
TECHNICAL UNIVERSITY OF CRETE

THESIS

Data Visualization Framework
using Model Driven Software

Development

Author:
Stefanos Stathatos

Committee:
Assistant Professor Vasilis Samoladas (Supervisor)

Associate Professor Michail G. Lagoudakis
Professor Minos Garofalakis

A thesis submitted in fulfillment of the requirements
for the degree of Electrical and Computer Engineer

in the

School of Electrical and Computer Engineering

Technical University of Crete

October 1, 2017

http://www.tuc.gr
http://http://www.ece.tuc.gr/index.php?id=4101
http://www.tuc.gr

1

Technical University of Crete

Abstract
Technical University of Crete

School of Electrical and Computer Engineering

Electrical and Computer Engineer

Data Visualization Framework using Model Driven Software
Development

by Stefanos Stathatos

The huge growth of Web in the last years has led to the demand for special-
ized applications, which operate in different devices, are secure and guaran-
tee the constant provision of services to the user, under any circumstances.
The model driven software development is a design technique which is based
on model utilization and assists in the creation of software, which is extensi-
ble, reusable and comprehensible by different stakeholders. It contributes to
the development of isolated modules with separated responsibilities.

Another challenge of our time, is the daily touch with large amounts of
complex data, which one must constantly study in order to draw conclusions
and make decisions. Due to the way the human brain processes information,
using charts or graphs to visualize data is easier than studying spreadsheets
or reports.

In this thesis, we developed a data visualization framework, which fol-
lows the principles of model driven programming. The hierarchical data
format is utilized for storing complex multidimensional datasets. The frame-
work consists of modules which contain generic code and are configurable
by other modules. The system functionality is expanded, either through the
development of a new independent module or via the growth of an existing
one. The framework presentation is implemented through the creation of a
web application, which operates as a data visualization tool, for networks of
users working on the same projects. The framework, as well as the applica-
tion, are mainly developed in the javascript programming language.

http://www.tuc.gr
http://www.tuc.gr
http://http://www.ece.tuc.gr/index.php?id=4101

2

Acknowledgements
I would like to thank all the people who contributed in some way to the
work described in this thesis. First and foremost, I would like to thank my
family for encouraging me in all of my pursuits and inspiring me to follow
my dreams. I am especially grateful to my parents, who supported me emo-
tionally and financially and always wanted the best for me. This thesis is
dedicated to them.

Following, a heartfelt “thank you” should be addressed to Konstantina
for her love, support, patience and understanding throughout these years. I
would also like to express my graditude to Kyriakos "Guru" Kyriakou for his
unlimited help until the completion of this thesis. Last but not least, I would
like to express my appreciation and gratitude to Filippos for his friendship
and his invaluable support throughout these years.

3

Contents

Abstract 1

Acknowledgements 2

1 Introduction 1
1.1 Overview . 1
1.2 Outline . 2

2 Background 3
2.1 Models and Model Driven Software Development 3
2.2 Data Access Object . 4
2.3 Access Control List . 5
2.4 HTTP . 5

2.4.1 HTTP session . 6
2.4.2 Request methods . 6
2.4.3 Status Codes . 7

2.5 Representational State Transfer 8
2.5.1 Client-server architecture 9

2.6 Application Programming Interface 10
2.7 Three-tier Architecture . 11
2.8 Single Page Application . 12
2.9 Hierarchical Data Format . 13

2.9.1 Data Model . 14

3 Related Work and Technologies Used 16
3.1 Related Work . 16

3.1.1 Plotly . 16
3.1.2 Loopback . 16

3.2 Technologies Used . 17
3.2.1 HTML5 . 17
3.2.2 CSS3 . 17
3.2.3 Javascript . 18

4

3.2.3.1 Node.js . 18
3.2.3.2 JSON . 18
3.2.3.3 Ajax . 20
3.2.3.4 Node Package Manager 22

3.2.4 NoSQL Database . 22
3.2.4.1 MongoDB . 22

4 Design 24
4.1 Framework Design . 24
4.2 Application description . 25
4.3 Model Driven Approach and Module Extensibility 25
4.4 Framework Modules . 26

4.4.1 NoSQL access . 27
4.4.1.1 Entities . 27
4.4.1.2 Data Access Object/ CRUD 29
4.4.1.3 DbOperations 30
4.4.1.4 Permissions . 30

4.4.2 Main server . 32
4.4.2.1 Route Handlers 33
4.4.2.2 Python files . 34
4.4.2.3 Routes . 35
4.4.2.4 Defender . 35

4.4.3 User interface . 36

5 Implementation 38
5.1 General JavaScript practices and patterns 38

5.1.1 Closures . 39
5.1.2 Thunks . 39

5.2 Back End implementation . 41
5.2.1 REST API . 41
5.2.2 NoSQL Access Management 44
5.2.3 Security Management 46
5.2.4 Python - Node.js Interoperability 47

5.3 Front End Implementation . 47
5.3.1 Code organization and content 48
5.3.2 Plot generation with C3.js 50

5.4 Specific framework operations 51
5.4.1 Plot presentation - Zoom functionality 51
5.4.2 Upload functionality . 52

5

5.4.3 Error Handling . 53
5.5 Application Presentation . 53

6 Performance Evaluation 56
6.1 Testing Efficiency in Concurrent Requests 56
6.2 Testing Timeout Errors in Concurrent Requests 57

7 Conclusions and Future Work 60
7.1 Conclusions . 60
7.2 Future Work . 61

Bibliography 62

6

List of Figures

2.1 Three-tier Architecture . 11
2.2 Traditional page lifecycle vs Single Page Application Lifecycle 13
2.3 The contents of an HDF file . 14
2.4 The general structure of a dataset 15

3.1 Developers survey for Stack Overflow website in 2017. 19
3.2 The traditional model for web applications (left) compared to

the Ajax model (right) . 21

4.1 General Framework Design . 24
4.2 An example of the Model Driven approach functionality . . . 26
4.3 NoSQL access module structure 27
4.4 Back end class diagram . 28
4.5 Main server module structure 32

5.1 Callback examples . 39
5.2 Example of a closure function 40
5.3 Example of a thunk function . 40
5.4 Example of a User instance . 42
5.5 Example of a Project instance 43
5.6 Example of a Post instance . 45
5.7 Example of a Plot instance . 45
5.8 Client structure tree . 49
5.9 Post component structure tree example 49
5.10 Plot presentation mechanism 51
5.11 A plot before and after the zoom 52
5.12 Upload mechanism . 52
5.13 First pages of the application example 54
5.14 Some more pages of the application example 55
5.15 Dataset and plot contents . 55

6.1 Total time for all requests / number of concurrent requests figure 58
6.2 Requests per second / number of concurrent requests 59

7

List of Tables

5.1 Authentication URI’s . 41
5.2 Users URI’s . 42
5.3 Projects URI’s . 43
5.4 Datasets URI’s . 44
5.5 Posts URI’s . 44
5.6 Plots URI’s . 44

6.1 Server characteristics . 56

1

Chapter 1

Introduction

1.1 Overview

During years of development, the World Wide Web has been the center of
interest for the majority of people around the world, providing communica-
tion and information exchange. The huge growth of Web in the last years has
led to the demand for specialized applications, which operate in different de-
vices, are secure and guarantee the constant provision of services to the user,
under any circumstances. The software development process can be deliv-
ered at the same time by multiple stakeholders, which are located in different
areas of the world, studying and working on the same code. Meanwhile, the
time-consuming stages of production necessitate the proper software design,
with the purpose of minimizing the possibility of large design flaws or dis-
covering them in early stages.

The model driven software development is a design technique which is
based on model utilization and assists in the creation of software, which is
extensible, reusable and comprehensible by different stakeholders. It con-
tributes to the development of isolated modules with seperated responsibil-
ities. Hence, this design approach is an ideal solution for creating carefully
developed, well tested software, which can be upgraded at any moment.

Another challenge of our time, is the daily touch with large amounts of
complex data, which one must constantly study in order to draw conclusions
and make decisions. Due to the way the human brain processes information,
using charts or graphs to visualize data is easier than studying spreadsheets
or reports. Data visualization is the presentation of data in a pictorial or
graphical format. It enables decision makers to see analytics presented visu-
ally, so they can grasp difficult concepts or identify new patterns.

Chapter 1. Introduction 2

In this thesis, we developed a data visualization framework, which fol-
lows the principles of model driven programming. The hierarchical data for-
mat is utilized for storing complex multidimensional datasets. The frame-
work implements a method to present visually the datasets to the users,
which enables easy understanding, conclusion extraction and decision mak-
ing.

The framework consists of modules which contain generic code and are
configurable by other modules. The framework’s functionality is expanded,
either through the development of a new independent module or via the
growth of an existing one. The model driven approach enables the system’s
adaptability based on the designer’s requirements.

The framework presentation is implemented through the creation of a
web application, which operates as a data visualization tool, for networks
of users working on the same projects. The projects contain datasets, posts
and plots, which are visible by all project members. The plots are used as a
graphical representation of the datasets.

Among other things, the user may interact with the datasets through the
diagrams. We implemented a zoom functionality, which enables switching
between the detail levels of the visualized datasets. While the abstract rep-
resentation of large datasets is possible, the display of small details is also
available. The retrieval of sampled chunks of HDF files makes the zoom
functionality efficient.

The framework, as well as the application, are mainly developed in the
javascript programming language. Especially the front end tier was devel-
oped exclusively in pure javascript, without the usage of a large framework.
The front end follows the principles of the single page application design
approach.

1.2 Outline

Chapter 2 provides the necessary theoretical background used throughout
this thesis, including model driven software development, data access ob-
ject, access control list and RESTful web service. An overview of the related
work and technologies used is presented in chapter 3. The proposed detailed
framework architecture is described in chapter 4. In chapter 5 we discuss the
framework and application implementation as well as the technologies we
utilized. Next, we evaluate the framework performance in chapter 6. Finally,
the conclusion and future work are presented in chapter 7.

3

Chapter 2

Background

This chapter presents some background for the content of this thesis. We
introduce theoretical concepts, such as model driven software development,
data access object, access control list, HTTP protocol and RESTful web ser-
vices.

2.1 Models and Model Driven Software Develop-

ment

Software development is a complex and difficult task that requires the in-
vestment of significant resources and carries a major risk of failure. Accord-
ing to its proponents, model-driven (MD) software development approaches
are improving the way we build software. Model-driven approaches hy-
pothetically increase developer productivity, decrease the cost (in time and
money) of software construction, improve software reusability, and make
software more maintainable. Likewise, model-driven techniques promise to
contribute to the early detection of defects such as design flaws, omissions,
and misunderstandings between clients and developers.

If a model is a representation of a system, then in some sense, program-
ming in any language involves some kind of model. Whether we explicitly
create artifacts we call models—especially conceptual models—or whether
we implicitly map between our internal mental models of the world and
the systems we produce, we are nevertheless involved in a modeling pro-
cess as we construct software. And so MD is more about raising the level
of abstraction of our programming models rather than introducing models
into the process in the first place. Models help software engineers commu-
nicate more effectively with the many stakeholders who need to participate
in the software development process. Improved communication leads to in-
creased understanding, more reasonable expectations, and a better overall

Chapter 2. Background 4

work product. Models also let programmers visualize the finished product
without requiring its full construction first. By examining the model we can
discover design flaws that are far less expensive to resolve up-front rather
than after construction has begun (or worse, been completed).

Model-driven software development [7] is a software design approach for
the development of software systems. It provides a set of guidelines for the
structuring of specifications, which are expressed as models. Model-driven
architecture (MDA) is a kind of domain engineering, and supports model-
driven engineering of software systems.

The three primary goals of MDA are portability, interoperability, and reusabil-
ity, and the key abstraction for delivering on these goals is architectural sepa-
ration of concerns. Architectural separation of concerns is a design principle
for separating a computer program into distinct sections, such that each sec-
tion addresses a separate concern. A concern is a set of information that
affects the code of a computer program. When concerns are well-separated,
individual sections can be reused, as well as developed and updated inde-
pendently. Of special value is the ability to later improve or modify one
section of code without having to know the details of other sections, and
without having to make corresponding changes to those sections. In this
way, architectural separation of concerns accomplishes the primary goals of
MDA. Thus, developing generic, customizable, independent modules with
seperated responsibilities implements the model driven software develop-
ment approach.

2.2 Data Access Object

In computer software, a data access object (DAO) [14] is an object that pro-
vides an abstract interface to some type of database or other persistence
mechanism. By mapping application calls to the persistence layer, the DAO
provides some specific data operations without exposing details of the database.
This isolation supports the single responsibility principle. It separates what
data access the application needs, in terms of domain-specific objects and
data types (the public interface of the DAO), from how these needs can be
satisfied with a specific DBMS or database schema. Because the interface
exposed by the DAO to clients does not change when the underlying data
source implementation changes, this pattern allows the DAO to adapt to dif-
ferent storage schemes without affecting its clients or business components.

Chapter 2. Background 5

Essentially, the DAO acts as an adaptor between the component and the data
source.

The advantage of using data access objects is the relatively simple and rig-
orous separation between two important parts of an application that can but
should not know anything of each other, and which can be expected to evolve
frequently and independently. Changing business logic can rely on the same
DAO interface, while changes to persistence logic do not affect DAO clients
as long as the interface remains correctly implemented. All details of stor-
age are hidden from the rest of the application. Thus, possible changes to
the persistence mechanism can be implemented by just modifying one DAO
implementation while the rest of the application isn’t affected. DAOs act as
an intermediary between the application and the database. They move data
back and forth between objects and database records.

2.3 Access Control List

An Access Control List (ACL) [13] is a mechanism that implements access
control for a system resource by enumerating the system entities that are
permitted to access the resource and stating, either implicitly or explicitly,
the access modes granted to each entity. A filesystem ACL is a data struc-
ture (usually a table) containing entries that specify individual user or group
rights to specific system objects such as programs, processes, or files.

In computing, permission is defined as the delegation of authority over
a computer system. A permission allows a user to perform an action. Ex-
amples of various privileges include the ability to create a file in a directory,
or to read or delete a file, access a device, or have read or write permission
to a socket for communicating over the Internet. The permissions to per-
form certain operations are assigned to specific roles. Members or admin-
istrators (or other system users) are assigned particular roles, and through
those role assignments acquire the computer permissions to perform partic-
ular computer-system functions.

2.4 HTTP

The Hypertext Transfer Protocol (HTTP) [3] is an application-level protocol
for distributed, collaborative, hypermedia information systems. HTTP has
been in use by the World-Wide Web global information initiative since 1990.

Chapter 2. Background 6

HTTP functions as a request–response protocol in the client–server comput-
ing model. A web browser, for example, may be the client and an application
running on a computer hosting a website, may be the server. The client sub-
mits an HTTP request message to the server. The server, which provides
resources such as HTML files and other content or performs other functions
on behalf of the client, returns a response message to the client. The response
contains completion status information about the request and may also con-
tain requested content in its message body. HTTP resources are identified
and located on the network by Uniform Resource Locators (URL), using the
Uniform Resource Identifiers (URI) schemes http and https. URI and hyper-
links in HTML documents form inter-linked hypertext documents.

2.4.1 HTTP session

An HTTP session is a sequence of network request-response transactions.
An HTTP client initiates a request by establishing a Transmission Control
Protocol (TCP) connection to a particular port on a server. An HTTP server
listening on that port waits for a client’s request message. Upon receiving the
request, the server sends back a status line, such as "HTTP/1.1 200 OK", and
a message of its own. The body of this message is typically the requested re-
source, although an error message or other information may also be returned.

2.4.2 Request methods

HTTP defines methods to indicate the desired action to be performed on the
identified resource. What this resource represents, whether pre-existing data
or data that is generated dynamically, depends on the implementation of the
server. The most common methods which are used in this thesis are pre-
sented below.

GET The GET method requests a representation of the specified resource.
Requests using GET should only retrieve data and should have no other ef-
fect. The W3C has published guidance principles on this distinction, saying,
"Web application design should be informed by the above principles but also
by the relevant limitations".

POST The POST method requests that the server accepts the entity en-
closed in the request as a new subordinate of the web resource identified

Chapter 2. Background 7

by the URI. The data POSTed might be, for example, an annotation for ex-
isting resources; a message for a bulletin board, newsgroup, mailing list, or
comment thread; a block of data that is the result of submitting a web form
to a data-handling process; or an item to add to a database.

PUT The PUT method requests that the enclosed entity be stored under the
supplied URI. If the URI refers to an already existing resource, it is modified;
if the URI does not point to an existing resource, then the server can create
the resource with that URI.

DELETE The DELETE method deletes the specified resource.

2.4.3 Status Codes

In HTTP/1.0 and since, the first line of the HTTP response is called the status
line and includes a numeric status code (such as "404") and a textual reason
phrase (such as "Not Found"). The way the user agent handles the response
primarily depends on the code and secondarily on the other response header
fields. Custom status codes can be used since, if the user agent encounters a
code it does not recognize, it can use the first digit of the code to determine
the general class of the response. HTTP status code is primarily divided into
five groups for better explanation of request and responses between client
and server, and are presented below.

1xx Informational responses An informational response indicates that the
request was received and understood. It is issued on a provisional basis
while request processing continues. It alerts the client to wait for a final re-
sponse. The message consists only of the status line and optional header
fields, and is terminated by an empty line.

2xx Success This class of status codes indicates the action requested by the
client was received, understood, accepted, and processed successfully.

3xx Redirection This class of status code indicates the client must take ad-
ditional action to complete the request. Many of these status codes are used
in URL redirection. A user agent may carry out the additional action with
no user interaction only if the method used in the second request is GET
or HEAD. A user agent may automatically redirect a request. A user agent
should detect and intervene to prevent cyclical redirects.

Chapter 2. Background 8

4xx Client errors This class of status code is intended for situations in which
the client seems to have errored. Except when responding to a HEAD re-
quest, the server should include an entity containing an explanation of the
error situation, and whether it is a temporary or permanent condition. These
status codes are applicable to any request method. User agents should dis-
play any included entity to the user.

5xx Server errors The server failed to fulfill an apparently valid request: re-
sponse status codes beginning with the digit "5" indicate cases in which the
server is aware that it has encountered an error or is otherwise incapable
of performing the request. Except when responding to a HEAD request,
the server should include an entity containing an explanation of the error
situation, and indicate whether it is a temporary or permanent condition.
Likewise, user agents should display any included entity to the user. These
response codes are applicable to any request method.

2.5 Representational State Transfer

Representational state transfer (REST) [6] or RESTful web services is a way of
providing interoperability between computer systems on the Internet. REST-
compliant Web services allow requesting systems to access and manipulate
textual representations of Web resources using a uniform and predefined set
of stateless operations. In a RESTful Web service, requests made to a re-
source’s URI will elicit a response that may be in XML, HTML, JSON or
some other defined format. The response may confirm that some alteration
has been made to the stored resource, and it may provide hypertext links to
other related resources or collections of resources.

The term is intended to evoke an image of how a well-designed Web ap-
plication behaves: it is a network of Web resources (a virtual state-machine)
where the user progresses through the application by selecting links, such as
/user/tom, and operations such as GET or DELETE (state transitions), result-
ing in the next resource (representing the next state of the application) being
transferred to the user. There are six guiding constraints that define a REST-
ful system. These constraints restrict the ways that the server may process
and respond to client requests so that, by operating within these constraints,
the service gains desirable non-functional properties, such as performance,
scalability, simplicity, modifiability, visibility, portability, and reliability. If a

Chapter 2. Background 9

service violates any of the required constraints, it cannot be considered REST-
ful. The formal REST constraints are represented below.

2.5.1 Client-server architecture

The first constraints added to our hybrid style are those of the client-server
architectural style. Separation of concerns is the principle behind the client-
server constraints. By separating the user interface concerns from the data
storage concerns, we improve the portability of the user interface across mul-
tiple platforms and improve scalability by simplifying the server compo-
nents. Perhaps most significant to the Web, however, is that the separation al-
lows the components to evolve independently, thus supporting the Internet-
scale requirement of multiple organizational domains.

Statelessness The client–server communication is constrained by no client
context being stored on the server between requests. Each request from any
client contains all the information necessary to service the request, and ses-
sion state is held in the client. The session state can be transferred by the
server to another service such as a database to maintain a persistent state for
a period and allow authentication. The client begins sending requests when
it is ready to make the transition to a new state. While one or more requests
are outstanding, the client is considered to be in transition. The representa-
tion of each application state contains links that may be used the next time
the client chooses to initiate a new state-transition.

