

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΟΡΥΚΤΩΝ ΠΟΡΩΝ ΕΡΕΥΝΗΤΙΚΗ ΜΟΝΑΔΑ ΓΕΩΛΟΓΙΑΣ ΤΕΚΤΟΝΙΚΗ, ΣΤΡΩΜΑΤΟΓΡΑΦΙΑ, ΓΕΩΛΟΓΙΑ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Μελέτη κατανομής ιχνοστοιχείων σε λειμωνίτες του Φυλλιτικού Καλύμματος της δυτικής Κρήτης

ΜΑΝΔΥΛΑΡΗΣ ΘΕΟΔΩΡΟΣ

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ

Μανούτσογλου Εμμανουήλ, Καθηγητής (επιβλέπων) Αλεβίζος Γεώργιος, Αναπληρωτής Καθηγητής Καλλίθρακας – Κόντος Νίκος, Καθηγητής

Χανιά, Φεβρουάριος 2017

Η έγκριση της παρούσας διπλωματικής εργασίας από το Πολυτεχνείο Κρήτης, δεν σημαίνει αποδοχή των απόψεων του συγγραφέα (Νόμος 5343/1932, άρθρο 202)

		Περιεχόμενα	
EY	ΧΑΡΙΣΤ	ΈΕΣ	iii
ПЕ	ΡΙΛΗΨΙ	ł	4
KA	ΤΑΛΟΓ	ΌΣ ΕΙΚΟΝΩΝ	5
KA	ΤΑΛΟΓ	ΌΣ ΠΙΝΑΚΩΝ	8
1	ΕΙΣΑΓ	ΩΓΗ	9
2	Γεωλογ	/ική επισκόπηση	9
2	2.1 Γε	ωλογικό περίγραμμα της Κρήτης	13
	2.1.1	Γεωλογικό περίγραμμα της ευρύτερης περιοχής μελέτης	15
	2.1.2	Ιστορική αναδρομή για το μεταμορφωμένο σύστημα της Κρήτης	15
	2.1.3	Παραμόρφωση	34
	2.1.4	Παλαιογεωγραφική εξέλιξη	36
3	Γενικά	περί σιδηρομεταλλευμάτων	37
4	Κοιτασ	ματολογική αναγνώριση του νομού Χανίων	50
	4.1.1	Μεταλλεύματα σιδήρου	52
	4.1.2	Μεταλλεύματα χαλκού	59
	4.1.3	Μεταλλεύματα μαγγανίου	64
5	Μεθοδ	ολογία και θεωρητικό υπόβαθρο μεθόδων	64
6	Παράθ	εση αποτελεσμάτων	69
7	Θεωρη	τικά για την κοιτασματογένεση	76
	7.2	Νεότερες ονοματολογίες μαγματικά συνδεόμενων μεταλλοφοριών	82
8	Απόψε	ις σχετικά με τη δημιουργία των εμφανίσεων μετάλλων στην Δ. Κρήτι	ງ84
9. X	Ευμπερά	σματα	86
7	Βιβλιο	γραφικές αναφορές	88
Пα	ράρτημα	Ι Φωτογραφίες από εργασίες πεδίου	91

Παράρτημα ΙΙ Φωτογραφίες στιλπνών τομών	97
Παράρτημα ΙΙΙ - Ακτινοδιαγράμματα	109
Παράρτημα IV – Φωτογραφίες δειγμάτων	127
Παράρτημα V δεδομένα αναλύσεων EDXRF	128

ΕΥΧΑΡΙΣΤΙΕΣ

Καταρχήν θα ήθελα να ευχαριστήσω τον Καθηγητή του Πολυτεχνείου Κρήτης, κύριο Μανούτσογλου Εμμανουήλ για την εμπιστοσύνη που μου έδειξε αναθέτοντάς μου την συγκεκριμένη εργασία αλλά και για την καθοδήγηση, την επίβλεψη, την ηθική και πολύτιμη υποστήριξη που μου παρείχε καθ' όλη την διάρκεια εκπόνησης της. Επίσης τον αναπληρωτή καθηγητή κ. Γεώργιο Αλεβίζο για την προσφορά του στην επεξεργασία των XRD δεδομένων αλλά και την μικροσκοπική ανάλυση των δειγμάτων. Τον καθηγητή κ. Νικόλαο Καλλίθρακα για την ουσιαστική συμβολή του στο θεωρητικό και πρακτικό κομμάτι των χημικών αναλύσεων με τη μέθοδο EDXRF. Τον Δρ. Στρατάκη για την έγκαιρη ολοκλήρωση των ακτινογραφημάτων των δειγμάτων. Τον κ. Αποστολάκη για την κατασκευή των στιλπνών τομών, και τέλος τους συνεργάτες του εργαστήριου εμπλουτισμού κ. Όλγα Παντελάκη και κ. Ευάγγελο Πετράκη για την πολύτιμη βοήθεια τους κατά την επεξεργασία των δειγμάτων στο εργαστήριο.

Σε μια πράξη ευγνωμοσύνης η εργασία αυτή αφιερώνεται στην οικογένεια μου και ιδαίτερα στη μητέρα μου την οποία και ευχαριστώ για την οικονομική, ανιδιοτελή και ανυπολόγιστη υποστήριξη της καθ'όλη τη διάρκεια των σπουδών μου.

ΠΕΡΙΛΗΨΗ

Το μεγαλύτερο τμήμα της Δ. Κρήτης δομείται από πολυφασικά τεκτονισμένα μεταμορφωμένα πετρώματα. Διαχρονικά, διάφοροι ερευνητές περίεγραψαν με διαφορετικές ονοματολογίες το σύνολο των μεταμορφωμένων αυτών πετρωμάτων ή ένα τμήμα του συνόλου αυτού, που παρεμβάλλονται μεταξύ του καλύμματος της Τρίπολης και παραυτόχθονης «ενότητας Κρήτης-Μάνης» (Plattenkalk)/Ομάδας Πλακωδών της Ασβεστολίθων ή/και της ενότητας Τρυπαλίου. Είναι επόμενο τα πολλά ονόματα αυτής της τεκτονοστρωματογραφικής ενότητας που περιέχει και μεταβασάλτες να έχουν προκαλέσει μια σύγχυση όσον αφορά το περιεχόμενο του όρου "φυλλίτες-χαλαζίτες". Εντός αυτού του «Φυλλιτικού Καλύμματος» υπάρχουν στον νομό Χανίων πέραν των διαφόρων εμφανίσεων και θέσεις με υπολείμματα ιστορικής μεταλλευτικής δραστηριότητας σιδηρομεταλλευμάτων και χαλκού.

Σκοπός της παρούσας εργασίας είναι μέσω δειγματοληψίας σε λειμωνίτες, λειμωνιτικές κρούστες, σιδηρομεταλλεύματα και θέσεις εμφάνισης χαλκούχων ορυκτών από περιοχές της δυτικής Κρήτης, εντός του Φυλλιτικού Καλύμματος η αναγνώριση και η διερεύνηση της κατανομής των κύριων ορυκτών, ορυκτολογικών φάσεων και ιχνοστοιχείων εντός αυτών, καθώς και η σύγκριση των αποτελεσμάτων της εργαστηριακής μελέτης με άλλες παλαιότερες. Σύμφωνα με τα στοιχεία αυτά επιχειρείται η κατανόηση της γενετικής προέλευσης και εξέλιξης των σιδηρομεταλλευμάτων και μεταλλευμάτων και μεταλλευμάτων χαλκού εντός του Φυλλιτικού Καλλύματος της Δ. Κρήτης και η σύγκριση με τα υφιστάμενα γενετικά μοντέλα από παλαιότερες έρευνες.

Abstract

The biggest part of W. Crete is structured by multiphase tectonic metamorphic rocks. Overtime, several researchers started describing the aggregate of these rocks or just part of them that are inserted between the cover of Tripoli and the para autochthonous "Crete-Mani unit" (Plattenkalk) / Group Plattenkalk and / or Tripali unit, with different nomenclatures. Therefore, the several given names to these tectonostratigraphic units that contain amounts of meta-basalt have fairly caused confusion concerning the scope of the term "phyllite-quarzite". In Chania, within the "phyllite-quarzite" unit exist, apart from different outcrops, sites with residues of historic iron ore and copper mining activity.

4

The purpose of this thesis is the identification and investigation of the distribution of the major minerals, mineralogical phases and minerals therein, and comparison of laboratory study results with older ones, through sampling in limonites, limonite crusts, iron ore deposits and outcrops of copper minerals from areas of W. Crete, within the "phyllite-quarzite" unit. According to the data, an attempt is made, to understand the genetic origin and development of iron ore and copper ore deposits in the "phyllite-quarzite" unit of W. Crete and the comparison with the existing genetic models from earlier surveys.

ΚΑΤΑΛΟΓΟΣ ΕΙΚΟΝΩΝ

Εικόνα 1. Χάρτης των γεωτεκτονικών ζωνών του Ελλαδικού χώρου. (Κατά Μουντράκη et al. 1983, από J.Mercier, J.Brunn, J.Aubouin et al., 1971).....10 Εικόνα 2. Σχηματικές τομές που αναπαριστούν την ορογενετική εξέλιξη των Ελληνίδων (Κατά Jacobshagen et al., 1978). Πιο συγκεκριμένα: a) Περίοδος Μέσου Μειόκαινου. Επώθηση των κεντρικών Ελληνικών καλυμμάτων (ζώνες Πίνδου, Παρνασσού, Πελαγονικής) πάνω στη ζώνη Γαβρόβου. b) Περίοδος Μέσου - Ανω.Ηωκαίνου. Κλείσιμο του ωκεάνιου χώρου της ζώνης Αξιού. Επώθηση των οφειολίθων από τη ζώνη Αξιού πάνω στην Πελαγονική. Αρχή της ιζηματογένεσης του εξωτερικού φλύσχη. Απόθεση της μολάσσας στην Μεσοελληνική αύλακα και την "αύλακα Αξιού". c) Περίοδος Ανωτέρου Ιουρασικού - Κατωτέρου Κρητιδικού. Βύθιση του ωκεανού της ζώνης Αξιού κάτω από την Περιροδοπική ζώνη και την Ελληνική Ενδοχώρα. Αρχική τεκτονική τοποθέτηση των οφειολίθων πάνω στην Πελαγονική και d) Περίοδος Μέσου - Ανω Ιουρασικού. Αύλακες και υβώματα μετά την περιροδοπική ορογένεση. ΑΙ = Αλμωπίας, C.R.B. = Περιροδοπική, G.T. = Γαβρόβου-Τρίπολης, Η = Ενδοχώρα, Ιο = Ιόνιος, Ρ = Πελαγονική, Ρα = Πάικου, Pe = Παιονίας, Ph = λεκάνη φυλλιτών, Pi = Πίνδου, Sb = Υποπελαγονική, T.O. = Σειρά Εικόνα 3. Τμήμα του γεωλογικού χάρτη της Ελλάδος σε κλίμακα 1:500.000. με κίτρινες και πράσινες

Εικόνα 6. Στρωματογραφική διάταξη των πετρωμάτων της ομάδας φυλλιτών-χαλαζιτών στη Δυτική
Κρήτη σύμφωνα με Krahl et al. (1982)26
Εικόνα 7. Στρωματογραφική διάταξη των πετρωμάτων της ομάδας φυλλιτών-χαλαζιτών στη Δυτική
Κρήτη σύμφωνα με Krahl et al. (1982)27
Εικόνα 8. Γεωλογικές τομές και οι αντίστοιχες θέσεις τους στην ομάδα φυλλιτών-χαλαζιτών στη Δυτική Κρήτη σύμφωνα με Krahl et al. (1983)
Εικόνα 9. Στρωματογραφικές στήλες σε διάφορες στην ομάδα φυλλιτών-γαλαζιτών στη Δυτική
Κρήτη σύμφωνα με Krahl et al. (1983)
Εικόνα 10. Συνθετική στρωματογραφική στήλη της ομάδας φυλλιτών-χαλαζιτών στη Δυτική Κρήτη
σύμφωνα με Krahl et al. (1983)
Εικόνα 11. Συνθετικό μοντέλο για την δομή της ομάδας φυλλιτών-χαλαζιτών στη Δυτική Κρήτη
σύμφωνα με Krahl et al. (1983)31
Εικόνα 12. Συνθετικό μοντέλο για την θέση της Ομάδας του Τρυπαλίου στο τεκτονικό οικοδόμημα
της Δυτικής Κρήτης σύμφωνα με Krahl et al. (1983)32
Εικόνα 13. Λιθολογική υποδιαίρεση του Φυλλιτικού καλύμματος κατά Dornsiepen και Manutsoglu
(1994)
Εικόνα 14. Σχηματικές συγκριτικές λιθοστρωματογραφικές στήλες των μεταμορφωμένων ενοτήτων
των εξωτερικών Ελληνίδων (Dornsiepen et al., 2001)34
Εικόνα 15. Παλαιοβαθυμετρική απεικόνιση των περιοχών απόθεσης. Κατά το Πέρμιο έως το Κάτω
Τριαδικό καταγράφηκε ένα προφίλ υποθαλάσσιας κρηπίδας έως λεκάνης, με μια Α/Δ φάση
συγχώνευσης στο βορειότερο όριο της Γκοντβάνα. Κατά το Άνω Τριαδικό επικράτησε
ομοιόμορφο περιβάλλον υποπαλλιροϊακής έως ενδοπαλλιροϊακής ζώνης (Dornsiepen et al., 2001)
Υπόμνημα παρόμοιο με αυτό της εικόνας 1437
Εικόνα 16. Εξέλιξη παραγωγής χάλυβα τις τελευταίες δεκαετίες (από Lu, 2015)
Εικόνα 17. Απόσπασμα από τον γεωλογικό χάρτη του Raulin 186943
<i>Εικόνα 18.</i> Απόσπασμα σκαρφήματος κοιτασματολογικού χάρτη της Κρήτης από την, από την αδημοσίευτη έκθεση του ΙΓΕΥ (Παπασταματίου 1952) 48
Εικόνα 19 Μεταλλογενετικός χάστης της Ελλάδας κλίμακας 1:1.000.000 (Ζάγος και Μαράτος 1965)
Εικόνα 20. Εμφάνιση λειμωνίτη κοντά στα παλιά μέτωπα εκμετάλλευσης
Εικόνα 21. Λίγα μέτρα από την είσοδο μιάς εκ των στοών με την πυκνή βλάστηση να είναι
ανυπέρβλητο εμπόδιο. Στο βάθος δεξιά εμφάνιση λειμωνίτη53
Εικόνα 22. Η θέση του ορυχείου στην ευρύτερη περιοχή του συνοικισμού Χλιαρό

Εικόνα 23. Η θέση στοάς εξόρυξης σιδηρομεταλλευμάτων στην απέναντι πλαγιά του ορυχείου
σιδηρομεταλλευμάτων στην περιοχή Χλιαρό. Έντονες εξαλλοιώσεις των μαρμάρων της Ενότητας
του Τρυπαλίου και σχηματισμός αγκεριτών και ραυβακών56
Εικόνα 24. Πανοραμική εικόνα του ορυχείου σιδηρομεταλλευμάτων στην περιοχή Χλιαρό56
Εικόνα 25: Σχηματική παράσταση των διαφόρου βάθους μαγματικών εστιών και των ζωνών
απόθεσης των αντίστοιχων κοιτασμάτων σε συνδυασμό με τις θερμοκρασίες σχηματισμού τους.
(Κατά Schneiderhorn από Μελιδώνη 1992)78
Εικόνα 26. Σχηματική τομή που δείχνει την κινηματική κατά το τελευαταίο στάδιο της ορογενετικής
διεργασίας στην περιοχή της Κρήτης (Κατά Kilia et al, 2002)
Εικόνα 27: Γεωτεκτονικός χάρτης της ευρύτερης περιοχής της Δ. Κρήτης και οι θέσεις των κύριων
ανενεργών μεταλλείων στον Ν. Χανίων. 1: Ραβδούχα, 2:Δρακώνα, 3: Χλιαρό, Σκινέ, Φουρνέ, 4:
Κακκόπετρος, 5: Καμπανού, Σκάφη87
Εικόνα 28: δείγμα ΚΑΡ1: Το μεγαλύτερο μέρος του δείγματος αποτελείται από γκαιτίτη97
Εικόνα 29: δείγμα ΚΑΡ1': δευτερογενούς προέλευσης μεταλλοφορία γκαιτίτη που συνοδεύεται από κρυπτομέλανα
Εικόνα 30: δείγμα ΚΑΡ2: αντικατάσταση του συνδετικού υλικού χαλαζία μέσω σιδηρούχων
μεταλλευμάτων υπό μορφή γκαιτίτη
Εικόνα 31: δείγμα ΚΑΡ2': συγκεντρωτικές επιφλοιώσεις γκαιτίτη κατά μήκος διάκενων
Εικόνα 32: δείγμα ΚΑΡ2'': μεταλλοφορία γκαιτίτη σε μορφή φλέβας
Εικόνα 33: δείγμα ΣΚ1: μερική αντικατάσταση συνδετικού υλικού μεταξύ των κόκκων από
σιδηρομετάλλευμα υπό μορφή γκαιτίτη100
Εικόνα 34: δείγμα ΣΚ1': μερική αντικατάσταση συνδετικού υλικού μεταξύ των κόκκων από
σιδηρομετάλλευμα υπό μορφή γκαιτίτη100
Εικόνα 35: δείγμα ΚΑΚ1: ολική αντικατάσταση συνδετικού υλικού μεταξύ των κόκκων από
σιδηρομετάλλευμα υπό μορφή γκαιτίτη
Εικόνα 36: δείγμα ΚΑΚ1': ζωνώδης εναλλαγή γκαιτίτη, κρυπτομέλανα
Εικόνα 37: δείγμα ΚΑΚ1'': εναλλαγή σιδηρούχων και μαγγανιούχων ορυκτών
Εικόνα 38: δείγμα ΚΑΚ2: μερική αφυδάτωση γκαιτίτη σε αιματίτη102
Εικόνα 39: δείγμα ΚΑΚ2':μερική αφυδάτωση γκαιτίτη σε αιματίτη103
Εικόνα 40: δείγμα ΚΑΚ2'': σιδηρουύχος και μαγγανιούχος μεταλλοφορία
Εικόνα 41: δείγμα ΣΚ2: συγκεντρωτικές επιφλοιώσεις γκαιτίτη
Εικόνα 42: δείγμα ΣΚ2': εμποτισμός σιδηρούχων διαλυμάτων υπό μορφή γκαιτίτη
μικροκατακλαστικών ζωνών104
Εικόνα 43: δείγμα ΣΚ2'': μεταλλοφορία γκαιτίτη105

Εικόνα 44: δείγμα ΔΡ1: γκαιτίτης	105
Εικόνα 45: δείγμα ΔΡ1': γκαιτίτης και χαλαζίας(τα φύλλα είναι μαρμαρυγίας)	106
Εικόνα 46: δείγμα ΔΡ1'': γκαιτίτης και χαλαζίας	106
Εικόνα 47: δείγμα ΔΡ2: εναλλαγές κρυπτομέλανα- γκαιτίτη	107
Εικόνα 48: δείγμα ΔΡ2': γκαιτίτης και κρυπτομέλανας	107
Εικόνα 49: δείγμα ΔΡ2'': γκαιτίτης και κρυπτομέλανας	108

καταλογος πινακων

1 **ΕΙΣΑΓΩΓΗ**

Τα εντυπωσιακά χρώματα ορισμένων μεταλλικών ορυκτών που απαντώνται στην επιφάνεια ή πολύ κοντά στην επιφάνεια της γης, όπως π.χ οι ένυδρες ανθρακικές ενώσεις του χαλκού αζουρίτης και μαλαχίτης, τα οξείδια του σιδήρου γκατίτης και λειμωνίτης κ.ά, προσέλκυσαν την προσοχή του ανθρώπου από την εποχή του ορείχαλκου και χρησιμοποιήθηκαν μάλιστα απ'αυτόν σαν δείκτες στην μεταλλευτική έρευνα. Αργότερα, αυτό διαπιστώθηκε ότι είναι προιόντα εξέλιξης των ορυκτών-συστατικών κοιτασμάτων ή τμημάτων κοιτασμάτων που βρέθηκαν μέσα στο χώρο των φυσικών και χημικών αλληλοεπιδράσεων μεταξύ ατμόσφαιρας, υδρόσφαιρας, βιόσφαιρας και λιθόσφαιρας, έγιναν ασταθή και έχασαν τους αρχικούς χαρακτήρες τους (αποσάθρωση) (Μελιδώνης, 1992). Κορυφαίες στιγμές για τη μετάβαση στη χρήση των μετάλλων υπήρξαν η χρήση του χαλκού, του σιδήρου και η ανακάλυψη της τεχνικής παραγωγής χάλυβα. Από τότε τα ορυκτά αυτά όχι μόνο δεν έχασαν την αξία τους σαν καθοδηγητικά στοιχεία, αλλά αντίθετα

Σκοπός της παρούσας εργασίας είναι μέσω της εκτεταμένης δειγματοληψίας σε λειμωνίτες, λειμωνιτικές κρούστες και σιδηρομεταλλεύματα από περιοχές της δυτικής Κρήτης, εντός του Φυλλιτικού καλύμματος η αναγνώριση και η διευρεύνηση των κατανομών των κύριων ορυκτών, ορυκτολογικών φάσεων και ιχνοστοιχείων εντός αυτών καθώς και η σύγκριση των αποτελεσμάτων της εργαστηριακής μελέτης με άλλες παλαιότερες. Μέσω χημικής, ορυκτολογικής και μικροσκοπικής ανάλυσης γίνεται ο ποιοτικός και ποσοτικός προσδιορισμός των ιχνοστοιχείων, των ορυκτολογικών φάσεων και ιστολογικών χαρακτηριστικών των σιδηρομεταλλευμάτων. Σύμφωνα με τα στοιχεία αυτά επιχειρείται η κατανόηση της γενετικής εξέλιξης των σιδηρομεταλλευμάτων της Δ. Κρήτης και η σύγκριση

2 Γεωλογική επισκόπηση

Οι ερευνητές σήμερα στηριζόμενοι στις νέες απόψεις της Θεωρίας των Λιθοσφαιρικών Πλακών δέχονται σχεδόν ομόφωνα την άποψη ότι η πλειονότητα των Αλπικών σχηματισμών της νήσου Κρήτης ανήκουν σε έναν ευρύτερο χώρο, τον χώρο των Εξωτερικών Ελληνίδων αλλά στη δομή της συμμετέχουν και γεωτεκτονικές ζώνες των Εσωτερικών Ελληνίδων. Οι γεωτεκτονικές ζώνες του Ελλαδικού χώρου (1) διακρίθηκαν ήδη από τον Brunn (1956) σε Εξωτερικές και Εσωτερικές με βάση κυρίως τον ορογενετικό τεκτονισμό που οι σχηματισμοί των ζωνών αυτών έχουν υποστεί. Πιο ειδικά,οι

Εικόνα 1. Χάρτης των γεωτεκτονικών ζωνών του Ελλαδικού χώρου. (Κατά Μουντράκη et al. 1983, από J.Mercier, J.Brunn, J.Aubouin et al., 1971)

σχηματισμοί των Εξωτερικών ζωνών έχουν υποστεί κατά το Τριτογενές ένα μόνο ορογενετικό τεκτονισμό και κατέχουν το δυτικό και νότιο τμήμα του Ελλαδικού χώρου, ενώ οι σχηματισμοί των Εσωτερικών, εκτός από τον τεκτονισμό του Τριτογενούς, έχουν υποστεί επιπλέον και έναν πρώιμο ορογενετικό τεκτονισμό, που έλαβε χώρα κατά το Ανώτερο Ιουρασικό-Κατώτερο Κρητιδικό, και κατέχουν το ανατολικό (εσωτερικό) τμήμα του Ελλαδικού χώρου. Οι γεωτεκτονικές ζώνες των Ελληνίδων αποτελούν παλαιογεωγραφικούς χώρους του «Παλαιοωκεανού» της Τηθύος, μιας ωκεάνιας περιοχής στον ευρύτερο χώρο της υπερηπείρου της Παγγαίας, ενός ηπειρωτικού τεμάχους που δημιουργήθηκε κατά τη Βαρίσκια Ορογένεση. Μέσα στο ωκεάνιο χώρο της Τηθύος, η ανάπτυξη μιας μεσοωκεάνιας ράχης που λειτούργησε στο Λιάσιο-Δογγέριο του Ιουρασικού οδήγησε στη διάσπαση της Παγγαίας και στη δημιουργία δύο νέων ηπειρωτικών τεμαχών, της Λαυρασίας και της Γκοτβάνας και ταυτόχρονα στην υποβύθιση του ωκεάνιου φλοιού της Τηθύος κάτω από τον ηπειρωτικό φλοιό της Λαυρασίας. Το τελευταίο γεγονός που ξεκίνησε το Μέσο Ιουρασικό και ολοκληρώθηκε το Ανώτερο Ιουρασικό-Κατώτερο Κρητιδικό οριοθετεί την απαρχή του τελευταίου Ορογενετικού κύκλου του Αλπικού και ταυτόχρονα για τον Ελληνικό χώρο, τη διαφοροποίηση και την τεκτονική εξέλιξη των γεωτεκτονικών Ζωνών των Ελληνίδων οροσειρών.

Από τα πρωταρχικά και σημαντικά ερωτήματα με τα οποία απασχολήθηκε η παγκόσμια γεωεπιστημονική κοινότητα ήταν και παραμένει η ακριβής θέση και τα όρια του «μητρικού» αυτού ωκεανού της Τηθύος. Ειδικότερα για τον ευρύτερο χώρο της Ελλάδας το πρόβλημα εντοπίσθηκε από την αρχή της διάδοσης και εφαρμογής της νέας θεωρίας των λιθοσφαιρικών πλακών στο θέμα, με ποια από τις γεωτεκτονικές ζώνες της Ελλάδας ταυτίζεται ο ωκεανός της Τηθύος ή καλύτερα ποια ζώνη έχει τους σχηματισμούς που αντιπροσωπεύουν τον κατεστραμμένο ωκεάνιο φλοιό της Τηθύος. Η πρώτη τάση που αναπτύχθηκε στους γεωεπιστήμονες τη δεκαετία του 1970, στο ξεκίνημα της νέας θεωρίας, ήταν ότι ο ωκεάνιος χώρος της Τηθύος ταυτίζονταν με τη ζώνη Ωλονού-Πίνδου που είχε θεωρηθεί από την παλιότερα ισχύουσα «Θεωρία των συζυγών Γεωσυγκλίνων» ως ο τυπικός ωκεάνιος χώρος, το "Ελληνικό ευγεωσύγκλινο". Σε αντίθεση με τη γενικευμένη αυτήν αντίληψη το πρώτο γεωδυναμικό μοντέλο που προτάθηκε για την εξέλιξη των Ελληνίδων είναι των Jacobshagen et al. (1978) και το οποίο προβλέπει την ύπαρξη των ωκεάνιων λεκανών Παιονίας, Αλμωπίας, Υποπελαγονικής-Πίνδου και της φυλλιτικής σειράς μεταξύ Ιονίου ζώνης και «Πλακωδών Ασβεστολίθων» (Plattenkalk) (Εικόνα 2). Οι ωκεάνιες αυτές λεκάνες λειτούργησαν σταδιακά και έκλεισαν διαδοχικά από τα Ανατολικά προς τα Δυτικά από το Μάλμιο μέχρι το Μειόκαινο προκαλώντας τη μετακίνηση της τεκτονογένεσης προς τα Δυτικά επηρεάζοντας διαδοχικά τις Εσωτερικές και Εξωτερικές γεωτεκτονικές Ζώνες.

WSW

đ

Εικόνα 2. Σχηματικές τομές που αναπαριστούν την ορογενετική εξέλιξη των Ελληνίδων (Κατά Jacobshagen et al., 1978). Πιο συγκεκριμένα: a) Περίοδος Μέσου Μειόκαινου. Επώθηση των κεντρικών Ελληνικών καλυμμάτων (ζώνες Πίνδου, Παρνασσού, Πελαγονικής) πάνω στη ζώνη Γαβρόβου. b) Περίοδος Μέσου - Ανω.Ηωκαίνου. Κλείσιμο του ωκεάνιου χώρου της ζώνης Αξιού. Επώθηση των οφειολίθων από τη ζώνη Αξιού πάνω στην Πελαγονική. Αρχή της ιζηματογένεσης του εξωτερικού φλύσχη. Απόθεση της μολάσσας στην Μεσοελληνική αύλακα και την "αύλακα Αξιού". c) Περίοδος Ανωτέρου Ιουρασικού - Κατωτέρου Κρητιδικού. Βύθιση του ωκεανού της ζώνης Αξιού κάτω από την Περιροδοπική ζώνη και την Ελληνική Ενδοχώρα. Αρχική τεκτονική τοποθέτηση των οφειολίθων πάνω στην Πελαγονική και d) Περίοδος Μέσου - Ανω Ιουρασικού. Αύλακες και υβώματα μετά την περιροδοπική ορογένεση.

Al = Αλμωπίας, C.R.B. = Περιροδοπική, G.T. = Γαβρόβου-Τρίπολης, Η = Ενδοχώρα, Ιο = Ιόνιος, Ρ = Πελαγονική, Ρα = Πάικου, Ρε = Παιονίας, Ρh = λεκάνη φυλλιτών, Ρi = Πίνδου, Sb = Υποπελαγονική, T.O. = Σειρά Plattenkalk.

Στο παλαιογεωγραφικό χώρο των εξωτερικών ζωνών των Εξωτερικών Ελληνίδων και ειδικότερα στις ζώνες Παξών και Ιονίου, πάνω από την εβαποριτική ακολουθία ακολούθησε μεγάλου πάχους ανθρακική ιζηματογένεση με παρεμβολές κερατολίθων και

12

ENE

μικρού πάχους κλαστικών σχηματισμών, μέχρι την έναρξη της απόθεσης του φλύσχη κατά το Τριτογενές. Τα πετρώματα των δύο αυτών ισοπικών ζωνών εμφανίζονται σε μια ορεογραφική-χωρική διάταξη από τα βόρεια σύνορα της χώρας μέχρι την Κεντρική Πελοπόννησο. Νοτιότερα εμφανίζονται αντ' αυτών τα μεταμορφωμένα πετρώματα των Εξωτερικών Ελληνίδων.

2.1 Γεωλογικό περίγραμμα της Κρήτης

Κατά τις τελευταίες τέσσερις δεκαετίες, οι γνώσεις μας για τη γεωλογική δομή της Κρήτης έχουν αυξηθεί σημαντικά. Τα αποτελέσματα των ερευνών στα πλαίσια μεγάλου αριθμού προγραμμάτων ευρωπαϊκών και εθνικών ερευνητικών ινστιτούτων αλλά και μεμονωμένων ερευνητών, οδήγησαν στην έκδοση του πρώτου συνοπτικού γεωλογικού χάρτη της Κρήτης το 1977 σε κλίμακα 1/200.000. Όπως φαίνεται στον χάρτη αυτό αλλά και στους επόμενους που εκδόθηκαν από το Ινστιτούτο Γεωλογικών και Μεταλλευτικών Ερευνών (Γεωλογικός χάρτης της Ελλάδας κλίμακας 1:500.000, τμήμα του οποίου παρουσιάζεται στην Εικόνα 3), το μεγαλύτερο ποσοστό προνεογενούς ηλικίας πετρωμάτων που δομούν και εμφανίζονται στην Κρήτη ανήκουν σε ακολουθίες μεταμορφωμένων πετρωμάτων. Η παλαιογεωγραφική τοποθέτηση, η τεκτονική τους θέση αλλά ακόμη και η ηλικίες τους παραμένουν ένα ανοικτό γεωλογικό κεφάλαιο.

Εικόνα 3. Τμήμα του γεωλογικού χάρτη της Ελλάδος σε κλίμακα 1:500.000. με κίτρινες και πράσινες αποχρώσεις οι λεκάνες του Νεογενούς και του Τεταρτογενούς

Στη Δυτική Κρήτη οι στρωματογραφικές ακολουθίες, οι τεκτονικές και λιθολογικές ενότητες που αρχίζοντας από τις νεότερες και καταλήγοντας στις παλαιότερες, είναι:

- Τεταρτογενείς αποθέσεις
- Νεογενείς αποθέσεις

- Τεκτονικό κάλυμμα της ζώνης Πίνδου
- Τεκτονικό κάλυμμα της ζώνης Τρίπολης
- Τεκτονικό Φυλλιτικό κάλυμμα

Η Ομάδα των Πλακωδών Ασβεστολίθων (Ενότητα Ταλέα Όρη ή Plattenkalk)
(παρααυτόχθονο). Για τις δύο τελευταίες για γίνει εκτενής αναφορά στη συνέχεια.

1. <u>Τεταρτογενείς αποθέσεις</u>: Αποτελούνται από χαλαρά αργιλοαμμώδη υλικά, πηλούς, ψαμμίτες, κροκάλες-λατύπες ποικίλης σύστασης αναλόγως της προέλευσή τους, ασύνδετες έως συνεκτικά συνδεδεμένες, καθώς και από υλικά του αλλουβιακού μανδύα. Η εμφάνιση τους γίνεται κυρίως σε απολήξεις λεκανών ανοικτών προς την θάλασσα, στις μείζονες κοίτες των ποταμών, σε μικρές εσωτερικές λεκάνες καθώς και σε μορφή πλευρικών κορημάτων και αναβαθμίδες χειμάρρων.

2. <u>Νεογενείς αποθέσεις</u>: Αποτελούνται από εναλλασσόμενα στρώματα κίτρινων– κιτρινόλευκων μαργών με κλαστικούς μαργαϊκούς ασβεστόλιθους, συχνά βιογενείς– υφαλογενείς, ομοιόμορφα στρωμένους, που το πάχος τους κυμαίνεται από μερικά εκατοστά έως ένα–δύο μέτρα. Επίσης, εντός των αποθέσεων αυτών συναντώνται και μαργαϊκοί ψαμμίτες, αμμούχες άργιλοι, λατύπες και κροκαλοπαγή. Τα κροκαλοπαγή– λατυποπαγή εμφανίζονται κυρίως στην περιοχή Χοιροσπηλίου νοτιότερα της Αγυιάς και στην περιοχή Τοπολίων. Χαρακτηριστικό τους γνώρισμα η έντονη συνεκτικότητα την οποία παρουσιάζουν, κυρίως ανθρακικής προέλευσης, με ανθρακικό συνδετικό υλικό. Οι λατύπες και κροκάλες που συνιστούν τις παραπάνω αποθέσεις, έχουν προέλθει από τη διάβρωση και απόθεση των προϊόντων, τόσο του τεκτονικού καλύμματος της ζώνης Τρίπολης όσο σε μικρότερο βαθμό και των άλλων ενοτήτων που αποτελούν υπόβαθρο των νεογενών αποθέσεων. Οι ενότητες που επίσης συμμετέχουν στην παραπάνω διεργασία είναι των Πλακωδών ασβεστόλιθων (Plattenkalk), του Φυλλιτικού Καλύμματος και της Πίνδου.

3. <u>Τεκτονικό κάλυμμα της ζώνης Πίνδου:</u> Οι ανθρακικοί σχηματισμοί του τεκτονικού αυτού καλύμματος παρουσιάζονται με μικρή επιφανειακή ανάπτυξη στο νομό Χανίων. Εμφανίζονται στο βορειοδυτικό τμήμα του νομού και πιο συγκεκριμένα στην ευρύτερη περιοχή Καστελίου, καθώς και στην ευρύτερη περιοχή της Παλαιόχωρας. Αποτελούνται από πελαγικούς ασβεστόλιθους με παρεμβολές κερατολίθων.

