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The continuously increasing number of vehicles in industrial countries is a major
problem, which triggers congestion phenomena having negative impacts such as
increased travel times and fuel consumption as well as reduced safety. Useful tools
for the investigation of the congestion problem are Traffic Flow Modeling and Traffic
Control. Traffic Flow Modeling targets the accurate representation of the network
and traffic flow characteristics, while Traffic Control aims at improving the traffic
conditions of the network and mitigating the problem of traffic congestion.

Despite the continuous advances in the field of Nonlinear Systems and Control, the
design and deployment of efficient control algorithms, originated from this field,
that can be applied for Traffic Control, remains a significant objective. Literature, so
far, generally lacks methods for traffic control emanated from systematic and rigor-
ous mathematical derivations. This is mainly due to the complexity and the strong
nonlinearities of traffic flow dynamics. Practical control design approaches are often
based on simplified models of the system dynamics, leading to traffic systems with
suboptimal performance; nevertheless, for complex control system applications, the
use of more complex models is virtually unavoidable.

This thesis is one of the first attempts towards this direction. More specifically, it
introduces a general class of acyclic first-order models that can be used to represent
a wide variety of traffic networks, such as freeways, interconnection of freeways,
urban networks and corridors; appropriate specifications on the parameter selection
of these models are proposed in order to end up with models representing specific
traffic networks. More specifically, the developed models correspond to large-scale
discrete space-time dynamical systems that are highly nonlinear and uncertain. The
assumptions surrounding the proposed modeling framework are mild enough to
render the models capable of reproducing traffic flow phenomena of high interest,
such as the capacity drop phenomenon and more; phenomena which cannot be rep-
resented by the classical formulation of first-order models.

As a next step, this thesis investigates potential specifications that can be accom-
modated within the developed models so as to be able to reproduce correctly the
desired traffic pattern at an active bottleneck due to on-ramp merging and the re-
lated capacity drop phenomenon. Despite the increasing interest from the research
community in integrating capacity drop in first-order models, a limited number of
effective approaches have been proposed, and only a few are actually tested using
real traffic data to evaluate their behavior in case a bottleneck is activated. To this
end, this thesis aims to fill this gap, gathering the state-of-the-art related to capac-
ity drop modeling within first-order models, contributing also with further insights
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about their implications. The collected models are tested in calibration and valida-
tion using real traffic data from a freeway site in U.K.

Having tested the accuracy of a part of the developed model, the overall model-
ing framework is utilized in order to develop a general robust model-based method-
ology for Traffic Control. In particular, this thesis proposes a rigorous methodology
that provides explicit feedback control laws for the robust global exponential sta-
bility of any selected uncongested equilibrium point of the above networks. The
stabilization is achieved by means of either vector or single Lyapunov Function crite-
ria and Graph Theory tools and exploits several important properties of the network
models. The achieved stabilization is robust with respect to the overall uncertain
nature of network models when congestion phenomena are present and the uncer-
tainty stemming from the fundamental diagram selection. Potential applications of
the developed control methodology include urban and peri-urban signal control,
perimeter control, ramp metering and mainline metering.

Finally, by exploiting tools from the Adaptive Control field, this thesis proposes
a general methodology for the development of generic adaptive control schemes,
which have limited requirements with respect to the knowledge of system param-
eters. The application of the proposed control schemes guarantee the robust global
exponential attractivity of the desired and unknown UEP for the closed-loop free-
way systems. The proposed adaptive control schemes are then tested with respect
to their ability to be used as a real-time ramp-metering control strategy. Testing this
strategy with sufficiently accurate traffic flow models, different than the ones used
for its design, is deemed as an indispensable step towards potential application of
the proposed methodology in the field. Appropriate realistic traffic control scenarios
are constructed involving local and coordination control actions.
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Chapter 1

Introduction

This first chapter introduces the reader to the topic of this thesis. Sections 1.1, 1.2
and 1.3 give the background of the current thesis related with Traffic Flow Modeling,
Mathematical Control Theory and Traffic Control, respectively. Sections 1.4 and 1.5
present the motivation and the objectives as well as the outline of this thesis. Finally,
Section 1.6 lists the related publications.

1.1 Traffic Flow Modeling

Any scientific interest in model-based process control begins with modeling, i.e.,
comprehension and recording of the behavior of the process using mathematical
equations. Traffic Flow Modeling is an independent branch of mathematics and civil
engineering, which studies the interactions between drivers and their environment.
Traffic flow - despite the involvement of drivers with different individual behavior
- can be viewed from a macroscopic perspective as a fluid with well-defined charac-
teristics. However, its mathematical description appears to be a more complex task
than the modeling of fluids due to: i) several observed phenomena, such as traffic
instability, stop-and-go traffic, but also ii) the facts that traffic flow consists of sev-
eral substreams with prespecified origin-destinations and individual optimization
strategies for route selection.

Traffic flow analysts approach the problem of modeling in many different ways.
In terms of the considered level of detail, traffic flow models can be classified as
microscopic, macroscopic or mesoscopic. Microscopic models are used to describe
every vehicle as an individual and they were first proposed by Reuschel, 1950 and
Pipes, 1953. Here, the models that govern the vehicle’s behaviour can further be di-
vided into car-following models, lane-change models, and route-choice models (see
for example Treiber, Hennecke, and Helbing, 2000, Kesting, Treiber, and Helbing,
2007). Cellular automation models have also be used for microscopic modeling. The
Nagel – Schreckenberg model (Nagel and Schreckenberg, 1992) is a simple exam-
ple of such a model, which, through the vehicles’ interaction, can model collective
phenomena such as traffic jams. Macroscopic models, describe traffic behavior -
analogous to the modeling of fluids - in terms of aggregated traffic flow variables,
such as traffic density (vehicles per kilometer) and traffic volume (vehicles per hour),
and make use of a conservation equation and a momentum equation. A funda-
mental admission related with macroscopic modeling is that under homogeneous
traffic conditions in space and time, traffic density is related to traffic volume by a
relationship known as the Fundamental Diagram (FD). This relationship provides
maximum flow at a critical density value, while if density is further increased (e.g.,
due to entering traffic), traffic volume decreases and a more or less severe traffic
congestion results. Finally, mesoscopic models (or hybrid models) are models of in-
termediate level of detail; higher than macroscopic models and less than microscopic
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(see, for instance, Burghout, Koutsopoulos, and Ingmar, 2005). They often analyze
transportation elements in small groups, within which, elements are considered ho-
mogeneous, e.g., vehicle platoons.

Another classification of traffic flow models is imposed by the type of the math-
ematical equations used, that is, whether the models are described by Partial Dif-
ferential Equations (PDEs), Ordinary Differential Equations (ODEs) (see, e.g., mi-
croscopic models and Coogan and Arcak, 2014) or Difference Equations (Discrete
space-time models). Moreover, traffic flow models can also be distinguished into
First-Order Models (FOMs) and Second-Order Models (SOMs) (Payne, 1971, Mess-
mer and Papageorgiou, 1990, Aw and Rascle, 2000, Whitham, 2011, Delis, Niko-
los, and Papageorgiou, 2014, Zhang and Prieur, 2017), depending on the number
of dynamic variables that describe. The study of vehicular traffic flow by means of
hyperbolic PDEs started in the 1950s with the well-known first-order LWR model
(Lighthill and Whitham, 1955b; Richards, 1956), where the flow dynamics are de-
scribed by a single PDE and the corresponding steady-state, smooth and concave
FD. More details on the properties and the characteristics of this model are given
below.

The kinematic wave LWR model is a scalar nonlinear conservation law of hy-
perbolic type and turns out to be one of the simplest nonlinear conservation laws
in engineering science. A significant amount of literature proposes and extends dis-
crete approximations of continuous LWR models applying the Godunov discretiza-
tion scheme (Godunov, 1959), where the FD is transformed into two flux functions
known as the demand (flow that can be sent from upstream) and the supply (flow
that can be received downstream) functions (Lebacque, 1996). The most cited among
these discretized models is the Cell Transmission Model (CTM) (Daganzo, 1994),
where the flow is expressed as a function of density via the definition of a triangu-
lar FD, and the space and time increments are selected according to the free speed.
Other FOMs, which are not of LWR-type and do not utilize the demand-supply
method, have been introduced so as to represent the diffusion of kinematic waves.
Continuous and discrete-time models of this type have been proposed by Lighthill
and Whitham, 1955b and Papageorgiou, Blosseville, and Hadj-Salem, 1989, respec-
tively.

LWR-type models represent a valuable tool for the study of traffic behavior, as
they are simple, yet effective in reproducing not only free-flow conditions, but also
wave formation and propagation under congested conditions. Remarkably, CTM
realistically predicts shockwave propagations, while all the parameters have a phys-
ical interpretation, implying that they can be easily calibrated using real traffic data
(Muñoz et al., 2004). Furthermore, CTM is characterized by low computational re-
quirements (Gomes and Horowitz, 2006; Lo, 2001) and it can be easily extended for
large-scale freeway and urban networks (Lebacque et al., 1996). Finally, it has been
employed for the study of different applications, such as dynamic traffic assignment
(Lebacque et al., 1996; Ziliaskopoulos, 2000), traffic prediction, signal control and
ramp metering (Alecsandru et al., 2011; Gomes and Horowitz, 2006; Zhang, Ritchie,
and Recker, 1996). However, neither LWR nor CTM can reproduce more complex
traffic phenomena such stop-and-go waves and the capacity drop.

In order to avoid the weaknesses of LWR-type FOMs, various second-order macro-
scopic traffic flow models have been proposed which contain an additional dynamic
equation to describe the speed evolution. Payne, 1971 and later Whitham, 2011
derived a so-called "momentum equation" from a car-following argument, while
several modifications of these models (called hereafter PW-like models) were sub-
sequently proposed (Zhang, 1998). PW-like models are also of hyperbolic type.
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Although SOMs are capable to reproduce traffic instabilities, such as stop-and-go
waves, as well as the capacity drop phenomenon at active bottlenecks, they also
present some drawbacks: (i) they may (under rare circumstances, as shown by Hel-
bing and Johansson, 2009) produce negative speeds or flows (also known as wrong-
way travel phenomenon, see the work by Daganzo, 1995a); (ii) they usually include
a high number of parameters (some of which without clear physical significance),
that need to be appropriately calibrated; and (iii) any optimization problem built
upon SOMs is characterized by a nonlinear formulation, which implies a rather high
computation effort and the impossibility to guarantee convergence to a global opti-
mum (Kotsialos and Papageorgiou, 2004). With respect to the last drawback, also
FOMs include non-linearities, which however may be more efficiently tackled while
defining an optimization problem, by using computationally-efficient mixed-integer
linear formulations (Ferrara, Sacone, and Siri, 2015) or, under specific assumptions,
by using only linear constraints (Ziliaskopoulos, 2000; Roncoli, Papageorgiou, and
Papamichail, 2015c).

Traffic flow models can also be separated into those which preserve the anisotropic
property, i.e., what happens behind a vehicle generally does not affect the behavior
of that vehicle, and those that do not. In contrast to the LWR model which assumes
smooth and concave FDs, other kinematic wave models can be produced with more
general FDs, e.g., continuous, piecewise smooth, and not necessarily concave. How-
ever, there exist specific choice for the FD where the anisotropic property is not
preserved (see e.g. Zhang, 2001), therefore whether a first-order kinematic wave
model is anisotropic or not depends on the kind of the FD it adopts. SOMs that do
not preserve the anisotropic property have been proposed by Payne, 1971 and later
Whitham, 2011, while SOMs that preserve it have been proposed by Zhang, 2002,
Aw and Rascle, 2000 and Karafyllis, Bekiari-Liberis, and Papageorgiou, 2017.

Recently, researchers have also developed another class of traffic flow models,
the two phase models (see Monamy, Haj-Salem, and Lebacque, 2012,Colombo, 2003),
based on the admission of the existence of two distinct behaviors of traffic flow (free
or congested). These models are concerned with phase transitions in hyperbolic sys-
tems of conservation laws, i.e., free boundary separating two different models and
whose evolution is determined by the solution on both of its sides.

Important aspects of Traffic flow Modeling are model Calibration and Validation
procedures. Specifically, freeway traffic flow models include a set of parameters,
whose values may differ for different freeway sites and depend on factors such as
network topology, drivers’ behavior, percentage of trucks, weather conditions and
more. Thus, before employing a traffic flow model in practice, it is important first to
calibrate it against real traffic data. The calibration procedure aims to appropriately
specify the model parameter values, so that the representation of the network and
traffic flow characteristics is as accurate as the model structure allows and this is
achieved by using appropriate optimization algorithms.

1.2 Mathematical Control Theory

Mathematical Control Theory is the area of applied mathematics that deals with the ba-
sic principles underlying the analysis and design of control systems (Sontag, 1998).
One of the main lines of work in Control Theory deals with the uncertainties, which
are imposed either by the model describing the system or by the environment in
which the object to be controlled operates. In order to handle deviations from a de-
sired system behavior, the main tool is the use of feedback. Feedback control theory
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involves the analysis and synthesis of feedback controllers that manipulate system
inputs to obtain a desired effect on the output of the system in the face of system
uncertainty and system disturbances. Feedback control systems are also used in
order to compensate for errors from a precomputed and potentially optimal trajec-
tory. Here, Dynamical Systems Theory and Stability Theory have played an impor-
tant role towards feedback design. Dynamical Systems Theory provides a paradigm
for modeling and studying phenomena that undergo spatial and temporal evolu-
tion. Stability Theory concerns the behavior of the system trajectories of a dynamical
system when the system initial state is near an equilibrium state; its importance is
emphasized since exogenous disturbances and system component uncertainty are
always present.

More often than not, physical and engineering systems are inherently nonlinear
and therefore the use of linear techniques for controlling such systems is not effec-
tive. Although local analysis and control design in general can be carried out satis-
factorily using linear or linearized models, global analysis requires more powerful
methods. During the last years, the area of Nonlinear Systems and Control has made
significant progresses with the Lyapunov Stability Theory giving rise both to the study
of the behavior of nonlinear dynamical systems but also to the design of feedback
controllers for their stabilization (Haddad and Chellaboina, 2008). The main idea be-
hind Lyapunov function methods is the existence of some sort of "energy" measure
for the states which diminishes along suitably chosen paths. Then, the system can
be forced to follow these paths leading to a minimal-energy configuration, without
any requirement to explicitly compute the solutions of the system. However, there
does not exist a unified procedure for finding such a measure (Lyapunov function)
for general nonlinear systems; to do so a certain amount of physical intuition and
experience is needed.

The question of existence of a smooth and more generally continuous feedback
law in the nonlinear case is the subject of much current research and it is closely
related to the existence of Lyapunov functions. Lyapunov-based methods were in-
spired by Jurdevic and Quinn, 1978, who give sufficient conditions for smooth sta-
bilization based on the ability to construct a Lyapunov function for the closed-loop
system. Artstein, 1983 and Coron and Rosier, 1994 introduced and exploited the no-
tion of the Control Lyapunov Function (CLF) whose existence guarantees a feedback
control law, which globally stabilizes a nonlinear dynamical system. Advances in
Lyapunov-based methods have been developed for analysis and control design for
numerous classes of nonlinear dynamical systems and Lyapunov’s direct method
has become one of the cornerstones of systems and control theory. In particular, we
can distinguish three different techniques which are helpful to construct Lyapunov-
function based feedback and which have found wide applicability, both for local
and global stabilization: backstepping, damping control and universal formulas (Sontag,
1998). Backstepping (also called "adding an integrator") (Tsinias, 1989; Coron and
Praly, 1991; Krstic, Kanellakopoulos, and Kokotovic, 1995; Tsinias, 2000), which has
received a great deal of attention in the literature, allows one to recursively design
controllers for certain complex systems by a step-by-step procedure, starting with
a simpler system and adding at each stage an integrator "in front" (at the input) of
the simpler system (Sepulchre, Jankovic, and Kokotovic, 1997). The popularity of
this method lies on the fact that it provides a systematic procedure for finding a Lya-
punov function for nonlinear closed-loop cascade systems. Damping control allows
the construction of feedback that is smooth at the origin, while universal formulas,
typically guarantees smoothness only away from the equilibrium of interest.

Recently, many researchers have addressed the stabilization of equilibrium points
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of large-scale discrete-time systems. However, the verification of stability for large-
scale systems still remains a challenging problem on its own. To this purpose, many
tools have been proposed in the literature such as Vector Lyapunov Functions (VLFs)
that are very useful for large-scale discrete-time systems. Sufficient stability condi-
tions by means of VLFs have been proposed by Haddad and Chellaboina, 2008, p.
792-798. In addition, small-gain conditions have been proposed by Jiang, Teel, and
Praly, 1994 and Liu, Hill, and Jiang, 2012, which can be expressed by means of a VLF
formulation (as shown by Karafyllis and Jiang, 2011, Chapter 5). Recently, sufficient
conditions have been provided by Karafyllis and Papageorgiou, 2015 for the Robust
Global Exponential Stability (RGES) of nonlinear large-scale uncertain networks by
means of VLFs.

A significant amount of research is also made in the area of Adaptive Control.
Adaptive control deals with the control of linear and nonlinear systems with un-
known parameters and typically make use of identification techniques to produce
estimates of the system parameters for use by controllers (Krstic, Kanellakopoulos,
and Kokotovic, 1995; Ioannou and Kosmatopoulos, 2006). Intuitively, an adaptive
controller is a controller that can modify its behavior in response to changes in the
dynamics of the process and the character of the disturbances. This can be made by
a controller with adjustable parameters and a mechanism for adjusting the param-
eters. An important feature of adaptive control is its reliance on "certainty equiv-
alence" controllers. This means that a controller is first designed as if all the plant
parameters were known, and the controller parameters are calculated as functions
of the plant parameters, by solving design equations. When the actual plant param-
eters are not known, the controller parameters are either estimated directly (direct
schemes) or computed by solving the same design equations with plant parameter
estimates (indirect schemes). The resulting controller is called a certainty equiva-
lence controller (Karafyllis and Krstic, 2016).

Identification techniques include among others the construction of observers, whi-
ch deal with obtaining estimates of the internal unmeasured state variables from the
measurable output. Observer-based control is a way to solve the output feedback
control problem, that implies a restriction in the possibility to use all the states di-
rectly for feedback. Relevant general theorems guarantee the existence of observers,
which achieve stabilization of many linear and nonlinear systems using controllers
that are itself a linear system (Gauthier and Kupka, 1994; Gauthier and Kupka, 2001;
Khalil and Praly, 2014). Such a controller is said to incorporate integral or dynamic
feedback, and it includes a differential (or difference) equation, driven by the obser-
vations, that calculates the necessary estimate. Moreover, observer-based adaptive
control schemes, i.e., combination of a time-varying controller, a state observer and a
parameter tuning mechanism, have been proposed by Calugi, 2002, which solve the
control problem of a plant with uncertain parameters whose state is only partially
available by the measurements. Although only for linear systems it is ensured the
possibility of decomposing the problem in two or three sub-problems (thanks to the
separation principle), there exist adaptive schemes which allow a separation of the
controller, the parameter update law and the state observer also for some classes of
nonlinear systems (Krstic, Kanellakopoulos, and Kokotovic, 1995; Ahmed-Ali, Giri,
and Krstic, 2017).



6 Chapter 1. Introduction

1.3 Traffic Control

Traffic Control aims to tackle congestion phenomena observed at traffic networks. Of
particular interest in this thesis is the problem of traffic congestion observed in free-
way networks. Modern freeways, in most urban areas, are seriously congested on a
daily basis during rush hours leading the drivers to experience excessive delays and
reduced traffic safety, affecting also the environment with increased fuel consump-
tion and consequently air pollution. Congestion on freeways appears a paradox
to people who are not familiar with traffic flow characteristics; drivers often spend
several hours in long freeway queues although there is no apparent reason for a
breakdown (no accident, no traffic lights). The answer to this paradox lies partially
in keeping a safe distance between cars and partially in the dynamic driver behavior
when acting as distance regulators.

Extensive research has been conducted to investigate and develop traffic con-
trol measures, which can tackle this phenomenon. Freeway traffic control measures
aimed at increasing the efficiency and safety of the traffic system can be distin-
guished into the following three classes:

• Variable Message Signs (VMS), such as speed limitation or harmonization via
Variable Speed Limits (VSL), no overtaking and congestion warning, which
aim at homogenizing traffic flow on a freeway axis. This usually leads to more
stable behavior of the traffic flow and may increase traffic throughput as well
as the critical density value. Recent studies have demonstrated that VSL may
be used as a mainstream metering device as well (Carlson et al., 2010b).

• Ramp Metering (RM) which, by the use of traffic lights positioned at on-
ramps, aims at regulating the entering traffic flow and operating traffic flow
near its maximum value, avoiding overload due to excessive demands (Papa-
georgiou and Kotsialos, 2000). Although some delay may be caused at waiting
ramp queues, the overall time may be decreased due to the optimal operation
of the existing infrastructure.

• Variable Route Recommendation Signs (VRRS), which aim at distributing
traffic flow in a freeway network so as to minimize delays and to optimally
utilize the existing infrastructure.

To achieve their goal, these control measures must be driven by appropriate con-
trol strategies (Papageorgiou and Kotsialos, 2000). For instance, ramp metering con-
trol strategies have as an ultimate goal to determine, in the most efficient way, the
inflows from the on-ramps, when congestion phenomena are present or imminent
at the corresponding mainstream region, so as to maximize the freeway throughput.

Control strategies can be classified into fixed-time and traffic-responsive strategies,
with the latter being classified into local or coordinated strategies (Papageorgiou and
Kotsialos, 2000). Fixed-time control strategies use historical data in order to specify
optimal, time-of-day-dependent plans, while traffic-responsive (real-time) strategies
use current traffic data, provided by sensors installed in the freeway network and
the on-ramps, in order to appropriately specify the values of the control variables in
order to minimize the extent of congestion. The latter strategies are considered to
be the most robust and efficient approach in this context. Moreover, real-time local
ramp metering strategies make use of measurements from the vicinity (or further
downstream) of a single ramp, while coordinated ramp metering strategies make
use of measurements from an entire region of the network to control all metered
ramps included therein.
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The most important traffic control strategies include Nonlinear Optimal Control,
Model Predictive Control and Explicit Feedback Control. The first two control approaches
can be used as a network-wide freeway traffic control approach (see, e.g. Burger et
al., 2013; Carlson et al., 2010a; Gomes and Horowitz, 2006; Hegyi, De Schutter, and
Hellendoorn, 2005) and they are very efficient. However, none of these proposed
methods has advanced to a field-operational tool since they are highly demanding
from the computational point of view. Other proposed local control strategies in-
clude feedforward control approaches, such as the demand-capacity strategy and
its variations (Masher et al., 1975), neural network (Zhang and Ritchie, 1997) and
fuzzy logic based (Vukanovic and Ernhofer, 2006) approaches. On the other hand,
optimal control strategies (Bellemans, De Schutter, and De Moor, 2002; Chen, Hotz,
and Ben-Akiva, 1997; Gomes and Horowitz, 2006; Hegyi, De Schutter, and Hee-
lendoorn, 2003; Kotsialos, Papageorgiou, and Middelham, 2001; Papageorgiou and
Mayr, 1982; Zhang and Recker, 1999; Zhang and Levinson, 2004), linear multivari-
able control strategies (Diakaki and Papageorgiou, 1994; Papageorgiou, Blosseville,
and Hadj-Salem, 1990), and rule-based algorithms (Hourdakis and Michalopoulos,
2002; Jacobson, Henry, and Mehyar, 1989) belong to the coordinated ramp metering
strategies.

Explicit feedback control approaches has been shown to enhance the efficiency
of traffic operations without undue computational requirements. A pioneering de-
velopment in this direction was the I-type local feedback ramp metering regula-
tor ALINEA (Papageorgiou, Hadj-Salem, and Blosseville, 1991) and its extensions
(Wang and Papageorgiou, 2006; Wang et al., 2010), which has been used in hun-
dreds of successful field implementations around the world (see, e.g. Papageorgiou,
Hadj-Salem, and Middelham, 1997; Papamichail et al., 2010). ALINEA controls the
traffic entering from an on-ramp and targets a critical density in the mainstream
merging segment so as to maximize the freeway throughput. Other proposed local
feedback control algorithms for ramp metering include (Hou, Xu, and Yan, 2008;
Kachroo and Ozbay, 2011; Shlayan and Kachroo, 2013; Sun and Horowitz, 2006), to
mention just a few. Feedback control approaches for mainstream traffic control by
use of VSL have been rather sparse (see Carlson, Papamichail, and Papageorgiou,
2011 and Iordanidou et al., 2015 for a recent extension to the multiple bottleneck
case). Furthermore, local and coordinated feedback control strategies can also be
combined, e.g., as in the work by Papamichail and Papageorgiou, 2008.

1.4 Motivation and Objectives of this Thesis

To adequately address the increasing freeway traffic congestion problems, it is es-
sential to investigate, develop and deploy the potentially most efficient methods,
and recent advances in the field of Nonlinear Systems and Control should be ap-
propriately exploited to this end. So far, literature generally lacks of studies that
provide rigorous methods, which simultaneously guarantee strong theoretical prop-
erties and are easily applicable for real traffic control.

This thesis aims to commence such an promising approach for developing con-
trol strategies in order to produce more efficient and robust traffic control. In par-
ticular, this thesis utilizes mathematical tools originated from the field of Nonlinear
Systems and Control for the stabilization of nonlinear systems that describe gen-
eral traffic systems and freeways. To the best of the author’s knowledge this is the
first time that such an approach is adopted for control of traffic systems. Moreover,
this thesis focuses on space-time discretized traffic flow models with nice analytical
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properties (e.g., explicit state-space form, involvement of continuous and differen-
tial functions) and which provide, from an engineering application point of view,
easy applicability for producing codes in a computer environment for simulations
purposes, short computation times and convenient discretization intervals. Since the
original PDEs are largely empirical, it may not be necessary to apply special effort
and employ complex numerical schemes for their accurate discretization. Instead,
an approximate, but explicit and analytical space-time discretized model may first
be derived from the PDEs; to be used eventually as a self-contained modeling tool
for practical applications (rather than the original PDEs).

Specifically, the main objective of this thesis is threefold:

• First, to develop general discrete space-time models for traffic networks, spe-
cific instances of which are well-known and established traffic flow models
proposed in the literature so far. Particular emphasis is given in this first as-
pect of the present thesis to freeway models that are able to reproduce the
right traffic pattern and the capacity drop phenomenon observed in freeway
networks. To this end, appropriate specifications on the developed models are
proposed so as to account with the capacity drop phenomenon. An extended
literature review of other proposed enhanced LWR-type models incorporating
capacity drop is performed and appropriate comparisons are made through
simulation and calibration/validation procedure.

• Second, the present thesis aims to provide a rigorous methodology for the con-
struction of explicit feedback laws that are able to guarantee the RGES of the
Uncongested Equilibrium Point (UEP) of the developed general traffic flow
models. The stability of the closed-loop systems is checked in terms of VLF
and SLF criteria and appropriate theorems are constructed. The stabilization is
achieved by regulating an appropriate set of inflows; for freeway models, suf-
ficient conditions for the specification of such a set are also provided. All the
provided sufficient conditions can be easily checked and give to the traffic en-
gineer the ability to design easily an opportune feedback controller. Moreover,
for freeway networks and in case limited information is provided regarding
the system parameters, this thesis also provides a methodology for the con-
struction of adaptive control schemes, the application of which guarantee the
robust global exponential convergence to any selected unknown UEP.

• As a final step, the developed control schemes are tested in a realistic free-
way traffic control scenario in order to investigate potential application of the
scheme to the real field. Here, appropriate hypothetical scenarios are con-
structed and the developed schemes are tested with respect to their ability
to stabilize the system when bottlenecks exist far downstream of a metered
on-ramp.

1.5 Thesis Outline

The thesis is organized in a series of self-contained chapters. This first introductory
chapter presents some prerequisite notions on Traffic Flow Modeling and Control,
the motivation and the objectives of this thesis. The outline of the rest of the docu-
ment is as follows:

• Chapter 2 introduces the reader to the basis of this work, i.e., modeling. First,
the model derivation of the general proposed acyclic traffic network and its
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special case of a freeway model are presented along with all the accompany-
ing discussion on their properties and the related assumptions. Then, specific
cases of the developed freeway models are introduced, which are able to incor-
porate the capacity drop phenomenon. Finally the proposed freeway models
are tested in terms of calibration and validation using real-data from a network
in UK.

• Chapter 3 presents the control methodology developed for the acyclic traffic
flow models developed in Chapter 2. The application of the proposed method-
ology, which guarantees the RGES of the UEP of the aforementioned models,
and the proofs of the corresponding results are extensively presented. More-
over, this chapter demonstrates the applicability of the obtained results by
means of simulation using a realistic hypothetical network.

• Chapter 4 presents a methodology for constructing explicit feedback laws for
a special case of the acyclic traffic flow models, that is, freeway networks. The
application of this control methodology renders the UEP robustly globally ex-
ponentially stable and the importance behind its development lies on the fact
that a SLF is constructed. The proof of the main result as well as illustartive
examples are also presented.

• Chapter 5 extends the results presented in Chapter 4 and provides a methodol-
ogy for the development of Adaptive Control Schemes (ACSs) which are able
to guarantee the robust global exponential attractivity of the UEP of the de-
veloped freeway models. The ACS is composed by the nominal feedback pre-
sented in Chapter 4 as well as a nonlinear dead-beat observer which performs
the exact identification of the unknown parameters after a transient period.

• Chapter 6 provides insights into the practical properties and performance of
the methodology developed in Chapter 5, under realistic and customary traf-
fic scenarios occurring in freeway networks. Testing this strategy with suf-
ficiently accurate traffic flow models, different than the ones used for its de-
sign, is deemed as an indispensable step towards potential application of the
proposed methodology in the field. More specifically, the ACS presented in
Chapter 5 is tested in simulation in terms of its ability to control a bottleneck
far downstream of a metered on-ramp. Moreover, the ACS is tested under
scenarios which call for coordinated control measures by exploiting the corre-
sponding inherent feature of the ACS.

• The thesis is concluded in Chapter 7, which summarizes its findings and re-
sults. Future perspectives are also presented here, which can help to the exten-
sion of these results.

• The present thesis contains also a number of Appendices. Appendix A presents
the related mathematical background accompanying with some important def-
initions, lemmas and theorems. The reader is encouraged to first read this
chapter before proceeding to the main core of this study, i.e., Chapters 3, 4 and
5). Appendix B contains the proofs of some important auxiliary results used
in the proofs of the main results. Finally, Appendix C presents a study that
links a proposed discrete space-time FOM incorporating capacity drop with
the continuous space-time LWR model.
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Chapter 2

First-Order Models: Derivation
and Validation Study

2.1 Introduction

Networks are large-scale entities representing different types of physical or cyber-
physical systems such as fluid flow networks, communication networks, smart grids,
etc. (Ahmed, Akhtar, and Aziz, 2015; Marinaki and Papageorgiou, 2005; Moarref
and Rodrigues, 2016; Shahid, 2016). In this thesis, particular emphasis is given to
traffic networks for which a plethora of diverse infrastructures can be addressed
on the basis of a unifying modeling approach (see, for example, Coogan and Ar-
cak, 2014; Fermo and Tosin, 2013; Pisarski and Wit, 2012). More specifically, traf-
fic networks may constitute urban road networks consisting of interconnected links
which are modelled as store-and-forward components (Aboudolas, Papageorgiou,
and Kosmatopoulos, 2009) or cell-transmission links (Buisson, Lebacque, and Lesort,
1996); large urban networks consisting of homogeneous subnetworks (Aboudolas
and Geroliminis, 2013); freeway networks consisting of series of links, which are
modelled, e.g., via general discretized LWR models (Lebacque, 1996; Lighthill and
Whitham, 1955b) or its simplified CTM version (Daganzo, 1994); large mixed (corri-
dor) networks consisting of urban and freeway links (Papageorgiou, 1995).

A general class of highly nonlinear and uncertain discrete space-time dynamical
systems is presented in this chapter. The developed FOM represents general acyclic
networks consisting of an arbitrary number of elementary components with con-
stant turning and exit rates. The components can be interconnected to form any two
- dimensional structure with no cycles for the overall network. The requirement re-
garding the absence of cycles is utterly necessary for reasons that will be apparent in
the subsequent chapters of this thesis. It is important to note that specific instances
of the proposed general model may result in all the traffic network structures men-
tioned above; however, in this thesis, particular emphasis is given in the case of
freeway models.

Regarding freeways, this chapter proposes appropriate specifications on the de-
veloped freeway models so as to account with the capacity drop phenomenon. De-
spite the increasing interest from the research community in integrating capacity
drop in FOMs, a limited number of effective approaches have been proposed, and
only a few are actually tested using real traffic data to evaluate their behavior in
case a bottleneck is activated. This chapter aims to fill this gap, gathering the state-
of-the-art related to capacity drop modeling within discretized LWR-type models,
contributing with further insights about their implications, and testing their capa-
bility to reproduce correctly the desired traffic pattern at an active bottleneck due
to on-ramp merging. The selection criteria for the approaches that are described
and analyzed in this chapter are two: first, the selected models should include a
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low number of parameters, which implies a limited effort in calibration and easier
application; second, the selected models should be capable of reproducing the ca-
pacity drop for a typical on-ramp merge scenario. In addition, based on the above
considerations, a new modeling approach is introduced, which is, among others, a
special case of the developed and proposed freeway models. An analysis that links
this model with the continuous LWR model is also provided in Appendix C. Several
modeling ideas have been proposed by the research community in order to incorpo-
rate the capacity drop phenomenon into LWR-type models using different assump-
tions. The rest of this section is devoted to a comprehensive literature review of the
proposed approaches, along with an attempt to categorize them according to their
underlying basic ideas.

Capacity drop is one of the most known and puzzling phenomena characterizing
traffic flow behavior. Empirical observations show that, whenever a bottleneck is
activated, the maximum outflow that materializes (also called discharge flow) may
be some 5 to 20 % lower than the nominal bottleneck capacity. The capacity drop is
then defined as the difference between these two values of flow, i.e., the capacity and
the discharge flow. Certainly, the capacity drop reflects infrastructure performance
degradation, leading to increased congestion space-time extent and longer vehicle
delays. To avoid or delay the activation of a bottleneck, and the related capacity
drop phenomenon, various traffic control measures have been proposed and applied
(Cassidy and Rudjanakanoknad, 2005; Papageorgiou, Hadj-Salem, and Blosseville,
1991; Papageorgiou et al., 2003).

Since the pioneering work by Edie, 1961, it has been observed that the flow-
density relation can be discontinuous, featuring a sharp speed drop within a small
density range, when a critical density value is exceeded. Specifically, this disconti-
nuity in the FD generally arises when congestion appears in the area of an active bot-
tleneck and reflects the capacity drop phenomenon. The resulting particular shape
of the FD has sometimes been referred as "inverse lambda", see Koshi, Iwasaki, and
Ohkura, 1983. This behavior can be theoretically modeled via definition of two flow
values for a specific range of densities around the critical density, where the different
flows appear in dependence of the current and past traffic conditions. Nevertheless,
some research works suggested that it is more appropriate to employ a continuous
FD rather than a discontinuous one, since the latter may cause infinite shock-wave
and characteristic wave speeds, as discussed by Jin, Gan, and Lebacque, 2015; more-
over such a discontinuity differs from observations in the field (Cassidy, 1998).

Various approaches to enable the description of the aforementioned behavior
have been proposed in different works. Muralidharan and Horowitz, 2015 and Li et
al., 2015 proposed to reduce the outflow of a cell to a fixed value (lower than its nom-
inal capacity) by modifying the demand function when the density of the cell be-
comes overcritical, leading to a FD of the “inverse lambda” shape. More specifically,
Muralidharan and Horowitz, 2015 proposed an augmented Link-Node Cell Trans-
mission Model (LN-CTM), which is utilized in the formulation of an optimization
problem; while Li et al., 2015 utilized a CTM variation accompanied with a stochas-
tic component (added in order to reproduce stop-and-go waves) and proposed a
methodology to reduce crash risks via Variable Speed Limits (VSL). Furthermore,
Jin, 2010 proposed a model that takes into account lateral and longitudinal move-
ments of vehicles, in order to study the aggregated traffic dynamics of a freeway,
including lane-changing effects. More specifically, a modified FD using an “inverse-
lambda” shape is proposed by adding a parameter, which captures the intensity of
lane-changing effects.
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Other works considered the capacity drop mechanism being produced as a con-
sequence of microscopic phenomena, such as lane-changing maneuvers, slow vehi-
cles entering a merge cell, and heterogeneous lane behavior due to the variations
of traffic states at merges, which prevent the system to reach the full freeway capac-
ity before the breakdown (Cassidy and Ahn, 2005; Laval and Daganzo, 2006; Treiber,
Kesting, and Helbing, 2006). Again, Muralidharan and Horowitz, 2015 proposed the
inclusion of an additional weaving parameter affecting the supply function within
the LN-CTM in order to capture the intensity of lane changing maneuveurs. As pre-
viously mentioned, a similar feature is also present in the model proposed by Jin,
2010.

Other studies incorporated the ability of reproducing capacity drop into LWR-
type models by considering explicitly its phenomenological aspects, i.e., the ap-
pearance of the capacity drop immediately after queues are forming upstream of
the bottleneck location. This can be achieved by letting the downstream supply be
smaller than the upstream demand. Torné, Soriguera, and Geroliminis, 2014 pro-
posed a modeling approach, within a so-called Capacity-Lagged CTM (CL-CTM),
which modifies the FD from a triangular to a trapezoidal shape in case VSL are ap-
plied. This is materialized via definition of appropriate rules to switch from capacity
to a reduced discharge flow, where the two flow values (capacity and discharge flow)
are chosen a priori. Similarly, Jin, Gan, and Lebacque, 2015 modifies the supply func-
tion by introducing an exogenously specified reduced capacity, which is activated
when the demand of the cell is lower than its supply. Han et al., 2016 employed
a similarly modified FD, with the difference that the capacity of the bottleneck cell
reduces (linearly) as the density of the upstream cell (the congested one) increases.
Furthermore, Landman, Hegyi, and Hoogendoorn, 2015 employed the macroscopic
multilane FOM proposed by Van Lint, Hoogendoorn, and Schreuder, 2008, which
enables capacity drop by decreasing the supply function of the cells located down-
stream of a congested one, using a pre-specified factor. Srivastava and Geroliminis,
2013 proposed a memory-based methodology, where two different values of density
are chosen in order to determine whether a cell is in free-flow or congested state;
whenever a cell is congested, the corresponding supply function is bounded by a
pre-specified flow lower than its capacity. Thus, in this formulation, (at least) two
additional parameters need to be specified: one (or two) density threshold(s), char-
acterizing the interval where flow capacity drop is appearing, and the discharge
flow. The main disadvantage of this approach is the generation of high-frequency
fluctuations between congested and uncongested states that does not allow a cell to
remain in congested state for a long period. The authors suggest using moving aver-
ages to smooth the density variations while applying the switching logic; however,
this may not be sufficient to eliminate the aforementioned problem, since fluctua-
tions with lower frequency and larger amplitude may be still observed.

Other researchers have tried to incorporate capacity drop within the LWR frame-
work by accounting for the bounded acceleration of vehicles entering a bottleneck
location. For instance, Lebacque, 2003 proposed a two-phase traffic flow model,
where the first phase corresponds to the LWR model, while in the second phase the
acceleration of vehicles is constant and equal to a maximum value; moreover, also a
simplified approach that proposes only a modification of the FD is presented. Sim-
ilar assumptions have been made by Monamy, Haj-Salem, and Lebacque, 2012 for
a link-node model that has been also partially validated with real data for a merg-
ing scenario. Both the simplified model proposed by Lebacque, 2003 and the model
proposed by Monamy, Haj-Salem, and Lebacque, 2012 utilize a decreasing demand
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function for densities beyond a critical value to reflect bounded acceleration of ve-
hicles, while the supply function remains the same. However, this model is capable
to reproduce the capacity drop phenomenon in on-ramp merges only for specific
cases; in fact, if the flow, that the merge cell can receive, is smaller than its capac-
ity (due to the unchanged supply function), the desired effect is cancelled, because
the merge cell cannot become congested and continues operating at capacity. The
concept of the simplified model proposed by Lebacque, 2003 can also be followed
by the proposed general modeling framework of Section 2.2, which allows for a
wide range of demand functions to be taken into account, where the capacity drop
can be included through the definition of linearly decreasing or even discontinuous
demand functions for overcritical densities; while Roncoli, Papageorgiou, and Pa-
pamichail, 2015c included the possibility of capacity drop into a multi-lane FOM in
order to define a quadratic programming optimization problem (Roncoli, Papageor-
giou, and Papamichail, 2015b); a modified FD is used, similar to the one proposed
by Lebacque, 2003, and the capacity drop is triggered by lateral and on-ramp flows.

Furthermore, Leclercq, Laval, and Chiabaut, 2011 proposed to quantify capacity
drop as a consequence of bounded acceleration of merging vehicles. The capacity
drop is defined as a function of the on-ramp demand considering two possible de-
mand scenarios (low/high demand) and a set of different model parameters. The ba-
sis of this work is the Newell-Daganzo (ND) model (Newell, 1982; Daganzo, 1995b),
enhanced by the introduction of different formulas and rules to compute the capac-
ity of the merge cell depending on the on-ramp and mainstream demands. However,
this approach focuses mainly on determining the value of the capacity drop, with-
out advising on any methodology for its implementation into discretized LWR-type
models.

Last but not least, some researchers have tried to incorporate the capacity drop
phenomenon into LWR-type models through the hysteresis phenomenon of traffic
flow (see, e.g. Alvarez-Icaza and Islas, 2013; Yuan et al., 2015), which was first re-
ported by Treiterer and Myers, 1974 and derives from the fact that the acceleration
and the deceleration of vehicles are not symmetric procedures. This means, that,
whenever the traffic is moving from free-flow to congested regime, the observed
flow reaches the bottleneck capacity; while, the transition from congested regime to
free-flow occurs via a maximum flow, which is lower than the capacity. Thus, two
different branches may exist in the FD, whereby the deceleration branch lies above
the acceleration branch. It is worth noting that SOMs employing a continuous FD
may naturally produce the hysteresis behavior of traffic flow and the capacity drop,
thanks to the included dynamic speed equation (see e.g. Papageorgiou, Blosseville,
and Hadj-Salem, 1990, Figure 14).

Several of the proposed approaches are tested in the following sections in order
to provide further insights about their implications and their capability to reproduce
correctly the desired traffic patterns at an active bottleneck due to on-ramp merging.
The selected modeling approaches are those that are simple in terms of the number
of parameters and can be formulated within a simple general LWR model frame-
work. In particular, the following modeling approaches are selected to be tested
in the next section: i) the "inverse lambda" shape FD modeling approach proposed
by Muralidharan and Horowitz, 2015 and Li et al., 2015; ii) the model, which in-
troduces a weaving parameter for lane-changing effects, proposed by Muralidharan
and Horowitz, 2015; iii) the modeling approach proposed by Torné, Soriguera, and
Geroliminis, 2014 with appropriate modifications for the case of an on-ramp merge;
iv) a similar modeling approach with the one proposed by Han et al., 2016 which uti-
lizes linearly decreasing capacity for the downstream supply; and finally, v) a new
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modeling approach extending the ones proposed by Lebacque, 2003 and Monamy,
Haj-Salem, and Lebacque, 2012.

The rest of this chapter is structured as follows: Section 2.2 presents the model
derivation of the developed acyclic traffic networks as well as the related assump-
tions and consequences which are relevant to the proposed modeling framework.
Section 2.3 is devoted to the study of the capacity drop phenomenon observed in
freeways and the related specifications on the developed models needed for its in-
corporation. The selected approaches are analyzed and compared; in addition, a
FOM that is not of LWR-type is included for comparison. Finally, Section 2.4 presents
a calibration/validation study of the first-order capacity drop modeling approaches
using real traffic data from a freeway network in UK.

2.2 Model Derivation

2.2.1 Acyclic Traffic Networks with Constant Turning and Exit Rates

We consider a general traffic network which consists of n components (cells). Each
cell may have an external (controllable) inflow (e.g., from corresponding on-ramps),
located near the cell’s upstream boundary; and an external outflow (e.g., via corre-
sponding off-ramps), located near the cell’s downstream boundary. The density of
vehicles at time t ≥ 0 in cell i ∈ {1, ..., n} is denoted by xi(t). The total outflow
and the total inflow of cell i ∈ {1, ..., n} at time t ≥ 0 are denoted by F outi (t) ≥ 0
and F ini (t) ≥ 0, respectively. All flows during a time interval are measured in
[veh]. Consequently, the conservation equation (balance of mass) for each compo-
nent i ∈ {1, ..., n} is given by:

xi(t+ 1) = xi(t)− F outi (t) + F ini (t), i = 1, ..., n, t ≥ 0. (2.1)

Each component of the network has storage capacity ρmaxi > 0, (i = 1, ..., n); there-
fore, we define the set of the states, i.e., x ∈ S, as:

S = [0, ρmax1 ]× · · · × [0, ρmaxn ]. (2.2)

Our first assumption is dealing with the outflows. We assume that there exist
functions fD,i : D × [0, ρmaxi ] → <+, si : D × S × <n+ → [0, 1] with fD,i(d, xi) ≤ xi
for all (d, xi) ∈ D × [0, ρmaxi ], where D ⊆ <l is a non-empty compact set, constants
bi,j ≥ 0, i, j = 1, ..., n, with bi,i = 0, for i = 1, ..., n, and constants pi ≥ 0, i = 1, ..., n
so that:(

flow of vehicles
from cell i to cell j

)
= bi,jsi(d, x, v)fD,i(d, xi), for i, j = 1, ..., n, (2.3)

 flow of vehicles
from cell i to

regions out of the freeway

 = pisi(d, x, v)fD,i(d, xi), for i = 1, ..., n. (2.4)

We also assume that:
n∑
j=1

bi,j + pi = 1, for i = 1, ..., n. (2.5)
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Some explanations are needed at this point. The functions fD,i : D × [0, ρmaxi ]→
<+ (i = 1, ..., n) denote, the attempted outflow from the i-th cell, i.e., the outflow
that will exit the cell if there is sufficient space in the downstream cells. Particularly,
the functions fD,i remind, what in the specialized literature of Traffic Engineering is
called, the demand-part of the FD of the i-th cell. Notice that, the functions fD,i are
allowed to be uncertain (by introducing the time-varying variable d ∈ D). In addi-
tion, bi,j are turning rates and pi are exit rates, i.e., portions of F outi (t) that are bound
for the off-ramp of the i-th cell. The functions si : D × S × <n+ → [0, 1] (i = 1, ..., n)
are introduced in order to accommodate congestion phenomena. Specifically, these
functions assume the value of 1 if the downstream cells can accommodate the whole
attempted outflow of the upstream cell; they are less than 1 if the downstream cells
cannot accommodate the full attempted outflow, e.g., because they are congested, as
it will also explained in more detail later.

Combining (2.2), (2.3), (2.4), we obtain:

F outi = si(d, x, v)fD,i(d, xi), for i = 1, ..., n. (2.6)

Next, we make the following assumption for the functions fD,i : D× [0, ρmaxi ]→
<+ (i = 1, ..., n):

H 2.1

For each d ∈ D, the function fD,i(d, · ) : [0, ρmaxi ] → <+ satisfies 0 <
fD,i(d, z) < z for all z ∈ (0, ρmaxi ]. There exists ρcri ∈ (0, ρmaxi ] such that
for each d ∈ D, the function fD,i(d, · ) is continuous and increasing on [0, ρcri ].
Moreover, there exist constants Li ∈ (0, 1), Gi ∈ (0, 1], ρ̃cri ∈ (0, ρcri ] such
that |fD,i(d, z)− fD,i(d, y)| ≥ Li |z − y| for each d ∈ D and y, z ∈ [0, ρ̃cri ] and
|fD,i(d, z)− fD,i(d, y)| ≤ Gi |z − y| for each d ∈ D and y, z ∈ [0, ρcri ]. Finally,
there exists a positive constant fmini > 0 such that for each d ∈ D it holds that
fD,i(d, z) ≥ fmini , for all z ∈ [ρcri , ρ

max
i ].

Remark 2.1: Assumption (H 2.1) is a technical assumption that allows a very gen-
eral class of functions fD,i : D × [0, ρmaxi ] → <+ to be taken into account. The
implications of Assumption (H 2.1) are illustrated in Figure 2.1. Assumption (H
2.1) includes the basic properties of the so-called demand function (Daganzo, 1995b;
Gomes and Horowitz, 2006; Gomes et al., 2008; Lebacque and Khoshyaran, 2002;
Lebacque, 1996) in the Godunov discretization; whereby ρcri is the critical density,
where fD,i achieves a maximum value (capacity flow). Assumption (H 2.1) allows
the demand function fD,i: (i) to be uncertain (due to the dependence on d ∈ D);
(ii) to be non-differentiable on (0, ρcri ); and (iii) not to have a strict upper bound for
z ∈ [ρcri , ρ

max
i ]. In fact, Assumption (H 2.1) allows the demand function fD,i to be

any arbitrary function (discontinuous or decreasing or, even, increasing), taking any
values within the bounds mentioned by (H 2.1) (corresponding to the right grey area
in Figure 2.1), for z ∈ (ρcri , ρ

max
i ]. The possibility of reduced demand flow for over-

critical densities (i.e., when xi(t) ≥ ρcri ) could be used to reflect the capacity drop
phenomenon, as it will be shown in the next section.

Our second assumption is dealing with the inflows. Let vi ≥ 0 (i = 1, ..., n)
denote the attempted external inflow to cell i ∈ {1, ..., n} from the region out of
the network and set v = (v1, ..., vn)′ ∈ <n+. Typically, vi, i = 1, ..., n, correspond
to external on-ramp flows, which may be determined by a ramp metering control
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strategy. We assume also that there exist functions fS,i ∈ C0(D×S;<+), s̄i : D×S×
<n+ → [0, 1] (i = 1, ..., n) with 0 < fS,i(d, x) ≤ ρmaxi − xi, for all (d, x) ∈ D × S with
xi < ρmaxi and i = 1, ..., n, so that:

F ini = s̄i(d, x, v)vi +

n∑
j=1

bj,isj(d, x, v)fD,j(d, xj) ≤ fS,i(d, x), (2.7)

for all i = 1, ..., n and (d, x, v) ∈ D × S ×<n+.

if vi +

n∑
j=1

bj,ifD,j(d, xj) ≤ fS,i(d, x), for all i = 1, ..., n,

then s̄i(d, x, v) = si(d, x, v) = 1, for i = 1, ..., n.

(2.8)

Again, the functions fS,i : D × S → <+ (i = 1, ..., n) remind, what in the spe-
cialized literature of Traffic Engineering is called, the supply function of the i-th cell.
When s̄i(d, x, v) +

∑n
j=1 bj,isj(d, x, v) < 1 +

∑n
j=1 bj,i then we say that the i-th cell

is congested, because in this case the total attempted inflow to the i-th cell (the de-
mand flow, i.e., vi +

∑n
j=1 bj,ifD,j(d, xj)) is strictly greater than the actual inflow

(F ini ) to the i-th cell, i.e., the i-th cell cannot accommodate that demand. The func-
tions si, s̄i : D × S × <n+ → [0, 1] (i = 1, ..., n) are introduced so that for each cell:
(i) the demand is always less than the supply (this is inequality (2.7)), and (ii) when
the maximum value of all demands can be accommodated then no congestion phe-
nomena are present (this is implication (2.8)). Priority rules for each junction can be
expressed by means of the functions si, s̄i : D × S × <n+ → [0, 1] (i = 1, ..., n), (see
Section 2.2.3, definition (2.16)).

The supply function is usually given by the function fS,i(d, x) = min(Qi, ci(ρ
max
i −

xi)), where Qi represents the maximum admissible inflow of the i-th cell and ci ∈
(0, 1] represents the normalized congestion wave speed. Then, the FD of cell i is
composed by the increasing function fD,i(d, xi), for xi ∈ [0, ρcri ] and by the non-
increasing function fS,i(d, x) = min(Qi, ci(ρ

max
i − xi)), for xi ∈ [ρcri , ρ

max
i ]. Notice

here that the uncertainty d ∈ D has been introduced in order to accommodate the
uncertain nature of the FD.

FIGURE 2.1: Implications of Assumption (H 2.1).
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Combining equations (2.1), (2.6) and (2.7) we obtain the following nonlinear un-
certain discrete space-time system for i = 1, ..., n:

x+
i = xi + s̄i(d, x, v)vi − si(d, x, v)fD,i(d, xi) +

n∑
j=1

bj,isj(d, x, v)fD,j(d, xj), (2.9)

Figure 2.2 illustrates schematically the network described by the model (2.9). For
physical reasons, we would expect a network of the form (2.9) under Assumption
(H 2.1) to satisfy the following three properties:

(P1) If the attempted external inflows vi ≥ 0 (i = 1, ..., n) are "small" for a suffi-
ciently large time period then the network densities will eventually be "small".

(P2) If xi 6= 0, for some i = 1, ..., n, then there is at least one non-zero outflow.

(P3) If the attempted external inflows vi ≥ 0 (i = 1, ..., n) and the xi ≥ 0 (i = 1, ..., n)
are “small”, then no congestion phenomena are present in the network.

Indeed, consider a traffic network with zero external inflows. If the network does
not satisfy Property (P1) above, then it is possible that the network retains a certain
amount of density (i.e., the vehicles do not exit). The same situation would occur
in the case where Property (P2) above does not hold. Of course, there are "special"
cases (e.g., a gridlock around a cycle) where vehicles are trapped in the network
and do not exit, but it is clear that in such situations one cannot deal with congestion
phenomena via inflow control, i.e., by making the external inflows sufficiently small.
Property (P3) is another empirical fact that should be verified to enable inflow con-
trol: congestion phenomena are present only when the attempted external inflows
vi ≥ 0 (i = 1, ..., n) and the network densities xi ≥ 0 (i = 1, ..., n) are "sufficiently
large".

Since we intend to study network models with the above properties, we consider
only acyclic networks, which satisfy the following assumption:

H 2.2

The matrix B = {bi,j : i, j = 1, ..., n} ∈ [0, 1]n×n which contains the turning rates
of the acyclic network (2.9) is strictly upper triangular.

Remark 2.2: Assumption (H 2.2) is a consequence of our goal for global stabiliza-
tion of the network (excluding cases that are not controllable via inflow control, see

FIGURE 2.2: Scheme of the network model (2.9).
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Chapter 3). Specifically, Proposition 3.2 in the following chapter shows that the exis-
tence of cycles is incompatible with the existence of a globally stabilizing feedback.

H 2.3

There exist functions s̃i ∈ C0(D × S × <n+; [0, 1]) with si(d, x, v) ≥ s̃i(d, x, v), for
all (d, x, v) ∈ D × S × <n+, i = 1, ..., n, and constants vmaxi > 0 (i = 1, ..., n) such
that the following implication holds:

if xis̃i(d, x, v) = 0 and vi < vmaxi , i = 1, ..., n, then x = 0. (2.10)

Remark 2.3: Assumption (H 2.3) is a technical assumption related to Property (P2)
and guarantees that the functions si should admit a continuous and positive definite
lower bound for some i = 1, ..., n. Implication (2.10) guarantees that if the outflow
of every cell of the network is zero, then the density of every cell should be zero
(P2). To see this, notice that if 0 = F outi = si(d, x, v)fD,i(d, xi) (recall (2.6)), then
we obtain s̃i(d, x, v)fD,i(d, xi) = 0, for i = 1, ..., n. Since fD,i(d, xi) = 0 ⇔ xi = 0
(recall (H 2.1)), the condition s̃i(d, x, v)fD,i(d, xi) = 0 is equivalent to s̃i(d, x, v)xi = 0.
Therefore, Assumption (H 2.3) guarantees the following implication: "if F outi = 0
and vi < vmaxi , i = 1, ..., n, then x = 0".

H 2.4

There exist constants µi ∈ (0, ρ̃cri ), vmaxi > 0 (i = 1, ..., n), such that

vmaxi +
n∑
j=1

bj,ifD,j(d, xj) ≤ fS,i(d, x), for all (d, x) ∈ D×S with x ≤ µ, (2.11)

for every i = 1, ..., n, where µ = (µ1, ..., µn)′.

Remark 2.4: Property (P3) is a direct consequence of Assumption (H 2.4)) and (2.8):
if the network densities are small (here below µi) and the attempted external inflows
are small (below vmaxi ), then the total attempted inflow should be accommodated by
the i-th cell. It should be noted that for vi ∈ [0, vmaxi ], the left hand side of inequality
(2.11) is an upper bound of the total inflow of the i-th cell (recall (2.7) where F ini =
s̄i(d, x, v)vi +

∑n
j=1 bj,isj(d, x, v)fD,j(d, xj) and s̄i(d, x, v) ≤ 1, si(d, x, v) ≤ 1 for all

i = 1, ..., n). Consequently, inequality (2.11) guarantees that the inflows are less than
the supplies, provided that x ≤ µ and vi ∈ [0, vmaxi ], for all i = 1, ..., n.

2.2.2 Some Important Consequences

Assumptions (H 2.1), (H 2.2), (H 2.3) and (H 2.4) have important consequences. A
list of these is given below, while the rest are presented in the next (control) chapters
where they are exploited in the proofs of the main results.

C1

For each d ∈ D, the mappings [0, ρcri ] 3 z → (z−fD,i(d, z)) ≥ 0 are non-decreasing
for i = 1, ..., n.
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Consequence (C1) is a direct consequence of the facts that: (a) |fD,i(d, z1)−fD,i(d, z2)| ≤
Gi|z1−z2| for all z ∈ (0, ρcri ) and d ∈ D, (b) fD,i(·, z) are increasing function in [0, ρcri ]
and (c) 0 < fi(d, z) < z for all z ∈ (0, ρmaxi ] and d ∈ D.

C2

For each i = 1, ..., n there exist constants λi ∈ (0, 1) such that:

|xi − x∗i − fD,i(d, xi) + fD,i(d, x
∗
i )| ≤ λi|xi − x∗i |, for all xi, x∗i ∈ [0, ρ̃cri ], d ∈ D

(2.12)

Consequence (C2) is a direct consequence of the facts that: (a) there exist constants
Li ∈ (0, 1), ρ̃cri ∈ (0, ρcri ] such that |fD,i(d, z1)− fD,i(d, z2) ≥ Li|z1− z2| for all z1, z2 ∈
[0, ρ̃cri ] and d ∈ D and (b) Property (C1). We conclude that (2.12) holds with λi =
(1− Li) ∈ (0, 1).

C3

There exist constants θi > 0 (i = 1, ..., n) and Θ > 0 such that fD,i(d, z) ≥ θiz and
fD,i(d, z) ≥ Θz for all z ∈ [0, ρmaxi ], d ∈ D and i = 1, ..., n.

Consequence (C3) is a direct consequence of the facts that: (a) fD,i(d, z) ≥ Liz for all
z ∈ [0, ρ̃cri ], d ∈ D and i = 1, ..., n, (b) Assumption (H 2.1) in conjunction with the pre-
vious inequality guarantees that fD,i(d, xi) ≥ min(fmini , Liρ̃

cr
i ) for all xi ∈ [ρ̃cri , ρ

max
i ],

d ∈ D and i = 1, ..., n. Combining (a) and (b), we obtain fD,i(d, xi) ≥ θixi for all xi ∈
[0, ρmaxi ], d ∈ D and i = 1, ..., n, where θi := min(Li, (ρ

max
i )−1fmini , (ρmaxi )−1Liρ̃

cr
i ).

Notice that θi > 0 for i = 1, ..., n and define Θ := mini=1,...,n(θi).

C4 : Proposition 2.1

Consider the network (2.9) under Assumptions (H 2.1), (H 2.2), (H 2.3). Then for all
the constants ri > 0 (i = 1, ..., n), involved in Lemma (A.7), and for every family of
constants ε̃i ∈ (0,min(vmaxi ,min{fS,i(d, 0) : d ∈ D})) (i = 1, ..., n), there exists a
constant C > 0 such that:(

n∑
i=1

rixi

)+

≤ (1− C)

n∑
i=1

rixi +

n∑
i=1

rivi, (2.13)

for all (d, x) ∈ D × S and for all vi ≥ 0 with vi ≤ min(vmaxi ,min{fS,i(d, 0) :
d ∈ D})− ε̃i (i = 1, ..., n).

Remark 2.5: Inequality (2.13) and induction allows us to show that for every ω > 0
and for sufficiently small external inflows (0 ≤ vi(t) ≤ min(vmaxi , min{fS,i(d, 0) : d ∈
D}) − ε̃i for all t ≥ 0) there exists T > 0 sufficiently large such that the following
estimate holds for all t ≥ T , for every initial condition x(0) ∈ S and for every input
{d(t) ∈ D}∞t=0:

n∑
i=1

rixi(t) ≤ ω + C−1 max
i=1,...,n

(sup { vi(t) : t ≥ 0 })
n∑
i=1

ri.
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The above inequality shows that if the attempted external inflows vi ≥ 0 (i = 1, ..., n)
are "small" for a sufficiently large time period then the network densities will eventu-
ally be "small" (Property (P1)). The proof of Proposition 2.1 is provided in Appendix
B.

2.2.3 Special Case: The Freeway Model

In this section, a special case of the acyclic network (2.9) will be derived: the freeway
model. To this end, we make the following specifications:

(S1) The freeway cells are ordered with an increasing index (see for example Figure
2.3). Then, we assume that the entries of the matrix B which contains the turning
rates of the network (2.9) and the corresponding exit rates pi to regions out of the
freeway are selected as follows:

bi,j = 0 for every j 6= i+ 1 with i = 1, ..., n and j = 1, ..., n,

bi,j = 1− pi > 0 for j = i+ 1 with i = 1, ..., n− 1 and j = 1, ..., n.
(2.14)

We consider the n-th cell to be the last freeway cell; therefore pn = 1. We also as-
sume that pi < 1 for i = 1, ..., n − 1, and that all exits to regions out of the network
can accommodate the respective exit flows. Notice that with these specifications
Assumption (H 2.2) is satisfied.

(S2) For the first cell 1, there is just one external inflow, v1 > 0.

(S3) The considered demand functions for the freeway models are assumed not to be
uncertain, i.e., fD,i(d, z) = fD,i(z), for every i = 1, ..., n, and therefore Assumption
(H 2.1) admits as special case the following assumption:

H 2.1*

The function fD,i(·) : [0, ρmaxi ]→ <+ satisfies 0 < fD,i(z) < z for all z ∈ (0, ρmaxi ]
and for each i = 1, ..., n. There exists ρcri ∈ (0, ρmaxi ] such that the function fD,i(·)
is continuous and increasing on [0, ρcri ] for each i = 1, ..., n. Moreover, there exist
constants Li ∈ (0, 1), Gi ∈ (0, 1], ρ̃cri ∈ (0, ρcri ] such that |fD,i(z)− fD,i(y)| ≥
Li |z − y| for each y, z ∈ [0, ρ̃cri ] and |fD,i(z)− fD,i(y)| ≤ Gi |z − y| for each y, z ∈
[0, ρcri ] for each i = 1, ..., n. Finally, there exists a positive constant fmini > 0 such
that fD,i(z) ≥ fmini , for all z ∈ [ρcri , ρ

max
i ] and for each i = 1, ..., n.

(S4) The considered supply functions for the freeway models are assumed not to be
uncertain and they are given by:

fS,i(xi) = min (Qi, ci(ρ
max
i − xi)) , (2.15)

where Qi > 0, ci ∈ (0, 1] (i = 1, ..., n) denote the maximum received flow (capacity
inflow) and the congestion wave speed, respectively, of the i-th cell.

(S5) The functions si : D × S ×<n+ → [0, 1], which have been introduced in order to
accommodate congestion phenomena in the model (2.9), are selected as follows:

si = (1− di) min

(
1,max

(
0,
fS,i+1(xi+1)− vi+1

(1− pi)fD,i(xi)

))
+ di min

(
1,

fS,i+1(xi+1)

(1− pi)fD,i(xi)

)
,

(2.16)
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for i = 1, ..., n− 1, where fS,i(xi) are given by (2.15) and

di(t) ∈ [0, 1], i = 2, ..., n, t ≥ 0, (2.17)

denote time-varying priority rules. Then d = (d1, ..., dn−1) ∈ D = [0, 1]n−1. For
the last cell we assume that sn(d, x, v) = 1 for every (d, x, v) ∈ D × S × <n+. Note
that, if the supply is higher than the total demand, then (2.16) yields si = 1, irre-
spective of the value of di, since the total demand flow can be accommodated by the
downstream cell. Thus, the parameter di determines the relative inflow priorities,
when the downstream supply prevails. Specifically, when di(t) = 0, then the on-
ramp inflow has absolute priority over the internal inflow; on the other hand, when
di(t) = 1, then the internal inflow has absolute priority over the on-ramp inflow;
while intermediate values of di reflect intermediate priority cases. The parameters
di(t) ∈ [0, 1] are treated as unknown parameters (disturbances). Notice that by in-
troducing the parameters di(t) ∈ [0, 1] (and by allowing them to be time-varying),
we have taken into account all possible cases for the relative priorities of the inflows
(and we also allow the priority rules to be time-varying); see (Coogan and Arcak,
2014; Daganzo, 1995b) for freeway models with specific priority rules, which are
special cases of the proposed general approach.

Taking into account the above considerations, the network model (2.9) admits the
following "freeway" form:

x+
1 = x1 − s1(d, x, v)fD,1(x1) + min (fS,1(x1), v1)

= x1 − s1(d, x, v)fD,1(x1) + s̄1(d, x, v)v1,
(2.18)

x+
i = xi − si(d, x, v)fD,i(xi) + min (fS,i(xi), vi + (1− pi−1)fD,i−1(xi−1))

=xi − si(d, x, v)fD,i(xi) + s̄i(d, x, v)vi + si−1(d, x, v)(1− pi−1)fD,i−1(xi−1),
(2.19)

for i = 2, ..., n− 1,

x+
n = xn − fD,n(xn) + min (fS,n(xn), vn + (1− pn−1)fD,n−1(xn−1))

=xn − fD,n(xn) + s̄n(d, x, v)vn + sn−1(d, x, v)(1− pn−1)fD,n−1(xn−1),
(2.20)

where fS,i(xi) and si(d, x, v) are given by (2.15) and (2.16), respectively. The values
of s̄i ∈ [0, 1], i = 1, ..., n, may also be similarly derived from (2.7), when vi > 0,
but they are not needed in what follows. Since the functions fD,i : [0, ρmaxi ] → <+

satisfy 0 < fD,i(xi) < xi for all xi ∈ (0, ρmaxi ], it follows that (2.18)-(2.20) is an un-
certain control system on S (i.e., x = (x1, ..., xn)′ ∈ S) with inputs v = (v1, ..., vn)′ ∈
(0,+∞)× <n−1

+ and disturbances d = (d1, . . . , dn−1) ∈ D = [0, 1]n−1. We emphasize
that the uncertainty d ∈ D appears in the equations (2.18)-(2.20) only when the sup-
ply function prevails, i.e., only when vi(t)+(1−pi−1)fD,i−1(xi−1(t)) > fS,i(xi(t)) for
some i ∈ {2, ..., n}.

Remark 3.1: The freeway model (2.18)-(2.20) with (2.15) and (2.16) under Assump-
tion (H 2.1*), satisfies Assumptions (H 2.3) and (H 2.4). More specifically:

• Assumption (H 2.4) is satisfied with vmaxi > 0, µi ∈ (0, ρ̃cri ), i = 1, ..., n, given
by the following recursive formulas:

µn = ρ̃crn /2, µi = min

(
ρ̃cri
2
,
1

2
fS,i+1(µi+1)

)
, (2.21)
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FIGURE 2.3: Scheme of the freeway model.

for i = 1, ..., n− 1 and

vmaxi =
1

2
fS,i(µi), (2.22)

for i = 1, ..., n.

• Assumption (H 2.3) holds with vmaxi > 0 (i = 1, ..., n) given by (2.22) and the
continuous functions s̃i(d, x, v) (i = 1, ..., n) given by:

s̃i(d, x, v) := min

(
1,

max(0, fS,i+1(xi+1)− vi+1)

(1− pi)ρmaxi

)
(2.23)

for i = 1, ..., n− 1 and s̃n := 1.

In conclusion, specifications (S1)-(S5), definitions (2.15), (2.16) and Remark 3.1
allow us to conclude that the freeway model (2.18)-(2.20) is a special case of the
network model (2.9). Furthermore, we have to note that the model (2.18)-(2.20)
with (2.15) and (2.16) is also a generalized version of the known first-order dis-
crete Godunov approximation to the kinematic-wave partial differential equation of
the LWR-model (see (Lighthill and Whitham, 1955a; Lighthill and Whitham, 1955b;
Richards, 1956)) with nonlinear ((Lebacque, 1996)) or piecewise linear (Cell Trans-
mission Model - CTM, (Daganzo, 1994; Daganzo, 1995b) FD. However, the pre-
sented framework can also accommodate recent modifications of the LWR-model as
in (Lebacque, 2003; Muralidharan, Horowitz, and Varaiya, 2012; Roncoli, Papageor-
giou, and Papamichail, 2015a) to reflect the so-called capacity drop phenomenon
(see the following sections). Notice that the piecewise smooth selections fD,i(z) =
Qiρ

cr
i
−1z for z ∈ [0, ρcri ] and fD,i(z) = Qi for z ∈ (ρcri , ρ

max
i ] (i = 1, ..., n) with

ρmaxi ≥ ρcri + c−1
i Qi allow us to obtain the standard CTM with: (i) triangular-FD

(if ρmaxi = ρcri + c−1
i Qi); and (ii) trapezoidal-FD (if ρmaxi > ρcri + c−1

i Qi) (see also Sec-
tion 2.3.1). In the latter case, Assumption (H 2.1*) holds with arbitrary ρ̃cri ∈ (0, ρcri ].

For the subsequent description and testing of different capacity-drop approaches,
a simple formulation of a discretized LWR model is utilized. Despite the fact that
some of the considered approaches are originally introduced for more sophisticated
models, here, their implementation is based on a common formulation, which also
permits a clearer understanding and a fairer result comparison. The notation is kept
consistent for all the described approaches. Moreover, a simple illustrative exam-
ple is constructed, which demonstrates the qualitative behavior of the different ap-
proaches that are tested hereafter.
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2.3 Capacity drop in LWR-type models

2.3.1 A Different Discretized LWR Formulation

The freeway model (2.18)-(2.20) can also admit the following specific form, where
the involved variables are measured in the common traffic units and which indicates
the basic discretized LWR-model formulation:

x+
1 = x1 +

T

l1L̄1

(
−max

(
0,
f1(x1, x2, v2)

1− p1

)
+ min

(
v1(k), fS,1(ρ1)

))
x+
i =xi +

T

liL̄i

(
−max

(
0,
fi(xi, xi+1, vi+1)

1− pi

)
+ fi−1(xi−1, xi, vi) + vi

)
, i = 2, ..., n

(2.24)

fi(xi, xi+1, vi+1) = min{(1− pi)fD,i(xi), fS,i+1(xi+1)− vi+1}, i = 1, ..., n− 1,

fn(xn) = fD,n(xn)
(2.25)

fD,i(xi) = min{gi(xi), Qi}, for i = 1, ..., n (2.26)

fS,i+1(xi+1) = min{Qi+1, ci+1(ρmaxi+1 − xi+1)li+1} for i = 1, ..., n− 1. (2.27)

where T denotes the simulation time step measured in [h], li denotes the number of
lanes in the ith cell, L̄i denotes the length of the ith cell, fi denotes the actual out-
flow from the ith cell to the (i + 1)th cell and gi denotes any general non-decreasing
function. Figure 2.4 illustrates schematically the freeway model (2.24)-(2.27). The
density of vehicles here is measured in [veh/km/lane], any flow variable is mea-
sured in [veh/h] and speed is measured [km/h]. As it has already been mentioned,
the FD is a relation between density and flow and is characterized by its concave
branches, where the demand part and the supply part reflect, respectively, its in-
creasing and decreasing branches (Godunov, 1959; Lebacque, 1996). The density
value (unimodal FDs) or values (multimodal FDs), for which the maximum flow is
attained, is defined as the critical density of the cell.

Notice that in (2.26) and (2.27), the demand and supply functions, are completed
by assuming capacity flow values Qi for overcritical and undercritical densities, re-
spectively. Consequently, the model predicts capacity flow even when congestion
is created (no capacity drop), in accordance with the non-discretised LWR model.

FIGURE 2.4: The space-discretization of a hypothetical freeway
stretch.
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FIGURE 2.5: Different choices for the left-hand side of the FD corre-
sponding to: (a) a triangular FD (CTM), (b) a trapezoidal FD, (c) a

piecewise linear FD and (d) a nonlinear FD.

Note also, that the right-hand side of the FD in (2.27) is described by a linear func-
tion (with a negative slope ci); while the left-hand side of the FD in (2.26) is assumed
to be a non-decreasing function gi(xi).

Different shapes for the FD

Different functions gi(xi) can be used for the demand function in (2.26). The origi-
nal CTM formulation by Daganzo, 1994 considers a triangular-shaped FD (Figure
2.5(a)), where gi(xi) = vf,ixili, gi(ρcri ) = Qi and ci = Qi/(ρ

max
i − ρcri )li) (with

ci < vf,i and vf,i < L̄i/T ). This formulation has two main drawbacks: first, when
using realistic free-flow and congestion-wave speeds, it may lead to high (and some-
times unrealistic) capacity flow; second, only one speed value is considered for all
under-critical densities, which is often not compatible with traffic observations. To
overcome the first issue, a trapezoidal FD can be used, where gi(xi) = vf,ixili,
gi(ρ

cr
i ) ≥ Qi and ci ≥ Qi/(ρ

max
i − ρcri )li), as illustrated in Figure 2.5(b). In this

case, the critical density, instead of being unique for both the FD parts, can be se-
lected within an interval of densities, thus increasing also the degree of freedom for
model calibration. Nevertheless, in real traffic, the observed speed may be character-
ized by a decreasing-behavior also for undercritical densities, which can be reflected
by using a nonlinear concave function gi (Figure 2.5(d)), where gi(ρcri ) = Qi and
ci = Qi/(ρ

max
i −ρcri )li). An opportune calibration of such function may lead to more

realistic results. As an example, a nonlinear exponential function, as proposed by
Messmer and Papageorgiou, 1990, can be employed (see (2.44)). A similar behavior
can also be obtained, with similar accuracy, considering a piecewise-linear approx-
imation of the nonlinear function (Figure 2.5(c)), which is helpful, for instance, in
case linear constraints are needed for the formulation of an optimization problem
(see e.g., Ziliaskopoulos, 2000; Roncoli, Papageorgiou, and Papamichail, 2015c).

Illustrative example

In order to illustrate the behavior of each approach, a simple hypothetical freeway
stretch is considered, consisting of n = 15 homogeneous cells (common FD) of equal
length (500 m). The freeway stretch includes an on-ramp located at the upstream
boundary of the cell i = 13. The parameters that characterize the network are
shown in Table 2.1. For the sake of simplicity, in all the following tests, the func-
tion gi utilized in (2.26) is selected to be gi(xi) = vf,ixili (for i = 1, ..., 15), leading
to triangular-shaped FD (Figure 2.5(a)). A hypothetical trapezoidal traffic demand



26 Chapter 2. First-Order Models: Derivation and Validation Study

TABLE 2.1: Parameters of the hypothetical network.

T n L̄i li ρcri vf,i ρmaxi Qi ci
sec km veh/km/lane km/h veh/km/lane veh/h km/h

5/3600 15 0.5 3 20 100 120 6000 20

FIGURE 2.6: Demand scenario: entrance (blue), on-ramp (red).

scenario is applied to the network (see Figure 2.6), which, for some time period, gen-
erates a flow higher than the capacity at the merge area, thus generating congestion
that spills back for some cells, however without reaching the network origin.The
system is initialized from a steady state, that is xi(0) = 11.7 [veh/km/lane], for
i = 1, .., 12, and xi(0) = 13.3 [veh/km/lane], for i = 13, 14, 15. The simulation time
horizon is T hor = 4 h for all the following tests.

Figure 2.7(a), (b), (c) illustrates some significant characteristics of the CTM in
case congestion is created at an on-ramp merge. Once the total demand (sum of
mainstream and factual ramp flows) exceeds the bottleneck’s capacity, only a portion
of the available mainstream flow is allowed to access the 13th cell. This causes an
increase of density in the upstream cell (the 12th cell) (see Figure 2.7(a), red line),
which eventually enters into a congested state, generating a congestion wave that
propagates to further upstream cells. During this period, the density in the merge
cell remains at its critical value (see Figure 2.7(a), blue line), allowing an outflow
equal to capacity (Figure 2.7(c)). As a consequence of the observations above, the
speed at the 12th cell decreases (Figure 2.7(b), red line), while the speed at the merge
cell (13th) remains constant and equal to the free speed. Note that, in contrast to this
modeled behavior, the merge cell is typically congested in real traffic; while the exit
flow is reduced upon the onset of congestion due to capacity drop.

2.3.2 Approach 1: Switching logic for maximum flow

One effective way to implement a FD characterized by the inverse-lambda shape
is via the definition of an opportune switching logic to define dynamically the cur-
rent maximum flow. An example can be found in the study proposed by Torné,
Soriguera, and Geroliminis, 2014, where a set of rules is proposed to impose capac-
ity drop in case VSL are applied in a certain area of the network. The concept is based
on the coexistence of two FDs for the same location: a triangular-shaped one, active
in case VSL are not applied (and, thus, no congestion is present); and a trapezoidal-
shaped one, characterized by lower capacity that materializes in case congestion is
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present. This method can be extended straightforwardly to the case of bottlenecks
due to lane drops, tunnels, etc.; in addition, it is shown here that it is also effective
in case congestion is generated because of a merging on-ramp. The formulation is
described by (2.24), (2.25), and:

fD,i(xi(k)) = min{gi(xi(k)), Ri(k)}, for i = 1, ..., n, (2.28)

fS,i+1(xi+1(k)) = min{Ri+1(k), ci+1(ρmaxi+1 − xi+1(k))li+1}, for i = 1, ..., n− 1, (2.29)

where
R1(k) = Q1, R2(k) = Q2, (2.30)

Ri+1(k + 1) =

{
Q̄i+1

Qi+1

if ci(ρmaxi − xi(k))li < min(fD,i−1(xi−1(k)), Ri(k))
otherwise

,

(2.31)
for i = 2, ..., n − 1. Ri are auxiliary variables that define the maximum flow for cell
i, and Q̄i corresponds, for this modeling approach, to the queue discharge flow ob-
served after the congestion onset. The queue discharge flow Q̄i can also be viewed as
Q̄i = αQi, i.e., a portion α < 1 of the capacity flow. For this simulation test, this por-
tion is constant and equal to α = 0.95. Equation (2.30) reflects the assumption that
the backspilling congestion does not reach the entrance of the network. Moreover,
all cells are initially uncongested, thus Ri(0) = Qi, for every i = 1, ..., n.

Figure 2.7(d), (e), (f), illustrates the behavior resulting from the application of
this approach. The main idea lies in decreasing the capacity of the cell located im-
mediately downstream of a congested one. More specifically, when the total flow
(on-ramp and mainstream) exceeds the capacity of the merge cell, the density of the
upstream cell starts increasing (see Figure 2.7(d), red line), while at the same time its
speed starts decreasing (see Figure 2.7(e), red line); consequently, after some time,
its supply function becomes smaller than the demand function of the upstream cell;
this, according to (2.31), triggers a reduction of the maximum flow for the down-
stream cell (see Figure 2.7(f)), which persists until the overall demand is sufficiently
decreased. As a drawback, the flow reduction appears with some delay after the
congestion starts, since this reduction materializes only when both the demand flow
of the 11th cell and the maximum flow of the 12th cell become higher than the supply
of the 12th cell. Furthermore, it is interesting to point out that, despite the flow-drop,
there is no congestion, i.e. no over-critical density (Figure 2.7(d), blue line), and
therefore also no speed-drop (Figure 2.7(e), blue line), at the merge cell.

2.3.3 Approach 2: Introduction of a weaving parameter

Another option to achieve a reduced outflow at a merge cell is via the introduction
of a weaving parameter that essentially affects the supply function at the merge cell,
as proposed by Muralidharan and Horowitz, 2015. The purpose of this parameter
is to take into account the “intensity” of lane changing maneuvers performed by
vehicles just entered from the on-ramp, imposing a reduction of the available space
for vehicles coming from upstream. The mathematical formulation consists of (2.24),
(2.32), (2.26), and (2.27) where

fi(xi, xi+1, vi+1) = min{(1− pi)fD,i(xi), fS,i+1(xi+1)− ηrvi+1} (2.32)
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for i = 1, ..., n − 1, where ηr > 1 is the weaving parameter that aims to reduce the
available space at the merge cell, thus limiting farther the mainstream flow entering
the cell. For a given ηr, the resulting outflow from the merge cell, namely the queue
discharge flow, is a function of the on-ramp flow. It can be seen from Figure 2.7(i)
(where ηr = 1.2 is used), that the capacity flow is never reached even in case of low
factual on-ramp flow; for this reason, the flow reduction is barely visible. Notice also
that, similarly to Approach 1, the merge cell is not congested (Figure 2.7(g), (h), blue
line).

2.3.4 Approach 3: Reduction of the demand function

Another formulation, also utilized by Muralidharan and Horowitz, 2015 and Li et
al., 2015, consists of the definition of a discontinuous demand part of the FD at bot-
tleneck locations. More specifically, a flow lower than the capacity is defined, which
materializes once the density of the cell becomes overcritical. In particular, the model
can be described by (2.24), (2.25), (2.27), and:

fD,i(xi) =

{
gi(xi)
Q̄i

if xi ≤ ρcri
otherwise

, for i = 1, ..., n. (2.33)

This approach produces the normal behavior of LWR model when the density of the
upstream of the merge cell (here the 12th cell) is undercritical (Figure 2.7(j)), leading
the merge cell to reach properly capacity flow; then, whenever the density becomes
overcritical, the outflow from the upstream of the merge cell drops to a value corre-
sponding to Q̄i which in turn leads the outflow from the merge cell (discharge flow)
to a value equal to Q̄i + vi+1(k) (Figure 2.7(l)); in this case, Q̄i = αQi, and α = 0.7
are employed. The flow drop can be observed only if the value of the parameter
alpha is selected to ensure that Q̄i + vi+1(k) < Qi+1. The main drawback of this
approach is that traffic congestion persists longer than in the other cases, because,
once formed, its disappearance can only be triggered by a sufficient decrease of the
arriving demand (that must become smaller than Q̄i), irrespectively of any variation
of the ramp inflow. Again, no congestion appears at the merge cell (Figure 2.7(k), (j),
blue line).

2.3.5 Approach 4: Linear reduction of maximum flow

As previously mentioned, the presence of capacity drop within traffic flow mod-
els plays a key role for the design and testing of freeway traffic control strategies.
Among others, model-based control problems have been widely exploited in recent
years because of the possibility to explicitly consider system dynamics and physical
constraints. In some works, the classic formulation of FOMs was implemented via
use of integer variables and opportune switching rules; see, e.g., Ferrara, Sacone,
and Siri, 2015; Muralidharan and Horowitz, 2015; Sun and Horowitz, 2005. In other
works, (see, e.g., Roncoli, Papageorgiou, and Papamichail, 2015c; Ziliaskopoulos,
2000), linear inequalities (derived from the piecewise linear FD) were considered as
constraints in the optimization problem; hereafter, some variants of these models are
presented, which allow to define linearly constrained formulations for correspond-
ing optimization problems. Here, a similar formulation as the one proposed by Han
et al., 2016 is presented.

A concept similar to Approach 1 is considered, albeit with the introduction of
an additional linear term that reduces the supply function of a downstream cell.
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Specifically, when congestion starts in cell i (xi > ρcri ), the maximum flow material-
ized within the supply term of the downstream cell i + 1 is linearly decreased as a
function of xi, according to the following equations:

fS,i+1(xi+1) = min{Fi+1(xi), ci+1(ρmaxi+1 − xi+1)li+1} (2.34)

for i = 1, ..., n− 1, where Fi+1(xi) is given by:

Fi+1(xi) =

{
Qi+1

Q̄i+1 + Qi+1−Q̄i+1

ρcri −ρmax
i

(xi − ρmaxi )

if xi ≤ ρcri

otherwise
, (2.35)

for i = 1, ..., n − 1, with Q̄i = αQi; where in the illustrative example α = 0.9. The
proposed formulation is thus given by (2.24), (2.25), (2.26), (2.34), and (2.35). For
under-critical densities, Fi is constant and equal to the capacity flow; however, in
case the density of the ith cell increases beyond its critical value (Figure 2.7(m), red
line), the maximum flow of the supply function of the (i + 1)th cell is reduced lin-
early (Figure 2.7(o)). Therefore, the queue discharge flow from the bottleneck’s cell
depends on the factual on-ramp flow which imposes higher density values for the
upstream cells. It should be mentioned here that in case there is no particular need
for linear formulations, other functions can also be considered for the above reduc-
tion of the maximum flow. This approach appears to work appropriately also for
bottlenecks due to capacity reduction (e.g., lane drops, tunnels). Differently from
Approach 2, the model is capable of reaching capacity before congestion starts, and
the capacity drop appears with a shorter delay with respect to the one observed in
Approach 1. On the other hand, the merge cell remains uncongested, similarly to all
previous approaches.

2.3.6 Approach 5: Increased space for vehicles entering a bottleneck

Yet another approach may be conceived, which, in contrast to all previous approaches,
allows for the bottleneck (e.g., merge) cell to become congested (as in real traffic ob-
servations), while producing a reduced outflow from the merge cell as well. Two
different mechanisms are employed in order to achieve this behavior. The first one
is activated in case of high on-ramp flow and imposes that the merge cell is able to
receive more flow than its nominal capacity. To this end, in case a cell contains an
external on-ramp, the flux function fi is modified via the introduction of the param-
eter θr < 1. In the basic discretized LWR formulation, the supply function of a cell
becomes active (smaller than the demand function of the previous cell), when the
density of this cell is equal or exceeds its critical value. The introduction of θr acts
as a delay in the activation of the supply function by reducing it, in terms of the on-
ramp flow, less than the real on-ramp flow would otherwise impose (in contrast to
Approach 2, where the parameter ηr hastens the activation of the supply function).
Essentially, this contributes to the increase of the available space for the upstream
mainstream flow entering the merge cell. As a result, the density at merge cell is
allowed to increase beyond the critical (xi > ρcri ), and therefore become congested.
Notice that the inflow of the merge cell can exceed its nominal capacity, but the same
does not hold for its outflow, since the latter is determined by its demand function.
However, this cannot produce any reduced outflow (capacity drop) by itself. The
second mechanism consists in the introduction of a decreasing demand function for
overcritical densities, similar to the one proposed by Lebacque, 2003 and Monamy,
Haj-Salem, and Lebacque, 2012. Due to the fact that the density of the merge cell
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can now be overcritical (thanks to the application of the first mechanism), the de-
creasing demand function imposes smaller outflow, i.e. a capacity drop. There is a
large range of decreasing functions that can be considered. Here, for simplicity, a
linearly decreasing function is selected. Notice that the proposed demand functions
are continuous, in contrast with the demand functions employed in Approach 3. The
mathematical formulation consists of (2.24), (2.36), (2.37), and (2.27) where:

fi(xi, xi+1, vi+1) = min{(1− pi)fD,i(xi), fS,i+1(xi+1)− θrvi+1}, (2.36)

for i = 1, ..., n− 1,

fD,i(xi) =

{
gi(xi)

Qi + Q̄i
xi(k)−ρcri
ρcri −ρmax

i

if xi ≤ ρcri
otherwise

, (2.37)

for i = 1, ..., n. In the illustrative example, θr = 0.7 and Q̄i = αQi are used, where
α = 0.4 . Figure 2.7(p), (q), (r) illustrates the above considerations. Specifically,
by the time the merge cell becomes congested (Figure 2.7(p), blue line), producing
also the corresponding speed drop (Figure 2.7(q), blue line), and the corresponding
capacity drop is observed for the flow exiting the merge cell (Figure 2.7(r)). The
magnitude of this drop and the resulting queue discharge flow are determined by
the combination of the values of parameters a, θr and the on-ramp flow. At the same
time, θr affects also the magnitude of the increase of the density at the merge cell,
i.e., reducing θr produces a higher density increase at the merge cell, resulting in a
higher speed. Finally, it is interesting to point out that the congestion is first created
at the merge cell and the flow drop occurs immediately after the maximum flow is
reached, in accordance with real traffic observations.

This behavior can be alternatively obtained with different formulations (instead
of using the parameter θr). For instance, such an effect can be also obtained by con-
sidering an increased upper bound (capacity) in (2.27) for undercritical densities, e.g.
increasing capacity by 5% and increasing accordingly the resulting from the common
FD wave speed (e.g. increased similarly by 5%) (Kontorinaki et al., 2016). Again, a
decreasing demand function for over-critical densities (2.37) has to be considered so
as to achieve the desired capacity drop. This alternative modeling approach acts in
the same way as parameter θr does (delay the activation of the supply function), but
it may also be applied for bottlenecks due to lane drops, tunnels etc., and not only
for on-ramp merges.

This new modeling approach has also been examined regarding its relation and
consistency with the PDE of the LWR model (see Appendix C). Among others, this
analysis enables to assess how the introduced parameters of Approach 5 affect the
solution of the discretized model when the discretization parameters (cell length and
simulation time step) tend to zero. However, in order to conduct such an analysis,
it is important to determine the two ways the on-ramp flow term may be treated
within the disretization: first by assuming that the on-ramp flow term is distributed
flow within specific space bounds (Section C.1 of the Appendix); second by assum-
ing the on-ramp flow is a concentrated (Dirac function) flow at a given space point
of the freeway (Section C.2 of the Appendix). From the analysis it follows that, when
treating the on-ramp via the first way, the proposed discretized model is consistent
with the LWR PDE, while simulation results reveal that in some cases the solution
of the discretized model converges (as the discretization parameters tend to zero) to
the solution of the CTM (which in turn converges to the LWR PDE solution). How-
ever, following the second way for treating the on-ramp flow, one can only define
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FIGURE 2.7: The time-series of the density of the 12th and 13th cell,
the speed of the 12th and 13th cell and the outflow from the 13th cell
for the application of (a),(b),(c) CTM, (d),(e)(f) Approach 1, (g),(h),(i)
Approach 2, (j),(k),(l) Approach 3, (m),(n),(o) Approach 4, (p),(q),(r)

Approach 5.

the integral form of the PDE at the point where the on-ramp is implemented (due
to the apparent singularity introduced by the Dirac function). The analysis is then
performed by means of the resulting shock speed of the proposed model (following
from the Rankine-Hugoniot condition) and by comparing it with the shock speed
of the CTM following the methodology described by (LeVeque, 2002). In this case,
the analysis indicates that the solution of the discretized model converges (as the
discretization parameters tend to zero) to a different solution with a different shock
speed from the one imposed by CTM. However, the model is still consistent with the
PDE of LWR everywhere else except the point where the on-ramp is implemented.
The reader should be transferred to Appendix C for a more detailed justification of
the above analysis.
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2.3.7 First-order model with drivers’ anticipation

Other FOMs, which are not of LWR-type and do not utilize the demand-supply
method, have been proposed in the past. For comparison purposes in the calibra-
tion procedure of the next section, an alternative FOM, which was first proposed
by Lighthill and Whitham, 1955b in order to represent the diffusion of kinematic
waves, is introduced. The following discretized formulation is a variation of Model
E presented and tested in Papageorgiou, Blosseville, and Hadj-Salem, 1989, with the
difference that the model is formulated here in terms of flow, instead of speed. The
complete model is described by (2.24), (2.38), (2.39) and (2.44):

fi(xi, xi+1, xi+2) = β(1− pi)qi(xi, xi+1) + (1− β)(qi+1(xi+1, xi+2)− vi+1),

fn−1(xn−1, xn) = (1− pn−1)qn−1(xn−1, xn), fn(xn(k)) = Qen(xn),
(2.38)

qi(xi, xi+1) = Qei (xi)−
ν̃li
L̄i

(xi+1 − xi), i = 1, ..., n− 1, qn(xn) = Qen(xn), (2.39)

where 0 < β ≤ 1 and ν̃ are model parameters, qi represents the total outflow from
the ith cell and Qei represents the FD of the ith cell. This model includes an anticipa-
tion term that influences the total outflow from a cell according to the downstream
prevailing conditions. This mechanism, included in (2.39), suggests that drivers ad-
just their speed, by also taking into account the downstream density. Moreover,
in the space-discretised version, the traffic volume from a cell to another is a con-
vex combination of the total traffic volume of the current and the next cells (2.38).
Thanks to the anticipation term, this model is capable to reproduce the capacity drop
phenomenon. The utilized mathematical formula for the FD for the calibration test
below is given by (2.44). However, it should be noted that in case, for some spe-
cific reasons (e.g., the formulation of an optimization problem), linear constraints
are needed, this formula may be replaced by a piecewise-linear concave function.

2.3.8 Second -order model METANET

In the calibration tests of the following sections, the SOM METANET (Messmer and
Papageorgiou, 1990) is used for comparison purposes (also used in the simulation
tests of Chapter 6). For a specific cell i ∈ {1, . . . , n} with length L̄i and li lanes, the
nonlinear difference equations of the METANET model are:

x+
i = xi +

T

L̄ili

(
−qinti − qexti + qinti−1 + r̄i

)
, (2.40)

qi(k) = xi(k)vi(k)li, q
int
i (k) = (1− pi)qi(k), qexti (k) = piqi(k), (2.41)

V e
i (xi) = xivf,i exp((−1/ai)(xi/ρ

cr
i )ai), (2.42)

v+
i = vi+

T

L̄i
vi (vi−1 − vi)︸ ︷︷ ︸
convection

+
T

τ
(V e
i (xi)− vi)︸ ︷︷ ︸
relaxation

-
νT

τmL̄i

(
xi+1 − xi
xi + κ

)
︸ ︷︷ ︸

anticipation

-
δT

L̄ili

(
r̄ivi

xi(k) + κ

)
︸ ︷︷ ︸

on−ramp

,

(2.43)
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where vi (in [km/h]) denotes the mean speed of the ith cell, qi(k) (in [veh/h]) is
the total outflow of vehicles leaving cell i during the time period (kT, (k + 1)T ], r̄i
(in [veh/h]) denotes the actual inflow from the on-ramp i during the time period
(kT, (k + 1)T ]. As one can notice, here, for convenience (see Chapter 6), another
formulation for the conservation equation is used. It should be emphasized here
that METANET allows for very high on-ramp flows to be entered and therefore ap-
propriate bounds should be taken into account for r̄i (see Chapter 6). Notice also
that r̄i is not necessarily the same with the previously used variable vi for on-ramp
inflows. Moreover, τm, ν, δ and κ are model parameters. Moreover, V e

i denotes
the steady-state speed-density relationship that represents the so-called FD of traffic
flow, whereby vf,i, as previously, is the free-flow speed and ai > 0 is a parameter.

2.4 Calibration Results

In this section the approaches described in Section 2.3 are validated and compared
regarding the accuracy of reproducing traffic conditions in a real freeway stretch
with particular emphasis on the reproduction of the capacity drop phenomenon.

2.4.1 Freeway Network and Calibration Set-Up

The considered freeway stretch of 9.5 km in length is part of the M56 freeway in
the United Kingdom, direction from Chester to Manchester. This 3-lane freeway
stretch includes an off-ramp and a two-lane on-ramp, which, before entering the
freeway, is divided into two separate lanes. The corresponding on-ramp flows of
each lane enter the freeway at two different locations, as shown in Figure 2.8. Figure
2.8 displays the locations of the on-ramps and off-ramp and the locations of the
available detector stations. In order to apply the selected traffic flow models, the
examined freeway stretch is divided into 38 model cells of about 250 m each, as
shown in Figure 2.8. Using this representation, the freeway cells are well-defined,
and the model equations presented in the previous section are directly applicable.

The real traffic data used in this study were obtained from the MIDAS database1.
The traffic data include flow and speed measurements at each detector location, with
a time resolution of 60 s. The traffic data analysis showed that, within this freeway
stretch, recurrent congestion is created during the morning peak hours due to the
high on-ramp flow. In particular, Figure 2.9(a) displays the space-time diagram of
the real speed measurements for 03/06/2014. It is observed that congestion is cre-
ated upstream of the second on-ramp during 7–8 a.m. which spills back several
kilometers. Moreover, downstream of the second on-ramp, there is an area charac-
terized by low speed, due to the acceleration of vehicles exiting the congestion area.
Figure 2.10 presents the time-series of the flow measurements (black line) from de-
tector station D 8180 which is located downstream of the congestion creation area
(see, also, Figure 2.8). It is observed that a capacity drop is present there, as the
merge area outflow drops visibly when congestion sets in (between 7:10 a.m. and
8:10 a.m.).

In order to apply the examined models to this freeway stretch and achieve a
fair comparison, it is important to first calibrate the models using the available real
traffic data. The model calibration procedure aims to specify the model parameter
values, so that the representation of the network traffic conditions is as accurate as

1Highways Agency, 2007. Motorway Incident Detection and Automatic Signalling (MIDAS) Design
Standard. (No. 1st ed.). Bristol, UK.
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TABLE 2.2: Calibrated parameter values for all examined models

Model vf ρcr c ρmax Q ρa α ηr θr

Triang. FD 112 18.7 21.2 117.4 6282 - - - -
Trapez. FD 112 - 21.8 145 6192 - - - -
PWL FD 110.5 24.7 14.8 165.5 6258 14.4 - - -
NL FD 113.5 25.3 12.2 195.4 6225 - - - -

Approach 1 123.2 36.4 25.9 124.9 6900 - 0.89 - -
Approach 2 123.4 35.9 21.9 139.2 6900 - - 1.56 -
Approach 3 122.8 33.5 21.4 149.1 6900 - 0.72 - -
Approach 4 123 35.6 25.9 131.2 6900 - 0.63 - -
Approach 5 122.8 35.6 33.4 104.5 6900 - 0.34 - 0.71

FOM-Ant 119.7 29.4 - - 6402 - - - -

METANET 114.2 28.9 - - 6525 - - - -

the model structure allows. This can be achieved by employing a suitable optimiza-
tion methodology which aims at minimizing the discrepancy between the model
estimations and the real traffic data. More details on the utilized model calibration
procedure are provided by Spiliopoulou et al., 2014.

In the current study, the Nelder-Mead optimization method is employed for the
calibration of the examined traffic flow models. The models are fed with boundary
data (inflows at the upstream boundary and the on-ramps and exit rates at the off-
ramp) and produce the stretch-internal traffic states according to the respective equa-
tions and parameter values. The utilized performance index (PI) under minimiza-
tion is the Root-Mean-Square Error (RMSE) of the real versus the model-predicted
speed values at all detector locations. The models are calibrated using real traffic
data from 03/06/2014 and a simulation time step equal to T = 5 s. It should be
stressed that all cells of the modeled freeway stretch are characterized by the same
parameters of the FD for each model. After the calibration procedure, the accuracy
and robustness of the resulted models is evaluated by validating the produced mod-
els with different traffic data (from the same freeway site) than the data used for
their calibration. In this study, the models are validated using real traffic data from
19/06/2014.

FIGURE 2.8: Representation of the considered freeway stretch in UK.
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TABLE 2.3: Performance indices for the calibration and validation
days for all examined models

Model Speed Error Flow Error Speed Error Flow Error
03/06/2014 03/06/2014 19/06/2014 19/06/2014

Triang. FD 18 625.7 23.4 477.8
Trapez. FD 18 651.8 24.2 473.9
PWL FD 12.6 626.6 19 479.9
NL FD 12.6 653.4 19 487.8

Approach 1 11.6 603 19 425.8
Approach 2 11.9 606.7 18.9 485.8
Approach 3 12.8 685.1 18.9 439.3
Approach 4 11.3 584.3 18.6 425.9
Approach 5 10.9 576 18.4 431.4

FOM-Ant 9.9 598.6 17.2 446.2

METANET 7.9 471.2 14.8 420.6

2.4.2 Basic discretized-LWR formulation

As mentioned before, the investigated capacity drop approaches are based on the
discretized LWR model. This basic FOM cannot reflect the capacity drop phenomenon;
however, different shapes of the FD may improve the model’s accuracy. To inves-
tigate this, four different shapes of the FD are examined, all applied to the basic
discretized LWR model, i.e. triangular FD, trapezoidal FD, piecewise linear FD, and
nonlinear exponential FD (see, Figure 2.5).

Table 2.2 includes the calibrated model parameter values and Table 2.3 the cor-
responding PI values for the calibration and the validation datasets. It is interesting
to see that all four variations (Triang. FD, Trapez. FD, PWL FD, NL FD) produced a
similar value for the Q (capacity) parameter. Moreover, as it was expected, the use
of a triangular FD results in a low ρcr value, lower than in the other formulations.
Figure 2.9(a)-(e) displays the space-time diagrams of the real speed measurements
and the corresponding models’ predictions of speed for the calibration date. It is
observed that the models using a triangular or a trapezoidal FD predict free flow
conditions at all areas outside congestion. In contrast, the use of a piecewise linear
or non-linear FD allows for mean speed variations also outside of the congestion
area, thus achieving higher accuracy at lower densities, compared to the first two
formulations. Considering the above results, LWR-type FOMs with nonlinear FD
are used in the subsequent investigations of capacity drop approaches, i.e., the func-
tion g, used in the demand function, is an exponential increasing function. More
specifically, function g is defined as

g(xi) = vf,ixili exp

(
− 1

ai

(
xi
ρcri

)ai)
(2.44)

where ai = −1/ ln(Qi/(livf,iρcri )).
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2.4.3 Capacity drop approaches

Five capacity drop approaches, which were described in Section 2.3, are imple-
mented for this simple, but typical, freeway stretch. Table 2.2 includes the estimated
model parameter values for all five approaches. It should be mentioned that in all ex-
amined approaches the maximum capacity flow Q was fixed at 6900 veh/h, which
is close to the highest flows observed in the network. This was done in order to
achieve a fair comparison of the models regarding the reproduction of the capacity
drop phenomenon.

Table 2.2 shows that in all five approaches similar values were estimated for the
vf and ρcr parameters, while quite different values were obtained for the parame-
ters c and ρmax due to the different formulations adopted for the reproduction of
the capacity drop phenomenon. Moreover, it should be noted that, although in all
approaches the parameter α is related to the magnitude of the capacity drop, the
impact on the resulting capacity drop is substantially different, and for this reason
the value of α varies in the different approaches. Table 2.3 presents the PI values for
the calibration and the validation datasets. It is observed that the models achieve
similar PI values, which implies that they are all able to reproduce the traffic condi-
tions in this network with reasonable and comparable accuracy. More specifically,
all approaches, except for Approach 3, improve the PI value compared to the basic
LWR model with non-linear FD.

Table 2.2 and Table 2.3 also include the calibration results for the FOM with an-
ticipation (presented in Section 2.3.7) and the SOM METANET (presented in Section
2.3.8), which are applied to this freeway stretch for comparison purposes. Note that
Table 2.2 presents only some of the estimated parameters of these two models while
the rest parameters were estimated equal to: ν̃= 6.4 km2/h and β= 0.76 for the FOM
with anticipation and τ= 26.8 s, ν=45.6 km2/h, δ= 0.1 h/km, κ= 10 veh/km/lane,
vmin= 7 km/h for METANET model.

Figure 2.9(f)-(j) presents the space-time diagrams of the corresponding speed es-
timations for all five capacity-drop approaches for the calibration date. It is observed
that the estimations of all five approaches are close to the real speed data and are
actually similar to each other. Figure 2.9(k)-(l) dispays the corresponding speed es-
timations of the FOM with anticipation and the SOM METANET. It is shown here
that the FOM with anticipation achieves a remarkably high accuracy in representing
the prevailing traffic conditions thanks to the included anticipation term (Eq. (2.39)).
On the other hand, METANET model produces, as expected, the most realistic rep-
resentation of the traffic characteristics, thanks to the fact that it accounts also the
vehicle acceleration capabilities and the driver reaction time.

Regarding the reproduction of the capacity drop phenomenon, Figure 2.10 dis-
plays the time-series of the real flow measurements and the corresponding models’
estimations at the location of detector station D 8180 (see, Figure 2.8), which is placed
about 800 m downstream of the merge area. It is observed that, except for the ba-
sic LWR model with nonlinear FD, all five approaches produce a reduced merge
area outflow during the congestion period. Moreover, all approaches, except for
Approach 2, are capable to estimate a high merge area outflow (close to capacity)
just before the onset of congestion, which is in accordance with the real flow val-
ues observed. Figure 2.10(g) shows that the FOM with anticipation also produces
a reduced merge area outflow, however with a smaller flow drop than the real ob-
served flow drop. Finally, Figure 2.10(h) presents the flow estimations of the SOM
METANET which are very close to the real traffic measurements.
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FIGURE 2.9: Space-time diagrams of speed for (a) the real traffic data;
(b) the LWR model with triangular FD; (c) the LWR model with trape-
zoidal FD; (d) the LWR model with picewise linear FD; and (e) the
LWR model with nonlinear FD; (f) Approach 1; (g) Approach 2; (h)
Approach 3; (i) Approach 4; (j) Approach 5; (k) FOM with anticipa-

tion; and (l) METANET model for 03/06/2014.

In order to evaluate quantitatively the accuracy of the five approaches in repro-
ducing the capacity drop phenomenon, the RMSE of the real flow measurements
and the corresponding model estimations of flow is calculated, for the freeway cell
where the detector station D 8180 is located and for a time window around the time
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FIGURE 2.10: Time-series of the real flow measurements at the loca-
tion of detector station D 8180 and the corresponding flow estima-
tions of (a) the basic LWR model; (b) Approach 1; (c) Approach 2; (d)
Approach 3; (e) Approach 4; (f) Approach 5; (g) FOM with anticipa-

tion; and (h) METANET model; for 03/06/2014.

when capacity drop appears (i.e. between 7–7:15 a.m.). Table 2.3 includes the corre-
sponding flow error for all examined models for the calibration and the validation
datasets. It is observed that all approaches, except for Approach 3, for the calibra-
tion day, and Approach 2, for the validation day, achieve a lower error compared
to the basic LWR formulation without capacity drop. Furthermore, the FOM with
anticipation, although reproducing correctly the propagation of congestion (as it can
be also deduced from the low PI value), seems less capable to create a satisfactory
capacity drop. As Table 2.3 shows, the flow error in Approach 4 and Approach 5
is noticeably smaller than the flow error of the FOM with anticipation. Finally, it
is noted that the SOM METANET achieves the highest accuracy in reproducing the
capacity drop compared to all employed FOMs.

Figure 2.11 displays the flow versus density diagram (i.e., the FD) at the merge
cell (cell 29th ,Figure 2.8) for the basic LWR model (again, using a nonlinear demand
part of the FD) and all five approaches. It is observed that, as expected, the ba-
sic LWR model is not able to reproduce the capacity drop phenomenon (see Figure
2.10(a) and Figure 2.11(a)). Comparing the five examined approaches, it is observed
that actually only Approach 1, Approach 4 and Approach 5 produce a capacity drop
at the merge cell, resulting though in different FD shapes (due to their different for-
mulations).

In particular, in Approach 1 the merge area discharge flow corresponds exactly
to the pre-specified value Q̄ = aQ = 6141veh/h (see Figure 2.11(b)). In Approach 4
(see Figure 2.11(e)), the magnitude of the observed capacity drop varies according to
the density of the upstream cell; i.e. in case of stronger congestion, characterized by a
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FIGURE 2.11: Flow-density diagram at the merge cell using (a)
the basic LWR model; (b) Approach 1; (c) Approach 2; (d) Ap-
proach 3; (e) Approach 4; (f) Approach 5; (g) FOM with anticipa-
tion; (h) METANET model; and (i) real data at detector D 8180, for

03/06/2014.

lower speed, a stronger capacity drop is observed, which is in accordance with some
traffic observations. Finally, in Approach 5, the capacity drop observed follows the
shape of the demand function of the merge cell while the magnitude of the observed
capacity drop also depends on the magnitude of the applied on-ramp volume (see
Figure 2.11(f)). On the other hand, Approach 2 and Approach 3 do not produce a
capacity drop at the merge cell (see Figure 2.11(c) and Figure 2.11(d)) although they
manage to produce a reduced outflow from the merge area during congestion pe-
riod (see Figure 2.10(c) and Figure 2.10(d)). In particular, in Approach 2 the observed
merge area outflow never reaches capacity, even before the onset of congestion, in
accordance with the behavior described in Section 3. Moreover, regarding Approach
3, the discharge flow that materializes is also dependent on the on-ramp flow enter-
ing the merge cell (which causes the fluctuations that can be observed in the corre-
sponding plot), whereas the mainstream flow exiting the cell upstream of the merge
cell, during the congestion period, is constantly equal to Q̄ = aQ = 4968veh/h.
Figure 2.11 also includes, for comparison, the flow versus density diagram at the
merge cell for the FOM with anticipation (Figure 2.11(g)) and the SOM METANET
(Figure 2.11(h)); as well as the corresponding real-data diagram at the location of the
detector station D 8180, which is about 800 m downstream of the merge area (Figure
2.11(i)). As a result, Figure 2.11(i) cannot be directly compared to the other plots, but
it is included here as it corresponds to the closest measurement point downstream of
the bottleneck location. Notice that the density in Figure 2.11(i) has been estimated
from flow and speed measurements by x(t) = q(t)/v(t).
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FIGURE 2.12: Sensitivity investigations in chages to the models’ pa-
rameters related to the capacity drop, in terms of PI value for (a) Ap-
proach 1; (b) Approach 2; (c) Approach 3; (d) Approach 4; and (e)

Approach 5 for 03/06/2014.

While examining the presented five approaches, a question was raised regard-
ing the sensitivity of the models to variations of the parameters α or ηr and/or θr
(depending on the approach) which are involved in the reproduction of the capacity
drop phenomenon. To investigate this issue, different values were fixed for these pa-
rameters and the models were calibrated again (with respect to the rest parameters)
for each examined value. Figure 2.12 displays all the related results. As an example,
Figure 2.12(a) presents the best obtained PI values after calibrating Approach 1 for
different fixed values of the parameter α within the range [0.5, 1]. It is observed that
the model achieves lowest PI values for α close to 0.9. Similarly, in Approach 2 the PI
is minimized for ηr in the range [1.4, 1.5] (Figure 2.12(b)), in Approach 3 for α close
to 0.7 (Figure 2.12(c)) and in Approach 4 for α close to 0.6 (Figure 2.12(d)). Regarding
Approach 5, which includes two parameters related to the capacity drop, α and θr,
the investigations include different coupled values of these two parameters and the
model was calibrated again for each one of these couples. Figure 2.12(e) presents
the best obtained PI value for each investigated couple. It may be seen that different
coupled values of the two parameters lead to equally low PI values. This means that
these two parameters are strongly correlated. Considering the above investigations,
it is concluded that the models are sensitive to the value of the parameters related
to the capacity drop. Finally, note that for α = 1, in Approach 1, 3 and 4, and for ηr
= 1 and θr= 1, in Approach 2 and Approach 5, respectively, the basic LWR model is
obtained.
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Chapter 3

Global Exponential Stabilization of
Acyclic Traffic Networks

3.1 Introduction

This chapter presents a rigorous methodology for the construction of explicit feed-
back laws that guarantee the RGES of the UEP for the general nonlinear discrete-
time acyclic traffic networks presented in Section 2.2.1. Traffic networks, satisfying
specific assumptions, have been studied by Coogan and Arcak, 2014, where suffi-
cient conditions for the local stability of the UEP are provided; while Gomes et al.,
2008 analyze the equilibriums of the CTM based on monotone systems theory. There
are several other works that address stability issues within more specific modeling
frameworks for traffic networks. For example, Haddad and Geroliminis, 2012 de-
rive necessary and sufficient conditions for stable equilibrium accumulations in the
undersaturated regimes of macroscopic FDs; while Smith, 1984 studies the stability
of equilibriums of a traffic assignment model. However, studies that address rig-
orously stabilization issues are quite rare. Stability results for simple traffic control
systems have been considered by Karafyllis and Papageorgiou, 2014, where suffi-
cient conditions for the local and global ISS property of vehicular-traffic networks
are provided under the effect of PI regulators. Moreover, Li et al., 1997 propose
link layer feedback (velocity) control laws that stabilize simple, multi-lane and two-
dimensional freeway models.

Based on the proposed general modeling framework presented in Section 2.2.1,
the results provided by Karafyllis and Papageorgiou, 2015, and specifically Theorem
A.5 (see Appendix A), are utilized for the developed uncertain models of acyclic
networks. More specifically, this chapter provides a parameterized family of explicit
feedback control laws which can robustly globally exponentially stabilize the desired
UEP of a given acyclic traffic network. The achieved stabilization is robust with re-
spect to: i) any uncertainty related to the FD of traffic flow; as well as ii) the overall
uncertain nature of the developed model when congestion phenomena are present.
In fact, in the latter case, the model which describes the time evolution of the net-
work variables is almost completely uncertain (besides the requirement of known
and constant turning and exit rates). Furthermore, the assumptions that surround
the proposed methodology are weak enough to render the methodology applicable
to other kinds of acyclic networks instead of traffic networks. Finally, we emphasize
that, as it is proved herein (Proposition 3.2), the requirement regarding the absence
of cycles inside the network is utterly necessary for the existence of a robust global
exponential stabilizer of the UEP of the network. The present methodology can also
be used as perimeter control strategy as well as for arterial (or corridor) networks
with arbitrary topology that contain no cycles. To the best of the author’s knowl-
edge, this is the first study that addresses rigorously global stabilization issues for
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such problems.
The structure of the present chapter is as follows: Section 3.2 presents the main

results of this chapter, while the proofs of the main results can be found in Section
3.3. An illustrative example of a freeway-to-freeway network is presented in Section
3.4.

3.2 Main Results

The acyclic traffic model presented in Section 2.2.1 is considered in this chapter. For
convenience reasons, here the corresponding model is rewritten. Consider the fol-
lowing nonlinear uncertain discrete space-time system for i = 1, ..., n:

x+
i = xi + s̄i(d, x, v)vi − si(d, x, v)fD,i(d, xi) +

n∑
j=1

bj,isj(d, x, v)fD,j(d, xj), (3.1)

under Assumptions (H 2.1), (H 2.2), (H 2.3), (H 2.4). We next assume the existence
of a point x∗ = (x∗1, ..., x

∗
n)′ ∈ S with x∗i ∈ (0, µi) for i = 1, ..., n and a vector v∗ =

(v∗1, ..., v
∗
n)′ ∈ <n+ with v∗i < vmaxi for i = 1, ..., n, that satisfy the following equations:

fD,i(d, x
∗
i ) = v∗i +

n∑
j=1

bj,ifD,j(d, x
∗
j ), for all i = 1, ..., n, d ∈ D. (3.2)

Since x∗i ∈ (0, µi), v∗i < vmaxi , for i = 1, ..., n, it follows from Assumption (H 2.4) that
the following inequalities hold:

v∗i +
n∑
j=1

bj,ifD,j(d, x
∗
j ) < fS,i(d, x

∗), for all i = 1, ..., n, d ∈ D. (3.3)

The point x∗ = (x∗1, · · · , x∗n)′ ∈ S is called the UEP of the network corresponding
to the vector of external inflows v∗ = (v∗1, ..., v

∗
n)′ ∈ <n+. Notice that the input d ∈ D

is a vanishing perturbation for system (3.1) with v(t) ≡ v∗. This is also illustrated
in Figure 2.1, which shows that the input d ∈ D does not change the position of the
equilibrium point (denoted by a star).

Proposition 3.2

Consider the network (3.1) under Assumptions (H 2.1), (H 2.4). Assume the exis-
tence of a point x∗ = (x∗1, ..., x

∗
n)′ ∈ S with x∗i ∈ (0, µi) for i = 1, ..., n and a

vector v∗ = (v∗1, ..., v
∗
n)′ ∈ <n+ with v∗i < min (vmaxi ,min { fS,i(d, 0) : d ∈ D }) for

i = 1, ..., n, that satisfy equations (3.2). Assume that the network contains at least
one cycle. Then, system (3.1) with input (v, d) ∈ <n+ ×D is not globally asymptoti-
cally controllable to the equilibrium point x∗ = (x∗1, ..., x

∗
n)′ ∈ S.

Proposition 3.2 is one of the most important consequences of the existence of an
UEP and Assumptions (H 2.1), (H 2.2), (H 2.3), (H 2.4). More specifically, the Propo-
sition 3.2 reveals the reason for studying acyclic networks (explicitly guaranteed by
(H 2.2)) and shows that if the network contains cycles, then the system is not glob-
ally asymptotically controllable to the UEP. That means that Assumption (H 2.2) is
utterly necessary in order to proceed to the study of the stabilization of the network
(3.1) because otherwise there is no feedback control law which can render the UEP
globally exponentially stable.
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We next assume that some of the external inflows may be controlled. Let vmin ∈
<n+ be a vector with vmin ≤ v∗, let K ∈ <n×n+ be a non-negative, constant matrix and
let τ > 0 be a constant. We set:

v = v∗ − diag(v∗ − vmin)
(
1n − h

(
1n − τ−1Kh(x− x∗)

))
, (3.4)

where h : <n → <n+ is the mapping defined by:

h(x) = (max(0, x1), ...,max(0, xn))
′
∈ <n+ (3.5)

for all x ∈ <n. Notice that if vmini = v∗i for some i ∈ {1, 2, ..., n} then it follows from
(3.4) that vi = v∗i , i.e., the external inflow vi is uncontrolled. Therefore, by assum-
ing (3.4), we have taken into account all possible cases for the control of external
inflows. We intend to prove the following theorem, which shows that the UEP can
be robustly, globally, exponentially stabilized by the continuous feedback law (3.4),
which regulates certain or all the external inflows.

Theorem 3.3

Consider the network (3.1) under Assumptions (H 2.1), (H 2.2), (H 2.3), (H 2.4).
Assume the existence of a point x∗ = (x∗1, ..., x

∗
n)′ ∈ S with x∗i ∈ (0, µi) for i =

1, ..., n and a vector v∗ = (v∗1, ..., v
∗
n)′ ∈ <n+ with v∗i < min(vmaxi ,min{fS,i(d, 0) :

d ∈ D}) for i = 1, ..., n, that satisfy equations (3.4). Then there exists an index set
R ⊆ {i ∈ {1, ..., n} : v∗i > 0}, a matrix K ∈ <n×n+ and a vector vmin ∈ <n+ with
0 < vmini < v∗i for i ∈ R, vmini = v∗i for i /∈ R such that for every τ ∈ (0, 1),
x∗ = (x∗1, ..., x

∗
n)′ ∈ S is RGES for the closed-loop system (3.1) with (3.4).

Theorem 3.3 is an existence result. However, its proof is constructive and pro-
vides formulae (or sufficient conditions) for all constants and for the index set R.
Notice that the index set R is the set of all inflows that must be controlled in order
to be able to guarantee that the UEP is RGES. The importance of Theorem 3.3 lies on
the following facts:

1. It provides a family of robust, global, exponential stabilizers (parameterized
by τ ∈ (0, 1)) and an explicit feedback law (formula (3.4)).

2. The achieved stabilization is robust with respect to:

(a) The uncertain nature (introduced by d ∈ D) of the FD of traffic flow (by
considering uncertain fD,i(d, ·) and fS,i(d, ·), respectively).

(b) The overall uncertain nature of the model (3.1) when congestion phenom-
ena are present (by considering uncertain functions si(d, ·, ·) and s̄i(d, ·, ·)).

Notice here, that the only requirements regarding the functions si (and s̄i, respec-
tively) are summarized within the implication (2.8) and Assumption (H 2.3). How-
ever, implication (2.8) is not a strict requirement since it allows the functions si (for
i = 1, ..., n) to take any value within [0, 1], when at least one cell is congested. One
possibility for the uncertainty within the functions si (for i = 1, ..., n) is to be repre-
sented with respect to unknown and even time-varying priority rules as presented
in Section 2.2.3 (formula (2.16)); however, here, this type of uncertainty may be en-
hanced by considering priority rules for all the internal inflows of the network. No-
tice also, that the only requirements regarding the functions fi(d, ·) and fS,i(d, ·) are
summarized within Assumption (H 2.1) and the inequality fS,i(d, x) ≤ ρmaxi − xi
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which again allow for a large variety of FDs to be considered (see the illustrative
example in the following section).

FIGURE 3.1: Idea behind Theorem 3.3.

The main idea behind the proof of Theorem 3.3 is the construction of a VLF for
the closed-loop system. The construction of the VLF is based on the existence of a
Trapping Region (TR) Ω for the system (3.1) in which no congestion phenomena are
present. The appropriate selection of the gain matrix K ∈ <n×n+ in (3.4) forces the
selected control action to lead the state in the set Ω (see Figure 3.1). In other words,
the control action will first eliminate all congestion phenomena and then will drive
the state to the desired equilibrium.

Proposition 3.4

Consider the network (3.1) under Assumptions (H 2.1), (H 2.2), (H 2.3), (H 2.4).
Assume the existence of a point x∗ = (x∗1, ..., x

∗
n)′ ∈ S with x∗i ∈ (0, µi) for i =

1, ..., n and a vector v∗ = (v∗1, ..., v
∗
n)′ ∈ <n+ with v∗i < vmaxi for i = 1, ..., n, that

satisfy equations (3.2). Then there exist constants βi ∈ (x∗i , µi] (i = 1, ..., n) such
that for every vmin ∈ <n+ with vmin ≤ v∗, K ∈ <n×n+ and,τ > 0 it holds that:

x ∈ Ω, d ∈ D ⇒ x+ ∈ Ω, (3.6)

where Ω = [0, β1]× · · · × [0, βn], h : <n → <n+ is the mapping defined by (3.5) and
x+ is given by (3.1) with (3.4).

Proposition 3.4 shows the existence of a positively invariant region for (3.1). Im-
plication (3.6) shows that Ω ⊂ S is a positively invariant region for inputs that satisfy
d(t) ∈ D and 0 ≤ v(t) ≤ v∗ − diag(v∗ − vmin)(1n − h(1n − τ−1Kh(x(t) − x∗))) for
all t ≥ 0. It should be noticed that x∗ ∈ int(Ω), i.e., the UEP is in the interior of the
positively invariant region. In order to study the stability properties of the UEP of
the network (3.1), we need the technical lemmas below.

More specifically, Lemma 3.7 shows the existence of a TR for system (3.1) and
Theorem 3.8 shows that the UEP is RGES for the system (3.1) under the proposed
feedback regulator (3.4). The proof of Theorem 3.8 is based on Theorem A.5 and
therefore on the construction of a VLF. Theorem 3.8 is utilized in order to prove the
main result of this section, i.e., Theorem 3.3. The proofs of the lemmas below are
provided in the Appendix B.
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Lemma 3.5

Consider the network (3.1) under Assumptions (H 2.1), (H 2.2), (H 2.3), (H 2.4).
Assume the existence of a point x∗ = (x∗1, · · · , x∗n)′ ∈ S with x∗i ∈ (0, µi) and a
vector v∗ = (v∗1, ..., v

∗
n)′ ∈ <n+ with v∗i < vmaxi (i = 1, ..., n), that satisfy equations

(3.2). Then there exist constants βi ∈ (x∗i , µi] (i = 1, ..., n) such that for every
b ∈ <n+ with b ≤ v∗, K ∈ <n×n+ and τ > 0, implication (3.6) holds and such that:

x ∈ Ω, d ∈ D ⇒
h(x+ − x∗) ≤ (I +B′diag(G)− diag(L))h(x− x∗),

(3.7)

x ∈ Ω, d ∈ D ⇒
h(x∗ − x+) ≤ (I +B′diag(G)−diag(L))h(x∗ − x) + diag(v∗ − b)τ−1Kh(x− x∗),

(3.8)

where Ω = [0, β1] × · · · × [0, βn], h : <n → <n+ is the mapping defined by (3.5),
L = (L1, ..., Ln)′ ∈ <n, G = (G1, ..., Gn)′ ∈ <n, B ∈ <n×n is the matrix B =
{ bi,j : i, j = 1, ..., n } and x+ is given by (3.1) with (3.4).

Lemma 3.6

Consider the network (3.1) under Assumptions (H 2.1), (H 2.2), (H 2.3), (H 2.4).
Assume the existence of a point x∗ = (x∗1, · · · , x∗n)′ ∈ S with x∗i ∈ (0, µi) and a
vector v∗ = (v∗1, ..., v

∗
n)′ ∈ <n+ with v∗i < vmaxi (i = 1, ..., n), that satisfy equations

(3.2). Then there exist constants βi ∈ (x∗i , µi] (i = 1, ..., n) such that for every
vmin ∈ <n+ with vmin ≤ v∗, K ∈ <n×n+ and τ > 0, implications (3.6), (3.7), (3.8)
hold and there exists a constant M > 0 (depending on b ∈ <n+, K ∈ <n×n+ and
τ > 0), which satisfies the following property:

x ∈ S, d ∈ D ⇒ |x+ − x∗| ≤M |x− x∗|, (3.9)

where x+ is given by (3.1) with (3.4).

Lemma 3.7

Consider the network (3.1) under Assumptions (H 2.1), (H 2.2), (H 2.3), (H 2.4).
Assume the existence of a point x∗ = (x∗1, ..., x

∗
n)′ ∈ S with x∗i ∈ (0, µi) and a

vector v∗ = (v∗1, ..., v
∗
n)′ ∈ <n+ with v∗i < min (vmaxi ,min { fS,i(d, 0) : d ∈ D })

(i = 1, ..., n), that satisfy equations (3.2). Let r = (r1, ..., rn)′ ∈ int(<n+) be the
constants involved in Lemma A.7 and let C > 0 be the corresponding constant for
which inequality (2.13) holds for all (d, x) ∈ D × S and for all vi ≥ 0 with vi ≤ v∗i
(i = 1, ..., n). Assume that there exist vmin ∈ <n+ with vmin ≤ v∗ such that:

r′vmin ≤ C min
i=1,...,n

(rix
∗
i ). (3.10)

Then there exist constants βi ∈ (x∗i , µi] (i = 1, ..., n) and a matrix K ∈ <n×n+

such that for every τ ∈ (0, 1) implications (3.6), (3.7), (3.8) hold and the set Ω =
[0, β1]× · · · × [0, βn] is a TR for the closed-loop system (3.1) with (3.4).
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Theorem 3.8

Consider the network (3.1) under Assumptions (H 2.1), (H 2.2), (H 2.3), (H 2.4).
Assume the existence of a point x∗ = (x∗1, ..., x

∗
n)′ ∈ S with x∗i ∈ (0, µi) for i =

1, ..., n and a vector v∗ = (v∗1, ..., v
∗
n)′ ∈ <n+ with v∗i < min(vmaxi ,min{gi(d, 0) :

d ∈ D}), for i = 1, ..., n, that satisfy equations (3.2). Let r = (r1, · · · , rn)′ ∈
int(<n+) be the constants involved in Lemma A.7 and let C > 0 be the corresponding
constant for which inequality (2.13) holds for all (d, x) ∈ D × S and for all vi ≥ 0
with vi ≤ v∗i (i = 1, ..., n). Assume that there exist vmin ∈ <n+ with vmin ≤ v∗ such
that (3.10) holds. Then there exist constants βi ∈ (x∗i , µi] (i = 1, ..., n) and a matrix
K ∈ <n×n+ such that for every τ ∈ (0, 1), implications (3.6), (3.7), (3.8) hold and the
equilibrium point x∗ = (x∗1, ..., x

∗
n)′ ∈ S is RGES for the closed-loop system (3.1)

with (3.4).

Finally, the following corollary provides sufficient conditions for the RGES of the
UEP for the open-loop system (3.1) with v = v∗. The sufficient conditions are given
by means of the selection of UEP. Its proof is provided in the next section.

Corollary 3.9

Consider the network (3.1) under Assumptions (H 2.1), (H 2.2), (H 2.3), (H 2.4).
Assume the existence of a point x∗ = (x∗1, ..., x

∗
n)′ ∈ S with x∗i ∈ (0, µi) and a

vector v∗ = (v∗1, ..., v
∗
n)′ ∈ <n+ with v∗i < min(vmaxi ,min{fS,i(d, 0) : d ∈ D}),

for i = 1, ..., n, that satisfy equations (3.2). Let r = (r1, ..., rn)′ ∈ int(<n+) be the
constants involved in Lemma A.7 and let C > 0 be the corresponding constant for
which inequality (2.13) holds for all (d, x) ∈ D×S and for all vi = v∗i (i = 1, ..., n).
Assume that

r′v∗ ≤ min
i=1,...,n

(rix
∗
i ). (3.11)

Then the equilibrium point x∗ = (x∗1, ..., x
∗
n)′ ∈ S is RGES for the open-loop system

(3.1) with v = v∗.

3.3 Proofs of Main Results

Proof of Proposition 3.2: Let the index set E ⊆ {1, ..., n} be the set of all the indices
of the cells that are in one of the cycles in the network (3.1). Let also e ≤ n be the car-
dinality of the set E. Then, we define E := {i1, i2, ..., ie} so that bi1,i2 , bi2,i3 , ..., bie−1,ie ,
bie,i1 6= 0. Moreover, consider an initial condition x(0) for which xik(0) = aik for
every k = 1, ..., e (but otherwise arbitrary) and let {d(t) ∈ D}∞t=0 and {v(t) ∈ U}∞t=0

be arbitrary sequences. Due to the fact that gik(d, x) = 0 if xik = aik (direct conse-
quence of continuity of gi(d, x) and the fact that 0 < gi(d, x) ≤ ρmaxi − xi for every
i = 1, ..., n) for every k = 1, ..., e, we have from (2.7) that for k = 1:

F ini1 (0) = 0⇒

s̄i1(d(0), x(0), v(0))vi1(0)+

n∑
j=1

bj,i1sj(d(0), x(0), v(0))fj(d(0), xj(0)) = 0⇒
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s̄i1(d(0), x(0), v(0))vi1(0)+

n∑
j=1

bj,i1sj(d(0), x(0), v(0))fj(d(0), xj(0)) = 0

and
n∑
j=1

bj,i1sj(d(0), x(0), v(0))fj(d(0), xj(0)) = 0.

But the fact that
∑n

j=1 bj,i1sj(d(0), x(0), v(0))fj(d(0), xj(0)) = 0 implies that:

bie,i1sie(d(0), x(0), v(0))fie(d(0), xie−1(0)) = bie,i1sie(d(0), x(0), v(0))fie(d(0), aie)

= bie,i1sie(d(0), x(0), v(0))fminie = 0⇒ sie(d(0), x(0), v(0)) = 0.

Repeating the above process for every k = 1, ..., e, we obtain that s̄ik(d(0), x(0), v(0)) =
0 and sik(d(0), x(0), v(0)) = 0 for every k = 1, ..., e. Therefore, we conclude from
(3.1) that xik(1) = xik(0) = aik . Using induction, it follows that xik(t) = aik for every
t ≥ 0. The proof is complete. /

Proof of Proposition 3.4: Lemma A.8 guarantees that there exists ξ ∈ int(<n+) such
that

∑n
j=1 bj,iGjξj < Liξi, for i = 1, ..., n. Using (A.7) and the fact that h(x) ≤ ξ for

all x ∈ <n with x ≤ ξ, we have that:(
I +B′diag(G)− diag(L)

)
h(x) < ξ. (3.12)

Since x∗i ∈ (0, µi), for i = 1, ..., n, there exists a constant ε∗ > 0, sufficiently small,
such that x∗ + ε∗ξ ≤ µ, where µ = (µ1, · · · , µn)′ ∈ int(<n+). We define:

β := x∗ + ε∗ξ. (3.13)

Let arbitrary x ∈ Ω, d ∈ D, v ∈ <n+ with v ≤ v∗ − diag(v∗ − b)(1n − h(1n − τ−1K
h(x−x∗))) be given. Since xi ≤ βi ≤ µi and vi ≤ v∗i < vmaxi , for i = 1, ..., n, it follows
from (2.8) and (2.11) that:

x+
i = xi + vi − fD,i(d, xi) +

n∑
j=1

bj,ifD,j(d, xj), for i = 1, ..., n. (3.14)

Using the fact that vi ≤ v∗i −
(
v∗i − vmini

)
(1 −max(0, 1 − τ−1

∑n
j=1Ki,j max(0, xj −

x∗j ))), for i = 1, ..., n, in conjunction with (3.2), we obtain from (3.14):

x+
i ≤ xi−(v∗i − vmini ) + (v∗i − vmini ) max

0, 1− τ−1
n∑
j=1

Ki,j max(0, xj − x∗j )


+ fD,i(d, x

∗
i )− fD,i(d, xi) +

n∑
j=1

bj,i
(
fD,j(d, xj)− fD,j(d, x∗j )

)
,

(3.15)

for i = 1, ..., n. Using Assumption (H 2.1), we get Li (xi − x∗i ) ≤ fD,i(d, xi) −
fD,i(d, x

∗
i ) ≤ Gi (xi − x∗i ) for i = 1, ..., n and xi ≥ x∗i . Using Property (C2) and
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the above inequality, it follows that:

fD,i(d, xi)− fD,i(d, x∗i ) ≤ Gi max (0, xi − x∗i ) ,
xi − x∗i + fD,i(d, x

∗
i )− fD,i(d, xi) ≤ (1− Li) max (0, xi − x∗i )

(3.16)

for xi ∈ [0, βi], i = 1, ..., n. Combining (3.15), (3.16) we obtain for i = 1, ..., n:

x+
i ≤ x

∗
i − (v∗i − vmini ) + (v∗i − vmini ) max

0, 1− τ−1
n∑
j=1

Ki,j max(0, xj − x∗j )


+ (1− Li) max(0, xi − x∗i ) +

n∑
j=1

bj,iGj max(0, xj − x∗j ).

(3.17)

Using vector notation and definition (3.5), we are in a position to write inequalities
(3.17) in the following form:

x+ ≤ x∗ − v∗ + vmin + diag(v∗ − vmin)h
(
1n − τ−1Kh(x− x∗)

)
+ (I +B′diag(G)− diag(L))h(x− x∗).

(3.18)

In order to show (3.6), it suffices to show that:

x∗ − v∗ + vmin + diag(v∗ − vmin)h
(
1n − τ−1Kh(x− x∗)

)
+ (I +B′diag(G)− diag(L))h(x− x∗) ≤ β

for all x ∈ <n+ with x ≤ β or equivalently, using (3.13),

diag(v∗ − vmin)h
(
1n − τ−1Kh(x− x∗)

)
+

(I+B′diag(G)− diag(L))h(x− x∗) ≤ ε∗ ξ + v∗ − vmin
(3.19)

for all x ∈ <n+ with x ≤ x∗ + ε∗ξ. Setting x = x∗ + ε∗ζ, where ζ ∈ <n, and using the
fact that h(ε∗ζ) = ε∗h(ζ) for all ζ ∈ <n (a direct consequence of definition (3.5)), it
follows that (3.19) holds provided that:

diag(v∗−vmin)h
(
1n − ε∗τ−1Kh(ζ)

)
+ε∗(I+B′diag(G)−diag(L))h(ζ) ≤ ε∗ξ+v∗−vmin

(3.20)
for all ζ ∈ <n with ζ ≤ ξ. However, inequality (3.12) and the fact that h(1n − ε∗τ−1

Kh(ζ)) ≤ 1n imply (3.20). The proof is complete. /

Proof of Theorem 3.8: A direct application of Theorem A.5. Indeed, Lemma 3.6 and
Lemma 3.7 guarantee that all assumptions of Theorem A.5 hold for the closed-loop
system (3.1), (3.4) with

Vi(x) := max (0, xi − x∗i ) for i = 1, ..., n and
Vi(x) := max

(
0, x∗i−n − xi−n

)
for i = n+ 1, ..., 2n.

(3.21)

Notice that definitions (3.21) guarantee the inequality

1√
n
|x− x∗| ≤ max

i=1,...,2n
(Vi(x)) = max

i=1,...,n
(|xi − x∗i |) ≤ |x− x∗| , (3.22)
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for all x ∈ S, while (3.7), (3.8) and (3.21) imply the inequality:

V (x+) ≤ ΓV (x) for all (d, x) ∈ D × Ω, (3.23)

where V (x) = (V1(x), ..., V2n(x))′<2n and

Γ :=

[
I +B′diag(G)− diag(L) 0
diag(v∗ − vmin)τ−1K I +B′diag(G)− diag(L)

]
. (3.24)

Lemma A.9 guarantees that the matrix I +B′diag(G)− diag(L) is a lower triangular
matrix with ρ (I +B′diag(G)− diag(L)) < 1. Then, it follows that the matrix Γ, as
defined by (3.24), is a lower triangular matrix with its diagonal entries being the
same with the diagonal entries of the matrix I + B′diag(G) − diag(L). Therefore,
ρ (Γ) < 1. The proof is complete. /

Proof of Theorem 3.3: Without loss of generality, by virtue of Theorem 3.8, it suffices
to show the existence of vmin ∈ <n+ with vmin ≤ v∗ such that (3.10) hold. We set:

R := {i ∈ {1, ..., n} : v∗i > 0}, vmin := λv∗, λ := min

(
1

2
,
C mini=1,...,n(rix

∗
i )

r′v∗

)
.

(3.25)
Definitions (3.25) guarantee that (3.10) holds. The proof is complete. /

Proof of Corollary 3.9: Again a direct application of Theorem A.5. Selecting m ∈
{1, 2, ....} so that:

m :=

[
ln (C mini=1,...,n(riβi)− r′v∗)− ln(Cr′ρmax)

ln(1− C)

]
+ 1, (3.26)

and following the same procedure as in the proof of Lemma 3.7, we conclude that
the UEP is RGES for the open-loop system (3.1) with v = v∗ satisfying (3.11). The
proof is complete. /

3.4 Illustrative Example

Consider a 3-lane freeway-to-freeway traffic network of the form (3.1) with n = 8
cells. The traffic network consists of two smaller freeways, 2 km each; the first is
composed by the cells i = 1, 2, 3, 4, and the second is composed by the cells i =
5, 6, 7, 8 (see, Figure 3.2). The cells are homogeneous, each cell being 0.5 km in length.
The whole network admits two external inflows; one external inflow at the upstream
boundary of the first cell and one external inflow at the upstream boundary of the
fifth cell, while there are no intermediate external inflows (v2 = v3 = v4 = v6 = v7 =
v8 = 0 and v1, v5 6= 0). At the end of the first freeway (4th cell) there is an off-ramp
joining the second freeway which becomes an on-ramp for the second freeway at the
upstream boundary of the 7th cell (see Figure 3.2). According to this configuration,
the exit and turning rates of the freeway are defined as follows

pi = 0 for i = 1, 2, 3, 5, 6, 7, p4 = 0.5, p8 = 1 and

bi,j =


1

0.5
0

if j = i+ 1 and i ∈ {1, ..., 7}\ {4}
if i = 4 and j = 7

if otherwise
,i, j = 1, ...., 8.

(3.27)
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Consequently, the only control possibilities are the inflows v1, v5. It should be noted
here that the 7th cell is a bottleneck for the overall network due to the ramp that
joins both freeways. Congestion may be created in the 7th cell, due to high on-ramp
demand from the 1st and the 5th cells, and spill back to both freeways depending on
the priority rules.

All the following simulation tests have been conducted using the following form
of the model (3.1), which is expressed by means of the supply function fS,i (i =
1, ..., n):

x+
i = xi − si(d, x, v)fD,i(d, x, v) + min

fS,i(d, x), vi +
n∑
j=1

bj,ifD,j(d, xj)

 , (3.28)

si(d, x, v) =

 min
(

1,max
(

0,
fS,i+1(d,x)−vi+1

bi,i+1fD,i(d,xi)

))
1

if xi > 0

if xi = 0
, for i 6=4, 8,

s4(d, x, v) =

 min
(

1,max
(

0,
fS,7(d,x)−b6,7fD,6(d,x6)

b4,7fD,4(d,x4)

))
1

if x4 > 0

if x4 = 0
,

s8(d, x, v) = 1

(3.29)

Notice that, according to (3.29), constant priority rules for the junctions have been
taken into account by assuming a full priority rate for the external inflows and by
assuming that the mainstream flow coming from the 6th cell has full priority over the
mainstream flow coming from the 4th cell (see also (2.16) and the related discussion).
Furthermore, we assume that the simulation time step is T=15 s. However, since all
flows and densities are measured in [veh] (as imposed by the form of the model
(2.9) and (3.28), (3.29)), the cell length, the time step and the number of lanes do not
appear explicitly, but they are only reflected implicitly in the values of every variable
and every constant (e.g. critical density, jam density, flow capacity, wave speed etc.)
corresponding to density or flow. Appropriate transformations in common traffic
units are given for the most critical variables wherever it is needed.

The demand and the supply functions have been defined so as to reflect the un-
certainty, d, derived from the FD of traffic flow. More specifically, we assume that
the demand functions are given as a convex combination of several functions φi (e.g.,
linear or quadratic) satisfying Assumption (H 2.1). Furthermore, it should be noted
that the functions φi should guarantee that the uncertainty d is a vanishing pertur-
bation for the system (3.28), (3.29), i.e., it does not change the position of the UEP
(see Figures 2.1 and 3.3). Here, six different functions are used to represent the un-
certainty in the demand functions. Specifically, the functions φi, for i = 1, ..., 6 are

FIGURE 3.2: The scheme of the freeway-to-freeway network.
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given by:

φ1(z) =
5

11
z, φ2(z) = −(13.5/3025)z2 + 0.7z, φ3(z) = (14/3025)z2 + 0.2z,

φ4(z) =

{
(−49/3025)z2 + 0.9z

(−38/3025)z2 + 82/55z − 19
if z ∈ [0, 27.5]

if z ∈ (27.5, 55]

φ5(z) =

{
(7/756.25)z2 + 0.2z

(21/6050)z2 + 71.5/1210z + 8.25
if z ∈ [0, 27.5]

if z ∈ (27.5, 55]

φ6(z) = − 3

23
z +

740

23
, φ7(z) = (83/52900)z2 − (4471/10580)z + 46019/1058.

(3.30)

Then, the demand functions are given by:

fD,i(d, xi) =
d1φ1(xi) + d2(1− d1)φ2(xi) + (1− d2)(1− d1)φ3(xi)

d3φ6(xi) + (1− d3)φ7(xi)

if xi ∈ [0, 55 + 2ε]

if xi ∈ (55 + 2ε, 170]
,

(3.31)

for i = 1, 2, 3, 4, 7, 8,

fD,i(d, xi) =
d1φ1(xi) + d2(1− d1)φ4(xi) + (1− d2)(1− d1)φ5(xi)

d3φ6(xi) + (1− d3)φ7(xi)

if xi ∈ [0, 55 + 2ε]

if xi ∈ (55 + 2ε, 170]
,

(3.32)

for i = 5, 6, where di ∈ [0, 1], for i = 1, 2, 3, correspond to time-varying weight
parameters and ε = 10−5. According to (3.31), (3.32), each cell has the same criti-
cal density ρcri = 55 + 2ε[veh] (i = 1, ..., 8) (corresponding to 36.7 [veh/km/lane]
with the above settings) and the same jam density ρmaxi = 170 [veh] (i = 1, ..., 8)
(corresponding to 113.3 [veh/km/lane]). Notice also that, according to (3.31), (3.32),
decreasing functions have been considered for overcritical densities (see Chapter 6),
so as to incorporate into the model (3.28), (3.29) the capacity drop phenomenon.

As it has already been mentioned, for traffic flow networks the supply functions
are usually described by the functions fS,i(d, x) = min (Qi, ci(ρ

max
i − xi)), where

Qi > 0 represents the maximum inflow for the ith cell and ci ∈ (0, 1] represents the
normalized congestion wave speed. Here, in order to consider the uncertainty of the
supply functions, we assume that

fS,i(d, xi) = d4 min (115, ρmaxi − xi) , (3.33)

where d4 ∈ [0.22, 0.30] is a time-varying parameter resulting to a congestion wave
speed within approximately 26 to 36 [km/h] and a maximum inflow approximately
between 2000 to 2750 [veh\h\lane]. For the overall system (3.28), (3.29), the uncer-
tainty d(t) = (d1(t), ..., d4(t)) ∈ D is a time-varying parameter taking values from a
uniform distribution within D = [0, 1]3 × [0.22, 0.3]. Figure 3.3 visualizes a grey area
which includes any possible demand and supply functions.

Assumption (H 2.1) is satisfied for ρcri = ρ̃cri = 55 + 2ε[veh], fmini = 10[veh]
(i = 1, ..., 8), Li = 0.2, Gi = 0.71 for i = 1, 2, 3, 4, 7, 8 and Li = 0.009, Gi = 0.9 for i =
5, 6. The cell flow capacities are approximately fD,i(d, ρcri ) = 25[veh] (i = 1, ..., 8),
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FIGURE 3.3: Specification of the parameters of the demand and sup-
ply functions of every cell.

corresponding to 2000 [veh/h/lane]. Notice also that the matrix B, given by (3.27),
satisfies Assumption (H 2.2). Assumption (H 2.4) holds for µi = 55 + ε for i 6= 5, 6
and µi = 27.5 + ε for i = 5, 6, where ε = 10−5 and vmaxi = 0.3 for i 6= 1, 5 and
vmax1 = vmax5 = 25. Finally, Assumption (H 2.3) holds for

s̃i(d, x, v) := min

(
1,

max (0, fS,i+1(d, x)− vi+1)

bi,i+1ρmaxi

)
, for i 6= 4, 8,

s̃4(d, x, v) := min

(
1,

max (0, fS,7(d, x)− v7 − b6,7fD,6(d, x6))

b4,7a4

)
,

and s̃8(d, x, v) := 1

(3.34)

and vmaxi (for i = 1, ..., 8) as previous.

FIGURE 3.4: (a) The response of the density of every cell and (b) the
evolution of the Euclidean norm of the deviation x(t)−x∗ of the state
from the UEP, that is |x(t)− x∗|, for the open-loop system , for initial

condition x0 = [170, ...170], v = v∗ and d(t) ≡ (1, 0, 1, 0.26).

Here, R = {1, 5} and therefore we select vmin1 = vmin5 = 0.5 while vmini = 0 for
every i 6= 1, 5. Our goal is to globally exponentially stabilize the system at an UEP
which is as close as possible to the critical density (due to the fact that the flow value
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at the critical density is the largest). Equation (3.2) and inequality (3.3) are satisfied
by selecting v∗ = (25, 0, 0, 0, 12.5, 0, 0, 0) and x∗ = (55, 55, 55, 55, 27.5, 27.5, 55, 55).
The above UEP is not open-loop RGES due to the existence of additional (con-
gested) equilibria. This is shown in Figure 3.4, where the solution of the open-
loop system, with constant inflows v∗ = (25, 0, 0, 0, 12.5, 0, 0, 0), constant d(t) ≡
(1, 0, 0, 1, 0.5) and x0 = [ρmax1 , ..., ρmax8 ], is attracted by the congested equilibrium
(111.8, 111.8, 111.8, 111.8, 27.5, 27.5, 92.82, 92.82)′ (Figure 3.4(a)) leading to outflow,
which is 7.4 [veh] lower than the capacity flow of the 4th cell and 4.9 [veh] lower
than the capacity flow of the 8th cell and a constant deviation of 125.5 [veh] for the
Euclidean norm (Figure 3.4(b)). Therefore, if the objective is the operation of the
freeway with largest possible outflow, then a control strategy will be needed.

FIGURE 3.5: The response of the density of every cell for the closed-
loop system, under the proposed feedback regulator, for different
initial conditions; (a) x0 = [20, 25, 20, 25, 20, 25, 20, 25]′, (b) x0 =
[50, 50, 50, 50, 27, 27, 80, 60]′ and (c) x0 = [170, ..., 170] and for d(t) ≡

(1, 0, 1, 0.26).

We constructed the matrix K and the constant τ using the sufficient conditions
provided from the proofs of the technical lemmas and propositions. Here, we sim-
ply used K = 0.001 · 1n×n and τ = 1/2 which satisfy those conditions and allow for
a good control performance with respect to overshooting effects. Figure 3.5 shows
the response of the density of every cell for the closed-loop system (3.28), (3.29), (3.4)
and three different initial conditions for constant d(t) ≡ (1, 0, 1, 0.26); Figure 3.5(a)
is with x0 = (20, 25, 20, 25, 20, 25, 20, 25)′ corresponding to very low densities; Fig-
ure 3.5(b) is with x0 = (50, 50, 50, 50, 27, 27, 80, 60)′ corresponding to a more realistic
traffic situation for which a sudden incident created congestion in a small part of the
second freeway; and Figure 3.5(c) is with x0 = (ρmax1 , ..., ρmax8 )′ corresponding to a
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fully congested network. The feedback regulator is seen to respond very satisfacto-
rily in these tests, exhibiting a fast convergence to the UEP for each one of the initial
conditions.

Figure 3.6 shows again the response of the density of every cell for the closed-
loop system (3.28), (3.29), (3.4) and three different initial conditions (same as those
of Figure 3.5) for time-varying d(t) = (d1(t), ..., d4(t)) ∈ D taking values from a
uniform distribution within D = [0, 1]3 × [0.22, 0.3]. In this case, although small
oscillations exist, the rate of convergence to the UEP is similar to the previous test.
This demonstrates the robustness of the feedback regulator (3.4) with respect to the
uncertainties derived from the FD (3.31), (3.32), (3.33).

FIGURE 3.6: The response of the density of every cell for the closed-
loop system, under the proposed feedback regulator, for different
initial conditions; (a) x0 = [20, 25, 20, 25, 20, 25, 20, 25]′, (b) x0 =
[50, 50, 50, 50, 27, 27, 80, 60]′ and (c) x0 = [170, ..., 170] and for time-

varying d(t).
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Chapter 4

Global Exponential Stabilization of
Freeway Models

4.1 Introduction

In this chapter, we provide a rigorous methodology for the construction of explicit
feedback laws that guarantee the RGES of the UEP of the general nonlinear discrete-
time freeway models presented in Section 2.2.3 (instead of the general traffic net-
works of Section 2.2.1, which were studied in Chapter 3). The considered discrete-
time freeway models, presented in Section 2.2.3, are generalized versions of the
known first-order discrete Godunov approximations (Godunov, 1959) to the kinema-
tic-wave partial differential equation of the LWR-model (see (Lighthill and Whitham,
1955a; Lighthill and Whitham, 1955b; Richards, 1956)) with nonlinear ((Lebacque,
1996)) or piecewise linear (CTM, (Daganzo, 1994; Daganzo, 1995b; Gomes et al.,
2008) outflow functions (FDs), and which are special case of the proposed general
acyclic network model (2.9).

In contrast to the results provided in Chapter 3, in this chapter, the construction
of the robust global exponential feedback stabilizer is based on a SLF approach (see
Karafyllis and Jiang, 2011). In fact, the constructed SLF acts as a CLF for the open-
loop system and is given by an explicit formula (see formulas (4.8), (4.9), (4.10)).
Clearly, the availability of a SLF is very crucial (and can be used in a straightforward
way for various purposes) due to the existence of several important results which
concern the study of robustness properties of nonlinear systems with a SLF (Artstein,
1983; Coron and Rosier, 1994). Here, the availability of a SLF allowed the formation
of sufficient conditions for the construction of the index set R which, as previous,
contains the indices of the inflows that must be controlled in order to guarantee the
RGES of the UEP of the closed-loop system. Again, the proposed methodology pro-
vides a parameterized family of robust global exponential feedback stabilizers for
the UEP of freeway models, while the achieved stabilization is robust with respect
to all priority rules that can be used for the inflows.

The structure of the present chapter is as follows: Section 4.2 includes the main
results of this chapter, while the proofs of the main results can be found in Section
4.3. A comparison is made, by means of simulation, with an existing feedback law,
for freeway traffic control, proposed in the literature and employed in practice. More
specifically, we consider the RLB PI-type regulator which was proposed in (Wang et
al., 2010) and is the most sophisticated of the very few comparable feedback regu-
lators that have been employed in field operations (Papamichail et al., 2010). The
corresponding results are presented in Section 4.4, accompanying with a study of
the performance of the corresponding closed-loop systems and its robustness under
the effect of measurement errors.
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4.2 Main Result

The freeway model presented in Section 2.2.3 is considered in this chapter. For con-
venience reasons, here the corresponding model is rewritten. Consider the following
nonlinear uncertain discrete space-time system:

x+
1 = x1 − s1(d, x, v)fD,1(x1) + min (fS,1(x1), v1)

= x1 − s1(d, x, v)fD,1(x1) + s̄1(d, x, v)v1,
(4.1)

x+
i = xi − si(d, x, v)fD,i(xi) + min (fS,i(xi), vi + (1− pi−1)fD,i−1(xi−1))

=xi − si(d, x, v)fD,i(xi) + s̄i(d, x, v)vi + si−1(d, x, v)(1− pi−1)fD,i−1(xi−1),
(4.2)

for i = 2, ..., n− 1,

x+
n = xn − fD,n(xn) + min (fS,n(xn), vn + (1− pn−1)fD,n−1(xn−1))

=xn − fD,n(xn) + s̄n(d, x, v)vn + sn−1(d, x, v)(1− pn−1)fD,n−1(xn−1),
(4.3)

and define the vector field F̃ : [0, 1]n−1 × S × (0,+∞) × <n−1
+ → S for all x ∈ S,

d = (d1, ..., dn−1) ∈ D = [0, 1]n−1 and v = (v1, ..., vn) ∈ (0,+∞)× <n−1
+ : F̃ (d, x, v) =

(F̃1(d, x, v), ..., F̃n(d, x, v))′ ∈ <n, where F̃1(d, x, v), F̃i(d, x, v), for i = 2, ..., n − 1,
and F̃n(d, x, v) are given by the right hand side of (4.1), (4.2), (4.3) (with (2.15) and
(2.16)), respectively. Notice that, using this definition, the control system (4.1), (4.2),
(4.3) can be written in the following vector form:

x+ = F̃ (d, x, v),

x ∈ S,d ∈ D, v ∈ (0,+∞)×<n−1
+ .

(4.4)

Section 2.2.3 revealed that the freeway model (4.4) under Assumption (H 2.1*) is
special case of the network (2.9) under (H 2.1), (H 2.2), (H 2.3), (H 2.4). Moreover,
the definition of the UEP for the freeway model (4.4) under Assumption (H 2.1*)
remains the same with its definition in Chapter 3. Therefore, definitions (3.2) and
(3.3) take the following form under (2.14) and Assumption (H 2.1*):

There exist x∗ = (x∗1, . . . , x
∗
n) ∈ S with x∗i ∈ (0, µi), for i = 1, ..., n, and a vector

v∗ = (v∗1, ..., v
∗
n)′ ∈ (0,+∞)×<n−1

+ with v∗i < vmaxi (i = 1, . . . , n) , for i = 1, ..., n, that
satisfy the following equations:

fD,1(x∗1) = v∗1, fD,i(x
∗
i ) = v∗i + (1− pi−1)fD,i−1(x∗i−1) = v∗i +

i−1∑
j=1

i−1∏
k=j

(1− pk)

 v∗j ,

(4.5)

for i = 2, . . . , n. Since x∗i ∈ (0, µi), v∗i < vmaxi , it follows from Assumption (H 2.4)
that the following inequalities hold:

v∗1 < fS,1(x∗1), v∗i + (1− pi−1)fD,i−1(x∗i−1) < fS,i(x
∗
i )), i = 2, ..., n. (4.6)

The above UEP is not RGES for arbitrary v∗1 > 0, v∗i ≥ 0 (i = 2, ..., n); indeed, for
relatively large values of external demands v∗1 > 0, v∗i ≥ 0 (i = 2, ..., n) other equilib-
ria for model (4.4) (congested equilibria) may appear, for which the cell densities are
large and can attract the solution of (4.4) (see the illustrative example in Section 4.4).
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The following result is our main result in feedback design. The result shows that
a continuous, robust, global exponential stabilizer exists for every freeway model of
the form (4.4) under Assumption (H 2.1*).

Theorem 4.1

Consider system (4.4) with n ≥ 3 under Assumption (H 2.1*). Then there exist a
subset R ⊆ {1, ..., n} of the set of all indices i ∈ {1, ..., n} with v∗i > 0, constants
σ ∈ (0, 1], vmini ∈ (0, v∗i ) for i ∈ R and a constant τ∗ > 0 such that for every
τ ∈ (0, τ∗) the feedback law k : S → <n+ defined by:

k(x) := (k1(x), ..., kn(x))′ ∈ <n with

ki(x) := max(v∗i − γiΞ(x), vmini ), for all x ∈ S, i ∈ R,
ki(x) := v∗i , for all x ∈ S, i /∈ R,

(4.7)

Ξ(x) :=
n∑
i=1

σi max (0, xi − x∗i ) for all x ∈ S, (4.8)

where γi := τ−1(v∗i − vmini ) and achieves RGES of the UEP x∗ of system (4.4),
i.e., x∗ is RGES for the closed-loop system (4.4) with u = k(x). Moreover, for every
τ ∈ (0, τ∗), there exist constants h, θ̄, A, M̃ ,K > 0 so that the function V : S → <+

defined by:

V (x) :=
n∑
i=1

σi |xi − x∗i |+AΞ(x) +K max

(
0,

n∑
i=1

Ii(x)− P (x)

)
, (4.9)

for all x ∈ S, where Ij(x) :=
∑j

i=1 xi for j = 1, ..., n, and

P (x) := M̃ − θ̄min (h,Ξ(x)) , (4.10)

is a Lyapunov function with exponent 1 for the closed-loop system (4.4) with v =
k(x).

Although Theorem 4.1 is an existence result, its proof is constructive and pro-
vides formulae for all constants and for the index set R (see following sections).
Notice that the index set R is the set of all inflows that must be controlled in order
to be able to guarantee that the UEP is RGES; consequently, the knowledge of the
index set R is critical.

The importance of Theorem 4.1 lies on the facts that:

1. Theorem 4.1 provides a family of robust global exponential stabilizers (param-
eterized by the parameter τ ∈ (0, τ∗)) and an explicit formula for the feedback
law (formula (4.7);

2. The achieved stabilization result is robust for all possible (and even time vary-
ing) priority rules for the junctions that may apply at specific freeways; thus,
there is no need to know or estimate the applied priority rules;

3. Theorem 4.1 provides an explicit formula for the SLF of the closed-loop system.
This is important, because the knowledge of the SLF allows the study of the
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robustness of the closed-loop system to various disturbances (measurement
errors, modeling errors, etc.) as well the study of the effect of interconnections
of freeways (by means of the small-gain theorem; see (Karafyllis and Jiang,
2011)).

The main idea behind the proof of Theorem 4.1 is the construction of the SLF of the
closed-loop system, which acts as a CLF (see Karafyllis and Jiang, 2011) for the open-
loop system. The construction of the SLF is based on the observation that there are
no congestion phenomena when the cell densities are sufficiently small, i.e.,

"There exists a set Ω̃ ⊂ S such that no congestion phenomena are
present when x ∈ Ω̃."

The existence of the set Ω̃ ⊂ S is important because, when no congestion phe-
nomena are present, then the freeway model admits the simple (cascade) form:

x+
1 = x1 − fD,1(x1) + v1

x+
i = xi − fD,i(xi)+(1− pi−1)fD,i−1(xi−1) + vi+1, i = 2, ..., n, x ∈ Ω̃

and a Lyapunov function for the above form can be a function of the form V1(x) :=∑n
i=1 σ

i|xi − x∗i + AΞ(x), where Ξ(x) :=
∑n

i=1 σ
i max(0, xi − x∗i ); and σ ∈ (0, 1]

and A > 0 are appropriate constants. The SLF for the freeway model is the linear
combination of the "Lyapunov function" for the uncongested model (i.e., V1(x) :=∑n

i=1 σ
i|xi−x∗i |+AΞ(x)) and a penalty term, i.e., the term max(0,

∑n
i=1 Ii(x)−P (x)),

that penalizes large cell densities (and thus penalizes the possibility of the state being
out of the set Ω̃ ⊂ S).

The appropriate selection of the weight of the penalty term K > 0 forces the se-
lected control action to lead the state in the set Ω̃ ⊂ S (see Figure 3.1). In other words,
the construction of the SLF guarantees that the control action will first eliminate all
congestion phenomena and then will drive the state to the desired equilibrium.

Remark 4.1: It is important also to note that the feedback stabilizer defined by (4.7)
is special case of the feedback law proposed in (3.4). This can be shown by selecting
the matrix K ∈ <n×n+ as Ki,j = σj , for every i, j = 1, ..., n, where σ ∈ (0, 1] is the
parameter involved in (4.8). Therefore, clearly, the results of this chapter are special
case of the results provided in Chapter 2.

4.3 Proofs of Main Results

Proof of Theorem 4.1 Inequalities (2.8) and Assumption (H 2.4) allow us to define
the set Ω̃ := [0, µ1]× · · · × [0, µn] for which it holds that:

x+
1 = x1 − fD,1(x1) + v1,

x+
i = xi − fD,i(xi)+(1− pi−1)fD,i−1(xi−1) + vi, i = 2, ..., n.

(4.11)

for every x ∈ Ω̃ and vi ∈ [0, v∗i ] (i = 1, ..., n).
Let λi ∈ (0, 1), Gi ∈ [0, 1] (i = 1, ..., n), be the constants involved in Consequence

(C2) and Assumption (H 2.1*) respectively. Let σ ∈ (0, 1] be a constant so that:

L := max

(
λn, max

i=1,...,n−1
(λi + σGi(1− pi))

)
< 1. (4.12)
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Notice that L < 1 for all σ ∈ (0, 1) due to the fact that 1 − λi = Li ≤ Gi. In what
follows, we have pn = 1 = sn. Let C > 0 be the constant involved in (2.13) and let
R ⊆ {1, ..., n} be a subset of the set of all indices i ∈ {1, ..., n} for which v∗i > 0 and
such that: ∑

i/∈R

(n+ 1− i)v∗i < min
i=1,...,n

(((n− i)pi + 1)fD,i(x
∗
i )),∑

i/∈R

(n+ 1− i)v∗i < C min
i=1,...,n

((n+ 1− i)µi),
(4.13)

where µi > x∗i for i = 1, ..., n are the constants defined by (2.11). Such a set R ⊆
{1, ..., n} always exists (for example, R ⊆ {1, ..., n} can be the set of all indices i ∈
{1, ..., n} for which v∗i > 0). Inequalities (4.13) imply that there exist constants ε ∈
(0, 1) and vmini ∈ (0, v∗i ) for i ∈ R such that:∑

i∈R
(n+ 1− i)vmini +

∑
i/∈R

(n+ 1− i)v∗i ≤ min
i=1,...,n

(((n− i)pi + 1)fD,i(x
∗
i ))

and∑
i∈R

(n+ 1− i)vmini +
∑
i/∈R

(n+ 1− i)v∗i ≤ εC min
i=1,...,n

((n+ 1− i)µi).

(4.14)

We define the following parameters:

• h := mini=1,...,n

(
σi (µi − x∗i )

)
,

• M̃ := max(mini=1,...,n(µi(n+1−i)), (1−C)
∑n

i=1 Ii(x
∗)+(1−C)hmaxi=1,...,n((n+

1− i)σ−i) +
∑n

i=1(n+ 1− i)v∗i ),

• θ̄ := h−1(M̃ − εmini=1,...,n((n+ 1− i)µi)),

• τ∗ := min
(
h, (θ̄L)−1

∑
i∈R (n+ 1− i)

(
v∗i − vmini

))
and let τ ∈ (0, τ∗),

• A := 1 + (1− L)−1
∑

i∈R σ
iγi, where γi := τ−1(v∗i − vmini ) for i ∈ R,

• K :=
∑n

i=1 σ
i max(ρmax

i −x∗i ,x∗i )+A
∑n

i=1 σ
i(ρmax

i −x∗i )−(A+L)h

(1−ε)C mini=1,...,n((n+1−i)µi) .

We next prove the implication:

if x ∈ Ω̃, d ∈ [0, 1]n−1 and v ∈ [0, v∗1]× · · · × [0, v∗n] then Ξ(x+) ≤ LΞ(x) (4.15)

where L ∈ (0, 1) is defined by (4.12) and x+ = F̃ (d, x, u). Indeed, using (4.11) and
definition (4.8), we get for all x ∈ Ω̃, d ∈ [0, 1]n−1 and v ∈ [0, v∗1]× · · · × [0, v∗n]:

Ξ(x+) =

n∑
i=2

σi max(0, xi − fD,i(xi) + (1− pi−1)fD,i−1(xi−1) + vi − x∗i )

+ σmax(0, x1 − fD,1(x1) + v1 − x∗1) ≤
n∑
i=1

σi max(0, xi − fD,i(xi) + fD,i(x
∗
i )− x∗i )

+

n∑
i=2

σi(1− pi−1) max(0, fD,i−1(xi−1)− fD,i−1(x∗i−1))

(4.16)
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Using Assumption (H 2.1*), Consequences (C1), (C2), the fact that µi ≤ ρ̃cri , for
i = 1, ..., n, and the fact that fD,i is increasing on [0, ρ̃cri ], for i = 1, ..., n, we get:

max(0, fD,i(xi)− fD,i(x∗i )) ≤ Gi max(0, xi − x∗i ),
max(0, xi−fD,i(xi) + fD,i(x

∗
i )− x∗i ) ≤ λi max(0, xi − x∗i ),

for all xi ∈ [0, µi], i = 1, ..., n.

(4.17)

Combining (4.12), (4.16), (4.17), we obtain implication (4.15). Next, we show the
implication:

if x ∈ S, d ∈ [0, 1]n−1 and v ∈ [0, v∗1]× · · · × [0, v∗n] then P (x+) ≥ P (x), (4.18)

where x+ = F̃ (d, x, u). Indeed, (4.18) is a direct consequence of (4.15) and defini-
tion (4.10) when x ∈ Ω̃. On the other hand, when x ∈ S\Ω̃ there exists at least
one i ∈ {1, ..., n} for which xi > µi. Therefore, definition (4.8) implies Ξ(x) >
mini=1,...,n

(
σi (µi − x∗i )

)
, and consequently definition (4.10) gives P (x) = M̃ − θ̄h

(a consequence of the fact that h = mini=1,...,n

(
σi (µi − x∗i )

)
). Since P (x) ≥ M̃ − θ̄h

for all x ∈ S (a consequence of (4.10)), we get P (x+) ≥ M̃ − θ̄h = P (x) when
x ∈ S\Ω̃.

In what follows, we have x+ = F̃ (d, x, k(x)). Next we make the following claims.
Their proofs are provided in the Appendix B.

(Claim 1): For all x ∈ S, d ∈ [0, 1]n−1, the following inequality holds:

V (x+) ≤ V (x)− (1− L)
n∑
i=1

σi |xi − x∗i | . (4.19)

(Claim 2): There exist constantsK2 ≥ K1 > 0 such that the following inequality holds.

K1 |x− x∗| ≤ V (x) ≤ K2 |x− x∗| for all x ∈ S. (4.20)

Using (4.19), the fact that σ ∈ (0, 1], and (4.20), we get for all x ∈ S, d ∈ [0, 1]n−1:

V (x+) ≤ V (x)− (1− L)

n∑
i=1

σi |xi − x∗i |

≤ V (x)−(1− L)σn |x− x∗| ≤
(
1− (1− L)σnK−1

2

)
V (x).

The above inequality implies that the inequality

V (F̃ (d, x, k(x))) ≤ L̃ V (x) for all x ∈ S, d ∈ [0, 1]n−1 (4.21)

holds with L̃ := 1 − (1 − L)σnK−1
2 . Notice that L̃ ∈ (0, 1). Inequalities (4.20) and

(4.21) show that the function V : S → <+ is a Lyapunov function with exponent
κ = 1 for the closed-loop system (4.4) with v = k(x). Remark A.1 guarantees that x∗

is RGES for the closed-loop system (4.4) with v = k(x). The proof is complete. /

Remark 4.2: The proof of Theorem 4.1 provides a methodology for obtaining an
estimation of the set R ⊆ {1, ..., n}, the constant σ ∈ (0, 1] and the critical constant
τ∗ > 0. Let C > 0 be the constant involved in (2.13). Select R ⊆ {1, ..., n} to be a
subset of the set of all indices i ∈ {1, ..., n}, for which v∗i > 0 and for which there
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exist vmini ∈ (0, v∗i ) such that:∑
i∈R

(n+ 1− i) vmini +
∑
i/∈R

(n+ 1− i) v∗i ≤ min
i=1,...,n

(((n− i) pi + 1) fD,i(x
∗
i ))∑

i∈R
(n+ 1− i) vmini +

∑
i/∈R

(n+ 1− i) v∗i < C min
i=1,...,n

((n+ 1− i)µi)

where µi > x∗i , for i = 1, ..., n, are the constants defined by (2.11). Let ε ∈ (0, 1) be a
constant which satisfies

∑
i∈R(n+1−i)vmini +

∑
i/∈R(n+1−i)v∗i ≤ εC mini=1,...,n((n+

1− i)µi. The estimation of the critical constant τ∗ > 0 may be done in the following
way:

• Select σ ∈ (0, 1] so that L = max (λn,maxi=1,...,n−1 (λi + σGi(1− pi))) < 1,

Define:

• h := mini=1,...,n

(
σi (µi − x∗i )

)
.

• M̃ := max(mini=1,...,n(µi(n+1−i)), (1−C)
∑n

i=1 Ii(x
∗)+(1−C)hmaxi=1,...,n((n+

1− i)σ−i) +
∑n

i=1(n+ 1− i)v∗i ),

• θ̄ := h−1(M̃ − ε,mini=1,...,n((n+ 1− i)µi)),

where λi ∈ (0, 1), Gi ∈ [0, 1] (i = 1, ..., n), are the constants involved in Consequence
(C2) and Ij(x) :=

∑j
i=1 xi for j = 1, ..., n. The estimated value of τ∗ > 0 is given by

τ∗ := min(h, (θ̄L)−1
∑

i∈R(n + 1 − i)(v∗i − vmini )). However, the estimated value of
τ∗ > 0, which is obtained by applying the above methodology, may be conservative
(significantly smaller than the actual value).

4.4 Illustrative Example

Consider a freeway model of the form (4.1), (4.2), (4.3), (2.16) with n = 5 cells.
The freeway stretch considered for the simulation test is 2.5 km long and has three
lanes. The cells are homogeneous, thus each cell is 0.5 km and it has no interme-
diate on/off-ramps (i.e., vi(t) ≡ v∗i = 0 for i = 2, 3, 4, 5 and pi = 0 for i = 1, ..., 4)
(Figure 4.1). Consequently, the only control possibility is the inflow v1 of the first
cell. The simulation time step is set to T = 15s. Each cell has the same criti-
cal density ρcri = 55[veh] (i = 1, ..., 5) (corresponding to 36.7 [veh/km/lane] with
the above settings) and the same jam density ρmaxi = 170[veh] (i = 1, ..., 5) (corre-
sponding to 113.3 [veh/km/lane]). We also suppose that the cell flow capacities are
Qi = 25[veh] i = 1, 2, 3, 4 and Q5 = 20[veh] (corresponding to 2000 [veh/h/lane]
and 1600 [veh/h/lane], respectively). Note that the last cell has 20% lower flow ca-
pacity (e.g. due to grade or curvature or tunnel or bridge etc.) than the first four cells
and is therefore a potential bottleneck for the freeway. Furthermore, the congestion
wave speed is ci = 25/115(i = 1, ..., 4) and c5 = 20/115 (corresponding to 26 [km/h]
and 20.9 [km/h], respectively).

Figure 4.2 depicts the triangular FDs for the above model. The dash-dotted line
corresponds to the demand function, while the solid line corresponds to the supply
function. More precisely, the demand part for every cell is given by the following
functions:

fD,i(z) =


(5/11)z

(25/115)(170− z)
18

z ∈ [0, 55]
z ∈ (55, 87.2]
z ∈ (87.2, 170]

(i = 1, ..., 4),
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FIGURE 4.1: Freeway stretch.

fD,5(z) =


(4/11)z

(20/115)(170− z)
17

z ∈ [0, 55]
z ∈ (170, 72.25]
z ∈ (72.25, 170]

FIGURE 4.2: FD of every cell.

Notice that the capacity drop phenomenon has been taken into account by con-
sidering a partly decreasing demand function for over-critical densities xi ∈ (55, 170].

Assumption (H 2.1*) holds with ρcri = ρ̃cri = 55[veh] (i = 1, ..., 5), Li = 6/11
(i = 1, ..., 4), L5 = 7/11. The UEP x∗i = 11v∗1/5[veh] (i = 1, ..., 4), x∗5 = 11v∗1/4[veh],
exists for v∗1 < 20[veh]. Simulations showed that the open-loop system converges to
an UEP for main inflow v∗1 less than 17 [veh]. For higher values of the main inflow,
the UEP is not globally exponentially stable due to the existence of additional (con-
gested) equilibria. This is shown in Figure 4.3, where the evolution of the Euclidean
norm of the deviation of the solution of the open-loop system, with constant inflow
v∗1 = 19.99[veh], from the UEP is depicted. In this test, the solution is attracted by the
congested equilibrium (91.8, 91.8, 91.8, 91.8, 72.25)’ [veh] for which the value of the
Euclidean norm of its deviation from the UEP is 97,19 [veh]. The components of the
UEP for v∗1 = 19.99[veh], are x∗i = 43.978[veh] (i = 1, ..., 4) and x∗5 = 54.9725[veh].
Therefore, if the objective is the operation of the freeway with large flows, then a
control strategy will be needed.

We next notice that Consequence (C2) holds with λi = 6/11, Gi = 5/11 (i =
1, ..., 4), λ5 = 7/11 and G5 = 4/11. Therefore, we are in a position to achieve
global exponential stabilization of the UEP for model (4.1)-(4.3) by using Theorem
4.1. Indeed, Theorem 4.1 guarantees that for every σ ∈ (0, 1] there exists a constant
vmin1 ∈ (0, v∗1) and a constant γ > 0 such that, the feedback law k : (0, 10]5 → <+

defined by:

v1 = max

(
v∗1 − γ

5∑
i=1

σi max (0, xi − x∗i ) , vmin1

)
(4.22)

achieves RGES of the UEP x∗ = (x∗1, ..., x
∗
5)′ ∈ (0, 55)5 for the closed-loop system.
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FIGURE 4.3: The response of the densities, for the open-loop system
with constant inflow v∗1 = 19.99 [veh] and with fully congested initial

condition.

We selected v∗1 = 19.99[veh], which is very close to 20[veh], the capacity flow of
cell 5. The value of the constant vmin1 ∈ (0, v∗1) was chosen to be 0.2 [veh]; this is a
rather low minimum flow value in practice, but allows us here to study the dynamic
properties of the regulators in a broader feasible control area. Various values of the
constants σ ∈ (0, 1] and γ > 0 were tested by performing a simulation study with
respect to various initial conditions. Low values for σ ∈ (0, 1] require large values
for γ > 0 in order to have global exponential stability for the closed-loop system.

Moreover, in order to evaluate the performance of the controller, we used as a
performance criterion the total number of Vehicles Exiting the Freeway (VEF) on the
interval [0, N ], i.e.,

V EFN =
N∑
k=0

fD,5(x5(k · T )). (4.23)

Notice that the freeway performs best (and total delays are minimised) if VEF is
maximized; the maximum theoretical value for VEF is 20 ·(N+1), which is achieved
if cell 5 is operating at capacity flow (Q5 = 20[veh]) at all times. For N = 200, the
maximum theoretical value of VEF is 4020 [veh].

All following tests of the proposed regulator (4.22) were conducted with the
same values σ = 0.7 and γ = 0.6. The response of the density of all the cells for
the closed-loop system with the proposed feedback regulator (4.22) and initial con-
dition x0 = (60, 57, 58, 60, 62)′ is shown in Figure 4.4(a). Notice that all initial cell
density values are slightly overcritical (slightly congested). For this case, we had
V EF200 = 3979.8[veh]. The feedback regulator is seen to respond very satisfactorily
in this test and achieves an accordingly high performance.

A detailed comparison of the proposed feedback regulator (4.22) was made with
the Random Located Bottleneck (RLB) PI regulator, which was proposed in (Wang
et al., 2010). The RLB PI regulator for the present system is implemented as follows:

zi(t) = min(zmax,min(Q1, c1(ρmax1 −x1(t−1)), v1(t−1))+ψ,max(zmin, Pi(t))), (4.24)

Pi(t) = zi(t− 1)−Kp(xi(t)− xi(t− 1)) +KI(ρ
cr
i − xi(t)) (4.25)

zsmi (t) = ϑzi(t) + (1− ϑ) zsmi (t− 1) (4.26)
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FIGURE 4.4: The response of the densities for the closed-loop system
with initial condition x0 = (60, 57, 58, 60, 62) using (a) the proposed

feedback regulator and (b) the RLB PI regulator.

j(t) = min

{
l ∈ {1, 2, 3, 4, 5} : zsml (t) = min

i=1,...,5
(zsmi (t))

}
(4.27)

v1(t) = zj(t)(t). (4.28)

for i = 1, ..., 5, where ψ,Kp,KI > 0 and ϑ ∈ (0, 1) are constant parameters. Essen-
tially, (4.24) reflects the parallel (independent) operation of five bounded PI-type reg-
ulators, one for each cell; while (4.26) performs an exponential smoothing of the re-
spective obtained inflows (with smoothing parameter ϑ). Eventually, the smoothed
inflow values are compared in (4.27) in order to pick the currently most conservative
regulator; whose (unsmoothed) inflow is finally actually activated as a control input
in (4.28), see (Wang et al., 2010) for the background and detailed reasoning for this
approach. The parameters for the RLB PI regulators are set (as proposed in (Wang
et al., 2010) - with the suitable transformation in the current units) to be Kp = 5/18,
KI = 1/90, while ψ = 4[veh], ϑ = 0.5, umin = 0.2[veh] and umax = 25[veh]. These
values were indeed tested, before being adopted, and were indeed found to be near
optimal. Notice that all PI regulators were given the same gain values for simplicity
and convenience, as suggested by Wang et al., 2010. In all reported tests, the initial
condition for the RLB PI regulator was zi(−1) = zsmi (−1) = z1(−1) = 20[veh], for
i = 1, ..., 5, and x(−1) = x(0) = x0, where x0 is the vector of the initial values for the
densities of every cell.

When applied to the same initial condition x0 = (60, 57, 58, 60, 62)′, the RLB
PI regulator (Figures 4.4(b)), led to slower convergence compared with the pro-
posed regulator (4.22). This is also reflected in the computed value of V EF200 =
3785.9[veh] for RLB PI regulator. In general, conducting a simulation study with
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various levels of initial conditions, the proposed regulator (4.22) exhibited faster per-
formance than the RLB PI regulator. For example, Figure 4.5 shows the evolution of
the Euclidean norm |x(t)− x∗| for the closed-loop system with the proposed feed-
back regulator (4.22) (blue) and for the closed-loop system with the RLB PI regulator
(4.24)-(4.28) (red), when starting from the initial condition x0 = (ρmax1 , ..., ρmax5 )′, re-
flecting a fully congested original state. It is again clear that the proposed feedback
regulator (4.22) achieves faster convergence and higher performance of V EF200 =
3845.2[veh] compared to V EF200 = 3007.8[veh], which is resulted for the RLB PI
regulator.

FIGURE 4.5: The evolution of the Euclidean norm |x(t) − x∗| of the
closed-loop system with a fully congested using the proposed feed-

back regulator (blue line) and the RLB PI regulator (red line).

We next investigated the robustness of the proposed feedback regulator with
respect to measurement errors. The applied formula for the measurements is:

x̃(t) = PR (x(t) +Ae(t)) , (4.29)

where PR is the projection operator on the closure of S, e(t) is a normalized vector,
and A ≥ 0 is the magnitude of the measurement error. In this case, the feedback law
(4.22) was implemented based on the state measurement x̃(t) given by (4.29), i.e.,

v1(t) = max

(
v∗1 − γ

5∑
i=1

σi max (0, x̃i(t)− x∗i ) , vmin1

)
. (4.30)

For comparison purposes, we also present the performance of the RLB PI regula-
tor for the same system, under the same measurement errors. In this case, equation
(4.25) is replaced by the equation :

Pi(t) = zi(t− 1)−Kp (x̃i(t)− x̃i(t− 1)) +KI (ρcri − x̃i(t)) , (4.31)

for i = 1, ..., 5, where the state measurement x̃(t) is given by (4.29).
Figure 4.6 shows the response of the cell densities for two cases: (a) for the closed-

loop system with the proposed feedback regulator (4.30) and (b) for the closed-loop
system with the RLB PI regulator (4.24), (4.31), (4.26)-(4.28), where the state mea-
surement in both cases is given by (4.29) with A = 10[veh], e(t) = cos(ω t)√

5
(1, 1, ..., 1),

ω = π. The initial condition is the UEP.
In this test, the RLB PI regulator is less sensitive to measurement errors than

the proposed feedback regulator (4.30), the latter producing a higher offset (Figure
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FIGURE 4.6: The response of the densities of the closed-loop system
with initial condition x0 = x∗ under (a) the proposed feedback reg-
ulator and (b) the RLB PI regulator. In both cases the state measure-
ment is given by (4.29) withA = 10[veh], e(t) = (cos(ωt)/

√
5)(1, ..., 1)

and ω = π.

4.6(a)). This is also reflected in the computed values of V EF200 = 3789[veh] for
the proposed feedback regulator (4.30) (which is 6% less than the maximum value
of V EF200) and V EF200 = 4016.8[veh] for the RLB PI regulator (which is 0.8% less
than the maximum value of V EF200) due to the measurement error. The ultimate
mean values of the states are much closer to the equilibrium values for the RLB PI
regulator than for the proposed feedback regulator (4.30), indicating that the RLB
PI regulator achieves a much smaller mean offset in this case. It should be noted
at this point that various frequencies ω were tested for measurement errors. While
Figure 4.6 is typical for medium and high frequencies (the RLB PI regulator achieves
a smaller mean offset than the proposed feedback regulator (4.30)), the results indi-
cate higher sensitivity of the RLB PI regulator with respect to measurement errors at
low frequencies (Figure 4.7). For low frequency measurement errors, the proposed
feedback regulator (4.30) achieves a smaller mean offset than the RLB PI regulator, as
shown in Figure 4.7(a) and (b), respecively. Figure 4.7 shows the response of the den-
sities (a) for the closed-loop system with the proposed feedback regulator (4.30), and
(b) for the closed-loop system with the RLB PI regulator (4.24), (4.31), (4.26)-(4.28),
where the state measurement in both cases is given by (4.29) with A = 10[veh],
e(t) =

(
cos(ω t)/

√
5
)

(1, 1, ..., 1), ω = 0.1. The initial condition is the UEP.
The conclusions of this simulation study are: 1) the proposed feedback regulator

(4.22) can achieve a faster convergence of the state to the equilibrium compared to
the RLB PI regulator in the absence of measurement errors, and 2) the proposed
feedback regulator (4.30) is quite robust to measurement errors. However, it is more
sensitive to measurement errors with high frequency than the RLB PI regulator; but
it is less sensitive to low-frequency measurement errors than the RLB PI regulator.
Intended future extensions are expected to improve the properties of the proposed
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FIGURE 4.7: The response of the densities of the closed-loop system
with initial condition x0 = x∗ under (a) the proposed feedback reg-
ulator and (b) the RLB PI regulator. In both cases the state measure-
ment is given by (4.29) withA = 10[veh], e(t) = (cos(ωt)/

√
5)(1, ..., 1)

and ω = 0.1.

feedback regulator in this respect, as well as in cases of modelling errors or persisting
disturbances.
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Chapter 5

Adaptive Stabilization of Discrete-
Time Systems with Application to
Freeway Traffic Control

5.1 Introduction

Adaptive control for discrete-time systems has been studied in many works (see for in-
stance (Hayakawa, Haddad, and Leonessa, 2004; Zhang, Wen, and Soh, 1999; Zhang,
Wen, and Soh, 2001; Zhao and Kanellakopoulos, 1997) and in many cases it is a direct
extension of ACSs for continuous-time systems (see (Krstic, Kokotovic, and Kanel-
lakopoulos, 1995)). The limitations of ACSs for discrete-time systems have been
studied in (Xie and Guo, 1999). The major shortcoming of many adaptive control
methodologies is that the closed-loop system does not exhibit an exponential con-
vergence rate to the desired equilibrium point of the system, even if the nominal
feedback law achieves global exponential stability properties when the parameters
are precisely known.

This work is devoted to the development of ACSs for general uncertain discrete-
time systems, with unknown constant parameters, which guarantee robust global
exponential convergence to the desired equilibrium point. The idea is simple: use
a nominal feedback law, which achieves RGES properties when the vector of the
parameters is known, in conjunction with a nonlinear, dead-beat observer. The
dead-beat observer (designed using an extension of the methodology described in
(Karafyllis and Kravaris, 2007)) achieves the precise knowledge of the vector of un-
known parameters after a transient period; then the states of the closed-loop system
are robustly led to the desired equilibrium point with an exponential rate by the
nominal feedback law. The proposed ACS does not require the knowledge of a Lya-
punov function for the closed-loop system under the action of the nominal feedback
stabilizer. The applicability of the obtained results is demonstrated by the rigorous
application of the proposed ACS to the freeway models developed and presented in
Section 2.2.3 of Chapter 2.

A Lyapunov approach was adopted in Chapter 4, which led to the RGES of the
UEP of general nonlinear freeway models. However, the nonlinear feedback sta-
bilizer demands the knowledge of several model parameters, which are usually un-
known. The present chapter proposes an ACS, based on the existence of the nominal
feedback law developed in Chapter 4 and a nonlinear dead-beat observer. The pro-
posed ACS guarantees the robust global exponential convergence rate to the desired
UEP of the freeway model (2.18)-(2.20).

The structure of the present chapter is as follows: Section 5.2 is devoted to the
development of the robust global exponential ACSs for general nonlinear uncertain
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discrete-time systems. The obtained results are applied rigorously, in Section 5.3, to
the general uncertain freeway model (2.18)-(2.20) of Section 2.2.3, while the proofs of
the main results can been found in Section 5.4. An illustrating example is presented
in Section 5.5.

5.2 General Result

Consider the discrete-time system:

x+ = f(d, θ∗, x, u), x ∈ S, d ∈ D,u ∈ U, θ∗ ∈ Θ, (5.1)

where S ⊆ <n,D ⊆ <l, U ⊆ <m, Θ ⊆ <q are non-empty sets and f : D×Θ×S×U →
S is a locally bounded mapping. In this setting, x ∈ S denotes the state of the system
(5.1), d ∈ D is an unknown, time-varying input, u ∈ U is the control input and θ∗ ∈ Θ
denotes the vector of unknown, constant parameters. The measured output of the
system is given by:

y(t) = h(d(t), θ∗, x(t)), (5.2)

where h : D ×Θ× S → <k is a locally bounded mapping. Let Y ⊆ <k be a set with
h(D × Θ × S) ⊆ Y . We assume that x∗ ∈ S is an equilibrium point for system (5.1)
and d ∈ D is a vanishing perturbation, i.e., there exist vectors y∗ ∈ h(D × {θ∗} × S)
and u∗ ∈ U such that f(d, θ∗, x∗, u∗) = x∗, y∗ = h(d, θ∗, x∗) for all d ∈ D. Notice that
y∗ ∈ Y . By y(κ)(t) = (y(t− 1), y(t− 2), ..., y(t− κ)) for certain positive integer κ > 0,
we denote the ”κ-history” of the signal y(t) (defined for all t ≥ κ). By (y∗, ..., y∗) we
mean the vector in <kκ which is formed by combining the vector y∗ ∈ <k κ times.
Since y∗ ∈ Y , it follows that (y∗, ..., y∗) ∈ Y κ.

The main result of this chapter provides sufficient conditions for dynamic RGES
of the equilibrium point x∗ ∈ S. The stabilizer is constructed under the following
assumptions for system (5.1), (5.2):.

J1

Suppose that there exists a mapping K : Θ× Y → U such that x∗ ∈ S is RGES for
the closed-loop system (5.1), (5.2) with u = K(θ∗, y).

J2

Suppose that there exist a positive integer κ > 0, a set A ⊆ Y κ which contains all
w ∈ Y κ in a neighborhood of (y∗, ..., y∗) and a mapping Ψ : Y × A → Θ, such that
for every sequence {(d(t), θ̂(t)) ∈ D × Θ}∞t=0 and for every x0 ∈ S, the solution
x(t) of (5.1), (5.2) with u = K(θ̂, y), initial condition x(0) = x0 corresponding to
inputs {(d(t), θ̂(t)) ∈ D × Θ}∞t=0 satisfies θ∗ = Ψ(y(t), y(κ)(t)) for all t ≥ κ with
y(κ)(t) ∈ A.

J3

(J3) There exists a positive integerm > 0, such that for every sequence {(d(t), θ̂(t)) ∈
D ×Θ}∞t=0 and for every x0 ∈ S, the solution x(t) of (5.1), (5.2) with u = K(θ̂, y),
initial condition x(0) = x0 corresponding to inputs {(d(t), θ̂(t)) ∈ D × Θ}∞t=0

satisfies y(κ)(t− i(t)) ∈ A for some i(t) ∈ {0, 1, ...,m} and for all t ≥ m+ κ.
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Assumption (J1) is a standard assumption, which guarantees the existence of a
robust global exponential stabilizer when the vector of the parameters θ∗ ∈ Θ is
known. Assumptions (J2)-(J3) are equivalent to complete, robust observability of θ∗

from the output given by (5.2) (see, also Karafyllis and Kravaris, 2007). More specif-
ically, Assumption (J2) guarantees the existence of a function Ψ (the reconstruction
map, see Karafyllis and Kravaris, 2007), which gives the exact value of θ∗, provided
that the κ-history of the output signal belongs to a specific set A. Assumption (J3)
guarantees that the κ-history of the output signal is bound to enter the set A, every
m time units.

The following result combines a certainty equivalence type controller with a
finite-time identifier and guarantees exponential convergence both of the state x(t)
and the estimate θ̂(t) to x∗ and θ∗, respectively, for every disturbance d(t).

Theorem 5.1

Consider system (5.1) with output given by (5.2) under Assumptions (J1), (J2), (J3).
Moreover, suppose that the sets f(D × Θ × S × U), Y , Θ are bounded. Finally,
assume that there exist a constant L ≥ 0, neighborhoods N1 ⊆ <n of x∗, N2 ⊆ <k
of y∗, N3 ⊆ <q of θ∗, such that the inequalities |f(d, θ∗, x,K(θ̂, h(d, θ∗, x))) −
x∗| + |h(d, θ∗, x) − y∗| ≤ L|x − x∗| + L|θ̂ − θ∗| and |Ψ(h(d, θ∗, x), w) − θ∗| ≤
L|x − x∗| + L

∑κ
i=1 |wi − y∗| hold for all x ∈ N1 ∩ S, d ∈ D, θ̂ ∈ N3 ∩ Θ,

wi ∈ N2 ∩ Y (i = 1, ..., p) with w = (w1, ..., wp).
Then, the dynamic feedback stabilizer

w+
1 = y

w+
2 = w1

...
w+
κ = wκ−1

θ̂+ =

{
θ̂ if w 6∈ A
Ψ(y, w) if w ∈ A

u = K(θ̂, y)

(5.3)

where w = (w1, ..., wκ) ∈ Y κ, θ̂ ∈ Θ achieves the following:
1) There exist constants M,σ > 0 such that for every sequence {d(t) ∈ D}∞t=0 and
for every (x0, w0, θ̂0) ∈ S × Y κ × Θ, the solution (x(t), w(t), θ̂(t)) of the closed-
loop system (5.1), (5.2) with (5.3), initial condition (x(0), w(0), θ̂(0)) = (x0, w0, θ̂0)
corresponding to input {d(t) ∈ D}∞t=0 satisfies

|x(t)− x∗|+
κ∑
i=1

|wi(t)− y∗|+ |θ̂(t)− θ∗| ≤

M exp(−σt)
(
|x(0)− x∗|+

κ∑
i=1

|wi(0)− y∗|+ |θ̂(0)− θ∗|
) (5.4)

for all t ≥ 0.
2) For every sequence {d(t) ∈ D}∞t=0 and for every (x0, w0, θ̂0) ∈ S × Y κ × Θ
the solution (x(t), w(t), θ̂(t)) of the closed-loop system (5.1), (5.2) with (5.3), initial
condition (x(0), w(0), θ̂(0)) = (x0, w0, θ̂0) corresponding to input {d(t) ∈ D}∞t=0

satisfies θ̂(t) = θ∗, for all t ≥ m+ κ+ 1.
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Remark 5.1: The dynamic feedback stabilizer (5.3) achieves dead-beat estimation
(provided by the variable θ̂ ∈ Θ) of the vector of unknown constant parameters
θ∗ ∈ Θ. Due to the dead-beat estimation, the exponential convergence property for
the closed-loop system is preserved, as estimate (5.4) shows.

5.3 Main Result: Application to Freeway Traffic Control

5.3.1 Global Exponential Stabilization of Freeway Models

Consider the freeway model (2.18)-(2.20) with (2.15) and (2.16). We make the follow-
ing assumption for the functions fD,i : [0, ρmaxi ]→ <+, (i = 1, ..., n):

H 5.1

There exist constants ρcri ∈ (0, ρmaxi ] and vf,i ∈ (0, 1) such that fD,i(z) = vf,iz
for z ∈ [0, ρcri ]. Moreover, there exists a positive constant fmini > 0 such that
fD,i(ρ

cr
i ) = vf,iρcri ≥ fD,i(z) ≥ fmini for all z ∈ [ρcri , ρ

max
i ].

Remark 5.2: The implications of Assumption (H 5.1) for the demand function are
illustrated in Figure 5.1. Assumption (H 2.1*), related with the freeway models of
Section 2.2.3, is more general than Assumption (H 5.1); however, for the develop-
ment of the methodology of Chapter 4, it was assumed that all parameters of the
model were known. More specifically, for Assumption (H 2.1*), it was not neces-
sary the demand functions fD,i : [0, ρmaxi ] → <+, (i = 1, ..., n) to be linear on the
corresponding intervals [0, ρcri ]; however, this is the only difference between (H 2.1*)
and (H 5.1). The linearity of the demand functions on the interval [0, ρcri ] is a conse-
quence of the consideration of constant free flow speed for under-critical densities
(here, represented by the dimensionless variable vf,i ∈ (0, 1)), which is suggested in
many studies in the literature (see, for example, Daganzo, 1995b).

FIGURE 5.1: Implications of Assumption (H 5.1).

Consider the freeway model (4.4) under Assumption (H 5.1). Let v∗ = (v∗1, ..., v
∗
n)′ ∈

(0,+∞) × <n−1
+ be a vector that satisfies (4.6). Any inflow vector that satisfies (4.6),

defines an UEP x∗ = (x∗1, · · · , x∗n) ∈
∏n
i=1(0, ρcri ) for the freeway model, which satis-

fies (4.5) and can be written in the following form under Assumption (H 5.1):

x∗1 = v−1
f,1v

∗
1 , x∗i = v−1

f,i

(
v∗i +

i−1∑
j=1

v∗j

i−1∏
k=j

(1− pk)

)
, i = 2, ..., n (5.5)
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As discussed in the previous chapters, the UEP is not globally exponentially sta-
ble for arbitrary v∗1 > 0, v∗i ≥ 0 (i = 2, ..., n). Indeed, simulations show that there are
critical values of inflows, so that if the inflows v∗i ≥ 0 (i = 1, ..., n) are larger than
the critical values, then other equilibria for model (2.18)-(2.20) (congested equilibria)
appear. These congested equilibria have large cell densities and attract the solution
of (2.18)-(2.20).

The nominal feedback for the ACS that we intend to use is provided by Theorem
4.1. Theorem 4.1 is based on the construction of a CLF approach for system (2.18)-
(2.20) under a more general assumption than Assumption (H 5.1) (see Assumption
(H 2.1*)). The feedback law provides values for the controllable inflows (vi, i ∈ R), in
the interval [vmini , v∗i ] for all i ∈ R, where vmini ∈ (0, v∗i ), for i ∈ R, are the minimum
allowable inflows. Since the proof of Theorem 4.1 is constructive, criteria for the
selection of the index set R ⊆ {1, ..., n} and the constants σ ∈ (0, 1], vmini ∈ (0, v∗i ) for
i ∈ R and τ∗ > 0 are provided. Without loss of generality, we will assume, in what
follows, that R 6= ∅ (because otherwise the UEP is open-loop RGES).

Let µi ∈ (0, ρcri ), vmaxi < (0,+∞) (i = 1, ..., n) be constants such that:

vmax1 < fS,1(µ1),

vmaxi + (1− pi−1)vf,i−1µi−1 < fS,i(µi), i = 2, ..., n.
(5.6)

It follows that if x ∈ Ω =
∏n
i=1(0, µi) and v ∈ (0, vmax1 ]×

∏n
i=1[0, vmaxi ]:

s̄i = 1, for i = 1, ..., n and si = 1 for i = 2, ..., n, (5.7)

x+
1 = x1 − fD,1(x1) + v1

x+
i = xi − fD,i(xi)+vi + (1− pi−1)fD,i−1(xi−1), i = 2, ..., n

(5.8)

In what follows, we assume that x∗ = (x∗1, ..., x
∗
n) ∈

∏n
i=1(0, µi − ε], v∗i ∈ [vmini +

ε, vmaxi ] for i ∈ R and for some ε ∈ (0, 1/2) and v∗ ∈ (0, vmax1 ] ×
∏n
i=2[0, vmaxi ].

Moreover, we assume that pi ∈ [0, 1 − ε], for i = 1, ..., n − 1 and vf,i ∈ [ε, 1 − ε], for
i = 1, ..., n.

Another feature of the present problem is that the selection of the UEP may be
made in an implicit way. For example, we may want the UEP that guarantees the
maximum outflow from the freeway. In such cases, the equilibrium position of the
controllable inflows is determined as a function of the nominal values of the un-
controllable inflows and the parameters of the freeway, i.e., there exists a smooth
function:

g : [0, 1− ε]n−1 ×
∏
i/∈R

[0, vmaxi ]× [ε, 1− ε]n →
∏
i∈R

[vmini + ε, vmaxi ]

such that
(v∗i ; i ∈ R) = g(p, v∗i ; i /∈ R,vf ) (5.9)

where p = (p1, ..., pn−1)′ ∈ [0, 1− ε]n−1 and vf = (vf,1, ...,vf,n)′ ∈ [ε, 1− ε]n.

5.3.2 Measurements and Unknown Parameters

Let m ∈ {1, ..., n} be the cardinal number of the set R and let u ∈ U =
∏
i∈R[vmini ,

vmaxi ] ⊆ (0,+∞)m be the vector of all controllable inflows vi with i ∈ R. The model
parameters which are (usually) unknown or uncertain are: the exit rates pi ∈ [0, 1),
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for i = 1, ..., n − 1, the uncontrollable inflows v∗i ∈ <+ for i /∈ R and the demand
coefficients vf,i ∈ (0, 1), for i = 1, ..., n. All these parameters will be denoted by
θ∗ = (p, v∗i ; i /∈ R,vf ) and are assumed to take values in a compact set Θ := [0, 1 −
ε]n−1×

∏
i/∈R[0, vmaxi ]× [ε, 1−ε]n, for some ε ∈ (0, 1/2). Therefore, the control system

(2.18)-(2.20) can be written in the following vector form:

x+ = F̄ (d, θ∗, x, u),

x ∈ S, d ∈ D,θ∗ ∈ Θ, u ∈ U =
∏
i∈R

[vmini , vmaxi ]. (5.10)

Notice that the feedback law defined by (4.7) is a feedback law of the form u =
K(θ∗, x): the feedback law depends on the unknown parameters through x∗ and
(v∗i ; i ∈ R) (recall (5.5) and (5.9)). It follows that Assumption (J1) holds for system
(5.10). An explicit definition of the feedback law K : Θ× S → U is given by the fol-
lowing equations for all θ̂ = (p̂, v̂∗i ; i /∈ R, v̂f ) ∈ Θ, x ∈ S with v̂f = (v̂f,1, ..., v̂f,n)′ ∈
[ε, 1− ε]n, p̂ = (p̂1, ..., p̂n−1)′ ∈ [0, 1− ε]n−1:

(v̂∗i ; i ∈ R) = g(p̂, v̂∗i ; i /∈ R, v̂f ), (5.11)

x̂∗1 = min(v̂−1
f,1v̂

∗
1, µ1 − ε),

x̂∗i = min

(
v̂−1
f,i

(
v̂∗i +

i−1∑
j=1

v̂∗j

i−1∏
k=j

(1− p̂k)
)
, µi − ε

)
, i = 2, ..., n,

(5.12)

u = K(θ̂, x) with

Ki(θ̂, x) = max(vmini ,v̂∗i − τ−1(v̂∗i − vmini )Ξ(θ̂, x)), x ∈ S, i ∈ R,
(5.13)

Ξ(θ̂, x) :=

n∑
i=1

σi max(0, xi − x̂∗i ), x ∈ S. (5.14)

The measured quantities are the cell densities x ∈ S and the outflows from each
cell. We have two kinds of outflows from each cell: the outflow to regions out of the
freeway

qext = (qext1 , ..., qextn )′ ∈ <n+,
qexti = pisi+1fD,i(xi), i = 1, ..., n− 1, qextn = fD,n(xn),

(5.15)

and the outflows from one cell to the next cell

qint = (qint1 , ..., qintn−1)′ ∈ <n−1
+ ,

qinti =(1− pi)si+1fD,i(xi), i = 1, ..., n− 1.
(5.16)

Therefore, the measured output is given by:

y = h(d, θ∗, x) = (x, qext, qint) ∈ S ×<n+ ×<n−1
+ . (5.17)

Assumption (H 5.1) guarantees that h(D×Θ×S) ⊆ Y , where Y := S×
∏n
i=1[0, ρmaxi ]×∏n−1

i=1 [0, ρmaxi ] is a bounded set. It follows from (5.7), (5.8), (5.15), (5.16), Assumption
(H 5.1) and the fact that µi ∈ (0, ρcri ) (i = 1, ...n), that if x(t − 1) ∈ Ω =

∏n
i=1(0, µi),
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t ≥ 1, then the following equations hold:

pi =
qexti (t− 1)

qexti (t− 1) + qinti (t− 1)
, i = 1, ..., n− 1, (5.18)

v∗i = xi(t)− xi(t− 1) + qinti (t− 1) + qexti (t− 1)− qinti−1(t− 1), i ∈ {2, ..., n}\R, (5.19)

v∗n = xn(t)− xn(t− 1) + qextn (t− 1)− qintn−1(t− 1), if n /∈ R, (5.20)

v∗1 = x1(t)− x1(t− 1) + qint1 (t− 1) + qext1 (t− 1), if 1 /∈ R, (5.21)

vf,i =
qexti (t− 1) + qinti (t− 1)

xi(t− 1)
, i = 1, ..., n− 1,vf,n =

qextn (t− 1)

xn(t− 1)
(5.22)

Equations (5.18)-(5.22), (5.17) allow us to define a mapping Ψ : h(D×Θ×S)×Y → Θ
for which θ∗ = (p1, ..., pn−1, v

∗
i ; i /∈ R,vf,1, ...,vf,n)′ = Ψ(y(t), y(t − 1)) for all t ≥ 1

with y(t− 1) ∈ A, where A ⊆ Y is the set for which:

A :=
{
w = (w1, w2, w3) ∈ Y |w1 ∈ Ω and w2,i + w3,i > 0 for i = 1, ..., n− 1

}
, (5.23)

where Ω =
∏n
i=1(0, µi). The mapping Ψ : h(D ×Θ× S)× Y → Θ is defined by:

θ̂ = (p̂1, ..., p̂n−1, v̂
∗
i ; i /∈ R, v̂f,1, ..., v̂f,n)′ = Ψ(y, w), (5.24)

with

p̂i = min

(
1− ε, w2,i

w2,i + w3,i

)
, i = 1, ..., n− 1, (5.25)

v̂∗i = max(0,min(vmaxi , xi − w1,i + w3,i + w2,i − w3,i−1)), i ∈ {2, ..., n− 1}\R (5.26)

v̂∗n = max(0,min(vmaxn , xn − w1,n + w2,n − w3,n−1)), if n /∈ R, (5.27)

v̂∗1 = max(0,min(vmax1 , x1 − w1,1 + w3,1 + w2,1)), if 1 /∈ R, (5.28)

v̂f,i = max

(
ε,min

(
1− ε, w2,i + w3,i

w1,i

))
, i = 1, ..., n− 1, (5.29)

v̂f,n = max

(
ε,min

(
1− ε, w2,n

w1,n

))
. (5.30)

Using Assumption (H 5.1), (4.6), (5.5) and (5.17), it follows that there exists y∗ ∈ Y
with y∗ = h(d, θ∗, x∗), for all d ∈ D. By virtue of our assumption x∗ = (x∗1, ..., x

∗
n) ∈∏n

i=1(0, µi) and v∗ ∈ (0, vmax1 ] ×
∏n
i=2[0, vmaxi ], (5.23), we conclude that the set A

contains all w ∈ Y in a neighborhood of y∗. It follows that Assumption (J2) holds
with κ = 1 for system (5.10) with output given by (5.15), (5.16), (5.17).

The following proposition (which is a consequence of Consequence (C4) and
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(5.6)) guarantees that Assumption (J3) holds for system (5.10) with output (5.15),
(5.16), (5.17). Its proof is provided in the Appendix B.

Proposition 5.2

Suppose that vmini > 0 (i ∈ R) and vmaxi (i 6∈ R) are sufficiently small and that
τ > 0 is sufficiently small

(
τ ≤ ε2σn mini∈R((vmaxi − vmini )−1)

)
. Then there exists

an integer m ≥ 1 such that for every sequence {(d(t), θ̂(t)) ∈ D × Θ}∞t=0 and for
every x0 ∈ S, the solution x(t) of (5.10), (5.17) with u = K(θ̂, x), initial condition
x(0) = x0 corresponding to inputs {(d(t), θ̂(t)) ∈ D × Θ}∞t=0 satisfies y(t − 1 −
i(t)) ∈ A for some i(t) ∈ {0, 1, ...,m} and for all t ≥ m+ 1.

The main result for the freeway model is a consequence of Theorem 5.1 and the
fact that all functions are sufficiently smooth in a neighborhood of the equilibrium.

Corollary 5.3

Consider system (5.10) with output given by (5.15), (5.16), (5.17). Suppose that
vmini > 0 (i ∈ R) and vmaxi (i /∈ R) are sufficiently small and that τ > 0 is sufficiently
small. Then the dynamic feedback law given by:

w+
1 = x,w+

2 = qext, w+
3 = qint (5.31)

p̂+
i =

 p̂i if w 6∈ A

min

(
1− ε, w2,i

w2,i+w3,i

)
if w ∈ A

(5.32)

(v̂∗i )
+ =

{
v̂∗i if w 6∈ A

max(0,min(vmaxi , xi − w1,i + w3,i + w2,i − w3,i−1)) if w ∈ A
(5.33)

(v̂∗n)+ =

{
v̂∗n if w 6∈ A

max(0,min(vmaxn , xn − w1,n + w2,n − w3,n−1)) if w ∈ A
(5.34)

(v̂∗1)+ =

{
v̂∗1 if w 6∈ A

max(0,min(vmax1 , xn − w1,1 + w3,1 + w2,1)) if w ∈ A
(5.35)

v̂+
f,i =


v̂f,i if w 6∈ A

max

(
ε,min

(
1− ε, w2,i+w3,i

w1,i

))
if w ∈ A

(5.36)

v̂+
f,n =


v̂f,n if w 6∈ A

max

(
ε,min

(
1− ε, w2,n

w1,n

))
if w ∈ A

. (5.37)
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with (5.11), (5.12), (5.13), (5.14), p̂ = (p̂1, · · · , p̂n−1), p = (p1, · · · , pn−1),
v̂f = (v̂f,1, · · · , v̂f,n), vf = (vf,1, · · · ,vf,n), w = (w1, w2, w3), v̂∗ = (v̂∗1, · · · , v̂∗n),
achieves the following:
1) There exist constants M,σ > 0 such that for every sequence {d(t) ∈ D}∞t=0

and for every (x0, w0, p̂0, v̂
∗
j,0; j /∈ R, v̂f,0) ∈ S × Y × Θ, the solution of the

closed-loop system (5.10), (5.17) with (5.31)-(5.37), (5.11)-(5.14), initial condition
(x(0), w(0), p̂(0), v̂∗j (0); j /∈ R, v̂f (0)) = (x0, w0, p̂0, v̂

∗
j,0; j /∈ R, v̂f,0) correspond-

ing to input {d(t) ∈ D}∞t=0 satisfies:

|x(t)− x∗|+ |w(t)− y∗|+ |v̂f (t)− vf |+ |p̂(t)− p|+ |v̂∗(t)− v∗| ≤
M exp(−σt)

(
|x(0)− x∗|+ |w(0)− y∗|+

|v̂f (0)− vf |+ |p̂(0)− p|+
∑
i/∈R

|v̂∗i (0)− v∗i |
)
,

(5.38)

for all t ≥ 0.
2) There exists an integer N ≥ 1 such that for every sequence {d(t) ∈ D}∞t=0

and for every (x0, w0, p̂0, v̂
∗
j,0; j /∈ R, v̂f,0) ∈ S × Y × Θ, the solution of the

closed-loop system (5.10), (5.17) with (5.31)-(5.37), (5.11)-(5.14), initial condition
(x(0), w(0), p̂(0), v̂∗j (0); j /∈ R, v̂f (0)) = (x0, w0, p̂0, v̂

∗
j,0; j /∈ R, v̂f,0) correspond-

ing to input {d(t) ∈ D}∞t=0 satisfies p̂(t) = p, v̂f (t) = vf , v̂∗(t) = v∗, for all
t ≥ N .

It is important to notice, that Theorem 4.1 provides a state feedback law, which
guarantees the robust, global, exponential stabilization of the freeway model (5.10)
when the parameters of the freeway model are known. On the other hand, Corollary
5.3 provides a dynamic feedback law, under which the states of the freeway model
(5.10) converge to the UEP, even when the vector of parameters is unknown.

5.4 Proofs of Main Results

Proof of the Corollary 5.3: Let N1 ⊆ Ω be a neighborhood of x∗, N2 ⊆ A be a
neighborhood of y∗, and let N3 ⊆ <3n−1−m be a neighborhood of θ∗. Since Ω =∏n
i=1(0, µi), it follows from Assumption (H 5.1) and the fact that µi ∈ (0, ρcri ) for

i = 1, ..., n that fi(xi) = vf,ixi for i = 1, ..., n. Definitions (5.15), (5.16), (5.17) in
conjunction with (5.7) and the fact that pi ∈ [0, 1) for i = 1, ..., n − 1, vf,i ∈ (0, 1)
for i = 1, ..., n − 1, imply that the following inequality holds for all x ∈ Ω and
d = (d2, ..., dn) ∈ D = [0, 1]n−1:

|h(d, θ∗, x)− y∗| ≤ |x− x∗|+ |qext − qext∗|+ |qint − qint∗| ≤

|x− x∗|+
n−1∑
i=1

|pifD,i(xi)− pifD,i(x∗i )|+ |fD,n(xn)− fD,n(x∗n)|+

n−1∑
i=1

|(1− pi)fD,i(xi)− (1− pi)fD,i(x∗i )|

≤ |x− x∗|+
n∑
i=1

vf,i|xi − x∗i | ≤
(

1 +

n∑
i=1

vf,i

)
|x− x∗|

(5.39)
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Next, we notice that by virtue of (5.8) and the facts that pi ∈ [0, 1) for i = 1, ..., n−
1, vf,i ∈ (0, 1), for i = 1, ..., n, fD,i(x∗i ) = v∗i + (1 − pi−1)fD,i−1(x∗i−1), for i = 2, ..., n,
fD,1(x∗1) = v∗1 , it follows that the following holds for all x ∈ Ω, d ∈ D and u ∈ <m:

|F̄ (d, θ∗, x, u)− x∗| ≤

|x1 − fD,1(x1) + v1 − x∗1|+
n∑
i=2

|xi − fD,i(xi) + vi + (1− pi−1)fD,i−1(xi−1)− x∗i |

≤
n∑
i=2

|xi − fD,i(xi) + fD,i(x
∗
i ) + (1− pi−1)fD,i−1(xi−1)− (1− pi−1)fD,i−1(x∗i−1)− x∗i |

+m|u− u∗|+ |x1 − fD,1(x1) + v1 − x∗1| ≤

(1− vf,1)|x1 − x∗1|+
n∑
i=2

(1− vf,i)|xi − x∗i |+

n∑
i=2

(1− pi−1)vf,i−1|xi−1 − x∗i−1|+m|u− u∗|

≤
(
n−

n∑
i=1

vf,i +

n∑
i=2

(1− pi−1)vf,i−1

)
|x− x∗|+m|u− u∗|,

(5.40)

where u∗ = (v∗i ; i ∈ R). Using (5.13) and (5.14), it is straightforward to show that
there exists a constant L̃ > 0 such that the following inequality holds for all x, x̂∗ ∈ S
and v̂∗ ∈

∏n
i=1[0, vmaxi ]:

|u− u∗| ≤ L̃|x− x∗|+ L̃|x̂∗ − x∗|+ L̃|v̂∗ − v∗|. (5.41)

Using (5.11), (5.12) and the fact that the function g : [0, 1 − ε]n−1 ×
∏
i/∈R[0, vmaxi ] ×

[ε, 1− ε]n →
∏
i∈R[vmini + ε, vmaxi ] is a smooth function, it follows that the following

inequality holds for all θ̂ ∈ N3 ∩Θ:

|x̂∗ − x∗|+ |v̂∗ − v∗| ≤M |θ̂ − θ∗|. (5.42)

Finally, using definitions (5.24)-(5.30) in conjunction with the fact that N2 ⊆ A, it
follows that there exists a constant L̄ > 0 such that:

|Ψ(h(d, θ∗, x), w)− θ∗| ≤ L̄|x− x∗|+ L̄

κ∑
i=1

|wi − y∗|, (5.43)

for all x ∈ N1 ∩S, d ∈ D, θ̂ ∈ N3 ∩Θ, wi ∈ N2 ∩Y (i = 1, ..., p), with w = (w1, ..., wp).
Since, we have already proved that Assumptions (J1), (J2), (J3) hold for the closed-

loop system (5.10), (5.17) with (5.31)-(5.37), (5.11)-(5.14), it follows from (5.39), (5.40),
(5.41), (5.42) and (5.43) that all assumptions of Theorem 5.1 hold. Therefore, Corol-
lary 5.3 is a direct application of Theorem 5.1 to the closed-loop system (5.10), (5.17)
with (5.31)-(5.37), (5.11)-(5.14). The proof is complete. /
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5.5 Illustrative Example

The following example illustrates the application of the results of the previous sec-
tion to a specific freeway model. The selected values for the parameters have physi-
cal interpretation and the example demonstrates the efficiency of the proposed con-
trol scheme, even in the case of modeling errors.

Consider a freeway model of the form (2.18)-(2.20) with (2.15) and (2.16) and
with n = 5 cells. The freeway stretch considered for the simulation test is 2.5 km
long and has three lanes. Each cell is 0.5 km long and has an on-ramp and off-ramp.
The first and the third on-ramp are assumed to be controllable, hence R = {1, 3},
and the vector of the controllable inflows is u = (v1, v3). The inflows from the rest
of the on-ramps are assumed to be unknown and therefore they will have to be
estimated. Regarding the priority rules, we assume that di(t) ≡ 0 for the whole
simulation horizon, which means that the on-ramp inflows have absolute priority
over the internal inflows. The simulation time step is set to be T = 15s and the
cell capacities are ρmaxi = 170 [veh], for 1 = 1, ..., 5. Note that, since all flows and
densities are measured in [veh], the cell length, the time step and the number of
lanes do not appear explicitly, but they are only involved implicitly in the value of
every variable and every constant (e.g. critical density, jam density, flow capacity,
wave speed etc.) corresponding to density or flow.

The formulas of the demand functions are given by the following equations:

fD,i(z) =

{
( 5

11)z z ∈ [0, 55]

25− ( 7
115)(z − 55) z ∈ (55, 170]

(i = 1, ..., 4),

fD,5(z) =

{
( 4

11)z z ∈ [0, 55]

20− ( 3
115)(z − 55) z ∈ (55, 170]

. (5.44)

Assumption (H 5.1) holds with ρcri = 55 [veh], ρmaxi = 170 [veh] for i = 1, ..., 5,
vf,i = 5/11, fmini = 18 for i = 1, ..., 4, vf,5 = 4/11 and fmin5 = 17. Thus, every
cell has the same critical and jam density which correspond to 36.7 [veh/km/lane]
and 113.3 [veh/km/lane], respectively, in common traffic units with the above set-
tings. Definitions (5.44) guarantee that the demand functions for i = 1, ..., 4 lead to
20% higher flow capacity (fD,i(ρcri ) = 25 [veh] for i = 1, ..., 4, corresponding to 2000
[veh/h/lane]) than the flow capacity of the fifth cell (fD,5(ρcr5 ) = 20 [veh], corre-
sponding to 1600 [veh/h/lane]) and therefore the last cell is a strong bottleneck for
the freeway (e.g., due to grade or curvature or tunnel or bridge etc.). Notice also,
that the capacity drop phenomenon has been taken into account by considering a
linearly decreasing demand function for over-critical densities xi ∈ (55, 170] (as dis-
cussed in Section 2.3.6). Furthermore, the congestion wave speeds are ci = 0.22 for
i = 1, ..., 5 corresponding to 26.4 [km/h]. Finally, we suppose that the cell flow ca-
pacities Qi, for i = 1, ..., 5, satisfy the inequalities Qi ≥ ciρ

max
i , for i = 1, ..., 5, and

therefore, they play no role in the model (2.18)-(2.20).
Our goal is to globally exponentially stabilize the system at an UEP which is as

close as possible to the critical density (due to the fact that the flow value at the criti-
cal density is largest). Therefore, we selected as the upper bound for the equilibrium
densities and for each cell to be the µi = ρcri −ε (i = 1, ..., 5), where ε = 10−4. The exit
rates are set to be p1 = 0.04, p2 = 0.15, p3 = 0.08, p4 = 0.1 and we selected vmax1 = 25,
vmax2 = 1.3, vmax3 = 4, vmax4 = 2.3 and vmax5 = 2.8, so that inequalities (5.6) hold. The
uncontrollable inflows are v∗2 = 1, v∗4 = 2 and v∗5 = 2.5. Summarizing, the vector
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of the parameters θ∗ consists of the exit rates p = [p1, p2, p3, p4]′, the unknown exter-
nal uncontrollable inflows v∗i (i = 2, 4, 5) and the slopes vf = [vf,1, ...,vf,5]′ of the
demand functions. Hence, θ∗ = [p1, ..., p4, v

∗
2, v
∗
4, v
∗
5,vf,1, ...,vf,5].

The function

g : [0, 1− ε]4 ×
∏

i=2,4,5

[0, vmaxi ]× [ε, 1− ε]5 →
∏
i=1,3

[vmini + ε, vmaxi ]

with vmin1 = vmin3 = 0.2 involved in (5.9) has been selected in such a way that the
outflow from the last (fifth) cell is approximately maximized:

g(p, v∗2, v
∗
4, v
∗
5, r) = (v∗1, v

∗
3) = (ĝ(p, v∗2, v

∗
4, v
∗
5,vf ), 4) (5.45)

where

ĝ(z) =



vmin1 + ε z ∈ (−∞, vmin1 ]

502z2 − 103z + 100.2001 z ∈ (vmin1 , vmin1 + 2ε]

z z ∈ (vmin1 + 2ε, vmax1 − 1]
−1
4 z

2 + 13z − 144 z ∈ (vmax1 − 1, vmax1 + 1]

vmax1 z ∈ (vmax1 ,∞)

(5.46)

where z =
(
vf,5x∗5 − (v∗5 + (1 − p4)v∗4 + (1 − p3)(1 − p4)v∗3 + (1 − p2)(1 − p3)(1 −

p4)v∗2)
)
/
(
(1− p1)(1− p2)(1− p3)(1− p4)

)
and x∗5 = µ5 − 2ε.

The UEP is x∗ = [38.045, 38.723, 41.715, 42.778, 54.9997] for v∗ = [17.29316, 1, 4,
2, 2.5], p = [0.04, 0.15, 0.08, 0.1] and vf = [5/11, 5/11, 5/11, 5/11, 4/11]. The above
UEP is not globally exponentially stable due to the existence of additional (con-
gested) equilibria. This is shown in Figure 5.2, where the solution of the open-loop
system, with constant inflows v∗ = [17.29316, 1, 4, 2, 2.5], is attracted by the con-
gested equilibrium [96.19, 94.6, 87.73, 85.22, 82.33]′ leading to outflow, which is 0.72
[veh] lower than the capacity flow of the last cell. Therefore, if the objective is the
operation of the freeway with largest outflow, then a control strategy will be needed.
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FIGURE 5.2: Time evolution of the states of the open-loop system with
a fully congested initial condition.

We are in a position to guarantee global exponential attractivity of the UEP for
the freeway model that was described above by using Corollary 5.3. Indeed, Corol-
lary 5.3 guarantees that there exist constants σ ∈ (0, 1], vmin1 , vmin3 > 0 and τ > 0
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such that, the feedback law K : Θ× S → U defined by:

K1(θ̂, x) = max
(
vmin1 , v̂∗1 − τ−1(v̂∗1 − vmin1 )

5∑
i=1

σi max(0, xi − x̂∗i )
)
,

K3(θ̂, x) = max
(
vmin3 , v̂∗3 − τ−1(v̂∗3 − vmin3 )

5∑
i=1

σi max(0, xi − x̂∗i )
)
,

(5.47)

(v̂∗1, v̂
∗
3) = g(p̂, v̂∗i ; i 6∈ R, v̂f ), (5.48)

for the closed-loop system (5.10), (5.15), (5.16), (5.17) with (5.31)-(5.37), (5.47), (5.48),
(5.12) and (5.14), achieves global exponential attractivity of the UEP x∗ = [38.045,
38.723, 41.715, 42.778, 54.9997].

It is important here to note that the feedback law (5.47) aims to maximize the out-
flow from the fifth cell without assuming knowledge of the cell’s capacity flow. The
maximization is achieved by implicitly estimating the capacity flow of the fifth cell in
real time, using the estimation of the slope of the demand function (v̂f,5(t)) and the
(given) critical density of the same cell. Empirical traffic engineering investigations
have shown that the capacity is stochastic, in the sense that traffic breakdown on
different days may occur at different flow values. In contrast, the critical density, at
which capacity flow occurs, is deemed more stable from day to day. This is the very
practical reason why it is assumed in this work that the critical density is constant
and known, while capacity flow is estimated in real time. Note that, this is in full
accordance with simpler but proven (in many field installations) control laws like
ALINEA (Papageorgiou, Hadj-Salem, and Blosseville, 1991), which also considers a
given density set-point.

Selecting vmin1 = vmin3 = 0.2, we tested various values of the constants σ ∈ (0, 1]
and τ > 0 by performing a simulation study with respect to many initial conditions.
Low values for σ ∈ (0, 1] require small values for τ > 0 in order to guarantee global
exponential stability for the closed-loop system. All the following tests of the pro-
posed regulator were conducted with the same values σ = 0.7 and τ = 10. Moreover,
all the following simulation tests were conducted with the same initial conditions
for the observer states w1,i(0) = 100 [veh], w2,i(0) = 20 [veh], w3,i(0) = 20 [veh] for
i = 1, ..., 5, p̂i(0) = 0 for i = 1, ..., 4, v̂∗i (0) = 0 for i = 2, 4, 5 and v̂f,i(0) = 0.7 for
i = 1, ..., 5.

Figure 5.3 shows the evolution of the density of every cell and Figure 5.4(a)
shows the evolution of the Euclidean norm of the deviation x(t)−x∗ of the state from
the UEP, i.e., |x(t)−x∗|, for the closed-loop system with the proposed feedback regu-
lator (5.31)-(5.37), (5.47), (5.48), (5.12) and (5.14) for three different initial conditions.
The first condition corresponds to very low densities (x0 = (10, 15, 10, 15, 10)′), the
second initial condition corresponds to congested states with high deviations be-
tween each other (x0 = (70, 85, 65, 120, 100)′), while the third initial condition cor-
responds to the state where the density of every cell has its maximum value, i.e.
ρmaxi (i = 1, ..., 5), which also corresponds to the initial condition for Figure 5.3.
Indeed, both Figure 5.3 and 5.4 show that the proposed feedback stabilizer (5.31)-
(5.37), (5.47), (5.48), (5.12) and (5.14) achieves dead-beat estimation of the vector θ∗,
preserving the exponential convergence property for the closed-loop system.

We also tested the performance of the feedback law (5.31)-(5.37), (5.47), (5.48),
(5.12) and (5.14) under the effect of periodic uncontrollable inflows with different
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FIGURE 5.3: Time evolution of the states of the closed-loop system
with a fully congested initial condition.

FIGURE 5.4: Time evolution of the Euclidean norm |x − x∗| of the
closed-loop system with three different initial conditions.

frequencies and different amplitudes, given by:

v∗2 = 1 + 0.3 cos
(3πt

2

)
, v∗4 = 2 + 0.1 cos(πt) and v∗5 = 2.5 + 0.2 cos

(πt
4

)
. (5.49)

Figure 5.5 (a) and (b), depict the evolution of the Euclidean norm of the devia-
tion x(t) − x∗ and the evolution of the weighted norm ‖ · ‖n of the deviation of the
estimated parameters from the nominal parameters vector, defined by:

‖θ̂(t)− θ∗‖n =

∣∣∣∣( 1

1− ε
(p̂(t)− p), v̂

∗
2(t)− v∗2
vmax2

,
v̂∗4(t)− v∗4
vmax4

,
v̂∗5(t)− v∗5
vmax5

,
1

1− ε
(v̂f (t)− vf )

)∣∣∣∣,
(5.50)

with respect to the unknown time-varying uncontrollable inflows (5.49) and under
the proposed feedback regulator (5.31)-(5.37), (5.47), (5.48), (5.12) and (5.14). The
initial conditions were the same as in the previous case. Again, the proposed regu-
lator achieved to lead the system to the equilibrium state by performing only small
deviations for the estimated parameters. Figure 5.5 shows that the proposed feed-
back stabilizer (5.31)-(5.37), (5.47), (5.48), (5.12) and (5.14) achieves the exponential
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FIGURE 5.5: (a) The Euclidean norm |x(t) − x∗|, (b) the weighted
norm ‖θ̂(t) − θ∗‖, for periodic uncontrollable inflows for the
closed-loop system and three different initial conditions x0 =
(10, 15, 10, 15, 10)′ (red line), x0 = (70, 85, 64, 120, 100)′ (blue line) and

x0 = (170, 170, 170, 170, 170)′ (green line).

convergence property of the densities to the desired UEP.
Furthermore, in order to illustrate the performance of the proposed feedback law

under the presence of modeling errors, we considered the case where the demand
functions do not satisfy Assumption 5.1. More specifically, we considered the piece-
wise quadratic demand functions:

fD,i(z) =

{
0.7z − (0.49

110 )z2 , z ∈ [0, 55]

25.025− (7.025
115 )(z − 55) , z ∈ (55, 170]

, i =1, ..., 4,

fD,5(z) =

{
0.56z − (0.392

110 )z2 , z ∈ [0, 55]

20.02− (3.02
115 )(z − 55) , z ∈ (55, 170]

.

(5.51)

In this case the UEP is x∗ = [30.77, 31.5, 34.85, 36.1, 54.9997]. Figure 5.7, shows the
evolution of the Euclidean norm of the deviation x(t)− x∗ of the state from the UEP
and for the closed-loop system with the proposed feedback regulator (5.31)-(5.37),
(5.47), (5.48), (5.12) and (5.14) and three different initial conditions. Again, Figure
5.6 shows that the proposed feedback stabilizer (5.31)-(5.37), (5.47), (5.48), (5.12) and
(5.14) achieves the exponential convergence property of the densities to the desired
UEP, even under the presence of modeling errors.

In the same vein, Figure 5.7 shows the time evolution of the densities of every
cell for the closed-loop system (5.10), (5.17) with (5.31)-(5.37), (5.47), (5.48), (5.12)
and (5.14) with initial condition x0 = (60, 60, 60, 60, 60)′ and under the presence of
the same modeling errors. More specifically, in this figure the demand functions are
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given by (5.44), which satisfy Assumption (5.1), for t < 60, while after that time mod-
eling errors appear. This means that for t ≥ 60 the demand functions are given by
(5.51), which do not satisfy Assumption (5.1). Figure 5.7 shows that the exponential
convergence property to the desired UEP is preserved even when modeling errors
appear after an initial transient period.

FIGURE 5.6: The Euclidean norm |x(t)−x∗| for the closed-loop system
and under the presence of modeling errors.

FIGURE 5.7: Time evolution of the density for the closed-loop system
under modeling errors.
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Chapter 6

Local and Coordinated Ramp
Metering using Adaptive Control
Scheme

6.1 Introduction

The ACS presented in the previous chapter (Chapter 5) can be used as a real-time
ramp metering and mainline metering strategy either at local or coordinated lev-
els. As shown in Chapter 5, the proposed ACS consists of two main components: a
nominal feedback law (NFL) (derived from Chapter 4), in conjunction with a non-
linear dead-beat observer that estimates the unknown system parameters utilized
by the NFL. It has been first rigorously shown that, for the freeway model (2.18)-
(2.18), the NFL guarantees the RGES of any selected UEP when the model parame-
ters are known and constant. Eventually, the designed nonlinear dead-beat observer
performs the exact identification of the constant model parameters after a transient
period. Using these two components (NFL and nonlinear observer), the proposed
ACS was rigorously shown to guarantee the robust global exponential attractivity of
a desired (partly unknown and moving) UEP.

However, Chapter 5 provides limited information on the practical implementa-
tion possibilities, implications and qualities of the proposed ACS. Motivated by the
strong theoretical properties of the ACS, this chapter aims to provide insights into
the practical properties and performance of the ACS under realistic and custom-
ary traffic scenarios occurring in freeway networks. Testing this strategy with suf-
ficiently accurate traffic flow models, different than the ones used for ACS design,
is deemed as an indispensable step towards potential application of the scheme in
the field. In this study, the SOM METANET (Messmer and Papageorgiou, 1990) is
utilized as a surrogate of ground truth for the application of the ACS. This choice
is justified by the fact that METANET is able to reproduce with high accuracy the
traffic dynamics as demonstrated in several model validation exercises using data
from different freeway networks (see Section 2.4 and Frejo, Camacho, and Horowitz,
2012; Kotsialos, Papageorgiou, and Middelham, 2001; Papageorgiou, Blosseville,
and Hadj-Salem, 1990; Spiliopoulou et al., 2014). For the simulation testing, real-
istic traffic scenarios are constructed, involving non-constant mainstream entrance
and on-ramp demand flows. Particular attention is paid to two different aspects of
the control action:

1. Firstly, the performance of the controller is investigated with respect to the sta-
bilization of freeway traffic in case bottlenecks exist far downstream from a
metered on-ramp; for this case, the application network and control scenario
are the same as those utilized by Wang et al., 2014, in order to facilitate the
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comparison of ACS with a previously developed local ramp metering strat-
egy. Moreover, under the same framework, an extension of the basic ACS is
proposed so as to handle the practically relevant RLB situation (Wang et al.,
2010).

2. Secondly, by appropriately exploiting the application flexibility provided by
ACS, the scheme is applied for coordinated ramp metering control, so as to
balance the relative queue lengths created on the controllable on-ramps; for
this case, the related network and control scenario share similar characteristics
with those utilized in the work by Papamichail and Papageorgiou, 2008 for
comparison reasons.

The structure of the present chapter is as follows: Section 6.2 is devoted to the
description of ACS from an application-oriented point of view; some modifications
of the original scheme are also proposed, mainly in the observer part, which sim-
plify the estimation part of ACS. Section 6.3 presents the simulation set-up, while
the results obtained from the application of the ACS as local and coordinated ramp
metering strategy are presented in Sections 6.4 and 6.5, respectively.

6.2 The Adaptive Control Scheme

The proposed ACS is a real-time control strategy, which aims to delay, prevent or
dissolve congestion phenomena caused by the presence of active bottlenecks within
a freeway stretch. More often, recurrent congestion is created (spilling back several
kilometers upstream) when the total arriving demand exceeds the bottleneck capac-
ity. In order to apply any real-time control strategy, appropriate measurements, ob-
tained from detectors installed at specific locations within the freeway, are required.
The measurements reflect traffic flow variables such as flow, speed, density or oc-
cupancy, depending on the specific requirements of the employed real-time control
strategy. If there is no availability of a specific type of measurement needed for
the application of the control strategy or if there are no measurements available at
specific locations, appropriate estimation schemes can be used so as to retrieve the
required traffic flow information from available measurements (Seo et al., 2017; Sun,
Muñoz, and Horowitz, 2004; Wang, Papageorgiou, and Messmer, 2006).

As mentioned above, the ACS consists of two main components, a NFL and a
nonlinear observer. The first aims to steer the system towards a desired traffic state
while the second aims to estimate the external traffic variables required for produc-
ing the desired traffic state. The following subsection presents the NFL component
of the ACS under the assumption that all the required measurements or estimates
are available.

6.2.1 Nominal Feedback Law

To enable the real-time operation of the NFL of the ACS, real-time information of
traffic density should be available. Though direct density measurements are rarely
provided, density estimates can be readily obtained from corresponding occupancy
measurements (that are usually available) or can be provided by various estimation
schemes proposed in the literature (see, for example, Bekiaris-Liberis, Roncoli, and
Papageorgiou, 2015; Seo et al., 2017; Wang, Papageorgiou, and Messmer, 2006). In
what follows, the measurements or estimates of density are in [veh/km].
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Main features of the nominal feedback law

Although other configurations are also possible, we will consider a freeway traffic
control setting that is compatible with the cases addressed by Wang et al., 2014 for
isolated ramp metering, by Wang et al., 2010 for random-location bottleneck, and
by Papamichail and Papageorgiou, 2008 for coordinated ramp metering. Specifi-
cally, we consider a freeway stretch under control, which extends from the most
upstream controllable on-ramp (or mainline flow metering) until a recurrently acti-
vated bottleneck at its downstream boundary (Figure 6.1) in the aim of maximizing
the bottleneck throughput. This freeway stretch may contain other controllable or
uncontrollable on-ramps, as well as off-ramps. A space discretization of the con-
sidered freeway stretch is introduced with cells which are typically about 500 m in
length. Let, here, n be the total number of cells emerging after discretizing the free-
way; then each cell is denoted by the index i ∈ {1, . . . , n} where the nth (last) cell
corresponds to the bottleneck cell. The on-ramps and the off-ramps are located at the
upstream and downstream boundary of a cell, respectively, and are denoted by the
index of the corresponding cell, as shown in Figure 6.1. A cell may have an on-ramp
or an off-ramp or both or none of them. We denote byO ⊆ {1, . . . , n} the index set of
the on-ramps and R ⊆ O the index set of the controllable on-ramps. Then, here, we
denote by vi the controllable inflow of on-ramp i ∈ R and, in general, we denote by
r̄i the actual inflow of on-ramp i ∈ O; in case i ∈ R, the actual inflow r̄i depends on
the control decision and therefore becomes r̄i(vi) (see again Figure 6.1). Note here
that all flows are measured in [veh/h]. The upstream-most boundary cell carries the
index i = 0; in case mainline metering actions are to be considered, the index set of
the controllable on-ramps becomes R ∪ {0}.

The proposed control strategy is applied with control holding period Tc, which
is an integer multiple of the measurements (or estimates) sampling period T (for
simulation investigations, T denotes the simulation model’s sampling period, see
Section 6.3), i.e., Tc = zcT with constant zc ∈ N . With these definitions, the control
action (at times t = kcTc, with kc = 1, 2, . . . ) ordered by the NFL (Theorem 4.1) of
the ACS reads

vi(kc) = max

vmini , v∗i (kc)−
v∗i (kc)− vmini

τ

∑
j∈{1,...,n}

σj max(0, xj(kc)− x∗j (kc))

 ,

(6.1)

for i ∈ R, where vmini > 0 denotes the minimum admissible on-ramp flow, σ ∈ (0, 1]
(dimensionless) and τ > 0 (in [veh/km]) are parameters of the regulator (same for
every i ∈ R), and xj(kc), for j = 1, . . . , n, correspond to (the average of the last zc)
density measurements or estimates. Moreover, (v∗i , x

∗
j ) for i ∈ R and j = 1, . . . , n,

denotes the Desired Operating point (DOP), reflecting optimal non-congested con-
ditions in the examined freeway stretch. It is again emphasized that, on the basis
of the model (2.18)-(2.20), the NFL (6.1) (definition (4.7) in Chapter 4) guarantees
the RGES of any selected UEP (x∗1, . . . , x

∗
n) when the external variables (such as exit

rates, uncontrolled on-ramp flows) are known and constant (see Chapter 4). It is ex-
pected that these properties largely hold also if the equilibrium is slowly changing
over time.

Specifically, v∗i for i ∈ R correspond to the (optimal) equilibrium inflows for the
controllable on-ramps, which lead to the (optimal) uncongested equilibrium den-
sities x∗j for j = 1, . . . , n. Notice here that, due to the existence of on-ramps and
off-ramps inside the considered freeway stretch, x∗j may be different for each j ∈
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FIGURE 6.1: Space discretization of a freeway stretch.

{1, . . . , n}; and that, due to (possible) non-constant (uncontrollable) main-entrance
and uncontrollable on-ramp flows, the DOP may be changing over time. Further-
more, the minimum admissible flow (vmini ) is pre-specified and constant, while the
maximum control value resulting from (6.1) is equal to the current optimal on-ramp
inflow v∗i (kc), for i ∈ R.

In simple terms, the feedback law (6.1) aims to steer the system towards the DOP
(v∗i (kc), x

∗
j (kc)), for i ∈ R and j ∈ {1, . . . , n}; in fact, if xj(kc) = x∗j (kc) then (6.1)

yields vi(kc) = v∗i (kc), and the system operates at its optimal point; while, if xj(kc) >
x∗j (kc) for some j, then (6.1) leads to lower control flows vi(kc) < v∗i (kc) in order to
dissolve possible congestion and bring the cell densities back to their optimal values.

Apart from the proper determination of the (optimal) DOP (which is described
in the following subsections), the efficient operation of the NFL (6.1) relies also on
the proper determination of the regulator parameters σ and τ . In fact, the NFL (6.1)
assigns a different control gain to each cell j of the considered freeway stretch which
is equal to σj/τ (note that σj denotes σ to the power of j). However, simulation ex-
periments indicate that the selection σ = 1 (yielding the same control gain, i.e. 1

τ , for
each freeway cell) and appropriate determination of the parameter τ guarantees sat-
isfactory control performance. Typical values for τ may be selected within the range
[1, 30]; whereby smaller values of τ lead to more aggressive (even oscillating) con-
trol behavior, while larger values of τ lead to less aggressive (but possibly sluggish)
control behavior. In any case, tuning of only one design parameter is sufficient to
establish the desired dynamic characteristics of the control loop, and this is certainly
a convenient feature for practical application of the method.

The determination of the DOP (v∗i (kc), x
∗
j (kc)) is crucial and is based on two as-

pects. It should guarantee: i) the maximization of throughput at the bottleneck loca-
tion (cell n); and ii) the uncongested equilibrium flow along the considered freeway
stretch.

Maximization of throughput at the bottleneck

Maximization of throughput requires knowledge of either the capacity flow of the
bottleneck or its critical density (at which the flow reaches capacity). Control strate-
gies that are based on capacity flow may be sensitive due to the stochastic and
condition-dependent nature of the capacity flow value (Cassidy and Rudjanakanok-
nad, 2005; Elefteriadou, Roess, and McShane, 1995; Lorenz and Elefteriadou, 2001).
In contrast, control strategies that target the critical density are preferable, because
the critical density seems to be more consistent and stable under different traffic
conditions (Cassidy and Rudjanakanoknad, 2005). Therefore, the proposed control
scheme aims to maximize the throughput of a bottleneck by targeting its critical den-
sity, which is assumed to be known (as in other feedback control schemes as well).
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The proper critical density value should be extracted from historical data or be
specified after the control installation via fine-tuning; but it should be noted that the
ultimate goal of throughput maximization is largely achieved by ACS, even if the
employed critical density value is not exact, as will be demonstrated in the follow-
ing sections (see Tables 6.3 and 6.4 in Sections 6.4 and 6.5, respectively). The target
outflow q∗n of the freeway stretch, which turns out to be the estimate of the capacity
flow of the bottleneck location, is defined as:

q∗n(kc) = ρcrn v̄f,n(kc), (6.2)

where, as previous, ρcrn is the pre-specified value of the critical density of the bot-
tleneck, while v̄f,n(kc) equals the (average of the last zc) measured (if available) or
real-time estimated mean speed at the bottleneck (in [km/h]) as long as the bottle-
neck density is undercritical; otherwise, v̄f,n(kc) is set equal to its previous value
(see Corollary 5.3). The target outflow delivered by (6.2) may lead to unrealisti-
cally high estimated capacity values whenever the measured or estimated speed is
near free speed. However, this is not harmful, as it implies that controllable inflows
should be accordingly high; hence no control actions will be considered in this case,
since the freeway operates under free flow conditions. On the other hand, when the
real density approaches its critical value (and therefore the flow of the bottleneck
approaches its capacity), the mean speed at the bottleneck location approaches the
"critical speed" and the estimate (6.2) is close to the real capacity value.

Equilibrium flow

As mentioned earlier, the DOP (v∗i , x
∗
j ) (for i ∈ R and j = 1, . . . , n) reflects un-

congested (and optimal) stationary conditions and therefore implies the balance be-
tween the total inflows and the total outflows (including the target outflow (6.2)) in
the considered freeway stretch. More specifically, the total inflows comprise: i) the
optimal inflows v∗i of the controllable on-ramps (i ∈ R); ii) the measured or esti-
mated uncontrollable on-ramp flows r̄i (i ∈ O\R); and iii) the very upstream (mea-
sured or estimated) mainstream inflow qint0 , i.e., the outflow from the cell i = 0 that
becomes inflow for the cell i = 1. On the other hand, the total outflows comprise: i)
the measured or estimated external (off-ramp) flows qextj (j = 1, . . . , n), expressed as
the product of the corresponding estimated exit rates pj , j ∈ {1, . . . , n}, with the cor-
responding mainstream flows (in case cell j does not contain an off-ramp, pj = 0);
and ii) the target outflow of the bottleneck q∗n. Then, the flow equilibrium for the
uncongested freeway stretch (i.e. total inflows equal to total outflows) reads:

qint0

n∏
j=1

(1− pj) +
∑
i∈R

v∗i

n∏
j=i

(1− pj) +
∑
i∈O\R

ri

n∏
j=i

(1− pj) = q∗n, (6.3)

where for i = nwe set pn = 0. In case of mainline metering, qint0 in (6.3) is substituted
by q∗0 . Notice that the only unknown variables in (6.3) are the optimal inflows for the
controllable on-ramps (v∗i ; i ∈ R). Thus, (6.3) allows to specify these optimal inflows
withm−1 degrees of freedom, wherem is the number of controllable on-ramps, i.e.,
the cardinality of the index set R. In case there is just one controllable inflow (local
ramp metering case), relation (6.3) can be solved to retrieve the optimal inflow value
v∗1(kc). For more than one controllable on-ramps, the user has the freedom to specify
the way that the optimal inflow values should be distributed among the controllable
on-ramps (see for example Section 6.5). Thus, this control scheme allows to deal
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with a variety of possible coordinated ramp-metering policies when more than one
on-ramps are controllable. Note that the specified values of (v∗i ; i ∈ R) should not
be selected higher than the corresponding on-ramp capacities or demands or lower
than the corresponding vmini .

Final determination of the (optimal) desired operating point

Having specified the optimal equilibrium inflows for the controllable on-ramps (v∗i
(kc); i ∈ R) as explained in the previous subsections, we proceed here to obtain also
the corresponding equilibrium densities (x∗j (kc); j ∈ {1, . . . , n}) that are needed in
the nonlinear feedback law (6.1). Notice that a similar relation as (6.3) can also be
written for all cell (optimal) outflows q∗j for j = {1, . . . , n− 1}, which reads

q∗1 = qint0 + v∗1, (6.4)

qint0

j−1∏
k=1

(1− pk) +
∑
i ∈ R
i ≤ j

v∗i

j−1∏
k=i

(1− pk) +
∑

i ∈ O\R
i ≤ j

ri

j−1∏
k=i

(1− pk) = q∗j , (6.5)

for j = 2, . . . , n− 1. Here, we define
∏j−1
k=j (·) = 1. Again, for mainline metering, qin0

in (6.4) is substituted by q∗0 . Using the outflows q∗j resulting from (6.4), (6.5) , we may
compute the target cell densities x∗j from

x∗n = ρcrn , x
∗
j = min

(
q∗j
vj
, ρcrj

)
, j ∈ {1, . . . , n− 1} , (6.6)

where vj , for each j ∈ {1, . . . , n− 1}, corresponds to the measured or real-time esti-
mated mean speed of the jth cell; and ρcrj denotes the critical density of the jth cell.
Note that the min-operator in (6.6) guarantees that the target densities x∗j will be
uncongested, even if some cells are currently congested. Notice also that equations
(6.6) correspond to definition (5.5) of Chapter 5.

To summarize, in order to apply the NFL, the following measurements or esti-
mates are required:

1. All cell densities (xi; i = 1, . . . , n) to be used by the NFL (6.1).

2. External variables for deriving the equilibrium point, namely:

(a) Uncontrollable on-ramp flows (r̄i; i ∈ O\R),

(b) Cell speeds (vj ; j = 1, . . . , n),

(c) Off-ramp flows or exit rates (pj ; j = 1, . . . , n),

(d) Uncontrollable upstream mainstream inflow (qint0 ).

All these quantities may be delivered by a general estimation scheme (Bekiaris-
Liberis, Roncoli, and Papageorgiou, 2015; Seo et al., 2017; Sun, Muñoz, and Horowitz,
2004; Wang, Papageorgiou, and Messmer, 2006). However, in Chapter 5, a specific
estimation scheme that is dedicated to the present traffic control problem and specif-
ically concerns the real-time estimation of the external variables a, b and c above, has
been proposed and is presented in the next section.
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6.2.2 The Observer of the ACS

In this section, the specific nonlinear observer which is the second component of the
ACS is appropriately modified and presented. A parameter vector to be estimated
is defined, which includes the external variables a, b and c mentioned above. The
mainline inflow qint0 (if not controllable) is assumed to be known (measured). More-
over, the estimation scheme utilizes the density estimates xj (j = 1, . . . , n), that are
also used by NFL, as well as measurements of flow. More specifically, internal cell
flow measurements (flow from one cell to the next, qintj , j = 1, . . . , n,) and external
flow measurements (exit flow from the off-ramps, qextj , j = 1, . . . , n,) are assumed
to be available (as imposed also by the measured output (5.17) defined in Chapter 5).
As illustrated in Chapter 5, the nonlinear observer achieves the precise knowledge
of the (constant or slow-varying) parameter vector after a transient period when the
system is under the action of the NFL. The estimated quantities are denoted, also in
this chapter, by (r̂i; i ∈ O\R), (v̂j ; j = 1, . . . , n) and (p̂j ; j = 1, . . . , n), respectively.
Each of these quantities is separately estimated.

Estimations of the uncontrollable on-ramp inflows

The inflow values for the uncontrollable (and unmeasured) on-ramps are estimated
using the following rule (corresponding to (5.33)-(5.35) in Chapter 5):

r̂i(kc) =

{
Ui (kc) if xi (kc) < ρcri and xi−1 (kc) < ρcri−1

r̂i (kc − 1) otherwise
(6.7)

with

Ui(kc) =

max
(

0,min
(
rmaxi ,

Li
Tc

(xi(kc)− xi(kc − 1)) + qinti (kc − 1) + qexti (kc − 1)− qinti−1(kc − 1)
))

(6.8)

where Li (in [km]) denotes the cell length. As it can be seen from (6.7), the value of
each uncontrollable inflow is updated only if the density in the corresponding cell
and in the upstream cell are undercritical; differently from (5.33)-(5.35), where the
corresponding values update is performed when the entire density vector is under-
critical. The estimation of the uncontrollable inflows is performed by means of a
conservation equation, and the resulting values are truncated if they exceed a max-
imum value (rmaxi ), corresponding to the on-ramp’s capacity, or zero, as evidenced
by (6.8).

Estimations of the mean speed

The mean speed of every cell is estimated using the following rule:

v̂i(kc) =

{
Vi (kc) if 0 < xi (kc) < ρcri and 0 < xi+1 (kc) < ρcri+1

v̂i (kc − 1) otherwise
, (6.9)

with

Vi (kc) = max

(
vmini ,min

(
vmaxi ,

qinti (kc) + qexti (kc)

xi (kc)

) )
(6.10)
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where vmini and vmaxi are pre-specified constant speed bounds. As for the flow esti-
mations of the uncontrollable on-ramps, (6.9) imposes that the speed estimations are
updated only when the corresponding freeway cells are uncongested; again, differ-
ently from (5.36)-(5.37), where the corresponding values update is performed when
the entire density vector is undercritical. Essentially, the estimates of mean speed
correspond to the ratio of flow over density under non-congested conditions as evi-
denced by (6.10).

Estimations of the exit rates

The estimation of the exit rates is simply performed as follows:

p̂i(kc) =

{
Pi (kc) if qinti (kc) + qexti (kc) > 0
p̂i (kc − 1) otherwise

, (6.11)

with

Pi (kc) =
qexti (kc)

qinti (kc) + qexti (kc)
. (6.12)

The estimated values for the exit rates are updated only when the total exit flow
from a cell is non-zero.

In the following sections, the performance of the ACS is investigated via ap-
propriate simulation scenarios by use of a traffic flow model that is different than
the FOM used to design the ACS and has been demonstrated in several validation
exercises in the past to reproduce with satisfactory accuracy the real traffic flow dy-
namics.

6.2.3 The Random-Location Bottleneck Case

A concept that extends the fixed distant downstream bottleneck (denoted above with
the index n) is required if one faces the Random-Location Bottleneck (RLB) situation,
whereby the bottleneck may appear at several (unpredictable) locations within the
considered freeway stretch. Some of the reasons for this phenomenon may be: i)
traffic incidents, the exact location of which cannot be predicted, ii) long accelera-
tion lanes, allowing ramp vehicles to merge into the mainstream anywhere along
this stretch, iii) intense lane changing, e.g. due to the existence of a downstream
off-ramp, iv) random impacts such as truck percentage, weather, lighting, or v) a
sharp rise in the mainstream or ramp demand which may sometimes activate the
merging bottleneck first, despite a stricter bottleneck farther downstream. Most of
these situations have been actually encountered in the ramp metering practice and
have motivated the work by Wang et al., 2010 to address them. That work involves
the parallel application of a number of PI-type controllers, using multiple measure-
ments from a specific freeway stretch downstream of the controlled ramp, as well
as a decision policy which indicates the currently dominant downstream bottleneck
that should be addressed by local ramp metering. The method has been in field-
operational use successfully since its development.

To address the RLB situation with the ACS scheme, a data-driven decision policy
is run first, aiming at identifying the currently dominating bottleneck cell in the
considered freeway stretch. Eventually, ACS is applied assuming that cell to be the
bottleneck cell in the sense of Figure 6.1. The decision is made by comparing the
smoothed regulation error in each cell, i.e., the deviation of the current cell density
from its critical value, and selecting the minimum one. More specifically, let n̄ be
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the farthest downstream cell where a bottleneck may appear, and n the index of the
currently dominating bottleneck cell at time kc. Then, the following equations are
executed before the application of ACS:

ej(kc) = ρcrj − xj(kc), for j = 1, . . . , n̄, (6.13)

esmj (kc) = αej(kc) + (1− α)esmj (kc − 1), for j = 1, . . . , n̄, (6.14)

n = arg min
j=1,...,n̄

{
esmj (kc)

}
, (6.15)

where esmj (kc) denotes the exponentially smoothed regulation error ej (kc), and a ∈
[0, 1] is a constant. Thus, the decision policy selects for actual bottleneck implemen-
tation the cell n that features currently the minimum (smoothed) regulation error,
and ACS is applied according to Figure 6.1.

6.3 Simulation Model and Set-Up

6.3.1 Simulation Model

The discrete SOM METANET (2.40)-(2.43), which consists of two interconnected dy-
namic equations for each cell, is utilized in the simulation tests of the following
sections. The model describes the dynamic behavior of traffic flow along a freeway
stretch, which has been divided into N cells. Notice here that the last freeway cell n
considered as the bottleneck cell in the description of the ACS of the previous sec-
tion, is not necessarily identical with the last cell of the simulation model, i.e., n ≤ N .
For the on-ramps as well as for the mainstream entrance flow, a simple queue model
is used (Figure 6.2). The evolution of the origin queue ωi (the queue created within
the on-ramp i or the main entrance) is described by an additional state equation
(conservation of vehicles in the queue):

ωi (k + 1) = ωi (k) + T
(
D̄i (k)− ri(k)

)
, (6.16)

where D̄i denotes external traffic demand.

FIGURE 6.2: On-ramp cell: queue model.

The actual on-ramp flow r̄i, depends on the arriving demand D̄i and the ramp
queue ωi (if any), but also on the traffic conditions of the corresponding mainstream
cell and the existence of ramp-metering control measures (Figure 6.2):

r̄i (k) = min(rmaxi (k), vi(k)), (6.17)
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TABLE 6.1: Parameters with common values for both scenarios of
Sections 6.4 and 6.5.

T Tc Thor σ vmini *D(ξdi (k)) *D(ξv
i (k)) *D(ξqi (k))

5s 30s 1 10 300 400 5 100

where
rmaxi (k) = min(D̄i(k) + Tωi(k), rpossi (k)), (6.18)

rpossi (k) =


rcapi if xi(k) ≤ ρcri

rcapi
ρmax
i −xi(k)
ρmax
i −ρcri

if otherwise
, (6.19)

where vi is given by (6.1) for controllable on-ramps, otherwise it is set to a very high
value; rcapi denotes the capacity of the ith on-ramp and ρmaxi denotes the maximum
density on the mainstream. Thus in (6.19), the ramp-outflow capacity is linearly re-
duced if the density xi of the corresponding merge cell increases beyond the critical
density value, hence a ramp queue may appear even without ramp metering due to
the mainstream congestion. If ramp metering is applied (i ∈ R), then the outflow
that is allowed to leave the on-ramp i, during period (kT, (k + 1)T ] is determined
by the control law unless it exceeds the maximum possible ramp outflow rmaxi . Less
important modeling details may be found by Messmer and Papageorgiou, 1990.

Simulation Set-Up

The ACS described in Section 6.2 can be used as a real-time ramp metering or main-
line metering strategy either at local or coordinated levels. Therefore, two different
control scenarios are considered in this chapter. First, Section 6.4 investigates the
performance of the ACS as a local ramp metering strategy, in case bottlenecks exist
at or far downstream of the metered ramp, including the RLB case. Second, Sec-
tion 6.5 investigates the performance of the ACS as a coordinated control strategy,
which aims at balancing the relative queue length on the controllable on-ramps. In
the first case, the control scenario as well as the network topology and characteristics
are precisely the same with those utilized by Wang et al., 2014; while for the second
case, the network and the control scenario have common characteristics with those
adopted by Papamichail and Papageorgiou, 2008. These specific choices have been
considered for comparison purposes.

Due to the need to compare with previous works, most of the model parameters
utilized for the two scenarios are different. Table 6.1 contains the parameter values
that are common for both control scenarios of Sections 6.4 and 6.5; whereby d̃(·) de-
notes the standard deviation of the scalar random variables and Thor denotes the
time horizon for the simulation experiments. It is important to emphasise that, al-
though different scenarios (Sections 6.4 and 6.5) and different cases for each scenario
(subsections of Section 6.4) have been considered, the ACS regulator parameters σ
and τ remain the same in all experiments conducted, indicating the low sensitivity
of the ACS with respect to its control gains.

The control algorithm’s interaction with the METANET simulator is illustrated
in Figure 6.3. As may be seen, measurements of flow and density (specifically, xi (k),
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qinti (k), qexti (k) for each cell i of the considered freeway stretch), stemming from
(2.40)-(2.43) and (6.16)-(6.19), are extracted from the simulator every T = 5 s. Then,
the average of these measurements is fed to the observer (6.7)-(6.12) as well as the
NFL (6.1) of the ACS every Tc = 30 sec. The observer estimates the unknown ex-
ternal variables (exit rates, mean speeds and uncontrollable on-ramp inflows) which
are fed to (6.3) in order to obtain the optimal inflows for the controllable on-ramps,
v∗i , for i ∈ R. In case there are more than one controllable on-ramps, an additional
decision policy (see Section 6.5) is required to exploit the additional degrees of free-
dom. The obtained optimal inflow values are subsequently utilized by (6.4)-(6.6) for
the calculation of the equilibrium densities (x∗j , j = 1, . . . , n) of the freeway stretch.

Finally, the produced DOP
(
v∗i , x

∗
j

)
is fed to the NFL (6.1) which in turn feeds back

the simulation model with the control decisions. This control loop is activated every
Tc = 30 s.

We recall that in a real implementation, in case there are available measurements
or estimates sufficient for the specification of the DOP, then one may drop the ob-
server part and use the available traffic variables directly to obtain the DOP at each
control time step (as illustrated by the dashed line in Figure 6.3). Lastly, we note that
no maximum on-ramp queues have been considered in the investigated scenarios so
as to focus on the impact of the ACS without additional constraints.

FIGURE 6.3: Control algorithm scheme.

6.4 Local Ramp Metering in Case of Distant Downstream Bot-
tlenecks

In many practical cases, bottlenecks with smaller capacity than the merging area
may exist further downstream for various reasons. In the work by Wang et al., 2014,
the performance of the regulator ALINEA and its extension PI-ALINEA were in-
vestigated for such bottlenecks created by lane-drops, curvatures or uncontrolled
on-ramps. Here, we intend to investigate the performance of the ACS in compar-
ison with PI-ALINEA control strategy, which seems to respond very satisfactorily
in such cases as shown by Wang et al., 2014, and which has been implemented in
several field applications.

6.4.1 Network Description

For the simulation tests, three freeway networks of N = 22 cells have been consid-
ered (Figure 6.4). Each network has an on-ramp located at the upstream boundary
of the 9th cell, which is 2 [km] downstream from the network entrance. Each cell is
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Li = 0.25 [km] long and has li = 3 [lanes]. The first network (Figure 6.4(a)) does not
involve any downstream bottleneck; however, the on-ramp’s merge area itself is a
bottleneck. In order to distinguish this case from the others, it is referred hereafter
as the non-bottleneck case. The other two networks have a 1 [km] bottleneck at lo-
cations 0.75 and 1.5 [km], respectively, downstream of the on-ramp (Figures 6.4 (b),
(c)). A bottleneck cell differs from a non-bottleneck cell in its traffic flow character-
istics. More specifically, the FD 1 (Figure 6.5) is included in the simulation model
to emulate each non-bottleneck cell, whereas FD 2 is considered for each bottleneck
cell. The model parameters related with FD as well as the rest of the model param-
eters are given in Table 6.2. The trapezoidal demand scenarios, shown in Figure 6.6,
are used in the simulation investigations.

For each of these network scenarios, no control results and control results under
the ACS are presented. Moreover, each case has been also tested under more realistic
conditions involving stochastic demands and noise in the modelling equations.

FIGURE 6.4: Hypothetical stretches (a) non-bottleneck case, (b) bot-
tleneck case 1, (c) bottleneck case 2.

FIGURE 6.5: Considered FDs.

6.4.2 Simulation Investigations - Non bottleneck case

The non-bottleneck case is first considered for the application of the ACS. Due to
the complex nonlinear dynamics of the macroscopic simulation model, the factual
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TABLE 6.2: METANET Parameters.

ν τm δ κ vmin ρcr α vf qcap

FD1 FD2
35s 20s 1.4 13 7 31.4 2 105 79 2000 1500

FIGURE 6.6: Mainstream and on-ramp traffic demand scenarios.

capacity and critical density of a simulated freeway stretch are not fully determined
by the considered FD. Here, as also mentioned by Wang et al., 2014, the factual
critical density is found to be around 38 [veh/km/lane].

In the following, no-control results (with the ramp metering actions deactivated)
and control results under the impact of ACS are presented. The density and flow
trajectories for the no-control case are shown in Figure 6.7(a) and Figure 6.7(b), re-
spectively. The total demand entering the merging cell (mainstream and on-ramp
demand) during the peak period (Figure 6.6) exceeds considerably the capacity level
(around 6000 [veh/h]) of cell 9 and, in fact, of any other downstream cell. As shown
by Figure 6.7(a), the density of cell 9 reaches the critical value of 38 [veh/km/lane]
at about t = 1.3 h, while at the same time the traffic flow of cell 9 reaches the capacity
level (Figure 6.7(b)). As the density continues to increase, congestion initially builds
in cell 9 and spills back to the upstream cells. Consequently, the outflow from cell 9
and from the downstream cells drops to around 5800 [veh/h] (capacity drop). The
congestion persists until the total demand decreases sufficiently. It is noted that: i)
due to upstream propagation of the congestion shock wave, the cells downstream
of cell 9 are not congested during the peak period (Figure 6.7(a)); ii) the outflows
of all cells upstream of the on-ramp during the peak period are the same and lower
than the mainstream demand, i.e. 4459<5150 [veh/h], and therefore, in the no con-
trol case, the entrance demand cannot be adequately served. Note also that, during
the peak period, the uncontrolled on-ramp inflow is equal to the on-ramp demand
(1350 [veh/h]), which is exactly the observed flow difference at cells upstream and
downstream from the on-ramp (Figure 6.7(b)).

The considered freeway stretch for the application of the ACS contains only the
cell 9 which is the bottleneck cell. The ACS is fed with the density of cell 9 (x9), the
internal outflow from cell 8 (qint8 ) and the internal and external outflows of cell 9 (qint9

and qext9 ). Moreover, the ACS uses the critical density ρcr9 , which is called hereafter
the set-point of the ACS. Under these settings, the observer of the ACS is employed
only for the estimation of the mean speed at cell 9, i.e., v̂9. Then, the optimal inflow
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FIGURE 6.7: Non-bottleneck case: (a) density and (b) flow in the no-
control case; (c) density and (d) flow with application of ACS; (e) time

evolution of the variables related with the on-ramp flow.

v∗9 , according to (6.3), is obtained from:

v∗9(kc) = ρcr9 v̂9(kc)λ9 − qint8 (kc). (6.20)

Figures 6.7 (c) and (d) illustrate the density and flow trajectories, respectively, un-
der ACS and for set-point (utilized also in the observer and the determination of the
DOP) equal to ρcr9 = 36 [veh/km/lane]. This set-point (instead of 38, which is the
factual critical density of cell 9) was found to be the most efficient (resulting to max-
imum throughput), due to the offset between the set-point and the density resulting
from the application of ACS. This offset is a natural consequence of the modeling
mismatch (recall that the development of ACS has been based on FOMs). This im-
plies that some fine-tuning may be also required for the set-point value in case of
ACS field implementation for maximum efficiency.

Generally, ACS is seen to respond very satisfactorily. More specifically, Figure
6.7 (c) indicates that density trajectories are identical to those in the no-control case
until the density of cell 9 reaches the factual critical value, after which all density
trajectories are stabilized during the whole peak period. In particular, the density
of the 9th cell is kept at 37.4, leading to: i) a stable capacity flow downstream of
the on-ramp that accommodates all the entrance demand (Figure 6.7(d)); and ii) a
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FIGURE 6.8: Non-bottleneck case under a stochastic demand and pro-
cess noise: (a) density and (b) flow in the no-control case; (c) density
and (d) flow with application of ACS; (e) time evolution of the vari-

ables related with the on-ramp flow.

controlled peak-period on-ramp flow (of almost 850 [veh/h], Figure 6.7(e)); which,
in total, result to the desired freeway throughput (capacity flow). Clearly, the ramp
metering action leads to the formation and, eventually, dissipation of a ramp queue,
since the allowed on-ramp inflow is less than the on-ramp demand during the peak
period (Figure 6.7(e)). Comparing the density trajectories of cells 7, 8 and 9 in Figures
6.7 (a) and (c), it is clear that, with the application of the ACS, no congestion is
created in cell 9 or elsewhere. It is also noted that, due to the 3 % higher outflow
from the merging cell (compare Figure 6.7(b) with Figure 6.7(d)), the density under
the action of ACS, becomes undercritical much earlier than in the no-control case,
i.e., the demand is served earlier. Furthermore, it is also interesting to see that no
oscillations in the density trajectories at the cells close to the on-ramp are observed.

The application of the ACS has also been tested under different set-point values.
This experiment aims to demonstrate that even a “sub-optimal” choice of set-point
enables the freeway throughput to remain at satisfactory levels. Table 3 shows the
resulting stationary density and flow emanated from a wide enough range of set-
points. For example, for the "sub-optimal" choice ρcr9 = 33, the freeway throughput
experiences a reduction of less than 0.3%.

The ACS was also tested with a more realistic stochastic scenario, whereby the
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TABLE 6.3: Resulting stationary flow for all bottleneck cases and for
different set values of the critical density.

Non-bottleneck Bottleneck 1 Bottleneck 2

Set-point / Stat.flow Set-point / Stat.flow Set-point / Stat.flow
Stat.dens. Stat.dens. Stat.dens.

33 / 33.34 5961 36 / 37.54 5229 38 / 38.7 5268

34 / 35.02 5975 37 / 38.63 5234 39 / 39.45 5268

35 / 36.03 5978 38 / 39.65 5236 40 / 40.02 5268

36 / 37.43 5978 39 / 40.62 5236 41 / 41.06 5268

37 / 38.46 5976 40 / 41.09 5236 42 / 42.12 5268

38 / 40.08 5971 41 / 42.05 5233 43 / 43.04 5266

39 / 41.48 5965 42 / 42.97 5227 44 / 44.45 5261

traffic demand is corrupted with noise and the model equations include noise terms
(see (2.41), (2.42) and Table 6.1). This way, errors in the process modeling and high-
frequency demand changes are taken into account. Also in this scenario, the den-
sity of cell 9 is kept near-critical (its mean during the peak period is equal to 37.4
[veh/km/lane], see Figure 6.8(c)), whereas in the corresponding no-control case
(Figure 6.8(a)) the corresponding mean density value of cell 9 during the peak period
is highly over-critical. The merge cell throughput remains high at the peak period
(almost 3% higher than in the no-control case, see Figures 6.8 (b) and (d)), and the en-
trance flow demand is fully served. Figure 6.8(e) shows the trajectories of variables
related with the control decision.

6.4.3 Simulation Investigations - Bottleneck Cases 1 and 2

For bottleneck cases 1 and 2, shown in Figures 6.4 (b) and (c), respectively, the factual
critical density and the corresponding maximum throughput for the bottleneck sec-
tion were found to be around 40 and 41 [veh/km/lane] and 5237 and 5268 [veh/h],
respectively. In view of the lower bottleneck capacity, the demand scenario de-
scribed by the red line in Figure 6.6 is considered for the following investigations.
Note that the sum of the mainstream demand and the on-ramp demand during peak
period is higher than the bottleneck capacity (else, there is no need to apply ramp-
metering), but lower than the merge area capacity. In these cases, the congestion
is expected to appear first in cells 12 and 15, respectively (Figures 6.4 (b), (c)), and
the ramp metering target is to keep the bottleneck flow (rather than the merging cell
flow) around its capacity level.

Figure 6.9(a) and Figure 6.11(a) show the density trajectories for the no-control
case, where, indeed, the congestion occurs first in the corresponding bottleneck cells
(12 and 15, respectively) and spills back upstream. During the whole peak period,
the flow downstream of the on-ramp is lower (5165 and 5188 [veh/h], in Figure
6.9(b) and Figure 6.11(b), respectively) than the bottleneck capacity (5237 and 5268
[veh/h], respectively), due to capacity drop caused by the congestion. In addition,
the flow upstream of the on-ramp is lower than the mainstream demand due to the
uncontrolled on-ramp inflow.
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FIGURE 6.9: Bottleneck case 1: (a) density and (b) flow in the no-
control case; (c) density and (d) flow with application of ACS; (e) time

evolution of the variables related with the on-ramp flow.

The considered freeway stretch for application of the ACS extends from the con-
trollable on-ramp to the first bottleneck cell. More specifically, for the bottleneck
case 1, the considered freeway stretch extends from cell 9 to cell 12; while for the
bottleneck case 2, the considered freeway stretch extends from cell 9 to cell 15. Due
to the fact that there are no intermediate on-ramps and off-ramps, the observer of the
ACS is called to estimate only the mean speeds of the cells of the considered freeway
stretch. Then, the optimal inflow v∗9 utilized in the NFL of the ACS is obtained (using
(6.3)) by:

v∗9 (kc) = ρcr12v̂12 (kc) l12 − qint8 (kc) , (6.21)

v∗9 (kc) = ρcr15v̂15 (kc) l15 − qint8 (kc) , (6.22)

for each respective bottleneck case.
The testing results of the ACS are presented in Figures 6.9 (c), (d), (e) and Figures

6.11 (c), (d), (e) for the bottleneck cases 1 and 2, respectively. The set-points used for
each scenario are ρcr12 = 39 and ρcr15 = 41[veh/km/lane], respectively. A small offset
is seen to be present also here. Again, Table 6.3 shows, for different set-points, the
resulting stationary density and flow for each bottleneck case.

The congestion formation and propagation from the bottleneck cells to upstream
are suppressed. A small overshooting is observed at the initial phase of control
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FIGURE 6.10: Bottleneck case 1 under a stochastic demand scenario
and process noise: (a) density and (b) flow in the no-control case; (c)
density and (d) flow with application of ACS; (e) time evolution of

the variables related with the on-ramp flow.

activation, which, however, is deemed minor and is actually virtually masked by
the noise in the stochastic versions of both scenarios. In fact, the trajectory of the
density in cells 12 and 15 (Figure 6.9(c) and Figure 6.11(c), respectively) is smooth,
and, in the steady state, the density of cells 12 and 15 is kept around the factual
critical density, while the capacity level of the bottleneck cells is achieved, and the
mainstream demand is well served. Except for cells 12 and 15, where the critical
density prevails, all other cells are under free-flow conditions.

The ACS was also tested successfully for both bottleneck cases under the respec-
tive stochastic scenarios, see the respective Figures 6.10 and 6.12.

The investigations reported in this section demonstrate that ACS is efficient for
local ramp metering where the bottleneck location may be either the on-ramp’s
merge area or another tighter bottleneck farther downstream. Three different cases
of bottleneck locations have been addressed with equal design parameters for ACS.
Since the same cases had also been considered by (Wang et al., 2014) by use of PI-
ALINEA, a visual comparison with the results presented therein indicate similar
performance, in fact with slightly better damped transient control period in the case
of ACS.
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FIGURE 6.11: Bottleneck case 2: (a) density and (b) flow in the no-
control case; (c) density and (d) flow with application of ACS; (e) time

evolution of the variables related with the on-ramp flow.

6.4.4 Simulation Investigations - Random-Location Bottleneck Case

We now test the suitability and performance of ACS under the RLB situation using
the control decision (6.13)-(6.15). Here, the aforementioned simulation settings are
kept the same, but we assume that a bottleneck may randomly appear or disappear
within the considered freeway stretch as well as that the bottlenecks may randomly
change their spatial range. In order to have a better visualization of the control
results, the demand scenario (red and green lines in Figure 6.6) is extended by one
more hour for the peak period. For the simulation tests, we set n̄ = 15, a = 0.5 and
we test the following (typical) scenario of random bottleneck switching:

[15− 18] No Bottleneck [12− 15]
→ →

t = [0− 2]h t = [2− 3]h t = [0− 2]h

where [12-15] and [15-18] represent as previously a 1 [km] bottleneck at cells 12 to 15
(Figure 6.4(b)) and 15 to 18 (Figure 6.4(b)), respectively. In the non-bottleneck case
(Figure 6.4(a)), the merging area is of course a candidate bottleneck. This scenario
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FIGURE 6.12: Bottleneck case 2 under a stochastic demand scenario
and process noise: (a) density and (b) flow in the no-control case; (c)
density and (d) flow with application of ACS; (e) time evolution of

the variables related with the on-ramp flow.

addresses a situation in which originally the freeway stretch involves a far down-
stream bottleneck starting at cell 15, but, at a certain moment, this bottleneck disap-
pears and the merge area becomes a candidate region for congestion; then again a
bottleneck with different spatial range appears, starting at cell 12. All these changes
are unknown to the ACS.

ACS in the simulation investigations aims to maintain the density of the selected
bottleneck cell close to the critical density such that the corresponding throughput is
maximized. The set-points for the ACS as well as for the decision policy (6.13)-(6.15)
are set to ρcri = 41 for each i = 9, . . . , 15.

Figure 6.13 presents the density and flow trajectories for the above bottleneck sce-
nario for the deterministic and stochastic scenarios. As shown with the dominating-
bottleneck indicator in Figure 6.13(a), (c), when the demand levels are low (1st hour),
cell 9 is dominating (with some switching in the stochastic scenario) for the control
system outcome, although no control action is actually needed. As the demand in-
creases, the impact of the bottleneck becomes visible and the regulation error of cell
15 dominates. Thus, as we also observed in the previous tests, the bottleneck den-
sity is kept around its critical value, leading to maximum outflow from cell 15 for the
period from 1 to 2 hours. With the bottleneck removal at t = 2h, cell 9 becomes dom-
inating again, and the total demand for the merge area includes the demand profiles
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FIGURE 6.13: Application of the ACS for the RLB case: (a) density
and (b) flow, under a deterministic scenario; (c) density and (d) flow,

under a stochastic demand scenario and process noise.

of Figure 6.6 (i.e. 5750 [veh/h] in total) plus the accumulated on-ramp queue. As
a result of ramp metering, the flows out of the merging area are maintained at the
capacity level and the density of cell 9 is stabilized near its critical density (Figure
6.13(a)). Soon after the emergence of the bottleneck at cells 12 to 15, cell 12 takes over
and ACS succeeds to stabilize it near its critical value.

To summarize, ACS complemented with the decision policy (6.13)-(6.15) behaves
adequately in the RLB situation, switching promptly as appropriate to track the crit-
ical location along the freeway. The switching does not cause any noteworthy oscil-
lations neither in the density nor the flow.

6.5 Application for Coordinated Ramp Metering Control

6.5.1 Network Description

In this section, ACS is tested as a control strategy for coordinated ramp metering.
The adopted hypothetical network and control scenario share similar characteris-
tics with those utilized in the work by Papamichail and Papageorgiou, 2008. More
specifically, a 3-lane freeway stretch of 6.5 [km] is considered. The stretch is divided
into N = 13 cells, each being 0.5 [km] long (Figure 6.13). There are two on-ramps
on this freeway as well as an off-ramp in-between. The first and the second on-
ramp are located at the upstream boundary of the 5th and the 9th cell, respectively,
while the off-ramp is located at the downstream boundary of the 6th cell. The ACS
is employed in order to simultaneously control both on-ramp flows, so as to maxi-
mize the throughput right after the second on-ramp (cell 9). The remaining degree
of freedom shall be used to balance dynamically the relative lengths of the created
queues (if any) on both controllable on-ramps. Let ωmax5 and ωmax9 be the maximum
admissible on-ramp queues (in [veh]) for these two on-ramps.
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FIGURE 6.14: The utilized freeway for coordinated ramp metering.

FIGURE 6.15: Mainstream and on-ramps traffic demand profiles.

The considered freeway stretch for the application of the ACS extends from cell 5
to cell 9. Due to the fact that there are no intermediate on-ramps within this stretch,
the observer of the ACS is only employed in order to estimate the mean speeds of
the cells of the considered freeway stretch as well as the exit rate from off-ramp 6.
In order to balance the relative queue lengths on both controllable on-ramps, the
optimal inflow values (here, v∗5 and v∗9), utilized by the NFL of the ACS, must be
appropriately determined. To this end, a second relationship, along with (6.3), that
associates the optimal inflows is needed. This relationship may be directly derived
from the target of balancing the relative ramp queues, i.e.,

ω5(kc)

ωmax5

=
ω9(kc)

ωmax9

. (6.23)

Substituting (6.16) into (6.23) and replacing r5 and r9 with v∗5 and v∗9 , respectively, a
relationship between the optimal inflows is obtained. Using also relation (6.3), the
optimal inflow values can be uniquely determined. More specifically, let us intro-
duce, for convenience, the following notations:

A(kc) = ρcr9 v̂9(kc)l9 − (1− p̂6(kc))q
int
4 (kc), (6.24)

A1(kc) = ω5(kc)− TcD̄5(kc), (6.25)

A2(kc) = ω9(kc)− Tc(D̄9(kc)−A(kc)). (6.26)

Then, the optimal inflows are given by:

v∗5(kc) =
1

Tc

ωmax9 A1 (kc)− ωmax5 A2 (kc)

(1− p̂6 (kc))ωmax5 + ωmax9

, (6.27)

v∗9(kc) = A (kc)− (1− p̂6 (kc) v
∗
5 (kc)) . (6.28)
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FIGURE 6.16: (a) Density and (b) flow trajectories for the no-control
case; (c) density and (b) flow trajectories under ACS; and (e) and (f)
trajectories of variables related with the on-ramp inflow for the two

on-ramps.

FIGURE 6.17: Queue lengths and relative queue lengths for the two
onramps under ACS.

Each freeway cell is described by the same FD, and the corresponding model
parameters are shown in Table 6.4. The trapezoidal demand profiles for the on-
ramps and the constant demand profile for the entrance are shown in Figure 6.15.
The exit rate at the off-ramp is set to p6 =5%. Cell 9 is a potential bottleneck for the
freeway due to the existence of high on-ramp and mainstream demands. After some
simulation experiments, the factual critical density and the corresponding capacity
flow are found to be 39 [veh/km/lane] and 6130 [veh/h], respectively. Notice that
the total flow demand arriving at the upstream boundary of cell 9, during peak



108 Chapter 6. Local and Coordinated Ramp Metering using ACS

TABLE 6.4: Simulation model and FD parameters (2nd scenario).

ν τm δ κ vmin ρcr α vf qcap

24s 22s 1.7 13 7 36 1.5 110 2033

period, exceeds the capacity flow of the cell 9, i.e., 6320>6130. The maximum ramp
queue lengths considered for relative queue balancing are ωmax5 = 200 [veh] and
ωmax9 = 167 [veh].

When no control is applied, the resulting density and flow profiles for both
merge areas and also other cells of the freeway are shown in Figures 6.16 (a) and
(b). Mainstream congestion appears after 1 [h] in the merge area of on-ramp 9 due to
the high flows that arrive there; this leads to a visible mainstream flow decrease (ca-
pacity drop). The created congestion travels upstream and reaches the merge area of
the on-ramp 5 at around 2 [h], also leading to a visible flow decrease. No queues are
formed at the on-ramps, but a small queue is created at the far upstream entrance of
the network.

Figures 6.16 (c) and (d) present the density and flow profiles under the appli-
cation of ACS. For this test, the set-point value is equal to ρcr9 =38 [veh/km/lane],
though Table 5 presents different results for different set-points as well. It can be
seen from Figure 6.16 (c) that congestion is avoided and the density of the cell 9 is
around critical, resulting in maximization of throughput and near-capacity flow val-
ues from the same cell. Figures 6.16 (e) and (f) show the evolution of the variables
related with the control decision. Regarding the balancing of on-ramp queues, Fig-
ure 6.17 shows the evolution both of the queue lengths and of the relative queue
lengths for the two on-ramps. On-ramp 5 has larger capacity and therefore its queue
is larger than at on-ramp 9. However, the relative queue lengths are equal during
the whole simulation horizon as desired.

In order to test the performance of the proposed coordination scheme with re-
spect to stochastic scenarios, appropriate simulations have been conducted which
are presented in Figure 6.18. When no control measures are applied, the result-
ing density and flow trajectories are shown in Figures 6.18 (a) and (b), respectively,
where a congestion in the mainstream is observed, starting again in the merge area
of on-ramp 9 and propagating upstream. This congestion leads also to a decrease in
the mainstream flow, the mean value of which, during the peak period, is equal to
5756 [veh/h]. However, also in this stochastic scenario, the application of ACS leads
to noticeably better results, shown in Figures 6.18 (c) and (d). Apparently, the per-
formance of the ACS is not affected by the presence of noise. Again, no congestion
is formed along the freeway stretch (see Figure 6.18 (c)), while the outflow from cell
9 is kept near capacity (its mean is almost 6070 [veh/h], see Figure 6.18 (d)). Figures
6.18(e) and (f) show the evolution of the control decision variables, while Figure 6.19
shows the actual queue length (left) and the relative queue length (right) of each
on-ramp, where the latter are equal during the whole simulation horizon.

The scenarios investigated in this section demonstrate that ACS is also efficient
for coordinated ramp metering. As mentioned above, similar cases with the ones
utilized in this study had also been considered in (Papamichail and Papageorgiou,
2008) by use of a linked control strategy. By comparing (again visually) the results
therein with the reported results in this study, we conclude that no important dif-
ferences in the performance of the two control strategies exist. However, ACS is
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FIGURE 6.18: (a) Density and (b) flow trajectories for the no-control
case; (c) density and (b) flow trajectories under ACS; and (e) and (f)
trajectories of variables related with the on-ramp inflows for the two

on-ramps under the stochastic scenario.

simpler in application than many existing coordination schemes, including the one
presented by Papamichail and Papageorgiou, 2008.
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FIGURE 6.19: Queue lengths and relative queue lengths for the two
onramps under ACS for the stochastic scenario.

TABLE 6.5: Resulting stationary density and flow for the coordinated
ramp metering scenario and for different set-points.

Set-point / Stat.dens. Stat.flow

35 / 35.42 6090

36 / 36.55 6109

37 / 37.63 6123

38 / 38.75 6129

39 / 39.95 6128

40 / 40.9 6122

41 / 42.15 6111
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Chapter 7

Conclusions and Future Work

This final chapter summarizes the findings and results of this thesis. In particular,
Section 7.1 gives a summary of the study and highlights the main results and contri-
butions of this thesis, while Section 7.2 indicates future research aspects that could
be considered to extend the investigation results.

7.1 Concluding Remarks

During the last decades, a large amount of research has been performed in the area
of Mathematical Control Theory. This research resulted to the development of rig-
orous tools that can be used for Nonlinear Systems and Control and can be applied
to many different engineering fields including Traffic Engineering. Therefore, it is
essential to appropriately exploit these recent advances in order to deal with the in-
creasing freeway traffic congestion problems. In particular, traffic control originated
by rigorous Mathematical Control Theory methodologies will provide the commu-
nity of Traffic Engineering with more robust and potentially more efficient control
strategies. However, literature generally lacks, so far, of studies that provide rigor-
ous model-based methods, which are characterized by strong theoretical properties,
while, at the same time, can be easily applied for real traffic control. This thesis aims
to commence such a promising approach focusing on the development of general
control strategies for freeway networks.

First, in the modeling part of this thesis (Chapter 2), a general class of first-
order discrete space-time models for acyclic traffic networks was developed and
presented. Specific instances of the developed general modeling framework are
well-known and established traffic flow models, which have been proposed in the
literature, including CTM and its extensions. The proposed models are highly non-
linear and uncertain, while the related assumptions are, from a Traffic Engineering
point of view, mild and reasonable. Due to their discrete nature, the developed mod-
els can be directly applied in a computer environment for simulations purposes and
they are characterized by nice analytical properties (e.g., explicit state-space form,
involvement of continuous and differential functions), short computation times and
convenient discretization intervals.

Moreover, Chapter 2 presents an overview of modeling approaches to include
capacity drop into LWR-type traffic flow models. Although LWR-type first-order
freeway models are well-known effective tools, their inherent formulation do not
allow the representation of capacity drop, which is a significant phenomenon ob-
served in real traffic. The selected approaches were described and tested in terms
of their ability to reproduce the right traffic pattern and the capacity drop phe-
nomenon caused due to an on-ramp merging. First, the approaches are tested for
a hypothetical network and traffic demand scenario, to highlight their principal be-
havior and qualitative properties; eventually, the models were rigorously calibrated
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and validated using real data from a freeway in the U.K. The obtained results show
that, although the tested models employ different mechanisms to reflect the capac-
ity drop phenomenon, they all manage to produce a flow reduction at the merge
area whenever traffic congestion is present. The obtained results were found to be
quantitatively similar with respect to the achieved Performance Index values, which
is mainly attributed to a traffic situation with limited complexity and few internal
comparison data. Moreover, some of the approaches that incorporate the capacity
drop into LWR-type models produced a lower flow error (better reproduction of
capacity drop) than the one obtained by other than LWR-type FOMs. Most of the
modifications performed in the basic discretized LWR model, so as to account with
the capacity drop, are basically ad-hoc changes in the demand/supply functions.
Therefore, a theoretical analysis (presented in Appendix C) was performed in order
to prove the consistency of the proposed capacity drop model (Approach 5) with the
original LWR model. The theoretical analysis indicated that the formal underlying
PDE is still the LWR model, but with a source term present (i.e. a non-homogeneous
PDE).

The second part of this thesis (Chapters 3 and 4) is devoted to the stabilization
of the general models described in the first part. Specifically, a rigorous methodol-
ogy for the construction of a parameterized family of explicit feedback laws that are
able to guarantee the RGES of the UEP of the developed general traffic flow models
was presented. In Chapter 3, the proposed methodology is based on the developed
general acyclic traffic networks. The stability of the closed-loop system is checked
in terms of Vector Lyapunov Function criteria and certain important properties of
the acyclic traffic flow models. Appropriate propositions, lemmas and theorems are
constructed, which gradually lead to the main stabilization results. The stabiliza-
tion is achieved by regulating an appropriately selected set of inflows. In Chapter
4, the developed methodology concerns a class of freeway models; however, the
construction of the global exponential feedback stabilizer utilizes a single Lyapunov
function, which acts as a CLF for the open-loop system. The availability of a single
Lyapunov function allowed the construction of sufficient conditions for the estima-
tion of the set of the inflows that must be controlled in order to guarantee the RGES
of the UEP of the freeway models. All the provided sufficient conditions can be eas-
ily checked and give to the traffic engineer the ability to design easily an opportune
feedback controller. The applicability of the obtained results to real control problems
was demonstrated by conducting related simulation studies. The simulation results
demonstrated the efficacy of the proposed feedback control laws with respect to: i)
the fast convergence to the UEP, ii) the existence of measurement and modeling er-
rors, and iii) appropriate comparisons with other existing feedback laws proposed
in the literature and employed in practice.

In case limited information is provided regarding the system parameters, this
thesis also provided, in Chapter 5, a methodology for the construction of ACSs
for general uncertain discrete-time systems. The developed ACS guarantee robust
global exponential convergence to the desired UEP of the system, and consists of
a nominal feedback law in conjunction with a nonlinear dead-beat observer. The
proposed adaptive scheme did not require the knowledge of a Lyapunov function
for the closed-loop system under the action of the nominal feedback stabilizer and
is directly applicable to highly nonlinear, uncertain discrete-time systems with un-
known constant parameters. The applicability of the general result to real control
problems was demonstrated by the rigorous application of the proposed ACS to
the developed uncertain freeway models. Simulation results showed the efficacy of
the proposed adaptive control scheme even under the presence of modeling errors
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and/or time-varying parameters.
In Chapter 6, the ACS, developed in Chapter 5, is tested under realistic and cus-

tomary freeway traffic control scenarios in order to investigate its potential applica-
tion to the real field. More specifically, the SOM METANET is used (rather than the
developed first-order freeway model) as ground truth for the control application.
Here, appropriate hypothetical scenarios are constructed and the developed scheme
is tested with respect to its ability to stabilize the system when bottlenecks exist far
downstream of a metered on-ramp. The reported investigations evidence that ACS
is applicable, at will, as a local or coordinated ramp metering strategy, and that it
acts efficiently in both cases. First, as a local ramp metering strategy, ACS succeeded
to handle efficiently congestion phenomena caused by the presence of distant down-
stream bottlenecks, by regulating appropriately the inflow from an on-ramp. ACS,
fed with measurements along the region extending from the controllable on-ramp
to the downstream bottleneck, leads to damped and satisfactory control behavior.
In addition, for cases where the bottleneck location is not exactly known or its spa-
tial range may randomly change within a certain region, an extension of ACS was
proposed in this paper. This extension imposes the prior execution of a decision
procedure, which aims to detect (in real-time) the location where the congestion is
likely to appear first; and that location is selected as the target location for maxi-
mizing freeway throughput by ACS. The corresponding simulation tests show that
ACS, can satisfactorily handle the ramp metering task in various situations, includ-
ing RLBs, within a freeway stretch. Second, as a coordinated ramp metering strategy,
ACS succeeded to maintain the density of the freeway near-critical and to maximize
throughput; while the additional degrees of freedom may be exploited to balance the
relative queue lengths in the controllable on-ramps. The utilization of the same reg-
ulator parameters for various scenarios with different distances among the control
actuator and the target bottleneck indicates that little fine-tuning will be necessary
in potential field applications. Moreover, the observed performance of the ACS is
not affected if there exists an additional disturbance, e.g. in form of an off-ramp
between the controlled on-ramp and the downstream bottleneck. Some minor fine-
tuning may be required for the selection of the set-point density due to the offset
produced with the application of ACS. However, the new strategy is more flexible
and simpler in application than many existing coordination schemes.

7.2 Further Research

There are various ways to extend the main results presented in this thesis. Few of
them are listed below:

• First, the methodology presented in Chapter 5, for the class of freeway mod-
els presented in Section 2.2.3, can also be extended to account for the general
acyclic traffic networks presented in Section 2.2.1.

• Additional research will also be performed in order to construct a CLF for the
general acyclic traffic networks presented in Section 2.2.1; the knowledge of a
CLF for the open-loop system can be exploited in order to address robustness
issues in a rigorous way.

• The control approach, presented in Chapters 3 and 4, does not consider the im-
pact of inflow control on upstream traffic flow conditions (e.g., queue forming
at on-ramps); future extensions will address these issues appropriately.
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• Testing the proposed feedback approach with more detail models, e.g., micro-
scopic traffic simulation models, would also be of interest.

• An other important research direction could also be the extension of the pro-
posed control results to continuous-time traffic flow models, either by devel-
oping continuous-time feedback or sample-data feedback control.

• As far as the calibration tests on capacity drop model are concerned, future
investigations involving more complex traffic situations and richer data might
shed more light on the comparative quantitative accuracy of different approaches.
Moreover, it would be interesting to test and evaluate the behavior of the de-
scribed models in case traffic control strategies are applied.
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Appendix A

Mathematical Background

A.1 Nonlinear Systems and Control

This section presents some basic definitions and existed results that will be used
throughout this thesis. Let S ⊆ <n be a non-empty closed set, D ⊆ <l be a non-
empty compact set and consider the uncertain, discrete-time, dynamical system:

x+ = F (d, x) , x ∈ S , d ∈ D, (A.1)

where F : D × S → S is a locally bounded mapping. The variable x ∈ S de-
notes the state of (A.1) and d ∈ D is an unknown, time-varying input. Here (and
throughout the thesis) x+ denotes the value of the state at the next time instant,
i.e., (A.1) describes the recursive relation x(t + 1) = F (d(t), x(t)). Given x0 ∈ S,
{d(t) ∈ D}∞t=0 we are in a position to determine the solution x(t) of (A.1), with
x(0) = x0 corresponding to input {d(t) ∈ D}∞t=0, by means of the recursive relation
x(t + 1) = F (d(t), x(t)), for all t ≥ 0. Let x∗ ∈ S be an equilibrium point of (A.1),
i.e., x∗ ∈ S satisfies x∗ = F (d, x∗) for all d ∈ D. We also assume that F : D × S → S
is continuous on the set D × {x∗}. Notice that the requirement x∗ = F (d, x∗), for all
d ∈ D, implies that d ∈ D denotes a vanishing perturbation, i.e., a disturbance that
does not change the position of the equilibrium point of the system. In general, the
decision of which variables are vanishing or non-vanishing perturbation depends
on the equilibrium point that we have in mind: for example, a perturbation may
change the position of other equilibria but not the position of the equilibrium point
that we intend to study.

Here, we adopt the following RGES notion (see similar notions in Haddad and
Chellaboina, 2008; Karafyllis and Papageorgiou, 2015; Lakshmikantham and Tri-
giante, 2002).

Definition A.1

We say that x∗ ∈ S is RGAS for system (A.1) if there exists a function a ∈ KL
such that for every x0 ∈ S and for every sequence {d(t) ∈ D}∞t=0, the solution x(t)
of (A.1) with initial condition x(0) = x0 corresponding to input {d(t) ∈ D}∞t=0 (i.e.,
the solution that satisfies x(t + 1) = F (d(t), x(t)) for all t ≥ 0 and x(0) = x0)
satisfies the inequality |x(t)−x∗| ≤ a(|x0−x∗|, t) for all t ≥ 0. We say that x∗ ∈ S
is RGES if there exist constants M,N > 0 such that for every x0 ∈ S and for every
sequence {d(t) ∈ D}∞t=0 the solution x(t) of (A.1) with initial condition x(0) = x0

corresponding to input {d(t) ∈ D}∞t=0 (i.e., the solution that satisfies x(t + 1) =
F (d(t), x(t)) for all t ≥ 0 and x(0) = x0) satisfies the inequality |x(t) − x∗| ≤
M exp(−Nt)|x0 − x∗| for all t ≥ 0.
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Lemma A.2

Consider system (A.1) and let Ω ⊆ S be a given set. Suppose that F (D × S) is
bounded. Moreover, suppose that the following hold:

i) There exist constantsM,N > 0 such that for every x0 ∈ Ω, {d(t) ∈ D}∞t=0 the
solution x(t) of (A.1) with initial condition x(0) = x0 corresponding to input
{d(t) ∈ D}∞t=0 satisfies |x(t)− x∗| ≤M |x0 − x∗| exp(−Nt), for all t ≥ 0.

ii) There exists an integer K̃ ≥ 1 such that for every x0 ∈ S, {d(t) ∈ D}∞t=0 and
t ≥ K̃ there exists i(t) ∈ {0, 1, ..., K̃} for which the solution x(t) of (A.1) with
initial condition x(0) = x0 corresponding to input {d(t) ∈ D}∞t=0 satisfies
x(t− i(t)) ∈ Ω.

iii) There exists a constant L ≥ 1, such that the inequality |F (d, x) − x∗| ≤
L|x− x∗| holds for all d ∈ D and for all x ∈ S in a neighborhood of x∗.

Then, x∗ ∈ S is RGES for the uncertain system (A.1).

It should be noticed that Lemma A.2 requires that the exponential stability estimate
|x(t) − x∗| ≤ M |x0 − x∗| exp(−Nt) holds only for initial conditions x0 that belong
to the set Ω. Therefore, one can exploit this fact by selecting the set Ω ⊆ S in a
convenient way. As always, there is a price to pay for this relaxation of requirements
for RGES: one has to show that assumptions ii), iii) of Lemma A.2 hold as well.

Lyapunov functions are largely used in the study of Control Theory and they
consist the basic tool for designing feedback control and for studying the qualitative
behavior of dynamical systems (Sontag, 1998; Clarke, 2001; Anderson and Moore,
1990).

Definition A.3

A function V : S → <+ for which there exist constants K2 ≥ K1 > 0, κ > 0
and λ ∈ [0, 1) such that the inequalities K1|x − x∗|κ ≤ V (x) ≤ K2|x − x∗|κ and
V (F (d, x)) ≤ λV (x) hold for all (d, x) ∈ D×S, is called a Lyapunov function with
exponent κ > 0 for (A.1).

Remark A.1 If a Lyapunov function with exponent κ > 0 exists for (A.1), then x∗ ∈ S
is RGES. Indeed, if the state space were <n and not S ⊆ <n and if no disturbances
were present, then we would be able to use Theorem 13.2 on pages 765-766 in (Had-
dad and Chellaboina, 2008) and conclude that the existence of a Lyapunov function
with exponent κ > 0 for (A.1) is a sufficient condition for RGES of x∗ ∈ S. How-
ever, since the uncertain dynamical system (A.1) is defined on S ⊆ <n with dis-
turbances d ∈ D, we cannot use the aforementioned theorem. On the other hand,
we can use the inequality V (F (d, x)) ≤ λV (x) inductively and obtain the estimate
V (x(t)) ≤ λtV (x(0)) for every solution of (A.1), for every sequence {d(t) ∈ D}∞t=0

and for every integer t ≥ 0. The required exponential estimate of the solution is
obtained by combining the previous estimate with the inequality K1|x − x∗|κ ≤
V (x) ≤ K2|x − x∗|κ, which directly implies K1|x(t) − x∗|κ ≤ λtK2|x(0) − x∗|κ, or
|x(t)−x∗| ≤M exp(−Nt)|x0−x∗|, where M = (K2/K1)1/κ, N := − ln(λ)

κ for the case
λ > 0 and arbitrary N > 0 for the case λ = 0.
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Definition A.4

A Trapping Region (TR) for system (A.1) is a set Ω ⊆ S for which there exists
an integer m ≥ 0 such that for every x0 ∈ S, {d(t) ∈ D}∞t=0, the solution x(t) of
(A.1) with initial condition x(0) = x0 corresponding to input {d(t) ∈ D}∞t=0 satisfies
x(t) ∈ Ω, for all t ≥ m.

A nonlinear system with a TR is a system for which all solutions enter a spe-
cific set after an initial transient period. A direct consequence of Definition A.4 is
that every TR for (A.1) must contain all equilibrium points. The following theorem
provides VLF stability criteria for the RGAS and RGES of the equilibrium of (A.1).

Theorem A.5

Consider system (A.1) and suppose that Ω ⊆ S is a TR for (A.1). Moreover suppose
that there exists functions α1, α2 ∈ K∞ with α1(s) ≤ α2(s) for all s ≥ 0, Vi : Ω→
<+ (i = 1, ..., l) and a matrix Γ = {γi,j ≥ 0, i, j = 1, ..., l} ∈ <l×l+ such that the
following inequalities hold for all x ∈ Ω, d ∈ D and i = 1, ..., l:

α1(|x− x∗|) ≤ max
i=1,...,l

(Vi(x)) ≤ α2(|x− x∗|), (A.2)

Vi(F (d, x)) ≤
l∑

j=1

γi,jVj(x). (A.3)

Moreover, suppose that the spectral radius ρ(Γ) of the matrix Γ is less than 1. Then,
x∗ ∈ S is RGAS for (A.1). Moreover, if there exists constants L ≥ 0, 0 < K1 ≤ K2,
κ > 0 such that sup{|F (d, x) − x∗| : d ∈ D} ≤ L|x − x∗| for all x ∈ S \ Ω and if
αi(s) = Kis

κ, (i = 1, 2) for all s ≥ 0 then x∗ ∈ S is RGES for (A.1).

It should be emphasized that the novelty of Theorem A.5 with respect to existing
results lies in the presence of deterministic uncertainty and the exploitation of the
TR. The proof of Theorem A.5 can be found in (Karafyllis and Papageorgiou, 2015).

Next consider the uncertain, discrete-time, control system:

x+ = F (x, u), x ∈ S, u ∈ U, (A.4)

where F : S × U → S is a locally bounded mapping and S ⊆ <n, U ⊆ <m are
non-empty sets. Let x∗ ∈ S be an equilibrium point of (A.4), i.e., there exists u∗ ∈ U
so that x∗ = F (x∗, u∗). We next define the notion of global asymptotic controllability
for (A.4).

Definition A.6

We say that system (A.4) is globally asymptotically controllable to x∗ ∈ S if for every
x0 ∈ S there exists {u(t) ∈ U}∞t=0 such that the solution x(t) of (A.4) corresponding
to input {u(t) ∈ U}∞t=0, with initial condition x(0) = x0 satisfies lim

t→∞
x(t) = x∗.

Notice that global asymptotic controllability is a necessary condition for the ex-
istence of a globally stabilizing feedback for (A.4) (see Sontag, 1998).
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A.2 Graph Theory

This section presents some results from Graph Theory, which will be used in the study
of acyclic networks in Chapters 2 and 3.

From a graph-theoretic point of view, directed acyclic graphs are graphs whose
vertices can admit a topological sorting. This means, that their vertices can be or-
dered in such a way, that the starting endpoint of every edge (joining two vertices)
occurs earlier in the ordering than the ending endpoint of the edge. Assigning the
vertices of the graph to the components or cells of the network, for any given acyclic
network, and by using the previous definition, we are in a position to reorder the
cells of the network into a topological sorting. The main consequence of this sorting
is that the matrix B = {bi,j : i, j = 1, ..., n} ∈ [0, 1]n×n containing the turning rates of
the network becomes strictly upper triangular (Godsil and Royle, 2013; Kim, 1979;
Kim, 1982).

The following technical lemmas are useful for the analysis of the networks. Their
proofs are provided in the Appendix B.

Lemma A.7

For every non-negative, strictly upper triangular matrix B with
∑n

j=1 bi,j ≤ 1 for
all i = 1, ..., n, there exist positive constants ri > 0 (i = 1, ..., n), such that

ri >
n∑
j=1

rjbi,j , for every i = 1, ..., n. (A.5)

Lemma A.8

Let Li ∈ (0, 1) andGi ∈ (0, 1] with Li ≤ Gi for i = 1, ..., n be constants and letB be
a non-negative, strictly upper triangular matrix with

∑n
j=1 bi,j ≤ 1, for i = 1, ..., n.

Then, there exist constants ξi > 0 (i = 1, ..., n), such that

n∑
j=1

bj,iGjξj < Liξi, for every i = 1, ..., n. (A.6)

Using vector notation, inequality (A.6) becomes(
B′diag(G)− diag(L)

)
ξ ≤ 0,

which is also equivalent to:(
I +B′diag(G)− diag(L)

)
ξ ≤ ξ. (A.7)

Lemma A.9

Let Li ∈ (0, 1) and Gi ∈ (0, 1] with Li ≤ Gi, for i = 1, ..., n, be constants and let
B be a non-negative, strictly upper triangular matrix with

∑n
j=1 bi,j ≤ 1, for i =

1, ..., n. Then the matrix I+B′diag(G)−diag(L) is a lower triangular matrix with
ρ(I +B′diag(G)− diag(L)) < 1, where G = (G1, ..., Gn) and L = (L1, ..., Ln).
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Proofs of Auxiliary Results

B.1 Proofs of Results of Appendix A

Proof of Lemma A.2: By virtue of assumption (iii), there exists δ > 0 such that the
inequality |F (d, z) − z∗| ≤ L|z − z∗| holds for all d ∈ D and z ∈ A := {y ∈ X :
|y − z∗| < δ}. Since F : D ×X → X is a bounded mapping, there exists a constant
R > 0 which satisfies:

sup{|F (d, z)| : z ∈ X, d ∈ D} ≤ R. (B.1)

It follows from (B.1) and the triangle inequality that the following inequality holds:

sup

{
|F (d, z)− z∗|
|z − z∗|

: d ∈ D, z ∈ X \A
}
≤

δ−1 sup{|F (d, z)− z∗| : z ∈ X, d ∈ D} ≤ δ−1(R+ |z∗|).
(B.2)

Combining (B.2) and the fact that |F (d, z) − z∗| ≤ L|z − z∗| holds for all d ∈ D and
for all z ∈ A, we get:

|F (d, z)− z∗| ≤ max
(
L, ρcr−1(R+ |z∗|)

)
|z − z∗|, for all (d, z) ∈ D ×X. (B.3)

Let z0 ∈ X be an arbitrary vector and let {d(t) ∈ D}∞t=0 be an arbitrary sequence.
Consider the solution z(t) of z+ = F (d, z) with initial condition z(0) = z0 corre-
sponding to input {d(t) ∈ D}∞t=0. By virtue of assumption (ii), there exists i(N) ∈
{0, 1, ..., N}with z(N − i(N)) ∈ Ω. By virtue of assumption (i), we get:

|z(t)− z∗| ≤M |z(k)− z∗| exp(−σ(t− k)), (B.4)

for all t ≥ k, where k = N − i(N). Notice that k ∈ {0, 1, ..., N}. Using induction and
(B.3), we get

|z(t)− z∗| ≤ L̃t|z0 − z∗|, for all t ≥ 0, (B.5)

where L̃ := max
(
L, ρcr−1(R + |z∗|)

)
≥ 1. Combining (B.4), (B.5) and the fact that

k ∈ {0, 1, ..., N}, we obtain:

|z(t)− z∗| ≤ML̃N exp(σN)|z0 − z∗| exp(−σt) (B.6)

for all t ≥ 0. Noticing that assumption (iii) guarantees that z∗ = F (d, z∗), we con-
clude that estimate (B.6) implies that z∗ ∈ X is RGES for the uncertain system (A.1).
The proof is complete. /

Proof of Lemma A.7: Due to the fact that B is strictly upper triangular, it holds that
bi,j = 0 for every j ≤ i and bi,j ∈ [0, 1] otherwise. Therefore, in order to prove
inequalities (A.5), it suffices to show that for every rn > 0 there exist ri > 0 (i =
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1, ..., n − 1), such that ri >
∑n

j=i+1 ri, for i = 1, ..., n − 1. By choosing ri = 2n−i we
obtain:

2n−i >
n∑

j=i+1

2n−j =

n−(i+1)∑
j=0

2j = 2n−i − 1,

which holds for every i = 1, ..., n− 1. The proof is complete. /

Proof of Lemma A.8: Due to the fact that B is strictly upper triangular, it holds that
bi,j = 0 for every j ≤ i and bi,j ∈ [0, 1] otherwise. Therefore, in order to prove
inequalities (A.6), it suffices to show that there exist ξi > 0 (i = 1, ..., n), such that the
inequalities

∑i−1
j=1Gjξj < Liξi hold for i = 2, ..., n. For arbitrary ξ1 > 0, we generate

recursively the constants ξi > 0, i = 2, ..., n, by using the following formula:

ξi =
2

Li

i−1∑
j=1

Gjξj (B.7)

The proof is complete. /

Proof of Lemma A.9: We prove this lemma by using the following Fact.
Fact: The product of a strictly lower triangular matrix A and a diagonal matrix D is a
strictly lower triangular matrix Ĉ = AB.
Proof of the Fact: From the definition of matrix product, we have that ĉi,j =

∑n
k=1 ai,k

dk,j for every i, j ∈ {1, ..., n}. Due to the fact that D is diagonal, it follows that
ĉi,j = ai,jdj.j . Due to the fact thatA is strictly lower triangular, it follows that ai,j = 0
for i ≤ j, which implies ĉi,j = 0 for i ≤ j. /

Since the matrixB is a strictly upper triangular matrix, it holds thatB′ is a strictly
lower triangular matrix. Then, the product B′diag(G) is a strictly lower triangular
matrix from the above fact. The matrix I − diag(L) is a diagonal matrix. Then, the
matrix I+B′diag(G)−diag(L) is a lower triangular matrix with its diagonal elements
being (1− L1, ..., 1− Ln) corresponding to its eigenvalues. Due to the fact that Li ∈
(0, 1), we have that ρ(I+B′diag(G)−diag(L)) = maxi(|1− Li|) = maxi(1−Li) < 1.
The proof is complete. /

B.2 Proofs of Results of Chapter 2

Proof of Proposition 2.1: Using (2.9) we obtain:

n∑
i=1

rix
+
i =

n∑
i=1

rixi +
n∑
i=1

ris̄i(d, x, v)vi −
n∑
i=1

risi(d, x, v)fD,i(d, xi)+

n∑
i=1

n∑
j=1

ribj,isj(d, x, v)fD,j(d, xj) =

n∑
i=1

rixi +
n∑
i=1

ris̄i(d, x, v)vi −
n∑
i=1

1−
n∑
j=1

r−1
i rjbi,j

 risi(d, x, v)fD,i(d, xi).

(B.8)

Define

Q̂ := min
i=1,...,n

1−
n∑
j=1

r−1
i rjbi,j

 . (B.9)
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Notice that Lemma A.7 guarantees that Q̂ > 0. Using (B.8), (B.9) and the fact that
s̄i(d, x, v) ∈ [0, 1], we obtain:(

n∑
i=1

rixi

)+

≤
n∑
i=1

rixi +

n∑
i=1

rivi − Q̂
n∑
i=1

risi(d, x, v)fD,i(d, xi). (B.10)

Then, we obtain from (B.10) and Consequence (C3):(
n∑
i=1

rixi

)+

≤
n∑
i=1

rixi +

n∑
i=1

rivi − Q̂Θ

n∑
i=1

risi(d, x, v)xi. (B.11)

Since the set D × S is compact, it follows from continuity of the functions fS,i :

D × S → <+ (i = 1, ..., n) that there exists δ > 0 such that
∣∣∣fS,i(d, x)− fS,i(d̃, 0)

∣∣∣ <
1
2 mini=1,...,n (ε̃i) for all i = 1, ..., n, (d, x) ∈ D × S, d̃ ∈ D with

∣∣∣d− d̃∣∣∣+ |x| < δ. Since
bi,j ∈ [0, 1], for i, j = 1, ..., n, vi ≤ min { fS,i(d, 0) : d ∈ D } − ε̃i for i = 1, ..., n, and
since 0 < fi(d, z) < z for all z ∈ (0, ρmaxi ] and i = 1, ..., n (see Assumption (H 2.1)),
we get for all i = 1, ..., n, (d, x) ∈ D × S with |x| < min

(
δ, 1

2n mini=1,...,n (ε̃i)
)
:

vi +
n∑
j=1

bj,ifD,j(d, xj) ≤ min{fS,i(d, 0) : d ∈ D} − ε̃i +
n∑
j=1

xj

≤ min{fS,i(d, 0) : d ∈ D} − ε̃i
2
≤ fS,i(d, x).

It follows from the above inequality, (2.8) and (B.11) that the following inequality
holds for all (d, x) ∈ D × S with |x| < min

(
δ, 1

2n mini=1,...,n (ε̃i)
)
:(

n∑
i=1

rixi

)+

≤
(

1− Q̂Θ
) n∑
i=1

rixi +
n∑
i=1

rivi. (B.12)

Define V = {v = (v1, ..., vn)′ ∈ <n+ : vi ≤ min (vmaxi ,min {fS,i(d, 0) : d ∈ D}) − ε̃i,
i = 1, ..., n}. We next claim that there exists a constant γ > 0 such that:

n∑
i=1

ris̃i(d, x, v)xi ≥ γ
n∑
i=1

rixi,

for all (d, x, v) ∈D × S × V with |x| ≥ min

(
δ,

1

2n
min

i=1,...,n
(ε̃i)

)
.

(B.13)

Indeed, we define

γ :=

inf

{∑n
i=1 ris̃i(d, x, v)xi∑n

i=1 rixi
: (d, x, v) ∈ D × S × V, |x| ≥ min

(
δ,

1

2n
min

i=1,...,n
(ε̃i)

)}
.

(B.14)

In order to show (B.13), it suffices to show that γ ≥ 0 as defined by (B.14) is positive.
Continuity of the functions s̃i : D × S × <n+ → [0, 1] (i = 1, ..., n) and compactness
of the set

{
(d, x, v) ∈ D × S × V : |x| ≥ min

(
δ, 1

2n mini=,...,n (ε̃i)
) }

imply that there
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exists (d∗, x∗, v∗) ∈ D × S × V with |x∗| ≥ min
(
δ, 1

2n mini=1,...,n (ε̃i)
)

and

n∑
i=1

ris̃i(d
∗, x∗, v∗)x∗i = γ

n∑
i=1

rix
∗
i . (B.15)

We proceed by using a contradiction argument. Suppose that γ = 0. It follows from
(B.15) that x∗i s̃i(d

∗, x∗, v∗) = 0, for i = 1, ..., n. However, (H 2.3) and (2.10) imply that

x∗ = 0 , which contradicts the fact that |x∗| ≥ min

(
δ, 1

2n min
i=1,...,n

(ε̃i)

)
.

It follows from (B.11), (B.12), (B.13) and the fact that si(d, x, v) ≥ s̃i(d, x, v) for all
(d, x, v) ∈ D×S×<n+, i = 1, ..., n, that inequality (2.13) holds withC := Q̂Θ min(1, γ).
The proof is complete. /

B.3 Proofs of Results of Chapter 3

Proof of Lemma 3.5: Proposition 3.4 guarantees that there exist constants βi ∈
(x∗i , µi] (i = 1, ..., n) such that (3.6) holds. Using (3.14), (3.16), (3.2), we obtain for
all x ∈ Ω and i = 1, ..., n:

x+
i − x

∗
i ≤ −(v∗i − vmini ) min

 1 , τ−1
n∑
j=1

Ki,j max(0, xj − x∗j )


+(1− Li) max (0, xi − x∗i ) +

n∑
j=1

bj,iGj max
(
0, xj − x∗j

)
.

(B.16)

Inequality (3.7) is a direct consequence of inequalities (B.16). Using Assumption (H
2.1), we get Gi (xi − x∗i ) ≤ fD,i(d, xi) − fD,i(d, x∗i ) ≤ Li (xi − x∗i ) for i = 1, ..., n and
xi ≤ x∗i . Using the above inequality and Consequence (C2) it follows that:

fD,i(d, xi)− fD,i(d, x∗i ) ≥ −Gi max(0, x∗i − xi)
xi − x∗i + fD,i(d,x

∗
i )− fD,i(d, xi) ≥ −(1− Li) max(0, x∗i − xi)

for xi ∈ [0, βi], i = 1, ..., n.

(B.17)

Using (3.14), (3.2), we obtain for all x ∈ Ω, i = 1, ..., n :

x+
i − x

∗
i ≥ −(1− Li) max(0, x∗i − xi)−

(v∗i − vmini ) min

1, τ−1
n∑
j=1

Ki,j max(0, xj − x∗j )

− n∑
j=1

bj,iGj max
(
0, x∗j − xj

)
.

(B.18)

Inequalities (B.18) imply the following inequalities for all x ∈ Ω and i = 1, ..., n:

x∗i − x+
i ≤ (1− Li) max(0, x∗i − xi)+

(v∗i − vmini ) min

1, τ−1
n∑
j=1

Ki,j max(0, xj − x∗j )

+
n∑
j=1

bj,iGj max
(
0, x∗j − xj

)
.

(B.19)
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Inequality (3.8) is a direct consequence of inequalities (B.19) and the fact that min(1,
τ−1

∑n
j=1Ki,j max(0, xj − x∗j )) ≤ τ−1

∑n
j=1Ki,j max(0, xj − x∗j ) for all x ∈ Ω and

i = 1, ..., n. The proof is complete. /

Proof of Lemma 3.6: Lemma 3.5 guarantees that there exist constants βi ∈ (x∗i , µi]
(i = 1, ..., n) such that (3.6), (3.7), (3.8) hold. Using (3.7), (3.8) in conjunction with the
following inequalities

1′nh(x− x∗) + 1′nh(x∗ − x) =
n∑
i=1

|xi − x∗i | ≥ |x− x∗| , (B.20)

h(x− x∗) ≤ |x− x∗|1n, h(x∗ − x) ≤ |x− x∗|1n, (B.21)

which hold for all x ∈ <n, and the facts that (I +B′diag(G)− diag(L)), K ∈ <n×n+ ,
diag(v∗ − b) are non-negative matrices and τ > 0, we are in a position to guarantee
the existence of δ̂ > 0 such that:∣∣x+ − x∗

∣∣ ≤ 1′n
(
2I + 2B′diag(G)− 2diag(L) + diag (v∗ − b) τ−1K

)
1n |x− x∗|

for all x ∈ S, d ∈ D, with |x− x∗| < δ̂ and

v =v∗ − diag(v∗ − b)
(
1n − h

(
1n − τ−1Kh(x− x∗)

))
.

(B.22)

Since x+ ∈ S for x ∈ S, d ∈ D, v = (v1, ..., vn)′ ∈ <n+ and since S = [0, ρmax1 ] × · · · ×
[0, ρmaxn ], it follows that:

|x+ − x∗| ≤ 2
√
n max
i=1,...,n

(ρmaxi ), for all x ∈ S, d ∈ D and

v = v∗ − diag(v∗ − vmin)
(
1n − h

(
1n − τ−1Kh(x− x∗)

))
.

(B.23)

Estimates (B.22), (B.23) imply that (3.9) holds with M := 1′n(2I + 2B′diag(G) −
2diag(L) + diag(v∗ − vmin)τ−1K)1n + 2

√
nδ̂−1 maxi=1,...,n(ρmaxi ). The proof is com-

plete. /

Proof of Lemma 3.7: Lemma 3.5 guarantees that there exist constants βi ∈ (x∗i , µi]
(i = 1, ..., n) such that (3.6), (3.7), (3.8) hold. Let K ∈ <n×n+ be a matrix so that

Ki,j ≥
1

mink(βk − x∗k)
, for every i, j = 1, ..., n. (B.24)

It follows from (B.24) that for every τ ∈ (0, 1) we have

τ−1Ki,j

(
βj − x∗j

)
≥ 1, for every i, j = 1, ..., n. (B.25)

Using the fact that x∗i < βi for every i = 1, ..., n, it follows from (B.25) and the fact
that max (0, xi − x∗i ) = xi−x∗i for x ∈ S\Ω (recall that Ω = [0, β1]×· · ·× [0, βn]), that

τ−1
n∑
j=1

Ki,j max
(
0, xj − x∗j

)
≥ 1 for every i, j = 1, ..., n and x ∈ S\Ω. (B.26)

and consequently, since v = v∗−diag(v∗− vmin)
(
1n − h

(
1n − τ−1Kh(x− x∗)

))
, we

get
v = vmin, for x ∈ S\Ω. (B.27)
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In order to show that the set Ω = [0, β1] × · · · × [0, βn] is a TR for the closed-loop
system (2.9) with (3.4), it suffices to show that for every x0 ∈ S, {d(t) ∈ D}∞t=0 the
solution x(t) of the closed-loop system (2.9) with (3.4) and initial condition x(0) = x0

corresponding to input {d(t) ∈ D}∞t=0 satisfies x(t) ∈ Ω for all t ≥ m, where

m :=

[
ln (C mini=1,...,n(riβi)− r′b)− ln(Cr′ρmax)

ln(1− C)

]
+ 1 (B.28)

where ρmax = (ρmax1 , ..., ρmaxn )′ ∈ int(<n+). We proceed by contradiction. Suppose
that there exist x0 ∈ S, {d(t) ∈ D}∞t=0 such that the solution x(t) of the closed-
loop system (2.9) with (3.4) and initial condition x(0) = x0 corresponding to input
{d(t) ∈ D}∞t=0 satisfies x(t) /∈ Ω for certain t ≥ m. Since the set Ω = [0, β1] × · · · ×
[0, βn] is positively invariant (a direct consequence of (3.6)), it follows that x(q) /∈ Ω
for all q = 0, 1, ...,m. Define

Ĩ(q) := r′x(q) (B.29)

and notice that (2.13), (B.27) imply the following estimate for all q = 0, 1, ...,m:

Ĩ(q + 1) ≤ (1− C)Ĩ(q) + r′vmin. (B.30)

Estimate (B.30) implies the following estimate for all q = 0, 1, ...,m+ 1:

Ĩ(q) ≤ (1− C)q Ĩ(0) + C−1r′vmin (1− (1− C)q) . (B.31)

Since Ĩ(0) = r′x(0) = r′x0 ≤ r′ρmax for all x0 ∈ S, we obtain from (B.31) for all
q = 0, 1, ...,m+ 1:

Ĩ(q) ≤ (1− C)qr′ρmax + C−1r′vmin. (B.32)

Estimate (B.32) in conjunction with definition (B.28) implies that Ĩ(m) ≤ mini=1,...,n

(riβi), which combined with definition (B.29) shows that x(m) ∈ Ω, a contradiction.
The proof is complete. /

B.4 Proofs of Results of Chapter 4

In order to prove the claims involved in the proof of Theorem 4.1 we need first to
prove the following facts:
Fact 1: The following equality holds for all x ∈ S, v = (v1, . . . , vn)′ ∈ (0,+∞)×<n−1

+ ,
d = (d1, · · · , dn−1) ∈ [0, 1]n−1 with pn = 1 = sn

n∑
i=1

Ii(x
+) =

n∑
i=1

Ii(x) +

n∑
i=1

(n+ 1− i)s̄ivi −
n∑
i=1

(1 + pi(n− i))sifD,i(xi). (B.33)

Proof of Fact 1: The following equations holds for all x ∈ S, v = (v1, . . . , vn)′ ∈
(0,+∞) × <n−1

+ , d = (d1, · · · , dn−1) ∈ [0, 1]n−1 with pn = 1 = sn and are direct
consequences of (2.18)-(2.20) and definitions Ij(x) :=

∑j
i=1 xi, for j = 1, ..., n:

Ij(x
+) = Ij(x) +

j∑
i=1

s̄ivi −
j−1∑
i=1

sipifD,i(xi)− sjfD,j(xj), j = 2, ..., n− 1 (B.34)

In(x+) = In(x) +

n∑
i=1

s̄ivi −
n−1∑
i=1

sipifD,i(xi)− fD,n(xn). (B.35)
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Equality (B.33) is a consequence of (2.18), (B.34), (B.35) and definitions pn = 1 = sn.
Fact 2: The following inequality holds for all x ∈ S, v ∈ <+×[0, vmax2 ]×· · ·×[0, vmaxn ],
d ∈ [0, 1]n−1 with pn = 1 = sn:

n∑
i=1

(1 + pi(n− i)) sifD,i(xi) ≥ C
n∑
i=1

(n+ 1− i)xi. (B.36)

Proof of Fact 2: By virtue of definition (B.9) and Consequence (C3), inequality (B.36)
can be directly obtained by choosing ri = n + 1 − i, for i = 1, ..., n. Notice that this
selection for ri satisfies Lemma A.7.

Proof of the Claim 1 (Theorem 4.1): We distinguish two cases:
Case 1: x ∈ Ω̃ = (0,mu1]× ...× (0,mun], d ∈ [0, 1]n−1.

Definition (4.9) and equations (B.33), (4.11) with vi = ki(x) ≤ v∗i give:

V (x+) = σ|x1 − fD,1(x1) + v1 − x∗1|+
n∑
i=2

σi|xi − fD,i(xi) + (1− pi−1)fD,i−1(xi−1) + vi − x∗i |+AΞ(x+)+

K max

(
0,

n∑
i=1

Ii(x)−
n∑
i=1

(1 + (n− i)pi)fD,i(xi) +
n∑
i=1

(n+ 1− i)vi − P (x+)

)
(B.37)

with pn = 1. Using (4.15), Consequence (C2), the fact that mui ≤ ρ̃cri , for i = 1, ..., n
and definition (4.12), we get from (B.37):

V (x+) ≤ L
n∑
i=1

σi|xi − x∗i |+
n∑
i=1

σi|vi − v∗i |+ LAΞ(x)+

K max

(
0,

n∑
i=1

Ii(x)−
n∑
i=1

(1 + (n− i)pi)fD,i(xi) +
n∑
i=1

(n+ 1− i)vi − P (x+)

)
(B.38)

It follows from the combination of (4.7) and inequality (B.38) that the following in-
equality holds for all x ∈ Ω̃:

V (x+) ≤ L
n∑
i=1

σi|xi − x∗i |+
∑
i∈R

σi min(γiΞ(x), v∗i − vmini ) + LAΞ(x)+

K max

(
0,

n∑
i=1

Ii(x)−
n∑
i=1

(1 + (n− i)pi)fD,i(xi) +

n∑
i=1

(n+ 1− i)vi − P (x+)

)
.

(B.39)

Inequality (B.36) and the fact that si = s̄i = 1 for x ∈ Ω̃ imply that:

n∑
i=1

(1 + (n− i)pi) fD,i(xi) ≥ C
n∑
i=1

Ii(x). (B.40)

Using (B.38) and (B.40), we get:

V (x+) ≤ L
∑n

i=1 σ
i |xi − x∗i |+

∑
i∈R σ

i min
(
γiΞ(x), v∗i − vmini

)
+ LAΞ(x)

+K max (0, (1− C)
∑n

i=1 Ii(x) +
∑n

i=1 (n+ 1− i) vi − P (x+))
(B.41)
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We next distinguish two cases:
Case 1(i): Ξ(x) ≤ τ .
In this case we have γiΞ(x) ≤ v∗i − vmini for all i ∈ R. Since Ξ(x) ≤ h (a con-

sequence of τ < τ∗ ≤ h), we get from (4.15) and definition (4.7) that vi = ki(x) =
v∗i − γi Ξ(x) ≥ vmini for all i ∈ R and min (h,Ξ(x+)) ≤ Lmin (h,Ξ(x)). Using the
definitions Ij(x) :=

∑j
i=1 xi for j = 1, ..., n, P (x) := M̃− θ̄min (h,Ξ(x)) and the facts

• M̃ ≥ (1−C)
∑n

i=1 Ii(x
∗)+(1−C)hmaxi=1,...,n

(
(n+ 1− i)σ−i

)
+
∑n

i=1 (n+ 1− i) v∗i

•
∑

i∈R(n+1−i)γi = τ−1
∑

i∈R(n+1−i)(u∗i−vmini ) ≥ (τ∗)−1
∑

i∈R(n+1−i)(v∗i −
vmini ) ≥ θ̄L (a consequence of τ ≤ τ∗ ≤ (θ̄L)−1

∑
i∈R(n+ 1− i)(u∗i − vmini )),

•
∑n

i=1(n+1−i)(xi−x∗i ) ≤
∑n

i=1((n+1−i)σ−i)σi max(0, xi−x∗i ) ≤ maxi=1,...,n((n+
1− i)σ−i)Ξ(x) for i = 1, ..., n (a consequence of definition (4.8)),

we get:

M̃ ≥(1− C)

n∑
i=1

Ii(x
∗) + (1− C)h max

i=1,...,n
((n+ 1− i)σ−i) +

n∑
i=1

(n+ 1− i)v∗i ⇒

M̃ ≥(1− C)

n∑
i=1

Ii(x
∗) + (1− C)Ξ(x) max

i=1,...,n
((n+ 1− i)σ−i) +

n∑
i=1

(n+ 1− i)v∗i ⇒

M̃ ≥θ̄LΞ(x)−
∑
i∈R

(n+ 1− i)γiΞ(x) + (1− C)

n∑
i=1

Ii(x
∗)+

(1− C)
n∑
i=1

(n+ 1− i)(xi − x∗i ) +
n∑
i=1

(n+ 1− i)v∗i ⇒

M̃ ≥θ̄min(h,Ξ(x+)) + (1− C)
n∑
i=1

Ii(x) +
∑
i∈R

(n+ 1− i)(v∗i − γiΞ(x))+∑
i/∈R

(n+ 1− i)v∗i ⇒

0 ≥
n∑
i=1

(n+ 1− i)vi + (1− C)
n∑
i=1

Ii(x)− P (x+)

Combining (B.41) with the above inequality, we obtain:

V (x+) ≤ L
n∑
i=1

σi |xi − x∗i |+
∑
i∈R

σiγiΞ(x) + LAΞ(x) (B.42)

It follows from (B.42) and the fact that A ≥ (1 − L)−1
∑

i∈R σ
iγi that (4.19) holds

when Ξ(x) ≤ τ .
Case 1(ii): Ξ(x) > τ .
In this case γiΞ(x) > v∗i − vmini for all i ∈ R. Definition (4.7) implies that Ki(x) =

vmini for all i ∈ R. Moreover, in this case there exists at least one i ∈ {1, ..., n} for
which xi > x∗i . Since fD,i is increasing on [0, µi] for i = 1, ..., n (a consequence of
Assumption (H 2.1*)) and the fact that µi ≤ ρ̃cri ), we conclude that there exists at
least one i ∈ {1, ..., n} for which fD,i(xi) > fD,i(x

∗
i ). Consequently, we get from
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(4.14) and the fact that vi = Ki(x) = vmini for all i ∈ R:

n∑
i=1

(n+ 1− i)vi =
∑
i∈R

(n+ 1− i)vmini +
∑
i/∈R

(n+ 1− i)v∗i ≤

min
i=1,...,n

(((n− i)pi + 1)fD,i(x
∗
i )) ≤

n∑
i=1

((n− i)pi + 1)fD,i(xi).

Combining (4.18), (B.39) with the above inequality and using the fact A ≥ (1 −
L)−1

∑
i∈R σ

iγi, we conclude that (4.19) holds when Ξ(x) > τ .
Case 2: x ∈ S\Ω̃, d ∈ [0, 1]n−1.

In this case, there exists at least one i ∈ {1, ..., n} for which xi > µi. Therefore, defi-
nition (4.8) implies Ξ(x) > h = mini=1,...,n(σi(µi − x∗i )), and consequently definition
(4.10) gives P (x) = M̃ − θ̄h. Moreover, definition (4.7) gives Ki(x) = vmini , for all
i ∈ R (a direct consequence of the facts that τ < τ∗ ≤ h and γi = τ−1(v∗i − vmini ) ≥
h−1(v∗i − vmini )). Combining, we get from definition (4.9) and (4.18):

V (x+) =
∑n

i=1 σ
i
∣∣x+
i − x∗i

∣∣+AΞ(x+) +K max (0,
∑n

i=1 Ii(x
+)− P (x+))

≤
∑n

i=1 σ
i
∣∣x+
i − x∗i

∣∣+K max
(

0,
∑n

i=1 Ii(x
+)− M̃ + θ̄h

)
+AΞ(x+)

(B.43)

Using (2.13), the facts that vi = Ki(x) = vmini , for all i ∈ R, M̃−θ̄h = εmini=1,...,n((n+
1− i)µi) and

∑
i∈R(n+ 1− i)vmini +

∑
i/∈R(n+ 1− i)v∗i ≤ εC mini=1,...,n((n+ 1− i)µi)

(which both imply that
∑

i∈R(n+ 1− i)vmini +
∑

i/∈R(n+ 1− i)v∗i ≤ C(M̃ − θ̄h)), we
get:

max(0,

n∑
i=1

Ii(x
+)− M̃ + θ̄h) ≤ (1− C) max(0,

n∑
i=1

Ii(x)− M̃ + θ̄h). (B.44)

Combining (B.43) and (B.44), we get:

V (x+) ≤
n∑
i=1

σi|x+
i − x

∗
i |+K(1− C) max(0,

n∑
i=1

Ii(x)− M̃ + θ̄h) +AΞ(x+). (B.45)

Definition (4.8) in conjunction with (B.45) implies that the following inequality holds:

V (x+) ≤
n∑
i=1

σi max(ρmaxi − x∗i , x∗i )+K(1− C) max(0,
n∑
i=1

Ii(x)− M̃ + θ̄h)

+A
n∑
i=1

σi(ρmaxi − x∗i )
(B.46)

The fact that there exists at least one i ∈ {1, ..., n} for which xi > µi, implies that

n∑
i=1

Ii(x) =

n∑
i=1

(n+ 1− i)xi ≥ min
i=1,...,n

((n+ 1− i)µi) . (B.47)
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Using (B.46), (B.47) and the fact that M̃−θ̄h = εmini=1,...,n ((n+ 1− i)µi), we obtain:

V (x+) ≤
∑n

i=1 σ
i max (ρmaxi − x∗i , x∗i ) +K max

(
0,
∑n

i=1 Ii(x)− M̃ + θ̄h
)

+A
∑n

i=1 σ
i (ρmaxi − x∗i )−KC (1− ε) mini=1,...,n ((n+ 1− i)µi)

(B.48)

SinceK ≥
∑n

i=1 σ
i max(ρmax

i −x∗i ,x∗i )+A
∑n

i=1 σ
i(ρmax

i −x∗i )−(A+L)h

(1−ε)C mini=1,...,n((n+1−i)β̃i)
,
∑n

i=1 σ
i|xi−x∗i | ≥ Ξ(x) >

h, we conclude from (B.48) and definition (4.9) that (4.19) holds. The proof is com-
plete. /

Proof of the Claim 2 (Theorem 4.1) Since σ ∈ (0, 1], we get for all x ∈ S:

σn |x− x∗| ≤
n∑
i=1

σi |xi − x∗i | ≤ |x− x∗|
n∑
i=1

σi (B.49)

Similarly, using definition (4.8), we get for all x ∈ S:

0 ≤ Ξ(x) ≤
n∑
i=1

σi |xi − x∗i | ≤ |x− x∗|
n∑
i=1

σi. (B.50)

Using (B.50), the fact that Ij(x) :=
∑j

i=1 xi, for j = 1, ..., n, definition (4.10) and
the fact that M̃ ≥

∑n
i=1 Ii(x

∗) (a consequence of (2.13) and the fact that M̃ ≥ (1 −
C)
∑n

i=1 Ii(x
∗) +

∑n
i=1(n+ 1− i)v∗i ), we get for all x ∈ S:

max(0,
n∑
i=1

Ii(x)− P (x)) ≤

max(0,
n∑
i=1

Ii(x)−
n∑
i=1

Ii(x
∗)) + max(0,

n∑
i=1

Ii(x
∗)− P (x)) ≤

max(0,
n∑
i=1

(n+ 1− i)(xi − x∗i )) + max(0,
n∑
i=1

Ii(x
∗)− M̃ + θ̄min(h,Ξ(x))) ≤

n∑
i=1

(n+ 1− i)|xi − x∗i |+ max(0,
n∑
i=1

Ii(x
∗)− M̃) + θ̄min(h,Ξ(x)) ≤

n∑
i=1

(n+ 1− i)|xi − x∗i |+ θ̄Ξ(x) ≤ |x− x∗|
n∑
i=1

(n+ 1− i) + θ̄|x− x∗|
n∑
i=1

σi

(B.51)

It follows from definition (4.9) and (B.49), (B.50), (B.51) that there exist constants
K2 ≥ K1 > 0 such that inequality (4.20) holds. The proof is complete. /

B.5 Proofs of Results of Chapter 5

Proof of Theorem 5.1: The proof of Theorem 5.1 relies on Lemma A.2. Let Φ(x) be
the (possibly empty) set of all w = (w1, ..., wκ) ∈ Y κ for which there exist ξ ∈ S,
(d(i), θ̂(i)) ∈ D ×Θ, i = 0, ..., κ− 1 such that the vectors x̄(i), i = 0, ..., κ, defined by
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the recursive formula

x̄(0) = ξ

x̄(i+ 1) = f(d(i),θ∗, x̄(i),K(θ̂(i), h(d(i), θ∗, x̄(i))))
(B.52)

for i = 0, ..., κ − 1, satisfy x̄(κ) = x and wκ−i = h(d(i), θ∗, x̄(i)) for i = 0, ..., κ − 1.
Notice that Φ(x∗) 6= ∅ since by selecting ξ = x∗ ∈ S, θ̂(i) = θ∗ ∈ Θ and arbitrary
d(i) ∈ D for i = 0, ..., κ− 1, the recursive formula (B.52) gives x̄(κ) = x∗ and wκ−i =
y∗ for i = 0, ..., κ− 1.

All assumptions of Lemma A.2 hold with X = S × Y κ × Θ, z = (x,w, θ̂), Ω =
∪x∈S{(x,w, θ∗) : w ∈ Φ(x)}, N = m+ κ+ 1, z∗ = (x∗, y∗, ..., y∗, θ∗) and

F (d, z) :=



f(d, θ∗, x,K(θ̂, h(d, θ∗, x)))
h(d, θ∗, x)

w1
...

wκ−1

g(h(d, θ∗, x), w, θ̂)


,

where

g(h(d, θ∗, x), w, θ̂) :=

{
θ̂ if w 6∈ A
Ψ(h(d, θ∗, x), w) if w ∈ A

.

Notice again that Ω 6= ∅ since Φ(x∗) 6= ∅. We show next that assumptions (i), (ii) of
Lemma A.2 are direct consequences of Assumptions (J1), (J2), (J3).

Let {d(t) ∈ D}∞t=0 be an arbitrary sequence and let (x0, w0, θ̂0) ∈ Ω be an ar-
bitrary vector with θ̂0 = θ∗. Consider the solution (x(t), w(t), θ̂(t)) of the closed-
loop system (5.1), (5.2) with (5.3), initial condition (x(0), w(0), θ̂(0)) = (x0, w0, θ̂0)
corresponding to input {d(t) ∈ D}∞t=0. By virtue of (B.52), the component x(t)
of the solution satisfies x(t) = x̄(t + κ) for all t ≥ 0, for certain solution x̄(i) of
the system x̄+ = f(ρcr, θ∗, x̄,K(ν, h(d, θ∗, x̄))) (that corresponds to certain inputs
{(δ(t), ν(t)) ∈ D × Θ}∞i=0 with δ(t + κ) = d(t), ν(t + κ) = θ̂(t) for all t ≥ 0 and
appropriate initial condition ξ ∈ S). Moreover, w(t) = ȳ(κ)(t + κ) ∈ Φ(x(t)) for all
t ≥ 0, where ȳ(t) = h(δ(t), θ∗, x̄(t)). Notice that if w(0) = w0 ∈ A then ȳ(κ)(κ) ∈ A,
and, consequently, Assumption (J2) guarantees that θ̂(1) = θ∗. If w(0) = w0 6∈ A
then θ̂(1) = θ̂(0) = θ∗. Using induction and the previous argument, it follows that
θ̂(t) = θ∗ for all t ≥ 0. Therefore, assumption (i) of Lemma A.2 is a consequence of
Assumption (J1).

Assumption (ii) of Lemma A.2 follows from the fact that w(t) = y(κ)(t) ∈ Φ(x(t))
for all t ≥ κ. Assumption (J3) guarantees that w(t−i(t)) = y(κ)(t−i(t)) ∈ A for some
i(t) ∈ {0, 1, ...,m} and for all t ≥ m+ κ. It follows from (5.3) that θ̂(t− i(t) + 1) = θ∗.
Since t− i(t)+1 ≥ p+1, we also get w(t− i(t)+1) ∈ Φ(x(t)) and thus z(t− i(t)+1) ∈
Ω. Therefore, assumption (ii) of Lemma A.2 holds with N = m + κ + 1. Since
A ⊆ Y κ contains all w ∈ Y κ in a neighborhood of (y∗, ..., y∗) and since there exist
neighborhoods N1 ⊆ <n of x∗, N2 ⊆ <k of y∗, N3 ⊆ <q of θ∗, such that:

|f(d, θ∗, x,K(θ̂, x))− x∗|+ |h(d, θ∗, x)− y∗| ≤
L|x− x∗| − L|θ̂ − θ∗|,

|Ψ(h(d, θ∗, x), w)− θ∗| ≤ L|x− x∗|+ L

κ∑
i=1

|wi − y∗|
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hold for all x ∈ N1 ∩ S, d ∈ D, θ̂ ∈ N3 ∩ Θ, wi ∈ N2 ∩ Y (i = 1, ..., κ) with w =
(w1, ..., wκ), it follows that assumption (iii) of Lemma A.2 holds. /

Proof of Proposition 5.2: Assume that vmini > 0 (i ∈ R) and vmaxi (i 6∈ R) are
sufficiently small so that∑

i∈R
(n+ 1− i)vmini +

∑
i 6∈R

(n+ 1− i)vmaxi < C min
i=1,...,n

(
(n+ 1− i)µi

)
. (B.53)

Since τ ≤ ε2σn mini∈R
(
(vmaxi −vmini )−1

)
and v̂∗i ∈ [vmini +ε, vmaxi ] for i ∈ R, it follows

that
τ−1(v̂∗i − vmini ) ≥ ε−1(vmaxi − vmini )σ−n for all i ∈ R. (B.54)

Let m ≥ 1 be an integer that satisfies:

m ≥ 2 + [Λ] (B.55)

where Λ =
(

ln( min
i=1,...,n

((n + 1 − i)µi) − C−1κ) − ln(
n∑
i=1

(n + 1 − i)ρmaxi )
)
/ ln(1 − C).

Next, we show the following claim.

Claim: if x /∈ Ω then for every (θ̂, d) ∈ Θ× [0, 1]n−1 it holds that:

n∑
i=1

Ii(x
+) ≤ (1− C)

n∑
i=1

Ii(x) + κ (B.56)

whereC ∈ (0, 1) is the constant involved in (??), κ :=
∑

i∈R(n+1−i)vmini +
∑

i/∈R(n+

1− i)vmaxi and x+ is given by (5.10) with u = K(θ̂, x).

Proof of Claim: if x /∈ Ω =
∏n
i=1(0, µi), then there exists i ∈ {1, ..., n} such that

xi ≥ µi. Since x̂∗ = (x̂∗1, ..., x̂
∗
n) ∈

∏n
i=1[0, µi − ε] (recall (5.12)), it follows from (5.14)

and Property (C5) that σ ∈ (0, 1] that Ξ(θ̂, x) ≥ σn(xi− x̂∗i ) ≥ εσn. Since (B.54) holds,
it follows from (5.13) that vi = vmini for all i ∈ R. Inequality (B.56) is a consequence
of (??) and the fact that v∗i ∈ [0, vmaxi ] for all i /∈ R. The proof of the claim is complete.

We show next, by means of a contradiction, that for every sequence {d(t), θ̂(t) ∈
D × Θ}∞t=0 and for every x0 ∈ S, the solution x(t) of (5.10), (5.17) with u = K(θ̂, y),
initial condition x(0) = x0 corresponding to inputs {d(t), θ̂(t) ∈ D × Θ}∞t=0 satisfies
y(t − 1 − i(t)) ∈ A for some i(t) ∈ {0, 1, ...,m} and for all t ≥ m + 1. Suppose that,
on the contrary, there exists a sequence {d(t), θ̂(t) ∈ D ×Θ}∞t=0, a vector x0 ∈ S and
an integer t ≥ m + 1, such that the solution x(t) of (5.10), (5.17) with u = K(θ̂, y),
initial condition x(0) = x0 corresponding to inputs {d(t), θ̂(t) ∈ D × Θ}∞t=0 satisfies
y(t − 1 − i(t)) /∈ A for all i(t) ∈ {0, 1, ...,m}. By virtue of (5.23), this implies that
x(t−1− i(t)) /∈ Ω for all i(t) ∈ {0, 1, ...,m} (notice that (5.7), (5.8), (5.15), (5.16), (5.17)
and (5.23) guarantee that x ∈ Ω implies that y ∈ A). It follows from the Claim, that:

n∑
i=1

Ii(x(l + 1)) ≤ (1− C)

n∑
i=1

Ii(x(l)) + κ

for l = t− 1−m, ..., t− 1

(B.57)
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Using (B.57) repeatedly, we get:

n∑
i=1

Ii(x(t− 1)) ≤

(1− C)m
n∑
i=1

Ii(x(t− 1−m)) + κ
1− (1− C)m

C

(B.58)

Using the definition Ij(x) :=
∑j

i=1 xi for j = 1, ..., n and the fact that x ∈ S =∏n
i=1(0, ρmaxi ], we get from (B.58):

(n+ 1− j)xj(t− 1) ≤ (1− C)m
n∑
i=1

(n+ 1− i)ρmaxi + C−1κ

for all j = 1, ..., n

(B.59)

Using (B.59), (B.6) and (B.55), we get:

(n+ 1− j)xj(t− 1) ≤ min
i=1,...,n

((n+ 1− i)µi)

for all j = 1, ..., n which implies that x(t− 1) ∈ Ω =
∏n
i=1(0, µi), a contradiction. The

proof is complete. /
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Appendix C

Consistency Analysis

The analysis of the proposed new discretized model (Approach 5) with respect to
its relation with the continuous space-time PDE of the LWR is presented here. More
specifically, it is investigated how the introduced parameters of Approach 5 affect
the solution of the discretized model when the discretization parameters (cell length
and simulation time step) tend to zero. However, in order to conduct such an analy-
sis, it is important to determine the way the on-ramp flow term is treated. There are
two main ways to treat the on-ramp: first by assuming that the on-ramp flow term is
treated as a distributed flow within specific space bounds; second by assuming that
the on-ramp flow is treated as a concentrated (Dirac function) flow at a given space
point of the freeway. Sections C.1 and C.2 present the analysis for the two respective
cases.

In any case, we consider the difference-equation state-space model described by
equations (2.24), (2.36), (2.37) and (2.27), which describe the proposed model (Ap-
proach 5) for which this analysis is performed. Notice that, in case θr = 1 (in (2.36))
and fD,i(ρi) = Qi for ρi ≥ ρcr (in (2.37)), the basic discretized LWR model is ob-
tained. Additionally, if g(ρi) = vf,iρili (in (2.37)), then we end up with the CTM.
The discretization time step is denoted as previously with Th. In order to simplify
the present analysis, we consider that the above equations describe a single-lane ho-
mogeneous freeway cell with no off-ramps (which are not considered important in
the present analysis). Thus, we assume that pi = 0, Li = L, fD,i = fD, fS,i = fS
and fi = f , for i = 1, ..., n. Let Akm and Bkm be the starting and ending points of
the freeway stretch, respectively. Then the total freeway length is B −Akm, and the
proposed model is described by (where in this section we consider for convenience
a different notation for the density, i.e., instead of x (which here denotes the space
argument), here we use ρ):

ρi(k + 1) = ρi(k) +
T

L
(−f(ρi(k), ρi+1(k), ri+1(k)) + f(ρi−1(k), ρi(k), vi(k)) + vi(k)) ,

(C.1)
where

f(ρi(k), ρi+1(k), vi+1(k)) = min {fD(ρi(k)), fS(ρi+1(k))− θrvi+1(k)} , (C.2)

and fD, fS are given by (2.37), (2.27) and 0 < θ ≤ 1.
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C.1 Distributed on-ramp flow

In this case we assume that each on-ramp has an acceleration lane of length equal to
Lrmp km. We consider the following definitions:

ρi(k) :=
1

L

∫ iL+L

iL
ρ(kT, z)dz, (C.3)

vi(k) = vi(kT ) :=

∫ iL+L

iL
u(kT, z)dz, (C.4)

where ρ ∈ C1 ([veh/km]) corresponds to the density and u ∈ C0 ([veh/time/space])
corresponds to the inflow per unit space at a given time instant. Notice that, by
definitions (C.3) and (C.4), we have considered average density and inflow values,
respectively, for every cell. Since a uniform distribution of the entering flow from
the on-ramp to a number of cells is assumed, we have for each such cell

u (kT, z) =
vrmp (kT )

Lrmp
, (C.5)

where vrmp(kT ) is the total on-ramp inflow. Moreover, we consider arbitrary C1

functions fD(ρ) and fS(ρ) that satisfy fD(ρ) = fS(ρ), for ρ = ρcr, fD(ρ) < fS(ρ), for
ρ < ρcr, fD(ρ) > fS(ρ), for ρ > ρcr, fD(0) = 0 and fS(ρmax) = 0. Notice that the
above requirements are satisfied for the demand and supply functions considered in
(2.37) and (2.27) respectively. Substituting (C.3) and (C.4) in (C.1) we obtain:

1
T

(∫ iL+L
iL (ρ (kT, z)− ρ (kT + T, z)) dz

)
=

−f
(

1
L

∫ iL+L
iL ρ (kT, z) dz, 1

L

∫ iL+2L
iL+L ρ (kT, z) dz,

∫ iL+2L
iL+L u(kT, z)dz

)
+f
(

1
L

∫ iL
iL−L ρ (kT, z) dz, 1

L

∫ iL+L
iL ρ (kT, z) dz,

∫ iL+L
iL u(kT, z)dz

)
+
∫ iL+L
iL u(kT, z)dz

. (C.6)

Set t = kT and iL = x. Then, using the Mean Value Theorem (MVT) for T → 0, it
follows from (C.6) that:∫ x+L

x
∂ρ
∂t (t, z) dz =

−f
(

1
L

∫ x+L
x ρ (t, z) dz, 1

L

∫ x+2L
x+L ρ (t, z) dz,

∫ x+2L
x+L u(t, z)dz

)
+f
(

1
L

∫ x
x−L ρ (t, z) dz, 1

L

∫ x+L
x ρ (t, z) dz,

∫ x+L
x u(t, z)dz

)
+
∫ x+L
x u(t, z)dz

(C.7)

We use the following definition:

F (t, x, L) :=

f

(
1

L

∫ x+L

x
ρ (t, z) dz,

1

L

∫ x+2L

x+L
ρ (t, z) dz,

∫ x+2L

x+L
u(t, z)dz

)
= f(a1, a2, a3)

(C.8)

where a1, a2, a3 have been introduced as auxiliary variables to ease the analysis
corresponding to the arguments of the flux function f . Combining (C.7) and (C.8)
we obtain ∫ x+L

x

(
∂ρ

∂t
(t, z)− u(t, z)

)
dz = −F (t, x, L) + F (t, x− L,L) . (C.9)
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Then, we make the following substitution:

−F (t, x, L) + F (t, x− L,L) = −
∫ x

x−L

∂F

∂z
(t, z, L)dz,

which combining with (C.9) yields the following relation, which holds for every
L > 0: ∫ x+L

x

(
∂ρ

∂t
(t, z)− u(t, z) +

∂F

∂z
(t, z − L,L)

)
dz = 0. (C.10)

Then, using the fact that (C.10) holds for every L > 0 and the MVT for L → 0 we
have that:

∂ρ

∂t
(t, x) = −∂F

∂x
(t, x, 0) + u(t, x). (C.11)

Now, in order to obtain the flux function F in terms of the demand and supply
functions, we follow the next steps. For constant L > 0 we have that:

∂F
∂x (t, x, L) =
∂f
∂a1

(
1
L

∫ x+L
x ρ (kT, z) dz, 1

L

∫ x+2L
x+L ρ (kT, z) dz,

∫ x+2L
x+L u(kT, z)dz

)(
1
L (ρ(t, x+ L)− ρ(t, x))

)
+

∂f
∂a2

(
1
L

∫ x+L
x ρ (kT, z) dz, 1

L

∫ x+2L
x+L ρ (kT, z) dz,

∫ x+2L
x+L u(kT, z)dz

)(
1
L (ρ(t, x+ 2L)− ρ(t, x+ L))

)
+

∂f
∂a3

(
1
L

∫ x+L
x ρ (kT, z) dz, 1

L

∫ x+2L
x+L ρ (kT, z) dz,

∫ x+2L
x+L u(kT, z)dz

)
(u(t, x+ 2L)− u(t, x+ L)) .

(C.12)

Thus, using the Mean Value Theorem (MVT) for L→ 0 and using (C.2) we obtain:

∂F

∂x
(t, x, 0) =({
f
′
D (ρ(t, x)) if ρ(t, x) ≤ ρcr

0 if ρ(t, x) > ρcr
+

{
0 if ρ(t, x) ≤ ρcr

f
′
S (ρ(t, x)) if ρ(t, x) > ρcr

)
∂ρ

∂x
(t, x),

(C.13)

which in turn corresponds to the following PDE:

∂ρ

∂t
(t, x) +

∂

∂x
q (ρ(t, x)) = u(t, x) for t > 0 and A < x < B (C.14)

with

q(ρ) =

∫ ρ

0

(
∂f

∂a1
(z, z, 0) +

∂f

∂a2
(z, z, 0)

)
dz =

{
fD(ρ) if ρ ≤ ρcr
fS(ρ) if ρ > ρcr

. (C.15)

The above analysis proves the consistency of the discretized model (C.1), (C.2)
with the LWR model (C.14). The result has been obtained by considering smooth
functions fD, fS , f , as well as the fact that ρ(t, x) lies within appropriate intervals.
However, a similar analysis as above can be made even for piecewise differentiable
functions. In such cases the solution converges to generalized (weak) solutions of
(C.14). Therefore, the discrete-time model is consistent to the LWR model (C.14).

This result is supported by some conducted numerical experiments (Figure C.1(a),
(b), (c)). The simulation results depicted in these figures have been obtained using
the same illustrative scenario of Section 3.3. More specifically, density and flow for
the complete freeway stretch at the same time instant (i.e., t = 1.9h) are depicted for
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FIGURE C.1: (Distributed on-ramp flow) The density (left) and the
flow (right) at t = 1.9h in the freeway stretch for (a) L = 0.5 km, (b)

L = 0.1 km and (c) L = 0.05 km.

the two different schemes (CTM and A5) and for three different spatial discretiza-
tions (L = 0.5,L = 0.1,L = 0.05km). The numerical results indicate that, as L tends
to zero, both schemes converge to the same solution.

C.2 Concentrated on-ramp flow as a singular source

Here we show that, when the on-ramp is incorporated as a singular source (for both
CTM and Approach 5 model), the effect of the on-ramp contribution is more pro-
nounced, independently of the spatial discretization, and a modified shock speed is
derived for the model described by Approach 5 in comparison with CTM. We point
out here that, in the case where the on-ramp contribution is incorporated as a singu-
lar source (i.e., as a Dirac function), the differential form of the conservation law is
not valid in the position where the on-ramp is implemented; only the integral form
of the conservation law is valid there. Consequently, the comparison between the
CTM and Approach 5 is materialized on this base.

Referring again to the model (C.1) - (C.2), we use the compact forms ρki = ρi(k),
vki = vi(k), fD(ρi(k)) = fkD,i and fS(ρi(k)) = fkS,i. Assuming that the on-ramp is
implemented only at a distinct point of the ith computational cell, and there are no
other similar sources within the freeway (i.e., vj = 0, for j 6= i), we obtain from (C.1)
with (C.2) that:

ρk+1
i = ρki +

T

L

(
−min

(
fkD,i, f

k
S,i+1 − 0

)
+ min

(
fkD,i−1, f

k
S,i − θrvki

)
+ vki

)
(C.16)

where vki = vrmp(t) = vrmp(kT ). We recall again here that the differences between
the CTM and Approach 5 lie on the parameter θr and the right part of the demand
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FIGURE C.2: The Rankine-Hugoniot jump conditions are determined
by integrating over an infinitesimal rectangular region on the x − t

plane.

FIGURE C.3: Characteristic Riemann problems.

function. Thus, referring to Figure C.2 and by denoting with s the speed of the left
moving shock, we have that L = −sT . Then, we obtain from (C.16) that:

s(ρk+1
i − ρki ) = min(fkD,i, f

k
S,i+1)−min(fkD,i−1, f

k
S,i − θrvki )− vki (C.17)

We will compute jump conditions at the location of the on-ramp using the procedure
proposed by (LeVeque, 2002). Figure C.2 depicts a small rectangular region in which
a shock wave is present. The Runkine-Hugoniot jump conditions will be derived
using this illustrative example. In this case, (C.17) becomes:

s(ρR − ρL) = min(fRD , f
R
S )−min(fLD, f

L
S − θrvi)− vi (C.18)

We assume that the on-ramp flow cannot exceed the capacity of the network and
therefore Q > vi. Moreover, in order to simplify the present analysis, we consider
g(ρi) = vfρi. Thus, we have that ρcr = Q/vf , Q = w(ρmax − ρcr) and, therefore,
ρmax = (vf/w + 1)ρcr. The two considered illustrative cases, which we intent to
examine here, are shown in Figure C.3. Then, (C.18) imposes that the resulting speed
of the shock wave depends on the intervals in which ρR and ρL lie. Therefore, we
distinguish points ρ1 = (Q−vi)/vf , ρ2 = (Q−θrvi)/vf and ρ3 = ρmax−vi/w. Notice
that 0 < ρ1 < ρ2 < ρcr < ρ3 < ρmax.

Tables C.1 and C.2 show the resulting speed and sign of the shock for case (A),
for CTM and Approach 5, respectively. As it can be clearly seen, the intensity of the
shock clearly depends on the magnitude of the on-ramp flow. For that reason, there
are cases (ρ2 < ρL < ρcr) where the intensity of the shock is larger for Approach 5
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TABLE C.1: Speed and sign of the shock for CTM for case (A).

(A) CTM

0 < ρL < ρ1 ρcr < ρR < ρ3 + or − s =
w(ρmax−ρR)−vfρ

L−vi
ρR−ρL

ρ3 < ρR < ρmax −

ρ1 < ρL < ρ2 ρcr < ρR < ρ3 − s = w(ρmax−ρR)−Q
ρR−ρL

ρ3 < ρR < ρmax −

ρ2 < ρL < ρcr ρcr < ρR < ρ3 − s = w(ρmax−ρR)−Q
ρR−ρL

ρ3 < ρR < ρmax −

TABLE C.2: Speed and sign of the shock for Approach 5 for case (A).

(A) Approach 5

0 < ρL < ρ1 ρcr < ρR < ρ3 + or − s =
w(ρmax−ρR)−vfρ

L−vi
ρR−ρL

ρ3 < ρR < ρmax −

ρ1 < ρL < ρ2 ρcr < ρR < ρ3 + or − s =
w(ρmax−ρR)−vfρ

L−vi
ρR−ρL

ρ3 < ρR < ρmax −

ρ2 < ρL < ρcr ρcr < ρR < ρ3 − s = w(ρmax−ρR)−Q−(1−θr)vi
ρR−ρL

ρ3 < ρR < ρmax −

due to the effect of the parameter θr. For the case (B) the shock speed is negative
(the shock wave moves to the left), no matter what are the values of ρR and ρL.
However, as it is shown in Table C.3, the intensity of the shock is higher for Approach
5, depending again on the selection of the parameter θ.

The previous theoretical observations are illustrated by the numerical experi-
ments shown in Figure C.4 using the same illustrative scenario of the previous sec-
tion. More specifically, density and flow for the complete freeway stretch at the
same time instant (i.e., t = 1.9h) are depicted for the two different schemes (CTM
and Approach 5) and for three different spatial discretizations (L = 0.5,L = 0.1,L =
0.05km). The numerical results indicate that, as L tends to zero, the two schemes
converge to a different solution; the scheme of Approach 5 results in a higher (neg-
ative) shock speed and a higher density at the congested region compared to the
shock generated by CTM.

Following from the previous analysis, it is clear that the proposed scheme (Ap-
proach 5) with its modified supply and demand functions introduces a modified

TABLE C.3: Sign and intensity of the shock for CTM and Approach 5
for case (B).

(A) CTM Approach 5

ρcr < ρL < ρR < ρmax −w −w − (1−θr)vi
ρR−ρL
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FIGURE C.4: (Concentrated on-ramp flow) The density (left) and the
flow (right) at t = 1.9h in the freeway stretch for (a) L = 0.5 km, (b)

L = 0.1 km and (c) L = 0.05 km.

jump condition in the Riemann problems depicted previously, when the on-ramp
flow is considered as a concentrated singular source term in a single cell. In this case,
the proposed modifications to the supply and demand functions are always present
as L tends to zero. These modifications can be viewed as imposed inhomegeneities
in the on-ramp cell which result in a generalized Riemann problem solved by a mod-
ified Godunov scheme similar to those presented by (Jin et al., 2009; Lebacque, 1996).
On the contrary, when a distributed on-ramp entering flow is considered (as in Sec-
tion A.1), the corresponding modifications to the supply and demand functions van-
ish as L tends to zero.
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