Cacheability As on the World Wide Web, clients and intermediaries can
cache responses. Responses must therefore, implicitly or explicitly, define
themselves as cacheable or not to prevent clients from reusing stale or inap-
propriate data in response to further requests. Well-managed caching par-
tially or completely eliminates some client–server interactions, further im-
proving scalability and performance.

Layered system A client cannot ordinarily tell whether it is connected di-
rectly to the end server, or to an intermediary along the way. Intermediary
servers may improve system scalability by enabling load balancing and by
providing shared caches. They may also enforce security policies.

Chapter 2. Background 10

Uniform interface The uniform interface constraint is fundamental to the
design of any REST service. It simplifies and decouples the architecture,
which enables each part to evolve independently.

2.6 Application Programming Interface

In computer programming, an Application Programming Interface (API) is
a set of subroutine definitions, protocols, and tools for building application
software. In general terms, it is a set of clearly defined methods of commu-
nication between various software components. A good API makes it easier
to develop a computer program by providing all the building blocks, which
are then put together by the programmer. An API may be for a web-based
system, operating system, database system, computer hardware or software
library. An API specification can take many forms, but often includes specifi-
cations for routines, data structures, object classes, variables or remote calls.
API uses are listed below.

Libraries and Frameworks An API is usually related to a software library.
The API describes and prescribes the expected behavior (a specification) while
the library is an actual implementation of this set of rules. A single API can
have multiple implementations (or none, being abstract) in the form of dif-
ferent libraries that share the same programming interface. The separation of
the API from its implementation can allow programs written in one language
to use a library written in another.

Operating systems An API can specify the interface between an applica-
tion and the operating system. POSIX, for example, specifies a set of com-
mon APIs that aim to enable an application written for a POSIX conformant
operating system to be compiled for another POSIX conformant operating
system.

Remote APIs Remote APIs allow developers to manipulate remote resources
through protocols, specific standards for communication that allow different
technologies to work together, regardless of language or platform.

WEB APIs Web APIs are the defined interfaces through which interactions
happen between an enterprise and applications that use its assets. An API

Chapter 2. Background 11

approach is an architectural approach that revolves around providing pro-
grammable interfaces to a set of services to different applications serving dif-
ferent types of consumers.When used in the context of web development,
an API is typically defined as a set of Hypertext Transfer Protocol (HTTP)
request messages, along with a definition of the structure of response mes-
sages, which is usually in an Extensible Markup Language (XML) or JavaScript
Object Notation (JSON) format.

2.7 Three-tier Architecture

FIGURE 2.1: Three-tier Architecture

Three-tier architecture [11] is a client–server software architecture pattern
in which the user interface (presentation), functional process logic ("busi-
ness rules"), computer data storage and data access are developed and main-
tained as independent modules, most often on separate platforms. Apart
from the usual advantages of modular software with well-defined interfaces,
the three-tier architecture is intended to allow any of the three tiers to be up-
graded or replaced independently in response to changes in requirements or
technology. An image of a three-tier architecture can be seen in figure 2.1.
The three layers are presented below.

Chapter 2. Background 12

Presentation tier This is the topmost level of the application. The presenta-
tion tier displays information related to such services as browsing merchan-
dise, purchasing and shopping cart contents. It communicates with other
tiers by which it puts out the results to the browser/client tier and all other
tiers in the network. In simple terms, it is a layer which users can access
directly (such as a web page, or an operating system’s GUI).

Logic tier The logical tier is pulled out from the presentation tier and, as its
own layer, it controls an application’s functionality by performing detailed
processing.

Data tier The data tier includes the data persistence mechanisms (database
servers, file shares, etc.) and the data access layer that encapsulates the per-
sistence mechanisms and exposes the data. The data access layer should pro-
vide an API to the application tier that exposes methods of managing the
stored data without exposing or creating dependencies on the data storage
mechanisms. Avoiding dependencies on the storage mechanisms allows for
updates or changes without the application tier clients being affected by or
even aware of the change.

2.8 Single Page Application

A single-page application (SPA) [9] is a web application or web site that fits
on a single web page with the goal of providing a user experience similar to
that of a desktop application. In a SPA, either all necessary code – HTML,
JavaScript, and CSS – is retrieved with a single page load, or the appropriate
resources are dynamically loaded and added to the page as necessary, usu-
ally in response to user actions. The page does not reload at any point in
the process, nor does control transfer to another page, although the location
hash or the HTML5 History API can be used to provide the perception and
navigability of separate logical pages in the application. Interaction with the
single page application often involves dynamic communication with the web
server behind the scenes.

There are various techniques available that enable the browser to retain a
single page even when the application requires server communication. The
most prominent technique currently being used is Ajax. Ajax is a set of Web
development techniques using many Web technologies on the client side to
create asynchronous Web applications. With Ajax, Web applications can send

Chapter 2. Background 13

FIGURE 2.2: Traditional page lifecycle vs Single Page Applica-
tion Lifecycle

data to and retrieve from a server asynchronously (in the background) with-
out interfering with the display and behavior of the existing page. By decou-
pling the data interchange layer from the presentation layer, Ajax allows for
Web pages, and by extension Web applications, to change content dynami-
cally without the need to reload the entire page. The difference between the
traditional page and the SPA lifecycle can be seen in figure 2.2. In practice,
modern implementations commonly substitute JSON for XML due to the ad-
vantages of being native to JavaScript.

2.9 Hierarchical Data Format

Hierarchical Data Format (HDF)) [5] is a set of file formats (HDF4, HDF5)
designed to store and organize large amounts of data. Many HDF adopters
have very large datasets, very fast access requirements, or very complex
datasets. Others turn to HDF because it allows them to easily share data
across a wide variety of computational platforms using applications written
in different programming languages.

HDF allows hierarchical data objects to be expressed in a very natural
manner, in contrast to the tables of a relational database. Whereas relational
databases support tables, HDF supports n-dimensional datasets and each el-
ement in the dataset may itself be a complex object. Relational databases offer

Chapter 2. Background 14

excellent support for queries based on field matching, but are not well-suited
for sequentially processing all records in the database or for subsetting the
data based on coordinate-style lookup. The contents of an HDF file can be
seen in figure 2.3.

FIGURE 2.3: The contents of an HDF file

HDF5 consists of a File Format for storing HDF5 data, a Data Model for
logically organizing and accessing HDF5 data from an application, and the
Software (libraries, language interfaces, and tools) for working with this for-
mat. The data model is described below.

2.9.1 Data Model

The HDF Data Model, also known as the HDF5 Abstract (or Logical) Data
Model consists of the building blocks for data organization and specification
in HDF5. An HDF5 file (an object in itself) can be thought of as a container (or
group) that holds a variety of heterogeneous data objects (or datasets). The
datasets can be most anything: images, tables, graphs, or even documents,
such as PDF or Excel. The two primary objects in the HDF5 Data Model are
described below.

Groups HDF5 groups (and links) organize data objects. Every HDF5 file
contains a root group that can contain other groups or be linked to objects
in other files. Working with groups and group members is similar in many
ways to working with directories and files in UNIX. As with UNIX directories

Chapter 2. Background 15

and files, objects in an HDF5 file are often described by giving their full (or
absolute) path names.

Datasets HDF5 datasets organize and contain the “raw” data values. A
dataset consists of metadata that describes the data, in addition to the data
itself. Datatypes, dataspaces, properties and (optional) attributes are HDF5
objects that describe a dataset. The datatype describes the individual data
elements. The general structure of a dataset can be seen in figure 2.4.

FIGURE 2.4: The general structure of a dataset

16

Chapter 3

Related Work and Technologies
Used

This chapter contains the related work and the technologies used throughout
this thesis. Initially, technologies that make use of functionalities similar with
the content of our framework, are described. Following, we emphasize on
the technologies we used throughout the development of our system.

3.1 Related Work

3.1.1 Plotly

Plotly is a popular public data visualization cloud service provider. Plotly
provides community, professional and enterprise data storage, visualization
and analytics services to the user. Excel, CSV and XML data formats are
used to upload the data to its cloud servers. It also offers online graphing,
analytics, and statistics tools for individuals and collaboration, as well as
scientific graphing libraries for Python, R, MATLAB, Perl, Julia, Arduino,
and REST. Although Plotly provides a large set of functionalities, it does not
offer a way to visualize large multidimensional datasets.

3.1.2 Loopback

Loopback is a highly-extensible, open-source Node.js framework which as-
similates the best practices of model driven software development. Loop-
back simplifies and speeds up REST API development. It consists of a library
of Node.js modules for connecting web and mobile apps to data sources such
as databases and REST APIs, a command line tool, and client-SDKs. A loop-
back application has three components: models that represent business data

Chapter 3. Related Work and Technologies Used 17

and behavior, data sources and connectors, and mobile clients. An applica-
tion interacts with data sources through the loopback model API, available
locally within Node, remotely over REST, and via native client APIs for iOS,
Android, and HTML5. Using the API, apps can query databases, store data,
upload files, send emails, create push notifications, register users, and per-
form other actions provided by data sources. Loopback is implemented with
many of the technologies we use in this thesis. It uses MDSD as a general
practice, data access objects for the communication between database and
the server, access control list for authorization and is written in Node.js.

3.2 Technologies Used

3.2.1 HTML5

HTML5 [10] is a markup language used for structuring and presenting con-
tent on the World Wide Web. It is the fifth and current major version of the
HTML standard.

It was published in October 2014 by the World Wide Web Consortium
(W3C) to improve the language with support for the latest multimedia, while
keeping it both easily readable by humans and consistently understood by
computers and devices such as web browsers, parsers, etc. HTML5 is in-
tended to subsume not only HTML 4, but also XHTML 1 and DOM Level 2
HTML.

HTML5 includes detailed processing models to encourage more interop-
erable implementations; it extends, improves and rationalizes the markup
available for documents, and introduces markup and application program-
ming interfaces (APIs) for complex web applications. For the same reasons,
HTML5 is also a candidate for cross-platform mobile applications, because it
includes features designed with low-powered devices in mind.

3.2.2 CSS3

Cascading Style Sheets (CSS) is a style sheet language used for describing
the presentation of a document written in a markup language. Although
most often used to set the visual style of web pages and user interfaces writ-
ten in HTML and XHTML, the language can be applied to any XML docu-
ment, including plain XML, SVG and XUL, and is applicable to rendering
in speech, or on other media. Along with HTML and JavaScript, CSS is a

Chapter 3. Related Work and Technologies Used 18

cornerstone technology used by most websites to create visually engaging
webpages, user interfaces for web applications, and user interfaces for many
mobile applications.