4. <u>Τεκτονικό κάλυμμα της ζώνης Τρίπολης:</u> Οι σχηματισμοί της ενότητας αυτής καταλαμβάνουν σχετικά μεγάλη έκταση στο νομό Χανίων. Είναι σύνηθες φαινόμενο να

είναι επωθημένοι αυτοί οι σχηματισμοί, είτε στην ενότητα Ταλέα Όρη-Πλακώδεις ασβεστόλιθοι (Plattenkalk), είτε σε ενότητες του Φυλλιτικού Καλλύματος. Αποτέλεσμα είναι να εμφανίζονται οι σχηματισμοί της ζώνης Τρίπολης στη βάση τους έντονα κατακερματισμένοι λόγω τεκτονισμού. Οι σχηματισμοί της ενότητας που βρίσκονται στα χαμηλότερα στρώματα συνίστανται από δολομίτες-δολομιτικούς ασβεστόλιθους παχυστρωματώδεις μέχρι άστρωτους, έντονα τεκτονισμένους και καρστικοποιημένους με σπηλαιώδη υφή. Το χρώμα τους κυμαίνεται από τεφρό έως τεφρόλευκο. Στους σχηματισμούς της ενότητας των υψηλότερων στρωμάτων εμφανίζονται ασβεστόλιθοι που το χρώμα τους κυμαίνεται από μαύρο έως τεφρόμαυρο. Το πάχος των σχηματισμών είναι μέσο και συνήθως παρουσιάζουν μικρολατυποπαγή υφή. Χαρακτηριστικό τους γνώρισμα είναι το έντονο ανάγλυφο και το φτωχό υδρογραφικό δίκτυο, που συμπίπτει με τεκτονικές ασυνέχειες. Εξίσου σημαντικό χαρακτηριστικό είναι το φαινόμενο καρστικής διάλυσης που εμφανίζεται με διάφορες μορφές, μεγέθη και σχήματα. Το πάχος της ζώνης φθάνει τις λίγες εκατοντάδες μέτρα και η ηλικία αυτής της σειράς κυμαίνεται από το Άνω Τριαδικό έως και το Άνω Κρητιδικό.

2.1.1 Γεωλογικό περίγραμμα της ευρύτερης περιοχής μελέτης

Στη δυτική Κρήτη υπάρχει μια ιδιομορφία σε σχέση με τους γεωλογικούς χάρτες. Στην ευρύτερη περιοχή συνυπάρχουν ο πρώτος βασικός γεωλογικός χάρτης σε κλίμακα 1:50.000 που εκδόθηκε το 1958 από το ΙΓΕΥ (φύλλο Καστέλι) και ο τελευταίος χρονικά που εκδόθηκε στην ίδια κλίμακα από το ΙΓΜΕ (φύλλο Παλαιόχωρα). Για την περιοχή των Λευκών Ορέων υπάρχει ο χάρτης του Ι.Γ.Μ.Ε., φύλλο Αλικιανός (Τάταρης και Χριστοδούλου 1969) και ελάχιστα στοιχεία από γεωλογικές τομές.

2.1.2 Ιστορική αναδρομή για το μεταμορφωμένο σύστημα της Κρήτης

Από το τέλος του 19^{ου} αιώνα έχουν περιγραφεί στην Κρήτη πετρώματα διαφόρου λιθολογίας, παλαιογεωγραφικής προέλευσης και βαθμών μεταμόρφωσης. Ο *Raulin* (1869) περιέγραψε τους "ημιμετα-μορφωμένους ταλκικούς σχιστολίθους", ο *Cayeux* (1902) την "μεταμορφωμένη σειρά της Δυτικής Κρήτης", ο *Wurm* (1950) το "μεταμορφωσιγενές της Κρήτης" οι *Papastamatiou και Reichel* (1956) τους "Φυλλίτες". Στους γεωλογικούς χάρτες του Ι.Γ.Ε.Υ "Χανιά" και "Καστέλι" (1960) σημειώνονται "κρυσταλλικοί σχιστόλιθοι", οι *Aubouin και Dercourt* (1965) μιλούν για φάσεις Κακόπετρου και Σκλαβοπούλας, οι *Creutzburg και Papastamatiou* (1966) για "μεταμορφωμένους σχιστολίθους, ο *Seidel* (1968), Creutzburg και Seidel (1975), Sanneman και Seidel (1976), Wachendorf et al., (1980) μιλούν για «σειρά Φυλλιτών-Χαλαζιτών» οι Bonneau (1973), Kuss και Thorbecke (1974) για "Φυλλίτες της Τρίπολης", ο Thorbecke (1974) για "σχηματισμό Φυλλιτών", οι Wachendorf et al., (1974), οι Kopp και Ott (1977) για "σειρά Φυλλιτών", οι Sanneman και Seidel (1976), οι Kopp και Ott (1977) για "στρώματα Ραβδούχων", οι Bauman et al., (1978) για "Φυλλιτική σειρά", ο Φυτρολάκης (1980) για "αργιλοσχιστολιθική σειρά ενότητας Τρίπολης", "ενότητα φυλλιτών-χαλαζιτών", "Φυλλίτες ενότητας Τρυπαλίου", οι Krahl et al., (1981) για "ομάδα φυλλιτών-χαλαζιτών", οι Seidel et al., (1982) για "ενότητα Φυλλιτών- Χαλαζιτών", ο Σκαρπέλης (1982) "ενότητα Άρνας" και οι Dorsiepen και Manutsoglu (1988) για «Φυλλιτικό Κάλυμμα».

Με τις διαφορετικές αυτές ονοματολογίες οι παραπάνω συγγραφείς περίγραψαν ένα σύνολο μεταμορφωμένων πετρωμάτων ή ένα τμήμα του συνόλου αυτού, που παρεμβάλλεται μεταξύ του καλύμματος της Τρίπολης και της «ενότητας Κρήτης-Μάνης» (Plattenkalk)/Ομάδας Πλακωδών Ασβεστολίθων ή/και της ενότητας Τρυπαλίου. Είναι επόμενο τα πολλά ονόματα να έχουν προκαλέσει μια σύγχυση όσον αφορά το περιεχόμενο του όρου "φυλλίτες-χαλαζίτες". Η πρώτη προσπάθεια εποπτικής παράθεσης και συζήτησης της υπάρχουσας βιβλιογραφίας έγινε από τους *Krahl et al* (1988) (Πίνακας 1).

Πίνακας 1. Ονοματολογία των τμημάτων του μεταμορφωμένου συστήματος της κεντρικής κα
δυτικής Κρήτης (Κατά Krahl et al., 1988).

	W	ESTL. LEVK A ORI	TRYPALI ORI	TALEA ORI	
	Mana-Konglomerat () Mana-Marmor () Mana-Dolomitphyllit (Unternor - Oberladin; 'Skyth; Unterperm) Sfinari-Schiefer (Ober-/Mittelkarbon) Aghios-Sinos-Schiefer (Obersperm - Oberskyth) Tzitzifla-Kalkphyllit (Anis - ?Ladin) Kalamos-Dolomitphyllit		"Phyllit-Gruppe" ungegliedert	Achlada-Schichten () Wassllikon-Marmor () Rogdia-Schichten (Oberskyth - Mittelskyth ?Mitteltrias) Fodele-Schichten (?Oberkarbon; Perm) Sisses-Schichten (Skyth) Schichtlücke	
Post-Karn Rhät/Lias	(0	Stomion-Dolomit olomit, Karbonatbreccien, Rauhwacken, Gips)	Patima-Dolomit (Dolomit, Karbonat- breccien, Rauhwacken)	Stromatolith-Dolomit (Dolomit, Karbonatbrec- cien, Rauhwacken)	
Lias		Madara-Marmor	Trypali-Marmor (Palaeodasyaladus mediterraneus PIA)	Koutsotroulls-Marmor (Palaeodasyaladus mediterraneus PIA)	
Post-Unterlias Apt, Cenoman Oligozän		Plattenkalk Gigilos-Schichten ?Kalavros-Schichten	Plattenkalk Gigilos-Schichten ?Kalavros-Schichten	Plattenkalk Gigilos-Schichten Kalavros-Schichten	

Successions of the External Hellenides in West and Central Crete (western Levka Ori, Trypali Ori and Talea-/Ida Ori). Επειδή η ανωτέρω κατηγοριοποίηση δεν περιείχε την πλειονότητα της υπάρχουσας ορολογίας για τα μεταμορφωμένα τμήματα των Εξωτερικών Ελληνίδων στην Κρήτη οι Manutsoglu et al (1995) πρότειναν μια ονοματολογία στηριζόμενοι σε λιθοστρωματογραφικά κριτήρια για το σύνολο των μεταμορφωμένων σχηματισμών της Κρήτης (Πίνακας 2).

Η σύγχυση γίνεται μεγαλύτερη όταν στο μεταμορφωμένο και πολυφασικά τεκτονισμένο αυτό σύνολο πετρωμάτων, στο οποίο δεν υπάρχουν αρκετά στρωματογραφικά δεδομένα προσπαθήσει κανείς να χωροθετήσει εμφανίσεις και κοιτάσματα.

Ως εκ τούτου είναι αναγκαία μια λεπτομερής βιβλιογραφική ανασκόπηση που σχετίζεται όχι με την ονοματολογία αλλά με τις απόψεις των ερευνητών σχετικά με την στρωματογραφική και τεκτονική θέση των διαφόρων λιθολογικών ενοτήτων. Αρχικά ο *Raulin* (1869) περιέγραψε στην Κρήτη σαν "terrain primitif" γύψους, ραουβάκες, φυλλίτες, χαλαζιακούς φυλλίτες με ανθρακικές ενδιαστρώσεις, κροκαλοπαγή και σχιστολίθους. Στην συνέχεια ο *Cayeux* (1902) εντός της "μεταμορφωμένης σειράς της Δυτικής Κρήτης" διχωρίζει επτά διαφορετικούς λιθολογικούς ορίζοντες οι οποίοι από πάνω προς τα κάτω παρουσιάζονται στον πίνακα 3.

Παρά την παράθεση των ενοτήτων αυτών ο *Cayeux* δε διευκρίνισε στην εργασία του την στρωματογραφική ακολουθία των ενοτήτων αυτών.

Ο Wurm (1950) δεν μπόρεσε να ακολουθήσει το διαχωρισμό αυτό και διαχώρισε το "μεταμορφωσιγενές της Κρήτης" σε δύο τμήματα. Ένα κατώτερο που αποτελείται από «γύψους και ραουβάκες» και ένα ανώτερο, από την σειρά «φυλλιτών-χαλαζιτών-αργιλικών σχιστολίθων». Αν και οι σειρές αυτές εμφανίζονται και στα ανατολικά και στα κεντρικά τμήματα της νήσου Κρήτης, οι κύριες εμφανίσεις τους βρίσκονται στα δυτικά, στις νότιες και δυτικές περιοχές των Λευκών Ορέων. Αρχικά περιγράφει αφ' ενός πως εμφανίζονται οι γύψοι και οι ραουβάκες και δίνει μια σειρά θέσεων σε όλο το νησί, όπου αυτοί εμφανίζονται. Πάνω από το σχηματισμό γύψων και ραουβακών περιγράφει μια μεγάλου πάχους σειρά από φυλλίτες, χαλαζιακούς φυλλίτες, χαλαζιακούς σχιστολίθους, με ενδιαστρώσεις ασβεστολίθων, κροκαλοπαγών και γραφιτικών σχιστολίθων, που φέρουν τα χαρακτηριστικά επιζωνικώς μεταμορφωμένων πετρωμάτων. Οι φυλλίτες μεταβαίνουν σε σχιστολίθους, ενώ εναλλάσσονται με χαλαζίτες σε όλες τις αναλογίες, ενώ κατά θέσεις επικρατούν καθαροί φυλλίτες ή χαλαζίτες διαφόρου πάχους.

17

Πίνακας 2. Ονοματολογία του μεταμορφωμένου συστήματος της Κρήτης (Κατά Manutsoglu et al., 1988)

	w	ESTL. LEVK A ORI	TRYPALI ORI	TALEA ORI	_
		Mana-Konglomerat		Achlada-Schichten	1988
	alt	Mana-Marmor		Wassilikon-Marmor ()	et al.
	-E1nhe	Mana-Dolomitphyllit (Unternor - Oberladin; ?Skyth)		Rogdia-Schichten	SAHL
	ikula	Mana-Schiefer (?Skyth; Unterperm)	"Phyllit-Gruppe"	?Mitteltrias)	(K
	t ¦ Ku	Sfinari-Schiefer (Ober-/Mittelkarbon) Aghios-Sinos-Schiefer	ungegliedert	Fodele-Schichten (?Oberkarbon; Perm)	RK
	Einhei	(?Oberkarbon; Perm) Rambi Seli-Schichten (Oberperm - Oberskyth)		Sisses-Schichten (Skyth)	N E
	Kandanos-	Tzitzifia-Kalkphyllit (Anis - ?Ladin) Kalamos-Dolomitphyllit (Oberladin - Unternor)		Schichtlücke	OCK
Post-Karn		Stomion-Dolomit	Patima-Dolomit	Stromatolith-Dolomit	S T
Rhät / Lias	(Dolomit, Karbonatbreccien, Rauhwacken, Gips)		(Dolomit, Karbonat- breccien, Rauhwacken)	(Dolomit, Karbonatbrec- cien, Rauhwacken)	
Lias		Madara-Marmor	Trypali-Marmor (Palaeodasyaladus mediterraneus PIA)	Koutsotroulis-Marmor (Palaeodasyaladus mediterraneus PIA)	L A
Post-Unterlias		Plattenkalk	Plattenkalk	Plattenkalk	ш
Apt, Cenoman Oligozän		Gigilos-Schichten ?Kalavros-Schichten	Gigilos-Schichten ?Kalavros-Schichten	Gigilos-Schichten Kalavros-Schichten	KR

Successions of the External Hellenides in West and Central Crete (western Levka Ori, Trypali Ori and Talea-/Ida Ori).

Πίνακας 3. Διαχωρισμός των ανωτέρω ενοτήτων της "μεταμορφωμένης σειράς της Δυτικής Κρήτης" (Cayeux 1902)

Λιθολογικοί Ορίζοντες	Πάχη
Μαύροι φυλλίτες	} τουλάχιστον 600 m
Ανώτερη σειρά Φυλλιτών-Χαλαζιτών	,
Σιπολίνες και κροκαλοπαγή	400-500 m
Κατώτερη σειρά Φυλλιτών-Χαλαζιτών	600 m
Φυλλιτικοί ασβεστόλιθοι εναλλασσόμενοι με	500 m
λαμπυρίζοντες σχιστολίθους	
Δολομίτες και ραουβάκες	400-500 m
Γύψοι	200 m

Οι φυλλίτες συνδέονται με μεταβάσεις (χωρίς να προσδιορίζει το είδος) με λαμπυρίζοντες σχιστολίθους καθώς επίσης γκρι-μπλε και γκρι-πράσινους αργιλικούς σχιστολίθους. Ο ίδιος ερευνητής περιγράφοντας το "Μεταμορφωσιγενές της Κρήτης" προβληματίστηκε εάν και κατά πόσο θα έπρεπε να εντάξει τους "αργιλικούς σχιστολίθους" σε ανεξάρτητη στρωματογραφική ενότητα ή να τους θεωρήσει τμήματα λιγότερο μεταμορφωμένα της ίδιας ακολουθίας στρωμάτων. Στο ανώτερο τμήμα, στην σειρά φυλλιτών-χαλαζιτών αναφέρει ότι κατά θέσεις εντόπισε λεπτοπλακώδεις (2-3 cm) μαύρους ασβεστόλιθους ή/και ανα-κρυσταλλωμένους δολομιτικούς ασβεστολίθους μεγαλύτερου πάχους (μερικά μέτρα). Ιδιαίτερη αναφορά γίνεται για το χαρακτηριστικό ορίζοντα γραφιτικών σχιστολίθων

Περιέγραψε λεπτομερώς τις εμφανίσεις κροκαλοπαγών: Στην περιοχή Μάνα, μια ζώνη κροκαλοπαγούς χαλαζιακής σύστασης με ΒΒΔ παράταξη και κλίση προς τα ανατολικά που είναι συνδεδεμένη με (περιέχει εκτός του κροκαλοπαγούς) φυλλιτικά λατυποπαγή, φυλλίτες, σχιστολίθους και βρίσκεται σε γειτονία με δολομίτες και ασβεστοφυλλίτες. Στη περιοχή Παπαδιανά (δρόμος Έλος-Αμυγδαλοκεφάλη) εντός της φυλλιτικής-χαλαζιακής σειράς, κροκαλοπαγές από μάρμαρο.

Στηριζόμενος σε απολιθώματα από τους ορίζοντες μαύρων αργιλικών σχιστολίθων και φυλλιτικών ασβεστολίθων καταλήγει σε μια τριαδική ηλικία των πετρωμάτων αυτών. Με την εύρεση του βραχιοπόδου (ελασματοβράγχιο) Myophoria Whateleyae σε γκρι-μπλε αργιλικούς σχιστολίθους στα Ραβδούχα πιστοποιεί Κάρνιο ηλικία στα πετρώματα αυτά.

Οι παρατηρήσεις του στη χωρική διάταξη των γύψων, ραουβακών και τμημάτων της φυλλιτικής χαλαζιακής σειράς σε διάφορες θέσεις στην Δυτική Κρήτη (Στόμιο, Παλαιά-Ρούματα κα) τον οδήγησαν στην αποδοχή ότι το υπερκείμενο των γύψων-ραουβακών είναι η φυλλιτική-χαλαζιακή σειρά.

Συνοψίζοντας την εργασία του Wurm (1950) μπορούμε να πούμε ότι ο ερευνητής αυτός στιγμάτισε τα ανοικτά προβλήματα που σχετίζονται με τους μετακλαστικούς μεταμορφωμένους σχηματισμούς που υπόκεινται των ανθρακικών σχηματισμών της Ζώνης της Τρίπολης κατ' αντιστοιχία των προβληματισμών που είχε θέσει δυο δεκαετίες προηγουμένως ο *Κτενάς* (1926) για τα ομόλογα πετρώματα στην Πελοπόννησο. Συμπερασματικά μπορούμε να πούμε τα εξής:

19

- Εισαγάγει την Ενότητα/σχηματισμό «Γύψοι και Ραουβάκες» που στην εργασία του βέβαια χωρίς να λύνει τα προβλήματα της στρωματογραφικήςτεκτονικής θέσης του σχηματισμού αυτού, της ηλικίας του κά., τον αναδεικνύει σαν έναν σχηματισμό «κλειδί» για την κατανόηση της πολύπλοκης γεωλογικής δομής της περιοχής ιδιαίτερα της Δυτικής Κρήτης.
- 🕨 Εισαγάγει την έννοια «Φυλλιτικής-Χαλαζιακής της Σειράς», περιλαμβάνοντας εντός αυτής και αγχιμεταμορφωμένα τμήμα όπως στα Ραβδούχα, ενώ ταυτόχρονα θέτει την πρώτη αμφισβήτηση στο κατά πόσο μπορούν οι αργιλικοί σχιστόλιθοι στα Ραβδούχα να ανήκουν (λόγω διαφορετικού βαθμού μεταμόρφωσης) στην ίδια τεκτονική ακολουθία. Η θέση του αυτή οδηγεί τους Sannemann και Seidel (1976) να θέσουν πετρογραφικά κριτήρια για το διαχωρισμό της αγχιμεταμορφωμένης ακολουθίας Τριαδικής ηλικίας, από σχιστούς αργίλους, ιλυολίθους, ψαμμίτες, δολομίτες και ασβεστολίθους στα Ραβδούχα από την Φυλλιτική-Χαλαζιακή Σειρά και να θεωρήσουν (με υπόθεση) ότι αποτελεί το ιζηματογενές υπόβαθρο της Ζώνης της Τρίπολης. Οι διάσπαρτες τμηματικές της εμφανίσεις αποτελούν τεκτονικά «ράκη» κατά την προέλευση του καλύμματος της Τρίπολης πάνω στην Φυλλιτική-Χαλαζιακή Σειρά. Ο οριστικός διαχωρισμός ήρθε ένα χρόνο αργότερα με την εργασία των Κορρ *και Ott* (1977).

Ο *Creutzburg* (1958) παρέθεσε ότι μέσα σ' αυτή τη φαινομενικά συνεχή ακολουθία μεταμορφωμένων πετρωμάτων, συνυπάρχουν πετρώματα διαφορετικών ηλικιών και διαφορετικής προέλευσης που δύσκολα διαχωρίζονται.

Τα πρώτα στρωματογραφικά δεδομένα για την ηλικία παλαιότερη του Τριαδικού, τμημάτων τουλάχιστον των μεταμορφωμένων αυτών πετρωμάτων, δόθηκαν από τους *Papastamatiou και Reichel* (1956), οι οποίοι πιστοποίησαν Πέρμια ηλικία των φυλλιτών, βρίσκοντας το ασβεστοφύκος Mizzia velebitana βορειοανατολικά του χωριού Σφάκα, στην Ανατολική Κρήτη, όπου εμφανίζονται κυρίως γύψοι και ανυδρίτες.

Οι Aubouin και Decourt (1965) αναφερόμενοι στο μεταμορφωσιγενές της Δυτικής Κρήτης διακρίνουν μέσα σ' αυτό δύο διαφορετικές φάσεις: Τη φάση της Σκλαβοπούλας που αποτελείται από δολομίτες, δολομιτικούς ασβεστόλιθους και από αργιλικούς

σχιστολίθους και τη φάση του Κακοπέτρου, που αποτελείται από σχιστολίθους με χαλαζιτικές ενδιαστρώσεις. Χωρίς να στηρίζονται σε παλαιοντο-λογικά ευρήματα, (περιγράφουν μόνο μη προσδιορίσιμα ανακρυσταλλωμένα φύκη), δέχονται για το μεταμορφωσιγενές παλαιοζωική ηλικία.

Οι Τάταρης και Χριστοδούλου (1965) περιγράφοντας την ανώτερη από τις δύο σειρές που υπέρκεινται των Πλακωδών Ασβεστόλιθων στα Λευκά όρη, αναφέρουν την παρουσία, μέσα σε σκοτεινότεφρους λεπτοπλακώδεις ασβεστόλιθους, μεγάλου αριθμού ελασματοβραγχίων του Ανώτερου Τριαδικού που ανήκουν στα γένη Ostrea, Myophoria και πιθανώς Halobia του Ανώτερου Τριαδικού. Οι ερευνητές αυτοί δίνουν και την πρώτη τομή νοτίως της πόλγης του Ομαλού (Εικ. 1).

Ο *Φυτρολάκης* (1967) διαπιστώνει, για πρώτη φορά στην Ανατολική Κρήτη, σε "ελάχιστα μεταμορφωμένους αργιλικούς σχιστολίθους" ηλικία Λαδινίου έως Καρνίου.

Ο Seidel (1968) επιβεβαιώνει την Ανω-Τριαδική ηλικία των φυλλιτικών ασβεστόλιθων του *Cayeux* και των σκοτεινόχροων λεπτοπλακωδών ασβεστόλιθων των *Τάταρη και Χριστοδούλου* (1965), με την ανεύρεση Myophoria και άλλων ελασματοβραγχίων βόρεια της Παλαιοχώρας στη Δυτική Κρήτη.

Εικόνα 4. Στην τομή αυτή τα μεταμορφωμένα ανθρακικά της ενότητας Madara kalke) στην συνέχεια ενότητα του Τρυπαλίου) τοποθετούνται ως υποκείμενα της ανώτερης σειράς των φυλλιτών, ραουβακών κτλ.

Η συζήτηση για την προέλευση των μεταμορφωμένων πετρωμάτων της Κρήτης συνεχιζόταν. Ήδη από το 1974 οι *Kuss και Thorbecke* εξέφρασαν την άποψη ότι το Πέρμιο των *Papastamatiou και Reichel* (1956) προέρχεται από τμήματα του υποβάθρου τα οποία αποκολλήθηκαν από το υπόβαθρο και σφηνώθηκαν μέσα στους φυλλίτες κατά την προέλαση του καλύμματος της Τρίπολης, μια άποψη την οποία δε συμμερίστηκαν άλλοι ερευνητές.

Οι Creutzburg και Seidel (1975), θεωρώντας πολύ πιθανή την άποψη που διατύπωσε ο Creutzburg το 1958 εισάγουν για το "σύμπλεγμα" των μεταμορφωμένων πετρωμάτων τον όρο "Σειρά Φυλλιτών - Χαλάζιτων" και δέχονται ότι το "σύμπλεγμα" αυτό αντιστοιχεί στο "terrains metamorphique" του *Cayeux* (1902) δηλαδή στο σχηματισμό "γύψων και ραουβακών και στη σειρά "φυλλιτών - χαλαζιτών - αργιλικών σχιστολίθων" του Wurm (1950). Στη σειρά των "Φυλλιτών - Χαλαζίτες μικρού ή μεγάλου πάχους, κροκαλοπαγή, μαύροι πλακώδεις δολομιτικοί ασβεστόλιθοι, γύψοι, ραουβάκες, και μεταβασάλτες.

Οι ερευνητές αυτοί εισάγουν και ορίζουν την έννοια «Ενότητα του Τρυπαλίου» με την οποία χαρακτηρίζουν κυρίως ανθρακικής σύστασης πετρώματα (δολομίτες, δολομιτικούς ασβεστολίθους, σπανιότερα καθαρούς ασβεστολίθους, ανθρακικής σύστασης λατυποπαγή έως ραουβάκες, σκουρόχρωμους κυψελώδεις δολομίτες, καθώς επίσης και λευκά ζαχαρώδους υφής μάρμαρα. Το σύνολο των ανωτέρω πετρωμάτων έχει διαφόρετικό βαθμό ανακρυστάλλωσης. Η λιθολογική εξέλιξη της ενότητας (ανθρακικά, γύψοι) υποστηριζόμενη από απολιθώματα (άλγη, κοράλια, γαστερόποδα) οδήγησε τους ερευνητές να δεχθούν τη δημιουργία των πετρωμάτων αυτών σε ένα αποθετικό πεδίο ρηχών υδάτων. Η λιθοφασική αυτή εξέλιξη πιστοποιήθηκε από παρατηρήσεις πεδίου σε διάφορες περιοχές της Δυτικής Κρήτης (δυτικά της Χώρας Σφακίων βρέθηκαν γύψοι σε ραουβάκες και λεπτοπλακώδεις δολομιτικούς ασβεστολίθους). Στην ενότητα αυτή συμπεριέλαβαν μια θέση γύψοι του φύλλου χάρτη Αλικιανός (1969) βορειοανατολικά της Κανδάνου καθώς επίσης και τις εμφανίσεις γύψου και ραουβακών δυτικά των Λευκών Ορέων που περιέγραψε ο *Wurm* (1950) από το Στόμιο έως τη Σούγια.

Όσον αφορά τη σχέση μετάβασης των ανθρακικών σχηματισμών της ενότητας του Τρυπαλίου με τους μετακλαστικούς σχηματισμούς της «Φυλλιτικής-Χαλαζιακής Σειράς» οι ερευνητές εκπλήσσουν με το τελικό τους συμπέρασμα. Ενώ στον Καλλικράτη, νοτίως των Λευκογίων, ανατολικά της Χωστή, και βόρεια και ανατολικά της Κανδάνου σημειώνουν ότι έχει κανείς την άποψη ότι υπάρχει κανονική μετάβαση της ενότητας του Τρυπαλίου στη «Φυλλιτική-Χαλαζιακή Σειρά» που όπως φαίνεται επιβεβαιώνεται και από πολλές άλλες θέσεις στην Νότια-Κεντρική Κρήτη (π.χ. νότια της Μονής-Αρκαδίου). Αμφισβητούν την ηλικία Ραΐτιου-Λιάσιου που βρέθηκε για τα πετρώματα αυτά και επιτείνουν το γεγονός, ότι η επαφή με τους υποκείμενους Πλακώδεις Ασβεστολίθους είναι καθαρά τεκτονική. Για τους λόγους αυτούς τοποθετούν την ενότητα αυτήν στην υποκείμενη της «Φυλλιτικής-Χαλαζιακής Σειράς» θεωρώντας την σαν ανεξάρτητη τεκτονική ενότητα. Αυτό φαίνεται άλλωστε και στη θεματική τομή 2α (που παραθέτουν στη φωτογραφία 2).

Συμπερασματικά:

1^{ον} εισάγεται μια νέα τεκτονική ενότητα στο ήδη πολύπλοκο σύστημα των μεταμορφωμένων πετρωμάτων των Εξωτερικών Ελληνίδων,

2^{ον} Λιθοφασικά ίδιους σχηματισμούς (γύψους, ραουβάκες) τους εντάσσει και στη «Φυλλιτική-Χαλαζιακή Σειρά» και στην «Ενότητα Τρυπαλίου»,

3^{ον} περιγράφεται λεπτομερέστερα η «Φυλλιτική-Χαλαζιακή Σειρά» και αναδεικνύεται ο σημαντικός ρόλος της ύπαρξης των μεταηφαιστειακών πετρωμάτων για τη διαλεύκανση των συνθηκών μεταμόρφωσης.

4^{ον} Πιστοποιεί την ύπαρξη μεταμορφωμένων ηφαιστειακών εντός της μεταμορφωμένης και πολυφασικά τεκτονισμένης ακολουθίας.

Εικόνα 5. Στην τομή αυτή τα μεταμορφωμένα ανθρακικά της ενότητας του Τρυπαλίου τοποθετούνται δυτικά του Ομαλού με ρήγμα τεκτονικώς υποκείμενα της Φυλλιτκής Χαλαζιτικής Σειράς.

Ο Seidel (1978) μελετώντας τους μεταβασάλτες της δυτικής Κρήτης που είχαν ήδη περιγραφεί (Schubert και Seidel 1972) καταλήγει στο συμπέρασμα, πως άλλες εμφανίσεις αντιστοιχούν σε αλκαλικούς βασάλτες και άλλες σε θολεϊτικές. Αντίθετα τα μεταβασικά πετρώματα της ανατολικής Κρήτης χαρακτηρίζονται ως ασβεσταλκαλικοί ανδεσίτες με ανάλογη προέλευση.

Ο *Kopp* (1978) εισάγει τον όρο "σειρά Φυλλιτών". Αυτή περιλαμβάνει ανθρακικά πετρώματα, σχιστολίθους, μεταδιαβάσες και φυλλίτες-χαλαζίτες που έχουν μεταμορφωθεί κάτω από συνθήκες υψηλής πίεσης-χαμηλής θερμοκρασίας. Ο ίδιος δίνει την παρακάτω διαδοχή στρωμάτων που ισχύει για τη δυτικότερη Κρήτη, και τονίζει ότι αυτή βασίζεται στη διαδοχή του *Cayeux* η οποία είναι υπό συζήτηση και γενικά όχι αποδεκτή:

<u>Ανώτερη ομάδα</u> (σχηματισμός Φυλλιτών-Χαλαζιτών) = Φάση Κακόπετρου των Aubouin και Decourt (1965).

6. Ανώτεροι Φυλλίτες - Χαλαζ ίτες πάχος 300-400μ

5. Σιπολίνες και κροκαλοπαγήμέχρι 400-500 μ.

4. Κατώτεροι Φυλλίτες – Χαλαζίτες 600 μ.

<u>Κατώτερη ομάδα</u> = Φάση Σκλαβοπούλας των Aubouin και Decourt (1965).

3. Σκούροι, λεπτοπλακώδεις, απολιθωματοφόροι ασβεστόλιθοι του Τριαδικού εναλλασσόμενοι με σχιστολίθους που περιέχουν λωζωνίτη, πάχος μέχρι 500 μ.

2. Δολομίτες και ραουβάκες πάχος 400-500μ.

1. Γύψοι πάχους μέχρι 200 μ, κοντά στο Στόμιο.

Ο *Φυτρολάκης* (1980) προτείνει τον όρο "ενότητα Φυλλιτών - Χαλαζιτών" θέλοντας να τονίσει ιδιαίτερα τον ανεξάρτητο χαρακτήρα της εν λόγω σειράς. Με τον όρο αυτό δεν εννοεί πλέον το σύνολο των στρωμάτων φυλλιτών χαλαζιτών - αργιλικών σχιστολίθων που παρεμβάλλονται μεταξύ των "Πλακωδών Ασβεστόλιθων" της ενότητας Κρήτης-Μάνης και των ασβεστόλιθων της Τρίπολης, αλλά «την επωθημένη σειρά φυλλιτών - χαλαζιτών, η οποία βρίσκεται ή επί των Πλακωδών Ασβεστόλιθων ή επί του μεταφλύσχου αυτών ή επί της ενότητας Τρυπαλίου (επί των ασβεστόλιθων της ή των υπερκείμενων φυλλιτών). Καλύπτονται δε τεκτονικώς υπό της ενότητας Τριπόλεως, είτε διά των ασβεστόλιθων, είτε διά της αργιλοσχιστολιθικής - ανθρακικής σειράς».

Ανακεφαλαιώνοντας αυτά που είχαν συγγραφεί μέχρι το 1980 μπορούμε να καταλήξουμε στο ότι ως σειρά Φυλλιτών-Χαλαζιτών, νοείτο μία ακολουθία στρωμάτων Περμικής έως Ανωτριαδικής ηλικίας βρίσκεται μεταξύ που τεκτονικά της σχετικά αυτόχθονης/παραυτόχθονης ενότητας/σειράς των Πλακωδών Ασβεστολίθων και του καλύμματος της Ζώνης της Τρίπολης. Αποτελείται από μεταμορφωμένους πηλίτες, ψαμμίτες, κροκαλοπαγή, ανθρακικά πετρώματα και γύψους με παρεμβολές αλκαλικών και θολεϊτικών βασαλτών (στη Δυτική Κρήτη) και ανδεσιτών (στην Ανατολική Κρήτη). Οι γύψοι και τα μεταμορφωμένα ανθρακικά αναπτύσσονται στα βαθύτερα τμήματα της σειράς. Η σειρά είναι μεταμορφωμένη κάτω από συνθήκες υψηλών πιέσεων-χαμηλών θερμοκρασιών. Από τη σειρά αυτή διαχωρίστηκαν τα Ανωτριαδικής ηλικίας αγχιμεταμορφωμένα πετρώματα στην περιοχή Ραβδούχα. Ανοικτό παρέμενε το θέμα της ένταξης των πετρωμάτων της Ενότητας Τρυπαλίου. Την ίδια χρονιά οι Wachendorf et al (1980) χαρακτηρίζουν τη φυλλιτική χαλαζιακή σειρά σαν "mélange" μια άποψη που δεν επιβίωσε από την παράθεση της πληθώρας των στρωματογραφικών στοιχείων που δημοσιεύτηκαν από άλλους ερευνητές στη συνέχεια.

Οι Krahl et al. (1982) δημοσιεύουν τα πρώτα συμπεράσματα σχετικά με τη στρωματογραφία της "Ομάδας των φυλλιτών-χαλαζιτών" στη Δυτική Κρήτη. Βρίσκουν πλήθος απολιθωμάτων Ανωπέρμικης έως Ανωτριαδικής ηλικίας και χωρίζουν την "Ομάδα φυλλιτών - χαλαζιτών" σε δέκα μέλη.

Η λεπτομερής αυτή στρωματογραφική μελέτη είχε ως αποτέλεσμα να αποδείξει ότι οι γύψοι, οι δολομίτες και οι ραουβάκες που μέχρι τότε πίστευαν ότι αποτελούν τους βαθύτερους ορίζοντες της ενότητας, είναι οι ανώτεροι στρωματογραφικοί ορίζοντες και κατά συνέπεια μεγάλα τμήματα της ενότητας Φυλλιτών - Χαλαζιτών είναι ανεστραμμένα.

SIR	A † .	6 # A	РНУ				2 Se	55
STSTEM	SERIES	FORMATION	немвек	LITHOLOGY (Metamorphic minerals)		FOSSILS	Fossil	THIC NNE
JURASSIC	11	gali group	н.	Passive dojonutes and linestones (Albite, white muca)	3	IDissociadella cretica OTT, 1965, Out of: OTT, 1965) Suporella ex.gr. brotzenorum SON, 1968; Luthevichurella sp.	20	800
U		111	10	Cypsum and ranhwacko with intercalatod dolonites (Albite, white mica)	ALA A A			łα
-	-		4	Bothes to massive dolomites (Albite, white muca)	1.13	Albacythere of, rectangularis; Albacythere sp.: Sum, ex.gr. brotz, SOHN;Grammicyt, ?sp.:Pulviel.1	J: "	100
s s	dle		đ	Exided carbonates with intercalated phyllites and martrites, meta-volcanic rocks with inclusions of rod marbles (Glaucophane, Lawsonite, Albite)		Sp. Endothyranella; Endothyra: Lutkevichunella sum- plex KOZUR: Speluncella 7 n.sp.: (astropods: Brachuopods; and others (see text)	10	kao
	Pix		7	Quintaste				Joe.
- a	2	a 2		Desited carbonates with intercalated phyllites and quartisites (Chloritoid)	THE A	Meandrospira pusilla	7 6 16	300
L	307	• • •	5	Quartyite •		Gastropod (undeternumable)	z	łan
* *	UPIN			Bedded phyllites with intercalated quartzites and carbonies, partially with cold-structures (Chieritoid)		Pusul inida	7	500
ĩ	ter Perr		s	Quartzite				200
æ	Upp		2	Bedded carbonates, phyllites, and meta-volcanic rocks (Albite, Chloritoid, Mo-Riebockite)	Rick	Theelia sp.: Poculicrinus ?: Opper Carnien	17	50
4		4 4 4	,	Massive narble Owictzitic conglowerates (Chloritoid)		(undetermunable (ossils)	18	Joo

Εικόνα 6. Στρωματογραφική διάταξη των πετρωμάτων της ομάδας φυλλιτών-χαλαζιτών στη Δυτική Κρήτη σύμφωνα με Krahl et al. (1982).

Την άποψη αυτή δεν τη δέχθηκαν και οι υπόλοιποι συνεργάτες του ιδίου Πανεπιστημίου (του Μονάχου) το οποίο στα πλαίσια ενός προγράμματος χαρτογράφησε με τη συμβολή φοιτητών του γεωλογικού λεπτομερώς την ευρύτερη περιοχή της νοτιοδυτικής Κρήτης όπου εμφανίζονται φυλλίτες-χαλαζίτες.

Έτσι λοιπόν οι *Kopp και Wernado* (1983) αναφερόμενοι στην εμφάνιση της "Ομάδας των Φυλλιτών" στην Ανατολική Κρήτη τονίζουν ότι η ηλικία και η τεκτονική θέση των ασθενώς μεταμορφωμένων σχιστολίθων και ασβεστολίθων αντιστοιχούν με αυτές της "ομάδας των Φυλλιτών" στη Δυτική Κρήτη. Αμφιβολίες δημιούργησαν κατά καιρούς η αισθητά μικρότερη συμμετοχή των χαλαζιτών, το συνολικά μικρότερο πάχος της σειράς και η καθαρά μικρότερου βαθμού μεταμόρφωση. Επισημαίνουν ότι μετά τον καθορισμό της στρωματογραφικής σειράς της "ομάδας των Φυλλιτών" γίνεται αντιληπτό ότι όλα τα αμφισβητούμενα σημεία εύρεσης απολιθωμάτων στην Ανατολική Κρήτη βρίσκονται σε σχηματισμούς οι οποίοι έχουν τις αντιστοιχίες τους στην "ομάδα των Φυλλιτών" της Δ. Κρήτης. Επί πλέον όλοι οι σχηματισμοί της Δ. Κρήτης εμφανίζονται στην Ανατολική Κρήτη με την ίδια σειρά ο ένας πάνω στον άλλον. Οι ερευνητές δημοσιεύουν μια παραπλήσια στρωματογραφική στήλη για την ομάδα φυλλιτών χαλαζιτών της δυτικής Κρήτης και παραθέτουν τις πρώτες πληροφορίες εκτός από ηλικίες και για το πάχος των σχηματισμών.

Εικόνα 7. Στρωματογραφική διάταξη των πετρωμάτων της ομάδας φυλλιτών-χαλαζιτών στη Δυτική Κρήτη σύμφωνα με Krahl et al. (1982)

Στο ίδιο περιοδικό, στο ίδιο τεύχος δημοσιεύονται τα αποτελέσματα των Krahl et al. (1983) οι οποίοι παραθέτουν καινούργια βιοστρωματογραφικά δεδομένα για την "ομάδα των φυλλιτών" της Δυτικής Κρήτης. Βασιζόμενοι σε πολυάριθμα κωνόδοντα και οστρακώδη χρονολογούν το διάστημα από το Ανώτερο Λιθανθρακοφόρο μέχρι το Κατώτερο Τριαδικό. Δεν μπόρεσαν να καλύψουν με απολιθώματα το Μέσο Τριαδικό, ενώ το Ανώτερο Τριαδικό πιστοποιήθηκε με οστρακώδη και δίθυρα. Επίσης πιστοποιούν το όριο Τριαδικού-Λιασίου με κωνόδοντα και τρηματοφόρα. Με την υποστήριξη των νέων βιοστρωματογραφικών δεδομένων δέχονται ότι τα πετρώματα της φυλλιτικής χαλαζιτικής ενότητας είναι ισοκλινώς πτυχωμένα μεσοσκοπικό πεδίο. Παραθέτουν μια σειρά γεωλογικών τομών (Εικόνα 8), στρωματογραφικών στηλών (Εικόνα 9), μια συνθετική στρωματογραφική στήλη (Εικόνα 10), ενώ παρατίθεται και το συνθετικό μοντέλο για τη δομή της ομάδας φυλλιτών-χαλαζιτών στη Δυτική Κρήτη (Εικόνα 11). Στο μοντέλο αυτό θεωρεί τους γύψους οι οποίοι στρωματογραφικά αποτελούν τους νεότερους σχηματισμούς να καταλαμβάνουν την κατώτερη τεκτονικά θέση. Στην εργασία αυτή δίνουν και ένα συνθετικό μοντέλο για την θέση της Ομάδας του Τρυπαλίου στο τεκτονικό οικοδόμημα της Δυτικής Κρήτης (Εικόνα 12). Για τα πετρώματα αυτά οι ερευνητές δέχονται τα ακόλουθα: α) Θα μπορούσαν να είναι ένα τμήμα των ανωτριαδικών – λιάσιων ανθρακικών ακολουθιών της Ομάδας των Φυλλιτών και να αποτελούν το ανάστροφο τμήμα της μεγάλης ισοκλινούς πτυχής είτε β) μια φασική διαφοροποίηση των πετρωμάτων της Ομάδας των πλακωδών Ασβεστολίθων.

Οι Krahl et al. (1986) ανακαλύπτουν στην Ανατολική Κρήτη πλήθος νέων απολιθωμάτων που τους επέτρεψαν τη χρονολόγηση και τη στρωματογραφική διαίρεση της "ομάδας των φυλλιτών". Περιγράφουν κάτω-ανω-τριαδικούς δολομίτες με τοπικές εμφανίσεις γύψων (Sfaka Dolomite). Πάνω τους αναπτύσσεται τεκτονικά η ενότητα Μυρσίνης, ηλικίας Κατώτερου Περμίου μέχρι Μέσο-Κάτω Τριαδικό. Αποτελούνται από φυλλίτες που εναλλάσσονται με μάρμαρα και λεπτούς χαλαζίτες. Ακολουθεί η ενότητα Σκοπής που αποτελείται από μεταηφαιστίτες, μάρμαρα, λατυποπαγή, κροκαλοπαγή, πολύχρωμους σχιστολίθους και χαλαζίτες, ηλικίας Ανώτερου Σκύθιου μέχρι Μέσου Τριαδικού. Μεταξύ

Εικόνα 8. Γεωλογικές τομές και οι αντίστοιχες θέσεις τους στην ομάδα φυλλιτών-χαλαζιτών στη Δυτική Κρήτη σύμφωνα με Krahl et al. (1983)

Εικόνα 9. Στρωματογραφικές στήλες σε διάφορες στην ομάδα φυλλιτών-χαλαζιτών στη Δυτική Κρήτη σύμφωνα με Krahl et al. (1983)

Εικόνα 10. Συνθετική στρωματογραφική στήλη της ομάδας φυλλιτών-χαλαζιτών στη Δυτική Κρήτη σύμφωνα με Krahl et al. (1983)

Εικόνα 11. Συνθετικό μοντέλο για την δομή της ομάδας φυλλιτών-χαλαζιτών στη Δυτική Κρήτη σύμφωνα με Krahl et al. (1983)

Εικόνα 12. Συνθετικό μοντέλο για την θέση της Ομάδας του Τρυπαλίου στο τεκτονικό οικοδόμημα της Δυτικής Κρήτης σύμφωνα με Krahl et al. (1983)

Ο *Thorbecke* (1987) εισάγει τον όρο "σχηματισμός Φυλλιτών" και σε αυτόν δεν περιλαμβάνει τους ανωτριαδικούς γύψους και δολομίτες που εμφανίζονται στη Σούγια και στο Στόμιο της Δ. Κρήτης. Αυτούς τους εντάσσει στη βάση των "μαρμάρων του Τρυπαλίου".

Μια νέα προσέγγιση του θέματος τέθηκε με τις απόψεις των Dornsiepen και Manutsoglu (1994) και Dornsiepen et al (2001). Σύμφωνα με τους ανωτέρω ερευνητές το Φυλλιτικό Κάλυμμα που εμφανίζεται στη Νότιο Πελοπόννησο και Κρήτη αποτελείται από τις τέσσερις υποενότητες.

Εικόνα 13. Λιθολογική υποδιαίρεση του Φυλλιτικού καλύμματος κατά Dornsiepen και Manutsoglu (1994)

Η Ομάδα του Τυρού αποτελείται από ρηχής θάλασσας ασβεστόλιθους, δολομίτες, σχιστές αργίλλους, ψαμμίτες, κροκαλοπαγή, κατά θέσεις γύψους και ασβεσταλκαλικούς

ηφαιστίτες. Έχει υποστεί μεταμόρφωση υψηλής πίεσης/χαμηλής θερμοκρασίας, που κυμαίνεται από αγχιμεταμόρφωση έως την πρασινοσχιστολιθική φάση. Στην Κρήτη, παρατηρείται πάνω σε υπολείμματα του Βαρίσκειου υποβάθρου. Τα υπολείμματα του Βαρίσκειου υποβάθρου αποτελούνται κυρίως από μαρμαρυγιακούς σχιστολίθους με γρανάτες και σταυρόλιθο και από αμφιβολίτες, ηλικίας Άνω Λιθανθρακοφόρο/Κάτω Πέρμιο. Αυτά τα πετρώματα αποτελούσαν κάποτε το κρυσταλλικό υπόβαθρο του Τυρού, και μαζί αυτές οι δύο υποενότητες αποτελούν τα υποκείμενα της Ομάδας της Τρίπολης.

Η Φυλλιτική Χαλαζιτική Σειρά διαχωρίζεται στη ζώνη των φάσεων Ανατολικής Κρήτης και στη ζώνη των φάσεων Δυτικής Κρήτης-Πελοποννήσου. Η ανατολική ζώνη χαρακτηρίζεται από λεπτομερείς κόκκινους σχιστολίθους/φυλλίτες με ραδιολάρια που υπόκεινται μαύρων σχιστολίθων/φυλλιτών που παρεμβάλλονται με στρώματα μετα-ασβεστολίθων. Οι φάσεις αναπτύχθηκαν σε βαθύ θαλάσσιο πελαγικό περιβάλλον, κατά το Κάτω Πέρμιο ως Μέσο Τριαδικό. Η δυτική ζώνη χαρακτηρίζεται από εναλλαγές μετα-γραουβακών, μεταψαμμιτών, μετα-πηλιτών, από μετα-βασάλτες, μετα-κροκαλοπαγή και λεπτοπλακώδη μεταμορφωμένα ασβεστολιθικά στρώματα. Η ηλικία της Σειράς έχει καθοριστεί σε Άνω Λιθανθρακοφόρο-Κάτω Τριαδικό.

Η τεκτονικά κατώτατη ενότητα του Φυλλιτικού Καλύμματος είναι ο σχηματισμός Γύψου-Ραουβάκη, που αποτελείται από ελαφρώς μεταμορφωμένα λατυποπαγή διάλυσης, γύψους, δολομίτες, μαζώδεις ασβεστολίθους και ασβεστιτικές μάργες με λεπτές στρώσεις ασβεστολίθων. Η απόθεση πραγματοποιήθηκε πάνω σε ανθρακική πλατφόρμα σε ρηχά θαλάσσια περιβάλλοντα. Συγκεκριμένα, η απόθεση έγινε σε περιορισμένες λιμνοθάλασσες με έντονα φαινόμενα εξάτμισης, δολομιτίωσης και απόπλυσης των εβαποριτικών στρωμάτων. Η ηλικία του σχηματισμού είναι Κάρνιο ως Λιάσσιο (Εικόνα 14).

Σχετικά με το πάχος της ενότητας των Φυλλιτών - Χαλαζιτών έχει υποστηριχθεί ότι στη Δ. Κρήτη είναι 2150 - 2800 μ. (*Cayeux* 1902, *Krahl et al.* 1983), στη Κεντρική Κρήτη 700 μ. (*Epting et al* 1973) και στην Ανατολική Κρήτη 600 μ. (*Wachendorf et al.* 1974).

33

Εικόνα 14. Σχηματικές συγκριτικές λιθοστρωματογραφικές στήλες των μεταμορφωμένων ενοτήτων των εξωτερικών Ελληνίδων (Dornsiepen et al., 2001).

2.1.3 Παραμόρφωση

Το πιο χαρακτηριστικό γνώρισμα των πετρωμάτων του Φυλλιτικού Καλλύματος είναι η έντονη παραμόρφωση τους. Λεπτομερείς μελέτες σχετικές με τη μορφή της παραμόρφωσης έγιναν για την Α. Κρήτη από τους *Wachendorf et al.* (1974,1975), *Baumann et al.* (1976, 1978) και για τη Δ. Κρήτη- από τους *Greiling και Skala* (1976,1977 και 1979) και *Greiling* (1979, 1980 και 1982).

Παρακάμπτοντας τις αναφορές των διαφόρων ερευνητών για την Ανατολική Κρήτη θα περιοριστούμε στις αναφορές για τη Δυτική Κρήτη. Για τα πετρώματα αυτά στη Δ. Κρήτη οι *Greiling και Skala* (1976, 1978) αναφέρουν ότι η ισοκλινής πτύχωση είναι το κυρίαρχο
τεκτονικό της χαρακτηριστικό. Οι πτυχές παρατηρούνται τόσο σε μικροκλίμακα όσο και σε μεγακλίμακα. Οι άξονες των πτυχών, που παρουσιάζουν μικρή βύθιση προς τα βόρεια έως βορειοανατολικά τοπικά και προς τα νοτιοανατολικά, αναπτύσσονται κατά μήκος δύο κυρίων διευθύνσεων που είναι κάθετες μεταξύ τους (NE-SW, NW-SE). Θεωρούν ότι οι πτυχές αυτές δεν είναι αποτέλεσμα δύο ανεξάρτητων παραμορφωτικών φάσεων, αλλά γενετικά συνδέονται μεταξύ τους. Οι διαφορές στο μέγεθος, στο σχήμα, ακόμη και στη διεύθυνση των αξόνων των πτυχών, οφείλονται στη διαφορετική μηχανική συμπεριφορά των διαφορετικών λιθολογικών μονάδων. Δέχονται ότι η παραμόρφωση αυτή είναι άμεσα συνδεδεμένη με την υψηλής πίεσης/χαμηλής θερμοκρασίας μεταμόρφωση. Προοδευτική παραμόρφωση οδηγεί στη δημιουργία ατρακτοειδών σωμάτων (boudinage). Διακρίνουν μία υστερομεταμορφική φάση παραμόρφωσης που εκφράζεται με σχισμό κατά αξονικό επίπεδο μικρών πτυχών που παρουσιάζουν φορά κατάκλισης προς βορρά και τη συνδέουν με μεταφορά καλύμματος προς τα βόρεια.

O Seidel (1978) χωρίς να κάνει καμιά αντιστοιχία μεταξύ των παρατηρήσεων του και των αποτελεσμάτων των Greiling και Skala (1976,1978), αναφέρει ότι στα μεταϊζήματα της ενότητας των Φυλλιτών-Χαλαζιτών εμφανίζεται μία χαρακτηριστική σχιστότητα S1 η οποία τις περισσότερες φορές είναι παράλληλη ή σχηματίζει οξεία γωνία με τη στρώση. Αυτή στους μεταπηλίτες εκδηλώνεται με την παράλληλη ανάπτυξη των φυλλαρίων του μαρμαρυγία σε διαδοχικές σειρές, ενώ στα μάρμαρα οι ανθρακικοί κόκκοι είναι πεπλατυσμένοι. Οι μεταηφαιστίτες διατηρούν τον αρχικό συμπαγή χαρακτήρα τους και η σχιστότητα η οποία τυχόν παρατηρείται σ'αυτούς είναι παράλληλη με τη σχιστότητα των μεταϊζημάτων που τα περιβάλλουν. Στους μεταπηλίτες παρατηρείται και μια νεότερη σχιστότητα S2 . Ο καρφολίτης, το χλωριτοειδές, ο λωζονίτης και ο γλαυκοφανής είναι συν έως μετατεκτονικά ορυκτά. Εν μέρει αναπτύσσονται παράλληλα προς τη σχιστότητα και εν μέρει εγκάρσια ή πάνω από αυτή. Ο Seidel αναφέρει και την παρουσία μετατεκτονικής παραμόρφωσης και μετατοπισμένες εσωτερικές δομές σε μεμονωμένους κρυστάλλους. Ευκαιριακά αναπτύσσονται κρύσταλλοι χλωριτοειδους στους οποίους "σπάνε" οι S2 επιφάνειες. Έχει κανείς την εντύπωση ότι οι κρύσταλλοι αυτοί σπρώχνουν τις επιφάνειες S2 προς τα πλάγια. Αυτό φανερώνει μετατεκτονική προέλευση του χλωριτοειδούς (Misch, 1971).

35

Ο *Greiling* (1982) διακρίνει μία πρώτη φάση παραμόρφωσης (F1), που δίνει ισοκλινείς πτυχές, μια διαμπερή σχιστότητα και boudinage κάτω από συνθήκες μεταμόρφωσης υψηλών πιέσεων/χαμηλών θερμοκρασιών. Στο τέλος της φάσης αυτής δημιουργείται στην κορυφή της ενότητας των Φυλλιτών - Χαλαζιτών και κάτω από το κάλυμμα της Τρίπολης, μυλωνίτης, boudinage και μια δεύτερη σχιστότητα S2. Μετά τη μεταμόρφωση δημιουργούνται μικρές πτυχές (F3) , γραμμώσεις και πτυχοσχισμός και συνδέονται με τη μεταφορά του καλύμματος των Φυλλιτών - Χαλαζιτών. Μια τελευταία φάση (F4), μετά την κίνηση του καλύμματος, δημιουργεί μικρές πτυχές, ένα ρηξιπτυχοσχισμό και μεγάλης κλίμακας πτυχές.

2.1.4 Παλαιογεωγραφική εξέλιξη

Οι ακολουθίες του Πέρμιο-Ανω Τριαδικού Φυλλιτικού Καλύμματος στη Δυτική Κρήτη μπορούν έχουν ερμηνευτεί σύμφωνα με το αποθετικό παλαιοπεριβάλον τους. Οι Dornsiepern et al (2001) θεώρησαν τα πετρώματα αυτά ως αποθέσεις ενός θαλάσσιου δελταϊκού συστήματος (Εικόνα 15) ενός ο Robertson (2011) τα θεωρεί ότι αποτέθηκαν αρχικά σε μια ενδοηπειρωτική ρηξιγενή ζώνη που βυθίστηκε σε βαθιά θάλασσα που έγινε έντονα ενεργή ηφαιστειακά, κατά το ανώτερο Πέρμιο-κατώτερο Τριαδικό και στη συνέχεια γέμισε με δελταϊκά κροκαλοπαγή στα βόρεια και εβαπορίτες στα νότια. Η μετάβαση στη Δυτική Κρήτη είναι κυρίως σχετικά βαθιάς θάλασσας, πυριτοκλαστικοί τουρβιδίτες που αποτέθηκαν κατά το ανώτερο Λιθανθρακοφόρο-ανώτερο Τριάδικο. Οι μεταβάσεις του κατώτερου Τριαδικού περιλαμβάνουν επαναδραστηριοποιημένα ιζήματα του Πέρμιου και του Τριαδικού που προέρχονται από αποθέσεις ρηχών και βαθύτερων υδάτων. Τα αλκαλικά πυριγενή πετρώματα που δεν έχουν υποστεί καταβύθιση σχηματίστηκαν κατά το ανώτερο Πέρμιο-κατώτερο Τριαδικό (Seidel 1978, Krahl et al. 1982, 1983, Robertson 2006). Κατά το μέσο-ανώτερο Τριαδικό η λεκάνη έγινε ρηχότερη με αποκορύφωμα την απόθεση εβαποριτών στα Νότια (Krahl et al. 1983, Robertson 2006). Σχίστες και πλακώδεις ασβεστόλιθοι μεταβαίνουν σε κυρίως δολομιτικά ανθρακικά και σχίστες και εν τέλει σε σχίστες, δολομιτικά ανθρακικά και γύψο (Pomoni-Papaioannou and Karakitsios 2002) ηλικίας Κάρνιου-Λιάσσιου. Ακόμα πιο Βορειοδυτικά (κοντά στο Σφηνάρι) μικτοί πυριτοκλαστικοί-ασβεστιτικοί τουρβιδίτες ηλικίας μέσου Τριαδικού (Robertson 2006b) που περιέχουν πελαγικά μικρό-απολιθώματα, μεταβαίνουν προς τα πάνω σε ασβεστόλιθους ρηχής θάλασσας και δολομίτες Νόριας ηλικίας, μάρμαρα και τέλος σε μια σημαντική 36 χερσαία ενότητα που ονομάζεται το κροκαλοπαγές Μάνα πάχους μέχρι και 60m. Το κροκαλοπαγές αποτελείται από ημιστρογγυλεμένα κλαστικά λεπτής, μέσης και χονδρής πυριτικής άμμου και ιλύος που συσσωρεύτηκαν σε ρηχές θαλάσσιες δελταϊκές έως μη θαλάσσιες δελταϊκές και ποτάμιες συνθήκες (από *Μανούτσογλου* 2008).

Εικόνα 15. Παλαιοβαθυμετρική απεικόνιση των περιοχών απόθεσης. Κατά το Πέρμιο έως το Κάτω Τριαδικό καταγράφηκε ένα προφίλ υποθαλάσσιας κρηπίδας έως λεκάνης, με μια Α/Δ φάση συγχώνευσης στο βορειότερο όριο της Γκοντβάνα. Κατά το Άνω Τριαδικό επικράτησε ομοιόμορφο περιβάλλον υποπαλλιροϊακής έως ενδοπαλλιροϊακής ζώνης (Dornsiepen et al., 2001) Υπόμνημα παρόμοιο με αυτό της εικόνας 14.

3 Γενικά περί σιδηρομεταλλευμάτων

Ο σίδηρος αποτελεί την κορωνίδα των μετάλλων του σύγχρονου πολιτισμού. Από την εποχή της ανακάλυψης και της χρήσης του έως σήμερα, η παραγωγή του σιδήρου παρουσιάζει παράλληλη ανοδική πορεία με την ανάπτυξη της τεχνολογίας. Παρά τον ανταγωνισμό και την αντικατάστασή του από νέες πρώτες ύλες, εξακολουθεί να παραμένει αναντικατάστατος στις περισσότερες εφαρμογές του (*Χαραλαμπίδης* 2005).

Τα σιδηρομεταλλεύματα είναι η κύρια πρώτη ύλη από την οποία εξάγεται ο μεταλλικός σίδηρος για να μπορεί να παραχθεί χάλυβας. Για να ανταποκριθεί στην ταχεία αύξηση της παραγωγής ακατέργαστου χάλυβα, την τελευταία δεκαετία έχουν γίνει σημαντικές επεκτάσεις στην παγκόσμια παραγωγή σιδηρομεταλλεύματος. Όπως είναι προφανές, στην εικόνα 16, η παγκόσμια παραγωγή σιδηρομεταλλεύματος έχει αυξηθεί από 1.043 Bt το 2001 σε 2.93Bt to 2012. Η Κίνα είναι η μεγαλύτερη παραγωγός σιδηρομεταλλεύματος, παράγωντας περίπου 1.3 Bt το 2012, δηλαδή περίπου το 45% της παγκόσμιας παραγωγής, ακολουθούμενη από την Αυστραλία και την Βραζιλία, οι οποίες το 2012 είχαν σε συνδυασμό παραγωγή 919 Mt το 2012.

Εικόνα 16. Εξέλιξη παραγωγής χάλυβα τις τελευταίες δεκαετίες (από Lu, 2015)

Η παραγωγή σιδηρομεταλλεύματος στις κύριες χώρες-παραγωγούς, υποστηρίζεται από σημαντικά εφεδρικά αποθέματα, τα οποία είναι οικονομικά και τεχνικά εφικτό να εκμεταλλευτούν. Όπως συνοψίζεται στον πίνακα 4, η Αυστραλία έχει τα μεγαλύτερα αποθέματα τόσο σε μη επεξεργασμένο μετάλλευμα όσο και σε περιεκτικότητα σε σίδηρο, ακολουθούμενη στενά από από τη Βραζιλία με ελαφρώς υψηλότερη ποιότητα σιδήρου. Η Ρωσσία είναι επίσης σε καλή θέση σε σχέση με τα αποθέματα σιδηρομεταλλεύματος ποιότητα, αλλά ξεκάθαρα η Κίνα έχει τα πιο πλούσια αποθέματα (*Lu*, 2015)

	2012 (Mt)	2013 (Mt)		
Iron ore imports				
China	745	820		
Japan	131	136		
The European Union	121	128		
South Korea	66	63		
Iron ore exports				
Australia	492	579		
Brazil	327	330		
India (net exports)	16	9		
Canada	35	36		
South Africa	54	48		
World trade	1154	1225		

- ′		~	,		,	<i>c</i>				,	C		11	,			20451
	· //	111 121	1011.170	0 C C 1	11.100	$c c b \alpha$	1//. W//	$\sim \nu \alpha$	$i c c \sigma \alpha$	111.111m	C ((1))	າດດ		110/7/.00/	$\alpha \pi \alpha$		111161
	4.	(J K)	5101012	נואנו	(1)()	(200	νωνι		$i \in i \cup u$	νωνι	c c c c c c c c c c	11.1()	$u \in (u \land \land \land \in U)$	$u \alpha u \omega v$	$(\alpha)(\alpha)$	LU.	201.11
			p	~~~/		7 0 7 00		· · · · ·		r 👓 r · r	,	1 P 🗸	pro 100 0 0 00 0		00.00		/

Πίνακας 5. Διακύμαση διεθνών τιμών σιδηρομεταλλέυματος την τελευταία πενταετία [1]

Δεν υπάρχει κάποια επίσημη ταξινόμηση για τα σιδηρομεταλλεύματα. Αυτό που προτείνεται είναι ότι αν έχει 15% Fe και πάνω τότε μπορούμε να το πούμε σιδηρομετάλλευμα. Αν μπορούμε να προσδιορίσουμε το κύριο ορυκτό που φέρει σίδηρο τότε μπορούμε να συγκεκριμενοποιήσουμε το όνομα (λειμωνιτικό, αιματιτικό, πυριτικό). Εαν το ορυκτό είναι σιδηρίτης προτείνεται η λέξη σιδηριτικό καθώς είναι συνώνυμο με τη λέξη σιδηρούχος. Στο όνομα του ορυκτού, εάν υπάρχει σημαντικό χαρακτηριστικό υφής, προστίθεται και αυτό (ωολιτικά, χαμοσιτικά σιδηρομεταλλεύματα, σιδηρομεταλλεύματα με στρώσεις αιματίτη). Αν το δείγμα δεν έχει υψηλή συγκέντρωση σε σίδηρο (<15%), τότε βάζουμε το πρόθεμα ψαμμιτικό, ανθρακικό στο πέτρωμα καθώς και το σιδηρούχο κυρίαρχο ορυκτό (πυριτικός χαλαζιακός αρενίτης, αιματιτικός απολιθωματοφόρος πακστοουν, γλαυκονιτικός αρενίτης). Αν έχει κόκκινο ή σκουριασμένο χρώμα τότε απλά το αποκαλούμε σιδηρούχος σχιστόλιθος ή σιδηρούχος ψαμμίτης. Όταν εξετάζουμε ένα σιδηρομετάλλευμα πρέπει να αναρωτηθούμε τον λόγο που υπάρχει εκεί σίδηρος. Ο σίδηρος δεν ειναι ευκολοδιάλυτος σύμφωνα με τα τωρινά καιρικά φαινόμενα σε αντίθεση με παλιά. Το πέτρωμα που εξετάζουμε είναι παλιό ή νέο; Αν ειναι παλιό τότε ο σίδηρος είναι ένα αλλοχημικό συστατικό του πετρώματος όπως ακριβώς οι βιοκλάστες είναι αλλοχημικά συστατικά του ασβεστόλιθου. Αν είναι νέο τότε το οξυγόνο στην περιοχή απόθεσης είχε μηδενιστεί. Αν δηλαδή έχει σχηματιστεί σε τέτοιο περιβάλλον τότε και σ'αυτή την περίπτωση μπορεί να αποτελεί ένα αλλοχημικό συστατικό ή απλά ένα πρόωρο διαγενετικό προιόν. Εάν υπήρχε οξυγόνο στον χώρο απόθεσης τότε πιθανότατα ο σίδηρος να προήλθε από μια ολοκληρωμένη αποθεματική διαδικασία. Όταν αυτά είναι ξεκάθαρα βρίσκουμε πως πήγε στην συγκεκριμένη θέση του πετρώματος και από που ήρθε. Μερικές φορές πρέπει να ξέρουμε τι συμβαίνει στον σίδηρο ή στα σιδηρούχα συστατικά από τη στιγμή που σχηματίζονται, άσχετα με το πως σχηματίστηκαν. Αυτό που εμείς τώρα αντιλαμβανόμαστε ως λειμωνίτη, κάποτε δεν ήταν [2].

Τα τρία πιο κοινά μεταλλεύματα σιδήρου είναι ο μαγνητίτης, ο αιματίτης και ο γκαιτίτης, που από κοινού αντιπροσωπεύουν ένα εκτιμώμενο ποσοστό> 99% από τα ορυκτά σιδήρου που περιλαμβάνονται στο παγκόσμιο εμπόριο μεταλλεύματος σιδήρου δια θαλάσσης το 2012. Ο μαγνητίτης (Fe₃O₄) είναι ένα κοινό ορυκτό του σιδήρου σε κοιτάσματα μεταιζηματογενής και μαγματικής προέλευσης. Ο μαγνητίτης έχει μια δομή αντίστροφη του σπινελίου και εν μέρει μεταβάλλεται σε περιβάλλοντα πλησίον του αιματίτη ή κενομαγνητίτη (*Waychunas, 1991*). Ο αιματίτης κοινώς πιστεύεται ότι σχηματίζεται από την οξείδωση του μαγνητίτη σε σημεία κοντά στην επιφάνεια αν και ο *Ohmoto (2003)* απέδειξε ότι η μετατροπή του μαγνητίτη σε αιματίτη ή το αντίστροφο μπορεί επίσης να επιτευχθεί μέσω της μεταβολής του pH χωρίς αντίδραση οξειδοαναγωγής.

Ο γκαιτίτης είναι υδροξείδιο του σιδήρου (α-FeOOH), και πιστεύεται ότι είναι το πιο κοινό σιδηρομετάλλευμα σε ιζηματογενή και σε μεταιζηματογενή κοιτάσματα που εξαλοιώθηκαν κοντά στην επιφάνεια. Οι τρεις πιο κοινές μορφές γκαιτίτη είναι καφέ, κίτρινη ώχρα, και σκούρο καφέ υαλοειδές. Πολλοί τύποι μεταλλεύματος είναι μείγματα σκληρού καφέ γκαιτίτη και κίτρινης ώχρας γκαιτίτη με αιματίτη. Η κίτρινη ώχρα στο γκαιτίτη συχνά αναφέρεται ως "λειμωνίτης." Η κίτρινη ώχρα στο γκαιτίτη συχνά περιέχει άμορφα συστατικά και υψηλή πειεκτικότητα σε Al₂O₃ και SiO₂ (2-9%), αν και υπάρχει κάποια

συζήτηση σχετικά με το αν τα δύο τελευταία οξείδια είναι παρόντα ως εγκλείσματα τάξης μικρών επιμολυσματικών ορυκτών (submicron inclusions of contaminant minerals) ή απλά υποκατεστημένα σαν στοιχεία Al και Si στο κρυσταλλικό πλέγμα.

Ο χαλαζίας είναι μακράν το πιο κοινό συνοδό στείρο ορυκτό των σιδηρομεταλλευμάτων (iron ore gangue mineral) συνολικά, ενώ αργιλικά ορυκτά όπως ο καολινίτης και γκιψίτης κυριαρχούν σε εξαλλοιωμένα σιδηρομεταλλεύματα κοντά στην επιφάνεια, ενώ minnesotaite και στιλπνομέλανες (stilpnomelane) είναι τα πιο κοινά πυριτικά ορυκτά σε μη εξαλλοιωμένες αποθέσεις σιδηρομεταλλευμάτων. Υπάρχουν πολλά άλλα συνοδά στείρα ορυκτά που συνδέονται με κοιτάσματα σιδήρου, που συμπεριλαμβάνουν πολλά διαφορετικά πυριτικά άλατα (συμπεριλαμβανομένων των αμφιβόλων και χλωρίτη), ανθρακικά άλατα (σιδηρίτης και αγκερίτης), σουλφίδια (π.χ., πυρίτη), και οξείδια (π.χ., πυρολουσίτη). Ο *Morris (1980)* αναγνώρισε ότι ενώ η ορυκτολογία πολλών σιδηρομεταλλευμάτων είναι σχετικά απλή, η υφή του μεταλλεύματος είναι αρκετά πολύπλοκη και σχετίζεται άμεσα με την γένεση του μεταλλεύματος. Οι διαφορές στη χημεία σιδηρομεταλλεύματος, την υφή, την ορυκτολογία και τη φυσικές ιδιότητες έχουν άμεση σχέση με τους τύπους των αποθέσεων σιδήρου (*Lu*, 2015 και βιβλιογραφικές αναφορές εντός αυτού).

Ο λειμωνίτης είναι ένα αναξιόπιστο όνομα ορυκτών, σύμφωνα με την Επιτροπή νέων ορυκτών και ονόματα ορυκτών της Διεθνούς Ορυκτολογικής Ένωσης (Commission on New Minerals and Mineral Names of the International Mineralogical Association, *Nickel & Nichols, 1991)* και η χρήση του θα πρέπει να αποθαρρύνεται (*Lu*, 2015 και βιβλιογραφικές αναφορές εντός αυτού). Σε αντίθεση με την ανωτέρω πρόταση της επιτροπής δεν μπορεί να παραγνωριστεί ότι όντως ο λειμωνίτης δεν είναι ένα αυτοτελές ορυκτό αλλά μιά μίξη λεπτόκοκκων οξειδίων του σιδήρου, γενικά αποτελούμενος στο μεγαλύτερο μέρος του από γκαιτίτη αλλά και πιθανότατα από αιματίτη, λεπιδοκροτίτη και άλλα ορυκτά. Οι διαφορές φκαιτίτη και λειμωνίτη μπορεί να είναι δυσδιάκριτες. Ο λειμωνίτης απαντάται κυρίως μέσα ή δίπλα σε οξειδωμένα ορυκτά σιδήρου, αλλά και σε άλλου είδους αποθέσεις σιδηρομεταλλευμάτων καθώς και σε ιζηματογενείς αποθέσεις. Πρόκειται για ένα χρήσιμο όρο πεδίου ο οποίος συναντάται συχνά στην βιβλιογραφία (*Σταμπολιάδης et al*, 2004).

41

3.2. Τα σιδηρομεταλλεύματα στον Ελληνικό χώρο

Τα ελληνικά σιδηρομεταλλεύματα διακρίνονται στο επεξηγηματικό τεύχος του μεταλλογενετικού χάρτη του IFEY (1965) σε χρωμιούχα ή σκληρά και σε μη χρωμιούχα ή συνήθη, ή μαλακά σιδηρομεταλλεύματα. Τα σκληρά σιδηρομεταλλεύματα λατεριτικής προέλευσης είναι χρωμιούχα, περιέχουν πάντοτε νικέλιο, ο τρόπος μεταλλογένεσης τους είναι εντελώς διαφορετικός από τα μαλακά και χαρακτηρίζονται σιδρηρονικελιούχα. Οι εμφανίσεις των μαλακών σιδηρομεταλλευμάτων αν και είναι πολυάριθμες, είναι περιορισμένης οικονομικής σημασίας, κυρίως λόγω του μικρού τους μεγέθους. Τα μαλακά σιδηρομεταλλεύματα της Ελλάδας συνδέονται γενετικά, σχεδόν πάντα με μαγματική δράση. Σχηματίστηκαν βέβαια σε διαφορετικά στάδια της στερεοποιήσεως του μάγματος. Είναι κυρίως πυρομετασωματικής ή υδροθερμικής προέλευσης, πάντα σε συνδυασμό με φαινόμενα αντικατάστασης. Υπάρχουν και ιζηματογενή κοιτάσματα μαλακού σιδηρομεταλλεύματος που προέρχονται από οξείδωση σιδηροπυρίτη, από τα οποία αποτελείται το σιδηρούν κάλυμμα. Κοιτάσματα ποικίλης αρχικής προέλευσης κατά τη διάρκεια μεταμορφώσεων υπέστησαν αναμετακίνηση των αρχικών ορυκτών τους ή δημιουργία νέων με τέτοιο τρόπο ώστε η μεταλλογένεση τους να οφείλεται σε διαφορετικές αιτίες ανά διαφορετικές περιόδους. Τα κοιτάσματα και οι εμφανίσεις αυτής της ομάδας είναι πολυάριθμες και κατανέμονται σε όλη την έκταση της χώρας σε γεωλογικό-πετρολογικό περιβάλλον, κατά προτίμηση του κρυσταλλοσχιστώδους. Στον μεταλλογενετικό χάρτη της Ελλάδας υπάρχουν 217 μεταλλοφόρες θέσεις, καθέ μια από τις οποίες συνήθως αντιπροσωπεύει περισσότερα από ένα κοίτασματα. Τα σημαντικότερα από άποψη όγκου, έιναι εκείνα της Θάσου, Σερίφου, Γραμματικού Αττικής, Δυτ. Κρήτης, Χαλκιδικής, Αγκίστρου, Ν. Πελοποννήσου κλπ. Βάσει των μέχρι τώρα στοιχείων και ερευνών, τα σίγουρα αποθέματα μαλακού σιδηρομεταλλεύματος της χώρας, ποικίλης όμως περιεκτικότητας σε Fe, ανέρχονται σε 20.000.000 τόννους περίπου, ενώ τα πιθανά σε άλλους 20.000.000 τόννους. Παρακάτω δίνεται μια σύντομη περιγραφή των 217 θέσεων μεταλλοφορίας (ΕΘΙΓΜΕ 1973).

Η εκμετάλλευση των μαλακών σιδηρομεταλλευμάτων στην Ελλάδα οδηγήθηκε σε οριστική πάυση στις αρχές της δεκαετίας του 1960, έχοντας όμως συμβάλει ουσιαστικά στην ανάπτυξη του Ελληνικού κράτους αφού «Οι κύριες βιομηχανίες της Ελλάδας είναι η γεωργία, η ναυτιλία και η μεταλλεία» σύμφωνα με την αναφορά του του βρετανού

42

προξένου το 1905 [3]. Η Βιομηχανική Επανάσταση οδήγησε σε αύξηση της ζήτησης για μεταλλεύματα στη νεότερη εποχή. Το οικονομικό ενδιαφέρον των Ευρωπαίων για τον ορυκτό πλούτο της Μεσογείου, εκδηλώθηκε με επιστημονικές αποστολές γεωγράφων και γεωλόγων στις διάφορες περιοχές της Μεσόγειο. Από τα τέλη του 18ου αιώνα, γαλλική επιστημονική αποστολή εξερευνούσε τον ορυκτό πλούτο της Σικελίας, ενώ μέχρι τα μέσα του 19ου αιώνα η Γαλλία είχε οργανώσει μεταξύ άλλων, επιστημονικές-στρατιωτικές αποστολές στην Αίγυπτο (1798-1801), από όπου έχει προκύψει και ο πρώτος γεωλογικός χάρτης του κόσμου γνωστός ως πάπυρος του Τορίνο (*Μανούτσογλου* 2010) και την Ελλάδα (1829-1831) (Expédition Scientifique de Morée) το έργο των οποίων αποτελεί βασική αναφορά της ιστορικής γεωεπιστημοινικής έρευνας στην Ελλάδα. Το ίδιο περίπου χρονικό διάστημα ο γεωεπιστήμονας *Raulin* περιοδεύει στην Κρήτη και το 1869 εκδίδει το τρίτομο έργο του Description physique de l'île de Crête, 3 Bände und Atlas, με τον πρώτο γεωλογικό χάρτη της νήσου, απόσπασμα του οποίου παρατίθεται στην εικόνα 17.

Εικόνα 17. Απόσπασμα από τον γεωλογικό χάρτη του Raulin 1869.

Στην συνέχεια και μέχρι το τέλος του 19ου αιώνα, γερμανικές, αυστριακές και ιταλικές επιστημονικές αποστολές, καταγράφουν τον ορυκτό πλούτο και ευρωπαικών τμημάτων και νήσων της τότε Οθωμανικής Αυτοκρατορίας, προιόν των οποίων είναι και η δημιουργία των πρώτων γεωλογικών χαρτών νησιών (Χίου, Κω) του Αιγαίου (*Μανούτσογλου* 2010).

Στην Ελλάδα, μετά τη θέσπιση της μεταλλευτικής νομοθεσίας (το 1861 και η τροποποίηση το 1867), σε έναν «μεταλλευτικό πυρετό» που κατέλαβε τη χώρα κατατίθεται ένας εντυπωσιακός αριθμός αιτήσεων για παραχώρηση εκμετάλλευσης που την περίοδο 1867-1875 στο Υπουργείο Εσωτερικών δεν συνοδεύεται από ανάλογη άδεια εκμετάλλευσης: από τις 1.686 αιτήσεις παραχωρήσεων, δόθηκαν τελικά μόνο 359 στα πλαίσια των οποίων στην περίοδο αυτή (1867-1875) συγκροτούνται οι πρώτες 29 μεταλλευτικές επιχειρήσεις. Απ' αυτές τις εταιρείες, μόλις 4-5 προχώρησαν σε εκμετάλλευση, ενώ 11 διαλύθηκαν. Στα 1877, ξεχωρίζουν η Γαλλική Εταιρεία Μεταλλείων Λαυρίου, η Ελληνική Εταιρεία Μεταλλείων Λαυρίου, τα θειορυχεία Μελά στη Μήλο και η Ελληνική Μεταλλευτική Εταιρεία[3]. Η Ελληνική Μεταλλευτική Εταιρεία ελέγχεται από την Εθνική Τράπεζα και διαθέτοντας μεταλλεία σιδήρου στη Σέριφο, γαληνίτη στην Αντίπαρο, λιγνιτορυχεία στην Κύμη, μεταλλεία στον Ωρωπό και την Τήνο και παραχωρήσεις χαλκού στην επαρχία Τροιζηνίας, θα επιχειρήσει, επενδύοντας σημαντικά κεφάλαια, την μοναδική για την εποχή απόπειρα βιομηχανικής παραγωγής σιδήρου στην Κύμη, χρησιμοποιώντας για την αναγωγή του σιδηρομεταλλεύματος της Σερίφου το λιγνίτη της Εύβοιας. Η αμέσως επόμενη φάση της μεταλλευτικής δραστηριότητας στη χώρα και ιδίως στα νησιά εγκαινιάζεται στις αρχές της δεκαετίας του 1880. Μεταξύ 1880-82, οι υφιστάμενες μεταλλευτικές εταιρείες συγχωνεύτηκαν ή πώλησαν τα μεταλλευτικά τους δικαιώματα σε νέες εταιρείες ξένων κεφαλαιούχων. Κομβικό ρόλο σ' αυτή την αλλαγή φαίνεται ότι έχει η Γαλλική Εταιρεία Μεταλλείων Λαυρίου, η οποία συνδέεται με τις γαλλικές εταιρείες «Σέριφος-Σπηλιαζέζα» (ιδρ. 1880) και «Σίφνος-Εύβοια» (ιδρ. 1882). Χαρακτηριστική περίπτωση της εξορυκτικής δραστηριότητας αυτής της περιόδου συνιστούν επίσης τα μεταλλεία σιδήρου στη Σέριφο. Μετά την αποτυχία του εγχειρήματος για την ίδρυση σιδηρουργίας, τα σιδηρομεταλλεύματα των νησιών του Αιγαίου εξάγονται ακατέργαστα στις ευρωπαϊκές αγορές. Η γαλλική εταιρεία «Σέριφος-Σπηλιαζέζα» που διαδέχτηκε την «Ελληνική Μεταλλευτική Εταιρεία» στην εκμετάλλευση του πλούσιου σε σιδηρομετάλλευμα υπεδάφους της Σερίφου υπήρξε δημιούργημα της συνεργασίας ομογενών τραπεζιτών της Κωνσταντινούπολης και γάλλων κεφαλαιούχων με τη συμμετοχή της Οθωμανικής Τράπεζας. Η τρίτη διακριτή περίοδος της εξορυκτικής δραστηριότητας στα νησιά χρονολογείται από τις αρχές της δεκαετίας του 1890 ως τα μέσα της δεκαετίας του 1900. Ο ανοδικός κύκλος της διεθνούς οικονομίας και οι νέες τεχνολογίες επιτρέπουν στις εξορυκτικές επιχειρήσεις που δραστηριοποιούνται στο χώρο των ελληνικών νησιών να πετύχουν υψηλά κέρδη εξάγοντας μεγάλες ποσότητες ακατέργαστου εξορυσσόμενου προϊόντος. Έτσι, από το 1890 ως το 1905-1907, η μεταλλευτική δραστηριότητα στην Ελλάδα, ιδίως στα νησιά, γνωρίζει άνθηση και ο συνολικός όγκος των εξαγωγών υπερτριπλασιάζεται (αν και οι τιμές των μεταλλευμάτων στη διεθνή αγορά σημειώνουν πτώση από τα τέλη του 19ου αιώνα [3].

Μετά από παύση 15 περίπου ετών, νέο κύμα μεταλλευτικών παραχωρήσεων δίδεται από την ελληνική κυβέρνηση στα 1896-1906. Οι παραχωρήσεις αφορούν μεταλλεύματα σιδήρου (Σκύρο, Κύθνο, Τζια, Σίφνο), μαγγανίου και μολύβδου (Μύκονο, Άνδρο, Κίμωλο). Από τα πολυάριθμα μεταλλεία που λειτουργούν στις αρχές του 20ου αιώνα στα νησιά πολύ καλές αποδόσεις έχουν τα μεταλλεία σιδήρου της Σερίφου και της Κύθνου και μαγγανίου της Μήλου. Μικρές εκμεταλλεύσεις σιδηρομεταλλευμάτων, χαλκού και μολύβδου υπάρχουν σε άλλα 12 νησιά: Σκύρος, Σκόπελος, Άνδρος, Σύρος, Αντίπαρος, Ίος, Σίκινος, Νάξος, Σαντορίνη, Κέα, Μύκονος, Δήλος [3].

Στα 1910 υπάρχουν στη χώρα περίπου 30 εξορυκτικές – μεταλλουργικές επιχειρήσεις, οι οποίες απασχολούν συνολικά 9.000 εργάτες και εργάτριες. Οι μισές απ' αυτές τις εταιρείες έχουν διακόψει ή περιορίσει τις εργασίες τους σε σχέση με το 1906, εποχή κατά την οποία απασχολούνταν περίπου 11.000 εργάτες και εργάτριες. Στα νησιά, 10 ιδιωτικές επιχειρήσεις εξορύσσουν σιδηρομετάλλευμα στη Σέριφο, Κύθνο, Σύρο, Σκύρο, μόλυβδο σε Σίφνο-Μύκονο και ψευδάργυρο στην Αντίπαρο, μάρμαρα στην Σκύρο και την Τήνο απασχολώντας συνολικά 1.900 εργάτες, ενώ στα δημόσια μεταλλεία σμύριδας στη Νάξο εργάζονται περίπου 500 εργάτες. Η εξορυκτική δραστηριότητα, ιδίως για τις ξένες εταιρείες, υποχωρεί, καθώς η άνοδος της τιμής της χάρτινης δραχμής στο άρτιο και κατά συνέπεια η άνοδος των ημερομισθίων, μείωσε την ανταγωνιστικότητα των ελληνικών μεταλλευμάτων στις διεθνείς αγορές. Η κρίση θέτει το ζήτημα του τεχνολογικού εκσυγχρονισμού και της ορθολογικής οργάνωσης της παραγωγής τόσο στις ιδιωτικές επιχειρήσεις, όσο και στα δημόσια μεταλλεία.

Η μεταλλευτική δραστηριότητα στην Ελλάδα, και ιδίως στα νησιά, μέχρι τις αρχές του 20ου αιώνα συνδέεται με εξαγωγή ακατέργαστων μεταλλευμάτων στα οποία είναι σημαντική η εξόρυξη σιδηρομεταλλευμάτων.

Στις παραμονές του Α΄ Παγκοσμίου Πολέμου, στα 1912-1914, ο τομέας της εξόρυξης στην Ελλάδα γνωρίζει στο σύνολο του μια πρόσκαιρη ανάκαμψη των εξαγωγών, αλλά από το 1915 ως το 1925 η μεταλλευτική παραγωγή και η παραγωγή προϊόντων καμινείας μειώνεται δραστικά. Τη δεκαετία του 1920 η μεταλλευτική δραστηριότητα βρίσκεται σε στασιμότητα καθώς δεν ιδρύονται νέες επιχειρήσεις. Το κραχ δε του 1929 ανέστειλε τη δραστηριότητα πολλών μεταλλευτικών εταιρειών, ορισμένες από τις οποίες έκλεισαν, όπως η «Ελληνική Μεταλλουργική Μεταλλευτική Εταιρεία». Η εξορυκτική δραστηριότητα ανακάμπτει από το 1934 ως το ξέσπασμα του Β΄ Παγκοσμίου Πολέμου. Η ζήτηση για σιδηρομεταλλεύματα αυξάνει, ενώ νέα μεταλλεύματα αρχίζουν να εξορύσσονται: η βαρυτίνη στη Μήλο, οι βωξίτες στην ηπειρωτική χώρα. Η απασχόληση στον μεταλλευτικό – μεταλλουργικό τομέα αυξάνει και αυτή, μετά την σημαντική κάμψη που είχε γνωρίσει στη δεκαετία του 1920 και στις αρχές του '30, εξαιτίας της κρίσης. Οι εξαγωγές σιδηρομεταλλευμάτων εντείνονται τη δεκαετία του 1930. Η Σέριφος εξάγει 500.000 τόννους και τα μεταλλεία της Κύθνου 55.000 τ. το διάστημα 1934-38 κυρίως στην Γερμανία, η οποία ευνοείται από την συμφωνία κλήριγκ, αλλά και στην Ολλανδία, Μεγάλη Βρετανία, Γαλλία, Πολωνία. Αν και το σιδηρομετάλλευμα αποτελεί το βασικό εξαγωγικό προϊόν της εξορυκτικής «βιομηχανίας» των νησιών από τα τέλη του 19ου αιώνα, χρειάζεται ωστόσο η σχετικοποίηση των μεγεθών. Στην παγκόσμια παραγωγή σιδηρομεταλλευμάτων για το έτος 1938 η Ελλάδα συμμετέχει με το μικρό ποσοστό 0,2 %, έχει δηλαδή μειωθεί η συμμετοχή της από τις αρχές του αιώνα, όπου συμμετείχε με ποσοστό 0,6%. Στον πίνακα 6 φαίνονται ακριβώς οι χώρες παραγωγής σιδηρομεταλλεύματος καθώς και οι ανακατατάξεις στην παγκόσμια παραγωγή στο διάστημα 1900-1938. Άξιο παρατήρησης είναι το γεγονός ότι στην λεκάνη της Μεσογείου, η Γαλλία, η Ισπανία και η Ιταλία (η οποία παράγει στα 1900-1908 λιγότερο σιδηρομετάλλευμα από την Ελλάδα), εκτός από χώρες παραγωγής σιδηρομεταλλεύματος, διαθέτουν και βιομηχανία σιδήρου ήδη από τον 19ο αιώνα. Η λήξη

της κατοχής και του εμφυλίου βρίσκει τα περισσότερα μεταλλεία, όπως και τις βιομηχανικές μονάδες, με κατεστραμμένες εγκαταστάσεις και με συρρικνωμένη την παραγωγική τους ικανότητα. Μέσα στις συνθήκες κοινωνικής και πολιτικής πόλωσης της εποχής, κρίθηκε ότι η ανασυγκρότηση και σταθεροποίηση της ελληνικής οικονομίας έπρεπε να στοχεύουν στην εκβιομηχάνιση και στην δημιουργία ενεργειακής υποδομής. Η εκβιομηχάνιση ως μοντέλο ανάπτυξης για την μεταπολεμική Ελλάδα προτείνεται από όλες τις πλευρές, τόσο την αριστερά όσο και την δεξιά, αν και βέβαια οι διαφωνίες εντοπίζονταν στο ζήτημα της χρηματοδότησης της βιομηχανίας, με την κινητοποίηση εσωτερικών ή εξωτερικών πόρων. Στις μελέτες της περιόδου 1947-1953 για τον κλάδο της εξόρυξης, που πραγματοποιούνται στα πλαίσια της αμερικανικής οικονομικής βοήθειας, τονίζονται α) η ανάγκη εμπλουτισμού και επεξεργασίας των εξορυσσόμενων μεταλλευμάτων, προκειμένου να μειωθεί το κόστος παραγωγής και να βρεθεί διέξοδος στις παγκόσμιες αγορές για τα φτωχά μεταλλεύματα και β) η ανάγκη δημιουργίας βασικών βιομηχανιών μεταλλουργίας, που θα αξιοποιούν τον ορυκτό πλούτο. Στις μελέτες τονίζεται ότι για την ορθολογική εκμετάλλευση του ορυκτού πλούτου απαραίτητα στοιχεία είναι η ανάπτυξη κατάλληλης τεχνικής υποδομής, οι εκτεταμένες μεταλλευτικές έρευνες και η δημιουργία ανώτατης και μέσης τεχνικής εκπαίδευσης. Τα ζητήματα αυτά των υποδομών και της τεχνικής εκπαίδευσης επιχειρείται να αντιμετωπιστούν με την ίδρυση του Τμήματος Μηχανικών Μεταλλειολόγων στο ΕΜΠ (1946), του Ινστιτούτου Γεωλογίας και Ερευνών Υπεδάφους - το μετέπειτα ΙΓΜΕ (1952) και μέσων τεχνικών σχολών για μηχανοδηγούς μεταλλείων (τη δεκαετία 1950) [3].

Στα ανωτέρω πλάισια εντάσεται και η αδημοσίευτη έκθεση του IFEY 256 του 1952 από τον Καθ. Ι. Παπασταματίου σχετικά με τον Ορυκτό Πλόυτο της Κρήτης η οποία εμπεριέχει και κοιτασματολογικό σκαρίφημα με δεκάδες θέσεις εμφανίσεων μεταλλικών μη μεταλλικών και ενεργειακών πρώτων υλών, απόσπασμα του οποίου παρατίθεται στην εικόνα 18. Στο ίδιο πλαίσιο κινήθηκε και η ολοκλήρωση επίσης από το IFEY της συγκέντρωσης και παράθεσης 1472 εμφανήσεων μεταλλευμάτων ανα την χώρα στον Μεταλλογενετικό χάρτη της Ελλάδος του 1965 που με το επεξηγηματικό τεύχος του εκδόθηκε από το EOIFME το 1973 και παρατίθεται στην εικόνα 19. N. XANISN

Εικόνα 18. Απόσπασμα σκαρφήματος κοιτασματολογικού χάρτη της Κρήτης από την, από την αδημοσίευτη έκθεση του ΙΓΕΥ (Παπασταματίου 1952)

1-1

Εικόνα 19. Μεταλλογενετικός χάρτης της Ελλάδας κλίμακας 1:1.000.000 (Ζάχος και Μαράτος 1965)

Κατά το Β΄ Παγκόσμιο Πόλεμο ξεκίνησε μια έντονη μεταλλευτική δραστηριότητα. Με την τεχνογνωσία που κατείχαν οι Γερμανοί μπόρεσαν αφενός να οριοθετήσουν μεταλλοφόρες περιοχές και αφετέρου να εξορύξουν μετάλλευμα αλλά και γαιάνθρακες τα οποία είτε χρησιμοποιούσαν για ίδιες ανάγκες, είτε εξήγαγαν από τη σκάλα φόρτωσης, υπολείμματα της οποίας βρίσκονται ακόμα στην περιοχή Ραβδούχα του νομού. Μετά την απελευθέρωση της χώρας, αρκετοί ντόπιοι επίδοξοι επιχειρηματίες εμπνευσμένοι από τη δραστηριότητα αυτή θέλησαν είτε να συνεχίσουν τις υπάρχουσες εκμεταλλεύσεις είτε να ξεκινήσουν νέες σε άλλες περιοχές με ενδείξεις μεταλλοφορίας, δοκιμάζοντας την τύχη τους σε ένα δύσκολο τομέα, με υψηλό δείκτη ρίσκου λόγω της έλλειψης τεχνογνωσίας σε τοπικό επίπεδο. Στη νομαρχία Χανίων υπάρχει αρχείο με τις 92 αιτήσεις για μεταλλευτικές έρευνες, σε διάφορες περιοχές του νομού Χανιών, που υποβλήθηκαν μετά τον Β΄ παγκόσμιο πόλεμο (1944) και μέχρι την ιστορικά χρονική περίοδο του 1970. Τα δεδομένα από το αρχείο αυτό επεξεργάστηκαν και δημιουργήθηκε μια πρώτη τράπεζα πληροφοριών σχετική με την ιστορική μεταλλευτική έρευνα στον νομό Χανίων (*Σπανάκης*, 2015).

4 Κοιτασματολογική αναγνώριση του νομού Χανίων

Στα πλαίσια της παρούσας διπλωματικής χρησιμοποιήθηκαν στοιχεία που αντλήθηκαν από τον μεταλλογενετικό χάρτη του IΓΕΥ κλίμακας 1:1.000.000 (*Ζάχος και Μαράτος* 1965) και το συνοδευτικό έντυπο του συγκεκριμένου χάρτη. Ο παραπάνω χάρτης και το συνοδευτικό του έντυπο έχουν αντλήσει πλειάδα δεδομένων, όσον αφορά τη νήσο Κρήτη, από την αδημοσίευτη έκθεση του IΓΕΥ με τίτλο «Ο ορυκτός πλούτος της Κρήτης» του 1952 υπό του Παπασταματίου Ι.Ν.. Η έκθεση αυτή αποτελεί μια πολύ καλή περιγραφή των κοιτασμάτων και εμφανίσεων των μεταλλευμάτων, των ορυκτών καυσίμων και των βιομηχανικών ορυκτών που απαντώνται στην Κρήτη. Οι επόμενοι παράγραφοι επικεντρώνονται στην παρουσίαση συνδυαστικά αυτών των στοιχείων.

Στο νομό Χανίων μεγάλη έκταση καλύπτει το κρυσταλλοσχιστώδες γεγονός στο οποίο οφείλεται και η μεταλλογένεια του νομού, η οποία συγκρινόμενη με αυτή των άλλων νομών του νησιού είναι σημαντικά μεγαλύτερη. Στο νομό αναπτύσσονται ευρέως και τα ασβεστολιθικά κυρίως ιζήματα της υποζώνης Τριπόλεως. Τα Λευκά Όρη συγκροτούνται από τριαδικούς και ιουρασικούς ασβεστόλιθους της σειράς αυτής καθώς επίσης και από ασβεστόλιθους της σειράς αυτής αποτελούνται σχεδόν εξ'ολοκλήρου τα τρία ακρωτήρια του νομού. Ιζήματα της σειράς Ολώνου-Πίνδου αναπτύσσονται σε μικρή έκταση γύρω από την περιοχή της Παλαιόχωρας. Τα μεταλπικά ιζήματα(ασβεστόλιθοι-μάργες) τέλος είναι διαδεδομένα στις βόρειες επαρχίες του νομού.

Αν εξαιρέσει κανείς τις λιγνιτικές λεκάνες και ασήμαντη εμφάνιση μαγγανίου στα Λευκά Όρη, όλες οι άλλες εμφανίσεις χρήσιμων ορυκτών υλών βρίσκονται διεσπαρμένες στο κρυσταλλοσχιστώδες. Επειδή τα στρώματα του κρυσταλλοσχιστώδους έχουν ελαφρά κλίση προς ΒΑ κατεύθυνση τα κατώτερα μέλη αυτού και τα στρώματα γύψου εμφανίζονται στις μεσημβρινές επαρχίες ενώ στις βόρειες επαρχίες εμφανίζονται οι νεότεροι σχηματισμοί. Τα μεταλλεύματα απαντούν ακανόνιστα εντός του κρυσταλλοσχιστώδους. Η τυχόν προτίμηση σε ορισμένες περιοχές πρέπει να αποδοθεί σε τεκτονικούς λόγους και διεισδύσεις μαγματικού υλικού.

Στον πίνακα 6 που ακολουθεί παρουσιάζεται μια κατάταξη των χρήσιμων ορυκτών υλών του νομού.

Κατηγορία	Ορυκτή πρώτη ύλη	Περιοχή				
ΜΓΤΔΛΛΓΥΜΔΤΔ	ΣΙΔΗΡΟΣ	Ραβδούχα, Κακόπετρος, Σκινές. Σκορδαλλός, Δρακώνα, Σκλαβοπούλα, άλλες εμφανίσεις				
	ΧΑΛΚΟΣ	Φουρνέ, Μεσκλά, Κάνδανος, Καμπανός				
	ΜΑΓΓΑΝΙΟ	Τεμένια				
ΣΤΕΡΕΑ ΟΡΥΚΤΑ	ΔΙΓΝΙΤΗΣ	Λεκάνη Κανδάνου–Πλεμενιανών, λεκάνη				
ΚΑΥΣΙΜΑ	////////2	Βρυσσών Αποκορώνου, Φουρνέ				
BIOMHXANIKA	ΓΥΨΟΣ	Προφήτης Ηλίας , Σχίσματα, άλλες εμφανίσεις				
ΟΡΥΚΤΑ	ΑΜΙΑΝΤΟΣ	Πλατίβολα,Θέρισσος				

Πίνακας 6. Κατηγοριοποίηση των ορυκτών πρώτων υλών του νομού Χανίων

Οι εμφανίσεις στο κρυσταλλοσχιστώδες της Δ. Κρήτης αφθονούν, λίγα όμως από αυτά τα κοιτάσματα παρουσιάζουν δυνατό απόθεμα άνω των 300.000 τόνων. Στις επόμενες παραγράφους ακολουθεί εξέταση των κοιτασμάτων αυτών.

Στην εικόνα 19 (Μεταλλογενετικός χάρτης Ελλάδος) και πιο συγκεκριμένα για τη δυτική Κρήτη φαίνονται οι εμφανίσεις σιδηρούχων και χαλκούχων εμφανίσεων οι οποίες είναι αριθμημένες και αναλύονται παρακάτω για κάθε περιοχή ενδιαφέροντος.

4.1.1 Μεταλλεύματα σιδήρου

4.1.1.1 Νο. 217: Κακόπετρος

Νότια του χωριού υπάρχουν αρκετές εμφανίσεις λειμωνίτη και ώχρας λειμωνίτη, σχεδόν συνεχόμενες. Οι εμφανίσεις βρίσκονται εντός φυλλιτικών πετρωμάτων και κατά την επαφή αυτών με τις εκεί εμφανίσεις μεταλπικού κροκαλοπαγή ασβεστόλιθου, όμοιο με εκείνο των Τοπολίων.

Το μετάλλευμα παρουσιάζεται στη ζώνη επαφής των ανώτερων πετρωμάτων, κυμαινόμενου εύρους μέχρι 50 μέτρα και βυθίζεται παρεμβαλόμενο μεταξύ αυτών. Ο λειμωνίτης αποτελεί κοίτη εντός του κρυσταλλοσχιστώδους, ενώ επί διαβρωσι-γενούς επιφάνειας της κοίτης του μεταλλεύματος και των φυλλιτών έχει αποτεθεί ο τριτογενής ασβεστόλιθος. Στην παρακάτω τομή φαίνεται σχηματικά η γεωλογική τοποθέτηση του κοιτάσματος λειμωνίτη. Το σιδηρομετάλλευμα είναι καλής ποιότητας. Πρόκειται για λειμωνίτη ελαφρά μαγγανιούχο. Η ώχρα επίσης του λειμωνίτη η οποία κατά θέσεις είναι και αυτή καλής ποιότητας.

Κατά την περίοδο 1908-1912 πραγματοποιήθηκαν ερευνητικές εργασίες σε αυτή τη μεταλλοφόρο περιοχή. Στην ανατολικότερη εμφάνιση (υψ. 545μ) σύμφωνα με πληροφορίες είχε ανοιχθεί στοά μήκους 30μ περίπου, κατά την επαφή μεταλλεύματοςασβεστόλιθου. Στη νοτιότερη εμφάνιση (υψ. 755μ) στην τοποθεσία Μακρύλακος είχε επίσης ανοιχθεί φρέαρ βάθους περίπου 15 μέτρων εντός του μεταλλεύματος κάτω από τα απόκρημνα τμήματα ασβεστολίθων και στη γραμμή επαφής αυτών με το μετάλλευμα. Οι ποσότητες εξορυχθέντος μεταλλεύματος δε μας είναι από τις ερευνητικές εργασίες γνωστές. Ο τελευταίος μεταλλειοκτήτης είχε εξορύξει περίπου 120 τόνους λειμωνίτη μέχρι το Σεπτέμβριο του 1951.

Στην περιοχή πραγματοποιήθηκε επίσκεψη (εικόνες 20, 21) όπου και πάλι με την πολύτιμη βοήθεια των κατοίκων έγινε εντοπισμός των εμφανίσεων λειμωνίτη. Σύμφωνα με αυτούς υπήρχαν δύο μέτωπα εκμετάλλευσης. Από το ένα γινόταν η ανάληψη μεταλλεύματος μέσω

φρέατος και από το άλλο μέσω στοών. Λόγω του έντονου ανάγλυφου το μετάλλευμα μεταφέρονταν με ζώα μέχρι τον επαρχιακό δρόμο Χανίων-Κανδάνου από όπου φορτώνονταν σε φορτηγά. Δεν έγινε εφικτή η προσέγγιση του φρέατος (το οποίο υπάρχει και σήμερα σαν καταβόθρα) για λόγους ασφάλειας. Αντιθέτως έγινε μια κοντινή προσέγγιση της μιας εκ των στοών αλλά λόγω πολύ πυκνής βλάστησης δεν ήταν δυνατή η προσέγγιση και είσοδος εντός αυτής όπως φαίνεται και στις παρακάτω φωτογραφίες. Για συγκρίσεις αναλύθηκαν με την ίδια μέθοδο XRF δύο δείγματα σιδηρομεταλλευμάτων από την περιοχή (KK1 και KK2).

Εικόνα 20. Εμφάνιση λειμωνίτη κοντά στα παλιά μέτωπα εκμετάλλευσης

Εικόνα 21. Λίγα μέτρα από την είσοδο μιάς εκ των στοών με την πυκνή βλάστηση να είναι ανυπέρβλητο εμπόδιο. Στο βάθος δεξιά εμφάνιση λειμωνίτη

Ο υπολογισμός των υπαρχόντων αποθεμάτων δεν είναι δυνατόν να πραγματοποιηθεί λόγω της φύσεως του κοιτάσματος και της έλλειψης ερευνητικών έργων. Από τις παλαιότερες έρευνες δεν είναι γνωστή ούτε η έκταση, ούτε και το πάχος του κοιτάσματος που βρίσκεται κάτω από τον ασβεστόλιθο. Υπολογίζεται ότι τα αποθέματα μεταλλεύματος είναι περίπου 500.000 τόννοι και η συνολική ποσότητά εξορύξιμου πετρώματος περίπου 4.000.000 τόννοι. Το κοίτασμα βρίσκεται κοντά σε δρόμο και απέχει 85 χιλιόμετρα από την πόλη των Χανίων και είναι από τα πλέον ενδιαφέροντα του νομού.

4.1.1.2 Νο.212: Σκινές-Χλιαρό-Αργαστήρι

Οι εμφανίσεις σιδηρομεταλλεύματος βρίσκονται περίπου ένα χιλιόμετρο νότια του χωριού Σκινές στην τοποθεσία Χλιαρό και Αργαστήρι. Τα ορυχεία σιδήρου στο Χλιαρό που ανήκαν στην οικογένεια Αβέρωφ και λειτουργούσαν μέχρι πριν τέσσερις δεκαετίες είναι σε πολλούς ντόπιους γνωστά, μιας και ορισμένοι από τους υπερήλικες των χωριών εργάζονταν σε αυτά. Οι γαλαρίες σώζονται ακόμη. Ο Αβέρωφ έλεγε στους εργάτες του ορυχείου του στο Χλιαρό, πως ένα πηγάδι είχε μαγγάνιο και συχνά ανέφερε πως «επάχετε πολύ χρώμιο». Υπάρχουν κοιτάσματα σιδηρομεταλλευμάτων τα οποία περιέχουν λειμωνίτη και αιματίτη και ελάχιστο πυρολουσίτη. Η εταιρεία «Μεσογειακός Όμιλος» άρχισε την εκμετάλλευση και παρήγαγε 200.000 τόννους μεταλλεύματος με περιεκτικότητες: Fe=48%, Mn=2% αλλά και ίχνη Ρ. Τα αποθέματα αυτών των υδροθερμικής γένεσης κοιτασμάτων εκτιμούνται στους 1.000.000 τόννους. Το μεγαλύτερο σε όγκο κοίτασμα βρίσκεται στο πρανές ενός λόφου υπό μορφή φακοειδούς κοίτης. Εκτός του κοιτάσματος αυτού υπάρχουν και άλλα στη γύρω περιοχή τα οποία όμως είναι δευτερεύουσας σημασίας.

Ο λειμωνίτης είναι σπογγώδους υφής και κατά θέσεις εγκλείει τεμάχια σχιστολίθου. Σε κάποιες θέσεις έχει παρατηρηθεί εμποτισμός φυλλιτών υπό του λειμωνίτη. Ο τελευταίος έχει εισχωρήσει σε ρωγμές του φυλλίτη και αποτελεί κατά κάποιο τρόπο την συνδετική ύλη μεταξύ των τεμαχιδίων αυτού.

Ακολουθεί χημική ανάλυση η οποία πραγματοποιήθηκε στο χημικό Εργαστήριο της Γεωλογικής υπηρεσίας (δειγματολειψια κ Γ. Αρώνη)

Πυριτικό οξύ (SiO₂) 15,50%

- Οξείδιο του σιδήρου (Fe₂O₃) 68,00%
- Οξείδιο του μαγγανίου (MnO) 1,80%
- Πεντοξείδιο του φωσφόρου (P₂O₅) 0,55%
- Θείο (S) 0,07%

Από τη χημική ανάλυση προκύπτει ότι ο λειμωνίτης του κοιτάσματος αυτού, σε σύγκριση με άλλους του νομού Χανίων παρουσιάζεται με μειωμένη περιεκτικότητα σε Fe₂O₃ και αυξημένη σε SiO₂. Επίσης είναι ελαφρώς μαγγανιούχος όπως και τα περισσότερα σιδηρομεταλλεύματα του νομού.

Δεν υπάρχουν στοιχεία στα οποία να βασισθεί ένας υπολογισμός αποθεμάτων. Σε περίπτωση που δεχόμαστε τις επιφανειακές διαστάσεις 150μ. και 100μ. και μέσο πάχος 20μ. τότε τα δυνατά αποθέματα του μεταλλεύματος ανέρχονται σε 1.000.000 τόννους.Το κοίτασμα βρίσκεται επί της εθνικής οδού και απέχει από την πόλη των Χανίων 17 χιλιόμετρα.

Από την ανωτέρω θέση (εικόνα 22) πάρθηκαν προς ανάλυση πέντε δείγματα (SK 17 – SK 21)

Εικόνα 22. Η θέση του ορυχείου στην ευρύτερη περιοχή του συνοικισμού Χλιαρό

Εκτός από δοκιμαστικές στοές εικόνα 23 στην περιοχή έχουν διανοιχθεί δύο άλλες στοές για εξόρυξη σιδηρομεταλλεύματος οι οποίες έχουν σήμερα καλυφθεί από μεγάλες μάζες κορυμάτων εικόνα 24.

Εικόνα 23. Η θέση στοάς εξόρυξης σιδηρομεταλλευμάτων στην απέναντι πλαγιά του ορυχείου σιδηρομεταλλευμάτων στην περιοχή Χλιαρό. Έντονες εξαλλοιώσεις των μαρμάρων της Ενότητας του Τρυπαλίου και σχηματισμός αγκεριτών και ραυβακών.

Εικόνα 24. Πανοραμική εικόνα του ορυχείου σιδηρομεταλλευμάτων στην περιοχή Χλιαρό.

4.1.1.3 Νο. 210-Νο.211: Δρακώνα

Το χωριό Δρακώνα (Υψ. 450μ.) βρίσκεται νότια της πόλης των Χανίων πάνω στους πρόποδες των Λευκών Ορέων. Η πρώτη εμφάνιση σιδηρομεταλλεύματος βρίσκεται στην είσοδο του συνοικισμού Κουτσουρολίδι. Κοντά σε αυτή και σε πρανή του ίδιου λόφου εμφανίζονται μεταλλεύματα στις τοποθεσίες Κυπαρισιές και στου Σφηνιά το Σώχωρο. Στις δύο τελευταίες εμφανίσεις έχουν πραγματοποιηθεί κάποιες ερευνητικές εργασίες για τον υπολογισμό του πάχους του κοιτάσματος. Σε μεγαλύτερο υψόμετρο και κοντά στην επαφή φυλλιτών και ασβεστολίθων υπάρχουν επίσης μικρές εμφανίσεις σιδηρομεταλλεύματος καθώς και στη θέση Πύργος. Η περιοχή είναι δασώδης και καλύπτεται από λεπτό στρώμα τεταρτογενών. Φαίνεται ότι όλες οι διάσπαρτες εμφανίσεις σιδηρομεταλλεύματος στις πλαγιές του λόφου στο ίδιο κοίτασμα το όποιο έχει μορφή μάλλον ευρείας κοίτης παρά φλέβας. Το κοίτασμα βρίσκεται εντός των φυλλιτικών πετρωμάτων της περιοχής και εκτείνεται κάτω από τους ασβεστόλιθους, οι οποίοι αποτελούν τα επικάλυμμα της λοφώδους περιοχής.

Ο λειμωνίτης είναι πολύ καλής ποιότητας όσο αυτό μπορεί να διαγνωσθεί από την μακροσκοπική εξέτασή του. Είναι συμπαγής, με πολύ μικρές ποσότητες χαλαζία και δεν έχει τεμάχια σχιστολιθικού υλικού.

Από την έκθεση του μεταλλειολόγου Βαλλίνδα παραλαμβάνουμε δύο χημικές αναλύσεις που πραγματοποιήθηκαν κατόπιν δειγματοληψίας κατά το στάδιο ερευνητικών εργασιών.

	1° δείγμα	2° δείγμα
Απώλεια κατά την πύρωση	12,60%	10,75%
Πυριτικό οξύ (SiO₂)	2,85%	4,39%
Οξείδιο του σιδήρου (Fe₂O₃)	82,90%	81,41%
Υπεροξείδιο του μαγγανίου (MnO₂)	0,94%	-
Οξείδιο του αργιλίου (Al ₂ O ₃)	-	3,11%
Οξείδιο του ασβεστίου(CaO)	-	0,32%

Οξείδιο του νικελίου (NiO)	0,07%	-
Πεντοξείδιο του φωσφόρου(P ₂ O ₅)	0,16%	ίχνη
Σίδηρος (Fe)	57,40%	56,00%

Η αντίδραση με θείο και αρσενικό υπήρξε αρνητική. Η ποιότητα του λειμωνίτη είναι άριστη. Είναι πλούσιος σε οξείδιο του σιδήρου, φτωχός σε πυριτικό οξύ, με ίχνη μόνο φωσφόρου και πλήρη απουσία αρσενικού και θείου. Από απόψεως ποιότητας το κοίτασμα αυτό υπερτερεί έναντι των υπολοίπων του νομού.

Τα υπάρχοντα ερευνητικά έργα είναι ανεπαρκή για τον υπολογισμό των αποθεμάτων. Τα πιθανά αποθέματα ανέρχονται σε 400.000 τόννους, αριθμός ο οποίος ταυτίζεται και με τους υπολογισμούς του μηχανικού μεταλλείων κ.Βαλλίνδα.

Εκτός των παραπάνω ομάδων εμφανίσεων υπάρχουν και άλλες εμφανίσεις προς ΝΝΔ. Περίπου 700μ. ΝΝΔ του χωριού στην τοποθεσία Προκοκεφάλι βρίσκεται εμφάνιση μεταλλεύματος εντός φυλλιτικών πετρωμάτων. Στην ίδια περιοχή και ΒΒΔ της προηγούμενης υπάρχει δεύτερη εμφάνιση η οποία φαίνεται να συνδέεται με την προηγούμενη κάτω από τους ασβεστόλιθους Τριπόλεως τους επικείμενους των φυλλιτών. Λαμβάνοντας υπόψιν τα κοιτάσματα αυτά καθώς και της πιθανής επέκτασης του κοιτάσματος κάτω από τους ασβεστόλιθους τα δυνατά αποθέματα ανέρχονται σε 600.000 τόννους.

Δυτικά του χωριού Δρακώνα στη τοποθεσία στου "Ξελαστε τον Πόρο" υπάρχουν φλέβες μεταλλεύματος εντός των φυλλιτικών πετρωμάτων. Ο λειμωνίτης είναι κακής ποιότητας. Περιέχει τεμάχια σχιστολίθου και είναι φτωχός σε σίδηρο. Οι φλέβες αυτές έχουν διεύθυνση BBΔ-NNA και κλίση 60μοίρες. Το πάχος τους είναι μικρό και σπάνια ανέρχεται σε 1μ., ενώ το βάθος αποκαλύπτεται από εκσκαφές που έχουν πραγματοποιηθεί ότι είναι πολύ μικρό μόλις 1μ. σε μια από αυτές.

Περίπου ένα χιλιόμετρο ΒΒΔ του χωριού στην τοποθεσία Ντακόλε υπάρχει επίσης μικρή εμφάνιση σιδηρομεταλλεύματος αναμεμιγμένου με σχιστολιθικό υλικό άνευ οικονομικής σημασίας.

Από όλες τις εμφανίσεις της περιοχής η πλέον ενδιαφέρουσα τόσο από ποιοτικής άποψης όσο και από ποσοτικής είναι η εμφάνιση δίπλα στον οικισμό Κουτσουρολίδι και οι ΝΝΔ κοντινές αυτής.

Το σιδηρομετάλλευμα Δρακώνας βρίσκεται επίσης κοντά στο λιμάνι της Σούδας και σε συνδυασμό με τους παραπάνω λόγους κατατάσσεται στα αξιολογότερα του νομού Χανίων.

Από το σιδηρομετάλλευμα της περιοχής έχουν γίνει ήδη χημικές αναλύσεις και διεργασίες εμπλουτισμού (Αλεβίζος κ.α., 2010; Trichos et al., 2013). Για συγκρίσεις αναλύθηκαν δύο δείγματα σιδηρομεταλλεύματος από την περιοχή (DRAK 1 και DRAK 2).

4.1.1.4 Άλλες εμφανίσεις σιδηρομεταλλευμάτων στο νομό Χανίων

Εκτός των παραπάνω εμφανίσεων σιδηρομεταλλεύματος υπάρχουν και άλλες δευτερεύουσας σημασίας. Μερικές από αυτές όπως αυτή της Αγίας Ειρήνης (No.213), σημειώνονται στον κοιτασματολογικό χάρτη, ενώ άλλες έχουν παραληφθεί. Τα κριτήρια τα οποία ένα κοίτασμα κρίνεται δευτερεύουσας σημασίας είναι τα ακόλουθα: α) Μικρή περιεκτικότητα σε σίδηρο β) μικρή ποσότητα μεταλλεύματος και γ) ο συνδυασμός των προηγούμενων καθώς και η απόσταση του κοιτάσματος από κάποιο κέντρο μεταφοράς. Στην Αγία Ειρήνη υπάρχουν μικρές εμφανίσεις λειμωνίτη και αιματίτη εντός φυλλιτών, χωρίς όμως κάποιο οικονομικό ενδιαφέρον. Στα χωριά Ραβδούχα, Μελισσουργείο και Καμάρα υπάρχουν κοιτάσματα λειμωνίτη, αιματίτη, πυρολουσίτη και αλουνίτη της ίδιας μορφής, γένεσης και περιβάλλοντος όπως στο Χλιαρό. Μεταξύ των ετών 1929 και 1931 υπήρξαν αντικείμενο εκμετάλλευσης με συνολική παραγωγή 20.000 τόννους περίπου.

Στα χωριά Πλακάλωνα και Σκλαβοπούλα πάντα εντός φυλλιτών απαντώνται όμοιας μορφής, γένεσης και ορυκτολογικής σύστασης κοιτάσματα σιδηρομεταλλευμάτων. Από άποψης όγκου σημαντικότερο είναι εκείνο του χωριού Σκλαβοπούλα, του οποίου τα αποθέματα εκτιμώνται της τάξης των 200.000 τόννων.

4.1.2 Μεταλλεύματα χαλκού

Από ορυκτολογική άποψη τα μεταλλεύματα χαλκού διακρίνονται σε τέσσερις μεγάλες κατηγορίες: αυτοφυή, μικτά θειούχα, οξείδια και σύμπλοκα. Τα σύνδρομα ορυκτά των χαλκούχων μεταλλευμάτων είναι χαλαζίας, ασβεστίτης, δολομίτης, σιδηρίτης, ροδοχρωσί-

της, βαρύτης, ζεόλιθοι και πυριτικά ορυκτά. Τα χαλκούχα μεταλλεύματα συνοδεύονται από μέταλλα, ανάλογα με τις συνθήκες σχηματισμού, όπως είναι ο χρυσός, ο άργυρος, το μολυβδαίνιο, το νικέλιο, ο ψευδάργυρος και ο μόλυβδος.

Ο χαλκός στην Ελλάδα και πιο συγκεκριμένα στο νομό Χανίων βρίσκεται εντός πυριτών, υπό μορφή χαλκοπυρίτη. Έχουμε εμφανίσεις στα χωριά Μεσκλά, Σκάφη, Φουρνέ, Καμπανού, Τεμένια, Κανδάνο και Σκλαβοπούλας υπό μορφή εμποτισμών και επιφλοιώσεων στις επιφάνειες κατακλάσεων ή λεπτών φλεβών. Συναντώνται εντός μεταμορφωμένων πετρωμάτων χαλκοπυρίτη και κοβελίνη, αλλά συνήθως σε μαλαχίτη και αζουρίτη. Είναι μικρές εμφανίσεις υδροθερμικής γέννεσης, τηλεθερμικού τύπου. Η αναλογία χαλκοπυρίτη εντός των πυριτών είναι τέτοια ώστε οι χαλκούχοι πυρίτες να μπορούν να χαρακτηριστούν ως μετάλλευμα χαλκού. Η δειγματοληψία έγινε προς την παλιά στοά στο ρέμα του Καράνου το οποίο φαίνεται στην απέναντι πλαγιά στο δρόμο από Καράνου προς το χωριό Σκάφη.

4.1.2.1 Νο. 69-75: Χωριό Σκάφη

Το χωριό Σκάφη βρίσκεται σε υψόμετρο 520 μέτρων και απέχει 4,5 χιλιόμετρα βορειοδυτικά του χωριού Καμπανός. Υπάρχουν αρκετές εμφανίσεις λειμωνίτη μέσα σε χλωριτικούς σχιστόλιθους σε εναλλαγές με μεσαίου πάχους χαλαζίτη και σχιστόλιθους καθώς επίσης και εμφανίσεις χαλαζιτών με έντονες επιφανειακές επιστρώσεις χαλκούχων οξειδίων. Περίπου 800μ. από το χωριό Σκάφη και 1550μ Βορειοδυτικά του Καμπανού στην τοποθεσία Ρούσια Νερά υπάρχουν μικρές εμφανίσεις λειμωνίτη. Το μετάλλευμα εμφανίζεται υπό μορφή φλεβών το πάχος των οποίων φτάνει τα 2μ. με διεύθυνση BBΔ και κλίση 15 μοίρες προς Α. Οι φλέβες παρατηρήθηκαν σε επιφάνεια μόλις 100τ.μ. Πρόκειται προφανώς για είδος λατυποπαγούς με λατύπες από φυλλίτη και συνδετική ύλη λειμωνίτη και όχι για συμπαγές σιδηρομετάλλευμα. Οι παραπάνω φλέβες στη Σκάφη δεν έχουν βεβαίως ενδιαφέρον παρά μόνο από πλευράς ότι ενδέχεται να αποτελούν οξειδωμένα τμήματα φλεβών χαλκούχων πυριτών βρισκόμενοι σε μεγαλύτερα βάθη. Πάρθηκαν προς ανάλυση **16 διαφορετικά δείγματα**, συνοδευόμενα από φωτογραφίες, σε παραπλήσιες τοποθεσίες.

4.1.2.2 Φουρνέ

Περίπου 1 χιλιόμετρο ΒΔ του χωριού Φουρνέ στην τοποθεσία Πλαγιά Βούβας υπάρχει εγκαταλελειμμένο μεταλλείο χαλκού το οποίο ανήκε στον κ. Π. Μιναράκη. Σύμφωνα με πληροφορίες του μεταλλειοκτήτη το ορυχείο λειτούργησε κατά την περίοδο 1909-1912. Διανοίχτηκε στοά προς ΒΔ κατεύθυνση μήκους 50μ. και εντός αυτής κατά διαστήματα τρία ερευνητικά φρέατα για τη συγκέντρωση στοιχείων ως προς το βάθος του μεταλλεύματος. Κατά πληροφορίες του ιδίου η μεταλλοφόρος φλέβα έχει πάχος 40-50 εκ. και εξορύχθηκαν την εποχή εκείνη συνολικά 30 τόννοι μεταλλεύματος. Η χάραξη δρόμου, οι υπάρχουσες κτιριακές εγκαταστάσεις και τα απομεινάρια μηχανών αποτελούν τεκμήρια για την εγκυρότητα των παραπάνω πληροφοριών.

Σήμερα η είσοδος στο μεταλλείο είναι αδύνατη λόγω κατακρημνίσεων. Έξω από το μεταλλείο υπάρχουν διάσπαρτα τεμάχια λειμωνίτη και τεμάχια περιέχοντα χαλκοπυρίτη καθώς και προϊόντα αποσάθρωσης του χαλκούχου αυτού ορυκτού, ιδίως κοβελλίνης, πλούσια σε χαλκό 91,8%). Αυτά τα στοιχεία πιστοποιούν ότι η στοά διανοίχτηκε εντός της ζώνης εμποτισμού της χαλκούχου φλέβας. Στην περιοχή γύρω από το μεταλλείο δεν εμφανίζεται μετάλλευμα χαλκού ή τα προϊόντα οξείδωσής του. Εμφανίζονται μόνο σε μερικά σημεία επανθήματα ορυκτών θειικών αλάτων (μελαντηρίτης κ.α.) επί των φυλλιτικών πετρωμάτων, αποτελώντας έτσι ενδείξεις παρουσίας θειούχων ορυκτών (πυριτών), διάσπαρτα εντός των φυλλιτών της περιοχής. Σε μεγαλύτερη ακτίνα απαντούν αξιόλογες εμφανίσεις λειμωνίτη.

Από τα παραπάνω προκύπτει ότι τα χαλκούχο κοίτασμα Φουρνέ μπορεί να χαρακτηριστεί αξιόλογο και ότι ενδείκνυται η πραγματοποίηση ερευνητικών εργασιών ώστε να διαπιστωθεί η ύπαρξη οικονομικού ενδιαφέροντος.

4.1.2.2 Καμπανού

Το χωριό Καμπανού βρίσκεται στην επαρχία Σελίνου και έχει πρόσβαση στο εθνικό οδικό δίκτυο. Βορειοδυτικά του χωριού υπάρχουν εμφανίσεις χαλκούχων πυριτών ανατολικά και δυτικά του χειμάρρου Καμπανού και σε ύψος περίπου 40-50μ. πάνω από την κοίτη του.

Δύο αξιόλογες εμφανίσεις χαλκούχου βρίσκονται δυτικά του χειμάρρου στη θέση Ρημάμπελατης τοποθεσίας Φρύδια. Στην ευρύτερη περιοχή εμφανίζονται γενικότερα τα κατώτερα μέλη του κρυσταλλοσχιστώδους η κατώτερη σειρά φυλλιτών χαλαζίτων, ενώ το μετάλλευμα είναι υπό μορφή φακοειδούς κοίτης στη ζώνη επαφής φυλλιτών και χαλαζιτών. Και στις δύο εμφανίσεις υπάρχουν πρόχειρες εκσκαφές βάθους μέχρι 2μ. Το πάχος του κοιτάσματος στην παρατηρούμενη διατομή κυμαίνεται από 60εκ. έως 80εκ. ενώ το πλάτος είναι περίπου 2μ.

Στον πυρήνα του κοιτάσματος βρίσκεται πυρίτης (συσσωμάτωμα σιδηροπυρίτη και χαλκοπυρίτη) και στα περιφερειακά τμήματα λειμωνίτης. Δυστυχώς δεν υπάρχουν διαθέσιμες χημικές αναλύσεις του μεταλλεύματος αυτού. Σε μια έκθεση του κ.Φουντόπουλου που εδώθη στο συνεργείο του μεταλλειοκτήτη κ. Ι. Ν. αναφέρεται περιεκτικότητα 8,14% σε χαλκό.

Στην απέναντι πλευρά του χειμάρρου στην θέση Πόρος Πλάκας υπάρχουν επίσης κατά το μεταλλειοκτήτη εμφανίσεις χαλκούχων πυριτών. Στην τοποθεσία Ηλία το Πεζούλι ή Πλάκα έχει παρατηρηθεί παλαιά ερευνητική εργασία της οποίας η οροφή έχει καταπέσει. Κατά τον κ. Ι. Ν. το πάχος του συγκεκριμένου κοιτάσματος πυριτών είναι 3μ. Πάντως λίγο ψηλότερα της θέσης αυτής υπάρχει διατομή κοίτης μέγιστου πάχους 20εκ. και μήκους 2μ. Επίσης 5μ υψηλότερα από την προηγούμενη θέση βρίσκεται άλλη μια μικρή εμφάνιση. Αμφότερες αποτελούνται από λειμωνίτη ο οποίος προφανώς προήλθε από οξείδωση πυριτών.

Γενικά η περιοχή του Καμπανού παρουσιάζει κάποιο ενδιαφέρον και εφόσον μέσω μιας χημικής ανάλυσης υψηλή περιεκτικότητα σε χαλκό θα πρέπει να συνεχιστεί η έρευνα και να γίνει γεωλογική και γεωφυσική έρευνα και να εκτελεστούν κάποια έργα προς διαπίστωση αυτών.

4.1.2.3 Μεσκλά

Στην περιφέρεια του χωριού Μεσκλά απαντούν σποραδικά εντός των φυλλιτών φλέβες μαλαχίτη και αζουρίτη. Η ύπαρξη αυτών προκάλεσε το ενδιαφέρον του μεταλλειοκτήτη κ. Ι.Ν. και έτσι πραγματοποιήθηκαν ερευνητικές εργασίες σε δύο θέσεις.

Στο χείμαρρο Άσπας περίπου 200μ. από επαρχιακή οδό, δεξιά της ανόδου και σε ύψος 4μ. από την κοίτη του χειμάρρου διενοίχθει στοά βάθους 6μ. προς αναζήτηση χαλκούχου μεταλλεύματος. Τη στοά αυτή κατά την περίοδο της κατοχής προώθησαν οι Γερμανοί μέχρι βάθους 15μ. χωρίς όμως να αξιόλογη φλέβα χαλκούχου μεταλλεύματος. Δυτικά του χωριού

62

στην τοποθεσία Κάψαλο πραγματοποιήθηκε απλή εκσκαφή από την οποία αποκαλύφτηκαν λεπτές φλέβες μαλαχίτη.

Από τις ερευνητικές εργασίες και την επιφανειακή εξέταση της περιοχής δεν έχουν συγκεντρωθεί ισχυρές αποδείξεις ότι υπάρχει αξιόλογη ποσότητα χαλκούχου μεταλλεύματος. Στην περιοχή υπάρχουν και βαθιές χαράδρες και θα έπρεπε κάπου να παρατηρηθεί το χαλκούχο μετάλλευμα ή προϊόντα οξείδωσής του.

4.1.2.4 Κάνδανος

Στο ρέμα Τζαγκαριανό το οποίο κατέρχεται από νοτιοανατολικά απαντούν μικρές εμφανίσεις πυρίτη υπό μορφή φλεβών ή παρείσακτων κοιτών εντός των φυλλιτικών πετρωμάτων της περιοχής. Το πάχος των συγκεκριμένων κοιτασμάτων είναι μικρό και σπάνια ανέρχεται τα 20εκ. Κατά πληροφορίες όμως πολλών κατοίκων υπερβαίνει το 1μ. και κατά τόπους το ξεπερνά. Οι προαναφερθείσες εμφανίσεις βρίσκονται εντός του χειμάρρου και σε υψόμετρο 550-590μ.

Στην εκκλησία Ζωοδόχος Πηγή (υψ. 485μ.) σύμφωνα με πληροφορίες του μεταλλειοκτήτη ερευνητικές εργασίες που είχαν εκτελεσθεί από τον ίδιο αποκάλυψαν σοβαρό κοίτασμα πυριτών πάχους 2μ. Στην θέση αυτή πραγματοποιούνταν και αρχαιολογικές εργασίες.

Δεν υπάρχουν χημικές αναλύσεις για να γνωρίζουμε την περιεκτικότητα των πυριτών σε χαλκό. Στοιχεία για τον υπολογισμό των αποθεμάτων επίσης δεν υπάρχουν καθώς επίσης είναι άγνωστο και αν οι μικροί φακοί μεταλλεύματος εξελίσσονται σε μεγαλύτερους ή σε παχιές φλέβες. Η περιοχή πάντως θεωρείται ενδιαφέρουσα εφόσον διαπιστωθεί από χημική ανάλυση υψηλή περιεκτικότητα σε χαλκό.

4.1.2.5 Τεμένια

Το χωριό Τεμένια συνδέεται με δρόμο με το χωριό Καμπανού. Η περιοχή Τεμενίων απαρτίζεται και αυτή από κρυσταλλοσχιστώδες και κυρίως από τα κατώτερα μέλη αυτού. Κατά τη διαδρομή από Καμπανού προς Τεμένια και δίπλα στο χωριό Μάζα έχει παρατηρηθεί αρκετά εκτεταμένο κοίτασμα γύψου.

Στα Τεμένια και ειδικά στην τοποθεσία Δασκαλάκη Χάνι απαντά φλέβα χαλκούχου πυρίτη με σύνδρομο χαλαζία εντός ρηξιγενούς πετρώματος αποτιθέμενο εντός του κρυσταλλοσχιστώδους. Είχε πραγματοποιηθεί παλαιότερα μικρή ερευνητική εργασία η οποία σταμάτησε μόλις ανευρέθηκε μετάλλευμα. Το κοίτασμα των Τεμενίων παρουσιάζει ενδιαφέρον για το λόγο ότι συνδέει γενετικά τους χαλκούχους πυρίτες με εκρηξιγενής σχηματισμούς του κρυσταλλοσχιστώδους.

Δυστυχώς δεν υπάρχει διαθέσιμη χημική ανάλυση των πυριτών Τεμενίων για να είναι γνωστή η περιεκτικότητά του σε χαλκό. Εκτίμηση αποθεμάτων και εδώ όπως και στην Καμπανού είναι αδύνατη λόγω ελλείψεως αναγκαίων ερευνητικών έργων.

4.1.3 Μεταλλεύματα μαγγανίου

Στα Λευκά Όρη και σε υψόμετρο 800μ. υπάρχουν δύο μικρές εμφανίσεις μαγγανίου στην τοποθεσία Κοιμητές του χωριού Αλωνάκι το οποίο απέχει 2 ώρες περίπου μέσω μονοπατιού. Η πρόσβαση στο χωριό Αλωνάκι γίνεται από τα Χανιά οδικώς μέσω του χωριού Γερόλακος.

Το κοίτασμα μαγγανίου βρίσκεται μέσα σε κοιλότητες διανοιγμένες εντός ασβεστολίθων Τριπόλεως. Πρόκειται περί λεπτοστρωματώδους αργίλου εμποτισμένης με άμορφη ένωση μαγγανίου (βάδιο). 300μ. ΝΑ από την προαναφερθείσα εμφάνιση στους Κοιμητές στην τοποθεσία Μαύρα Λακκούδια υπάρχει επίσης μία εμφάνιση μαγγανίου η οποία πληροί χοανοειδή κοιλότητα εντός αργίλου.

5 Μεθοδολογία και θεωρητικό υπόβαθρο μεθόδων

Στο κεφάλαιο αυτό παρατίθενται αναλυτικά οι μέθοδοι που χρησιμοποιήθηκαν για την μέτρηση των δειγμάτων, ο τρόπος επιλογής αυτών, και οι βασικές αρχές των μεθόδων. Στην παρούσα εργασία χρησιμοποιήθηκαν:

α) Δείγματα από προηγούμενες μελέτες σχετικές με την μεταλλογένεση στα μεταμμορφωμένα πετρώματα του Φυλλιτικού καλύμματος στην Δ. Κρήτη. Από την εργασία του Δημόπουλου (2012) χρησιμοποιήθηκαν δείγματα που πάρθηκαν εντός του Φυλλιτικού Καλύμματος κυρίως λειμωνίτες.

Από την εργασία των Αλεβίζος κ.α. (2010) χρησιμοποιήθηκαν: δύο δείγματα σιδηρομεταλλευμάτων από τα ορυχεία στην περιοχή Κακόπετρος (ΚΚ1 και ΚΚ2) και δύο από την περιοχής της Δρακώνας και δύο από την περιοχή Σκινέ.

Από εργασίες πεδίου πάρθηκαν πέντε δείγματα από δειγματοληψίες που έγιναν αφ΄ενός εντός του εγκατελλημένου ορυχείου σιδηρομεταλλευμάτων του Αβέρωφ στην περιοχή

Χλιαρό και δεκαέξι στην ευρύτερη περιοχή του ορυχείου χαλκού στις περιοχές Καμπανού Σκάφη. Συνολικά λήφθησαν και εξετάστικαν 21 νέα δείγματα και σε σύνολο 37.

5.1 Ορυκτολογική ανάλυση των δειγμάτων

Η ορυκτολογική ανάλυση των δειγμάτων πραγματοποιήθηκε στο εργαστήριο Γενικής και Τεχνικής Ορυκτολογίας του Πολυτεχνείου Κρήτης με τη χρήση περιθλασιμέτρου ακτίνων-Χ (XRD), τύπου D8 της εταιρείας Brucker και χρησιμοποιήθηκε λυχνία χαλκού. Η μελέτη των ορυκτολογικών φάσεων των δειγμάτων του σιδηρομεταλλεύματος πραγματοποιήθηκε μέσω στιλπνών τομών με τη βοήθεια του μεταλλογραφικού μικροσκοπίου (μικροσκοπίου ανακλώμενου φωτός). Η μικροφωτογράφηση των τομών έγινε με ψηφιακή κάμερα τύπου NIKON (από Τρίχος 2011).

5.2 Μέθοδος περιθλασιμετρίας ακτίνων-X (XRD)

Με τη μέθοδο του περιθλασίμετρου ακτίνων-Χ μετρώνται απευθείας τόσο οι γωνίες, όσο και οι εντάσεις των ανακλάσεων των ακτίνων-Χ που προσπίπτουν σε ένα παρασκεύασμα κρυσταλλικής κόνεως. Το περιθλασίμετρο ακτίνων-Χ αποτελείται από τις εξής μονάδες: τη μονάδα παραγωγής υψηλής τάσης, τη λυχνία ακτίνων-Χ, το γωνιόμετρο, τον απαριθμητή των ακτίνων Χ, την ηλεκτρονική μονάδα επεξεργασίας και καταγραφής των κρούσεων και τη μονάδα μικροϋπολογιστή. Με τη μονάδα του μικροϋπολογιστή γίνεται η διαχείριση όλου του συστήματος και αξιολογούνται τα δεδομένα που προκύπτουν από την εξέταση του δείγματος. Το παρασκεύασμα που θέλουμε να μελετήσουμε τοποθετείται στο δειγματοφορέα του γωνιομέτρου. Ο δειγματοφορέας βρίσκεται σε τέτοια θέση, ώστε να παραμένει πάντα στο κέντρο ενός κύκλου που διαγράφει ο απαριθμητής και το επίπεδο του δείγματος να είναι πάντα κάθετο προς το επίπεδο αυτού του κύκλου.

Την ίδια στιγμή, ως προς τον ίδιο άξονα περιστρέφεται ο απαριθμητής υπό σταθερή γωνιακή ταχύτητα (2θ/min) και το επίπεδο του δείγματος με γωνιακή ταχύτητα ίση με τη μισή τιμή της γωνιακής ταχύτητας του απαριθμητή, έτσι ώστε με ταυτόχρονη μετατόπιση του απαριθμητή και περιστροφή του δείγματος, ο απαριθμητής να σχηματίζει την ίδια γωνία ως προς το επίπεδο του δείγματος με το σημείο εξόδου των ακτίνων Χ της λυχνίας. Έτσι μπορεί και γίνεται η καταγραφή της ακτινοβολίας που περιθλάται στους κρυσταλλικούς κόκκους του δείγματος που βρίσκονται σε τέτοια γωνία ως προς το το δείγματος του δείγματος το το του δείγματος κοι το του απαριθμητή και περιστροφή του δείγματος με το σημείο εξόδου των ακτίνων Χ της λυχνίας.

κατεύθυνση της δέσμης των ακτίνων X της λυχνίας, ώστε για κάποια ομάδα πλεγματικών επιπέδων να επαληθεύεται η εξίσωση του Bragg: n×λ=2×d×sinθ (n: τάξη ανάκλασης λ: το μήκος κύματος d: η πλεγματική απόσταση των επιπέδων ανάκλασης του κρυστάλλου θ: γωνία πρόσπτωσης) (Κωστάκης, 1988). Η μονάδα περίθλασης ακτίνων-Χ έχει την δυνατότητα να δώσει σημαντικές πληροφορίες σχετικά με :

 Την σύνθεση και τον δομικό χαρακτηρισμό ενώσεων, με έμφαση στα υλικά νέων τεχνολογιών

ii. Την ποιοτική και ποσοτική ανάλυση της περιεκτικότητας του εξεταζόμενου δείγματος.

iii. Την ανάλυση της σύστασης ορυκτών και χημικά επεξεργασμένων ορυκτών προϊόντων.

iv. Την ανάλυση της σύστασης και δομής κεραμικών και άλλων σύνθετων υλικών, κρυσταλλικών και άμορφων, με μεγάλο τεχνολογικό και βιομηχανικό ενδιαφέρον (από Τρίχος 2011).

5.3 Το μεταλλογραφικό μικροσκόπιο

Στο μεταλλογραφικό μικροσκόπιο ο ανακλαστήρας, που έχει τοποθετηθεί ανάμεσα στον αντικειμενικό και τον προσοφθάλμιο φακό, κατευθύνει το προσπίπτον φως κάθετα στη στιλβωμένη επιφάνεια του παρασκευάσματος που μελετάμε. Χρησιμοποιούνται ειδικοί αντικειμενικοί φακοί για την παρατήρηση μη καλυμμένων παρασκευασμάτων. Η περιστρεφόμενη τράπεζα μετακινείται ελεύθερα προς τα πάνω ή προς τα κάτω, ώστε να μπορεί να γίνει η εστίαση σε διαφορετικά πάχη παρασκευασμάτων. Τα συνήθη μεταλλογραφικά μικροσκόπια διαθέτουν δύο τύπους ανακλαστήρων: τη γυάλινη πλάκα και το πρίσμα ολικής ανάκλασης που μπορούν να χρησιμοποιηθούν επιλεκτικά (*Αλεβίζος*, 2005).

5.4 Προετοιμασία δειγμάτων

Για την μελέτη του μεταλλεύματος θα πρέπει να παρασκευαστεί μια στιλβωμένη τομή, η οποία στην επιφάνειά της δεν πρέπει να έχει χαραγές και ανωμαλίες. Το υλικό που προορίζεται για στίλβωση πρέπει αρχικά να εμποτιστεί σε τεχνητή ρητίνη. Μετά τοποθετείται σε ειδικές φόρμες, διαμέτρου περίπου 4 εκατοστών, στις οποίες προστίθεται ποσότητα του υγρού υλικού έγκλισης. Στη συνέχεια, γίνεται λείανση της επιφάνειας του δείγματος. Η διαδικασία της λείανσης ολοκληρώνεται σε τρία στάδια με διαφορετικές κοκκομετρίες των λειαντικών μέσων το καθένα. Ως λειαντικό μέσο χρησιμοποιείται καρβίδιο του πυριτίου ή βολφραμίου. Το παρασκεύασμα λειαίνεται πάνω σε έναν περιστεφόμενο μεταλλικό δίσκο πάνω σε πλάκα, παρουσία νερού. Τέλος γίνεται η διαδικασία της στίλβωσης. Χρησιμοποιείται η μέθοδος Vanderwilt-Rehwald, καθώς είναι η μοναδική μέθοδος στίλβωσης με την οποία παρασκευάζονται στιλπνές τομές ελεύθερες από ανάγλυφο και χαραγές. Στη μέθοδο αυτή, γίνεται χρήση της συσκευής Rehwald και επιλέγονται διάφορα μέσα στίλβωσης (π.χ. αδαμανταλοιφές, καρβίδιο του βορίου). Ως λιπαντικό μέσο χρησιμοποιείται ένα μίγμα από παραφινέλαιο, πετρέλαιο και εκχυλίσματα πίσσας. Η ποιότητα της στίλβωσης εξαρτάται τόσο από τη διάρκεια αυτής,όσο και από τη χρήση αλοιφής MgO κατά το τελικό στάδιο της στίλβωσης (*Αλεβίζος*, 2005).

5.6 Μέθοδος φασματομετρίας ακτίνων-Χ

- Η ανάλυση έγινε με το σύστημα Φθορισμομετρίας ακτίνων Χ ενεργειακής διασποράς (Energy Dispersive X-Ray Fluorescence, EDXRF) επιτραπέζιο σύστημα (75 kg) SPECTRO XEPOS III της εταιρείας AMETEK το οποίο χρησιμοποιεί το Πρόγραμμα ποσοτικοποίησης X-Lab Pro 4.0 και την μέθοδο TurboQuant (Fundamental Parameter Models). Η διέγερση του δείγματος γίνεται με τη χρήση λυχνίας ανόδου Παλλαδίου (Pd) (ψύξη με αέρα) με μέγιστη ισχύ 50 W και μέγιστο δυναμικό 50 kV, πολωμένης δέσμης. Ο ανιχνευτής είναι silicon drift detector (SDD) με ψύξη Peltier (-25 oC, χωρίς ανάγκη χρήσης υγρού Αζώτου) και λεπτό παράθυρο Βηρυλλίου 8-μm Moxtek Dura-Be, έχοντας σταθερότητα έως 120.000 counts/s, λόγο κορυφής προς υπόβαθρο (peak to background ratio) ίσο με 5000:1 (στο Mn Kα) και διακριτική ικανότητα (resolution) ίση με 160 eV στα 5.9 keV (Mn Kα).
- Τα δείγματα τοποθετούνται υπό τη μορφή πεπιεσμένης σκόνης (συνήθως 2-4 g) μέσα σε ειδικούς πλαστικούς κυλινδρικούς δειγματοφορείς της εταιρείας Chemplex, διαμέτρου 24 ή 32 mm, με πυθμένα από λεπτό film Prolene πάχους 4 μm (0.16 mil) και στην ποσοτικοποίηση χρησιμοποιείται το πρόγραμμα για δείγματα-σκόνης (TurboQuant-Powders). Η τοποθέτηση γίνεται στον αυτόματο δειγματολήπτη της συσκευής (12 θέσεων). Ακολουθεί προθέρμανση της λυχνίας πριν την έναρξη των μετρήσεων για 40 min. Υπάρχει αυτόματη προστασία από ακτινοβολία (λειτουργία μόνο με κλειστό χώρο ακτινοβόλησης. Η

ανάλυση γίνεται σε ατμόσφαιρα αερίου Ηλίου (πίεση 1.5±0.1 bar, 65 L/h) για να υπάρχει μείωση της απορρόφησης των ακτίνων X από το αέρα και δυνατότητα ανάλυσης των χαμηλότερου ατομικού αριθμού στοιχείων (το σύστημα δίνει τη δυνατότητα ανάλυσης για στοιχεία με ατομικό αριθμό από 11 (Na) και πάνω. Η διάρκεια ακτινοβόλησης ήταν 5 min για κάθε τρόπο (mode) ακτινοβόλησης, άρα συνολικά 15 min ανά δείγμα (3 τρόποι ακτινοβόλησης με χρήση δευτερογενών στόχων Compton/Secondary, Compton scatter, Barkla scatter and Bragg Crystal). Ανά τακτά διαστήματα γινόταν επαναβαθμονόμηση του συστήματος, σύμφωνα με τις προδιαγραφές.

Η μεθολογογία αυτή είναι ταχύτερη σε σχέση με την μεθοδολογία XRF που χρησιμοποιήθηκε από το Δημόπουλο (2012). Οι αποκλείσεις μεταξύ των δύο αυτών μεθόδον είναι ελάχιστες όπως φαίνεται από την παράθεση των αποτελεσμάτων στον ακόλουθο πίνακα 6.

	SIR 4	SIR 5	NOP 3	NOP 4	FLO 1	PLA 7	PLA 11	PLA 16
Na2O	0	2.41	0.00	0.00	0	0.04	0.00	0
MgO	6.24	1.07	0.00	4.56	0	1.17	2.72	0.61
AI2O3	1.28	5.88	1.54	0.53	8.37	3.65	9.08	4.11
SiO2	24.86	61.02	28.39	12.58	59.74	84.78	40.35	81.06
P2O5	0.09	0.13	0.09	0.15	0.21	0.18	0.13	0.09
SO3	0.12	0.21	0.11	2.43	0	0	0.06	0.12
CI	0.12	0.11	0.18	0.12	0.08	0.44	0.01	0.12
K2O	0.34	1.77	0.43	0.25	2.61	0.1	3.76	0.55
CaO	33.74	0.58	28.46	38.34	0.78	0.26	18.73	1.35
TiO2	0.00	0.81	0.07	0.00	0.88	0.24	0.91	0.26
Cr	0.00	0.01	0.02	0.00	0.02	0	0.01	0.04
MnO	0.20	0.03	0.36	0.27	0.63	0	0.09	0.11
Fe2O3	6.33	25.84	17.84	9.98	26.52	9.05	9.28	11.49
Со	0.00	0	0.00	0.00	0	0.02	0.00	0
Ni	0.00	0	0.00	0.00	0	0	0.00	0.01
Cu	0.01	0.01	0.00	0.01	0.02	0.01	0.02	0.01
ZnO	0.01	0.01	0.01	0.26	0.02	0.01	0.01	0.01
Rb	0.00	0.01	0.00	0.00	0.01	0	0.02	0
SrO	0.01	0.01	0.01	0.19	0	0	0.02	0
Sb2O3	0.00	0	0.00	0.00	0	0	0.00	0
ZrO2	0.00	0.06	0.00	0.00	0.04	0.03	0.02	0.04
Nb	0.00	0	0.00	0.00	0	0	0.00	0
PbO	0.00	0.02	0.00	0.04	0.02	0	0.01	0.01
V	0.00	0	0	0	0.01	0	0.00	0
Мо	0.00	0	0	0	0	0	0.00	0
LOI	26.66	0.5	22.49	30.29	0.8	0.4	14.80	0.5

Πίνακας 7. Αναλύσεις κύριων στοιχείων και ιχνοστοιχείων με XRF (από Δημόπουλο 2012)

	SIR4	SIR5	NOP3	NOP4	FLO1	PLA7	PLA11	PLA16
Na2O	0.6	0.9	0.6	1.3	1.8	0.3	1.2	0.6
MgO	13.5	0.1	0.7	11.92	1.0	0.3	3.1	0.5
AI2O3	1.2	9.2	3.2	0.9	14.3	4.6	15.8	6.2
SiO2	17.6	78.8	28.4	16.16	58.8	99.5	44.1	69.0
P2O5	0.0	0.3	0.0	0.0	0.6	0.1	0.1	0
SO3	0.1	0.2	0.0	2.6	0.0	0.0	0.0	0.1
Cl	0.0	0.0	0.1	0.0	0.01	0.1	0.0	0.0
K2O	0.1	1.2	0.4	0.1	2.2	0.2	3.3	0.6
CaO	34.3	0.1	26.8	39.73	1.6	0.1	15.3	1.3
TiO2	0.0	1.0	0.1	0.0	1.0	0.3	0.9	0.3
Cr	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MnO	0.2	0.1	0.4	0.2	0.6	0.2	0.1	0.1
Fe2O3	6.9	21.3	13.7	8.9	19.37	6.8	7.2	8.2
Co	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ni	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.01
Cu	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ZnO	0.0	0.0	0.0	0.4	0.0	0.0	0.0	0.0
Rb	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SrO	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0
Sb2O5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ZrO2	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0
Nb	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PbO	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
V	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Мо	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Πίνακας 8. Αναλύσεις κύριων στοιχείων και ιχνοστοιχείων με XRF παρούσα εργασία

6 Παράθεση αποτελεσμάτων

Όπως προέκυψε από τις παρατηρήσεις των εργασιών πεδίου και από τις διάφορες μεθοδολογίες που εφαρμόστηκαν στα 37 δείγματα που αναλύθηκαν, τα σιδηρομεταλλεύματα σχηματίζουν κυρίως φλέβες, στρώματα ή φακούς και βρίσκονται:

Α) Εντός φυλλιτών ή/και χαλαζιτών του Φυλλιτικού Καλύμματος υπό μορφή κυρίως
φλεβών είτε λεπτών στρωμάτων μερικών εκατοστών

B) Στην επαφή μαρμάρων εντός του Φυλλιτικού Καλύμματος σχηματίζοντας στρώματα και φακούς.

Γ) Στην επαφή μεταξύ τμημάτων του Φυλλιτικού Καλύμματος και της επίσης μεταμορφωμένης ανθρακικής ενότητας του Τρυπαλίου.

Δ) Από παλαιότερες εργασίες πεδίου (Σπανάκης 2015) είναι επίσης γνωστό ότι στρώματα και φακοί σιδηρομεταλλευμάτων εμφανίζονται στις επαφές των ημιμεταμορφωμένων ανθρακικών των Στρωμάτων των Ραβδούχων.

E) Σιδηρούχα διαλύματα έχουν «εμποτίσει» διακριτούς χαλαζιακούς πάγκους και ανθρακικής σύστασης πάγκους εντός του Φυλλιτικού Καλύμματος.

Μεταλλοφορίες χαλκού βρίσκονται διάσπαρτες ως επιφλοιώσεις εντός επιφανειών σχισμού των φυλλιτών και χαλαζιτών εντός περιοχών του Φυλλιτικού Καλύμματος σε θέσεις πολύ κοντινές σε εμφανίσεις μεταβασαλτών. Τα θειούχα ορυκτά περιορίζονται σε εμφανίσεις μετρων.

Ποιοτικές και ποσοστικές αναλύσεις με περίθλαση ακτίνων Χ σε κονιορτοποιημένα δείγματα παρατίθενται στον πίνακα 9. Για την ημιποσοτική ανάλυση των ορυκτών που ακολούθησε χρησιμοποιήθηκε το πρόγραμμα ΕVA.

Στον αντίστοιχο πίνακα 9, η ημιποσοτική ορυκτολογική ανάλυση των δειγμάτων παρουσιάζει ενδιαφέρον ως προς την ποικιλία υδροξείδιων σιδήρου. Στην πλειονότητα των δειγμάτων κυριαρχεί ο γκαιτίτης με μεγάλα ποσοστά σε δείγματα όπως ΔΡ2 (80.3%), KAP1(75.1%), KAP2 (67.4%), KK1(89.8%), ΣK1(60.5%), ΣKΦ12(70.9%), ΣKΦ21(78.7%). Ο αιματίτης είναι σε πολύ μικρότερα ποσοστά και οι εμφανίσεις που κάνει, όπως πχ KK2(7.4%), είναι αποκλειστικά από αφυδάτωση του γκαιτίτη (στιλπνές τομές).

Εμφανής είναι και η παρουσία φυλλοπυριτικών ορυκτών όπως μοσχοβίτης: ΣΚΦ14(24.1%), NOP4(12.5%). Μαγγανιούχος μεταλλοφορία υπό μορφή κρυπτομέλανα, γενικά σε μικρά ποσοστά: ΚΚ2(14.7%). Τέλος εμφανίζεται και ανγκερίτης, μόνο σε ένα δείγμα: ΣΚΦ1(23.3%), που συνήθως σχηματίζεται από την υδροθερμική εξαλλοίωση ανθρακικών ιζημάτων ή υδροθερμικών θειούχων ορυκτών.

Όπως παρατηρήθηκε στη μικροσκοπική εξέταση 22 δειγμάτων των οποίων η περιγραφή που συνοδεύει την φωτογραφική αποτύπωση δίνεται στο παράρτημα η επικρατούσα μορφή στα υπό εξέταση δείγματα ήταν η επιγενετικής προέλευσης σιδηρούχος μεταλλοφορία υπό μορφή γκαιτίτη και αιματίτη, που συνοδεύεται με σημαντική ποσότιτα μαγγανιούχου μεταλλεύματος υπό μορφή κρυπτομέλανα που στο σύνολό τους αντικαθιστούν το συνδετικό υλικό μεταξύ των κόκκων χαλαζία του μητρικού πετρώματος. Ο γκαιτίτης σχηματίζει συγκεντρικές επιφλοιώσεις κατά μήκος ρωγμών, διάκενων και γύρω από τους κόκκους χαλαζία. Κρύσταλλοι σιδηροπυρίτη μικρού σχετικά μεγέθους παρατηρήθηκαν πολύ σπάνια και σε ένα μόνο δείγμα επίσης διάσπαρτοι στο συνδετικό υλικό του μεταλλεύματος.

70
Πέραν των ακτινογραφιμάτων τα ίδια δείγματα αναλύθηκαν με το σύστημα Φθορισμομετρίας ακτίνων Χ ενεργειακής διασποράς (EDXRF). Τα αποτελέσματα των αναλύσεων παρουσιάζονται στον πίνακα 10, ενώ τα αρχικά πρωτόκολλα του αναλυτή παρατίθενται στο παράρτημα. **Από τις τιμές των αρχικών μετρήσεων αφαιρέθηκαν όλες** οι τιμές ίσες και μικρότερες από 10 ppm.

Όπως φαίνεται στον αντίστοιχο πίνακα 10, η χημική ανάλυση των δειγμάτων παρουσιάζει μια ποικιλότροπη κατανομή των οξειδίων και των ιχνοστοιχείων από δείγμα σε δείγμα.

Πιο συγκεκριμένα, πολλά δείγματα είναι πλούσια σε υδροξείδια του σιδήρου(Fe2O3) και παραπάνω από 15% wt. Ξεχωρίζουν τα ΔΡΑΚ1 (81.55%), ΔΡΑΚ2(70.25%), ΚΚ1(81.53%), ΣΚΦ21 (Χλιαρό-70.85%). Ο λειμωνίτης στα ΔΡΑΚ1, ΔΡΑΚ2 από απόψεως ποιότητας υπερτερεί άλλων. Από την άλλη, υπάρχουν δείγματα τα οποία είναι πολύ φτωχά σε σίδηρο όπως τα ΣΚΦ10(3.97%), ΣΚΦ13(5.63%), PLA7(6.01%), PLA11(7.89%). Η μεταλλοφορία μαγγανίου είναι πολύ μικρή, με μικρό ενδιαφέρον να παρουσιάζουν δείγματα όπως τα KK2(9.71%), KAP1(3.57%) και συνήθη εμφάνιση υπό μορφή κρυπτομέλανα (στιλπνές τομές). Επίσης παρατηρείται ότι κάποια από τα αντληθέντα δείγματα περιέχουν ίχνη ή και σταθμητή ποσότητα μετάλλων όπως Cu, Ni, Co, Zn, Cr. Ίχνη χαλκού βρέθηκαν σε πολλά δείγματα, με τις μεγαλύτερες συγκεντρώσεις στα ΣΚ1(240ppm), ΣΚ2(133ppm), ΣΚΦ7(752ppm) και υποδεικνύουν ύπαρξη ιχνών σουλφιδίων. Το νικέλιο είναι σε ποσότητες από 0-302ppm,το χρώμιο από 0-246ppm το κοβάλτιο από 0-239ppm ενώ ο ψευδάργυρος από 0-3759ppm με τη μεγαλύτερη συγκέντρωση να την έχει το NOP4. Βάριο υπάρχει σε όλα τα δείγματα εκτός από το ΣΚΦ1 και γενικά έχει περιεκτικότητες από 0-1318ppm. Μόλυβδος σε πολύ μικρότερες ποσότητες και εμφάνιση έστω και μικροιχνών σε λιγότερα δείγματα από 0-188ppm. Απειροελάχιστες εμφανίσεις ιχνών αρσενικού από 0-76ppm.

71

Πίνακας 9. Ορυκτά και ποσοτική κατανομή αυτών εντός των δειγμάτων που αναλύθηκαν με την μέθοδο XRD

Δείγμα Περιεκτικότητα	Χαλαζίας	Γκαιτίτης	Αιματίτης	Μοσχοβίτης	Ασβεστίτης	Πυρίτης	Δολομίτης	Αλβίτης	Ρουτίλιο	Κρυπτομέλανας	Τάλκης		Κλινόχλωρο	Παραγωνίτης	Λεπιδοκροτίτης	Αγκερίτης	Ροζενίτης
%	(SiO ₂)	(Fe ³⁺ O(OH)	(Fe ³⁺ O(OH))	(KAl ₂ (AlSi ₃ O ₁₀)(OH) ₂)	(CaCO₃)	(FeS ₂)	(CaMg(CO ₃) ₂)	(Na(AlSi ₃ O ₈))	(TiO₂)	(KMn ₈ O ₁₆)	(Mg ₃ (OH) ₂ Si ₄ O ₁₀)	Χλωριτοειδές	((Mg;Fe)6(Si;Al)4O ₁₀ (OH) ₈)	(NaAl ₂ []AlSi ₃ O ₁₀ (OH) ₂)	(FeO(OH))	$(Ca(Fe^{+2};Mg)(CO_3)_2)$	(FeSO ₄ (H ₂ O) ₄
ΔΡ1	2.4	89		7.8						0.8							
ΔΡ2	10.3	80.3	1.6	8.4						1.1	2.6						
KAP1	11./	/5.1	1.6	6.9							3.6			12.0			
	7.5	67.4	3.1	6.8						4.2	2.3			12.9			
	2	<u> </u>	74							4.2							
NOP3	52.8	40	7.4	1.2	45.9					14.7							
NOP4	8.9			0	21	1.8	68.3										
FLO1	45.5	26.6		12.5	1.2				2.6					11.6			
PLA11	21.4		5.1		48.4			16.2									8.8
PLA16	99			0			1										
SIR4	10.3			1.1	12.7		75.9										
SIR5	58	30.1		10	0				2								
ΣΚ1	34	60.5	1.9	3.5													
ΣK2	44.8	42.3	3.1	9.8													
ΣΚΦ1	55.6			3.3								17.8				23.3	
ΣΚΦ2	97.1												2.9				
ΣΚΦ3	75.3			5.1									5.3	14.3			
ΣΚΦ4	98												2				
ΣΚΦ5	73.7	26.3															
ΣΚΦ6	100																
ΣΚΦ7	52	30.9		9										8.2			
ΣΚΦ8	69.9	19.6		5.2										5.3			
ΣΚΦ9	54.4	43.2		2.4													
ΣΚΦ10	96.8			3.2													
ΣΚΦ11	64	30.9		3.8											1.3		
ΣΚΦ12	21	70.9		2.7											5.4		
ΣΚΦ13	100			0													
ΣΚΦ14	44.8	22.6		24.1										8.6			
ΣΚΦ15	63.8	27.3		8.9													
ΣΚΦ16	50.3	47.5		2.2													
ΣΚΦ17		20.1		1.1	78.8												
ΣΚΦ18		14.8		1.1	84.1												
ΣΚΦ19		16.7		0	83.3												
ΣΚΦ20		16.9		0.9	82.2												
ΣΚΦ21	5.4	78.7		1.9							11.8				2.1		

Πίνακας 10. Ποσοτική κατανομή κύριων στοιχείων και ιχνοστοιχείων εντός των δειγμάτων που αναλύθηκαν με την μέθοδο EDXRF

			Sample	Sample	Sample					Sample	Sample	Sample	Sample	Sample				
			Name	Name	Name	Sample	Sample	Sample	Sample	Name	Name	Name	Name	Name	Sample	Sample	Sample	Sample
			DRAK1	DRAK2	FLO1	Name KAR1	Name KAR2	Name KK1	Name KK2	NOP3	NOP4	PLA7	PLA11	PLA16	Name SIR4	Name SIR5	Name SK1	Name SK2
			Date of	Date of	Date of	Date of	Date of	Date of	Date of	Date of	Date of	Date of	Date of	Date of	Date of	Date of	Beceint	Beceint
Ge	ochemical	Analyses %	07/11/2016	07/11/2016	07/11/2016	07/11/2016	07/11/2016	07/11/2016	07/11/2016	07/13/2016	07/11/2016	07/11/2016	07/13/2016	07/13/2016	07/11/2016	07/11/2016	07/11/2016	07/11/2016
z	Symbol	Element	01/11/2010	0//11/2010	0// 11/ 2010	0// 11/ 2010	0//11/2010	0.711,1010	0,711,2010	Conce	ntration	01/11/2010	01/10/1010	01/20/2020	01/11/1010	01/11/2010		
										Majo	or %wt							
14	Si02	Silicon	8.54	17.49	58.07	24.04	22.49	7.46	35.30	38.21	19.99	88.42	48.35	79.44	23.56	69.59	41.54	54.83
13	AI203	Aluminum	2.70	4.76	14.17	6.52	6.38	4.39	5.10	4.33	1.14	4.11	17.31	7.09	1.60	8.13	4.99	8.81
26	Fe203	Iron	81.55	70.25	19.14	58.46	58.24	81.53	46.60	18.35	11.00	6.01	7.89	9.45	9.32	18.82	50.91	33.12
25	MnO	Manganese	0.73	0.19	0.59	3.57	2.85	1.60	9.71	0.50	0.30	0.19	0.09	0.12	0.31	0.09	0.44	0.41
12	MqO	Magnesium	1.05	1.53	0.95	3.32	5.55	0.38	0.19	0.91	14.74	0.31	3.40	0.59	18.10	0.08	0.19	0.07
20	CaO	Calcium	0.20	0.22	1.53	0.56	0.51	0.25	0.11	35.97	49.14	0.05	16.77	1.44	45.96	0.12	0.20	0.12
11	Na20	Sodium	1.69	1.95	1.73	0.99	0.84	1.35	0.80	0.79	1.63	0.26	1.29	0.69	0.83	0.83	0.38	0.39
19	K20	Potassium	0.28	0.48	2.16	0.98	1.36	0.54	0.87	0.58	0.11	0.19	3.63	0.63	0.15	1.04	0.43	1.13
15	P205	Phosphorus	2.71	2.33	0.56	0.57	0.45	1.68	0.37	0.05	0.01	0.12	0.13	0.08	0.03	0.26	0.33	0.26
22	Ti02	Titanium	0.33	0.67	0.96	0.77	1.06	0.65	0.64	0.16	0.06	0.26	0.99	0.33	0.04	0.88	0.38	0.70
				I						I				I				I
			Sample	Sample	Sample					Sample	Sample	Sample	Sample	Sample			Comula	Comple
			Sample Name	Sample Name	Sample Name	Sample	Sample	Sample	Sample	Sample Name	Sample Name	Sample Name	Sample Name	Sample Name	Sample	Sample	Sample	Sample
			Sample Name DRAK1	Sample Name DRAK2	Sample Name FLO1	Sample Name KAR1	Sample Name KAR2	Sample Name KK1	Sample Name KK2	Sample Name NOP3	Sample Name NOP4	Sample Name PLA7	Sample Name PLA11	Sample Name PLA16	Sample Name SIR4	Sample Name SIR5	Sample Name SK1	Sample Name SK2
			Sample Name DRAK1 Date of Baccint	Sample Name DRAK2 Date of Beceint	Sample Name FLO1 Date of Receipt	Sample Name KAR1 Date of Perceint	Sample Name KAR2 Date of Receipt	Sample Name KK1 Date of Receipt	Sample Name KK2 Date of Receipt	Sample Name NOP3 Date of Beceint	Sample Name NOP4 Date of Beceint	Sample Name PLA7 Date of Beceint	Sample Name PLA11 Date of Beceint	Sample Name PLA16 Date of Beceint	Sample Name SIR4 Date of Beceint	Sample Name SIR5 Date of Receipt	Sample Name SK1 Date of Receipt	Sample Name SK2 Date of Receipt
Ge	ochemical	Analyses ppm	Sample Name DRAK1 Date of Receipt 07/11/2016	Sample Name DRAK2 Date of Receipt 07/11/2016	Sample Name FLO1 Date of Receipt 07/11/2016	Sample Name KAR1 Date of Receipt 07/11/2016	Sample Name KAR2 Date of Receipt 07/11/2016	Sample Name KK1 Date of Receipt 07/11/2016	Sample Name KK2 Date of Receipt 07/11/2016	Sample Name NOP3 Date of Receipt 07/13/2016	Sample Name NOP4 Date of Receipt 07/11/2016	Sample Name PLA7 Date of Receipt 07/11/2016	Sample Name PLA11 Date of Receipt 07/13/2016	Sample Name PLA16 Date of Receipt 07/13/2016	Sample Name SIR4 Date of Receipt 07/11/2016	Sample Name SIR5 Date of Receipt 07/11/2016	Sample Name SK1 Date of Receipt 07/11/2016	Sample Name SK2 Date of Receipt 07/11/2016
Ge	ochemical Symbol	Analyses ppm	Sample Name DRAK1 Date of Receipt 07/11/2016	Sample Name DRAK2 Date of Receipt 07/11/2016	Sample Name FLO1 Date of Receipt 07/11/2016	Sample Name KAR1 Date of Receipt 07/11/2016	Sample Name KAR2 Date of Receipt 07/11/2016	Sample Name KK1 Date of Receipt 07/11/2016	Sample Name KK2 Date of Receipt 07/11/2016	Sample Name NOP3 Date of Receipt 07/13/2016 Conce	Sample Name NOP4 Date of Receipt 07/11/2016 ntration	Sample Name PLA7 Date of Receipt 07/11/2016	Sample Name PLA11 Date of Receipt 07/13/2016	Sample Name PLA16 Date of Receipt 07/13/2016	Sample Name SIR4 Date of Receipt 07/11/2016	Sample Name SIR5 Date of Receipt 07/11/2016	Sample Name SK1 Date of Receipt 07/11/2016	Sample Name SK2 Date of Receipt 07/11/2016
Ge	<mark>ochemical</mark> Symbol	Analyses ppm Element	Sample Name DRAK1 Date of Receipt 07/11/2016	Sample Name DRAK2 Date of Receipt 07/11/2016	Sample Name FLO1 Date of Receipt 07/11/2016	Sample Name KAR1 Date of Receipt 07/11/2016	Sample Name KAR2 Date of Receipt 07/11/2016	Sample Name KK1 Date of Receipt 07/11/2016	Sample Name KK2 Date of Receipt 07/11/2016	Sample Name NOP3 Date of Receipt 07/13/2016 Conce Trace	Sample Name NOP4 Date of Receipt 07/11/2016 ntration in ppm	Sample Name PLA7 Date of Receipt 07/11/2016	Sample Name PLA11 Date of Receipt 07/13/2016	Sample Name PLA16 Date of Receipt 07/13/2016	Sample Name SIR4 Date of Receipt 07/11/2016	Sample Name SIR5 Date of Receipt 07/11/2016	Sample Name SK1 Date of Receipt 07/11/2016	Sample Name SK2 Date of Receipt 07/11/2016
Ge z	<mark>ochemical</mark> Symbol S	Analyses ppm Element Sulfur	Sample Name DRAK1 Date of Receipt 07/11/2016	Sample Name DRAK2 Date of Receipt 07/11/2016	Sample Name FLO1 Date of Receipt 07/11/2016	Sample Name KAR1 Date of Receipt 07/11/2016	Sample Name KAR2 Date of Receipt 07/11/2016	Sample Name KK1 Date of Receipt 07/11/2016	Sample Name KK2 Date of Receipt 07/11/2016	Sample Name NOP3 Date of Receipt 07/13/2016 Conce Trace 263	Sample Name NOP4 Date of Receipt 07/11/2016 ntration in ppm 12776	Sample Name PLA7 Date of Receipt 07/11/2016	Sample Name PLA11 Date of Receipt 07/13/2016	Sample Name PLA16 Date of Receipt 07/13/2016	Sample Name SIR4 Date of Receipt 07/11/2016	Sample Name SIR5 Date of Receipt 07/11/2016	Sample Name SK1 Date of Receipt 07/11/2016	Sample Name SK2 Date of Receipt 07/11/2016
Ge z 16 17	<mark>ochemical</mark> Symbol S Cl	Analyses ppm Element Sulfur Chlorine	Sample Name DRAK1 Date of Receipt 07/11/2016	Sample Name DRAK2 Date of Receipt 07/11/2016	Sample Name FLO1 Date of Receipt 07/11/2016 152 145	Sample Name KAR1 Date of Receipt 07/11/2016	Sample Name KAR2 Date of Receipt 07/11/2016	Sample Name KK1 Date of Receipt 07/11/2016 0 17	Sample Name KK2 Date of Receipt 07/11/2016 103 106	Sample Name NOP3 Date of Receipt 07/13/2016 Conce Trace 263 749	Sample Name NOP4 Date of Receipt 07/11/2016 ntration in ppm 12776 231	Sample Name PLA7 Date of Receipt 07/11/2016	Sample Name PLA11 Date of Receipt 07/13/2016 87 470	Sample Name PLA16 Date of Receipt 07/13/2016 436 168	Sample Name SIR4 Date of Receipt 07/11/2016 288 512	Sample Name SIR5 Date of Receipt 07/11/2016 647 47	Sample Name SK1 Date of Receipt 07/11/2016 1238 229	Sample Name SK2 Date of Receipt 07/11/2016
Ge z 16 17 23	ochemical Symbol S Cl V	Analyses ppm Element Sulfur Chlorine Vanadium	Sample Name DRAK1 Date of Receipt 07/11/2016	Sample Name DRAK2 Date of Receipt 07/11/2016 193 182 0	Sample Name FLO1 Date of Receipt 07/11/2016 152 145 41	Sample Name KAR1 Date of Receipt 07/11/2016 196 25 0	Sample Name KAR2 Date of Receipt 07/11/2016 1004 110 0	Sample Name KK1 Date of Receipt 07/11/2016 0 17 0	Sample Name KK2 Date of Receipt 07/11/2016 103 106 0	Sample Name NOP3 Date of Receipt 07/13/2016 Conce Trace 263 749 0	Sample Name NOP4 Date of Receipt 07/11/2016 ntration in ppm 12776 231 0	Sample Name PLA7 Date of Receipt 07/11/2016 0 536 0	Sample Name PLA11 Date of Receipt 07/13/2016 87 470 156	Sample Name PLA16 Date of Receipt 07/13/2016 436 168 0	Sample Name SIR4 Date of Receipt 07/11/2016 288 512 0	Sample Name SIR5 Date of Receipt 07/11/2016 07/11/2016 47 0	Sample Name SK1 Date of Receipt 07/11/2016 1238 229 0	Sample Name SK2 Date of Receipt 07/11/2016 682 162 0
Ge z 16 17 23 24	<mark>ochemical</mark> Symbol S Cl V Cr	Analyses ppm Element Sulfur Chlorine Vanadium Chromium	Sample Name DRAK1 Date of Receipt 07/11/2016	Sample Name DRAK2 Date of Receipt 07/11/2016 193 182 0 107	Sample Name FLO1 Date of Receipt 07/11/2016 152 145 41 41 147	Sample Name KAR1 Date of Receipt 07/11/2016 196 25 0 0 61	Sample Name KAR2 Date of Receipt 07/11/2016	Sample Name KK1 Date of Receipt 07/11/2016 0 17 0 129	Sample Name KK2 Date of Receipt 07/11/2016 103 106 0 232	Sample Name NOP3 Date of Receipt 07/13/2016 Conce Trace 263 749 0 34	Sample Name NOP4 Date of Receipt 07/11/2016 ntration in ppm 12776 231 0 0	Sample Name PLA7 Date of Receipt 07/11/2016 0 536 0 21	Sample Name PLA11 Date of Receipt 07/13/2016 87 470 156 94	Sample Name PLA16 Date of Receipt 07/13/2016 436 168 0 246	Sample Name SIR4 Date of Receipt 07/11/2016 288 512 0 0	Sample Name SIR5 Date of Receipt 07/11/2016 647 47 0 42	Sample Name SK1 Date of Receipt 07/11/2016 1238 229 0 59	Sample Name SK2 Date of Receipt 07/11/2016 682 162 0 162 0 56
Ge z 16 17 23 24 27	Ochemical Symbol S Cl V Cr Co	Analyses ppm Element Sulfur Chlorine Vanadium Chromium Cobalt	Sample Name DRAK1 Date of Receipt 07/11/2016 6 22 0 100 180	Sample Name DRAK2 Date of Receipt 07/11/2016 193 182 0 107 0 107	Sample Name FLO1 Date of Receipt 07/11/2016 152 145 41 147 61	Sample Name KAR1 Date of Receipt 07/11/2016 196 25 0 196 25 0 61 239	Sample Name KAR2 Date of Receipt 07/11/2016 1004 110 0 83 43	Sample Name KK1 Date of Receipt 07/11/2016 0 17 0 129 0	Sample Name KK2 Date of Receipt 07/11/2016 103 106 0 232 100	Sample Name NOP3 Date of Receipt 07/13/2016 Conce Trace 263 749 0 34 62	Sample Name NOP4 Date of Receipt 07/11/2016 ntration in ppm 12776 231 0 231 0 0 0	Sample Name PLA7 Date of Receipt 07/11/2016 0 536 0 21 0	Sample Name PLA11 Date of Receipt 07/13/2016 87 470 156 94 15	Sample Name PLA16 Date of Receipt 07/13/2016 436 168 0 246 18	Sample Name SIR4 Date of Receipt 07/11/2016 288 512 0 0 0 0 0	Sample Name SIR5 Date of Receipt 07/11/2016 07/11/2016 07/11/2016	Sample Name SK1 Date of Receipt 07/11/2016 1238 229 0 29 0 59 0	Sample Name SK2 Date of Receipt 07/11/2016 682 162 0 162 0 56 12
Gev z 16 17 23 24 27 28	<mark>ochemical</mark> Symbol S Cl V Cr Co Ni	Analyses ppm Element Sulfur Chlorine Vanadium Chromium Cobalt Nickel	Sample Name DRAK1 Date of Receipt 07/11/2016 6 22 0 100 180 210	Sample Name DRAK2 Date of Receipt 07/11/2016 193 182 0 107 107 0 266	Sample Name FLO1 Date of Receipt 07/11/2016 152 145 41 147 61 93	Sample Name KAR1 Date of Receipt 07/11/2016 196 25 0 196 25 0 61 239 302	Sample Name KAR2 Date of Receipt 07/11/2016 1004 110 0 83 43 43 271	Sample Name KK1 Date of Receipt 07/11/2016 0 17 0 129 0 222	Sample Name KK2 Date of Receipt 07/11/2016 103 106 0 232 100 211	Sample Name NOP3 Date of Receipt 07/13/2016 Conce Trace 263 749 0 34 62 26	Sample Name NOP4 Date of Receipt 07/11/2016 ntration in ppm 12776 231 0 231 0 0 0 0 0 0 25	Sample Name PLA7 Date of Receipt 07/11/2016 0 536 0 21 0 20	Sample Name PLA11 Date of Receipt 07/13/2016 87 470 156 94 15 49	Sample Name PLA16 Date of Receipt 07/13/2016 436 168 0 246 18 108	Sample Name SIR4 Date of Receipt 07/11/2016 288 512 0 0 0 0 0 0 0	Sample Name SIR5 Date of Receipt 07/11/2016 47 647 47 0 42 17 52	Sample Name SK1 Date of Receipt 07/11/2016 1238 229 0 259 0 0 59 0 58	Sample Name SK2 Date of Receipt 07/11/2016 682 162 0 56 12 62
Ge z 16 17 23 24 27 28 29	Ochemical Symbol S Cl V Cr Co Ni Cu	Analyses ppm Element Sulfur Chlorine Vanadium Chromium Cobalt Nickel Copper	Sample Name DRAK1 Date of Receipt 07/11/2016 6 222 0 100 180 210 0	Sample Name DRAK2 Date of Receipt 07/11/2016 193 182 0 107 107 0 266 33	Sample Name FLO1 Date of Receipt 07/11/2016 152 145 41 147 61 93 28	Sample Name KAR1 Date of Receipt 07/11/2016 196 25 0 196 25 0 61 239 302 11	Sample Name KAR2 Date of Receipt 07/11/2016 1004 110 0 83 43 43 271 0	Sample Name KK1 Date of Receipt 07/11/2016 0 129 0 129 0 2222 0	Sample Name KK2 Date of Receipt 07/11/2016 103 106 0 232 100 211 12	Sample Name NOP3 Date of Receipt 07/13/2016 Conce Trace 263 749 0 34 62 26 26 0	Sample Name NOP4 Date of Receipt 07/11/2016 ntration 12776 231 0 231 0 231 0 0 0 0 0 25 62	Sample Name PLA7 Date of Receipt 07/11/2016 0 536 0 21 0 21 0 21 0 21 0 20 20	Sample Name PLA11 Date of Receipt 07/13/2016 87 470 156 94 15 94 15 49 22	Sample Name PLA16 Date of Receipt 07/13/2016 436 168 0 246 18 108 108 18	Sample Name SIR4 Date of Receipt 07/11/2016 288 512 0 288 512 0 0 0 0 0 0 0 0 0 0	Sample Name SIR5 Date of Receipt 07/11/2016 647 647 0 42 17 52 19	Sample Name SK1 Date of Receipt 07/11/2016 1238 229 0 1238 229 0 59 0 59 0 58 240	Sample Name SK2 Date of Receipt 07/11/2016 682 162 0 56 12 62 133
Ge z 16 17 23 24 27 28 29 30	Ochemical Symbol S Cl V Cr Co Ni Cu Zn	Analyses ppm Element Sulfur Chlorine Vanadium Chromium Cobalt Nickel Copper Zinc	Sample Name DRAK1 Date of Receipt 07/11/2016 6 22 0 100 180 210 0 1186	Sample Name DRAK2 Date of Receipt 07/11/2016 193 182 0 107 107 0 266 33 397	Sample Name FLO1 Date of Receipt 07/11/2016 152 145 41 147 61 93 28 67	Sample Name KAR1 Date of Receipt 07/11/2016 196 25 0 196 25 0 61 239 302 11 902	Sample Name KAR2 Date of Receipt 07/11/2016 1004 110 0 83 43 271 0 857	Sample Name KK1 Date of Receipt 07/11/2016 0 129 0 129 0 222 0 222 0 747	Sample Name KK2 Date of Receipt 07/11/2016 103 106 0 232 100 232 100 211 12 337	Sample Name NOP3 Date of Receipt 07/13/2016 Conce Trace 263 749 0 34 62 26 34 62 26 0 38	Sample Name NOP4 Date of Receipt 07/11/2016 ntration in ppm 12776 231 0 231 0 231 0 0 0 0 0 25 62 3759	Sample Name PLA7 Date of Receipt 07/11/2016 0 536 0 21 0 21 0 21 0 20 20 9 50	Sample Name PLA11 Date of Receipt 07/13/2016 87 470 156 94 15 49 15 49 252 71	Sample Name PLA16 Date of Receipt 07/13/2016 436 168 0 246 18 18 108 18 18 18	Sample Name SIR4 Date of Receipt 07/11/2016 288 512 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16	Sample Name SIR5 Date of Receipt 07/11/2016 47 647 47 0 42 17 52 19 26	Sample Name SK1 Date of Receipt 07/11/2016 1238 229 0 1238 229 0 59 0 59 0 59 0 58 240 143	Sample Name SK2 Date of Receipt 07/11/2016 682 162 0 56 12 62 133 87
Ge z 16 17 23 24 27 28 29 30 31	Ochemical Symbol S Cl V Cr Co Ni Cu Zn Ga	Analyses ppm Element Sulfur Chlorine Vanadium Chromium Cobalt Nickel Copper Zinc Gallium	Sample Name DRAK1 Date of Receipt 07/11/2016 6 222 0 100 180 210 0 1186 0 1186 0	Sample Name DRAK2 Date of Receipt 07/11/2016 193 182 0 107 0 107 0 266 33 397 0	Sample Name FLO1 Date of Receipt 07/11/2016 152 145 41 147 61 93 28 67 13	Sample Name KAR1 Date of Receipt 07/11/2016 7/11/2016 25 0 196 25 0 0 61 239 302 11 902 0	Sample Name KAR2 Date of Receipt 07/11/2016 1004 110 0 83 43 271 0 857 0	Sample Name KK1 Date of Receipt 07/11/2016 0 129 0 129 0 2222 0 20 747 0	Sample Name KK2 Date of Receipt 07/11/2016 103 106 0 232 100 232 100 211 12 337 0	Sample Name NOP3 Date of Receipt 07/13/2016 Conce 263 749 0 34 62 26 0 34 62 26 0 38 0	Sample Name NOP4 Date of Receipt 07/11/2016 ntration 12776 231 0 231 0 231 0 0 25 62 3759 0	Sample Name PLA7 Date of Receipt 07/11/2016 0 536 0 21 0 21 0 21 0 21 0 20 20 9 50 50 0	Sample Name PLA11 Date of Receipt 07/13/2016 87 470 156 94 15 94 15 49 52 71 15	Sample Name PLA16 Date of Receipt 07/13/2016 436 168 0 246 18 108 18 108 18 18 18 18 0	Sample Name SIR4 Date of Receipt 07/11/2016 288 512 0 288 512 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sample Name SIR5 Date of Receipt 07/11/2016 647 647 647 0 17 642 17 52 19 26 10	Sample Name SK1 Date of Receipt 07/11/2016 1238 229 0 1238 229 0 59 0 59 0 59 0 58 240 143 0	Sample Name SK2 Date of Receipt 07/11/2016 682 162 0 162 0 56 12 62 133 87 0
Ge z 16 17 23 24 27 28 29 30 31 33	Ochemical Symbol S Cl V Cr Co Ni Cu Zn Ga As	Analyses ppm Element Sulfur Chlorine Vanadium Chromium Cobalt Nickel Copper Zinc Gallium Arsenic	Sample Name DRAK1 Date of Receipt 07/11/2016 6 22 0 100 180 210 0 1186 0 1186 0 32	Sample Name DRAK2 Date of Receipt 07/11/2016 193 182 0 107 107 0 266 33 397 0 0 37	Sample Name FLO1 Date of Receipt 07/11/2016 152 145 41 147 61 93 28 67 13 0	Sample Name KAR1 Date of Receipt 07/11/2016 25 0 61 239 302 11 902 0 0 0	Sample Name KAR2 Date of Receipt 07/11/2016 1004 110 0 83 43 271 0 83 43 271 0 857 0 0 857 0 0	Sample Name KK1 Date of Receipt 07/11/2016 0 129 0 129 0 129 0 2222 0 20 747 0 40	Sample Name KK2 Date of Receipt 07/11/2016 103 106 0 232 100 232 100 211 12 337 0 17	Sample Name NOP3 Date of Receipt 07/13/2016 Conce Trace 263 749 0 34 62 26 0 34 62 26 0 38 0 0 38 0 0	Sample Name NOP4 Date of Receipt 07/11/2016 ntration in ppm 12776 231 0 231 0 0 0 0 0 0 0 25 62 3759 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sample Name PLA7 Date of Receipt 07/11/2016 0 536 0 21 0 21 0 21 0 20 21 0 20 21 0 0 21 0 0 21 0 0 21 0 0 20 20 9 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sample Name PLA11 Date of Receipt 07/13/2016 87 470 156 94 156 94 15 49 52 71 52 71 15 0	Sample Name PLA16 Date of Receipt 07/13/2016 436 168 0 246 18 18 108 18 18 108 18 18 108 18 18 108 18 18	Sample Name SIR4 Date of Receipt 07/11/2016 288 512 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sample Name SIR5 Date of Receipt 07/11/2016 42 47 0 42 17 52 19 26 10 10 0 0	Sample Name SK1 Date of Receipt 07/11/2016 1238 229 0 1238 229 0 59 0 59 0 59 0 59 0 59 0 59 0 59	Sample Name SK2 Date of Receipt 07/11/2016 682 682 162 0 56 12 62 133 87 0 13

38	Sr	Strontium	0	0	21	52	76	12	173	89	1687	9	104	26	105	56	0	19
39	Y	Yttrium	56	20	44	39	29	11	11	58	15	13	19	16	0	20	0	14
40	Zr	Zirconium	26	56	269	88	94	48	173	22	0	162	109	268	0	343	151	218
41	Nb	Niobium	0	0	20	0	13	0	0	0	0	0	0	0	0	15	0	12
42	Мо	Molybdenum	0	0	0	19	23	0	0	0	0	0	0	0	0	9	0	0
47	Ag	Silver	0	0	0	13	12	0	0	0	0	0	0	0	0	0	0	0
50	Sn	Tin	0	0	16	11	18	11	19	16	0	11	15	15	17	12	10	9
53	1 I	lodine	0	0	0	12	0	0	0	0	0	0	0	0	0	0	0	0
55	Cs	Cesium	0	0	0	0	0	35	0	19	0	0	0	0	0	0	0	0
56	Ва	Barium	195	47	168	77	123	298	1318	38	96	27	67	29	215	70	104	79
57	La	Lanthanum	0	0	0	0	32	0	40	0	0	0	0	0	0	0	0	0
58	Ce	Cerium	0	0	0	0	20	0	32	0	0	0	0	0	0	0	0	0
82	Pb	Lead	0	0	43	0	0	0	0	15	188	15	13	0	0	68	0	0
90	Th	Thorium	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
92	U	Uranium	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Geo	ochemical	Analyses %	Sample Name SKF1 Date of Receipt 10/19/2016	Sample Name SKF2 Date of Receipt 10/19/2016	Sample Name SKF3 Date of Receipt 10/19/2016	Sample Name SKF4 Date of Receipt 10/19/2016	Sample Name SKF5 Date of Receipt 10/19/2016	Sample Name SKF6 Date of Receipt 10/19/2016	Sample Name SKF7 Date of Receipt 10/19/2016	Sample Name SKF8 Date of Receipt 10/19/2016	Sample Name SKF9 Date of Receipt 11/01/2016	Sample Name SKF10 Date of Receipt 11/01/2016	Sample Name SKF11 Date of Receipt 11/01/2016	Sample Name SKF12 Date of Receipt 11/01/2016	Sample Name SKF13 Date of Receipt 11/01/2016	Sample Name SKF14 Date of Receipt 11/01/2016	Sample Name SKF15 Date of Receipt 11/01/2016	Sample Name SKF16 Date of Receipt 11/01/2016	Sample Name SKF17 Date of Receipt 11/01/2016	Sample Name SKF18 Date of Receipt 11/01/2016	Sample Name SKF19 Date of Receipt 11/01/2016	Sample Name SKF20 Date of Receipt 11/01/2016	Sample Name SKF21 Date of Receipt 11/04/2016
z	Symbol	Element		Concentration																			
				-		-				-	-		Major %wt		-								-
14	Si02	Silicon	45.38	92.46	71.94	91.97	83.23	87.44	68.23	79.10	60.94	87.70	65.26	33.58	86.04	59.45	74.21	60.60	4.69	4.08	2.58	3.52	16.05
13	AI203	Aluminum	7.57	4.77	11.56	5.73	2.78	3.70	9.95	6.83	5.17	6.79	10.54	6.10	6.89	14.79	5.22	4.21	0.22	0.25	0.37	0.19	2.00
26	Fe203	Iron	20.95	2.09	11.65	1.94	12.61	8.05	18.55	12.66	31.23	3.97	20.53	57.32	5.63	16.68	17.50	33.66	16.61	11.83	13.88	35.96	70.85
25	MnO	Manganese	0.66	0.00	0.18	0.01	0.31	0.00	0.08	0.01	0.28	0.02	0.17	0.45	0.02	0.45	0.51	0.26	1.55	0.91	1.38	1.34	0.40
12	MgO	Magnesium	4.71	0.03	0.56	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.09	0.14	0.00	0.79	0.31	0.00	2.83	2.39	1.37	2.21	7.11
20	CaO	Calcium	18.84	0.02	0.54	0.05	0.33	0.00	0.23	0.00	0.41	0.05	0.00	0.04	0.00	0.63	0.17	0.00	71.09	78.25	77.43	53.28	0.33
11	Na20	Sodium	0.36	0.27	1.33	0.00	0.28	0.21	0.79	0.34	0.30	0.63	1.26	0.64	0.19	1.16	0.39	0.16	1.54	1.25	1.86	1.66	1.08
19	K20	Potassium	0.43	0.12	0.86	0.07	0.10	0.17	0.82	0.53	0.64	0.50	1.25	0.94	0.79	3.07	0.69	0.56	0.37	0.34	0.12	0.18	0.57
15	P205	Phosphorus	0.14	0.08	0.30	0.10	0.06	0.17	0.22	0.10	0.22	0.06	0.16	0.35	0.14	0.61	0.41	0.19	0.95	0.62	0.88	1.55	1.09
22	Ti02	Titanium	0.80	0.13	0.98	0.08	0.25	0.20	0.87	0.35	0.73	0.23	0.64	0.32	0.25	2.27	0.55	0.27	0.07	0.03	0.04	0.07	0.31

									Sample			Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
			Sample	Sample	Sample	Sample	Sample	Sample	Name SKF7	Sample	Sample	Name	Name	Name	Name	Name	Name	Name	Name	Name	Name	Name	Name
C			Date of	Date of	Date of	Date of	Date of	Date of	Date of	Date of	Date of	Date of	Date of	Date of	Date of	Date of	Date of	Date of	Date of	Date of	Date of	Date of	Date of
Geo	cnemical	i Analyses	Receipt	Receipt	Receipt	Receipt	Receipt	Receipt	Receipt	Receipt	Receipt	Receipt	Receipt	Receipt	Receipt	Receipt	Receipt	Receipt	Receipt	Receipt	Receipt	Receipt	Receipt
ppr	n		10/19/2016	10/19/2016	10/19/2016	10/19/2016	10/19/2016	10/19/2016	10/19/2016	10/19/2016	11/01/2016	11/01/2016	11/01/2016	11/01/2016	11/01/2016	11/01/2016	11/01/2016	11/01/2016	11/01/2016	11/01/2016	11/01/2016	11/01/2016	11/04/2016
z	Symbol	Element	Concentration																				
					1	T	1						Trace in ppm	-		-				-			-
16	S	Sulfur	763	0	115	129	0	118	313	259	0	63	282	662	92	16	0	378	0	15	43	19	939
17	CI	Chlorine	102	130	70	155	113	80	223	108	178	204	209	43	58	176	129	264	164	61	343	55	361
23	V	Vanadium	0	25	68	29	0	0	0	0	0	30	0	0	0	48	0	0	51	86	0	0	0
24	Cr	Chromium	59	9	94	0	56	22	153	32	35	24	65	44	24	37	16	15	0	0	0	0	101
27	Со	Cobalt	55	0	22	21	0	0	21	10	0	0	22	90	0	14	13	0	0	0	0	0	0
28	Ni	Nickel	48	13	39	18	24	21	165	37	77	14	41	26	22	26	18	17	76	43	59	120	33
29	Cu	Copper	15	31	72	34	0	39	752	49	11	14	33	72	9	0	0	14	0	0	0	0	60
30	Zn	Zinc	30	12	49	21	17	40	256	49	45	0	40	78	0	17	16	14	30	21	0	23	427
31	Ga	Gallium	0	0	10	0	0	0	0	0	0	0	0	0	0	14	0	0	0	0	0	0	0
33	As	Arsenic	0	0	49	0	0	10	15	31	0	0	11	28	0	0	0	76	0	0	0	0	28
37	Rb	Rubidium	18	0	28	0	0	0	19	12	0	9	24	18	14	41	9	0	0	0	0	0	0
38	Sr	Strontium	129	14	45	9	16	11	34	16	0	18	31	0	9	39	12	0	29	22	33	41	0
39	Y	Yttrium	50	0	21	0	11	0	23	11	17	0	32	42	0	33	24	0	0	0	0	0	0
40	Zr	Zirconium	214	45	229	32	185	93	281	126	375	117	179	51	187	202	43	13	0	0	0	0	27
41	Nb	Niobium	14	0	21	0	0	0	16	0	9	0	9	0	0	34	0	0	0	0	0	0	0
42	Мо	Molybdenum	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	21	15	0	14	31
47	Ag	Silver	0	0	0	0	0	0	0	0	0	0	0	11	0	0	0	0	0	0	0	0	0
50	Sn	Tin	20	10	10	13	12	12	10	12	0	11	9	17	9	14	11	9	15	15	18	14	0
53	I.	lodine	0	0	0	0	0	0	0	0	0	0	0	13	0	0	0	0	0	0	0	0	0
55	Cs	Cesium	0	10	0	0	0	0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0
56	Ва	Barium	0	55	70	90	0	39	93	83	17	41	29	59	66	119	32	37	334	131	445	170	64
57	La	Lanthanum	0	0	21	0	0	0	0	0	0	0	0	0	0	25	0	0	0	0	0	0	0
58	Ce	Cerium	0	0	0	0	0	0	0	0	0	0	0	15	0	72	0	0	0	0	0	0	0
82	Pb	Lead	0	0	0	0	9	0	10	36	0	0	0	13	0	0	0	11	0	0	0	0	0
90	Th	Thorium	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	28
92	U	Uranium	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14	0	0	0	30

•

7 Θεωρητικά για την κοιτασματογένεση

7.1. Παλαιότερες ονοματολογίες μαγματικά συνδεόμενων μεταλλοφοριών

Τα κριτήρια που χρησιμοποιήθηκαν από τους διάφορους ερευνητές, για την εδραίωση των γενετικών συστημάτων κατάταξης των κοιτασμάτων της μαγματικής ακολουθίας είναι τα εξής:

 Το βάθος της μαγματικής εστίας (μαγματικού θαλάμου) από την επιφάνεια της γης κατά το χρόνο της μετακίνησης των μεταλλοφόρων διαλυμάτων.

 Η απόσταση της θέσης σχηματισμού των κοιτασμάτων από τη μαγματική εστία.

3. Το απόλυτο βάθος αποχωρισμού και απόθεσης των παραγενετικών ορυκτών, ανεξάρτητα από τη θέση της μαγματικής εστίας από την οποία προέρχονται τα αντίστοιχα ρευστά. Πρακτικά, ο χαρακτήρας των φυσικών συγκεντρώσεων χρήσιμων ορυκτών προσδιορίζεται μόνο από τον τόπο σχηματισμού τους ως προς την ελεύθερη επιφάνεια, δηλαδή από την επικρατούσα εκεί πίεση.

 Η ακριβής θέση των μεταλλοφόρων σχηματισμών ως προς τα διάφορα τμήματα (τομείς) του βαθόλιθου.

5. Τα πλαίσια των θερμοκρασιών στις οποίες γίνεται ο αποχωρισμός των ορυκτολογικών παραγενέσεων. Με βάση το κριτήριο αυτό διακρίνονται οι επόμενες τέσσερις περιπτώσεις παραγενέσεων ή κοιτασμάτων:

α. Υποθερμικά κοιτάσματα. Παραγενέσεις ή κοιτάσματα υψηλών
 θερμοκρασιών: μεταξύ 400° – 600°C.

β. Μεσοθερμικά κοιτάσματα. Παραγενέσεις ή κοιτάσματα μέτριων θερμοκρασιών: μεταξύ 200° - 400° C.

γ. *Επιθερμικά κοιτάσματα.* Παραγενέσεις ή κοιτάσματα χαμηλών θερμοκρασιών: μεταξύ 50°-200° C.

δ. Τηλεθερμικές. (ή ανωθερμικές ή αποθερμικές) παραγενέσεις (ή κοιτάσματα). Παραγενέσεις ή κοιτάσματα πολύ χαμηλών θερμοκρασιών: κάτω των 100°C.

76

6. Η σταθερή συνύπαρξη ορισμένων μεταλλικών παραγενετικών ορυκτών και μετάλλων. Έχει διαπιστωθεί ότι αρκετές από τις πολυάριθμες ορυκτολογικές παραγενέσεις των υδροθερμικών κυρίως κοιτασμάτων – ανεξάρτητα από το αν αυτές είναι φλεβικού, διάσπαρτου ή συμπαγούς τύπου - δείχνουν (στις περιπτώσεις που δημιουργούνται κάτω από ορισμένες φυσικοχημικές συνθήκες) μια αξιοσημείωτη σταθερότητα. Το γεγονός αυτό, σε συνδυασμό με την έκδηλη τάση συνύπαρξης - στις αντίστοιχες παραγενέσεις - ορισμένων μετάλλων, έδωσε την δυνατότητα για την καθιέρωση μιας επιμέρους σειράς κοιτασματολογικών ενοτήτων ή, κοιτασματολογικών σχηματισμών (Formatione., από τις οποίες ως πιο συνηθισμένες παρουσιάζονται οι επόμενες:

- 1. Σχηματισμοί Αυ και Au-Ag
- 2. Σχηματισμοί Cu και πυριτών.
- 3. Σχηματισμοί Pb-Ag-Zn.
- 4. Σχηματισμοί Ag-Co-Ni-Bi- U.
- 5. Σχηματισμοί Sn-Ag-Bi- W.
- 6. Σχηματισμοί Sb-Hg-As-Se.
- 7. Σχηματισμοί οξειδίων των Fe-Mn-Mg.
- 8. Σχηματισμοί ελεύθεροι μεταλλικών ορυκτών.

Εικόνα 25: Σχηματική παράσταση των διαφόρου βάθους μαγματικών εστιών και των ζωνών απόθεσης των αντίστοιχων κοιτασμάτων σε συνδυασμό με τις θερμοκρασίες σχηματισμού τους. (Κατά Schneiderhorn από Μελιδώνη 1992).

Είναι προφανές ότι τα κριτήρια (γεωχημικά-παραγενετικά) για την υπαγωγή ενός υδροθερμικού κοιτάσματος σ' έναν απ' αυτούς τους «σχηματισμούς», είναι εντελώς ανεξάρτητα από εκείνα όλων των προηγούμενων πέντε περιπτώσεων.

Εάν περιοριστούμε στην ονοματολογία των επιμέρους κοιτασμάτων του υδροθερμικού σταδίου, που θεσπίστηκε με βάση τα πλαίσια των θερμοκρασιών μέσα στα οποία γίνεται ο αποχωρισμός των συστατικών τους, αυτή χρησιμοποιείται και για τις αντίστοιχες ισόθερμες ζώνες γύρω από τις μαγματικές εστίες: *Υποθερμική μεσοθερμική* και *επιθερμική*. Η θέση των ζωνών αυτών ως προς τα διαφόρου βάθους μαγματικά σώματα, καθώς και το πλάτος τους, είναι συνάρτηση της απόστασής τους από τις μαγματικές εστίες, τα δε πλάτη τους συνάρτηση του βάθους των αντίστοιχων εστιών από την επιφάνεια της γης. Έτσι, αν ο ορίζοντας της διείσδυσης ενός μαγματίτη βρίσκεται σε βάθος περίπου 20 km, οι μεσοθερμικοί π.χ. σχηματισμοί του αναπτύσσονται σε μια ζώνη μεταξύ 6,5- 9,5 km, την οποία, σε περίπτωση που η οροφή του βρισκόταν υψηλότερα, π.χ. σε βάθος 12 km, θα κατείχαν σε αρκετά μεγάλο ποσοστό οι αντίστοιχοι υποθερμικοί σχηματισμοί του. Ένα άλλο, ιδιαίτερης σημασίας, συμπέρασμα είναι ότι οι παραγενέσεις και γενικότερα τα κοιτάσματα που δημιουργούνται μέσα σε κάθε μια από τις ζώνες αυτές, δεν εξαρτώνται από τις επικρατούσες εκεί πιέσεις.

Από τα προηγούμενα δεδομένα, συμπεραίνεται ότι για τη δημιουργία υποθερμικών κοιτασμάτων σημαντικών διαστάσεων απαιτείται όπως η οροφή των αντίστοιχων μαγματικών εστιών βρίσκεται σε βάθος μεγαλύτερο των 7-8 km, ενώ, αντίθετα, αξιόλογα πάχη τηλεθερμικών κοιτασμάτων πετυχαίνονται και από διεισδύσεις αρκετά μικρότερου βάθους. Ολόκληρη, πάντως, η σειρά των καλά αναπτυγμένων υδροθερμικών ζωνών απαντάται μόνο σε περιοχές πλουτωνισμού μεγάλου βάθους. Στις περιοχές αβαθούς πλουτωνισμού ή υποηφαιστειότητας, επειδή η ταχύτητα ελάττωσης της θερμοκρασίας είναι μεγάλη, δεν παρέχεται η χρονική ευχέρεια για τον σχηματισμό των παραγενέσεων υψηλών θερμοκρασιών (κυρίως υποθερμικών), με αποτέλεσμα οι μεν τελευταίες πρακτικά ν' απουσιάζουν, οι δε υπόλοιπες να έχουν περιορισμένο πλάτος. Για τους λόγους αυτούς, οι αξιόλογες κοιτασματογενετικές διεργασίες του υδροθερμικού σταδίου των δύο προηγούμενων περιπτώσεων μαγματισμού περιορίζονται ουσιαστικά στις μεσοθερμικές και κυρίως στις επιθερμικές ζώνες.

Υπόθερμικές παραγενέσεις

Δημιουργούνται από μαγματικά υδατικά διαλύματα, η θερμοκρασία των οποίων κυμαίνεται μεταξύ της κρίσιμης θερμοκρασίας του νερού (συμβατικά, ~ 400°C - 600°C.)

Τα υπόθερμικά κοιτάσματα, εξαιτίας του ότι σχηματίζονται σε υψηλές θερμοκρασίες και μάλιστα από διαλύματα που ποτέ σχεδόν δεν τους παρέχεται η δυνατότητα επικοινωνίας με την επιφάνεια της γης, έχουν γενικά την τάση να παίρνουν ακανόνιστα σχήματα και μόνο κατ' εξαίρεση δείχνουν τραπεζοειδείς ή φλεβικές μορφές. Οι φλέβες βάθους καταλαμβάνουν συνήθως τις ανώτερες αξονικές ζώνες πτυχών (σάγματα) ή τις ζώνες κατάτμησης, έχουν δε την τάσην να ακολουθούν μετατοπισμένες πτυχές και ν' αντικαθιστούν εκλεκτικά διάφορα πετρώματα. Το γενικό χαρακτηριστικό των μεγάλων σωμάτων αντικατάστασης της υποθερμικής ζώνης είναι η σταθερότητα του περιεχομένου τους, πράγμα που αποδίδεται στο ότι τόσο οι συνθήκες πιέσεων και θερμοκρασιών, που επικρατούν στους τόπους σχηματισμού τους, όσο και η τεκτονική δεν παρουσιάζουν απότομες και σημαντικές μεταβολές.

79

Μεταξύ των μη μεταλλικών (σύνδρομων) ορυκτών, σαν περισσότερο κοινά στην υποθερμική ζώνη παρουσιάζονται τα ορυκτά χαλαζίας και πυροφυλλίτης.

Σχετικά με τα μεταλλικά ορυκτά που μπορεί να μετέχουν στους παραγενετικούς συνδυασμούς της υποθερμικής ζώνης, ανεξάρτητα αν είναι τυπικά ή όχι γι' αυτήν όσον αφορά τα ορυκτά του Αυ: Συνήθως αποτελούν συστατικά των «παλιών χρυσοφόρων χαλαζιακών φλεβών», που αποκαλύπτονται τόσο στις προκάμβριες ασπίδες όσο και στις έντονα διαβρωμένες παλαιοζωικές, μεσοζωικές και παλαιοτριτογενείς περιοχές ορογενέσεων, δηλαδή σε ζώνες με συνορογενετικές και μεταορογενετικές γρανοδιοριτικές - γρανιτικές διεισδύσεις μεγάλων διαστάσεων. Η συνηθέστερη μορφή είναι ο αυτοφυής Αυ, που, σχεδόν κατά κανόνα, σχηματίζει κράματα με άλλα μέταλλα και κυρίως με Αg. Μετέχει, επίσης, στη σύσταση (με πολύ μικρά πάντοτε ποσοστά) διαφόρων τελλουριδίων, καθώς και

Μεσοθερμικές παραγενέσεις

Δημιουργούνται από υδατικά διαλύματα μέσων θερμοκρασιών (300°- 200°C), που είναι αμφίβολο αν έχουν τη δυνατότητα επικοινωνίας με την επιφάνεια της γης. Η οριοθέτηση της ζώνης αυτής από τις παρακείμενες της υποθερμική και επιθερμική στηρίζεται σε αυθαίρετα μάλλον κριτήρια Το μεγαλύτερο βάθος σχηματισμού των μεσοθερμικών κοιτασμάτων είναι περίπου 10 km, όπου οι αντίστοιχες πιέσεις είναι γενικά χαμηλότερες σε σύγκριση μ' εκείνες που επικρατούν στην υποθερμική ζώνη.

Κάτω από τις συνθήκες αυτές, αποχωρίζονται οι μεγαλύτερες ποσότητες των μετάλλων Cu, Pb, Zη και Ag. Το ποσοστό του Au βρίσκεται σε ιδιαίτερα χαμηλά επίπεδα. Αρκετά διαδεδομένα είναι και τα διάσπαρτου τύπου κοιτάσματα, με κυριότερο αντιπρόσωπο τα πορφυριτικά κοιτάσματα χαλκού.

Επιθερμικές παραγενέσεις

Αποχωρίζονται από μαγματικά υδατικά διαλύματα θερμοκρασίας 200° -100°C. Οι περισσότερες απ' αυτές σχηματίζονται σε μικρότερα βάθη απ' ότι τα προηγούμενα, συνεπώς δε κάτω από σχετικά μικρότερες πιέσεις. Το βαθύτερο επίπεδο δημιουργίας επιθερμικών κοιτασμάτων βρίσκεται στα ~ 7 km, όπου αντιστοιχεί πίεση ~ 1860 At. Γενικά, μπορεί να σχετίζονται τόσο με πλουτώνιες όσο και με υποηφαιστειακές μαγματικές εστίες. Η σύνδεσή τους με τις πρώτες αποδεικνύεται μόνο αν συντρέξουν ειδικές συνθήκες διάβρωσης. Ένα πολύ μεγάλο μέρος απ' αυτά απαντάται είτε μέσα σε υποηφαιστειακές διεισδύσεις νέας σχετικά ηλικίας (συνήθως Τριτογενούς), είτε πολύ κοντά σ' αυτές.

Οι πιο συνηθισμένες από τις κοιτασματολογικές μορφές τους είναι πληρώματα ανοιχτώναπλών ή ακανόνιστα διακλαδισμένων-διαρρήξεων (φλέβες, δίκτυα φλεβών ή/και φλεβιδίων) και καμινάδων με ηφαιστειακά λατυποπαγή, όπου τα φαινόμενα αντικατάστασης είναι μάλλον συχνά. Οι διάφορες ιστολογικές ασυνέχειες επικοινωνούν με την επιφάνεια, πράγμα που διευκολύνει τη ροή των μεταλλοφόρων θερμοδιαλυμάτων. Ένα ποσοστό των θερμοπηγών αντιστοιχούν, ίσως, σε επιφανειακές εκδηλώσεις επιθερμικών συστημάτων που βρίσκονται βαθύτερα.

Σαν χαρακτηριστικοί ιστοί για τη ζώνη αυτή μπορεί να θεωρηθούν οι φλοιοπαγείς, οι κτενοειδείς και οι κολλοειδείς, που ερμηνεύονται σαν αποτέλεσμα των μέτριων θερμοκρασιών των διαλυμάτων και της ελεύθερης επικοινωνίας τους με την ατμόσφαιρα. Οι φλέβες είναι συνήθως συμμετρικά πληρωμένες, γεγονός που αντικατοπτρίζει την προοδευτική ελάττωση της θερμοκρασίας. Το γεγονός ότι τα περισσότερα από τα κοιτάσματα της επιθερμικής ζώνης σχηματίζονται κοντά στην επιφάνεια της γης, έχει ως συνέπεια την ταχεία διάβρωση των παλιότερων απ' αυτά, ενώ διατηρούνται σχεδόν άθικτα μόνο τα νεότερα.

Τα γειτονικά πετρώματα των επιθερμικών μεταλλοφόρων σωμάτων είναι συνήθως έντονα και σε μεγάλη έκταση εξαλλοιωμένα, κυρίως αν έχουν υψηλό πορώδες. Σαν κυριότερα προϊόντα της υδροθερμικής εξαλλοίωσης παρουσιάζονται τα ορυκτά χλωρίτης (που είναι και το πιο συχνό), αλουνίτης, ζεόλιθοι, διάφορα αργιλικά, αδουλαίος, διάφορες μορφές του SiO₂ και σιδηροπυρίτης. Ο σερικίτης, αν και περισσότερο συχνός στα μεσοθερμικά κοιτάσματα, παρουσιάζεται συνήθως (σε μικρότερο πάντοτε ποσοστό απ' ότι ο χλωρίτης) και στα επιθερμικά. Τα αργιλικά είναι άφθονα και εμφανή και σχηματίζουν ζώνες ποικίλων χρωμάτων, που αναπτύσσονται κυρίως στα τοιχώματα των φλεβών.

Συνήθη πρωτογενή σύνδρομα ορυκτά των επιθερμικών μεταλλοφόρων φλεβών είναι: χαλαζίας (τοπικά αμέθυστος), χαλκηδόνιος, ασβεστίτης, δολομίτης, ροδοχρωσίτης, βαρύτης και φθορίτης.

81

Ως κυριότερα μεταξύ των μεταλλικών ορυκτών που μετέχουν στη σύσταση των επιθερμικών παραγενέσεων - ανεξάρτητα αν είναι τυπικά ή όχι γι' αυτές προβάλλουν τα ακόλουθα:

Ορυκτά των Αυ και Ag. Ο Au, στα υποηφαιστειακά ιδιαίτερα κοιτάσματα συνυπάρχει σχεδόν πάντοτε με τον Ag, είτε με τη μορφή κραμάτων (σε διάφορες αναλογίες) είτε ως συστατικό Ag-ούχων τελλουριδίων. Ένα από τα πιο συχνά εμφανιζόμενα κράματα των Au-Ag είναι το ήλεκτρο (Au :Ag =70-55: 30-45). Από τα Au-Ag/ούχα τελλουρίδια αναφέρονται τα:

συλβανίτης	AgAuTe ₄	πετζίτης	Ag_3AuTe_2
κρεννερίτης	(Au, Ag)Te ₂	εσσίτης	Ag2Te
καλαβερίτης	AuTe ₂		

Ο άργυρος παρουσιάζεται και ως συστατικό των επόμενων σουλφιδίων, σουλφοαντιμονιδίων και σουλφοαρσενιδίων:

αργεντίτης Ag₂S πυραργυρίτης Ag₃SbS₃

ακανθίτης Ag₂S μιαργυρίτης AgSbS₂

στεφανίτης $5Ag_2S$. Sb_2S_3

πολυβασίτης (Ag, Cu)₁₆.Sb₂S₁₁ αντορίτης Pb₂Ag₂Sb₆Si₂

φραϊβεργίτης Ag-ούχος τετραεδρίτης

Τα προηγούμενα ορυκτά μετέχουν ως συστατικά και άλλων ζωνών του υδροθερμικού σταδίου, η κύρια όμως ζώνη σχηματισμού τους είναι η επιθερμική, για την οποία μάλιστα από πολλούς ερευνητές θεωρούνται (κάτω από ορισμένες προϋποθέσεις) και σαν χαρακτηριστικά (Μελιδώνης 1992).

7.2 Νεότερες ονοματολογίες μαγματικά συνδεόμενων μεταλλοφοριών

Τα τελευταία χρόνια μετά την εδραίωση της θεωρίας των Τεκτονικών Πλακών οι απόψεις και ταυτόχρονα και οι συνοδές ονοματολογίες για τις μεταλλοφορίες προσαρμόζονται στην νέα αυτή αντίληψη. Σαν παράδειγμα δίδεται η αναθεώρηση και προσαρμογή των «μεσοθερμικών μεταλλοφοριών».

Οι αποκαλούμενες «μεσοθερμικές εμφανίσεις χρυσού» συνδέονται με μεταμορφωμένα τεκτονικά ηπειρωτικά τεμάχη όλων των ηλικιών. Τα μεταλλεύματα δημιουργήθηκαν με διεργασίες παραμόρφωσης συμπιεστικού τύπου στα συγκλίνοντα όρια περιθωριακών λεκανών σε ορογενή προσαύξησης και ορογενή που δημιουργήθηκαν από σύγκρουση ηπειρωτικών τεμαχών. Και στους δύο τύπους ορογενούς τα ενυδατωμένα θαλάσσια ιζήματα και ηφαιστειακά πετρώματα έχουν προστεθεί σε ηπειρωτικά περιθώρια μετά από δέκα έως εκατό εκατομμύρια έτη σύγκρουσης. Τα θερμικά γεγονότα που συνδέονται με την υποβύθιση επηρεάσαν την κατανομή των γεωθερμικών πεδίων στα πρίσματα προσαύξησης και οδήγησαν τα υδροθερμικά ρευστά σε μετανάστευση μεγάλης κλίμακας.

Οι περισσότερες μεταλλοφορίες είναι μετα-ορογενετικές όσον αφορά τον τεκτονισμό των πετρωμάτων - ξενιστών, αλλά είναι ταυτόχρονα συν- ορογενετικές όσον αφορά τις τρέχουσες θερμικές διεργασίες που σχετίζονται με διεργασίες υποβύθισης. Βάσει του βάθους σχηματισμού τους, οι ορογενετικές μεταλλοφορίες μπορούν να υποδιαιρεθούν σε *επιζωνικές* (< 6 χλμ), μεσοζωνικές (6-12 χλμ) και υποζωνικές (> 12 χλμ) (*Groves et. al.* 1998).

Και στις νέες όμως προσεγγίσεις υπάρχουν παρόμοια θέματα. Οι *Scott et al*. (1997) σε μια συγκριτική έρευνά τους που αφορούσε το σχηματισμό συμπαγών σουλφιδίων σε σύγχρονα ωκεάνια συστήματα πολλών περιοχών ταξινόμησαν με βάση το γεωτεκτονικό περιβάλλον τα σημερινά συμπαγή θειούχα και τα πιθανά παλαιότερα ανάλογά τους ως εξής:

α. ΜΕΣΟ-ΩΚΕΑΝΙΑ ΡΑΧΗ ΦΤΩΧΗ ΣΕ ΙΖΗΜΑΤΑ

Σύγχρονα παραδείγματα: S. Explorer; Endeavour segment, N. Juan de Fuca; 130 N, 210 N, etc. EPR ; TAG, Snakepit & Broken Spur, MAR; Sonne, CIR

Παλαιότερης γεωλογικής περιόδου ανάλογα: Ενδεχομένως κανένας. Παρόμοιος με τύπου Κύπρου αλλά αυτά είναι πιθανότατα μέσα σε οφιολίθους που δημιουργούνται πίσω από τόξα.

β. ΙΖΗΜΑΤΟΦΟΡΟΣ ΜΕΣΟ-ΩΚΕΑΝΙΑ ΡΑΧΗ

Σύγχρονα παραδείγματα: Middle Valley, N. Juan de Fuca; Escanaba Trough, S. Gorda Ridge. Παλαιότερης γεωλογικής περιόδου ανάλογα: Τύπου Besshi.,π.χ. Besshi, Sazare, Hitachi (Ιαπωνία), Windy Craggy (Καναδάς), Otjihase & Matchles (Ναμίμπια).

γ. ΥΠΟΘΑΛΑΣΣΙΑ ΟΡΗ

Σύγχρονα παραδείγματα: Axial, Juan de Fuca, Palinuro, Tyrrhenian Sea, East of 130 N EPR.

83

Παλαιότερης γεωλογικής περιόδου ανάλογα: Τύπος Κύπρου στους οφιολίθους του Ομάν. δ. ΟΠΙΣΘΟΤΟΞΙΟΣ – ΩΚΕΑΝΙΟΣ ΦΛΟΙΟΣ

Σύγχρονα παραδείγματα: Lau Basin, Mariana Through, Manus Basin, North Fiji Basin.

Παλαιότερης γεωλογικής περιόδου ανάλογα: Τύπου Κύπρου Noranda, Quebec, Phillippines.

Τύπου Besshi σε καλυμμένες από ιζήματα οπισθοτόξιες περιοχές.

ε. ΟΠΙΣΘΟΤΟΞΙΟΣ – ΗΠΕΙΡΩΤΙΚΟΣ ΦΛΟΙΟΣ

Σύγχρονα παραδείγματα: Jade, Okinawa Trought, Tyrrhenian Sea.

Παλαιότερης γεωλογικής περιόδου ανάλογα: Kuroko (Ιαπωνία), Bathurst New Brunswick, Rio Tinto (Ισπανία), Neves Corvo (Πορτογαλλία), Δ. Τασμανία.

ζ. ΤΕΜΑΧΙΣΜΕΝΟ ΗΠΕΙΡΩΤΙΚΟ ΠΕΡΙΘΩΡΙΟ Η΄

ΕΝΔΟΗΠΕΙΡΩΤΙΚΟΣ ΤΕΚΤΟΝΙΣΜΟΣ

Σύγχρονα παραδείγματα: Guaymas Basin, Gulf of California, Atlandis II Deep, Red Sea, W. Woodlark Basin. Παλαιότερης γεωλογικής περιόδου ανάλογα: Τύπος Sedex, π.χ. Meggen & Rammelsberg (Γερμανία), Selwyn Basin (Καναδάς), Mt Isa, McArthur River & Broken Hill (Αυστραλία) (από Χατζηκύρκου 2003).

8 Απόψεις σχετικά με τη δημιουργία των εμφανίσεων μετάλλων στην Δ. Κρήτη

Το τεκτονικό οικοδόμημα της Κρήτης που αποτελείται από επάλληλα τεκτονικά καλύμματα σχετίζεται με μια ζώνη υποβύθισης που οδήγησε σε ορογενές προσαύξησης (*Kilias et al.,* 2002).

Εικόνα 26. Σχηματική τομή που δείχνει την κινηματική κατά το τελευαταίο στάδιο της ορογενετικής διεργασίας στην περιοχή της Κρήτης (Κατά Kilia et al, 2002)

Στο τμήμα αυτό του ορογενούς τα ενυδατωμένα θαλάσσια ιζήματα και ηφαιστειακά πετρώματα έχουν προστεθεί σε ηπειρωτικά περιθώρια σε χρονικά όρια περίπου είκοσι εκατομμυρίων ετών, αφού τα παλαιότερα ιζήματα του σχετικά αυτόχθονου συστήματος του νησιού (Ομάδα των Πλακωδών Ασβεστολίθων) έχουν ηλικία Άνω Ολιγοκαινική (πριν 33 εκ.χρ.) ενώ τα ιζήματα του Νεογενούς που προέκυψαν μετά το πέρας της συμπιεστικής τεκτονικής έχουν Μειοκαινική ηλικία (13 εκ.χρ.)(*Kastens* 1991). Τα θερμικά γεγονότα που συνδέονται με την υποβύθιση επηρεάσαν την κατανομή των γεωθερμικών πεδίων στο πρίσμα προσαύξησης που δημιουργήθηκε και οδήγησαν τα υδροθερμικά ρευστά σε μετανάστευση αγνώστου κλίμακας. Εκτός όμως από αυτό το επεισόδιο δεν μπορεί κανείς να παραγνωρίσει και την ύπαρξη της Περμοτριαδικής ηφαιστειότητας η οποία λόγω της σύνδεσής της με θειούχες συγκεντρώσεις/μεταλλεύματα μπορεί είτε να συνοδεύτηκε από δημιουργία μικτών θειούχων μεταλλευμάτων μεσοωκεάνιας ράχης, είτε από την διείσυση ενός πορφύρη. Αυτό είναι αντικεικίμενο λεπτομερούς ερευνητικής προσέγγισης.

Υπάρχουν δυο ακραία μοντέλα που εξετάζονται σχετικά με τη γένεση των σιδηρομεταλλευμάτων της Κρήτης. Η πρώτη άποψη είναι του Παπασταματίου (1952) που υποστηρίζει ότι τα μεταλλεύματα σιδήρου είναι υδροθερμικής προέλευσης και ότι αυτή συνδέεται γενετικά με τα εκρηξιγενή του κρυσταλλοσχιστώδους. Οι εμφανίσεις αμίαντου και τάλκη συνδέονται επίσης με βασικά εκρηξιγενή πετρώματα εκ των οποίων προκύπτουν τα παραπάνω ορυκτά μέσω χημικής αποσάθρωσης. Η μεταλλογένεια όμως συνδέεται και με την τεκτονική της περιοχής. Τα μεταλλεύματα σιδήρου και τα θειούχα πληρούν δείγματα εντός του κρυσταλλοσχιστώδους ή σχηματίζουν κοίτασμα κοντά τους.

Από την άλλη, ένας άλλος ερευνητής, ο *Seidel* (2003) υποστηρίζει ότι οξείδια σιδήρου βρίσκονται σε κατακερματισμένα στρώματα φυλλιτών, χαλαζιτών και μαρμάρων πάχους δεκάδων μέτρων. Γεμίζουν τις διακλάσεις και τα κενά καθώς και εμποτίζουν μερικώς τα μάρμαρα. Από την έρευνά του συμπεραίνει ότι τα οξείδια αυτά προέρχονται από ρευστά που κρυσταλλώθηκαν σε χαμηλές θερμοκρασίες (31°–40°C) και μικρά βάθη (~1 km), ενώ αποτέθηκαν μετά την άνοδο στην επιφάνεια του μεταμορφωμένου συμπλέγματος.

Τέλος παρατίθεται και μια τρίτη άποψη (Σκαρπέλης 1982), περισσότερο υποστηρικτική σε αυτή του Παπασταματίου, που υποστηρίζει ότι τα μεταλλεύματα της ενότητας φυλλιτώνχαλαζιτών στην Κρήτη, αναπτύσσονται σε ανάλογους λιθολογικούς σχηματισμούς όπως στην ενότητα Άρνας Ταυγέτου και αντιπροσωπεύουν ζώνες οξείδωσης χαλκούχου σιδηροπυρίτη. Υποστηρίζεται ότι τα μεταλλεύματα οφείλουν τη γένεση τους στην υδροθερμική εξαλλοίωση στο υποθαλάσσιο περιβάλλον των βασαλτών και στη μεταφορά και απόθεση των μετάλλων στον πυθμένα της λεκάνης ιζηματογένεσης των τεφρών πηλιτών σε ανοξικές συνθήκες.

Στα ανωτέρω δεν μπορεί να παραγνωριστεί το γεγονός ότι από ιστορικά μεταλλεία χαλκού στην περιοχή έχουν εξορυχθεί 30 τόννοι χαλκούχου μεταλλεύματος καθώς επίσης και το γεγονός ότι σε δείγματα σιδηρομεταλλευμάτων από τα ορυχεία Αβέρωφ έχουν βρεθεί άργυρος και χρυσός (*Markopoulos et al.,* 2010).

9. Συμπεράσματα

Οι λιθολογικοί σχηματισμοί στην ευρύτερη περιοχή της Δ. Κρήτης που συνδέονται πρωτογενώς με την ύπαρξη μεταλλοφοριών είναι οι μεταμορφωμένοι βασάλτες της Περμοτριαδικής ηφαιστειότητας εντός του Φυλλιτικού Καλύμματος. Τα αρχικά ανθρακικά των διαφόρων ενοτήτων είναι σε μεγάλο βαθμό εξαλλοιωμένα και μπορούν να χαρακτηριστούν ως ραουβάκες.

Το χρώμα των σιδηρομεταλλευμάτων ποικίλλει από το τυπικό ωχρό-καφέ σε σκούρο καφέγκρι ή σχεδόν μαύρο χρώμα ανάλογα με τις διαφορετικές αναλογίες υδροξειδίων σιδήρου και τετρασθενών οξειδίων του μαγγανίου που περιέχει. Το ωχρό-καφέ μετάλλευμα αποτελείται από γκαιτίτη, ενώ το σκούρο καφέ έως μαύρο μετάλλευμα είναι πλούσιο σε οξείδια του μαγγανίου. Ο γκαιτίτης εμφανίζεται ως εύθρυπτο και πορώδες μετάλλευμα, καθώς και σε μορφή σκληρών κρούστων. Τα πλούσια σε μαγγάνιο μεταλλεύματα αποτελούνται από ορυκτά της ομάδας κρυπτομέλανα.

Η χημική ανάλυση των δειγμάτων παρουσιάζει μια ποικιλότροπη κατανομή των οξειδίων και των ιχνοστοιχείων από δείγμα σε δείγμα. Ποιο συγκεκριμένα, πολλά δείγματα είναι πλούσια σε υδροξείδια του σιδήρου. Η μεταλλοφορία μαγγανίου είναι πολύ μικρή, και συνήθως υπό μορφή κρυπτομέλανα. Επίσης παρατηρείται ότι κάποια από τα δείγματα περιέχουν ίχνη ή και σταθμητή ποσότητα μετάλλων όπως Cu, Ni, Co, Zn, Cr. Ίχνη χαλκού βρέθηκαν σε πολλά δείγματα με την μεγαλύτερη συγκέντρωση στα ΣK1(240ppm), ΣKΦ7(752ppm). Το νικέλιο είναι σε ποσότητες από 0-302ppm, το χρώμιο από 0-246ppm το κοβάλτιο από 0-239ppm ενώ ο ψευδάργυρος από 0-3759ppm με τη μεγαλύτερη συγκέντρωση να την έχει το NOP4. Βάριο υπάρχει σε όλα τα δείγματα εκτός από το ΣKΦ1 και γενικά έχει περιεκτικότητες από 0-1318ppm. Μόλυβδος σε πολύ μικρότερες ποσότητες και εμφάνιση έστω και μικροιχνών σε λιγότερα δείγματα από 0-188ppm. Απειροελάχιστες εμφανίσεις ιχνών αρσενικού από 0-76ppm.

Σε αντίθεση με τα συμπεράσματα των Seidel et al (2005) οξείδια του σιδήρου δεν εμφανίζονται μόνο εντός κατακερματισμένων στρωμάτων φυλλιτών, χαλαζιτών και μαρμάρων μεγάλου πάχους αλλά έχουν «εμποτίσει» πάγκους μεταψαμμιτών του Φυλλιτικού Καλύμματος, οι οποίοι παρουσιάζουν και μεγάλη επιφανειακή εξάπλωση, δεν είναι κατακερματισμένοι και εμφανίζονται σε διαφορετικές περιοχές εντός της ευρύτερης περιοχής μελέτης.

Εικόνα 27: Γεωτεκτονικός χάρτης της ευρύτερης περιοχής της Δ. Κρήτης και οι θέσεις των κύριων ανενεργών μεταλλείων στον Ν. Χανίων. 1: Ραβδούχα, 2:Δρακώνα, 3: Χλιαρό, Σκινέ, Φουρνέ, 4: Κακκόπετρος, 5: Καμπανού, Σκάφη.

Όπως φαίνεται και από τις θέσεις των σιδηρομεταλλευμάτων στην δυτική Κρήτη (εικόνα 27) αυτές κατανέμονται σε διαφορετικές λιθοστρωματογραφικές ενότητες: Εντός του Φυλλιτικού Καλύμματος, στην επαφή με την ενότητα του Τρυπαλίου καθώς επίσης στα Στρώματα των Ραβδούχων. Σύμφωνα όμως με τις αναλύσεις των παρόντων δειγμάτων ο κύριος όγκος των σιδηρομεταλλευμάτων σχηματίστηκε σε αντικατάσταση μαρμάρων από Fe-ούχα υδροθερμικά ρευστά, χωρίς να αποκλείεται μια επανακινητοποίηση επίσης Feούχων υδροθερμικών ρευστών χαμηλής θερμοκρασίας κατά το στάδιο των σχετικά πρόσφατων τεκτονικών επεισοδίων κατά το Νεογενές και Τεταρτογενές. Τα εντυπωσιακά χρώματα ορισμένων μεταλλικών ορυκτών που απαντώνται στην επιφάνεια ή πολύ κοντά στην επιφάνεια της γης, όπως π.χ οι ένυδρες ανθρακικές ενώσεις του χαλκού αζουρίτης και μαλαχίτης, τα οξείδια του σιδήρου γκατίτη και λειμωνίτη κ.ά, προσέλκυσαν την προσοχή του ανθρώπου από την εποχή του ορείχαλκου και χρησιμοποιήθηκαν μάλιστα απ'αυτόν σαν δείκτες στην μεταλλευτική έρευνα. Ως εκ τούτου άμεση χρήση θα μπορούσαν να έχουν τα αποτελέσματα της εργασίας αυτής στην αρχαιολογική έρευνα που διεξάγεται για δεκαετίες στην νήσο, καθώς όπως αναφέρεται σε αντίστοιχες αρχαιολογικές έρευνες λείπουν οι θέσεις προέλευσης των πρώτων υλών που θα μπορούσαν να πιστοποιήσουν μια «σημαντική πρωταρχική παραγωγή χαλκού στην Κρήτη

κατά την Πρώιμη Επ οχή του Χαλκού» (Τσέλιος 2007).

7 Βιβλιογραφικές αναφορές

- AUBOUIN, J. & DERCOURT, J. (1965): Sur la geologie de l'Egee: regard sur la Crete (Grece) -Bull. Soc. Geol. France, 7, 787-821, Paris
- CAYEUX, L. (1902): Sur la composition et l'age des terrains metamorphiques de la Crete. C. R. Acad. Sc. Paris, 134, 1116—1119, Paris.
- CREUTZBURG N. et al.: General geological map of Greece, Crete Island, Scale 1 : 200.000. Inst. Geol. Min. Res., Athens 1977.
- CREUTZBURG N. & SEIDEL, E. (1975): Zum Stand der Geologie des Praneogens auf Kreta. N. Jb. Geol. Palaont. Abh., 149 (3), 363—383, Stuttgart.
- DORNSIEPEN, U.F. & MANUTSOGLU, E. (1994): Zur Gliederung der Phyllit Decke Kretas und des Peloponnes.- Z. dt. geol. Ges., 145: 286-303.
- DORNSIEPEN U.F., MANUTSOGLU E. & MERTMANN D. (2001): *Permian Triassic paleogeography of the External Hellenides.* Palaeogeogr., Palaeoclim., Palaeoecol. 172, 327-338.
- FYTROLAKIS, N. (1967): *Ueber einen Fossilfund im Metamorphikum von Ostkreta.* Bull. geol. Soc. Greece, 7, 89—92, Athens.
- GREILING, R. (1982): The metamorphic and structural evolution of the Phyllite-Quartzite Nappe of western Crete. J. Structural Geol., 4, 291—297, Oxford.
- GREILING, R. & SKALA, W. (1979): Das tektonische Gefiige der Phyllit-Serie West-Kretas. --Geol. Rdsch., 68, 236–252, Stuttgart.
- Groves D.I., R.J. Goldfarb, M. Gebre-Mariam, S.G. Hagemann, F. Robert (1998): Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13, 1998 7–27.
- JACOBSHAGEN, V., DURR, S., KOCKEL, F., KOPP, K. O., & KOWALCZYK, S., with contrib. of BERCKHEIMER, H., & BUTTNER, D. (1978): *Structure and geodynamic evolution of the Aegean region.* In: CLOSS, H., ROEDER, D., και SCHMIDT, K. (eds.), Alps, Apen¬nines, Hellenides, Inter-Union Commission on Geodynamics Sci. Report No. 38, 537—564, Stuttgart.

- KOPP, K. O. (1978): Stratigraphic and Tectonic Sequence on Crete. In: CLOSS, H., ROEDER,
 D., και SCHMIDT, K. (eds.), Alps, Apennines, Hellenides, Inter-Union Commission on Geodynamics Sci. Report No. 38, 439—442, Stuttgart.
- KOPP, K. O. & OTT, E. (1977): Spezialkartierungen im Umkreis neuer Fossilfunde in Trypaliund Tripolitza-Kalken Westkretas. — N. Jb. Geol. Palaont. Mh. 1977, 217—238, Stuttgart.
- KRAHL, J., EBERLE, P., EICKHOFF, J., FORSTER, O., & KOZUR, H. (1982): Biostratigraphical Investigations in the Phyllite-Quartzite Group on Crete Island, Greece. - International Symposium on the Hellenic Arc and Trench (H. E. A. T.), Proc. I, 306—323, Athens.
- KRAHL, J., KAUFFMANN, G., KOZUR, H., MÖLLER, I., RICHTER, D., FÖRSTER, O., HEINRITZI, F.
 & DORNSIEPEN, U.F. (1986): Neue Fossilfunde in der Phyllit-Gruppe Ostkretas (Griechenland).- Z. dt. geol. Ges., 137: 523-536.
- KRAHL, J., RICHTER, D., FÖRSTER, O., KOZUR, H. & HALL, R. (1988): Zur Stellung der Talea Ori im Bau Bau des kretischen Deckenstapels (Griechenland).- Z. dt. geol. Ges., 139: 191-227.
- LIMING, L. (2015): *Mineralogy, Processing and Enviromental Sustainability* Woodhead Publishing Series in Metals and Surface Engineering: Number 66.
- MARKOPOULOS TH., MANUTSOGLU E., ALEVIZOS G. & REPOUSKOU E. (2010): Traces of free gold and silver within ferruginous stockworks of the Phyllite-Quartzite-Unit of West Crete, Greece. –Proceedings of the 88th Annual Meeting of the German Mineralogical Society, 334, Münster.
- PAPASTAMATIOU, J., & REICHEL, M. (1956): Sur Fage des Phyllades de File de Crete. Ecl. Geol. Helv., 49, 147—149, Basel.
- RAULIN Y. (1869): Description physique de l'ile de Crete Actes Soc. Linn. Bordeaux, T24, p.338-748, Atlas, 21 plat., Paris
- SEIDEL, E. (1978): Zur Petrologie der Phyllit-Quarzit-Serie Kretas. Habilitationsschrift Univ. Braunschweig, 145 S., Braunschweig.
- SEIDEL, E., KREUZER, H. & HARRE, W. (1982): A Late Oligocene/Early Miocene high pressure belt in the External Hellenides.- Geol. Jb., 23: 165-206.
- SEIDEL, M. (2003): Tectono-sedimentary evolution of middle Miocene supra-detachment basins (western Crete, Greece), Köln.
- SEIDEL, M., SEIDEL, E. AND STOECKHERT, B., (2007): Tectono-sedimentary evolution of lower to middle Miocene half-graben basins related to an extensional detachment fault (western Crete, Greece). Terra Nova, 19, 39–47.
- STAMBOLIADIS E., PANTELAKI O. & MANUTSOGLU E. (2004): Removal of arsenic from water solutions by naturally occurring limonite. - Proceedings of the 1st International Conference "Advances in Mineral Resources Management and Environmental Geotechnology", (AMIREG 2004), 7 – 9 June 2004, Hania, Crete, pages 583 -587.
- TATARIS A.A., & CHRISTODOULOU G. (1965): *The geological structure of the Levka Mountains (Western Crete).* Bull geol. Soc. Greece, **6**, 319-347. Athens.
- WACHENDORF, H., GRALLA, P., KOLL, J., και SCHULZE, I.(1980): Geodynamik des mittelkretischen Deckenstapels (nordliches Dikti-Gebirge). —Geotekt. Forsch., 59, 1—72, Stuttgart,.
- WURM, A. (1950): Zur Kenntnis des Metamorphikums der Insel Kreta. N. Jb. Geol. Palaont. Mh., 1950, 206—239, Stuttgart.

- ΑΛΕΒΙΖΟΣ, Γ., ΣΤΡΑΤΑΚΗΣ, Α. & ΠΕΤΡΑΚΗΣ, Ε.(2010): Ορυκτολογική εξέταση και δοκιμές εμπλουτισμού του σιδηρομεταλλεύματος της περιοχής άνω Βαλσαμόνερο Ρεθύμνου, Ορυκτός Πλούτος 155, 33-46.
- ΔΗΜΟΠΟΥΛΟΣ Ν. (2012): Κατανομή χρυσού σε πετρώματα νεογενούς και προνεογενούς ηλικίας της Δυτικής Κρήτης, Αδημοσίευτη μεταπτυχιακή εργασία Τμήματος ΜΗΧΟΠ, Πολυτεχνείο Κρήτης, 178 σελ.
- ΕΘΝΙΚΟ ΙΔΡΥΜΑ ΓΕΩΛΟΓΙΚΩΝ ΚΑΙ ΜΕΤΑΛΛΕΥΤΙΚΩΝ ΕΡΕΥΝΩΝ (ΕΘΙΓΜΕ) (1973): Επεξηγηματικό τεύχος του μεταλλογενετικού χάρτη της Ελλάδος, Αθήνα, Έκδοση Ι.Γ.Ε.Υ 1965.
- ΖΑΧΟΣ Κ. ΚΑΙ ΜΑΡΑΤΟΣ Γ. (1965): Μεταλλογενετικός χάρτης της Ελλάδος σε κλίμακα 1:1.000.000, Αθήνα.
- ΜΑΝΟΥΤΣΟΓΛΟΥ Ε. (2008): Αδημοσίευτες Σημειώσεις Σεμιναρίου Γεωλογίας της Κρήτης, της Ερευνητικής Μονάδας Γεωλογίας της Σχολής Μηχανικών Ορυκτών Πόρων του Πολυτεχνείου Κρήτης, 55 σελ..
- ΜΑΝΟΥΤΣΟΓΛΟΥ Ε. (2010): Η Αποτύπωση της Εξελικτικής Γεωλογικής Σκέψης σε Γεωλογικούς Χάρτες - Πρακτικά 11ου Εθνικού Συνεδρίου Χαρτογραφίας "Η Χαρτογραφία του Ελληνικού Κράτους", 8-11/12/2010, σελ. 91-110.
- ΜΕΛΙΔΩΝΗΣ, Γ. Ν. (1992): Γενική κοιτασματολογία, Πανεπιστήμιο Πατρών, Έκδοση Διδακτικών βιβλίων, Αθήνα.
- ΠΑΠΑΣΤΑΜΑΤΙΟΥ, Ι. (1952): Ο ορυκτός πλούτος της Κρήτης, Αδημοσίευτη έκθεση Νο 256, ΙΓΕΥ, Αθήνα.
- ΣΠΑΝΑΚΗΣ Γ. (2015): Μελέτη των ιστορικών μεταλλευτικών δραστηριοτήτων στην Δυτική Κρήτη, Αδημοσίευτη διπλωματική εργασίς Τμήματος ΜΗΧΟ, Πολυτεχνείο Κρήτης, 77 σελ.
- ΤΡΙΧΟΣ Δ. (2011): Ορυκτολογική μελέτη και δοκιμές εμπλουτισμού σιδηρομεταλλεύματος από την περιοχή Σκινέ Ν. Χανίων, Αδημοσίευτη διπλωματική εργασία Τμήματος ΜΗΧΟΠ, Πολυτεχνείο Κρήτης, 113 σελ.
- ΤΣΕΛΙΟΣ, Τ. (2007): Η μεταλλουργία του χαλκού στην προανακτορική Κρήτη. Τεχνολογικές εξελίξεις και κοινωνικες όψεις, Διδακτορική Διατριβή, Τμήμα Ιστορίας-Αρχαιολογίας. Πανεπιστήμιο Κρήτης.
- ΧΑΡΑΛΑΜΠΙΔΗΣ, Π. Γ. (2005): Κοιτασματαλογία για μηχανικούς γεωτεχνολογικής κατεύθυνσης των τεχνολογικών εκπαιδευτικών ιδρυμάτων, Κοζάνη, Εκδόσεις +γραμμα.
- ΧΑΤΖΗΚΥΡΚΟΥ Α.Δ. (2003): Μελέτη θειούχου μεταλλοφορίας περιοχής Επτάδενδρου και Ράχης στην Ανατολική Ροδόπη, Αδημοσίευτη διδακτορική διατριβή Γεωλογικού Τνήματος ΑΠΘ, 233 σελ.
- [1] <u>http://www.infomine.com/investment/metal-prices/iron-ore-fines/all/</u>
- [2] <u>http://people.uncw.edu/dockal/gly312/ironandphos/ironandphos.htm</u>)
- [3]http://www.eyploia.gr/index.php?option=com_content&view=article&id=284:esoriktikes

-ergasies&catid=78

Παράρτημα Ι Φωτογραφίες από εργασίες πεδίου

ΣΚΦ4: Πτυχωμένη λειμωνιτική φλέβα διαφόρου πάχους

Θέση:

N: 35° 18' 831" Ε: 23° 47' 325", Η= 452 μ.

ΣΚΦ5: Εμφάνιση οξειδωμένου χαλαζιακού πάγκου(40cm)

Θέση:

N: 35° 17' 002" Ε: 23° 47' 266" Η=479 μ.

ΣΚΦ6: Απέναντι από το παλιό ορυχείο χαλκού. Εμφάνιση χαλαζιτών με επιφανειακές επιστρώσεις χαλκούχων οξειδίων.

Θέση:

N: 35° 18' 980" Ε: 23° 47' 428" Η= 430 μ.

ΣΚΦ7: Ίδια θέση με το ΣΚΦ6, δείγμα λειμωνίτη.

ΣΚΦ8: κατακερματισμένοι χαλαζιτικοί πάγκοι με έντονα επιφανειακά οξείδια σιδήρου και χαλκού

Θέση:

N: 35° 18' 849" Ε: 23° 47' 554" Η=389 μ.

ΣΚΦ9:Μετά την διασταύρωση προς Σκάφη ανεβαίνουμε την μικρή διακλάδωση δεξιά. Εμφάνιση εμποτισμένου μεταψαμμίτη

Θέση:

N: 039007775 E: 0048927 H=463m.

ΣΚΦ10: Πάνω στη στροφή στη δεύτερη θέση, πάρα πολλές και εμφανής επιφανειακές εξαλλοιώσεις με χαρακτηριστικά χαλκούχα.

Θέση: Ν: 03907820 Ε: 00480897, H=481m.

ΣΚΦ11: στην ίδια θέση με το ΣΚΦ10 παρουσιάζονται στρωματωμένες φλέβες οξειδίων

ΣΚΦ12: στην ίδια θέση συγκέντρωση λειμωνίτη σε στρώσεις

ΣΚΦ13: Εμποτισμένο λατυποπαγές.

Θέση:

N: 03907748 E: 00480922 H=448m.

ΣΚΦ14: Μετά το χωριό Αργαστήρι υπάρχει μια μεγάλη εμφάνιση φυλλιτών χαλαζιτών με εμφανείς θέσεις εμποτισμού από την μια πλευρά και από την άλλη με λειμωνίτες μέσα σε σχιστόλιθους(φλέβες πάνω από 10cm) Θέση: N: 03908479 E:00480922 H=448m

ΣΚΦ16: Προς χωριό Αργαστήρι ενποτισμένη φλέβα με σιδηροξείδια μερικών cm.

Θέση:

N: 03908157 E: 00481254 H=607m.

Παράρτημα ΙΙ Φωτογραφίες στιλπνών τομών

Οι παρακάτω μικροσκοπικές αναλύσεις είναι σε //Nicolls.

Εικόνα 28: δείγμα ΚΑΡ1: Το μεγαλύτερο μέρος του δείγματος αποτελείται από γκαιτίτη.

Εικόνα 29: δείγμα ΚΑΡ1': δευτερογενούς προέλευσης μεταλλοφορία γκαιτίτη που συνοδεύεται από κρυπτομέλανα.

Εικόνα 30: δείγμα ΚΑΡ2: αντικατάσταση του συνδετικού υλικού χαλαζία μέσω σιδηρούχων μεταλλευμάτων υπό μορφή γκαιτίτη.

Εικόνα 31: δείγμα ΚΑΡ2': συγκεντρωτικές επιφλοιώσεις γκαιτίτη κατά μήκος διάκενων

Εικόνα 32: δείγμα ΚΑΡ2'': μεταλλοφορία γκαιτίτη σε μορφή φλέβας.

Εικόνα 33: δείγμα ΣΚ1: μερική αντικατάσταση συνδετικού υλικού μεταξύ των κόκκων από σιδηρομετάλλευμα υπό μορφή γκαιτίτη.

Εικόνα 34: δείγμα ΣΚ1': μερική αντικατάσταση συνδετικού υλικού μεταξύ των κόκκων από σιδηρομετάλλευμα υπό μορφή γκαιτίτη.

Εικόνα 35: δείγμα ΚΑΚ1: ολική αντικατάσταση συνδετικού υλικού μεταξύ των κόκκων από σιδηρομετάλλευμα υπό μορφή γκαιτίτη.

Εικόνα 36: δείγμα ΚΑΚ1': ζωνώδης εναλλαγή γκαιτίτη, κρυπτομέλανα.

Εικόνα 37: δείγμα ΚΑΚ1'': εναλλαγή σιδηρούχων και μαγγανιούχων ορυκτών.

Εικόνα 38: δείγμα ΚΑΚ2: μερική αφυδάτωση γκαιτίτη σε αιματίτη.

Εικόνα 39: δείγμα ΚΑΚ2':μερική αφυδάτωση γκαιτίτη σε αιματίτη.

Εικόνα 40: δείγμα ΚΑΚ2'': σιδηρούχος και μαγγανιούχος μεταλλοφορία.

Εικόνα 41: δείγμα ΣΚ2: συγκεντρωτικές επιφλοιώσεις γκαιτίτη.

Εικόνα 42: δείγμα ΣΚ2': εμποτισμός σιδηρούχων διαλυμάτων υπό μορφή γκαιτίτη μικροκατακλαστικών ζωνών.

Εικόνα 43: δείγμα ΣΚ2": μεταλλοφορία γκαιτίτη.

Εικόνα 44: δείγμα ΔΡ1: γκαιτίτης.

Εικόνα 45: δείγμα ΔΡ1': γκαιτίτης και χαλαζίας(τα φύλλα είναι μαρμαρυγίας).

Εικόνα 46: δείγμα ΔΡ1'': γκαιτίτης και χαλαζίας.

Εικόνα 47: δείγμα ΔΡ2: εναλλαγές κρυπτομέλανα- γκαιτίτη.

Εικόνα 48: δείγμα ΔΡ2': γκαιτίτης και κρυπτομέλανας.

Εικόνα 49: δείγμα ΔΡ2'': γκαιτίτης και κρυπτομέλανας.

Παράρτημα ΙΙΙ - Ακτινοδιαγράμματα

ΔP2

b(DR2 - Hei: d3160/15.13/m - 1ype: 211/m 10/cme - start_1000 - Line 3000 - beta 90.000 - gamma 90.000 - yeta 90.000 - gamma 90.000 - Primitive - Pbmm (6 ■ 00.029-0713 (1) - Goethita - Fe+30(OH) - Y: 423.67 % - d x by: 1. - WL: 1.5406 - Orthorhombic - a 4.60800 - b 9.95600 - c 3.02150 - alpha 90.000 - beta 90.000 - gamma 90.000 - Primitive - Pbmm (6 ■ 00.029-0713 (1) - Goethita - Fe+30(OH) - Y: 423.67 % - d x by: 1. - WL: 1.5406 - Orthorhombic - a 4.60800 - b 9.95600 - c 3.02150 - alpha 90.000 - beta 90.000 - primitive - P2221 (154) -■ 00.0331 (10) - Goethita - Fe+30(OH) - Y: 106.08 % - d x by: 1. - WL: 1.5406 - Monoclinic - a 5.21080 - b 9.05990 - c 20.02100 - alpha 90.000 - beta 95.760 - gamma 90.000 - Bas ■ 00-0312 (10) - Corptomelane - KMn8O18 - Y: 70.16 % - d x by: 1. - WL: 1.5406 - Tetragonal - a 9.84000 - b 9.84000 - c 2.87000 - alpha 90.000 - beta 90.000 - 1 - 277.889 - F11=

109

🖾 FLO1 - File: d8160705 raw - Type: 2Th/Th locked - Start: 4.000 ° - End: 69.998 ° - Step: 0.019 ° - Step time: 31.8 s - Temp.: 25 °C (Room) - Time Started: 22 s - 2-Theta: 4.000 ° - Theta: 2.000 ° - Chi:

 WLPLO1 - File: d8160705 raw - Type:: 2Th/Th locked - Start: 4.000 * - End: 69.988 * Step: 0.019 * - Step ime: 31.8 s - Temp:: 25 *C (Room) - Time Started: 22 s - 2-Theta: 4.000 * - Theta: 2.000 * - Chi: Operations: Import

 Operations: Import
 Outartz, syn - SiO2 - Y: 152.28 % - d x by: 1. - WL: 1.5406 - Hexagonal - a 4.91340 - b 5.40530 - alpha 90.000 - beta 90.000 - gamma 90.000 - Frimitive - P3221 (154) - d 10-187: 0900 - cl 13: 36000 cl - gamma 90.000 - gamma 90.000 - Base-cee

 I 01-087: 0900 (C): Paragondo (C): Para

KAP1

Interpret 2 - 201-071-0053 (C) - Pyrite - FeS2 - Y: 90.94 % - d x by: 1. - WL: 1.5406 - Cubic - a 5.42810 - b 5. KAP1 - File: d8160711.raw - Type: 2Th/Th locked - Start: 4.000 ° - End: 69.998 ° - Step: 0.019 °

 MkAP1 - File: d8160711.raw - 1ype: 21n/1 n tocke0 - Stell: 4.000
 -Link: 09.800
 -Ouep: 0.0.10

 Operations: Import
 00-033-1161 (D) - Quartz, syn - SiO2 - Y: 298.03 % - d x by: 1. - WL: 1.5406 - Hexagonal - a 4.9

 00-032-1161 (D) - Quartz, syn - SiO2 - Y: 298.03 % - d x by: 1. - WL: 1.5406 - Hexagonal - a 4.9

 00-032-1161 (D) - Quartz, syn - SiO2 - Y: 298.03 % - d x by: 1. - WL: 1.5406 - Intorhombic - H01-083-1768 (C) - Taic - Mg3(OH)2Si4010 - Y: 210.49% - d x by: 1. - WL: 1.5406 - Triclinic - a 101-072-1503 (C) - Muscowite - KAI2(Si3A)(D10(OH)2 - Y: 77.52 % - d x by: 1. - WL: 1.5406 - No

 00-002-0567 (D) - Pyrolusite - MnO2 - Y: 99.45 % - d x by: 1. - WL: 1.5406 - Tetragonal - a 4.38

 00-033-0664 (^) - Hematite, syn - Fe2O3 - