3442	11.968	0.5762	15.872	0.5804	0.8622	11.456	10.586	12.674	12.097	12.433	12.637	12.676	13.312	12.123	12.002	11.353	14.289	0.6816	
C15	0.5492	0.2632		0.0518	0.0812	0.8739	0.2740	12.048	0.2701	0.5247	0.7707	0.6867	0.8709	0.8133	0.8331	0.8605	0.8596	0.9301	0.8117	0.8116	0.7528	10.275	0.3700	
C16	0.4608	0.1748	-0.0884		0.0372	0.9882	0.2583	12.921	0.1937	0.4852	0.7392	0.6621	0.8605	0.8143	0.8593	0.8682	0.8736	0.9294	0.8137	0.7888	0.7329	10.108	0.3809	
C17	0.6304	0.3444	0.0812	0.1696		11.495	0.3356	14.719	0.2185	0.5932	0.8582	0.7788	0.9760	0.9261	0.9645	0.9806	0.9811	10.527	0.9213	0.8987	0.8330	11.264	0.4747	
Pr	-0.9007	-11.866	-14.498	-13.615	-15.310		0.4274	0.0982	0.8334	0.4168	0.4618	0.3732	0.4566	0.3901	0.3871	0.4090	0.4426	0.4735	0.4574	0.4543	0.4949	0.5272	0.3265	
C18	0.0353	-0.2507	-0.5139	-0.4255	-0.5951	0.9360		0.5457	0.1672	0.0679	0.2097	0.1376	0.2684	0.2278	0.2878	0.2702	0.2959	0.3095	0.2770	0.2563	0.2596	0.4260	0.0516	
Ph	-0.7596	-10.456	-13.088	-12.205	-13.900	0.1410	-0.7950		10.365	0.4776	0.4970	0.3924	0.4639	0.3790	0.3856	0.3866	0.4261	0.4401	0.4556	0.4437	0.5201	0.5050	0.4256	
C19	0.1660	-0.1200	-0.3831	-0.2948	-0.4644	10.667	0.1307	0.9257		0.2502	0.4559	0.3874	0.5627	0.5349	0.6184	0.5950	0.6189	0.6455	0.5700	0.5345	0.5160	0.7796	0.2570	
C20	-0.3448	-0.6308	-0.8940	-0.8056	-0.9752	0.5558	-0.3801	0.4148	-0.5109		0.1028	0.0385	0.1521	0.1318	0.2198	0.1831	0.2251	0.2148	0.2254	0.1878	0.2187	0.3730	0.0719	
C21	-0.5536	-0.8396	-11.028	-10.144	-11.840	0.3471	-0.5889	0.2060	-0.7196	-0.2088		0.0698	0.0337	0.1423	0.2067	0.1793	0.2167	0.2159	0.2446	0.2074	0.2532	0.3730	0.1509	
C22	-0.6104	-0.8964	-11.596	-10.712	-12.408	0.2902	-0.6457	0.1492	-0.7765	-0.2656	-0.0568		0.0699	0.0444	0.1110	0.0794	0.1145	0.1138	0.1347	0.1079	0.1522	0.2674	0.0734	
C23	-0.7775	-10.635	-13.267	-12.383	-14.079	0.1231	-0.8128	-0.0179	-0.9436	-0.4327	-0.2239	-0.1671		0.0706	0.1153	0.0865	0.1093	0.1201	0.1534	0.1427	0.1841	0.2731	0.1489	
C24	-0.8121	-10.981	-13.613	-12.729	-14.425	0.0886	-0.8474	-0.0524	-0.9781	-0.4673	-0.2585	-0.2017	-0.0346		0.0437	0.0122	0.0282	0.0406	0.0665	0.0742	0.1147	0.1903	0.1006	
c25	-0.8986	-11.846	-14.478	-13.594	-15.290	0.0021	-0.9339	-0.1390	-10.646	-0.5538	-0.3450	-0.2882	-0.1211	-0.0865		0.0409	0.0469	0.0761	0.0853	0.1047	0.1423	0.2210	0.1339	
C26	-10.294	-13.154	-15.786	-14.902	-16.598	-0.1288	-10.647	-0.2698	-11.955	-0.6846	-0.4758	-0.4190	-0.2519	-0.2173	-0.1308		0.0079	0.0186	0.0351	0.0513	0.0843	0.1559	0.1169	
C27	-11.851	-14.711	-17.343	-16.459	-18.155	-0.2844	-12.204	-0.4254	-13.511	-0.8403	-0.6315	-0.5747	-0.4076	-0.3730	-0.2865	-0.1557		0.0157	0.0238	0.0492	0.0712	0.1421	0.1273	
C28	-13.571	-16.431	-19.063	-18.179	-19.875	-0.4564	-13.924	-0.5974	-15.231	-10.123	-0.8035	-0.7467	-0.5796	-0.5450	-0.4585	-0.3276	-0.1720		0.0221	0.0424	0.0631	0.1343	0.1485	
C29	-15.070	-17.930	-20.562	-19.678	-21.374	-0.6063	-15.423	-0.7473	-16.730	-11.622	-0.9534	-0.8966	-0.7295	-0.6949	-0.6084	-0.4776	-0.3219	-0.1499		0.0297	0.0334	0.1249	0.1195	
C30	-17.317	-20.176	-22.808	-21.925	-23.620	-0.8310	-17.670	-0.9720	-18.977	-13.868	-11.781	-11.212	-0.9541	-0.9196	-0.8331	-0.7022	-0.5466	-0.3746	-0.2247		0.0322	0.1415	0.1145	
c31	-20.328	-23.188	-25.820	-24.936	-26.632	-11.321	-20.681	-12.731	-21.988	-16.880	-14.792	-14.224	-12.553	-12.207	-11.342	-10.034	-0.8477	-0.6757	-0.5258	-0.3011		0.1263	0.1173	
C32	-22.047	-24.906	-27.538	-26.655	-28.350	-13.040	-22.400	-14.450	-23.707	-18.598	-16.511	-15.942	-14.271	-13.926	-13.061	-11.752	-10.196	-0.8476	-0.6977	-0.4730	-0.1719		0.2524	
	Mean In (xi/Xj)																					56.537	Total Variance

The Menu Compositional Statistics Summary, as mentioned before, includes two types of descriptive statistics. On Table 8 we observe the Variation Array, CLR variance and Total Variance as well as the Center, Min, Max and quartiles. The sample size is 95 in this case, due to the fact that in the data set, there exist zero values. The inadvertency introduced by a logratio variance (here clr variance) is that the logarithm of zeros does not exist, so if there are such observations in the data

On the other hand, the Menu Classical Statistics Summary includes the arithmetic mean, standard deviation, covariance matrix, Min, Max and quartiles (Table 9). The first step in analyzing multivariate data is computing the mean vector and the variance-covariance matrix. The mean vector consists of the means of each variable and the variance-covariance matrix consists of the variances of the variables along the main diagonal and the covariances between each pair of variables in the other matrix positions. The variance and the standard deviation are important in data analysis because of their relationships to correlation and the
normal curve. Correlation between a pair of variables measures to what extent their values co-vary. The term covariance is undoubtedly associatively prompted immediately. There are numerous models for describing the behavioral nature of a simultaneous change in values, such as linear, exponential and more. Observing Table 9, it is evident that all variables are correlated positively. The strongest positive correlation forms between C14 and C13 (0.9434). What is interesting here, is that in the classical statistics summary, the sample size remains at each original form of 120 samples. This is contrast to the Compositional Statistics summary, where sample size reduces, due to the exclusion of zero values.

Table 9 Classical Statistics Summary

The CoDaPack softaware offers the option of a Ternary Principal Component Graph. This feature calculates the two (or three) compositional principal components for a 3-part (or 4part) composition and displays the result in a ternary diagram. What is more, it returns, as a numerical result, the Principal Components and the cumulative proportion explained with each component.

It would be meaningful if the Principal Components of this 3-part composition, is based on variables that present a bigger weight, related to the rest variables of the data set. For this reason, the command $\operatorname{var}(X)$ was utilized on Matlab to examine which are the three variables with the most impact. It was found that C13, C14 and phytane obtain the biggest weights ($0.1034,0.0796$ and 0.924 respectively). Below we present both the ternary principal
component graph for all components produced by CoDaPack, as well as the PC plot that is produced by matlab (using raw compositional data).