CSS is designed primarily to enable the separation of presentation and
content, including aspects such as the layout, colors, and fonts. This separa-
tion can improve content accessibility, provide more flexibility and control in
the specification of presentation characteristics, enable multiple HTML pages
to share formatting by specifying the relevant CSS in a separate .css file, and
reduce complexity and repetition in the structural content. CSS3 [8] is the
latest version of CSS and is used in this thesis.

3.2.3 Javascript

JavaScript (JS) [1] is a high-level, dynamic, weakly typed, object-based, multi-
paradigm, and interpreted programming language. Alongside HTML and
CSS, JavaScript is one of the three core technologies of World Wide Web con-
tent production. It is used to make webpages interactive and provide online
programs, including video games. As a multi-paradigm language, JavaScript
supports event-driven, functional, and imperative (including object-oriented
and prototype-based) programming styles. Initially only implemented client-
side in web browsers, JavaScript engines are now embedded in many other
types of host software, including server-side in web servers and databases.
The most famous server-side Javascript implementation is Node.js.

3.2.3.1 Node.js

Node.js [15] is an open-source, cross-platform JavaScript run-time environ-
ment for executing JavaScript code server-side. Node.js provides an event-
driven architecture and a non-blocking I/O API designed to optimize appli-
cation’s throughput and scalability for real-time Web applications. It uses
Google V8 JavaScript engine to execute code, and a large percentage of the
basic modules are written in JavaScript. Node.js contains a built-in library to
allow applications to act as a stand-alone Web server. The increasing popu-
larity of Node.js in the last years can be seen in figure 3.1.

3.2.3.2 JSON

In computing, JavaScript Object Notation or JSON [2], is an open-standard
file format that uses human-readable text to transmit data objects consisting
of attribute–value pairs and array data types (or any other serializable value).

Chapter 3. Related Work and Technologies Used 19

FIGURE 3.1: Developers survey for Stack Overflow website in
2017.

It is a very common data format used for asynchronous browser/server com-
munication, including as a replacement for XML in some AJAX-style sys-
tems. JSON is a language-independent data format. It was derived from
JavaScript, but as of 2017 many programming languages include code to gen-
erate and parse JSON-format data. The official Internet media type for JSON
is application/json. JSON filenames use the extension .json. JSON’s basic
data types are described below.

Number A signed decimal number that may contain a fractional part and
may use exponential E notation, but cannot include non-numbers like NaN.
The format makes no distinction between integer and floating-point. JavaScript
uses a double-precision floating-point format for all its numeric values, but
other languages implementing JSON may encode numbers differently.

String A string is a sequence of zero or more Unicode characters. Strings
are delimited with double-quotation marks and support a backslash escaping
syntax.

Boolean Either of the values true or false.

Chapter 3. Related Work and Technologies Used 20

Array An ordered list of zero or more values, each of which may be of
any type. Arrays use square bracket notation with elements being comma-
separated.

Object An unordered collection of name/value pairs where the names (also
called keys) are strings. Since objects are intended to represent associative ar-
rays, it is recommended, though not required, that each key is unique within
an object. Objects are delimited with curly brackets and use commas to sepa-
rate each pair, while within each pair the colon ’:’ character separates the key
or name from its value.

null An empty value, using the word null.

3.2.3.3 Ajax

Ajax (short for "asynchronous JavaScript and XML") [4] is a set of Web devel-
opment techniques using many Web technologies on the client side to create
asynchronous Web applications. With Ajax, Web applications can send data
to and retrieve from a server asynchronously (in the background) without in-
terfering with the display and behavior of the existing page. By decoupling
the data interchange layer from the presentation layer, Ajax allows for Web
pages, and by extension Web applications, to change content dynamically
without the need to reload the entire page. In practice, modern implemen-
tations commonly substitute JSON for XML due to the advantages of being
native to JavaScript.

Ajax is not a single technology, but rather a group of technologies. HTML
and CSS can be used in combination to mark up and style information. The
DOM is accessed with JavaScript to dynamically display – and allow the user
to interact with – the information presented. JavaScript and the XMLHttpRe-
quest object provide a method for exchanging data asynchronously between
browser and server to avoid full page reloads.

The term Ajax has come to represent a broad group of Web technologies
that can be used to implement a Web application that communicates with a
server in the background, without interfering with the current state of the
page, such as HTML, CSS, DOM, XMLHttpRequest etc. The conventional
model for a Web Application versus an application using Ajax can be seen in
figure 3.2.

Chapter 3. Related Work and Technologies Used 21

FIGURE 3.2: The traditional model for web applications (left)
compared to the Ajax model (right)

Chapter 3. Related Work and Technologies Used 22

3.2.3.4 Node Package Manager

Npm [12] is a package manager for the JavaScript programming language.
It is the default package manager for the JavaScript runtime environment
Node.js. It consists of a command line client, also called npm, and an online
database of public packages called the npm registry. The registry is accessed
via the client, and the available packages can be browsed and searched via
the npm website. Npm is included as a recommended feature in Node.js in-
staller. Npm consists of a command line client that interacts with a remote
registry. It allows users to consume and distribute JavaScript modules that
are available on the registry. Packages on the registry are in CommonJS for-
mat and include a metadata file in JSON format.

3.2.4 NoSQL Database

A NoSQL (originally referring to "non SQL" or "non-relational") database
provides a mechanism for storage and retrieval of data that is modeled in
means other than the tabular relations used in relational databases. NoSQL
databases are increasingly used in big data and real-time web applications.
Motivations for this approach include: simplicity of design, simpler "hor-
izontal" scaling to clusters of machines (which is a problem for relational
databases), and finer control over availability. The data structures used by
NoSQL databases (e.g. key-value, wide column, graph, or document) are dif-
ferent from those used by default in relational databases, making some oper-
ations faster in NoSQL. The particular suitability of a given NoSQL database
depends on the problem it must solve. Sometimes the data structures used by
NoSQL databases are also viewed as "more flexible" than relational database
tables.

3.2.4.1 MongoDB

MongoDB is a free and open-source cross-platform document-oriented database
program. Instead of using tables and rows as in relational databases, Mon-
goDB is built on an architecture of collections and documents, meaning fields
can vary from document to document and data structure can be changed
over time. Documents comprise sets of key-value pairs and are the basic unit
of data in MongoDB. Collections contain sets of documents and function as
the equivalent of relational database tables.

Chapter 3. Related Work and Technologies Used 23

Like other NoSQL databases, MongoDB supports dynamic schema de-
sign, allowing the documents in a collection to have different fields and struc-
tures. The database uses a document storage and data interchange format
called BSON, which provides a binary representation of JSON-like docu-
ments.

24

Chapter 4

Design

This chapter provides a detailed description of the designed system. In sec-
tion 4.1, the general framework design diagram is presented, along with a
simplifying description of each module the diagram contains. In chapter 4.2
we describe the basic characteristics of the application we developed. Fol-
lowing, we present in detail all framework modules.

4.1 Framework Design

FIGURE 4.1: General Framework Design

In figure 4.1 a general framework design diagram is presented. The sys-
tem architecture is divided into three parts: front-end/presentation tier, logic
tier and data tier, as described in chapter 2.7. The data tier contains the
database where all model data is stored and the filesystem in which all up-
loaded datasets are saved in hdf file format. The logic tier contains all the
modules necessary for ensuring the framework functionality, such as CRUD

Chapter 4. Design 25

operations, database access, authentication, authorization etc. The commu-
nication between logic and presentation tier is established over a REST API
service. In the presentation tier, the user may interact with the server by
sending requests and retrieve JSON data as responses. Before we continue
in further details about the core system modules, we describe the basic con-
cepts of the application we created on top of our framework, in order to better
demonstrate its capabilities.

4.2 Application description

The application makes use of the framework’s infrastructure, aiming to present
an example of a real use case. Its purpose is to create user networks, which
work in common with projects and their data. The data could be text or
multi-dimensional datasets. The application utilizes data visualization, aim-
ing to a better understanding and conclusion extraction from the arithmetic
datasets. The users may upload their datasets (in HDF file format), in order
to make them visible to all the project users, while at the same time they may
create plots based on them. In this chapter, we describe the general design of
the framework, but we provide some application design details when neces-
sary. The detailed application implementation and functionality is presented
in the next chapter.

4.3 Model Driven Approach and Module Extensi-

bility

The Model Driven approach is implemented in all modules and submodules.
In order to do that we made sure that the code in each module is generic, so
that it is customizable as much as possible and not specialized with a fixed
configuration. In this way, the code behavior depends on the arguments it
receives each time it is executed. Furthermore, developing generic code as-
sists in module reusability, as a result of the different module outputs based
on the corresponding arguments.

The module extensibility is the second key feature of the model driven
approach. In our framework, we focused on this feature, so that the code
evolvement can be achieved anytime. Any extra operation can be added,
either within the context of an already developed model or as a new, inde-
pendent one.

Chapter 4. Design 26

In figure 4.2, two major details can be observed. Firstly, the extra entity
addition in the specific model is possible without breaking the cohesion of
the framework, securing the system’s extensibility. Secondly, we observe that
the CRUD operations used are customizable by the corresponding model,
which shows that the generic module logic is implemented. More informa-
tion about entities and CRUD operations can be seen in chapter 4.4.1.

FIGURE 4.2: An example of the Model Driven approach func-
tionality

In this way we developed modules that follow the principles of the Model
Driven Architecture. This gives us the opportunity to often refer to these
modules as models, as described in chapter 2.1. The level of abstraction may
change, but the main characteristics of model driven software development
are constantly used in the framework implementation. Also, all modules are
isolated and expose only the methods that must be used in the rest of the
framework.

4.4 Framework Modules

In this section, the framework modules used in this thesis are presented in
detail. Diagrams are shown in some of these subsections for a better un-
derstanding of the framework design. The modules are divided into three
big categories: NoSQL access, main server and user interface. Each of these
modules are a big part of the system’s functionality and contain smaller sub-
modules.

Chapter 4. Design 27

4.4.1 NoSQL access

FIGURE 4.3: NoSQL access module structure

The NoSQL access module is a very important component of the frame-
work. It is responsible for a big part of the system’s functionality, such
as schema creation, CRUD operations, communication between server and
database etc. As a result of its importance, this module is used as a depen-
dency in many other models of the framework. This model is developed in
such a way, so that its functionality is isolated from the rest of the framework.
In spite of the fact that this practice applies to the model-driven approach,
it is generally a neat way for developing frameworks. The structure of the
module can be seen in figure 4.3. NoSQL access module consists of many
submodules and each of them is presented separately below.

4.4.1.1 Entities

An entity is a representation of a database resource. The creation of an entity
through our framework corresponds to the creation of a collection in our
database. Likewise, the creation of an instance of an entity, corresponds to
the creation of a document inside a collection in our database. In this way,
it becomes very easy to make changes to the database, without having direct
access to it, which is crucial for our framework.

In the entities module, we define the resources to be used in the frame-
work. More specifically, we define the structure of the entities we use, their

Chapter 4. Design 28

fields, their fields type, as well as the fields restrictions. For example, we can
specify if a field must be unique in relation to the rest of the instances in the
same collection of the database. The definition of the entities is developed in
JSON form, therefore it becomes really easy to change or add more entities
in the database. So, this module obtains the property of extensibility, which
is quite important for the model-driven architecture we developed.

For the purpose of the application demo, we set a list of entities with
specific fields, field types and restrictions. A visualization of this list is shown
in figure 4.4. An analysis of each of the entities can be seen below.

FIGURE 4.4: Back end class diagram

Users In order to use the application, a user is obliged to create a new user
account. The necessary properties to create a new account are a username,
full name, password and email. Username and email must have unique val-
ues in relation to all other user instances. The user entity contains all neces-
sary fields to save the above information, along with a unique id.

Projects A basic concept of the application is the project entity. The appli-
cation users may create new projects, in which multiple users may partic-
ipate. The content of a project is visible for all users that participate in it.
The required fields for the creation of a project instance are name, date and
description. The project entity uses the concept of ACL, as described in chap-
ter 2.3. Thus, project entity contains information concerning the users which
have access to modify a specific instance of the project entity. In this way, the
fields that contain this information refer to an instance of a user entity.

Chapter 4. Design 29

Datasets Another valuable entity of the application is Datasets. The appli-
cation users may create their own datasets inside a project they participate.
This entity stores the metadata information of the HDF files which are up-
loaded on the application. The fields of this entity are the dataset name, date,
an id that refers to the instance of the user who creates the entity, and the hdf
filename. Additionally, saving the project id of the corresponding instance,
in which the dataset is in, is required. Finally, just as in project entity, infor-
mation about the access control list of the dataset, is retained.

Posts An application user may create a new post inside a project. The re-
quired fields for the creation of a post entity are title, description, date, a
dataset instance reference and a project instance reference. Furthermore,
ACL information is saved in the post entity instance. The user may create
a post in response to another post. In this case, information about the post
instance in reference is retained.

Plots A user may add plots inside his posts. The required fields for the
creation of a plot entity are title, description, the path inside the HDF file in
which the array used for the plot is saved, and the post instance reference.
Finally, the plot entity retains information about its metadata, such as plot
type and the dimension values used in the plot.

4.4.1.2 Data Access Object/ CRUD

As described in chapter 2.2, DAO provides some specific data operations
without exposing details of the database which are not needed. In our case,
the DAO model ensures that it is the only module with access to the database,
and exposes only the information and CRUD functions which are vital for
the rest of the framework. The DAO module is developed in a generic way
and it is customizable by the entities module. Thus, for each of our entities,
we generate CRUD operations for interaction between the specific database
model and the framework. The CRUD methods used in the DAO module are
described in detail below.

createItem The method createItem is responsible for the creation of new
instances of an entity. It receives an object as an argument, it converts it in
model instance form and then it saves it. If an error occurs, it returns a new
error object. Based on the single responsibility principle, the method does
not control the kind of data that are about to be saved.

Chapter 4. Design 30

readItems The method readItems is used to read data from the database. It
receives a query object as an input. The result, successful or not, is returned
as an array object. If an error occurs, it returns a new error object.

updateItem The method updateItem is responsible for updating an exist-
ing object in the database. To achieve that, it receives as arguments a query
object and an object with the new property values. If found, the object is
replaced and returned. If an error occurs, it returns a new error object.

deleteItem The method deleteItem is used to delete an existing document
from the database. It receives a query object as an input, and if the document
is found, the method deletes it from the database. If an error occurs, it returns
a new error object.

4.4.1.3 DbOperations

As mentioned in the section 4.4.1.2, the DAO module is responsible for in-
teracting with the database. The model methods are interacting with the
database, perform direct changes and may return a result where applicable.
But is there a way to guarantee the integrity of our operations in live data?
Throughout our study, we determined that all functions must be wrapped
in functions responsible for the verification and validation of the requested
data mutation. So in essence, we provide a single sandboxed environment
securing the database from malicious adversaries, as well as potential inter-
nal misuse.

The DbOperations model was developed for this purpose. It receives as
an argument the entities and the DAO models. The DbOperations model
returns a group of functions which control the data they receive as an input
and then call the corresponding DAO model methods.

The verification of the data is essential for the CRUD operations. In our
case we primarily check if all the required properties and references are con-
tained in the input object. Then, we verify that the references values are valid
ids of the corresponding entities instance. In order to achieve that, the neces-
sary read operations in the database are made.

4.4.1.4 Permissions

In chapter 4.4.1.1, we described that most of the entities contain some fields
that are responsible for the access control list. To be able to alter these fields

Chapter 4. Design 31

in relation to users who can access or not a resource, we developed a module
specialized for this task. This module contains some functions which im-
plement the ACL functionality. The dependencies of permissions model are
entities and DbOperations models.

The Permissions module defines all the roles the framework uses. At any-
time we can add or remove a role, therefore the model-driven design ap-
proach is implemented. This model is also responsible for the verification of
the changes that it is about to make. The module exposes only the desired
methods so that any unwanted functionality is isolated. The generic methods
we developed are described below.

addUserRole This method adds a specific role to a user for the given re-
source. It receives four arguments as an input, the user id, the object id, the
role and the model name. All arguments are verified before proceeding with
the entity instance update.

removeUserRole RemoveUserRole is a method that does the opposite of
the addUserRole. It removes from a user a certain role of a resource. It also
receives the same arguments as an input. All arguments are verified before
proceeding with the entity instance update.

isAllowed This method is the core of the ACL logic. Its purpose is to check
if a user has the permission to perform a CRUD operation in a resource in-
stance. To accomplish that, this method checks if a user id is contained in the
model instance of the resource id, which is given as an input. If its not found,
the same check is performed in the parent model instance, if it exists.

The reason behind this extra check is that the parent model instance may
have been given a default order which applies for every kid model instance.
This operation has the advantage of the reduced database operations, since
we don’t have to check the access permission of -usually many- users, each
time we create a new kid model instance. On the contrary, we set a general
rule which applies in all cases, unless it is overridden by another permission
access.

An example of this functionality is the creation of a post inside of a project.
One way to apply for permission access, is to add all user ids which have
read permission for the post, inside its instance. It is preferable though, to
set a general rule inside the project which states that, all users who have read
access to this project, have also access to its posts.

Chapter 4. Design 32

isAllowedCreate IsAllowedCreate has the same functionality as isAllowed
method, but it focuses exclusively on create operation, which has slightly
different functionality than the rest of the CRUD operations.

4.4.2 Main server

In this section we describe the core framework’s component. The structure
of this module can be seen in figure 4.5. To achieve that, we present all the
submodules that are used in this model, and combined together are creating
its complete functionality. Thus, apart from routes module which is respon-
sible for receiving requests and sending responds to the client, it is also de-
scribed the helpers module, which contains a list of functions necessary for
this model. Additionally, in this chapter we present a python bridge model,
which is used for the utilization of the hierarchical data format, as well as our
error handling model, our session setup module and the defenders module.
Next, we describe each of these modules.

FIGURE 4.5: Main server module structure

Chapter 4. Design 33

4.4.2.1 Route Handlers

In chapter 4.4.1 we defined a list of methods which are responsible for the
communication with the database. In order to implement the framework’s
functionality though, it is necessary to combine these methods into a higher
level module. The Route Handlers model is developed for this reason and
receives the NoSQL access module as an argument. Also, this module has
a dependency on a list of python files, which are vital for the retrieval of
saved HDF files (HDF explained in chapter 2.3). The returned result of this
module’s methods is the one that is sent to the client.

Subsequently we present some of these functions. Most of them are devel-
oped in conjunction with the application demo, but the module is extensible
for any usage. We will skip the functions which are related to the python files.
When the python module’s purpose is explained, we will return to present
the corresponding functions.

saveData The function saveData is used for saving an uploaded HDF file in
the filesystem. The uploaded file is divided into chunks of data, if it exceeds
a specific limit of size. Initially, the method checks if the extension of the file
is .h5, and then it collects all the chunks and concatenates them. When the
reconstruction of the HDF file is completed, the file is renamed with a unique
name and is saved in a specific path inside the filesystem. Then, the function
returns the new file name, so that it can be saved in the Dataset entity later.
In case an error occurs in the parsing state, an error object is returned.

searchRelatedPosts As explained in section 4.4.1.1, in the context of the
application, a post may be created in response to another post. We define a
parent post as a post that does not come in response to another post, and a
kid post as a post that comes in response to another post, respectively. This
function receives as an argument a post id and is searching all the post in-
stances for related posts, kids or parent. The result object of posts is returned
in chronological order, ready to be sent to the client.

confFunctions confFunctions is a group of methods which are used for the
proper configuration of the corresponding objects. It is usual that some of
the properties an object contains must be removed before the object is sent
to the client. For example, a project entity instance does not need to contain

Chapter 4. Design 34

the ACL property, if it is intended to be sent to the client. Thus, these func-
tions remove the unnecessary properties from the corresponding objects. If
an error occurs, an error object is returned.

errorHandler The framework’s error handling, concerning the back end
side of the system, sends all possible errors to the errorHandling function.
This function categorizes the error and selects a relevant error status and
message. Then, the function sends the response object to the client.

4.4.2.2 Python files

Some of the functions that are contained in the route handlers module are de-
pendent on a python model, which includes a list of python modules. In this
section we explain the functionality of these modules, and leave the node.js-
python communication for the implementation section.

In general, the python modules are used for the interaction with the HDF
files. As explained in chapter 2.3, the HDF contains multidimensional datasets
that are saved in the filesystem. But in order to make use of this data, we
must first convert it from this format into floats. The purpose of the python
modules is to accomplish exactly that. We present each of these modules
below.

getHDFContent This python script is searching for all dataset arrays inside
an HDF file, and returns their metadata. The script receives the name of
the HDF file as an argument. Then the function recursively searches all the
possible paths inside the file and locates the datasets. The module retains
information about each dataset name, shape, size and number of dimensions.
This metadata info is crucial for the framework, and it’s necessary for its
functionality.

getHDFArray This script is responsible for returning a chunk of a specific
dataset. In order to do that, the module receives a number of arguments,
such as the array path, and some state properties. These are used to specify
which part of the -usually big- dataset, must be returned. Also, if the dataset
is three-dimensional, an extra parameter is sent to declare which dimension’s
value is to be used.

getHDFPlot The last script is developed to return a chunk of a dataset
which is presented in a plot. It is similar to the getHDFArray script, with the

Chapter 4. Design 35

exception of the zoom functionality and the sampling method. In the getH-
DFPlot module, a maximum size of a chunk is defined, and based on that, a
sampled part of the requested dataset is returned. If the dataset is small in
comparison with the maximum size of a chunk, the sampling frequency is
high. In another case, the sampling frequency is low.

The problem with this method is that if the sampling frequency is low,
it is impossible to detect details of the dataset. Thus, extra parameters are
included, that determine which part of the dataset must be returned.

In route handlers module a list of functions, which use the python model,
is defined. Thus, the route handlers model is dependent on the python model
we described. The basic functionality of these methods is to call the python
scripts, parse their results and return it to the next function, respectively.
These functions also check for errors that may occur in the python scripts.

4.4.2.3 Routes

This module is almost exclusively responsible for the communication be-
tween server and clients. It’s the model which receives the request, dis-
tributes it in the corresponding operation and sends the final result back to
the client. The routes model implements the RESTful parser, as described in
chapter 2.5. It includes all the routes which are crucial for the framework’s
functionality. The model is customizable by many other modules, such as
defender, session, the NoSQL access module, route handlers etc.

Routes module combines different operations to achieve its own func-
tionality. The core requirement module is the route handlers, from which it
receives the result that is in many cases ready to be sent to the client. Routes
is a middleware module, meaning that it mediates in the execution of ev-
ery request between itself and the respond object that is about to be sent to
the user. Furthermore, the defender model is a middleware module which
precedes the execution of the routes module, and is analyzed below.

4.4.2.4 Defender

The defender module is responsible for the authentication and authorization
of the framework’s users. Because of the model’s middleware functionality,
for each request the server receives, the defender module is executed to en-
sure the framework security. In order to achieve that, the system checks if

Chapter 4. Design 36

the user who sent the request is identified, a procedure which is called au-
thentication. Then, the framework implements an authorization check, that
is to check if the same user is allowed to send the current request. In case that
any of the above operations are not successful, the user access in the system
is denied.

The authentication process, although vital for the system, comes at a great
cost, because of the constant user identification check with the database.
Thus, the framework implements the session management through cookie
parsing. During that process, the user logs in the system for the first time, and
then receives a cookie which contains all his credential information. From
then on, in each future request, the user sends back the cookie in the frame-
work for identification. In this way, the system ensures both security and low
cost in database access.

4.4.3 User interface

Up until now, we have only examined the back end module of the frame-
work. The user interface module is the front end layer of the three-tier ar-
chitecture, as described in chapter 2.7. The addition of this module in the
already described framework functionality, completes the architecture com-
ponent which is related to the communication between server and client.

The user interface module is developed in such a way, that it implements
the single page application architecture (see chapter 2.2). This means that in
the initialization of the communication between server and client, the client
receives all the required resources for the framework operation. These in-
clude all the web complaint resources, including HTML5, CSS3 and javascript.
From this point on, there is no page reload or further code execution. All
subsequent requests are asynchronous (ajax) and the data retrieved from the
server are in JSON form.

In our framework we used the model driven approach for the front end,
in the same way we developed the back end. We developed models which
contain generic code, and can be customized by other models. In this way, we
created components which have specific functionality, are reusable and are
utilized in different parts of the user interface. This ability is very important
for the client, since by its nature it contains several parts that are used in
multiple cases, such as html elements.

Furthermore, all front end components are implemented in such a way
so that we can extend them, meaning that we can add extra functionality.

Chapter 4. Design 37

Hence, we can anytime add a new component which corresponds to a spe-
cific server functionality.

The model driven approach on the client’s side is not as simple to imple-
ment, as in the back end, because there is not available infrastructure which
assists in this case. In order to achieve that, we used specific libraries to
implement the model driven architecture. We deepen in the front end’s im-
plementation in the next chapter.

38

Chapter 5

Implementation

In this chapter we describe the framework and application implementation.
We refer to the technologies we used and their interaction. In some cases
we cite some crucial code chunks and explain them. Initially, we describe
the REST API and we analyze its contents. After an extensive illustration of
the back end tier of the framework, we emphasize in the front end, where
we mention the used technologies and their implementation. Alongside the
front end description, we present some fragments of front end use cases.

5.1 General JavaScript practices and patterns

In the framework we developed, we make use of javascript in both front and
back end. This programming language uses asynchronous logic, which takes
place through the usage of asynchronous callback functions. A callback func-
tion, also known as a higher-order function, is a function that is passed to an-
other function (e.g "first") as a parameter, and the callback function is called
(or executed) inside the first function. A callback function is essentially a pat-
tern (an established solution to a common problem), and therefore, the use of
a callback function is also known as a callback pattern. The execution of the
first function does not block the execution of the rest of the program com-
mands. The execution of the callback function begins, when the execution
of the first function is completed. An example of node.js callback function
pattern can be seen in figure 5.1.

In our framework, the callback functions are used constantly, so that the
design and implementation are transformed accordingly. As a convention,
all the callback functions receive as arguments two objects, the error and the
result object. Before the execution of the callback function, in case an error
occurs, the execution stops and the error object is passed to the callback. The
result object is undefined. If no errors occur, the error object is undefined and
the result object contains the function outcome. Following we describe two

Chapter 5. Implementation 39

(A) Example of a callback function (B) Example of the callback pattern

FIGURE 5.1: Callback examples

design patterns, which are based in callback functions and are heavily used
in the framework implementation.

5.1.1 Closures

Javascript is an object oriented language and was created to perform well in
any platform. Thus, it has many ways of defining certain structures, such as
constructor functions. In our framework, we define our constructors through
the closure design pattern. Closures fully implement a constructor function-
ality.

Generally, a closure in javascript is a function. This function receives ar-
guments that initialize its state. The function body defines contents, such as
variables, objects and other functions. Finally, the function returns, or ex-
poses in the rest of the framework, only what is necessary. This may include
also variables, objects and functions. Anything that is not returned, is de-
fined as private. An example of this pattern is shown in figure 5.2.

5.1.2 Thunks

The thunk pattern has a similar structure with closure, but it’s used in a dif-
ferent way. Basically, it’s a function which returns another function. The
interesting part is that the execution of the first function does not imply the
execution of the second. In this way we define "lazy" functions, that is meth-
ods which are scheduled to execute but don’t until they have to. Thus, asyn-
chronicity is encapsulated, aiding composability and avoiding the "callback
hell" problem. This problem is caused by the generation of large sequences

Chapter 5. Implementation 40

FIGURE 5.2: Example of a closure function

of nested callback functions, which is considered a bad design practice and
creates debug problems. An example of the thunk pattern is shown in figure
5.3.

FIGURE 5.3: Example of a thunk function

Chapter 5. Implementation 41

5.2 Back End implementation

In this section, we focus in the back end implementation of the framework.
Initially we present the REST API and then we describe the development
stages of the framework modules. We emphasize in the technologies used
and their in between communication (interoperability).

5.2.1 REST API

An important part of the back end framework implementation is the devel-
opment of the REST API, which is achieved through routing. Routing refers
to determining how an application responds to a client request for a specific
endpoint, which is a URI (or path) and a specific HTTP request method (GET,
POST, PUT or DELETE). Each of our routes has different handler functions
which are executed when the route is matched. The route handler functions
use the information which is given to them through the request, and after the
execution of internal operations, return a response object to the client.

The response object has a concrete structure and includes all the required
information. Among other things, it contains the status code and the result
data. Generally the content of the response object is determined by the re-
quest method and the success of the operation (error handling is described
thoroughly in chapter 5.4.3). The structure of the response object implements
the JSON format.

Following we present all the routes for each model entity seperately. For
some of them we describe their corresponding handlers.

URI method
/login GET

/logout GET
/isauthenticated GET

TABLE 5.1: Authentication URI’s

The routes of the table 5.1 are used by the framework for the authentica-
tion of the users. The login route checks whether the client’s credentials exist
in an instance of the users model of the database. If the client is identified,
a positive confirmation is sent to the user, while at the same time a session
cookie is saved (session management is described in chapter 5.2.3). Other-
wise, the server’s response is negative. The logout route disconnects the user
from the framework and its corresponding session cookie is deleted from the

Chapter 5. Implementation 42

database. The last route is used from the framework to check if the user is
already authenticated. If this event occurs, the authentication step is skipped.

Users Table 5.2 presents the routes which concern the users model. The
POST method is responsible for the creation of new user instances. It checks
whether all fields have a value and, the username and email properties are
unique. The figure 5.4 presents the structure of a User instance. The GET
method returns the user instance information and the projects in which he
participates. The PUT and DELETE methods are used for their correspond-
ing functionalities.

Model URI method
Users /users/?id={user_id} GET
Users /register POST
Users /users/?id={user_id} PUT
Users /users/?id={user_id} DELETE

TABLE 5.2: Users URI’s

FIGURE 5.4: Example of a User instance

Projects The Project model REST API is presented in table 5.3. The POST
method is used for the creation of project model instances. The figure 5.5
presents the structure of a Project instance. The GET method searches out
for a specific project and its elements. Then the datasets and posts which
are related to the projects, are returned along with the project information.
The join route is responsible for the addition of project members. In order
to implement it, an update of the ACL property of the project instance takes
place.

Datasets The routes of the table 5.4 are developed for the Datasets model.
A general analysis of the dataset save and retrieval management is described

Chapter 5. Implementation 43

Model URI method
Projects /projects/?id={project_id} GET
Projects /projects POST
Projects /projects/join/?id={project_id} GET

TABLE 5.3: Projects URI’s

FIGURE 5.5: Example of a Project instance

Chapter 5. Implementation 44

in chapter 4.4.2.2. The GET method returns the contents of an HDF file. The
POST and DELETE methods are responsible for the creation and deletion
of a dataset, respectively. The list route returns a list of datasets, which are
contained in a project. Also, the grid route returns a chunk of an array, which
is located inside a dataset, in order to present it to the client.

Model URI method
Datasets /datasets/?id={dataset_id} GET
Datasets /datasets POST
Datasets /datasets/list/?id={dataset_id} GET
Datasets /datasets/grid/?id={dataset_id} GET
Datasets /datasets/?id={dataset_id} DELETE

TABLE 5.4: Datasets URI’s

Posts Table 5.5 presents the routes which are related to the posts model.
All the methods are used for the corresponding functionalities. The figure
5.6 presents the structure of a Post instance.

Model URI method
Posts /posts/?id={post_id} GET
Posts /posts POST
Posts /posts/?id={post_id} UPDATE
Posts /posts/?id={post_id} DELETE

TABLE 5.5: Posts URI’s

Plots The Plot model REST API is presented in table 5.6. All the methods
are used for the corresponding functionalities. The figure 5.7 presents the
structure of a Plot instance.

Model URI method
Plots /plots/?id={plot_id} GET
Plots /plots POST
Plots /plots/?id={plot_id} DELETE

TABLE 5.6: Plots URI’s

5.2.2 NoSQL Access Management

In chapter 4.4.1 a thorough description of the design of the NoSQL access
module is presented. In this chapter we mention the technologies we used
and the implementation of this module.

Chapter 5. Implementation 45

FIGURE 5.6: Example of a Post instance

FIGURE 5.7: Example of a Plot instance

Chapter 5. Implementation 46

A standard library we use in this module is Mongoose.js. This library of-
fers a schema based solution in the modelling of the database for node.js. It
grants complete CRUD operations which we use in data access object mod-
ule. These operations are developed as callback functions, so the execution of
the function does not stop the code flow. When the execution of a CRUD op-
eration is completed, a callback function is called. Also, the data communica-
tion between the internal modules and the mongoose library is implemented
through javascript objects.

5.2.3 Security Management

In chapter 4.4.2.4 we present the general idea of the security design. Here
we describe how these modules are combined to implement the security ob-
jective. The technologies we use are presented too. Initially, we introduce the
passport javascript module, which has the key role in session management.

Passport is a node.js library which is used for the user authentication.
When a user logs in the framework, the library creates a cookie object which
is saved in a database collection. Furthermore, it embodies this cookie in
the respond object, which is sent to the client. This operation is called seri-
alization. The client saves the cookie object and sends it back to the future
requests. When the user logs out or a certain amount of time has passed
without connecting to the system, the passport library deletes the user cookie
from the database. This operation is called deserialization. The framework
ensures the correct communication between the login- logout routes and
their corresponding handlers, the passport library and the database collec-
tion.

The defender middleware module combines the authentication/session
management functionality we described above, with the authorization func-
tions that are introduced in the noSQL access module. Initially, the system
investigates if the request object includes the required cookie, so that the au-
thentication can be completed. If the operation succeeds, the request object
URI is examined. With some exceptions, the URI’s first part corresponds to
one of the models the database provides. Also, the request method must be
one of GET, POST, UPDATE or DELETE.

The last part of the security module is the authorization investigation of
the framework. As mentioned in chapter 4.4.1, the functionality of the per-
missions model includes functions which investigate permissions of a model
instance. At this point we use isAllowed and isAllowedCreate functions to

Chapter 5. Implementation 47

check if the request is allowed to proceed. If the examination is successful,
the middleware operation is completed and the routes module is called. In
all situations that the check fails, the access is denied for the user and a cor-
responding status code is returned (401 if not authenticated and 403 if not
authorized).

5.2.4 Python - Node.js Interoperability

As aforementioned in chapter 2.3, HDF is an essential ingredient of the
framework for storing multidimensional datasets. The HDF library is de-
veloped in C/C++, which constitutes it as foreign code to our framework.
Firstly we studied ways of embedding foreign code in node.js. An option
for establishing inter-processing communication (IPC) is over Standard In-
put/Output (STDIO), available in all major operating systems.

Although an opensource project which exposes the HDF functionality di-
rectly to node.js exists, we observed prohibitive inefficiencies in its imple-
mentation. Thus, we set upon a more mature python implementation, the
h5py. A module responsible for sending messages from our framework to
h5py, and inversely, was developed. The rest of this section is dedicated to
the way this module operates.

Node.js includes a spawn functionality of the child process module, which
allows invocation of external processes, parameterized by arguments. The re-
sults of the python execution are manipulated by the event listener, returned
by the child process. The controller listens for the data and error events. In
case of an error, a new error object is propagated, while in the opposite case
the result is parsed.

We use the included python’s JSON library, which enables easy informa-
tion parsing to a javascript object. Via the STDOUT buffer, all the results are
serialized and accessed from javascript. We design a communication proto-
col between python and node.js, for the customization of the script functions.
Python executes the corresponding commands, returning successful results
or potential errors.

5.3 Front End Implementation

In this section we continue with the description of the front end part of the
implementation. While initially we investigated different framework options
for the client tier, we ended up using pure javascript. We considered overkill

Chapter 5. Implementation 48

the usage of a large framework for our requirements. This way we pursued
the better understanding of javascript’s front end functionality. In addition, it
is important to point out that the lack of context switching aids productivity,
when using javascript end to end. We were satisfied with the usage of small
libraries, whenever it was necessary.

A fundamental characteristic of our framework’s front end is the single
page application design approach, as explained in chapter 2.2. According to
this architecture, all the essential code is retrieved in the front end in a sin-
gle page load. Then, the communication between client and server is based
entirely in ajax requests (see chapter 3.2.3.3). In order to implement this ap-
proach, we used a library called browserify. This library offers the ability to
require files, as node.js uses it. Then it scans and finds all the files which use
the require functionality and bundles them in one file, so it can be sent to the
client.

This functionality solves many of our problems. Firstly, it’s not vital any-
more to write all the files inside script tags in the html files one by one, based
on the dependency and execution order. But the great advantage is that a
corresponding model of the back end is implemented in the front end part of
the framework. Thus, a model hierarchy, which includes modules that can
be combined and reused, is defined. In this way, a model driven software
development design approach is adopted by the client.

5.3.1 Code organization and content

Figure 5.8 represents the general internal structure of the client files. The
front end makes use of an approach corresponding to the server and the
node.js implementation through the utilization of the node package man-
ager. The package.json file contains vital information for the client network,
such as library dependencies, different environment execution scripts etc.
The main.js file is the first file to execute, by starting the client’s initializa-
tion.

The components folder includes, among others, all the modules which are
executed according to the corresponding user choices. Figure 5.9 represents
one of these components. It contains submodules responsible for the creation
of the appropriate elements. Event handlers modules are also included, in or-
der to manage the functionality of elements, e.g a button. Finally, the compo-
nent utilizes a module, the purpose of which is the exchange of information
between server and client, established via ajax requests.

Chapter 5. Implementation 49

FIGURE 5.8: Client structure tree

FIGURE 5.9: Post component structure tree example

Chapter 5. Implementation 50

The communication between the components is secured through the de-
pendencies.js file. This file is received as a parameter in all the components
of the client, in order to become available in any case. When the service of a
component is terminated, the user interface’s content is removed in order to
execute another component, which is available through the dependencies.js
file.

html.js This file is developed to define the front end basic operations, which
are related to the html functionality. Starting from core javascript meth-
ods, such as createElement or addEventListener, we developed a wrapper
adapted to our purpose. The functions create, mountTo and addListenerTo
are exposed from this file to the front end and are used constantly in all com-
ponents.

5.3.2 Plot generation with C3.js

Plot generation is an essential service of the developed application. In com-
bination with the HDF functionality in the back end, we created a service,
through which the users upload their datasets and can visualize them with
plots. C3.js is a javascript library, wrapper of D3.js - the core of data visu-
alization tools. This library offers the ability to create simple and minimal
diagrams, and supports all simple plot types.

In order to generate a plot, the arithmetic data must be received and the
corresponding configuration must be implemented. The client receives the
arithmetic data and the matching metadata in JSON format. After those
are parsed, the arithmetic data are prepared for plotting, via the C3 library.
The metadata contain useful information, such as the plot type, by means of
which we may present our data.

This library allows us to update the visual plot, which is incredibly useful
in front end time saving. Thus, even before the data are received by the client,
the corresponding plot presenting process has already started with empty
data input. When the data arrive, the plot updates and it is not necessary to
create it again. In addition, this logic offers a more smooth experience for the
user.

Chapter 5. Implementation 51

5.4 Specific framework operations

In this section we present some parts of the framework which combine the
usage of both front and back end.

5.4.1 Plot presentation - Zoom functionality

In chapter 4.4.2.2 we presented the python scripts which are responsible for
the HDF dataset retrieval in JSON format. But how does the plot presentation
and zoom functionality operate?

FIGURE 5.10: Plot presentation mechanism

Figure 5.10 presents the actions that must be made inside the framework
in order to show a plot to the user. Initially, the user requests the plot display.
The front end sends a request, which contains the GET method and the /plot
URI, to the corresponding route, along with the specific plot ID. After it is
received, the server searches the database for the plot instance and retrieves
the related metadata. Following, node.js spawns a new process which exe-
cutes the getHDFPlot script. This script fetches the HDF file, which contains
the plot data, and returns these data in JSON format. Finally, the server is
ready to send the result to the client.

To activate the zoom functionality, the user may use the drag and drop
mouse technique, to select the first and last point in which he focuses. The
corresponding values are sent along the next request as parameters to the
server. The procedure is repeated under the condition that the sampling fre-
quency is calculated based on the parameters distance. The plot which is

Chapter 5. Implementation 52

presented to the user is focused in these specific points. Figure 5.11 presents
the user interface result before and after the zoom.

(A) A plot without zoom

(B) A plot with zoom

FIGURE 5.11: A plot before and after the zoom

5.4.2 Upload functionality

FIGURE 5.12: Upload mechanism

Figure 5.12 shows the procedure of uploading an HDF file to the frame-
work. Firstly, the file uploads in the browser. Then, the file along with its
metadata is sent to the server with a POST method, possibly in chunks of
data. Next, the server checks for the file content, and then saves the HDF

Chapter 5. Implementation 53

file in the filesystem, as explained in chapter 4.4.2.1. Finally, the file meta-
data with the unique new filename are saved as a Dataset instance inside the
database.

5.4.3 Error Handling

A very important aspect of the framework is the way through which the sys-
tem handles its errors. In general, exceptions are divided in two major cate-
gories: those that are created by the client’s wrong behaviour, and those that
occur from poor software design, also known as bugs. The process by means
of which the framework is managing its errors or exceptions of the system, is
called error or exception handling. In a framework environment a developer
must foresee all the possible exceptions that may occur and provide a han-
dling solution for all of them. The framework must be designed accordingly,
by creating a general way of exception handling.

We designed the framework in a way that the handling of an exception
happens in the regular flow of the code execution, and not inside a callback
function. It is a bad practice to handle the error inside a callback function
because the stack trace is lost. We handle the exceptions that occur in the
routes and defender modules. All errors are sent with the corresponding
status code to the front end.

Each time a request to the server is sent by the client, an error check is ex-
ecuted in the response object, in order to handle possible errors. During this
check, a potential error is categorized based on the status code, and handled
accordingly. In most cases a flash message shows up, but in case of a server
error, the error page is presented.

We pursued the minimization of the number of possible exceptions which
occur from the client’s wrong behaviour. In order to achieve that, we added
in the front end specific conditions, validation restrictions etc, so that it be-
comes difficult to occur. Also, we implemented a similar logic in the back-
end.

5.5 Application Presentation

In this section we briefly present the demo application we created via our
framework. Below we show some aspects of the application.

Chapter 5. Implementation 54

(A) Login page (B) User home page

(C) Create new project page (D) Project contents page

FIGURE 5.13: First pages of the application example

Chapter 5. Implementation 55

(A) Whole post page (B) Create new dataset page

(C) Create new post page (D) Create new plot page

FIGURE 5.14: Some more pages of the application example

(A) Dataset contents page (B) Plot contents page

FIGURE 5.15: Dataset and plot contents

56

Chapter 6

Performance Evaluation

In this chapter we describe the environment and the test scenarios we imple-
mented in order to record the performance of our system. In table 6.1 we
present the characteristics of the server which we use in our tests.

The capacity of the server’s RAM is 8 GB. The operating system we se-
lected for our tests is Debian 8 (Jessie) release. We used two different tools
for the benchmarking of our system’s performance. The first tool is the ab
Apachee HTTP server benchmarking tool, that enables us to send multiple
requests per second with fixed number of total requests. The second tool
we used is the wrk, which allows us to send concurrent requests for a spe-
cific amount of time with timeout adjustment. With the aid of these tools we
implemented two test scenarios, the results of which are presented below.

6.1 Testing Efficiency in Concurrent Requests

In the first test we selected some indicative server routes for measurement.
In order to measure their performance, we select a predefined number of
requests to be sent to the server, changing the number of concurrent requests
in each iteration. The criterion of the server’s performance is the total time

Architecture x86_64
CPU op-mode(s) 32-bit, 64-bit

Byte Order Little Endian
CPU(s) 8

On-line CPU(s) list 0-7
Thread(s) per core 1
Core(s) per socket 4

Model 23
Model name Intel(R) Xeon(R) CPU,X5450,@ 3.00GHz

TABLE 6.1: Server characteristics

Chapter 6. Performance Evaluation 57

for the response of all the requests. The smaller the time, the better. The
results are presented in figure 6.1.

As we notice all the subfigures follow a specific pattern. Initially in all the
subfigures the total time for the response of all the requests is considerably
higher, compared to the following values of the diagrams. This is due to
the low initial concurrency, which causes a delay until the requests are sent.
That is, there is a lot of unused server-side processing power. In the case
that "c=1", each request is sent after the completion of the previous sending,
which explains the relatively high initial values.

Following, we observe in all the diagrams a stabilization of the total time
of serving the requests, as the "c" increases. This is partially due to the ade-
quate load the stress tool provides, so that there is no delay of the sending of
the requests, but also because the server has enough time to respond without
any delay.

At the end of the subfigures we notice that the total time for serving the
requests starts to increase gradually. The reason is that the number of concur-
rent requests sent by the ab tool is now too high to be served by the server,
and this is the cause of the delay.

We observe significant differences between the values of the diagrams,
the most important being in the routes where python is used. To execute
these routes, new child processes must be spawned. As the number of the
concurrent requests increases, the spawned child processes oversaturate the
function of the server. This is how the higher time values in serving the
requests are explained.

6.2 Testing Timeout Errors in Concurrent Requests

The basic characteristic of the second test scenario is the timeout value. A
timeout occurs when the server fails to serve a request in a specific time pe-
riod from the moment it was sent. In this test we set a relatively small timeout
limit of two seconds and define each iteration in ten seconds per concurrency
value. Gradually we raise the concurrency value and we calculate the num-
ber of served requests per second. The test scenario is finished when the first
timeout error occurs. The results are presented in figure 6.2.

We notice that the routes that use spawned python child processes serve
far less requests per second, as expected. Additionally, these routes cause
far sooner timeout errors. On the contrary, the rest of the routes serve many
more requests per second and delay the occurence of timeout errors.

Chapter 6. Performance Evaluation 58

(A) GET users route experiment

(B) POST projects route experiment

(C) GET datasets route experiment

(D) GET plots route experiment

FIGURE 6.1: Total time for all requests / number of concurrent
requests figure

Chapter 6. Performance Evaluation 59

(A) Example requests

(B) Example requests using python

FIGURE 6.2: Requests per second / number of concurrent re-
quests

60

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In the scope of this diploma thesis we designed and implemented a back
and front end framework, globally developed in javascript, using the model
driven software development approach. The framework provides entity to
model mapping features, RESTful web service, data access object and CRUD
operations for each model. The system utilizes a custom access control list
module for user authorization. Also, the framework implements a method,
which represents multidimensional HDF files in plots, in an efficient and in-
tegrated way. The front end tier of the framework utilizes the single page
application design approach.

In order to present the framework, not only as an idea but also as an im-
plemented concept, we designed and developed a demo application. The
application’s objective is the creation of user networks, in order to manipu-
late and visualize multidimensional datasets. Following we present the main
advantages of our framework.

Extensibility The framework follows the principles of model driven soft-
ware development architecture, so that any extra operation can be added,
either within the context of an already developed service or as a new func-
tionality, with a few lines of code. For example, an extra entity model or a
route method may be easily added into the system.

No context switching The framework is developed mainly in javascript.
Since only one programming language must be learned in order to evolve
the current framework, the developer’s productivity is increased. Especially
the front end tier was developed exclusively in pure javascript from scratch,
without the usage of a large framework.

Chapter 7. Conclusions and Future Work 61

7.2 Future Work

The way in which the framework is designed and implemented, offers us the
potentiality of functionality extension in the future. Below we mention some
possible extensions.

Server clustering A single instance of Node.js runs in a single thread. To
take advantage of multi-core systems, the user will sometimes want to launch
a cluster of Node.js processes to handle the load. The node.js cluster module
can be used to utilize this functionality, so that the system scales on full load.

Mongodb replication and sharding Sharding complications and replica-
tion fault tolerance will be studied in the future to optimize scalability.

Alternative methods in existing functionalities The framework function-
ality can be expanded in current operations. Upload file formats may be
added (i.e csv files), in order to be converted and saved in the framework
filesystem. Also, we can use different methods in plot sampling, such as
mean values.

Image extraction for usage outside the system Right now the interaction
between system users and no users is not possible. In the future, extra fea-
tures, such as exporting plots in jpg format to share with users outside the
application, may be added to solve this problem.

62

Bibliography

[1] Douglas Crockford. JavaScript: The Good Parts: The Good Parts. " O’Reilly
Media, Inc.", 2008.

[2] Douglas Crockford. “The application/json media type for javascript
object notation (json)”. In: (2006).

[3] Roy Fielding et al. “Hypertext transfer protocol–HTTP/1.1, 1999”. In:
RFC2616 (2006).

[4] Jesse James Garrett et al. “Ajax: A new approach to web applications”.
In: (2005).

[5] HDF Group et al. “Hierarchical data format, version 5”. In: (2014).

[6] W3C Working Group, W3C Working Group, et al. Web services architec-
ture. 2004.

[7] Stephen W Liddle. “Model-driven software development”. In: Hand-
book of Conceptual Modeling. Springer, 2011, pp. 17–54.

[8] David Sawyer McFarland. CSS3: the missing manual. " O’Reilly Media,
Inc.", 2012.

[9] Michael S Mikowski and Josh C Powell. “Single page web applica-
tions”. In: B and W (2013).

[10] Mark Pilgrim. HTML5: Up and Running: Dive into the Future of Web De-
velopment. " O’Reilly Media, Inc.", 2010.

[11] Ariel Ortiz Ramirez. “Three-tier architecture”. In: Linux Journal 2000.75es
(2000), p. 7.

[12] IZ Schlueter. “The node package manager and registry”. In: URL: https://www.
npmjs. org ().

[13] Robert W Shirey. “Internet security glossary, version 2”. In: (2007).

[14] Inc Sun Microsystems. “Core J2EE Patterns - Data Access Object”. In:
(2001-2002).

[15] Stefan Tilkov and Steve Vinoski. “Node. js: Using JavaScript to build
high-performance network programs”. In: IEEE Internet Computing 14.6
(2010), pp. 80–83.

	Abstract
	Acknowledgements
	Introduction
	Overview
	Outline

	Background
	Models and Model Driven Software Development
	Data Access Object
	Access Control List
	HTTP
	HTTP session
	Request methods
	Status Codes

	Representational State Transfer
	Client-server architecture

	Application Programming Interface
	Three-tier Architecture
	Single Page Application
	Hierarchical Data Format
	Data Model

	Related Work and Technologies Used
	Related Work
	Plotly
	Loopback

	Technologies Used
	HTML5
	CSS3
	Javascript
	Node.js
	JSON
	Ajax
	Node Package Manager

	NoSQL Database
	MongoDB

	Design
	Framework Design
	Application description
	Model Driven Approach and Module Extensibility
	Framework Modules
	NoSQL access
	Entities
	Data Access Object/ CRUD
	DbOperations
	Permissions

	Main server
	Route Handlers
	Python files
	Routes
	Defender

	User interface

	Implementation
	General JavaScript practices and patterns
	Closures
	Thunks

	Back End implementation
	REST API
	NoSQL Access Management
	Security Management
	Python - Node.js Interoperability

	Front End Implementation
	Code organization and content
	Plot generation with C3.js

	Specific framework operations
	Plot presentation - Zoom functionality
	Upload functionality
	Error Handling

	Application Presentation

	Performance Evaluation
	Testing Efficiency in Concurrent Requests
	Testing Timeout Errors in Concurrent Requests

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

