

Technical University of Crete
School of Electrical & Computer Engineering

Electronics & Computer Architecture Division

A Secure Network-Layer Bridge
for Wireless Sensor Networks

by

Emmanouil Palavras

A Thesis submitted in partial fulfilment of the requirements for the Diploma in
Electrical & Computer Engineering

June 2017

Thesis Committee
Associate Professor Ioannis Papaefstathiou Thesis Supervisor

Associate Professor Aggelos Bletsas
Dr. Konstantinos Fysarakis (FORTH)

This page is intentionally left blank.

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[1] out of [75]

Abstract
As the Internet of Things (IoT) is becoming more and more popular, Wireless Sensor

Networks (WSNs) market share increases, due to their efficiency. WSNs typically consist of
embedded nodes with inherent limitations in processing power, energy, memory and
communications bandwidth. It is an emerging technology that demonstrates true potential
through many applications. Although they can be easily integrated into existing systems and
products, hostile environments mandate the deployment of secure schemes to protect sensitive
data being transmitted. Standardized security mechanisms, though, were not designed with
resource restrictions in mind, rendering their applicability in such environments ineffective, if
not impossible.

6LoWPAN (IPv6 over Low-power Wireless Personal Area Networks) activities have
paved the way for using IPv6 protocols in WSNs by introducing appropriate header compression
formats. These allow the efficient exchange of IPv6 packets over IEEE 802.15.4 based networks.
However, when a message protected with encryption methods that utilize header compression
needs to cross the boundaries of a WSN and establish a secure channel with a remote party, thus
offering end-to-end security, a gateway should be used that will facilitate message relay from one
network to the other without removing protection.

This thesis explores appropriate solutions and describes the implementation of a secure
gateway that can be deployed by a WSN to ensure end-to-end security between a sensor node
and a remote party. This requires the development of a border router to guarantee seamless
communication between WSNs and infrastructure nodes that allows secure remote access to
WSN resources to authorized parties. Moreover, the secure gateway enables the communication
between nodes that implement different protocols or are outside the WSN (e.g. Ethernet).

Keywords: Internet of Things, IoT, Wireless Sensor Network, WSN, 6LoWPAN, security,
secure communication

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[2] out of [75]

Acknowledgments
As this ship is approaching the dock, it is my obligation to thank everyone who supported

me throughout these years.
First of all, I would like to thank my family for providing me with support and

encouragement, making it possible for me to study for and get this diploma.
Additionally, I would like to express my gratitude to my thesis supervisor, Associate

Professor Ioannis Papaefstathiou, for giving me the opportunity to explore the world of
embedded systems and therefore their limitations.

Moreover, I have to thank Dr. Konstantinos Fysarakis for his guidance and his support that
lead me overcome all the hindrances that turned up. His help and suggestions acted like a
lighthouse in the storm.

Last but not least, I feel obliged to thank my friends, the old ones that somehow managed
to tolerate me for that long and the new ones I made during my studies. They are always there
when I need them and for that I cannot express my gratitude enough. For privacy reasons (think
security), I will only mention two who were directly related to this thesis. Thank you, Sotiris,
for your help and cooperation regarding some common obstacles we encountered during our
thesis and for your MQTT source code that you provided me. Thank you, Stelios, for the
proofreading of this thesis and the perceptive comments you made.

Thank you, myself, for taking a life vest, although it was not enough for heavy sea…

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[3] out of [75]

To my dear grandmother, Eleni,
for her unparalleled support.

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[4] out of [75]

Table of Contents
Abstract .. 1
Acknowledgments ... 2
Table of Contents .. 4
List of Tables ... 6
List of Figures .. 7
List of Abbreviations .. 8
1. Introduction .. 10

1.1 Purpose ... 11
1.2 Limitations .. 11
1.3 Method .. 11

2. Technical Background .. 12
2.1. The Internet of Things (IoT) .. 12
2.2. Wireless Sensor Networks (WSNs) ... 14
2.3. Communication Protocols ... 16

2.3.1 IEEE 802.15.4 .. 16
2.3.2 Internet Protocol version 6 (IPv6) ... 16
2.3.3 6LoWPAN .. 16
2.3.4 RPL ... 17
2.3.5 Transmission Control Protocol (TCP) .. 18
2.3.6 User Datagram Protocol (UDP) .. 18

2.4. Application-Level Protocols ... 18
2.4.1 HyperText Transfer Protocol (HTTP) ... 18
2.4.2 REpresentational State Transfer (REST) .. 19
2.4.3 Websocket .. 19
2.4.4 Constrained Application Protocol (CoAP) .. 19
2.4.5 Message Queuing Telemetry Transport (MQTT) ... 20
2.4.6 Extensible Messaging and Presence Protocol (XMPP) .. 21

2.5. Security Protocols .. 21
2.5.1 Transport Layer Security (TLS)... 21
2.5.2 The Advanced Encryption Standard (AES) .. 22

3. Implementation ... 25
3.1. Software .. 25

3.1.1 The Contiki Operating System .. 25
3.1.2 6LBR ... 26

3.2. Hardware .. 27
3.2.1 Zolertia Z1 .. 27
3.2.2 Raspberry Pi .. 28
3.2.3 BeagleBoard-xM .. 29
3.2.4 BeagleBone .. 30

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[5] out of [75]

3.3. The IoT Bridge .. 31
3.4. Setup Architecture ... 33

4. Evaluation ... 35
4.1. Evaluation Methodology .. 36

4.1.1 Zolertia Z1 Power Specifications ... 36
4.1.2 BeagleBoard-xM Power Consumption using ADC ... 39

4.2. Scenario 1: HTTP - CoAP .. 40
4.3. Scenario 2: HTTP - MQTT ... 43
4.4. Scenario 3: HTTP - XMPP ... 46
4.5. Scenario 4: MQTT - CoAP ... 49
4.6. Scenario 5: XMPP - MQTT .. 53
4.7. Scenario 6: XMPP - CoAP .. 56
4.8. Comparison among scenarios .. 59

5. Conclusions ... 62
5.1. Recapitulation ... 62
5.2. Hindrances ... 62
5.3. Lessons Learned .. 63
5.4. Future Work ... 64

Bibliography .. 65
Annex A .. 68

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[6] out of [75]

List of Tables
Table 2.1: Stack Comparison .. 17
Table 3.1: Zolertia Z1 Specifications .. 27
Table 3.2: Raspberry Pi 1 Model B Specifications ... 28
Table 3.3: BeagleBoard-xM Rev C 1.0 Specifications .. 29
Table 3.4: BeagleBone Rev A6 Specifications ... 30
Table 3.5: IoT Bridge Communication Methods Between Protocols .. 32
Table 3.6: Versions of Software and Libraries .. 32
Table 4.1: Cross-Protocol Bridging – Interaction Scenarios .. 35
Table 4.2: Approximate Current Consumption of Z1 circuits ... 38

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[7] out of [75]

List of Figures
Figure 2.1: “Internet of Things” paradigm as a result of the convergence of different visions. [9] 13
Figure 2.2: An IoT Protocol Stack ... 13
Figure 2.3: Overview of sensor applications [16] .. 15
Figure 2.4: WSN topologies .. 15
Figure 2.5: CBC encryption diagram ... 23
Figure 2.6: CBC decryption diagram ... 23
Figure 3.1: Contiki's Cooja simulator .. 25
Figure 3.2: 6LBR Platform diagram ... 26
Figure 3.3: Zolertia Z1 board .. 27
Figure 3.4: Raspberry Pi 1 Model B ... 28
Figure 3.5: BeagleBoard-xM ... 29
Figure 3.6: BeagleBone ... 30
Figure 3.7: Setup Architecture .. 33
Figure 3.8: A Real Image of the Setup Architecture .. 34
Figure 4.1: Powertrace output example.. 36
Figure 4.2: Powertrace output identities .. 37
Figure 4.3: Active Mode Current vs DCO Frequency on MSP430 ... 38
Figure 4.4: Scenario 1: HTTP - CoAP .. 40
Figure 4.5: Scenario 2: HTTP - MQTT .. 43
Figure 4.6: Scenario 3: HTTP - XMPP ... 46
Figure 4.7: Scenario 4: MQTT - CoAP ... 49
Figure 4.8: Scenario 5: XMPP - MQTT .. 53
Figure 4.9: Scenario 6: XMPP - CoAP ... 56

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[8] out of [75]

List of Abbreviations
6LBR 6loWPAN/RPL Border Router
6LoWPAN IPv6 over Low-power Wireless Personal Area Networks
ACL Access Control List
ADC Analog-to-Digital Converter
AES Advanced Encryption Standard
AJAX Asynchronous JavaScript and XML
API Application Programming Interface
CCM Counter with CBC-MAC (Cipher Block Chaining Message Authentication

Code)
CCTV Closed-Circuit TeleVision
CERN The European Organization for Nuclear Research
CETIC Centre of Excellence in Information and Communication Technologies

(Belgium)
CoAP Constraint Application Protocol
CPU Central Processing Unit
CSMA/CA Carrier-Sense Multiple Access with Collision Avoidance
DDoS Distributed Denial of Service (Attack)
DES Data Encryption Standard
DHCP Dynamic Host Configuration Protocol
DNS Domain Name System
DODAG Destination Oriented Directed Acyclic Graph
DSP Digital Signal Processor
DTLS Datagram Transport Layer Security
DVI Digital Visual Interface
DVR Digital Video Recorder
ECB Electronic CodeBook
EXI Efficient eXtensible Interchange
GPIO General Purpose Input/Output
GPU Graphics Processing Unit
HDMI High-Definition Multimedia Interface
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
IC Integrated Circuit
IM Instant Messaging
IoT Internet of Things
IP Internet Protocol (Address)
IV Initialization Vector
JSON JavaScript Object Notation
JTAG Joint Test Action Group
LAN Local-Area Network
LCD Liquid-Crystal Display

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[9] out of [75]

LED Light-Emitting Diode
LLN Low-power and Lossy Network
LLSEC Link-Layer SECurity
LR-WPAN Low-Rate Wireless Personal Area Network
LWT Last Will and Testament
MAC Medium Access Control
MCU MicroController Unit
MQTT Message Queuing Telemetry Transport
NAS Network-Attached Storage
NIST National Institute of Standards and Technology (United States of America)
OS Operating System
PAN Personal-Area Network
PHY The PHYsical layer of OSI model
PKCS#7 Public Key Cryptography Standard #7
QoS Quality of Service
RAM Random-Access Memory
REST Representational State Transfer
RF Radio Frequency
ROM Read-Only Memory
RPC Remote Procedure Call
RPL IPv6 Routing Protocol for Low-power and Lossy networks
RTT Round-Trip Time
SASL Simple Authentication and Security Layer
SDRAM Synchronous Dynamic RAM
SLAAC Stateless Address AutoConfiguration
SOAP Simple Object Access Protocol
SoC System on a Chip
SSL Secure Sockets Layer (TLS predecessor)
TCP Transmission Control Protocol
TLS Transport Layer Security
UDP User Datagram Protocol
URI Uniform Resource Identifier
URL Uniform Resource Locator
USB OTG Universal Serial Bus, On-The-Go
VoIP Voice over IP
WPAN Wireless Personal-Area Network
WSAN Wireless Sensor and Actuator Network
WSN Wireless Sensor Network
XML eXtensible Markup Language
XMPP eXtensible Messaging and Presence Protocol

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[10] out of [75]

1. Introduction

“Engineering without security is just art”1

The proliferation of the Internet of Things has introduced new challenges regarding the
security aspect of these devices. Of course, there are a few reasons for the significant increase in
their popularity. They are easy to use or to integrate to existing systems, they offer convenience
in day to day tasks and they come in with useful features. The Internet of Things includes sensors
and actuators, among other things, that can be controlled and monitored from anywhere.
Contemporary buildings and houses are now equipped with this state of the art technology
making them ‘smart’ and energy efficient.

In general, any device/appliance will be able to connect to the Internet in the near future
[1], but the security implications are tremendous. The vast majority of manufacturers are
unconcerned by the security of their products and are only interested in what is cost efficient and
profitable. The problem is exacerbated when the Internet connection capability is added to the
product after its final design, leading to severe security risks, because it was not designed with
security in mind.

Another key problem is the diversity of existing protocols. Although each protocol is ideal
for different applications, it is often difficult to ensure machine to machine communication, when
needed, especially in a secure manner. Proprietary protocols are also a big concern, because no
one can guarantee that they are secure, unless third-party security auditing comes into place, but
that is usually not the case.

One may wonder “But, what can go wrong?”. Sadly enough, there are a lot of examples
(read incidents) out there. The most obvious repercussions are the control of a system by a
malicious adversary and the invasion of the owners’ privacy. Imagine, for instance, a home
security system that safeguards a house and is connected to the internet ready to take commands.
It may also communicate with its manufacturer regarding these commands or possible firmware
updates. If this communication is not secure, literally anyone can break into this house by simply
disarming the system. They can also make sure the house is empty, by querying the status of the
system. This example is anything but imaginary. Real home security systems examined by experts
were found using weak security practices or none. [2] [3]

What about privacy? If a ‘smart’ thermostat sends its configuration out in the clear, it is
trivial for anyone monitoring the configuration to deduce whether the building is empty.
Needless to say that any Internet-connected device with a camera would be able to compromise
its owner’s privacy entirely. One of the latent implications of unsecure ‘things’ was demonstrated
recently when a botnet of IoT devices attacked the blog of a journalist [4] and a DNS provider [5]
using the Distributed Denial of Service (DDoS) attack achieved unprecedented loads.

When dealing with WSNs where low power consumption is being pursued, adding
security mechanisms can be a daunting task. To achieve energy efficiency, these devices are
constrained in resources and thus incapable of executing common resource-intensive security
algorithms. IPv6 is also a contributing factor that cannot be overlooked. Although it allows any
WSN node or any device in general to have a public IP address, it may lead to detrimental effects.
Nobody can deny that the Network Address Translation mechanism offers some protection by

1 For the meaning of the quote, see 5.3 Lessons Learned.

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[11] out of [75]

hiding the network topology behind a public IP. With IPv6, a network administrator is left with
proper network segmentation and a firewall to protect the devices.

1.1 Purpose
This thesis aims to the implementation of a secure gateway that ensures end-to-end security

between a sensor node and a remote party or between sensor nodes. As each node may use
different application protocols, the secure gateway is able to convert the transmitted data
between protocols according to what protocols the recipient node understands.

1.2 Limitations
This thesis acts as a proof of concept of a secure gateway. Although it covers a variety of

widely-used protocols, the supported protocols are not the only ones available. As far as the
security algorithms used are concerned, the constrained resources of the Zolertia Z1 WSN nodes
had a great impact on the amount of such algorithms tested. As an example, the Datagram
Transport Layer Security (DTLS) could not fit inside the memory of this platform.

1.3 Method
The first step towards the development of this thesis was the familiarization with the

Zolertia Z1 nodes, the Contiki OS they run, the 6LBR and the corresponding tools available. At
the same time, a literature study was made on the available protocols supported by this platform
and what security options exist. Additional protocols have been chosen that run on different
platforms in order to demonstrate the idea of machine-to-machine communication regardless of
the application protocol or the platform. Some algorithms have been excluded on account of the
incapability of the platform’s resources to handle them.

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[12] out of [75]

2. Technical Background
It is of paramount importance to describe any technology, algorithm or protocol

mentioned herein, so that anyone will be able to understand the main concepts of this thesis. As
this thesis is security related, it would be a notable omission not to state two of the most
significant rules of security, except for the Kerckhoffs’ principle [6], regarding cryptographic
algorithms:

a) You should not invent your own crypto.
The main reason behind this is dubbed as “Schneier’s Law” [7] which states that anyone,

from the most clueless amateur to the best cryptographer, can create an algorithm that they
themselves cannot break. The rationale is that the creation of such algorithm requires strong
cryptographic background and experience. The security of these algorithms has to be proved
mathematically and cryptographers have to review the algorithm and its proof. All the well-
known algorithms have withstood rigorous auditing throughout the years and their limitations,
as well as their weaknesses are known and documented.

b) You should not implement any crypto library.
Despite the proven security of a crypto algorithm, an inexperienced individual may

introduce vulnerabilities to the system if the implementation itself is not secure. A common
example of this is the timing attack, a side channel attack in which the adversary attempts to
compromise a system by analysing the time taken to execute such an algorithm.

These rules are not necessarily limited to cryptographic algorithms. They are still valid for
any security algorithm or procedure.

2.1. The Internet of Things (IoT)

“The S in IoT stands for Security”

The Internet of Things includes any kind of device that is or can be connected to a network
-not necessarily the Internet. Sensors, actuators, embedded devices are the obvious ones, but as
these can be integrated into anything, IoT also includes buildings, appliances, vehicles. Some
examples will make things more clear. Heating, Ventilation and Air Conditioning (HVAC)
systems are installed throughout a building and its components such as thermostats are
interconnected. The whole system can be controlled and be monitored from a remote place as
well. Modern ‘smart’ televisions can now be connected to the Internet, offering much more
features and capabilities. Digital Video Recorders (DVRs), that enable us to record a TV
program, a Closed-Circuit Television (CCTV) feed or any feed for that matter, to a storage
device, have now network capabilities extending the options both for record sources (Internet or
network based) and storage destinations such as Network-Attached Storages (NAS) or a cloud
provider. Interconnected vehicles are also en route. Apart from the internal entertainment
system (videos, TV, Internet surfing, radio etc.), vehicle-to-vehicle communication will make
possible the development of a more resilient accident prevention system, as well as alternative
route suggestions to avoid traffic jams. According to studies, by 2020, a quarter billion connected
vehicles will have automated driving capabilities [8].

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[13] out of [75]

Figure 2.1: “Internet of Things” paradigm as a result of the convergence of different visions. [9]

The definition and the actual applications of the IoT are hardly bounded by the examples
above. Depending on one’s perspective, different and enthralling ideas may be conceived. The
IoT paradigm shall be the result of the convergence of three main visions, as depicted in Figure
2.1. The ‘Things’-oriented visions, whose focus is the objects and their integration into a
common framework, the ‘Internet’-oriented visions, which refers to the networking capability
of the said objects, and the ‘semantic’-oriented visions that are introduced in order to handle the
representation and storing of the exchanged information between the objects [9]. With IoT, the
possibilities are endless.

Figure 2.2: An IoT Protocol Stack

The benefits of the IoT are also noteworthy. To name a few, significant cost savings,
additional revenue streams, productivity improvement. [10] Besides the aforementioned
examples, IoT can be used to improve living standards. By developing Smart Cities [11],
optimization of public services such as transport, parking and lighting can be achieved.

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[14] out of [75]

Furthermore, the numerous data gathered can be used to increase transparency and support the
coffers of a country [9]. A variety of wearable health devices may provide vital information to
doctors enabling them to act on-time accordingly. Especially the elderly would benefit from not
only such devices but also from monitoring implants such as pacemakers.

Although the IoT Protocol Stack depicted in Figure 2.2 mainly contains the protocols that
were utilized in this thesis, there is a plethora of protocols that are currently used in IoT. Many
of these protocols are not limited to the IoT world but they are also used in our everyday life.
This makes the integration of IoT devices even more smooth and easy, without the need of special
equipment in many cases. Researchers try to create new protocols, that are especially designed
for resource-constrained devices, with the integration of existing infrastructure in mind, so that
these new protocols can easily be accepted and embraced. An example of this is the 6LoWPAN
protocol which is based on the IPv6 (see below).

It is beyond any refutation that IoT -like anything- can be exploited for nefarious causes.
Unfortunately, the lack of legislation that forces manufacturers to make their products compliant
with strict security standards, when combined with unmotivated manufacturers to properly
secure their products, can only lead to deleterious results. Apart from the DDoS attacks
mentioned in the Introduction, which were mainly utilized by the Mirai botnet [12] consisting of
unsecure CCTVs, DVRs and others with hardwired or common/unchanged passwords, there is
also a self-propagating smart light bulb worm that spreads rapidly and could also lead to DDoS
attacks or simply destroy them [13]. The problems do not stop there. New vulnerabilities are
going to be exposed, thus more exploits, more attacks. Another fact that makes IoT so unwanted
by anyone who comprehends the security risks they bring with them [14], is that many of them
cannot be updated in any way, rendering them a high-value target to a malicious party. In the
wake of all these risks and the continuous proliferation of IoT, a great deal of security
considerations have emerged [15].

2.2. Wireless Sensor Networks (WSNs)
A common aspect of IoT are Wireless Sensor Networks. These are networks consisting of

a fair or large amount of relatively small wireless devices equipped with various sensors. An
individual may refer to them as Wireless Sensor and Actuator Networks (WSANs), because there
are many applications where sensing is not enough and a need to act upon these devices as a result
of a measurement exists. Therefore, some devices are able to control a system whether it is a
microprocessor or an electric valve. The fact that they are wireless makes them more appealing
compared to installing cables, thus they are easier to deploy and flexible, especially when wiring
installation is impossible or has prohibitive costs.

These devices are low-cost, low-power and in addition to their batteries they are usually
also equipped with an ambient energy harvesting device, such as solar panels or devices that
transform kinetic energy -usually vibrations- to electrical energy, diminishing the necessity for
battery replacements. Furthermore, a WSN may be heterogeneous, meaning that the devices that
constitute a WSN may have different functions, have been manufactured by different vendors,
etc. Should they implement the same protocols and follow the same standards, they will have no
problem communicating with each other.

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[15] out of [75]

Figure 2.3: Overview of sensor applications [16]

WSNs can be used in a variety of applications as shown in the Figure above. They are
frequently found in the smart grid, which is the power grid with a sense of smart devices that
enable an efficient way to manage every complex subsystem. Online monitoring of transmission
lines and substations may lead to reduced black-out periods. Apart from smart water networks,
which can also take advantage of WSNs, any building without a proper cable infrastructure can
be turned into a smart one with minimum cost [16].

Figure 2.4: WSN topologies

Depicted in the Figure above, WSNs can be deployed in various topologies depending on the
needs and constraints of every case. Although the mesh topology enables nodes to establish
multiple paths, thus creating redundancy and high availability -especially when combined with
more than one sink nodes-, it requires the corresponding protocols to be implemented and run

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[16] out of [75]

in those devices, that may not be feasible. Another key fact is the scalability some of these
topologies offer. Primarily, the range of these devices can be limited in view of lower power
consumption, but there is no need for every node to have the sink node within its range, since a
neighbour node can relay its messages. As a result, a WSN may cover large areas, if each node
has at least one other node within its range.

2.3. Communication Protocols
The following subsections describe the protocols utilized in this thesis. These protocols

belong to one of the four first layers of the Open Systems Interconnection (OSI) model: Physical
layer, Data link layer, Network layer and Transport layer as depicted in Figure 2.2.

2.3.1 IEEE 802.15.4
When it comes to low-power and resource-constrained devices deployed in a WSN, the

need for a suitable communications standard emerges. The IEEE 802.15.4 is one of the most
established standards for that purpose and defines the physical layer (PHY) and medium access
control (MAC) sublayer specifications for Low-Rate Wireless Personal Area Networks (LR-
WPANs) [17]. The first version of this standard was released in 2003 by the IEEE 802.15 working
group.

There are several protocols that are based on IEEE 802.15.4, such as ZigBee, 6LoWPAN
(see below), SNAP and Thread, meaning that they develop the layers not defined by this standard.
For low consumption to be attained, the transfer rate is bounded to 250 Kibps. The achievable
range is 10m to 20m. Depending on one’s needs these can be adjusted in favour of more power
efficiency, especially in situations where neighbour nodes are even closer or lower data rates are
viable. Despite the low transfer rate, this standard can also be used in real-time applications and
also features collision avoidance through CSMA/CA on the physical layer. As far as security is
concerned, the CCM* protocol is included in this standard, offering authentication and
encryption.

2.3.2 Internet Protocol version 6 (IPv6)
The Internet is based on the relaying of data packets, called datagrams, across network

boundaries. The communications protocol that enables this routing is the Internet Protocol (IP)
[18]. There are currently two versions: 4 and 6. The former was the only version deployed and
used until the need of more addresses emerged. The exponential growth of network-capable
devices led to the exhaustion of the nearly 4.3 billion addresses available (232 to be exact). IPv6
offers 7.9 ∙ 1028 more addresses (2128) which is an enormous number, implying that each device
may be assigned with one or more public IPv6 addresses.

While the representation of an IPv4 address is 4 bytes with each byte being separated by
dots (𝑥𝑥. 𝑥𝑥. 𝑥𝑥. 𝑥𝑥), the IPv6 address consists of eight groups of four hexadecimal digits with the
groups being separated by colons (ℎℎℎℎ:ℎℎℎℎ:ℎℎℎℎ:ℎℎℎℎ:ℎℎℎℎ:ℎℎℎℎ:ℎℎℎℎ:ℎℎℎℎ).
One of the main features of IPv6 is the Stateless Address AutoConfiguration (SLAAC) which
enables each host to configure itself automatically. Moreover, the design of IPv6 results to less
processing in routers, emphasizing the end-to-end principle of network design [19].

2.3.3 6LoWPAN
A common misconception was that the Internet Protocol (IP) is too heavy weight for

Personal Area Networks (PANs) where devices with limited resources are used. As a new
protocol in IP’s position would require complex gateways and tools for configuration,

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[17] out of [75]

management and debugging, 6LoWPAN was created. 6LoWPAN stands for IPv6 over Low-
power Wireless Personal Area Networks [20]. IPv6 uses stacked headers, which implies that only
the necessary information is included in headers depending on the actual needs. For instance, if
the packets are short enough, the header field for fragmentation is not needed. By exploiting
stacked headers and the compression of the IPv6 header itself, a minimum of 4 bytes is achieved.
The following facts contribute to the compression:

• the low-order 64 bits of an IPv6 address (the link local address can be the device’s
MAC address)

• the 802.15.4 frame carries these MAC addresses
• Several fields in the IPv6 header are static.

Table 2.1: Stack Comparison
 ZigBee Zensys 6LoWPAN

Code Size with mesh 32K to 64K+ 32K 22K
Code Size w/o mesh Not Possible Not Possible 12K
RAM requirements 8K <2K 4K
Header Overhead 8 to 16 bytes Proprietary 2 to 11 bytes

Network Size ~65K 232 264
RF Radio support 802.15.4 Proprietary 802.15.4 ++
Transport Layer None Proprietary UDP/TCP

Mesh Network Support ZigBee Zensys Many
Internet Connectivity ZigBee Gateway Zensys Gateway Bridge/Router

6LoWPAN creators made the Table 2.1 above, in order to demonstrate its benefits over

other commonly used stacks. For more information about a 6LoWPAN header, one can read [20]
or any other reliable source for that matter.

2.3.4 RPL
It has become evident that resource-constrained devices require special handling. Among

the protocols and technologies created to serve these devices is the RPL, an IPv6 Routing
Protocol for Low-power and lossy networks. Routing is the mechanism that defines the right
path a message should take to reach its destination. Depending on the routing protocol, the notion
of the right path usually means that it is an existent path with the minimum possible cost. The
cost is based on various metrics such as the capacity of the links through which the packet is going
to travel, how congested they are and how many different nodes (hops) are between the sender
and the recipient for this route. The requirements that existing routing protocols failed to comply
with are the limited memory required for storing the routing state, the proper handling of link
failures, the imposed constraints of the control traffic and the actual properties of links and nodes
that determine the cost of each routing path. [21]

Low-power and Lossy Networks (LLNs) usually comprise up to thousands of resource-
constrained nodes, typically supporting only low data rates over lossy links. Traffic patterns such
as multipoint-to-point or vice versa are common in LLNs. [22] RPL specifies how a Destination
Oriented Directed Acyclic Graph (DODAG) can be built using a set of metrics and an objective
function that computes the best path according to these metrics. Both link and node properties

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[18] out of [75]

are considered in the computation of the best path. As there may be traffic with different sets of
requirements, multiple graphs can be active simultaneously.

RPL offers three security modes. In the “unsecured” mode, the RPL control messages do
not utilize any security mechanisms, although there may be other security primitives such as link-
layer security. The “pre-installed” mode requires each node to have pre-installed keys before
joining the network and the “authenticated” mode enables nodes with pre-installed keys to join
as leaf nodes and forwarding nodes obtain keys from an authentication authority. There are
different levels of security for each RPL message that provide integrity, replay protection and
confidentiality. Delay protection is also an option.

2.3.5 Transmission Control Protocol (TCP)
TCP is one of the most commonly used transport layer protocols. Packets transmitted

using this protocol are delivered in-order and reliably, so that protocols on the application layer
do not have to deal with lost, duplicated or out-of-order packets. TCP employs flow and
congestion control. The former is achieved by limiting the transfer rates in a way not to
overwhelm the receiver’s buffers whereas the latter ensures that the links between the sender
and the receiver will not get congested leading to network performance degradation.

2.3.6 User Datagram Protocol (UDP)
UDP is another commonly used transport layer protocol. This protocol is far less complex

than TCP as it aims at speed rather than reliability, meaning that there is no guarantee that each
packet (datagram) will arrive at its destination. Deduplication and ordering have to be handled
by the application layer. While a TCP connection requires a handshake prior to the connection
establishment, UDP is connectionless. It is best described as a best-effort protocol. All these
features make UDP ideal for real-time applications, such as Voice over IP (VoIP), where latency
is a primary concern compared to reliability.

2.4. Application-Level Protocols
2.4.1 HyperText Transfer Protocol (HTTP)
In 1989, Tim Berners-Lee, the inventor of the World Wide Web, began developing the

HTTP with his team at CERN. HTTP is one of the most used application protocols as it is an
integral part of the World Wide Web. When someone visits a webpage via a web browser, HTTP
is used to make the communication between the client (e.g. browser) and the server (a
webserver) possible, although it is not the only protocol available. A webpage is a Hypertext, a
structured text with links (hyperlinks) to other webpages, that is delivered as a response to the
browser’s request. Each request-response transaction constitutes an HTTP session, although
persistent connections may be used to allow more than one transaction without paying the penalty
of establishing a new connection. The said penalty is due to the fact that HTTP uses TCP.

HTTP is also a stateless protocol, meaning that there is no need for the webserver to retain
information between sessions. So, if it weren’t for the cookies, there would be no way to
distinguish whether a user is authenticated or not. Visiting a webpage requires the corresponding
Uniform Resource Locator (URL) of the webpage, because HTTP resources are identified by
those. That is to say, a client asks a particular webserver for a resource which can be a document,
a webpage etc. HTTP defines keywords known as verbs or methods which instruct the webserver
what to do with the said resource. For instance, GET is used when the client wants to retrieve the
resource, PUT is used when the client updates or modifies the resource and so on.

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[19] out of [75]

2.4.2 REpresentational State Transfer (REST)
As the Web was evolving, a need for Web services started to emerge. It became evident

that the Web is not only webservers serving webpages and browsers getting those pages, but also
other electronic devices that would be able to communicate with each other. This functionality
is offered by a web service, which facilitates the machine-to-machine communication, a
fundamental functionality in the abysmal IoT world. RESTful Web services enables access and
modification of Web resources using stateless operations. Created by Roy Fielding in 2000 and
defined in his doctoral dissertation, RESTful Web services almost always go hand in hand with
HTTP. More specifically, through the HTTP verbs and Uniform Resource Identifiers (URIs) a
device makes an HTTP request for a Web resource and receives a response in a predefined format
like HTML, JSON or XML.

With that in mind, the World Wide Web can be viewed as a REST-based architecture. In
fact, there are many Web frameworks that promote the use of RESTful Web services to deliver
webpages since smartphone applications would need RESTful Web services anyway. The main
advantage over other mechanisms like Remote Procedure Calls (RPCs) and Web services like
Simple Object Access Protocol (SOAP) is the simplicity and the fact that it is fully-featured
although it is lightweight.

2.4.3 Websocket
Designers started making webpages more and more user friendly and more feature rich.

Towards that step, JavaScript, the programming language that browsers can run natively, without
any need for plugins, paved the way, enabling the development of dynamic webpages where, for
instance, the content can change without reloading the whole page. That would not be possible
without AJAX (Asynchronous JavaScript and XML) that allows requests to be sent to a server
using JavaScript. As the number of users increased, polling for changes became expensive due to
the growth in the number of requests.

A bi-direction message exchange would be the perfect solution. The Websocket protocol
[23] provides full-duplex communication channels allowing webservers and web browsers to
push messages to each other. So, instead of having a browser asking the webserver periodically if
the currently logged in user has any new email/notification etc., the webserver sends a message
to the web browser when there is a new email/notification. Unfortunately, not all web browsers
support Websocket and this is the reason why APIs (Application Programming Interfaces) such
as Socket.IO exist. In case Websocket is not supported, the API will use any of the available
fallback methods like Flash and AJAX long-polling.

2.4.4 Constrained Application Protocol (CoAP)
Resource-constrained devices have their own Web transfer protocol of course. CoAP is

based on the REST model because it is lightweight and very common, eliminating the need for a
developer to spend time studying a new protocol. Its requirements are limited to 10 KiB of RAM
and 100 KiB of code space. [24] CoAP messages can be either confirmable or non-confirmable.
There are also ACK and RESET messages. The protocol uses UDP on its transport layer, and
Datagram Transport Layer Security (DTLS) to make it secure. DTLS [25] is designed for UDP,
based on TCP’s TLS protocol and provides equivalent security guarantees.

Although it follows the request-response model of REST, meaning that HTTP methods
such as GET and POST can be used, an OBSERVE method is also available as an extension,
enabling the clients to keep up-to-date data. The protocol behind OBSERVE [26] is based on the
observer design pattern and follows a best-effort approach for sending new data to clients,

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[20] out of [75]

providing eventual consistency between the states of server and clients. Another interesting
feature implemented is the CoRE Link Format [27] which defines a specific link format (/.well-
known/core) a client can use to get server’s available resources without knowing them a priori.

2.4.5 Message Queuing Telemetry Transport (MQTT)
MQTT is a publish-subscribe messaging transport protocol. It is lightweight, suitable for

resource-constrained devices and limited network bandwidth. It is an ISO standard [28] and runs
on top of the TCP/IP protocol. The publish-subscribe messaging pattern allows data sources (i.e.
any device) to publish messages without the a-priori knowledge of who the recipients are. Data
sinks (i.e. any device) are able to subscribe to topics, which are message classes, in order to
receive any published message on that topic. This pattern abolishes the need for polling. A
message broker is the coordinator that receives all the messages for each topic and delivers the
right messages to the right recipients according to their subscriptions.

Quality of Service (QoS) is another feature of the MQTT and it specifies what are the
guarantees regarding the delivering of a message. As networks may be unreliable or the
application may not be able to tolerate lost messages, one can choose the right QoS level,
according to their needs. The QoS levels are three:

• QoS 0: at most once
It is often called “fire and forget” because it guarantees a best effort delivery. There
is no acknowledgment and the message is sent one time. The delivery guaranty is
provided by the underlying TCP protocol.

• QoS 1: at least once
When the broker gets a message, it sends an acknowledgment (PUBACK) to the
publisher and the publisher will resend the message in case of timeouts until a
PUBACK is received. Of course, there are circumstances where a broker will get
the same message multiple times, e.g when the PUBAC is lost. The application
has to handle these possible duplicates.

• QoS 2: exactly once
This level guarantees that each message will be received exactly once. It is the
slowest among the other levels because of the multiple message exchange it
requires between the broker and the client.

Network problems can also lead to disconnections. MQTT is equipped with persistent
sessions which relieves the client from subscribing to topics every time it gets reconnected due
to a disconnection. When combined with QoS levels greater than zero, a client may receive
messages that would get delivered when it was offline. The Last Will and Testament (LWT)
feature comes to enhance further the MQTT reliability. This feature enables each client to have
the broker inform all the subscribers of a particular topic that the client was disconnected
ungracefully.

As far as security is concerned, MQTT allows the authentication of each client through
username-password or unique identifiers, such as MAC address or serial numbers, that can be
registered at connection time. All of these are sent in plaintext, requiring that the channel is
encrypted. As MQTT uses TCP/IP, TLS can be used for that purpose. Regarding resource-
limited devices, where TLS is not a viable option, payload encryption can be used instead.
Authorization is also implemented through Access Control Lists (ACL) stating on which topics
and what access (publish/subscribe) each client has.

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[21] out of [75]

2.4.6 Extensible Messaging and Presence Protocol (XMPP)
Also known as Jabber, the eXtensible Messaging and Presence Protocol (XMPP) is a

communications protocol based on eXtensible Markup Language (XML). It was developed for
Instant Messaging (IM), presence information and contact list maintenance. Currently, XMPP is
an open standard, allowing the implementation in any license. Some of the most used and
proprietary messaging platforms, such as Google’s Gtalk, Facebook Chat and Skype, are either
based on XMPP or provide a limited support in a way to enable message exchange between
different services. The address used in XMPP is called jid (Jabber id) and its form is identical to
the email’s form, referring to a username at a specific XMPP/Jabber server.

The fact that it is based on XML, is one of its strengths as it is extensible and flexible.
According to the needs of each application, custom functionality can be added as extensions,
making it ideal for gaming, monitoring, Voice over Internet Protocol (VoIP), identity services
and IoT. In particular, IoT takes advantage of features like publish/subscribe and authentication,
as well as extensions that are custom tailored to handle sensor data or provide services like
discovery and provisioning. Unfortunately, the use of XML comes at a cost; it imposes an
overhead compared to binary solutions, since it is text based, although there is an extension called
Efficient eXtensible Interchange (EXI) Format -which is not limited to XML- enabling an efficient
serialization into binary. Another drawback is the binary data transfer, which is very common in
IM. There are two approaches: in-band binary data must be encoded using base64 or binary data
have to be transmitted out-of-band for better performance.

XMPP servers can be equipped with TLS certificates to ensure that all the incoming and
outgoing traffic is encrypted and that a client can verify the server’s identity. Through Simple
Authentication and Security Layer (SASL), the user authentication can be centrally managed, a
useful feature for large organizations and corporations. Moreover, one can install their own
server, making sure that their messages are not accessible to other parties.

2.5. Security Protocols
2.5.1 Transport Layer Security (TLS)
This protocol is used on a wide variety of applications that communicate through TCP and

provides privacy and data integrity between them. Signing into a portal (e.g. e-banking), a lot of
sensitive data have to be transferred. Not only the username and the password but also personal
data such as banking accounts and their balances in the case of e-banking, emails in the case of
webmail, etc. TLS makes sure that the connection between the client (e.g. browser) and the
server is private because the transmitted data are encrypted and no one can figure out the contents
of the transmitted packets along the way. Integrity is also ensured (it usually goes hand in hand
with encryption) so that no one can tamper the contents of the packets.

Using certificates the identity of the communicating parties can be authenticated. A
browser verifies that the URL matches the received certificate and the certificate is still valid,
making sure that the remote server is the right one. Certificate Authorities, that issue these
certificates, also offer Extended Validation certificates, certifying that the entity named on the
certificate is indeed the one the certificate belongs to, making much more difficult to issue bogus
certificates. Clients can also use certificates to prove their identity to a server.

TLS supersedes SSL and is more secure. Although known attacks and vulnerabilities exist
to SSL and early versions of TLS, it is usually a burden to use the latest version because outdated
software may not be able to connect. Forward secrecy is also a feature that TLS provides. This

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[22] out of [75]

feature ensures that the disclosure of encryption keys cannot compromise prior communications
recorded in the past.

2.5.2 The Advanced Encryption Standard (AES)
In 1997, the National Institute of Standards and Technology (NIST) of the United States

of America announced a request for candidate algorithm nominations for the Advanced
Encryption Standard, in their effort to replace the existing Data Encryption Standard (DES) [29].
All submissions had to meet the following minimum acceptability criteria:

• Symmetric (secret-key) algorithm
• Block cipher
• Support key sizes of 128, 192 and 256 bits, and a block size of 128 bits.

Numerous additional requirements were imposed, of course [30].
After a three-year worldwide research and a lot of submissions, the Rijndael cipher was

selected as the Advanced Encryption Standard. Developed by two Belgian cryptographers,
Vincent Rijmen and Joan Daemen (note their last names and the name of the algorithm), the
Rijndael is a family of ciphers with different key and block sizes, however NIST decided that only
the three members that satisfy the third minimum acceptability criterion (see above) would be
included in the standard [31].

AES is fast in both software and hardware because it is based on the substitution-
permutation network design principle [32]. The substitution-permutation network uses
substitution and permutation boxes (S-boxes, P-boxes) to produce the ciphertext block. The S-
boxes define the mapping between the input bits and the output ones whereas the P-boxes shuffle
the bits across S-boxes. Although S-boxes may depend on the key, some implementations have
them both precomputed because both have to satisfy Shannon’s confusion and diffusion properties
[33].

Mode of Operation
As a block cipher, AES can only encrypt/decrypt one block -a fixed-length group of bits-

at a time. It is obvious that the 128-bit (16 bytes) block size is not enough for every case. This is
where modes of operation come into play. A mode of operation describes the way a block cipher
can be repeatedly applied securely to inputs larger than the block size. Several modes exist, some
of them are vulnerable (ECB), some others provide authenticated encryption2 and some can be
parallelized. The choice depends on the needs of each application and the environment that the
data are exposed to.

The Cipher Block Chaining (CBC) mode, which is used in this thesis, was invented by
William F. Ehrsam, Carl H. W. Meyer, John L. Smith and Walter L. Tuchman in 1976. Its
operation is quite simple: before the encryption, the plaintext of the current block is XORed with
the resulted ciphertext of the previous block. For the first block, an Initialization Vector (IV) is
used, which is a block of random bits. Although the encryption is not parallelizable, the
decryption is.

2 Authenticated encryption ensure that the receiver can verify both that the data have not been
tampered with (integrity) and the source of the message (authenticity).

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[23] out of [75]

Figure 2.5: CBC encryption diagram3

Figure 2.6: CBC decryption diagram4

A common implementation mistake is keeping the IV the same. The IV has to be different
each time and it is not required to be encrypted (it can be sent in plaintext), or else the same
plaintext input will produce the same ciphertext result, enabling an attacker to distinguish
between two ciphertexts or worse, to perform a chosen plaintext attack. In such an attack, the
adversary can ask for the ciphertext of any plaintext, in a way to reveal the encryption key.
Padding oracle attacks can also compromise the ciphertext if the oracle (i.e. the device
performing the encryption/decryption) leaks information about whether the padding of a
particular ciphertext is correct or not.

Padding
When the message length is not an exact multiple of the block size, padding is used to

complete the remaining bytes to reach the block size. There are a variety of padding algorithms,
depending on one’s needs but both sides should implement the same one. In this thesis, the
PKCS#7 [34] has been chosen. The value of each added byte is the number of bytes that are
added. For instance, if the block size is 16 bytes and the last block is 10 bytes, the 6 remaining
bytes will be filled with the value 6. This works for block sizes that are at least 2 bytes and no

3 By WhiteTimberwolf (SVG version) - PNG version, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=26434096
4 By WhiteTimberwolf (SVG version) - PNG version, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=26434095

Cipher Block Chaining (CBC) mode encryption

block cipher
encryptionKey

Ciphertext

Plaintext

block cipher
encryptionKey

Ciphertext

Plaintext

block cipher
encryptionKey

Ciphertext

Plaintext

Initialization Vector (IV)

Cipher Block Chaining (CBC) mode decryption

block cipher
decryptionKey

Plaintext

Ciphertext

Initialization Vector (IV)

block cipher
decryptionKey

Plaintext

Ciphertext

block cipher
decryptionKey

Plaintext

Ciphertext

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[24] out of [75]

more than 255 bytes. In case the message length is an exact multiple of the block size, an
additional full-padded block is added so the deciphering algorithm can determine with certainty
that there is no chance the last byte of the last block is part of the message and not a padding.

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[25] out of [75]

3. Implementation
In this chapter, the software and hardware used will be presented, as well as the setup

architecture and what are the implemented features of the IoT Bridge.

3.1. Software
3.1.1 The Contiki Operating System
The Operating System (OS) is an integral part of a device. Especially when the said device

has limited resources, the operating system must be designed as light-weight as possible. Contiki
is one of the available OSs for such devices focusing on low-power IoT. Despite the fact it needs
only about 10 KiB of RAM and 30 KiB of ROM, Contiki provides a TCP/IP stack for both IPv4
and IPv6, a Rime stack, which is a lightweight layered communication stack for low-power
wireless sensor networks [35], and multitasking.

Contiki is open source, written in C language and supports a variety of different
microprocessors and RF transceivers. One of its distinctive features is its ability to dynamically
download program code at run-time, thus enabling updates and bug patching in an operational
network, eliminating the need to collect or visit each deployed device. This also means that
security updates can also be delivered in time, making harder for an adversary to exploit the
device. Contiki’s kernel is event-driven, providing concurrency without the need for locking
mechanisms or per-thread stacks, which would consume memory. Furthermore, preemptive
multithreading is also available as an application library to programs, which can link in case they
require it. Preemption is to ensure that incoming events, like sensor input or incoming
communication packets, will be handled even though an application may have long running
computations. [36]

Figure 3.1: Contiki's Cooja simulator5

5 CC-BY-SA-3.0, https://commons.wikimedia.org/wiki/File:Contiki-ipv6-rpl-cooja-simulation.png

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[26] out of [75]

Although event-driven programming can reduce the memory overhead, writing,
maintaining and debugging such code can be challenging. Protothreads [37] is an abstraction that
allows the event-driven programming through a thread-like style. The memory overhead
imposed is only two bytes per protothread and the execution time overhead is on the order of a
few processor cycles. It would be a notable omission if there was no reference of the Contiki’s
network simulator called Cooja. Cooja enables the simulation of networks that consist of Contiki
nodes. These nodes may be abstract, as well as emulated, meaning that the entire hardware of
the node is emulated. For instance, a simulation may include a number of Zolertia Z1 motes, a
number of Skymotes etc. Using Cooja, one can test their software with hundreds of motes
without the need to buy them, making debugging simpler. Of course, the simulation of the
network and the emulation of the hardware may be far from reality, but nonetheless is Cooja
offers a place to start.

3.1.2 6LBR
The interconnection of WSNs which is based on IEEE 802.15.4 with an existing IPv6

network (i.e. a LAN) based on Ethernet, requires a border router that acts as an intermediary.
6LBR is a deployment-ready 6LoWPAN/RPL Border Router solution [38]. It is being developed
by a research institute in Belgium called CETIC (Centre of Excellence in Information and
Communication Technologies) and is responsible for handling traffic between the IPv6 and IEEE
802.15.4 interfaces. As it is based on Contiki OS, it can be deployed on low-cost, open source
embedded hardware platforms, like the Raspberry Pi.

Figure 3.2: 6LBR Platform diagram

6LBR supports a variety of network architectures (modes), allowing the user to integrate
it in the current network topology depending on their needs. For instance, one may choose to
isolate the WSN nodes to their local network or to assign them a valid public-accessible IPv6
address. Through its webserver, the user can take advantage of the various configuration options,
as well as monitor it (e.g. traffic statistics) [39]. It comes with examples that demonstrate its
capabilities and its usage. As it is under active development, one may find bugs not only in the
development versions but also in the stable ones.

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[27] out of [75]

3.2. Hardware
3.2.1 Zolertia Z1
The Z1 mote6 is, actually, the first commercially available platform by Zolertia [40]. It is

a general-purpose low-power development platform for WSNs and supports some of the most
employed open source operating systems like TinyOS and Contiki. The network stacks supported
include 6LoWPAN, Texas Instruments’ SimpliciTI and Z-Stack.

Figure 3.3: Zolertia Z1 board

It is based upon the second generation MSP430 ultra low-power microcontroller and the
CC2420 transceiver which is IEEE 802.15.4 compliant and ZigBee ready. Equipped with an
antenna, a 52-pin expansion connector and a micro-USB connector for power and debugging, it
is ideal for rapid prototyping. [41]

Table 3.1: Zolertia Z1 Specifications

MCU MSP430F2617
CPU 16 bit, 16 MHz RISC
RAM 8 KiB

Flash Memory 92 KiB
Transceiver CC2420

Radio Frequency 2.4 GHz
Effective Data Rate 250 Kibps

Besides the two digital built-in sensors (a programmable accelerometer and a temperature

sensor), Z1 can support up to 4 external sensors. The board can be powered in many ways:
Battery Pack (2xAA/AAA), Coin Cell (up to 3.6V), USB. [42]

6 Mote: A tiny computer for remote sensing.

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[28] out of [75]

3.2.2 Raspberry Pi
The Raspberry Pi is a single-board computer that can be used as a development platform.

Its size is that of a credit card and it is available in many versions, with different specifications
each as new ones are coming to production. Apart from its own operating system, Raspbian -
which is based on Debian-, it supports various Linux distributions, RISC OS, as well as Windows
10 IoT Core.

Figure 3.4: Raspberry Pi 1 Model B

Although different versions have different features, all of them have a memory card slot,
which acts as a storage device for OS and user data, and a number of General Purpose
Input/Output (GPIO) headers. Some of them are equipped with USB ports, an Ethernet port,
video and audio outputs. There are also several accessories that can be connected to it such as
cameras -via a specific CSI connector-, touch displays, or even expansion boards. Raspberry Pi
can be powered by micro-USB or GPIO header.

Table 3.2: Raspberry Pi 1 Model B Specifications
SoC Broadcom BCM2835

Architecture ARMv6 (32 bit)
CPU 700 MHz single core

SDRAM 256 MiB (GPU shared)
GPU VideoCore IV 250 MHz

One can find a plethora of projects available on the World Wide Web, which are based on
this platform. It was primarily developed to promote computer science in schools [43] but its use
in home automation is rather significant. [44] [45]

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[29] out of [75]

3.2.3 BeagleBoard-xM
A higher-end development platform is BeagleBoard-xM, with an open hardware design.

It is a modified version of BeagleBoard and started shipping on August 2010. Although it is about
twice the size of a Raspberry Pi, it is equipped with more Input/Output interfaces. It supports
Ångström Linux, Android, XBMC and Ubuntu, but there are other OSs that can be run as well
such as RISC OS and FreeBSD.

Figure 3.5: BeagleBoard-xM

Among the Input/Output interfaces are DVI-D (with an HDMI connector because of its smaller
size), S-Video, USB OTG, 4 USB ports, Ethernet, RS-232, JTAG connector, stereo in/out jacks.
There are also a camera port and an expansion port. It can be powered through the dedicated
power socket or through the USB OTG connector. Two buttons can be found on the board. One
is a reset button and the other’s function can be defined by the user.

Table 3.3: BeagleBoard-xM Rev C 1.0 Specifications
SoC TI Cortex A8 DM3730

Architecture ARMv7 (32 bit)
CPU 1 GHz single core

SDRAM 512 MiB (GPU shared) 200 MHz
GPU PowerVR SGX530x 200 MHz
DSP TMS320C64x+ 800MHz

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[30] out of [75]

3.2.4 BeagleBone
The BeagleBone was released about a year after the BeagleBoard-xM with a slightly smaller

size than Raspberry Pi’s. It is the previous version of BeagleBone Black and supports Ångström
Linux, Ubuntu and Android. It is equipped with Ethernet, a USB port type A and a USB for
power and debugging, eliminating the need for JTAG emulator. A power connector is also
available.

Figure 3.6: BeagleBone

A number of expansion boards called “Capes” are available. These can be stacked onto the
BeagleBone board (up to four) adding new interfaces like an LCD touchscreen, DVI-D,
Breadboard and RS-232.

Table 3.4: BeagleBone Rev A6 Specifications
SoC TI Cortex A8 AM3358/9

Architecture ARMv7 (32 bit)
CPU 720 MHz single core

SDRAM 256 MiB (GPU shared) 200 MHz
GPU PowerVR SGX530x 200 MHz

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[31] out of [75]

3.3. The IoT Bridge

The IoT Bridge runs an active server for each protocol listening for incoming connections.
Besides the MQTT broker that accepts connections based on the MQTT protocol, the currently
supported protocols are the following:

• HTTP through a RESTful API
• CoAP
• XMPP

Starting from the HTTP, an HTTP client can connect to an HTTP resource natively or use
a reverse proxy if there is a need to drive the traffic through the IoT Bridge. To access a CoAP
resource, an HTTP client uses the specific resource for CoAP passing the id of the device to
connect to and the path. There is a direct matching between HTTP and CoAP methods, so in
order to get a value from a CoAP resource, the HTTP client should use the GET method, as the
same method would be used to get the value using the CoAP. There is a specific resource that
allows to issue a DISCOVER from a HTTP client, because there is no corresponding method in
the HTTP. Using websocket, one can take advantage of the CoAP’s OBSERVE method, although
there are some reliability problems due to the limited multithreading capability of the
BeagleBoard-xM. An HTTP client can also talk to the MQTT broker and thus communicate with
MQTT devices indirectly. To publish a message, there is a specific resource for the MQTT broker
that an HTTP client can send the message and the topic it goes to, using the PUT method.
Websocket will be used in the case of a subscription. Like the MQTT broker, XMPP resources
can also be reached the same way, via PUT and Websocket, by hitting the corresponding HTTP
URL.

The CoAP server exposes the available resources like the HTTP server, because their
RESTful logic is very close. There is a specific resource available on the CoAP server for each
protocol. One for CoAP, one for HTTP, one for MQTT and one for XMPP. The first two are
much alike, as they share the same logic. The third one allows a CoAP client to communicate
with the MQTT broker using the PUT and OBSERVE CoAP methods. The same is true in the
case of XMPP. A CoAP client can of course connect to a CoAP resource (server) natively, or use
the IoT Bridge.

As far as the XMPP is concerned, a client that implements this protocol can send a special
crafted message to the jid that the IoT Bridge uses to exchange messages. The said message
contains the device id, the method (GET, PUT etc) and the payload. The protocol of the target
device is derived from the device id, providing a uniform way to access each device, including
the MQTT broker. Another XMPP resource can be accessed directly using its jid.

The MQTT protocol requires a broker to work. Thus, all MQTT clients communicate
with the broker. This is the reason an MQTT client is absent from the following table. The IoT
Bridge facilitates the message exchange between the broker and the other implemented
protocols.

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[32] out of [75]

Table 3.5: IoT Bridge Communication Methods Between Protocols

 Servers
C

lie
nt

s
 CoAP HTTP

(RESTful API)
MQTT (broker) XMPP

C
oA

P Natively or special
CoAP resource

HTTP
resource

PUT (publish),
OBSERVE
(subscribe)

PUT (publish),
OBSERVE
(subscribe)

H
TT

P DISCOVER, GET,
PUT, POST,

DELETE, OBSERVE

Natively or
Reverse Proxy

PUT (publish),
Websockets
(subscribe)

PUT,
Websockets

X
M

PP
 DISCOVER, GET,

PUT, POST,
DELETE, OBSERVE

 PUBLISH,
SUBSCRIBE

Natively

The following table contains the main software used during the implementation of this
thesis. In the case of 6LBR, more versions (newer and older) were used and tested throughout
the development, but due to instabilities or other problems, the version on which the evaluation
tests were made is the one mentioned in the table. The Contiki OS is included in the 6LBR and
its version at that time was 3.0.

Table 3.6: Versions of Software and Libraries
6LBR 1.4.0 (c09dec4) 24 June 2016

Mosquitto MQTT Broker 1.4.9
Ejabberd XMPP Server 17.01
MSP430-gcc compiler 4.7.0 0120322 (mspgcc dev 20120911)

SleekXMPP python library (3898b01) 18 August 2015
Paho MQTT client for python 1.2 (377dad6) 3 June 2016

CoAPthon python library 4.0 (1749b26) 23 May 2016

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[33] out of [75]

3.4. Setup Architecture

Figure 3.7: Setup Architecture

As can be seen in the Figure above, the setup is composed by different devices. Like in the
IoT world, where the devices are heterogeneous and the protocols are plenty, this setup is not
far from reality. Although the major parts are in the same network, there is nothing that restricts
any of the devices to be put outside of it, far away from others. The IoT Bridge could have been
in the datacentre of a company, serving the very same functions to company’s customers.

The heart of the setup is the IoT Bridge. It enables the exchange of information between
devices that use different protocols. Any device can connect to the IoT Bridge and request a
resource from another device. The IoT Bridge will then translate the specific request to the
recipient’s protocol and make that request on behalf of the sender. When a response is received,
it is being translated and sent back to the sender who requested the resource in the first place. To
give a specific example, let’s assume that a PC/Server needs the temperature measured by a
CoAP device. Firstly, the PC/Server makes an HTTP request to the IoT Bridge through its
RESTful API. The parameters of this request are the address of the CoAP device, what is the path
of the resource (e.g. sensors/temperature) and the action (e.g. GET). The IoT Bridge looks up
the address of the CoAP device to determine what protocol the recipient supports. Based on the
parameters, the IoT Bridge sends the request to the CoAP device and gets its temperature. Then,
it responds to the PC/Server with the actual temperature it got from the CoAP device.

Furthermore, the IoT Bridge can encrypt the payload using a pre-defined key that can be
different between devices. This provides encryption in cases where either the protocols used or
the devices themselves do not support any other type of security mechanisms and also offers
separation between devices to ensure that a malicious device cannot capture what is being
transmitted by other devices.

On the same device (BeagleBoard-xM), the MQTT Broker named Mosquitto is running.
That is not the case for the Jabber-XMPP server, which is installed in a PC on the same network.

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[34] out of [75]

An XMPP server outside the local network could be used but that would lead to increased round-
trip-times (RTT) during the evaluation phase and thus making a comparison impossible. The
XMPP could have been installed on the BeagleBone-xM, but the PC was more appealing because
of the limited resources of the device on which both the IoT Bridge and the MQTT Broker run.
A Jabber/XMPP Server requires a Relational DataBase Management System (RDBMS) to work,
which imposes more Input/Output load to the storage and the usage of RAM. Taking also into
consideration the fact that the MQTT Broker needs storage too, in order to hold all the
information required for its function (e.g. topics, messages, subscribers, etc.), the installation of
a Jabber/XMPP Server would certainly cripple the performance.

There are two Zolertia Z1 motes that act as sensors, one that runs a CoAP server which
means it can receive requests for its resources (e.g. reading a sensor’s value, turning on/off a
LED) and one that runs MQTT code with the ability to publish (e.g. a sensor’s value) and
subscribe (e.g. to a topic which handles its LEDs). These motes communicate wirelessly via IEEE
802.15.4 with the sink mote called Slip Radio. The latter is also a Zolertia Z1 and is a vital part
of the 6LBR. All three Zolertia Z1 motes run Contiki OS.

The 6LBR is the boarder router for the motes’ network and it is consisted of two devices:
a Raspberry Pi on which the software runs and a Zolertia Z1 (Slip Radio) which enables 6LBR to
communicate via IEEE 802.15.4. The 6LBR is configured to serve IPv6 addresses to Z1 sensors
that belong to Home Router’s subnet, making them accessible on the local network.

An embedded platform cannot be missing from an IoT world. A BeagleBone acts as an
XMPP Resource. The communication between the IoT Bridge and the XMPP Resource is
handled by the local Jabber server as mentioned earlier.

Figure 3.8: A Real Image of the Setup Architecture

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[35] out of [75]

4. Evaluation
This chapter is devoted to the performance evaluation of the IoT Bridge and the various

security options available. More specifically, what load is imposed on the BeagleBoard-xM on
which the IoT Bridge runs, but also on the devices that offer a specific resource. Detailed charts
for each device can be found in Annex A.

Table 4.1: Cross-Protocol Bridging – Interaction Scenarios

Scenario 1 HTTP – CoAP
Scenario 2 HTTP – MQTT
Scenario 3 HTTP – XMPP
Scenario 4 MQTT – CoAP
Scenario 5 XMPP – MQTT
Scenario 6 XMPP – CoAP

The IoT Bridge supports a variety of protocols, as discussed in the previous section, but

the number of possible combinations between protocols and their implemented
functions/methods is quite large. Therefore, the performance evaluation was conducted with six
different representative scenarios. In each scenario twenty consecutive requests/responses were
sent, depending on the nature of each scenario. The interval between the requests was one second
in order to examine how the whole setup respond to such a heavy load. In the first three scenarios,
three different payload sizes were tested, whereas in the last three scenarios the payload size was
fixed but an additional interval of ten seconds was tested. The payload sizes were chosen with the
limitations of all devices in mind. A restriction in the maximum allowed of 64 bytes in the IP
buffer of the RPL Border Router, without modifying its code, is imposed, meaning that the AES-
CBC encrypted message can be at most 16 bytes long, because the Initialization Vector (16 bytes)
is also sent together with the ciphertext and these 32 bytes are converted to hexadecimal values
in order to be sent and handled, doubling the size to 64 bytes. The payload sizes were 1, 8 and
16 bytes and a padding according to PKCS #7.

Starting from the IoT Bridge, the measurements included CPU utilization, RAM utilization
in mebibytes, bandwidth used and power consumption. With the assistance of the psutil python
library, the measurements regarding CPU and RAM were limited to the actual process of the IoT
Bridge. That is not the case for the bandwidth that was based on the interface statistics. The power
consumption was measured by utilizing the internal Analog-to-Digital Converter (ADC) paying
the price with quantized results due to the low resolution of the ADC. The Round-Trip Time
(RTT) was also measured and will be discussed on each scenario.

Unfortunately, the power consumption could not be measured using the ADC on the
Beaglebone on which the XMPP resource was run. The alternative was to measure the voltage
with a multimeter but there was a high risk of short-circuiting and destroying the board. The
same holds true in the case of BeagleBoard-xM. Moreover, such rapid measurements (1 second)
would require a digital multimeter that can log to a file. CPU and RAM utilization as well as
bandwidth are measured the same way as on BeagleBoard-xM.

As far as the measurements on the Zolertia Z1 platform are concerned, besides the power
consumption on which the following chapter is devoted to, there was also measurement of the
Round-Trip Time in the case of MQTT publisher when the mote initiated the whole message
exchange. For that purpose, the QoS 1 was used because the RTT between the mote and the

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[36] out of [75]

broker could be measured by measuring the time elapsed between the publish event and the
moment the PUBACK is received.

Threats to Validity
Although the whole procedure of measurements was handled with care, the experimental

results were anyway prone to error, due to both internal and external validity threats. As far as
the internal validity threats are concerned, the software libraries that were chosen for the
implementation of the IoT Bridge, as well as, the conduction of measurements, contribute to the
results up to a point. Selecting different software libraries, different programming languages
(where possible) and changing the implementation to a more efficient one, will certainly lead to
a more efficient result. Furthermore, the protocols, software and libraries utilized were used
with default configuration, meaning that there was no attempt to select an optimal configuration,
as this require experience.

The external validity threats include the equipment, hardware. The devices themselves are
also limiting the efficiency of the whole procedure. Whilst resource-constrained devices have
their own purpose (to be energy efficient), the IoT Bridge could also run on a typical computer.
Even though the measurements were contacted in a Local-Area Network (LAN), the network
equipment, such as router, switches, etc. also impose a threat to validity. Having other devices
using the network simultaneously may have a negative impact on the results, but in a real use
case, networks will probably be under load as well.

4.1. Evaluation Methodology
4.1.1 Zolertia Z1 Power Specifications
Designing a low-power resource-constrained device has a major goal: to reduce the power

consumption as much as possible. The challenge for a developer is to measure the power
consumption when their program runs on the said devices. Fortunately, Contiki OS is equipped
with a software tool called Powertrace that estimates the power consumption and to what degree
each system activity (e.g. packet transmissions) has contributed to. Per experiments conducted
by its creators, Powertrace is accurate to 94% of the device’s energy consumption. [46]
Powertrace utilizes high-accuracy timers (rtimers) and another software tool called Energest to
calculate an average power consumption over the CPU ticks. Energest counts the number of
rtimer ticks spent in each power state, such as radio transmission/receive, high/low-power
CPU, using macros that handle overflows on signed integers (wraparound). The measurements
are printed to the serial output of the device either periodically or at specific points on the
program. Developers are free to choose which is suitable for their needs or use both.

Unfortunately, the output is rather cryptic as it mainly consists of numbers separated by
space. This makes it also easier to handle with a script that consumes the data to process them. A
look to the source code can be revealing as to what each number represents, but the actual
meaning of each and how can be used in the calculation of the power consumption can be difficult
to figure out.

Figure 4.1: Powertrace output example

Figure 4.1 shows a typical Powertrace output. The parenthesis at the end shows the
utilization of each state of the radio throughout the sampling interval, and it is not used in the

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[37] out of [75]

calculation of the power consumption. Zooming in to the elements before the parenthesis, the
Figure 4.2 matches each element with its identity as per the source code.

Figure 4.2: Powertrace output identities

The first number is the current system time in clock ticks as returned by the function
clock_time(). When the device is powered on, the timer starts counting ticks in a way to hold the
system’s uptime. The number of ticks per second is platform dependent and the constant
CLOCK_SECOND defines that number. In the case of Zolertia Z1, each second is 128 ticks.
The second element is a tag (either P or SP) which indicates the types of the values Powertrace
prints, because it allows both inspection of node-level energy behaviour (P) and of network-level
protocol power profiles (SP). [46] The third element is the first two parts (separated by a dot) of
the node’s rime address, followed by a sequence number that increments on each Powertrace
output. All the following numbers are rtimer ticks consumed by each node’s function. The
elements starting with “All” are aggregated values measured from the time the device was
powered on. The elements without “All” is the difference between the aggregated values among
two consecutive outputs. As the example implies, this is the first output (the sequence number
is zero), so the aggregated values are equal to the non-aggregated ones (e.g. All CPU and CPU).

Rtimer is a library that uses its own clock module in order to achieve higher clock
resolution and can be used for scheduling and execution of real-time tasks. The constant
RTIMER_ARCH_SECOND defines the number of ticks per second which are 32768 in the case
of Zolertia Z1. A cautious reader may have already spotted a latent problem. Although the
numbers Powertrace outputs are in ticks, the clock time is measured by a different clock. The
calculation of the energy of each part can be done using the following formula:

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 [𝑚𝑚𝑚𝑚] =
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 [𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝐸𝐸] ∙ 𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 [𝑚𝑚𝑚𝑚] ∙ 𝑣𝑣𝑣𝑣𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 [𝐸𝐸]

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑅𝑅_𝑚𝑚𝑅𝑅𝐴𝐴𝐴𝐴_𝑆𝑆𝐸𝐸𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 [𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝐸𝐸/𝐸𝐸] ∙ 𝑅𝑅𝑡𝑡𝑚𝑚𝐸𝐸𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑣𝑣𝐸𝐸 [𝐸𝐸]
 (1)

For the sake of completeness, the formula below can be used to calculate the radio duty
cycle, although it will not be used in the following measurements because of the inability to use
the proper radio duty cycling mechanism in order to reduce the time of activity of the RF
transceiver and thus its power consumption.

𝑅𝑅𝐸𝐸𝑅𝑅𝑡𝑡𝑣𝑣 𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸 𝐴𝐴𝐸𝐸𝑡𝑡𝐸𝐸𝐸𝐸 [%] =
𝑅𝑅𝑇𝑇 + 𝐿𝐿𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝐴𝐴𝐶𝐶𝐶𝐶 + 𝐿𝐿𝑅𝑅𝐶𝐶

(2)

All values correspond to the print out of the Powertrace.

The formula for the calculation of the energy requires a value for the current and the
voltage. By consulting the datasheet of Zolertia Z1 [41], one can find the table below with the
Integrated Circuits (IC) and their current consumption.

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[38] out of [75]

Table 4.2: Approximate Current Consumption of Z1 circuits

IC
Operating

Range
Current

Consumption
Notes

MSP430f2617 1.8 V to 3.6 V

0.1 μΑ OFF Mode

0.5 μΑ Standby Mode
0.5 mA Active Mode @ 1 MHz

< 10 mA Active Mode @ 16 MHz

CC2420 2.1 V to 3.6 V

< 1 μΑ OFF Mode

20 μΑ Power Down

426 μΑ IDLE Mode
18.8 mA RX Mode
17.4 mA TX Mode @ 0dBm

ADXL345 1.8 V to 3.6 V
0.1 μΑ Standby

40 μΑ to 145 μΑ Active Mode

M25P16 2.7 V to 3.6 V
1 μΑ Deep Power Down

4 mA to 15 mA Active Mode

TMP102 1.4 V to 3.6 V
1 μΑ Shutdown Mode

15 μΑ Active Mode

The first IC is the microcontroller, the second one is the RF transceiver, the third one is
the onboard accelerometer, the forth one is the flash memory and the last one is the onboard
temperature sensor. According to the datasheet, the nominal voltage of the Z1 is 3 V and that
will be the value to be used in the calculation of the formula. As far as the current is concerned,
Contiki is running at 8 MHz which is not mentioned on the table above. The datasheet of the
microcontroller [47] states that the current consumption in Active Mode at 1 MHz is 515 μΑ
when the program executes in the flash memory and 460 μΑ when the program executes in
RAM. A normal operating free-air temperature is considered and a supply voltage of 3 V. The
following figure from the datasheet reveals the linear function of the current and the frequency:

𝑅𝑅 [𝜇𝜇𝑚𝑚] = 𝑅𝑅[𝜇𝜇𝑚𝑚] ∙ 𝑓𝑓(𝑆𝑆𝐴𝐴𝑆𝑆)[𝑅𝑅𝐴𝐴𝑀𝑀]

Figure 4.3: Active Mode Current vs DCO Frequency on MSP430

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[39] out of [75]

As the program executes in the flash memory, the current consumption in our case is

515𝜇𝜇𝜇𝜇 ∙ 8𝑅𝑅𝐴𝐴𝑀𝑀 = 4.12𝑚𝑚𝑚𝑚

Because the maximum current consumption at 8 MHz is 4.48 mA, the average of the two
values will be used: 4.3mA. So, the energy calculation formula will become:

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 [𝑚𝑚𝑚𝑚] =
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 [𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝐸𝐸] ∙ 4.3 𝑚𝑚𝑚𝑚 ∙ 3 𝐸𝐸

32768 ∙ 𝐸𝐸1 − 𝐸𝐸0
128

where 𝐸𝐸1 − 𝐸𝐸0 is the difference of clock ticks between two consecutive printouts.

4.1.2 BeagleBoard-xM Power Consumption using ADC
In order to measure the power consumption of this board, one have to initialise the ADC

first using the following commands.

i2cset -y -f 1 0x4a 0x00 0x01
i2cset -y -f 1 0x48 0xbb 0x08
i2cset -y -f 1 0x4a 0x06 0x28
i2cset -y -f 1 0x4a 0x07 0x00
i2cset -y -f 1 0x4a 0x08 0x28
i2cset -y -f 1 0x4a 0x09 0x00

The first two commands turn the MADC on and connect the ADC pins. The last four
commands set which ADCs to read and average. These commands need to be executed each time
the board is powered on. To make a measurement at a specific timepoint, the following
commands have to be executed.

i2cset -y -f 1 0x4a 0x12 0x20
i2cget -y -f 1 0x4a 0x3d w
i2cget -y -f 1 0x4a 0x41 w

The measurement is conducted with the first command, whereas the two last return the
voltage values in hexadecimal. The power consumption of the board is the absolute difference
between these two values scaled by a factor 𝐸𝐸, as explained below.

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 [𝑚𝑚] = 𝐸𝐸 ∙ |𝑣𝑣1 − 𝑣𝑣2|

𝐸𝐸 =
5𝐸𝐸 ∙ 2.17 ∙ 2.5𝐸𝐸
64 ∙ 1024 ∙ 0.1𝛺𝛺

The two measured values are the voltage at the ends of a resistor, so that the power
consumption can be calculated by the drop of the current on that resistor. The resistor is 0.1𝛺𝛺

and the input voltage is about 5V. The resolution of the ADC is 10-bits (1024 on the
denominator) and its dynamic range is 2.5V. According to the instructions manual, the voltage
on that resistor is the 46% of the actual voltage, so a multiplication by a factor of 2.17 is needed.

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[40] out of [75]

4.2. Scenario 1: HTTP - CoAP

Figure 4.4: Scenario 1: HTTP - CoAP

One of the most common setups where sensors are used is monitoring and information
gathering through a PC or a server. Sensors record values which are being sent to a server for
further analysis. This scenario, as well as the following two, demonstrates how the IoT Bridge
assists in the interconnection between sensors and servers by implementing and translating
between different protocols. In this case, there is a PC/Server which utilizes HTTP and a sensor
mote which utilizes CoAP. Without the IoT Bridge, both devices would have to implement the
same protocol (either HTTP or CoAP) in order to communicate.

Plot
A computer sends an HTTP GET request to the IoT Bridge with parameters the id of the

CoAP device and the path of the wanted resource. The IoT Bridge, on its turn, sends a CoAP
GET request on the corresponding CoAP device, the device responds and the IoT Bridge returns
the response to the computer.

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[41] out of [75]

Evaluation
With an interval of 1 second between consecutive requests, the evaluation includes

different modes of encryption and different payload sizes as described previously.

The Figure above depicts the average RTT of 20 consecutive requests. The RTT is the time
elapsed from the moment the client sends a request to the IoT Bridge until the former receives
the response from the IoT Bridge. It is evident that the more complex the encryption scheme is,
the more time it requires. As far as the difference in RTT between different payload sizes is
concerned, one can attribute it to the instability of the network, although the differences are not
significant. Padding required to fill the block prior the encryption may also be a contributing
factor.

The CPU utilization is greater when the IoT Bridge is involved in the encryption scheme.
That is, in the case of point-to-point encryption where the TLS is used in the communication
using the RESTful API (HTTP).

340

360

380

400

420

440

460

1 B 8 B 16 B 1 B 8 B 16 B 1 B 8 B 16 B

no encryption e2e aes-cbc p2p tls aes-cbc

Average RTT (msec)

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[42] out of [75]

As expected, like the CPU utilization, RAM utilization follows the same pattern regarding
the TLS encryption. To the IoT Bridge, there is almost no difference between no encryption and
end-to-end encryption, because it does not encrypt/decrypt the payload, but rather forwards it.
In the case of point-to-point, TLS utilizes memory in order to encrypt/decrypt the traffic.

As shown in the Figure above, the variation of bandwidth is quite small, between different
encryption modes and payload sizes. It may also be attributed to other processes running
concurrently using the network.

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[43] out of [75]

The ADC’s inaccuracy is quite obvious.

4.3. Scenario 2: HTTP - MQTT

Figure 4.5: Scenario 2: HTTP - MQTT

Polling can be ineffective and expensive. There is no point in capturing values when one
may be only interested in getting notified when the measured values change. This cuts down the
network traffic and the requests that hit the PC/Server. MQTT is an ideal protocol for this job.
In this scenario, one can visit a website that displays the measured values each time a new value
is published by the MQTT mote.

Plot
A computer requests a webpage from the IoT Bridge containing JavaScript code that opens

a Websocket between the browser running on the computer and the IoT Bridge. The request
sent for the Websocket to be established, includes the topic on which it wishes to subscribe and

0

50

100

150

200

250

300

1 B 8 B 16 B 1 B 8 B 16 B 1 B 8 B 16 B

no encryption e2e aes-cbc p2p tls aes-cbc

Average Power Consumption (mW)

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[44] out of [75]

the subscription is forwarded by the IoT Bridge to the MQTT broker. The MQTT device
publishes a message periodically to a specific and the MQTT broker is responsible for forwarding
this message to subscribers of that topic, meaning that the IoT Bridge receives each message and
sends it to the computer through the open Websocket connection.

Evaluation

The average RTT is increased when the Z1 mote is required to encrypt the payload prior
to publishing it. Moreover, the asynchronous nature of this scenario makes it hard to measure the
RTT with precision, because there is no common clock among the devices.

The utilization of the CPU is quite the same. The variation can be attributed to the time
each measurement was taken and whether different services, like the Broker, were active at that
particular time.

0
100
200
300
400
500
600
700
800
900

1000

1 B 8 B 16 B 1 B 8 B 16 B 1 B 8 B 16 B

no encryption e2e aes-cbc p2p tls aes-cbc

Average RTT (msec)

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[45] out of [75]

It is evident from the Figure above, that p2p utilizes more RAM due to the fact that this is
the only mode in which the IoT Bridge encrypts/decrypts the messages.

There is no significant variation between the bandwidth values. The fact that the
differences are visible can be attributed to the difficulty of synchronizing measurements in an
asynchronous scenario, meaning that the bandwidth used by broker may have been included too.

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[46] out of [75]

4.4. Scenario 3: HTTP - XMPP

Figure 4.6: Scenario 3: HTTP - XMPP

XMPP is another asynchronous messaging protocol. Although, sensors may implement this
protocol, there is another way this protocol can be exploited. Nowadays, a plethora of team
collaboration tools and services has emerged, which allows team members to communicate
effectively. Their features can be expanded using integrations with numerous services, one of
which may be an alerting system that sends messages to team members when something happens.
In this scenario, a PC/Server that captures and analyses data, sends a message to an XMPP
resource, a resource that could be an integration to the said collaboration tools.

Plot
A computer issues an HTTP PUT request to the IoT Bridge with parameters the jid of the

receiver and the payload. The IoT Bridge forwards the request to the XMPP server which, in
turn, sends it to the XMPP device. The XMPP device responds back and the response takes the
same path back to the computer.

0

50

100

150

200

250

300

1 B 8 B 16 B 1 B 8 B 16 B 1 B 8 B 16 B

no encryption e2e aes-cbc p2p tls aes-cbc

Average Power Consumption (mW)

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[47] out of [75]

Evaluation

As can be seen clearly from the Figure above, the TLS requires more time because all
devices (client, XMPP Server, IoT Bridge, XMPP resource) have to encrypt/decrypt the payload,
whereas in end-to-end encryption only the client and the XMPP resource are involved in this
procedure.

It comes as no surprise, that the CPU utilization is a bit higher when TLS is used, because
in the first two modes, the IoT Bridge does not encrypt/decrypt anything. In the first two modes,
the utilization is quite the same.

350
355
360
365
370
375
380
385
390
395
400
405

1 B 8 B 16 B 1 B 8 B 16 B 1 B 8 B 16 B

no encryption e2e aes-cbc tls-tls

Average RTT (msec)

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[48] out of [75]

Like in the previous scenarios, TLS consumes more RAM, because in that case the IoT
Bridge joins the encryption/decryption game.

There is no significant difference among different encryption modes and payload sizes.

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[49] out of [75]

4.5. Scenario 4: MQTT - CoAP

Figure 4.7: Scenario 4: MQTT - CoAP

0

50

100

150

200

250

300

1 B 8 B 16 B 1 B 8 B 16 B 1 B 8 B 16 B

no encryption e2e aes-cbc tls-tls

Average Power Consumption (mW)

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[50] out of [75]

Sensors may also require communication to other sensors. Typical examples are networks
that lack of central control and therefore actions are taken collectively, and communication
between a sensor and an actuator (e.g. a water leak detector is triggered and instructs the actuator
to close the main valve.) In this scenario, the IoT Bridge enables the communication between an
MQTT mote and a CoAP mote.

Plot
The MQTT device publishes a message periodically on a specific topic. The CoAP is

subscribed to this topic via the IoT Bridge. As a subscriber on behalf of the CoAP device, the IoT
Bridge receives the message from the MQTT broker and forwards it to the CoAP device by
issuing a CoAP POST request.

Evaluation
The last 3 scenarios share the same payload size and two intervals are tested (1 and 10

seconds).

This scenario includes two Z1 motes communicating through the bridge, so the increased
RTT is due to the fact that both motes have to encrypt/decrypt the payload. Moreover, the
MQTT, as an asynchronous protocol, makes it hard to calculate an exact RTT value for the whole
scenario.

0

200

400

600

800

1000

1200

1 sec 10 sec 1 sec 10 sec 1 sec 10 sec

no encryption e2e aes-cbc p2p aes-cbc

Average RTT (msec)

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[51] out of [75]

The CPU utilization of the IoT Bridge is almost imperceptible, especially in the case of the
10-second interval. The CPU utilization does not differ between encryption modes.

It may seem odd that no encryption uses more RAM than the other modes, but one should
note the actual difference is about 0.01MiB which is 10.24KiB of RAM, that may have been used
by any concurrent process or may not be freed in time.

0

1

2

3

4

5

6

7

1 sec 10 sec 1 sec 10 sec 1 sec 10 sec

no encryption e2e aes-cbc p2p aes-cbc

Average CPU Utilization (%)

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[52] out of [75]

The average bandwidth in 1second interval is about the same compared to other scenarios.

0

50

100

150

200

250

300

1 sec 10 sec 1 sec 10 sec 1 sec 10 sec

no encryption e2e aes-cbc p2p aes-cbc

Average Power Consumption (mW)

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[53] out of [75]

4.6. Scenario 5: XMPP - MQTT

Figure 4.8: Scenario 5: XMPP - MQTT

Two asynchronous protocols such as XMPP and MQTT also require the IoT Bridge in
order to exchange messages between each other. Team collaboration tools and their integrations
can be part of this scenario too, where a special crafted message (e.g. a command) sent by a team
member can be received by a sensor/actuator.

Plot
The XMPP device publishes a message to the MQTT broker through the IoT Bridge. More

specifically, the XMPP device sends a message to the IoT Bridge using the latter’s jid, containing
the topic and the payload. The XMPP server relays the message to the IoT Bridge which, in turn,
publishes it to the MQTT broker. The MQTT device receives the message because it is a
subscriber on that topic.

Evaluation

0

100

200

300

400

500

600

700

1 sec 10 sec 1 sec 10 sec 1 sec 10 sec

no encryption e2e aes-cbc p2p tls aes-cbc

Average RTT (msec)

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[54] out of [75]

The time elapsed between the PUBLISH event sent the MQTT Broker and the moment the
MQTT client received the message cannot be measured due to the lack of a common clock.

The CPU utilization is almost the same among different encryption modes and it is rather
small regarding the 1 second interval.

The use of TLS and the fact that the IoT Bridge is required to decrypt and then re-encrypt
the message increase RAM utilization.

0

2

4

6

8

10

12

14

1 sec 10 sec 1 sec 10 sec 1 sec 10 sec

no encryption e2e aes-cbc p2p tls aes-cbc

Average CPU Utilization (%)

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[55] out of [75]

With the interval of 1 second, the bandwidth utilization is almost the same as in previous
scenarios. That is the case for the interval of 10 seconds too, regarding the last three scenarios in
general.

0

50

100

150

200

250

1 sec 10 sec 1 sec 10 sec 1 sec 10 sec

no encryption e2e aes-cbc p2p tls aes-cbc

Average Power Consumption (mW)

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[56] out of [75]

4.7. Scenario 6: XMPP - CoAP

Figure 4.9: Scenario 6: XMPP - CoAP

There are a lot of messaging protocols but most of them are proprietary. The fact that
XMPP is an open standard is an advantage and many services expose their proprietary protocols
through an XMPP API.

Plot
The XMPP device publishes a message to the IoT Bridge, containing the id of the CoAP

device, the path of the resource and the action to be taken (PUT). The IoT Bridge upon receiving
the message, it issues a CoAP PUT request to the CoAP device. The CoAP device responds back
and the response is routed to the XMPP device through the IoT Bridge.

Evaluation

With no encryption, the CoAP client can respond much faster. When encryption is used,
the RTT is almost steady, because the effect of the CoAP client (Z1) struggling to

0

100

200

300

400

500

600

1 sec 10 sec 1 sec 10 sec 1 sec 10 sec

no encryption e2e aes-cbc p2p tls aes-cbc

Average RTT (msec)

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[57] out of [75]

encrypt/decrypt is greater than the effect the TLS and the encryption/decryption have on the
IoT Bridge.

By comparing the first two modes with the last one (p2p), one can see that the encryption
does not increase the utilization of CPU. In the last two scenarios, the TLS connection is
established once. With that in mind, it is evident that in the last three scenarios the CPU
utilization does not change when the IoT Bridge encrypts/decrypts (in peer-to-peer encryption
mode). In the first three scenarios that was not the case, as there was an HTTP server with TLS
utilized and each connection to the IoT Bridge required a TLS handshake.

The CPU utilization may be not affected by the encryption/decryption, but RAM
utilization surely is. It is an expected result in this scenario, as well as in the previous ones,
because the encryption/decryption algorithms require space to hold their calculations during the
execution of each step.

0

2

4

6

8

10

12

14

16

1 sec 10 sec 1 sec 10 sec 1 sec 10 sec

no encryption e2e aes-cbc p2p tls aes-cbc

Average CPU Utilization (%)

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[58] out of [75]

0

1

2

3

4

5

6

1 sec 10 sec 1 sec 10 sec 1 sec 10 sec

no encryption e2e aes-cbc p2p tls aes-cbc

Average Bandwidth (Kibps)

0

50

100

150

200

250

300

1 sec 10 sec 1 sec 10 sec 1 sec 10 sec

no encryption e2e aes-cbc p2p tls aes-cbc

Average Power Consumption (mW)

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[59] out of [75]

4.8. Comparison among scenarios
The demonstration of the results ends with a comparison between different scenarios on

various measurements. With an interval of 1 second between requests, which is faster than a
typical traffic load, and 16 bytes of payload, the following charts depict the average of 20
consecutive requests per security mode (no encryption, end-to-end AES-CBC encrypted payload
and point-to-point encrypted payload) and scenario.

The Figure above displays the average Round-Trip-Time in milliseconds as seen from the
aspect of the client. In particular, in Scenario 1, this is the time elapsed from the moment the PC
sent the HTTP request till the moment it received the response from the IoT Bridge (which
forwarded the response from Z1). The same holds true for Scenarios 3 and 6 too. In Scenarios 2,
4, 5, the RTT is the sum of individual RTTs between each connection (e.g. in S2: PC-IoT Bridge
and Z1-Broker), due to the asynchronous nature of these scenarios.

In Scenario 1, the results are quite anticipated, as there is a slight increase in end-to-end
encryption and a greater one in case of point-to-point encryption. In the first case only the sender
and the receiver are required to encrypt and decrypt the messages whereas in the second case
there is a TLS handshake during the connection establishment and the double
encryption/decryption the IoT Bridge does before it forwards each message. Scenarios 3 and 5
are quite similar to Scenario 1.

In Scenarios 2, 4 and 6, the impact of encryption on Z1 running MQTT is rather
significant. Another factor that makes these scenarios different is the fact that MQTT is
asynchronous and the actual RTT is difficult to be measured. Moreover, one should take into
account the fact that the PUBACK, the broker sends upon message publishing, makes Z1 wait
and the fact that a message has to be encrypted and sent every 1 second pushes the device to its
limits.

Overall, the impact of the IoT Bridge in RTT is notable, but encryption’s/decryption’s
contribution to the RTT, when handled by the IoT Bridge, is minor. The reason is that the impact
of encryption on resource-constrained devices is far larger than the one of IoT Bridge, although
the latter is not running on specialized/fast hardware and is not optimized. Considerable is also

0
100
200
300
400
500
600
700
800
900

1000

no
-e

nc
ry

pt
io

n

e2
e-

ae
s-

cb
c

p2
p

tls
 a

es
-c

bc

no
-e

nc
ry

pt
io

n

e2
e-

ae
s-

cb
c

p2
p

tls
 a

es
-c

bc

no
-e

nc
ry

pt
io

n

e2
e-

ae
s-

cb
c

p2
p-

tls
-t

ls

no
-e

nc
ry

pt
io

n

e2
e-

ae
s-

cb
c

p2
p

ae
s-

cb
c

no
-e

nc
ry

pt
io

n

e2
e-

ae
s-

cb
c

p2
p

tls
 a

es
-c

bc

no
-e

nc
ry

pt
io

n

e2
e-

ae
s-

cb
c

p2
p

tls
 a

es
-c

bc

S1 S2 S3 S4 S5 S6

Average RTT (msec)

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[60] out of [75]

the fact that the network on which these scenarios were tested was not equipped with professional
hardware and there were times the network performance was a bit sluggish, impacting the
results.

The Figure above demonstrates the average CPU utilization of the IoT Bridge. The impact
of the RESTful API (HTTP), which is utilized in the first 3 scenarios, cannot be overlooked.
Besides that, the IoT Bridge seems to handle the high traffic volume with ease. Scenario 4 is the
most lightweight because the CoAP server it utilizes and the connection to the MQTT Broker
are not as resource-heavy as the HTTP server and the XMPP connection.

The average RAM utilization in mebibytes is depicted in the above Figure. The RESTful
API has likewise impacted the RAM utilization. In the last two scenarios, the IoT Bridge holds an
open connection with the XMPP Server and that is the main reason, RAM is more utilized than
in Scenario 4.

0

5

10

15

20

25

30

no
-e

nc
ry

pt
io

n

e2
e-

ae
s-

cb
c

p2
p

tls
 a

es
-c

bc

no
-e

nc
ry

pt
io

n

e2
e-

ae
s-

cb
c

p2
p

tls
 a

es
-c

bc

no
-e

nc
ry

pt
io

n

e2
e-

ae
s-

cb
c

p2
p-

tls
-t

ls

no
-e

nc
ry

pt
io

n

e2
e-

ae
s-

cb
c

p2
p

ae
s-

cb
c

no
-e

nc
ry

pt
io

n

e2
e-

ae
s-

cb
c

p2
p

tls
 a

es
-c

bc

no
-e

nc
ry

pt
io

n

e2
e-

ae
s-

cb
c

p2
p

tls
 a

es
-c

bc

S1 S2 S3 S4 S5 S6

Average CPU Utilization (%)

0
2
4
6
8

10
12
14
16
18

no
-e

nc
ry

pt
io

n

e2
e-

ae
s-

cb
c

p2
p

tls
 a

es
-c

bc

no
-e

nc
ry

pt
io

n

e2
e-

ae
s-

cb
c

p2
p

tls
 a

es
-c

bc

no
-e

nc
ry

pt
io

n

e2
e-

ae
s-

cb
c

p2
p-

tls
-t

ls

no
-e

nc
ry

pt
io

n

e2
e-

ae
s-

cb
c

p2
p

ae
s-

cb
c

no
-e

nc
ry

pt
io

n

e2
e-

ae
s-

cb
c

p2
p

tls
 a

es
-c

bc

no
-e

nc
ry

pt
io

n

e2
e-

ae
s-

cb
c

p2
p

tls
 a

es
-c

bc

S1 S2 S3 S4 S5 S6

Average RAM Utilization (MiB)

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[61] out of [75]

The average bandwidth, in kibibits per second, regarding the incoming and outgoing traffic
is shown in the Figure above. Considering that the interval is 1 second, the bandwidth used is not
that high, owing to the fact that the payload is rather small (16 bytes).

Another measurement was the power consumption. As shown in the Figure above, the
power consumption in milliwatts was limited. It should be noted that the measurements include
everything running such as IoT Bridge, MQTT Broker, OS, and various services. Having in mind
the utilization of CPU, RAM, bandwidth, the low power consumption is much anticipated.

0

1

2

3

4

5

6
no

-e
nc

ry
pt

io
n

e2
e-

ae
s-

cb
c

p2
p

tls
 a

es
-c

bc

no
-e

nc
ry

pt
io

n

e2
e-

ae
s-

cb
c

p2
p

tls
 a

es
-c

bc

no
-e

nc
ry

pt
io

n

e2
e-

ae
s-

cb
c

p2
p-

tls
-t

ls

no
-e

nc
ry

pt
io

n

e2
e-

ae
s-

cb
c

p2
p

ae
s-

cb
c

no
-e

nc
ry

pt
io

n

e2
e-

ae
s-

cb
c

p2
p

tls
 a

es
-c

bc

no
-e

nc
ry

pt
io

n

e2
e-

ae
s-

cb
c

p2
p

tls
 a

es
-c

bc

S1 S2 S3 S4 S5 S6

Average Bandwidth (Kibps)

0

50

100

150

200

250

300

no
-e

nc
ry

pt
io

n

e2
e-

ae
s-

cb
c

p2
p

tls
 a

es
-c

bc

no
-e

nc
ry

pt
io

n

e2
e-

ae
s-

cb
c

p2
p

tls
 a

es
-c

bc

no
-e

nc
ry

pt
io

n

e2
e-

ae
s-

cb
c

p2
p-

tls
-t

ls

no
-e

nc
ry

pt
io

n

e2
e-

ae
s-

cb
c

p2
p

ae
s-

cb
c

no
-e

nc
ry

pt
io

n

e2
e-

ae
s-

cb
c

p2
p

tls
 a

es
-c

bc

no
-e

nc
ry

pt
io

n

e2
e-

ae
s-

cb
c

p2
p

tls
 a

es
-c

bc

S1 S2 S3 S4 S5 S6

Average Power Consumption (mW)

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[62] out of [75]

5. Conclusions
Sooner or later, good or bad, everything comes to an end. This time has arrived and a

retrospection is necessary.

5.1. Recapitulation
This thesis resulted in developing an IoT Bridge that allows a secure message exchange

between devices that may use different protocols. More specifically, the currently supported
protocols are: HTTP, CoAP, MQTT, XMPP. The IoT Bridge offers payload encryption in point-
to-point communication, which is very useful when the communicating devices are not trusted
and a global encryption key cannot be shared, thus obstructing devices from intercepting
messages from other devices.

The plethora of heterogeneous protocols are posing a challenge to the evolution and the
adaption of the IoT. From the very beginning, when pioneers created what is now taken as
granted, such as computers, networks, wireless connections, advanced software etc., companies
were creating their own protocols and programming languages, an understandable choice because
there were no standards in these sectors back then. Nowadays, the development is so rapid, that
these standardised protocols are not ideal for some products. For instance, a low-power,
resource-constrained device requires protocols that are efficient and able to run on such a
platform. Under these circumstances, the creation of new protocols and new standards is
favoured, exacerbating the landscape of the heterogeneous protocols.

The more protocols are utilised among the devices, the more exigent the adoption of
interoperability is going to be. Interoperability is an integral part of the IoT world. Without it,
the desirable interconnection between heterogeneous devices cannot be achieved. Imagine, for
example, some manufacturers ignoring the IEEE 802.11 (WiFi) standard. It would be certainly
burdensome to create an infrastructure for these devices, because wireless Access Points would
have to either support the different protocols each manufacturer uses (instead of WiFi) or a
variety of Access Points would have to be purchased in order to cover the whole gamut. It goes
without saying, that this situation is not scalable and unjustifiably expensive. The road towards
interoperability means that new IoT applications should be extensible, so that new functions and
features can be integrated without compromising the existing ones, building on top of the already
implemented communication technologies.

Protocol heterogeneity is also a threat to security. The plethora of protocols, especially
the proprietary ones, makes security burdensome as professionals cannot focus on each and every
protocol to audit and propose security fixes and features. Interoperability and security go hand
in hand, because not only the standardised protocols can be made secure, but also frameworks
and solutions in general can be built to assist proactive defence and threat identification.

5.2. Hindrances

“…slowly crashlooping…”

Due to the very nature of the embedded and resource-constrained devices, a plethora of
challenging problems and difficulties emerged. This is hardly an exhaustive list of the hindrances
encountered throughout the development.

The first and most persistent problem was the inability of 6LBR to work properly inside
the Virtual Machine. Although the network interface of the said VM was in Bridge Mode, in order

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[63] out of [75]

to obtain a valid IPv6 address from the router’s Dynamic Host Configuration Protocol (DHCP)
server, 6LBR had difficulties in making the WSN nodes accessible to the Local-Area Network
(LAN). After a lot of effort and experimentation with various parameters and modes in each
involved software and hardware (router’s configuration, host OS, virtualization software, guest
OS, 6LBR), there was no reliable outcome. The trial-and-error phase included running 6LBR on
actual hardware which, in this occasion, was a Raspberry Pi. Fortunately, 6LBR was fully
functional in that case, putting all these efforts to an end. It was the only problem that limited
resources were not to blame for. It is possible that any part of the whole stack of the involved
software could have interfered with the proper function of 6LBR. Concerning the writer’s view,
the virtualization software may have been responsible.

Another problem was the buggy version 4.7.0 of the msp430-gcc compiler that somehow
bounded the utilizable ROM of Zolertia Z1 to 56 KiB out of 92 KiB. In cases, such as the use of
cryptographic algorithms, which are space-demanding, this was a significant obstacle. A lot of
attempts were made to update to a newer version, but to no avail.

A consequence of the aforementioned problem may have been the inability to properly run
the tinyDTLS which would lead to point-to-point encryption of the CoAP protocol. Several
constants such as the maximum number of neighbours, the maximum number of observers and
the length of the packet, have to be significantly reduced, in a way to reduce the requirements in
ROM and make it fit in. Unfortunately, this was not enough, as the tinyDTLS was not working
properly. Due to unknown reasons, the handshake was never completed successfully.

Attempting to secure the WSN, LLSEC was the way to go, but it ended up being a dead
end. After some effort, the compilation was successful but no connection was established
between the mote and 6LBR. Newer versions were tried, along with some examples included in
the repository, but no configuration led to a successful connection.

Some questions were sent to the mailing lists regarding any minor or major problem
encountered. Although not all questions received an answer, their answers were enlightening.
Another fruitless attempt was the one to install 6LBR to BeagleBoard-xM, so that all bridge-
related functions are housed on the same device. Despite the fact that the compilation was
successful and the webpage of 6LBR was functioning properly, the very moment the 6LBR was
starting any SSH session was terminated and, after a while, motes started losing their connection
to 6LBR. Four different OS images were tested, in an attempt to fix the problem, but the result
was common to all of them: an orange screen upon boot and a black screen with a blinking cursor
next.

5.3. Lessons Learned
The obvious ones would be security-related facts and experience with resource-

constrained devices. Of course, these were the case, among other things, but the most important
lesson learned, regarding the writer’s view, is the following. A lot of people, regardless if they
are specialists or not, are accusing manufacturers and developers for insecure products. In fact,
there were such accusations in the Introduction of this thesis.

One of the main reasons for this, is the lack of experience. Many developers create
programs that run on computers or smartphones, which both have large amounts of resources
when compared to resource-constrained devices. The moment they start writing programs for
these devices, they run into issues, such as reducing the size of their code and extensive
optimization, that they may have never dealt with. Moreover, they may have to work towards

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[64] out of [75]

their own solutions for already solved problems, because the existing ones were not developed
with these devices in mind.

There may be a plethora of reasons why a product is not secure, from incompetent
designers/developers to limited budget. No one can deny that a major contributing factor is that
security is not the primary concern and it is considered way after the preliminary design of the
product, leading not only to difficulties in implementing and deploying security practices but also
to vulnerabilities.

Security is hard, really hard. It is multilevel, multifaced and unbound, but none of these
are an excuse to ignore it entirely or postpone its realization. To put it another way, “engineering
without security is just art”. With no intent to undermine the importance of art, anything an
engineer designs have to withstand any reasonable (or not) amount of hardship, depending on the
application. This is clearly illustrated by a building. It takes a team of engineers to design it and
build it, but if they do not safeguard that the structure will withstand the proper static (i.e.
appliances, furniture, machinery) and dynamic (i.e. people) load, it is not a building that people
can use, rather than a visual art that people can observe.

5.4. Future Work
A variety of aspects of the IoT Bridge can be improved. First of all, more security

mechanisms can be added, such as authentication, encryption schemes etc. If more than one
encryption schemes are available, a negotiation can be used between the client and the IoT Bridge,
like the one done during the TLS handshake. There is also a plethora of protocols either
specialized for IoT devices or not, that can be implemented and supported by the IoT Bridge. An
important note here is that the more complexity increases by adding new features and
mechanisms, the more difficult it becomes to assess the IoT Bridge as a whole in matters of
security.

The implementation of the IoT Bridge itself could also be optimized in order to become
faster regarding RTT, by choosing the ideal programming languages, software libraries and what
the target hardware would be (a platform like BeagleBone-xM or something more powerful).
During the last year, big companies that offer cloud services have also introduced IoT-related
solutions, either similar in concept to the IoT Bridge or software libraries that can be used to
integrate their cloud services (such as Big Data analysis, Machine Learning, storage, security etc.)
to new or current solutions. In the case of the IoT Bridge, these libraries can be utilized. The
integration with voice assistants would also be interesting. For instance, the IoT Bridge can
expose desired features to such assistants ensuring both the interoperability between the assistants
and the various IoT devices, and their security, in a way to block any not authorized/untrusted
command.

Emerging standards are numerous in the world of IoT. NarrowBand IoT is a Low Power
Wide Area Network radio technology standard that aims to the interconnection of IoT through
the cellular network. LWM2M (LightWeight Machine-to-Machine) is a standard that includes
several protocols like CoAP, DTLS, SenML (Sensor Markup Language) etc. The purpose of
LWM2M is the management of applications running on M2M devices and their remote control.

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[65] out of [75]

Bibliography

[1] ABI Research, "More Than 30 Billion Devices Will Wirelessly Connect to the Internet of

Everything in 2020," 09 May 2013. [Online]. Available:
https://www.abiresearch.com/press/more-than-30-billion-devices-will-wirelessly-
conne/. [Accessed 11 November 2016].

[2] Rapid7, "R7-2015-23: Comcast XFINITY Home Security System Insecure Fail Open,"
Rapid7, 5 January 2016. [Online]. Available:
https://community.rapid7.com/community/infosec/blog/2016/01/05/r7-2015-23-
comcast-xfinity-home-security-system-insecure-fail-open. [Accessed 18 October 2016].

[3] L. Lamb, "Home insecurity: No alarms, false alarms and SIGINT," 2014. [Online].
Available: goo.gl/YY4nDp.

[4] B. Krebs, "KrebsOnSecurity Hit With Record DDoS," 21 September 2016. [Online].
Available: https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-
ddos/. [Accessed 28 September 2016].

[5] S. Hilton, "Dyn Analysis Summary Of Friday October 21 Attack," 26 October 2016.
[Online]. Available: http://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-
attack/. [Accessed 5 November 2016].

[6] H. C. A. v. Tilborg and S. Jajodia, "Kerchhoff's principle," in Encyclopedia of Cryptography
and Security, Springer US, 2011, p. 675.

[7] B. Schneier, "Schneier's Law," April 2011. [Online]. Available:
https://www.schneier.com/blog/archives/2011/04/schneiers_law.html. [Accessed
November 2016].

[8] Gartner, "Gartner Says By 2020, a Quarter Billion Connected Vehicles Will Enable New
In-Vehicle Services and Automated Driving Capabilities," 26 January 2015. [Online].
Available: http://www.gartner.com/newsroom/id/2970017. [Accessed 11 November
2016].

[9] L. Atzori, A. Iera and G. Morabito, "The Internet of Things: A survey," Computer
Networks, vol. 54, no. 15, pp. 2787-2805, 28 October 2010.

[10] A. S. Reddy, "Reaping the Benefits of the Internet of Things," May 2014. [Online].
Available: https://www.cognizant.com/InsightsWhitepapers/Reaping-the-Benefits-of-
the-Internet-of-Things.pdf. [Accessed November 2016].

[11] A. Zanella, N. Bui, A. Castellani, L. Vangelista and M. Zorzi, "Internet of Things for Smart
Cities," IEEE Internet of Things Journal, vol. 1, no. 1, pp. 22-32, 14 February 2014.

[12] Akamai, "How the Mirai botnet is fueling today's largest and most crippling DDoS
attacks," November 2016. [Online]. Available:
https://www.akamai.com/cn/zh/multimedia/documents/white-paper/akamai-mirai-
botnet-and-attacks-against-dns-servers-white-paper.pdf. [Accessed 6 November 2016].

[13] E. Ronen, C. O'Flynn, A. Shamir and A.-O. Weingarten, "IoT Goes Nuclear: Creating a
ZigBee Chain Reaction," [Online]. Available: http://iotworm.eyalro.net/iotworm.pdf.
[Accessed 19 November 2016].

[14] B. Schneier, "Security and the Internet of Things," 1 February 2017. [Online]. Available:
https://www.schneier.com/blog/archives/2017/02/security_and_th.html. [Accessed 1
February 2017].

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[66] out of [75]

[15] J. Singh, T. Pasquier, J. Bacon, H. Ko and D. Eyers, "Twenty Security Considerations for
Cloud-Supported Internet of Things," IEEE Internet of Things Journal, vol. 3, no. 3, pp.
269-284, 23 July 2015.

[16] J. Yick, B. Mukherjee and D. Ghosal, "Wireless sensor network survey," Computer
Networks, vol. 52, no. 12, pp. 2292-2330, 22 August 2008.

[17] IEEE Standard for Low-Rate Wireless Networks, "IEEE Std 802.15.4-2015," a, 2015.

[18] IETF, "RFC791: Internet Protocol," September 1981. [Online]. Available:
https://tools.ietf.org/html/rfc791.

[19] J. H. Saltzer, D. P. Reed and D. D. Clark, "End-To-End Arguments in System Design," ACM
Transactions on Computer Systems, vol. 2, no. 4, pp. 277-288, November 1984.

[20] G. Mulligan, "The 6LoWPAN architecture," EmNets '07 Proceedings of the 4th workshop
on Embedded networked sensors, pp. 78-82, 25 June 2007.

[21] J. Vasseur, N. Agarwal, J. Hui, Z. Shelby, P. Bertrand and C. Chauvenet, "RPL: The IP
routing protocol designed for low power and lossy networks," April 2011. [Online].
Available: http://www.ipso-alliance.org/wp-content/media/rpl.pdf. [Accessed January
2017].

[22] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik, J. Vasseur
and R. Alexander, "RFC6550: RPL: IPv6 Routing Protocol for Low-Power and Lossy
Networks," March 2012. [Online]. Available: https://tools.ietf.org/html/rfc6550.

[23] I. Fette and A. Melnikov, "RFC6455: The WebSocket Protocol," December 2011. [Online].
Available: https://tools.ietf.org/html/rfc6455.

[24] C. Bormann, M. Ersue and A. Keranen, "RFC7228: Terminology for Constrained-Node
Networks," May 2014. [Online]. Available: https://tools.ietf.org/html/rfc7228.

[25] E. Rescorla and N. Modadugu, "RFC4347: Datagram Transport Layer Security," 2006
April. [Online]. Available: https://tools.ietf.org/html/rfc4347.

[26] K. Hartke, "RFC7641: Observing Resources in the Constrained Application Protocol
(CoAP)," September 2015. [Online]. Available: https://tools.ietf.org/html/rfc7641.

[27] Z. Shelby, "RFC6690: Constrained RESTful Environments (CoRE) Link Format," August
2012. [Online]. Available: https://tools.ietf.org/html/rfc6690.

[28] ISO, "ISO/IEC 20922:2016, Information technology -- Message Queuing Telemetry
Transport (MQTT) v3.1.1," June 2016. [Online]. Available:
https://www.iso.org/standard/69466.html.

[29] NIST, "Status of the Advanced Encryption Standard (AES) Development Effort," 1999.

[30] "Announcing Request for Candidate Algorithm Nominations for the Advanced
Encryption Standard (AES)," in Federal Register, vol. 62, 1997, pp. 48051-48058.

[31] NIST, "Announcing the Advanced Encryption Standard (AES)," Federal Information
Processing Standards, 26 November 2001.

[32] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, N. Ferguson, T. Kohno and M. Stay,
"The Twofish Team's Final Comments on AES Selection," 15 May 2000. [Online].
Available: https://www.schneier.com/academic/paperfiles/paper-twofish-final.pdf.

[33] S. Claude, "A Mathematical Theory of Cryptography," 1 September 1945. [Online].
Available: https://www.iacr.org/museum/shannon/shannon45.pdf.

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[67] out of [75]

[34] R. Housley, "RFC5652: Cryptographic Message Syntax (CMS), 6.3 Content-encryption
Process," September 2009. [Online]. Available:
https://tools.ietf.org/html/rfc5652#section-6.3.

[35] A. Dunkels, "Rime-a lightweight layered communication stack for sensor networks,"
Proceedings of the European Conference on Wireless Sensor Networks (EWSN), p.
Poster/Demo session, January 2007.

[36] A. Dunkels, B. Gronvall and T. Voigt, "Contiki - a lightweight and flexible operating system
for tiny networked sensors," Local Computer Networks, 2004. 29th Annual IEEE
International Conference on, 16-18 November 2004.

[37] A. Dunkels, O. Schmidt, T. Voigt and M. Ali, "Protothreads: Simplifying Event-Driven
Programming of Memory-Constrained Embedded Systems," SenSys '06 , pp. 29-42, 31
October 2006.

[38] CETIC, "6lbr," [Online]. Available: https://calculator.s3.amazonaws.com/index.html.
[Accessed 13 November 2016].

[39] CETIC, "6LBR in a Nutshell," 1 March 2016. [Online]. Available:
https://github.com/cetic/6lbr/wiki/6LBR-in-a-Nutshell. [Accessed 13 November 2016].

[40] Zolertia, "Zolertia Z1," Zolertia, [Online]. Available: http://zolertia.io/z1.

[41] Zolertia, "Z1 Datasheet," 11 March 2010. [Online]. Available:
http://zolertia.sourceforge.net/wiki/images/e/e8/Z1_RevC_Datasheet.pdf. [Accessed
18 November 2016].

[42] Zolertia, "Z1," 26 April 2013. [Online]. Available:
http://zolertia.sourceforge.net/wiki/index.php/Z1. [Accessed 18 November 2016].

[43] Raspberry Pi, "Teachers' Guide to Raspberry Pi," [Online]. Available:
https://www.raspberrypi.org/learning/teachers-guide/. [Accessed November 2016].

[44] S. Jain, A. Vaibhav and L. Goyal, "Raspberry Pi based interactive home automation
system through E-mail," Optimization, Reliabilty, and Information Technology (ICROIT),
2014 International Conference on , pp. 277-280, 6 February 2014.

[45] V. Vujović and M. Maksimović, "Raspberry Pi as a Sensor Web node for home
automation," Computers & Electrical Engineering 44, pp. 153-71, 31 May 2015.

[46] A. Dunkels, J. Eriksson, N. Finne and N. Tsiftes, "Powertrace: Network-level Power
Profiling for Low-power Wireless Networks," March 2011. [Online]. Available:
https://core.ac.uk/download/pdf/11435067.pdf?repositoryId=362.

[47] Texas Instruments, "MSP430F261x and MSP430F241x Mixed Signal Microcontroller
Datasheet," November 2012. [Online]. Available:
http://www.ti.com/lit/ds/symlink/msp430f2417.pdf.

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[68] out of [75]

Annex A
This Annex contains graphs based on measurements taken on Z1 devices (running CoAP

or MQTT) and the BeagleBone running an XMPP resource. In the first section, there are charts
that demonstrate the RTT of each device, so that is clear which part of the architecture
contributed the most on RTT per request.

RTT broken into pieces

The total RTT is the time taken from the moment the PC/Server sent the request to the
IoT Bridge till it got a response. The CoAP RTT is the time taken from the moment the IoT
Bridge sent the request to the CoAP device (on behalf of the PC/Server) till it got a response. It
goes without saying that the IoT Bridge contribution to the total RTT is significant.

0
50

100
150
200
250
300
350
400
450
500

1 B 8 B 16 B 1 B 8 B 16 B 1 B 8 B 16 B

no encryption e2e aes-cbc p2p tls aes-cbc

Scenario 1: RTT (msec)

Total CoAP RTT

0
100
200
300
400
500
600
700
800
900

1000

1 B 8 B 16 B 1 B 8 B 16 B 1 B 8 B 16 B

no encryption e2e aes-cbc p2p tls aes-cbc

Scenario 2: RTT (msec)

Total PC RTT MQTT RTT

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[69] out of [75]

The asynchronous nature of the technologies involved in this scenario (MQTT,
Websockets) makes it hard to calculate the RTT precisely. The total RTT is calculated as the sum
of the partial RTTs. PC RTT refers to the connection between the PC running the open
Websocket and the IoT Bridge running the Websocket server. MQTT RTT refers to the
connection between the MQTT Z1 device and the MQTT Broker hosted together with the IoT
Bridge on BeagleBoard-xM. So, the contribution of the IoT Bridge cannot be calculated.

Total is the RTT as seen by the PC/Server and XMPP RTT is the RTT for the connection
between the IoT Bridge and the XMPP device (including the XMPP server). It is clear that the
IoT Bridge takes a notable portion of time to handle the request and the response.

MQTT RTT is the time taken from the moment of PUBLISH till the PUBACK response, so
it refers to the connection between the MQTT Z1 device and the MQTT Broker. CoAP RTT

0
50

100
150
200
250
300
350
400
450

1 B 8 B 16 B 1 B 8 B 16 B 1 B 8 B 16 B

no encryption e2e aes-cbc tls-tls

Scenario 3: RTT (msec)

Total XMPP RTT

0

200

400

600

800

1000

1200

1 sec 10 sec 1 sec 10 sec 1 sec 10 sec

no encryption e2e aes-cbc p2p aes-cbc

Scenario 4: RTT (msec)

Total CoAP RTT MQTT RTT

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[70] out of [75]

refers to the connection between the IoT Bridge and the CoAP Z1 device. Total is the sum of the
two.

This scenario employs asynchronous protocols too. XMPP RTT is the time taken between
the request from the XMPP device until it receives an acknowledgment that its request has been
delivered and it is about to be processed. Thus, it refers to the following connections: XMPP
Resource – XMPP Server – IoT Bridge, but it does not include the processing of the IoT Bridge.
MQTT RTT is calculated the same way as in the previous scenarios. Total RTT is the sum of the
two.

CoAP RTT refers to the connection between the IoT Bridge and the CoAP device, whereas
the Total RTT is the total time, including the CoAP RTT, the processing time of the IoT Bridge
and the connections: XMPP Resource – XMPP Server – IoT Bridge.

0

100

200

300

400

500

600

700

1 sec 10 sec 1 sec 10 sec 1 sec 10 sec

no encryption e2e aes-cbc p2p tls aes-cbc

Scenario 5: RTT (msec)

Total RTT XMPP RTT MQTT RTT

0

100

200

300

400

500

600

1 sec 10 sec 1 sec 10 sec 1 sec 10 sec

no encryption e2e aes-cbc p2p tls aes-cbc

Scenario 6: RTT (msec)

Total CoAP RTT

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[71] out of [75]

Measurements per device

0

5

10

15

20

25

30

1 B 8 B 16 B 1 B 8 B 16 B 1 B 8 B 16 B

no encryption e2e aes-cbc p2p tls aes-cbc

Po
w

er
 C

on
su

m
pt

io
n

(m
W

)

Scenario 1: CoAP (Z1)

CPU LPM TX RX Total

0

5

10

15

20

25

30

1 B 8 B 16 B 1 B 8 B 16 B 1 B 8 B 16 B

no encryption e2e aes-cbc p2p tls aes-cbc

Po
w

er
 C

on
su

m
pt

io
n

(m
W

)

Scenario 2: MQTT (Z1)

CPU LPM TX RX Total

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[72] out of [75]

0

5

10

15

20

25

30

1 sec 10 sec 1 sec 10 sec 1 sec 10 sec

no encryption e2e aes-cbc p2p aes-cbc

Scenario 4: MQTT (Z1)

CPU LPM TX RX Total

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[73] out of [75]

0

5

10

15

20

25

30

1 sec 10 sec 1 sec 10 sec 1 sec 10 sec

no encryption e2e aes-cbc p2p aes-cbc

Scenario 4: CoAP (Z1)

CPU LPM TX RX Total

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[74] out of [75]

0

5

10

15

20

25

30

1 sec 10 sec 1 sec 10 sec 1 sec 10 sec

no encryption e2e aes-cbc p2p tls aes-cbc

Scenario 5: MQTT (Z1)

CPU LPM TX RX Total

0

1

2

3

4

5

6

1 sec 10 sec 1 sec 10 sec 1 sec 10 sec

no encryption e2e aes-cbc p2p tls aes-cbc

Scenario 6: CPU Utilization XMPP (BeagleBone)
(%)

CPU

A Secure Network-Layer Bridge for Wireless Sensor Networks Emmanouil Palavras

[75] out of [75]

0

5

10

15

20

25

30

1 sec 10 sec 1 sec 10 sec 1 sec 10 sec

no encryption e2e aes-cbc p2p tls aes-cbc

Scenario 6: CoAP (Z1)

CPU LPM TX RX Total

	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	1. Introduction
	1.1 Purpose
	1.2 Limitations
	1.3 Method

	2. Technical Background
	2.1. The Internet of Things (IoT)
	2.2. Wireless Sensor Networks (WSNs)
	2.3. Communication Protocols
	2.3.1 IEEE 802.15.4
	2.3.2 Internet Protocol version 6 (IPv6)
	2.3.3 6LoWPAN
	2.3.4 RPL
	2.3.5 Transmission Control Protocol (TCP)
	2.3.6 User Datagram Protocol (UDP)

	2.4. Application-Level Protocols
	2.4.1 HyperText Transfer Protocol (HTTP)
	2.4.2 REpresentational State Transfer (REST)
	2.4.3 Websocket
	2.4.4 Constrained Application Protocol (CoAP)
	2.4.5 Message Queuing Telemetry Transport (MQTT)
	2.4.6 Extensible Messaging and Presence Protocol (XMPP)

	2.5. Security Protocols
	2.5.1 Transport Layer Security (TLS)
	2.5.2 The Advanced Encryption Standard (AES)

	3. Implementation
	3.1. Software
	3.1.1 The Contiki Operating System
	3.1.2 6LBR

	3.2. Hardware
	3.2.1 Zolertia Z1
	3.2.2 Raspberry Pi
	3.2.3 BeagleBoard-xM
	3.2.4 BeagleBone

	3.3. The IoT Bridge
	3.4. Setup Architecture

	4. Evaluation
	4.1. Evaluation Methodology
	4.1.1 Zolertia Z1 Power Specifications
	4.1.2 BeagleBoard-xM Power Consumption using ADC

	4.2. Scenario 1: HTTP - CoAP
	4.3. Scenario 2: HTTP - MQTT
	4.4. Scenario 3: HTTP - XMPP
	4.5. Scenario 4: MQTT - CoAP
	4.6. Scenario 5: XMPP - MQTT
	4.7. Scenario 6: XMPP - CoAP
	4.8. Comparison among scenarios

	5. Conclusions
	5.1. Recapitulation
	5.2. Hindrances
	5.3. Lessons Learned
	5.4. Future Work

	Bibliography
	Annex A