Fig. 54 Ternary Principal Component Graph for C13, C14 and phytane.

Fig. 55 Plot of the first two Principal Components for C13, C14 and phytane.
By examining the ternary principal component graph (Fig. 54), we observe that Family A oils are distinctively separated from the rest, presenting a sub-parallel alignment to the first principal component axis (PC1). Samples from families B, C and D follow a linear trend along the PC2 axis overlapping each other. In Table 10 we observe the numerical representation of the principal components for each variable, as well as, the cumulative proportion explained with each PC. Both PC1 and PC2 are positively correlated to the three variables. C13 is the most important in explaining PC1, whereas C 14 is the most important in explaining PC2

Table 10 Principal Components as Numerical results and the Cumulative proportions explained with each principal component.

	C13	C14	Ph	Cum. Prop.
PC1	0.4715	0.3999	0.1287	0.9074
PC2	0.1465	0.5970	0.2565	1.0000

On the other hand, Fig. 55 displays a completely different principal component analysis result. As far as the discrimination of the four family affiliations is concerned, it is evident that there is no clear distinction among them. All samples follow strictly linear gradients, overlapping
significantly, at the same time. PC1 scores for all samples are positively high, whereas for PC2, the majority obtains negative scores. The first Principal Component in this case explains 81% of the total variance, and PC2 follows with 15% of the total variance.

A simple ternary plot of $\mathrm{C} 13, \mathrm{C} 14$ and phytane is displayed on Fig. 56. As in the ternary principal component graph, in this plot there is a significant overlapping among oils B, C and D . Family A oils form a quite distinct group along the C13-C14 axis. Along the C13-phytane axis there is a sample (number) which displays a different behavior from the rest and it is D1338. Fig. 57 displays the centered version of the same plot. It offers a better understanding of how oil samples exist in the ternary plot's space.

Fig. 56 Ternary Plot of C13, C14 and phytane

Fig. 57 Centered ternary plot with grid on

The ALR plot represents a plot of three (four in 3D) alr-transformed parts (Fig. 58). The new variables obtained with the ALR transformation are displayed in an orthogonal coordinate system to visualize how the plot changes when permuting the components or initial columns. Nevertheless, care is required when interpreting the plot, as the axis are not really orthogonal, but at 60°.

Fig. 58 ALR plot of C13, C14 and phytane
What is observed in the ALR plot, is that oil samples form a positive gradient of 30° along the intersection of alr.C14_Ph and alr.C13_Ph axes. The additive logratio transformation seems to reveal a linearity embodied in oil families. Once more, the most distinct group is that of family A oils. The overlapping still holds among the other oil families.

The CLR plot feature represents a plot in an orthogonal coordinate system of the data, after the centred logratio transformation (clr) of two (three in 3D) selected parts. It has the same capabilities as the ALR Plot.

The ILR plot feature displays a plot in an orthogonal coordinate system of the data after the isometric logratio transformation (ilr) of three (four in 3D) selected parts according to a sequential binary partition. The way to select the partition is the same as in TransformationILR routine. The partition selected in our case is the default (Table 11).
$\begin{array}{ll}- & A \\ 0 & B \\ - & C \\ 0 & D\end{array}$
${ }^{88}$

Fig． 59 CLR plot of C13，C14 and phytane

Table 11 Binary partition for ILR transformation

C13	C14	Ph
1	1	-1
1	-1	0

○○○
ロのロロ

Fig． 60 ILR plot of C13，C14 and phytane

In the ILR plot there are two distinct positive gradients sub-parallel to and below the ilr. 1 axis (Fig. 60). One of the two gradients, consists of oil samples solely from Family A and the other consists of oil samples from families B, C and D. The projections of sample points of family A oils do not overlap with any of the other, in contrast to the rest that overlap significantly.

The CLR biplot includes the selected variables C13, C14 and phytane. Once the graph is performed, we may choose 1) which 2D view we prefer (axes XY, YZ or XZ), 2) to display observations or not, and 3) which biplot display depending on the Form value; $\alpha=0$ corresponds to a Covariance Biplot, $\alpha=1$ Form Biplot, and $\alpha=0: 5$ Symmetric Scaling Biplot, which is the default value. In Fig. 61 the biplot is a Form Biplot

What is more this routine returns, as a numerical result, the Principal Components and the cumulative proportion explained with each component (Table 12). Biplot consists on the decomposition of clr matrix, $\mathrm{X}=\mathrm{UDV}$ '. If numerical output is desired the routine writes three matrices: UD, D and V . UD are the ilr coordinates of the original data.

Fig. 61 CLR biplot of C13, C14 and phytane
As far as the distinction of the families is concerned, more or less, the CLR Biplot presents the same results, as in the previous graphs.

Table 12 Principal Components explained by clr.13, clr. 14 and phytane

| | clr.C13 | clr.C14 | clr.Ph | Cum.Prop.Exp. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PC1 | 0.4878 | 0.3231 | -0.8109 | 0.9074 |
| PC2 | -0.6548 | 0.7498 | -0.0951 | 1.0000 |

Table 12 displays with which variable each principal component is explained along with the cumulative proportion explained. PC1 is positively correlated with clr.C13 and clr.C14, but negatively with clr.ph. PC2 is negatively correlated with clr.C13 and clr.ph, but positively with clr.C14.

Lastly, the Balance Dendrogram represents a dendrogram by means of a sequential binary partition of selected parts (Fig. 62). The way to select the partition is the same as in Transformation-ILR routine. Here the default partition is chosen (Table 14). As a numerical output, this routine returns on the output window the sequential binary partition used, the mean and the variance of each balance (Table 13). Also on the Data window are the ilr coordinates produced with this partition.

Fig. 62 Balance dendrogram of C13, C14 and phytane
Table 13 Numerical output of Balance Dendrogram routine, including the mean and variance

Mean		Variance	
Balance 1	Balance 2	Balance 1	Balance 2
0.7370	-0.2022	1.1537	0.1334

Table 14 Default partition for the Balance Dendrogram routine

C13	C14	Ph
1	1	-1
1	-1	0

7. Conclusions

The aim of this project has been the examination of the way multivariate clustering methods perform on the classification of oil family affiliations. The methods implemented hereby include Hierarchical clustering, k-means clustering and Principal Component Analysis. The data set under study contained raw compositional information of four distinct oil families present at Williston Basin of Canada. For the needs of the study, four different models were developed out of the given geochemical information; the Saturates' Fraction Compositional Model, the Saturates' Fraction Ratios Model, the Gasoline Range Compositional Model. Focus was not placed on how the models would perform under the aforementioned statistical analysis, but the exact opposite. The effort was on the examination of the data set through a manifold manner.

Taking into consideration the performance of each method separately we conclude as follows:

- Hierarchical Clustering performed relatively well on all models. Family A oils were classified sufficiently and in some cases Family C oils appeared to form fair clusters. However, there was always considerable overlapping among families B, C and D.
- k-means failed in the task of classifying the given data set into distinct groups. In the SFCM and SFRM, it produced a two-cluster solution, with one cluster including mainly samples from Family A, and another cluster containing the rest. Judging, however, from the k-means plots, the clusters produced, did not present clear boundaries between them. In the GRCM and BCM, k-means produced a three-cluster solution, but significant overlapping among all families was observed. This was also evident from the respective k-means plots.
- Principal Component Analysis performed similarly to hierarchical clustering. It mainly distinguished Family A samples and presented significant overlapping among the rest oil samples. In BCB especially, there was an overlapping between families A and D, as well as with families C and D. Family B oil samples were dispersed in the plot.

All in all, the geochemical information under study, contains complex compositions of different oils. A blind application of multivariate data analysis methods on such data seems to be unable to classify them into distinct groups. Compositional data require probably different approaches concerning their analysis. Their special properties cause problems when analyzed with standard multivariate methods and a whole new chapter has been introduced by the scientific community on the way to examine them. The final chapter of this project deals with an alternative approach towards the analysis of compositional data, and results are compared to previous approaches. Principal Component Analysis in particular, presents a completely different picture when approached in a different manner. Further investigation, however, should be conducted on this type of data in order to understand their behavior and obtain meaningful information through their analysis.

References

[1] L. C. Gerhard, S. B. Anderson, J. A. LeFever and C. G. Carlson, "Geological development, origin and energy mineral resources of Willinston Basin, North Dakota,," Bulletin of American Association of Petroleum Geologists, vol. 66, pp. 989 1020, 1982.
[2] J. L. Ahern and S. R. Mrkvicka, "A mechanical and thermal," Tectonics, vol. 3, pp. 79102, 1984.
[3] L. Sloss, "Comparative anatomy of cratonic unconformities. In: Schlee, J.S. (Ed.), Interregional Unconformities," American Association of, vol. 36, pp. 1-6, 1984.
[4] Mossop, G.D. and Shetsen, I. (Eds.),, "Geological Atlas of the Western Canada Sedimentary Basin," Canadian Society of Petroleum Geologists and Alberta Research Council, 1994.
[5] Podruski, J. A., Barclay, J. E., Hamblin, A. P., Lee, P. J., Osadetz, K. G., Procter, R. M. and Taylor, G. C., "Conventional Oil Resources of Western Canada (Light and Medium), Part 1: Resource Endowment," Geological Survey of Canada, Paper 87-26, p. 149, 1988.
[6] Clement, J. H., "Cedar Creek: a significant paleotectonic feature of the Williston Basin. In: Longman, M.W. (Ed.), Williston Basin: Anatomy of a Cratonic Oil Province," Rocky Mountain Association of Geologists, pp. 323-336, 1987.
[7] LeFever, J.A., LeFever, R.D. and Anderson, S.B.,, "Structural evolution of the central and southern portions of the Nesson Anticline, North Dakota. In: Carlson, C.G., Christopher, J.E. (Eds.)," in Proceedings of the Fifth International Williston Basin Symposium, 1987.
[8] A. O. Lawrence , R. Pollastro and S. B. Gaswirth, "Williston Basin ProvinceStratigraphic and Structural Framework to a Geologic Assessment of Undiscovered," in U.S. Geological Survey Williston Basin Province Assessment Team, Assessment of undiscovered oil and gas resources of the Williston Basin Province of North Dakota, Montana, and South Dakota,, U.S. Geological SurveyDigital Data Series 69-W, 17p., 2013.
[9] G. C. Bond and M. A. Kominz, "Construction of tectonic subsidence curves for the early Paleozoic miogeocline, southern Candian Rocky Mountains: implications for subsidence mechanisms, age of breakup; and crustal thinning," Geological Soviety of Amreica Bulletin, vol. 95, pp. 155-173, 1984.
[10] R. D. LeFever, "Sedimentology and stratigraphy of the Deadwood-Winnipeg interval (Cambro-Ordovician), Williston basin," Paleozoic systems of the Rocky Mountain region: Rocky Mountain Section SEPM, pp. 11-28, 1996.
[11] P. R. Vail, R. M. Mitchum and S. Thompson, "Seismic stratigraphy and global changes of sea level, Part 3:," in Seismic stratigraphy-Application to hydrocarbon, C. E.

Payton, Ed., American Association of Petroleum Geologists Memoir 26, 1977, pp. 6381.
[12] R. W. Eddie , "Mississippian sedimentation and oil fields in southeastern Saskatchewan," Bulletin, vol. 42, pp. 94-126, 1958.
[13] C. A. Sandberg, R. C. Gutschick, J. G. Johnson, F. G. Poole and W. J. Sando, "Middle Devonian to late Mississippian history of the overthrust belt region, western United States," Geologic Studies of Cordilleran Thrust Belt , vol. 2, pp. 691-719, 1983.
[14] L. C. Gerhard, S. B. Anderson and D. W. Fischer, "Petroleum geology of the Williston Basin," in Interior cratonic basins: American Association of Petroleum Geologists Memoir 51, 1990, pp. 507-557.
[15] W. G. Dow, "Application of oil-correlation and source-rock data to exploration in Williston Basin," AAPG Bulletin, vol. 58, pp. 1253-1262, 1974.
[16] J. A. Williams, "Characterization of oil types in Williston Basin," AAPG Bulletin, vol. 58, pp. 1243-1252, 1974.
[17] C. G. Carlson, "Triassic-Jurassic of Alberta, Saskatchewan, Manitoba, Montana, and North Dakota," vol. 52, pp. 1969-1983, 1968.
[18] T. P. Poulton, "The Jurassic of the Canadian Western Interior, from $49^{\circ} \mathrm{N}$ latitude to Beaufort Sea," vol. Memoir 9, D. F. Stott and D. J. Glass, Eds., Canadian Society of Petroleum Geologists, 1984, pp. 15-41.
[19] D. F. Stott, "Cretaceous Sequences of foothills of the Canadian Rocky Mountains;," in The Mesozoic of Middle North America, Canadian Society of Petroleum Geologists, Memoir, 1984, pp. 67-105.
[20] J. E. Christopher , "The Lower Cretaceous Mannville Group, northern Williston Basin region, Canada," vol. Memoir 9, pp. 109-126, 1984a.
[21] J. E. Christopher, "Depositional patterns and oil field trends in the Lower Mesozoic of the northern Williston Basin, Canada," Oil and Gas in Saskatchewan, vol. 7, pp. 83102, 1984b.
[22] A. G. Green, W. Weber and Z. Hajnal, "Evolution of Proterozoic terranes beneath the Williston Basin," Geology, vol. 13, pp. 624-628, 1985 b.
[23] C. Burret and R. Berry, "Proterozoic Australia-Western United States (AUSWUS) fit between Laurentia and Australia," Geology, vol. 28, no. 2, pp. 103-106, 2000.
[24] A. G. Green, Z. Hajnal and W. Weber, "An evolutionary model of the western Churchill Province and western margin of the Superior Province in Canada and the northcentral United States," Tectonophysics, vol. 116, pp. 281-332, 1985a.
[25] K. Nelson, D. Baird, J. Walters, M. Hauck, L. Brown, J. Oliver, J. Ahern, Z. Hajnal, A. Jones and L. Sloss, "Trans-Hudson orogen and Williston Basin in Montana and North Dakota-New COCORP deep profiling results," Geology, vol. 21, pp. 447-450, 1993.
[26] G. E. Thomas, "Lineament-block tectonics—Williston-Black Creek Basin," vol. 58, no. 7, pp. 1305-1322, 1974.
[27] L. O. Anna, "Geologic framework of the ground water system in Jurassic and Cretaceous rocks in the Northern Great Plains, in parts of Montana, North Dakota, South Dakota, and Wyoming," Vols. 1402-B, p. 36, 1986.
[28] D. L. Brown and D. L. Brown, "Wrench-style deformation and paleostructural influence on sedimentation in and around a cratonic basin," Williston Basin: Anatomy of a cratonic oil province, pp. 57-70, 1987.
[29] E. K. Maughan and W. J. J. Perry, "Lineaments and their tectonic implication in the Rocky Mountains and adjacent plains region," vol. 41, pp. 41-53, 1986.
[30] J. E. Zumberge, "Tricyclic diterpane distributions in the correlation of Palezoic crude oils from the WIliston Basin," in Advances in Organic Geochemistry, New York, John Wiley, 1981, pp. 738-745.
[31] M. J. Leenheer and J. E. Zumberge, "Correlation and thermal maturity of Williston Basin crude oils and Bakken source rocks using terpane biomarkers," in Williston Basin: Anatomy of a cratonic oil province, Rocky Mountain Association of Geologists, 1987, pp. 287-298.
[32] K. G. Osadetz, P. W. Brooks and L. R. Snowdon, "Oil families and their sources in Canadian Williston Basin, (southeastern Saskatchewan and southwestern Manitoba)," Bulletin of Canadian Petroleum Geology, vol. 40, pp. 254-273, 1992.
[33] K. G. Osadetz and L. R. Snowdon, "Significant Paleozoic petroleum source rocks in the Canadian Williston Basin: their distribution, richness, and thermal maturity (Southeastern Saskatchewan and Southwestern Manitoba)," Geological Survey of Canada, Bulletin , vol. 487, p. 60, 1995.
[34] K. G. Osadetz, P. W. Brooks and L. R. Snowdon, "Oil families and their sources in Canadian Williston Basin, (southeastern Saskathewan and sothwestern Manitoba)," Bulletin of Canadian Petroleum Geology, vol. 40, no. 3, pp. 254-273`, September 1992.
[35] K. G. Osadetz, L. R. Snowdon and P. W. Brooks, "Oil families in Canadian Williston Basin (southwestern Saskatchewan)," Bulletin of Canadian Petroleum Geology, vol. 42, pp. 155-177, 1994.
[36] K. G. Osadetz, N. Pasadakis and M. Obermajer, "Definition and characterization of petroleum compositional families using principal component analysis of gasoline and saturate fraction compositional ratios," Summary of Investigations 2002, vol. 1, 2002.
[37] L. R. Snowdon and K. G. Osadetz, "Geological processes interpreted from gasoline range analysis of oils from southeast Saskatcewan and Manitoba," Current Research, 1988.
[38] N. Pasadakis, M. Obermajer and K. G. Osadetz, "Definition and characterization of petroleum compositional families in Williston Basin, North America using principal component analysis," Organic Geochemistry, vol. 35, pp. 453-468, 2004.
[39] M. Obermajer , K. G. Osadetz, M. G. Fowler and L. R. Snowdon, "Light hydrocarbon (gasoline range) parameter refinement of biomarker-based oil-oil correlation studies: an example from Williston Basin," Organic Geochemistry, vol. 31, pp. 959-976, 2000.
[40] J. Burrus, K. G. Osadetz, S. Wolf, B. Doligez, K. Visser and D. Dearborn, "A twodimensional regional basin model of Williston Basin hydrocarbon systems," APPG Bulletin, vol. 80, pp. 265-291, 1996a.
[41] J. Burrus, K. Osadetz, S. Wolf and K. Visser, "Physical and numerical modelling constraints on oil expulsion and accumulation in the Bakken and Lodgepole petroleum systems of the Williston Basin (Canada-USA)," Bulletin of Canadian Petroleum Geology , vol. 44, pp. 429-445, 1996b.
[42] D. M. Jarvie and R. F. Inden, "Re-Evaluation of Williston Basin potential Paleozoic source rocks and petroleum systems," AAPG Annual Meeting Expanded Abstracts, vol. 6, p. 55, 6-9 April 1997.
[43] D. M. Jarvie and P. R. Walker, "Correlation of oils and source rocks in the Williston Basin using classical correlation tools and thermal extraction high resolution C7 gas chromatography," 8th International Meeting on Organic, Oral presentation, 1997.
[44] D. M. Jarvie, "Williston Basin petroleum systems: inferences from oil geochemistry and geology," The Mountain Geologist, vol. 38, pp. 39-41, 2001.
[45] C. Jiang, M. Li, K. Osadetz, L. R. Snowdon, M. Obermajer and M. G. Fowler, "Bakken/Madison petroleum systems in the Canadian Williston Basin; Part 2: molecular markers diagnostic of Bakken and Lodgepole source rocks:," Organic Geochemistry, vol. 32, pp. 1037-1054, 2001.
[46] C. Jiang and M. Li, "Bakken/Madison petroleum systems in the Canadian Williston Basin; Part 3: geochemical evidence for significant Bakken-derived oils in Madison Group reservoirs," Organic Geochemistry, vol. 33, pp. 761-787, 2002.
[47] J. W. Tukey, Exploratory Data Analysis, Addison-Wesley Publishing Co., 1977.
[48] A. Gelman, "Exploratory Data Analysis for Complex Models," Journal of Computational and Graphical Statistics, vol. 13, no. 4, p. 755-779, 2004
[49] A. C. Rencher, Methods of Multivariate Analysis, 2nd ed., John Wiley \& Sons, Inc., 2002.
[50] A. K. a. D. R. C. Jain, Algorithms for Clustering Data, New Jersey: Prentice Hall, Englewood Cliffs, NJ, 1988.
[51] A. K. M. M. N. a. F. P. J. Jain, "Data Clustering: A Review," ACM Computing Surveys, vol. 31, pp. 264-323, 1999.
[52] F. J. J. a. P. J. Husson, "Principal Component Methods-hierarchcal clusteringpartitional clustering: why would we need to chose for visualizing data?," Agrocampus Quest, 2010.
[53] Y.-Y. Chi, "Multivariate Methods," WIREs Computational Statistics, pp. 35-47, 2012.
[54] K. S. a. L. S. Y. Fu, "A Clustering procedure for syntactic patterns," IEEE Transactions on Systems, Man and Cybernetics, vol. 7, pp. 734-742, 1977.
[55] R. R. a. M. C. D. Sokal, "A statistical method for evaluating systematic relationships," University of Kansas Science Bulletin, vol. 38, pp. 1403-1438, 1958.
[56] M. R. Anderberg, Cluster Analysis for Applications., New York: Academic Press, 1973.
[57] J. H. Ward, "Hierarchical Groupings to optimize an objective function," Journal of the American Statistical Asscoiation, vol. 58, pp. 236-2244, 1963.
[58] L. L. McQuitty, "Similarity analysis, by reciprocal pairs for discrete and continuous data," Educational and Psychological Measurement, vol. 27, pp. 21-46, 1966.
[59] M. Jambu, Classification Automatique pour l'Analyse des Donnees, vol. 1, Paris: Dunod, 1978.
[60] J. Podani, "New Combinatorial SAHN Clustering Methods," Vegetatio, vol. 81, pp. 6177, 1989.
[61] G. N. W. W. T. Lance, "Note on a new information-statistic classificatory," Computer Journal, vol. 11, no. 2, p. 195, 1968.
[62] J. B. McQueen, "Some Methods for classification and Analysis of Multivariate Observations," in 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, 1967.
[63] J. Hartigan, Clustering algortihms, Toronto: John Wiley \& Sons, 1975.
[64] J. Hartigan and M. Wong, "Algorithm AS136: A k-means clustering algorithm," Applied Statistics, vol. 28, no. 1, pp. 100-108, 1979.
[65] Z. S. Selim and M. A. Ismail, "k-means-Type Algorithms: A Generalized Convergence Theorem and Characterization of Local Optimality," IEEE Transactions on Pattern Analysis and Machine Intelligence , Vols. PAMI-6, no. 1, pp. 81-87, 1984.
[66] D. Pollard, "Strong Consistency of KK-means Clustering," The Annals of Statistics, vol. 9, no. 1, pp. 135-140, 1981.
[67] D. Pollard, "A Central Limit Theorem for k-means Clustering," The Annals of Probability, vol. 10, no. 4, pp. 919-926, 1982.
[68] R. Serinko and G. Babu, "Weak limit theorems for univariate k-means clustering under a non-regular condition," Journal of Multivariate Analysis, vol. 41, pp. 273-296, 1992.
[69] L. García-Escudero and A. Gordaliza, "Robustness properties of k-means and trimmed k-means," Journal of the American Statistical Association, vol. 94, no. 447, pp. 956969, 1999.
[70] G. Babu and M. Murty, "A near-optimal initial seed value selection in k-means algorithm using a genetic algorithm," Pattern Recognition Letters, vol. 14, no. 10, pp. 763-769, 1993.
[71] P. Bradley and U. Fayyad, "Refining initial points for k-means clustering.," in The fifteenth international conference on machine learning, San Francisco, 1998.
[72] J. M. Peña , J. A. Lozano and P. Larrañaga, "An empirical comparison of four initialization methods for the K-means algorithm," Pattern Recognition Letter, vol. 20, pp. 1027-1040, 1999.
[73] L. Kaufman and P. Rousseeuw, "Finding Groups in Data-An introduction to Cluster Analysis," in Wiley Series in Probability and Mathematical Statistics, New York, John Wiley \& Sons, Inc., 1990.
[74] S. S. Khan and A. Ahmad, "Cluster center initialization algorithm for k-means clustering," Pattern Recognition Letters, vol. 25, no. 11, pp. 1293-1302, 2004.
[75] K. Pearson, "On lines and planes of closest fit to systems of points in space," Philosophical Magazine, vol. 2, no. 11, pp. 559-572, 1901.
[76] H. Hotelling, "Analysis of a Complex of Statistical Variables Into Principal Components," Journal of Educational Psychology, vol. 24, pp. 417-441 and 498-520, 1933.
[77] S. Wold, K. Esbensen and P. Geladi, "Principal Component Analysis," Chemometrics and Intelligent Laboratory Systems, vol. 2, pp. 37-52, 1987.
[78] W. Lawton and E. Sylvestre, "Self modelling curve resolution," Technometrics, vol. 13, pp. 617-633, 1971.
[79] W. Full, R. Ehrlich and J. Klovan, "Extended Q model-Objective definitionof external end members in the analysis of mixtures," Journal of Mathematical Geology, vol. 13, pp. 331-334, 1981.
[80] K. Peters, C. Walters and J. Moldowan, The Biomarker Guide: Biomarkers and Isotopes in Petroleum Systems and Earth History, 2 ed., vol. 2, New York: Cambodge University Press, 2005.
[81] J. Hunt, Petroleum Geochemistry and Geology, 2 ed., New York: Freeman and Company, 1996, p. 743.
[82] G. Lijmbach, "On the origin of petroleum," in Applied science publishers, London, 1975.
[83] L. B. Magoon and W. G. Dow, "The petroleum system," in The Petroleum System-From Source to Trap, vol. 60, L. B. Magoon and W. G. Dow, Eds., American Association of Petroleum Geologists Memoir, 1994, pp. 3-24.
[84] J. A. Curiale, "Correlation of oils and source rocks-a conceptual and historical prospective," in The Petroleum System-From Source to Trap, vol. 60, L. B. Magoon and W. G. Dow, Eds., American Association of Petroleum Geologists Memoir, 1994, pp. 251-260.
[85] K. Pearson, "Mathematical contributions to the theory of evolution. On a form of spurious correlation which may arise when indices are used in the measurement of organs," in The Royal Society of London, 1897.
[86] O. V. Sarmanov and A. B. Vistelious, "On the correlation of percentage values," in Doklady Akademii Nauk SSSR, 1959.
[87] C. Krumbein, "Open and closed number systems: stratigraphic mapping," Bulletin of American Association of Petroleum Geologists, vol. 46, pp. 322-37, 1962.
[88] J. C. Butler, "The effect of closure on the measure of similarity between samples," Journal of Mathematical Geology, vol. 11, pp. 73-84, 1979.
[89] J. Aitchison, The Statistical Analysis of Compositional Data, London: Chapman and Hall, 1986.
[90] N. M. S. Rock, "Numerical Geology. Lecture Notes in Earth Sciences," vol. 18, 1988.
[91] J. Aitchison and J. J. Egozcue, "Compositional data analysis: where are we and where should we be heading?," Journal of Mathematical Geology, vol. 37, no. 7, pp. 829850, 2005.
[92] V. Pawlowsky-Glahn and J. J. Egozcue, "Compositional data and their analysis: an introduction," The Geological Society of London, Special Publications, vol. 264, pp. 110, 2006.
[93] D. McAlister, "The law of the geometric mean," in Royal Society of London, 1879.
[94] D. F. Watson and G. M. Philip, "Measures of variability for geological data," Journal of Mathematical Geology, vol. 21, pp. 233-54, 1989.
[95] J. Aitchison, "Letter to the Editor. Comment on "Measures of Variability for Geological Data"by D. F. Watson and G. M. Philip," Journal of Mathematical Geology, vol. 22, pp. 223-6, 1990a.
[96] J. Aitchison, "Relative variation diagrams for describing patterns of variability of compositional data," Journal of Mathematical Geology, vol. 22, pp. 487-512, 1990b.
[97] D. F. Watson, "Reply to Comment on "Measures of variability for geological data" by D. F. Watson and G. M. Philip," Journal of Mathematical Geology, vol. 22, pp. 227-31, 1990.
[98] D. F. Watson , "Reply to "Delusions of uniqueness and ineluctability" by J. Aitchison," Journal of Mathematical Geology, vol. 23, p. 279, 1991.
[99] J. Aitchison, "Letter to the Editor. Delusions of uniqueness and ineluctability.," Journal of Mathematical Geology, vol. 23, pp. 275-277, 1991a.
[100] J. Altchison, "A plea for precision in Mathematical Geology," Journal of Mathematical Geology, vol. 23, pp. 1081-1084, 1991 b.
[101] A. Woronow, "The elusive benefits of logratios," in IAMG97, The Third Annual Conference of the International Association for Mathematical Geology, Barcelona, 1997a.
[102] J. Aitchison , "The one-hour course in compositional data analysis or compositional data analysis is easy," in Third Annual Conference of the International Association for Mathematical Geology, Barcelona, 1997.
[103] U. Rehder and S. Zier, "Comment on "Logratio analysis and compositional distance by Aitchison et al. (2000)"," Journal og Mathematical Geology, vol. 32, 2001.
[104] C. Barceló-Vidal, J. A. Martín-Fernandez and V. Pawlowsky-Glahn, "Mathematical foundations of compositional data analysis," in IAMG01, 2001.
[105] D. Billheimer, P. Guttorp and W. Fagan, " Statistical interpretation of species composition," Journal of the American Statistical Association, vol. 96, no. 456, pp. 1205-1214, 2001.
[106] J. Aitchison, "A new approach to null correlations of proportions," Journal of Mathematical Geology, vol. 13, pp. 175-189, 1981a.
[107] J. Aitchison, "Distributions on the simplex for the analysis of neutrality," Statistical distributions in scientific work, vol. 4, pp. 147-156, 1981b.
[108] J. J. Egozcue and V. Pawlowsky-Glahn, "Groups of parts and their balances in compositional data analysis," Journal of Mathematical Geology, vol. 37, no. 7, pp. 795-828, 2005.
[109] J. J. Egozcue, V. Pawlowsky-Glahn, G. Mateu-Figueras and C. Barceló-Vidal, "Isometric logratio transformations for compositional data analysis," Journal of Mathematical Geology, vol. 35, no. 3, pp. 297-300, 2003.
[110] G. Demaison and R. J. Murris, "Petroleum Geochemistry and Basin Evaluation," vol. 35, p. 426, 1984.
[111] Sokal, R. R. and Michener, C. D., "A statistical method for evaluating systematic relationships," University of Kansas Science Bulletin, vol. 38, pp. 1403-1438, 1958.
[112] J. Aitchison, "Some distribution theory related to the analysis of the subjective performance inferential tasks," Statistical distributions in Scientific Work, vol. 5, pp. 363-385, 1981c.
[113] J. Aitchison, "The statistical analysis of compositional data (with discussion)," Journal of the Royal Statistical Society: Series B, vol. 44, pp. 139-177, 1982.
[114] J. Aitchison, "The triangle in statistics," in The Art of Statistical Science. A Tribute to G. S. Watson, V. M. K., Ed., New York, Wiley, 1992a, pp. 89-104.
[115] J. Aitchison, "On criteria for measures of compositional differences," Journal of Mathematical Geological, vol. 24, pp. 365-380, 1992b.
[116] J. Aitchison, "Logratios and natural laws in compositional data analysis," Journal of Mathematical Geology, vol. 31, pp. 563-89, 1999a.
[117] J. Aitchison, C. Barcelo-Vidal, J. A. Martin-Fernandez and V. Pawlowsky-Glahn, "Logratio analysis and compositional distance," Journal of Mathematical Geology, vol. 32, pp. 271-275, 2000.
[118] J. Aitchison, C. Barceló-Vidal and V. Plawlowsky-Glahn, "Reply to Letter to the Editor by S. Rehder and U. Zier on 'Logratio analysis and compositional distance' by J.Aitchison, C. Barceló-Vidal, J. A. Martín-Fernández and V. Pawlowsky-Glahn," Journal of Mathematical Geology, vol. 33, 2001.
[119] A. Woronow, "Regression and discrimination analysis using raw compositional data is it really a problem?," in IAMG97, The Third Annual Conference of the International Association for Mathematical Geology, Barcelona, 1997b.

APPENDIX

Below we present the data set under study. The next tables include all raw data concerning the Biomarkers, the Gasoline range and the Saturated fraction. All models that were examined by multivariate statistical were derived from these three parts of the data set.

	A2425	A2426	A2427	2428	A2429	A2430	A2431	A2432	A2433	A2434	A2435	A2436	A2468	A2469	A2470	A2611	A2627	A2706	A2884	A2892
1tr	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	650000	10000	930000	990000	0
C23tri	2380000	1000	0000	0	7200	0	0	0	4400	8900	0		0		0	650000	60000	30000	130000	990000
Ts	9930000	8780000	6560000	4610000	3360000	750000	459000	335000	3010000	784000	306000	890000	3724000	484000	95400	17700000	6410000	9650000	12500000	7760000
Tm	14900000	13000000	8590000	10200000	4280000	11700000	7860000	5270000	6190000	11500000	6500000	12800000	51820000	53980000	12650000	36500000	9500000	14400000	17300000	3930000
C 29 H	30700000	28500000	19500000	22400000	11000000	26700000	15700000	12200000	13500000	25700000	12900000	22600000	135900000	116800000	25630000	74700000	21200000	31800000	38400000	8790000
$\mathrm{C3OH}$	48500000	48000000	34700000	36900000	21900000	46600000	26900000	22600000	20800000	46400000	21000000	33300000	259700000	222300000	49010000	129000000	41400000	53400000	66900000	5000000
C31S	17700000	1920000	11600000	16100000	8210000	19200000	10700000	8920000	8610000	18100000	8750000	10700000	99660000	92850000	16760000	54700000	17800000	22800000	25200000	5270000
C31R	11300000	12400000	7550000	11100000	5770000	12400000	7120000	5470000	5740000	12000000	5680000	6530000	68410000	59630000	11480000	37800000	12200000	15000000	16600000	3850000
GAM	1630000	1800000	1570000	1670000	1220000	2350000	1200000	1010000	965000	2300000	904000	849000	14840000	10560000	2731000	5890000	2050000	1870000	0	0
C32S	9630000	11200000	7020000	10500000	5760000	12300000	6510000	5480000	5290000	11800000	5300000	4960000	70540000	58890000	11570000	36600000	12800000	15700000	65000	710000
C32R	6000000	7330000	4700000	7080000	40900	8270000	4420000	3520000	3430000	7850000	3500000	3150000	48970000	42700000	8838000	24000000	8950000	10500000	10700000	3560000
C33S	3950000	5230000	3280000	5200000	3340000	6350000	3150000	2620000	2300000	5920000	2360000	1860000	38360000	32930000	6148000	19100000	7880000	9230000	7130000	2250000
C33R	2100000	2760000	1870000	3150000	2060000	4010000	1770000	1520000	1350000	3690000	1450000	1020000	23290000	20630000	3837000	12000000	4980000	5500000	4770000	1260000
C34S	2760000	4030000	2640000	3810000	3560000	6170000	2450000	2280000	1700000	5320000	1760000	1210000	65720000	28830000	5905000	16000000	9380000	8670000	6480000	1690000
C34R	1490000	2280000	1430000	2400000	2210000	3880000	1400000	1280000	877000	3060000	1000000	597000	41110000	18250000	3576000	10100000	5830000	5520000	3560000	923000
C35s	471000	828000	501000	1550000	849000	1670000	618000	79000	448000	1410000	568000	20100	25600000	13250000	2297000	9570000	3820000	3630000	1630000	35000
C35R	230000	291000	0000	78	40800	757000	228000	0000	186000	59900	227000	10000	1475000	6785000	1134000	5100000	2340000	2020000	61000	220000
C21S	653000	560000	519000	381000	368000	486000	311000	207000	298000	530000	401000	1030000	3841000	2877000	2492000	1600000	1050000	880000	1080000	1290000
C27diaS	1040000	968000	710000	753000	423000	692000	551000	372000	424000	908000	614000	1300000	6462000	5582000	3957000	3840000	1490000	1780000	2170000	1950000
C29dias	2170000	1720000	1520000	1610000	799000	1430000	1110000	787000	810000	1840000	1140000	2370000	10820000	9838000	6672000	6200000	2740000	3250000	3810000	3330000
C27aaaR	536000	235000	283000	3900	12400	348000	241000	155000	149000	413000	307000	475000	4360000	2580000	1530000	1570000	708000	727000	89000	333000
C28aar	319000	184000	187000	240000	118000	213000	133000	109000	118000	243000	199000	245000	1760000	1040000	718000	642000	258000	408000	287000	236000
C29aaas	1200000	1000000	908000	961000	517000	878000	650000	451000	514000	966000	738000	1210000	8594000	6405000	2794000	3220000	1550000	1820000	2010000	1180000
C29abbR	1540000	1290000	1230000	1240000	683000	1280000	879000	630000	672000	1220000	944000	1530000	11220000	6871000	3647000	4170000	1840000	2170000	2350000	1650000
C29abbs	1210000	1060000	926000	950000	538000	1030000	712000	485000	518000	898000	725000	1160000	8935000	5362000	2897000	3390000	1360000	1730000	1940000	1310000
C29aaaR	1100000	931000	894000	924000	489000	873000	628000	421000	492000	854000	672000	1010000	8251000	5234000	2464000	3290000	1460000	1540000	1730000	1150000

	A2895	A2896	A2897	A2898	B515	B554	B1014	B1279	B1393	B1443	B2121	B2122	B2887	B1873	B1874	C495	C499	C503	C511	C513
C21tr	4730000	0	2050000	0	0	0	0	0	0	1680000	1010000	7250000	0	1720000	1320000	1927000	1959000	1063000	2119000	1800000
c23tri	3060000	2210000	1570000	2470000	0	713400	1024000	2312000	213800	5482000	1670000	14100000	164000	4260000	3140000	7834000	6310000	4719000	9069000	6670000
Ts	16100000	10300000	10700000	13900000	231100	257400	351500	643900	156000	1086000	500000	3560000	713000	1520000	1130000	5106000	5777000	1943000	4091000	5090000
Tm	25500000	8430000	13900000	10400000	250900	164900	145000	511800	62860	4973000	888000	3970000	310000	978000	598000	4939000	2506000	4280000	7294000	5310000
C 29 H	52700000	16900000	31000000	21500000	0	405300	0	1192000	153700	15010000	1870000	10800000	911000	3990000	2760000	16580000	7859000	13290000	20800000	16370000
С30Н	85200000	26400000	58400000	32600000	1226000	890200	769000	2820000	423600	15340000	3300000	24700000	2240000	8820000	6020000	18390000	9606000	13400000	21140000	16390000
C315	28900000	8990000	23400000	10400000	0	350800	372100	903800	133800	8302000	1140000	8040000	594000	2590000	1640000	10040000	5414000	8007000	12410000	9473000
C31R	19800000	5630000	15800000	7100000	0	245500	189300	678400	108000	5655000	838000	8280000	607000	2090000	1310000	6935000	3574000	5854000	9553000	6814000
GAM	0	0	2910000	0	0	178600	189900	504300	0	1482000	205000	2360000	0	772000	406000	2251000	1345000	2140000	4093000	2368000
C32S	17900000	5260000	15900000	6620000	0	219500	182900	748500	130500	5674000	658000	5100000	509000	1530000	938000	8455000	4632000	6697000	11400000	7430000
C32R	11000000	3480000	11000000	4540000	0	145900	116100	443320	85620	3731000	434000	3760000	341000	1210000	715000	5593000	2922000	4299000	7440000	4865000
C33S	7150000	2100000	9440000	2600000	0	135800	133000	528200	103000	3371000	357000	3770000	283000	1250000	773000	5977000	3224000	4785000	8079000	5043000
C33R	3920000	1120000	5500000	1520000	0	84820	74310	324900	55780	2150000	175000	2960000	128000	635000	423000	3704000	2042000	3076000	5182000	3062000
C34S	5510000	1330000	8950000	1830000	0	99420	63970	369900	51350	2141000	198000	2390000	118000	700000	370000	5606000	3190000	4065000	7127000	4298000
C34R	2750000	712000	5370000	929000	0	56750	45770	189000	40400	1362000	124000	1080000	75500	419000	230000	3394000	1923000	2602000	4603000	2471000
C35s	886000	206000	3200000	370000	0	47700	32800	138000	30600	1880000	25400	1240000	0	395000	238000	8054000	4406000	6263000	10990000	6528000
C35R	400000	100000	1540000	150000	0	30700	23860	82060	24200	1015000	13000	1010000	0	214000	193000	4965000	2271000	3880000	6974000	3842000
C21S	1590000	1270000	823000	1480000	454100	408900	1114000	1624000	67580	1557000	1020000	8970000	1370000	1090000	792000	1039000	951500	512200	952000	731000
C27dias	2570000	1720000	1730000	2100000	627700	592900	809100	1961000	121100	1193000	768000	7910000	846000	1510000	1050000	575800	906900	350100	610700	302000
C29dias	4370000	3330000	3210000	4010000	915100	764000	1127000	2388000	153300	2575000	928000	9090000	1070000	2130000	1540000	2305000	1867000	1962000	3130000	1500000
C27aaaR	960000	667000	682000	645000	512300	319700	408200	1032000	33720	3036000	574000	7030000	387000	514000	305000	1425000	788800	1219000	2148000	789000
C28aaaR	366000	302000	346000	508000	230000	124200	124600	365100	18980	1141000	228000	2540000	144000	156000	124000	500600	273600	453800	827800	287000
C29aaas	2210000	1320000	1830000	1930000	421000	290200	330800	806100	48980	2337000	401000	5350000	318000	651000	461000	1625000	1085000	1411000	2362000	975000
C29abbr	2460000	1830000	2230000	2450000	456900	348400	665300	1247000	74660	2936000	511000	6500000	678000	1020000	702000	2252000	1327000	1645000	2325000	1650000
C29abbS	1870000	1480000	1750000	1970000	386000	291400	574300	955800	64740	2392000	366000	5210000	555000	841000	590000	2321000	1398000	1936000	2866000	1580000
C29aaaR	1820000	1200000	1470000	1640000	539800	314600	303100	1055000	46680	3249000	491000	8860000	359000	658000	463000	1843000	1099000	1478000	2593000	1050000

	C529	C540	C548	553	C557	C566	574	C575	579	C582	C589	C596	711	C714	C721	C722	C725	C1386	C1387	C1388
C21tri	1180000	0	327600	0	1945000	0	633600	2336000	0	1028000	0	1142000	1891000	1700000	3679000	3057000	2850000	0	7534000	1883000
C23tri	5266000	4076000	1705000	4127000	9556000	040000	2818000	12240000	310000	5828000	178000	5860000	5902000	5536000	13490000	10930000	9689000	53400	24780000	6858000
Ts	2469000	2476000	1124000	873400	172000	2850000	1099000	4068000	1540000	2148000	1050000	2223000	3653000	3736000	5880000	5885000	3600000	5214000	14080000	1533000
Tm	3815000	5104000	1472000	3050000	10940000	9180000	3190000	9866000	3860000	4913000	1170000	6095000	2350000	2843000	6867000	558800	3728000	12140000	2147000	4392000
$\mathrm{C29H}$	12860000	15620000	5080000	8709000	27690000	21970000	10980000	25150000	11660000	16400000	3867000	20550000	7601000	8856000	18110000	16330000	14110000	38440000	42650000	15040000
$\mathrm{C3OH}$	12410000	18570000	4882000	377000	28270000	22300000	10120000	27150000	12900000	16190000	4825000	2152000	8373000	10310000	18210000	16890000	13000000	36060000	47640000	14260000
C31S	7263000	10810000	2793000	187000	18190000	13280000	6104000	16650000	7624000	9512000	248900	12970000	4971000	6227000	12720000	11230000	8357000	25660000	33750000	7472000
C31R	5252000	8168000	1941000	3651000	13960000	9910000	4585000	13130000	5353000	7169000	2	9068000	3150000	3901000	8577000	7351000	5876000	18140000	2831000	4966000
GAM	1955000	2675000	683800	1053000	5409000	4012000	1670000	5190000	1592000	2869000	69190	3352000	1087000	1408000	3550000	2613000	2132000	5808000	11180000	1922000
C32S	5690000	9532000	2526000	3163000	17020000	10370000	4782000	14880000	6348000	8144000	199100	10540000	3769000	4805000	9945000	9009000	6780000	20900000	28210000	5796000
C32R	3698000	6466000	1536000	2063000	10620000	6581000	3189000	9487000	4412000	5189000	1309000	7042000	2582000	3249000	7154000	6301000	4991000	13810000	2385000	3651000
C33S	3901000	6267000	191	1607000	12260000	7082000	3166000	10180000	4225000	5627000	1457000	7473000	2717000	3664000	8055000	6884000	5654000	14460000	22860000	3234000
C33R	2383000	3856000	1130000	1061000	8114000	4369000	2062000	6395000	2607000	3465000	865400	4689000	1773000	2326000	5086000	4453000	3631000	9174000	15830000	1953000
C34S	3078000	5325000	1675000	1061000	12100000	5618000	2497000	9181000	4800000	4765000	1164000	6216000	2401000	3301000	6451000	6166000	4748000	12430000	2114000	2063000
C34R	1914000	3357000	976000	624200	8086000	3612000	1602000	5826000	2912000	3089000	736500	3858000	1471000	2046000	4179000	3822000	3047000	7852000	1432000	1196000
C35S	4651000	6550000	2672000	905900	15810000	8189000	3681000	12590000	5145000	7428000	1889000	9774000	3460000	4756000	10160000	8955000	6848000	17340000	25970000	2289000
C35R	2990000	3841000	1772000	442400	10640000	5117000	2237000	8637800	3138000	4727000	1169000	5988000	2144000	3053000	6783000	6039000	4523000	10400000	18750000	1214000
C21S	567600	70210	235000	125700	993500	968000	429030	917800	407000	492800	324000	718400	1008000	952700	1745000	1773000	1308000	1024000	2654000	1137000
C27diaS	301200	888600	68550	1681000	579600	604000	377600	442500	432000	218300	321000	495900	640600	706200	728000	792100	655100	639100	1837000	306700
C29diaS	1628000	2838000	458000	3782000	4848000	3020000	1611000	3869000	1770000	2065000	751000	2853000	1792000	1950000	3672000	3199000	2306000	4579000	9029000	1520000
C27aaaR	1000000	1787000	325700	2930000	3777000	2080000	983000	2896000	1140000	1486000	450000	2082000	856000	985400	2560000	2067000	1421000	3455000	6385000	1090000
C28aaaR	35060	665	81900	105700	1278000	786000	367800	985100	447000	508100	164000	725800	275500	310000	748800	606800	488700	1078000	2295000	755400
C29aaaS	1044000	2050000	313400	2321000	3831000	2160000	1043000	3009000	1300000	1518000	489000	2208000	939100	1136000	2451000	2184000	1637000	4104000	7327000	1113000
C29abbR	1411000	2916000	629400	2952000	3846000	2280000	1436000	3002000	1640000	1787000	711000	3190000	1527000	1801000	4193000	3364000	2304000	6109000	11000000	1966000
C29abbs	1510000	2560000	545800	2501000	4755000	2640000	1558000	3749000	1900000	2126000	640000	3033000	1401000	1696000	3721000	3313000	2157000	5598000	9603000	1647000
C29aaR	1135000	2430000	459800	2883000	4389000	2290000	1164000	3499000	1410000	1754000	525000	2497000	1160000	1406000	3259000	2917000	2569000	4344000	7833000	1343000

	C1389	C1390	C1465	C1466	C1467	C1468	C1469	C1470	C1471	C1472	C1473	C1705	C1715	D756	D800	D801	D802	D841	D842	D924
1tri	0	996100	4200	7300	1020000	894600	199500	1552000	1007000	459900	441300	5290000	2470000	1236000	0	0	199900	0	0	0
C23tri	93200	2573000	3650000	1999000	5607000	4926000	1014000	7321000	4607000	2369000	2190000	13400000	5220000	2123000	111700	7660	509600	141000	5800	8400
Ts	28760	508600	1380000	768900	1882000	2138000	324600	2747000	1317000	858700	713600	16300000	19900000	6729000	3547000	899000	1294000	4495000	3340000	4210000
Tm	94580	1578000	2896000	1519000	4999000	4262000	1017000	4814000	3928000	1746000	2198000	8890000	8620000	5809000	3171000	850800	1897000	10580000	7490000	4431000
$\mathrm{C29H}$	297400	5484000	9874000	5447000	17220000	14010000	3765000	16910000	13870000	6530000	7594000	34600000	28300000	10070000	9151000	3033000	3272000	26180000	20500000	12370000
С30Н	287700	5134000	10720000	5759000	17630000	14880000	3445000	18110000	13170000	6888000	7570000	44900000	51600000	14000000	19660000	6808000	4543000	36490000	29100000	23270000
C31S	172000	2787000	5617000	3207000	10060000	8297000	2167000	10020000	7452000	3693000	4248000	20900000	18400000	7918000	7455000	2446000	2809000	22620000	16600000	9931000
C31R	122800	1886000	3862000	2139000	6932000	5746000	1420000	6785000	5101000	2478000	2946000	18300000	13600000	6367000	5651000	1684000	2452000	17950000	12500000	8031000
GAM	40200	678200	1334000	750200	2670000	2017000	563300	2236000	1909000	878600	561900	3520000	3440000	3051000	1209000	430400	1115000	5758000	2490000	1791000
C32S	127100	2188000	4994000	2797000	8656000	6968000	1756000	8478000	5736000	3125000	3462000	18300000	17000000	6284000	5760000	1713000	2384000	18260000	13300000	7937000
C32R	87500	1329000	3119000	1732000	5396000	4487000	1116000	5468000	3691000	1981000	2139000	11800000	12000000	4696000	3734000	1149000	1864000	12870000	9180000	5505000
C33S	80080	1542000	3574000	2029000	5950000	5235000	1253000	6365000	4050000	2323000	2352000	11000000	9860000	3885000	2878000	993900	1882000	13430000	9240000	4619000
C33R	51080	899400	2092000	1201000	3556000	3124000	728500	3801000	2455000	1306000	1414000	6510000	6430000	2630000	1832000	639300	1393000	9333000	6340000	2961000
C34S	65830	1470000	2997000	1796000	5101000	4505000	999000	5156000	3099000	1865000	1807000	8040000	11200000	5602000	4624000	728500	2537000	22420000	16300000	8541000
C34R	42410	678800	1721000	1018000	2979000	2617000	616600	3152000	2013000	1112000	1080000	4570000	6310000	4006000	2663000	417500	2066000	17030000	12000000	5334000
C35s	94340	1564000	4329000	2494000	7028000	6284000	1485000	8158000	4463000	2737000	2516000	9930000	7340000	2472000	1787000	353900	1393000	11600000	7830000	3955000
C35R	59770	1032000	2661000	1608000	4567000	3948000	930200	5150000	2818000	1699000	161000	5260000	3800000	1683000	1040000	205400	1036000	8020000	4950000	2306000
C21S	9194	339300	259500	146900	408300	366000	79450	550800	490100	165100	216700	2590000	2200000	859500	403900	243600	150600	359300	204000	357800
C27diaS	9683	249800	129800	76990	213600	186400	49580	281400	410600	114500	194100	1970000	1860000	1477000	1381000	1028000	244900	927200	674000	860700
C29diaS	60480	945300	867500	476900	1409000	1143000	300900	1452000	1497000	589600	806600	3930000	4190000	2831000	3244000	1944000	602300	2546000	1740000	2450000
C27aaR	39250	446400	492300	271800	908300	708500	182900	904700	839700	329900	442500	2730000	1330000	1052000	744100	407500	291900	1721000	1180000	649900
C28aaR	9622	130400	153200	82050	257700	194200	58080	256200	0	97880	134800	759000	402000	568900	495900	199000	125800	616000	419000	527100
C29aaaS	36570	421900	538300	282100	914800	690600	195200	904500	829100	338800	437800	3640000	3360000	2591000	1584000	732900	656000	3212000	2230000	1788000
C29abbR	64220	717100	985000	533200	1629000	1228000	364100	1573000	1426000	610200	789500	6340000	5740000	3021000	2335000	1224000	834900	3594000	2510000	2365000
C29abbs	57320	705700	866600	483500	1464000	1137000	310100	1412000	1239000	543200	713700	5080000	4580000	2654000	1930000	1002000	809400	3027000	2150000	1849000
C29aaaR	40610	616400	591200	341400	1140000	836900	221600	1071000	954600	399800	508800	4110000	3790000	2307000	1275000	682500	837200	4359000	2930000	1603000

	D1173	D1273	D1274	D1275	D1276	D1288	D1289	D1290	D1291	D1312	D1313	D1335	D1364	D1365	D1385	D2471	D2472	D2595	D2626	D2885
C21tri	0	0	0	0	0	1495000					0					0	40240000	38060000	3400000	21500000
C23tri	2190000	1940000	1640000	1307000	459800	2240000	904000	11900	269400	106000	19600	202500	485700	38900	446253		73510000	65530000	4560000	63800000
Ts	9977000	6860000	4978000	4885000	1898000	9307000	4411000	5231000	11540000	4271000	1320000	7922000	7404000	3293000	11889165	50850000	89300000	139300000	27000000	102000000
Tm	14520000	106	9615000	5100000	1745000	6141000	3061000	3757000	9172000	9517000	1181000	11050000	7504000	4405000	12547264	3000	139100000	182500000	46400000	279000000
C29H	4570000	3284000	265400	9900	810	9500	9189000	67000	242900	319900	3712000	26620000	23280000	489000	644	484000	240600000	442100000	10400000	417000000
C 3 H	6372000	5495000	4407000	261100	1003000	33350	1794000	2179000	477500	549100	6955000	41960	4479000	97900	87406	552500000	332000000	673300000	164000000	154000000
C315	36610000	2297000	2029000	9667000	2300	340	5947000	7574000	1729000	236300	2828000	219	1566000	05900	25316	28400000	202800000	289700000	76800000	103000000
C31R	28010000	1642000	1527	7236000	2673000	8950000	463300	5936000	13170000	17620000	2020000	1717000	1257000	7637000	83456	21280000	180500000	215400000	52500000	0
GAM	7810000	338400	3396000	1776000	662400	2399000	1325000	1194000	3544000	3882000	681700	4549000	359400	2066000	0	72150000	657700	65370000	9690000	90100000
C32S	28900000	1497000	13630000	7168000	2663000	8066000	4279000	5559000	13170000	16350000	2291000	16750000	1242000	7901000	18272410	206100000	174500000	20030000	49900000	54600000
C32R	212	983200	9388000	4816000	1702000	5853000	3025000	3959000	9060000	11460000	1613000	1176000	8750000	5247000	12608585	1480	130100000	142400000	33900000	39200000
C33S	18	8439000	8503000	3872000	1391000	4576000	2642000	3274000	7628000	10660000	1462000	1062000	7382000	4446000	11472005	125100000	107600000	110000000	27200000	21500000
C33R	12180000	5193000	5504000	2241000	919800	2832000	1630000	1935000	4779000	6740000	1052000	6802000	4743000	2133000	6666641	84690000	66680000	72580000	17200000	48500000
C34S	34940000	16050000	16040000	7450000	2648000	7631000	4477000	5898000	14080000	21470000	2319000	18760000	1379000	8989000	17794250	252200000	139400000	194600000	40400000	26000000
C34R	25150000	9978000	10610000	4583000	1574000	4769000	2685000	3724000	8596000	14020000	1643000	1225000	8843000	5707000	11573888	165400000	92250000	118400000	26900000	8580000
C35S	14280000	4726000	4820000	2345000	798300	2485000	1434000	2182000	4902000	7427000	938000	7112000	550800	3217000	6087510	079	457	900	11700000	3430000
C35R	87000	9000	2920000	1371000	513600	8000	884800	0000	350	200	601900	4412000	9300	222200	371120	2600	250500	46100	6900000	7110000
C21S	904700	70	700	2700	221200	100	438600	370	0900	250	3090	240	5600	500	459	722000	490000	1950000	30000	0500
C27diaS	1935000	1094000	3700	5200	2640	97000	440	50000	30400	5000	1500	010	11300	250	5991	2700	14590000	4000	780000	1080000
C29dias	5681000	3036000	3427000	2672000	105800	379400	8800	24200	82000	8600	0600	7300	313900	860	9627	12800000	2996000	0	9690000	52000
C27aaaR	2282000	7900	138300	763900	357500	123800	100	400	90100		500	5600	11790	586400	1060	980	64900	193000	548000	270000
С28aaa	121100	626100	795700	594100	219400	669400	328200	402400	976700	680900	95550	780	681600	344800	938203	0	0	321000	220000	158000
C29	672900	2368000	500	1955000	727900	290	1460000	1686000	4500	256400	600	750	27230	151900	582199	187300	3619000	3980000	101000	194000
C29	84	3671000	3897000	5400	1117000	3526000	1861000	2112000	600	3790000	401100	3013000	3748000	600	6429155	300	74900	2000	103000	49000
29a	74	3087000	3228000	2155000	841000	380	1638000	1888000	4315000	2846000	372800	27020	27670	1659	5344605	180	37380000	91000	7440000	15100000
9aa	6180000	1952000	2956000	1636000	617500	2068000	1091000	1245000	2959000	2443000	304400	2239000	2338000	1339000	5281395	18500000	30330000	40100000	10100000	0

 $\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\omega}}$

边00000000000000000000000000000000000

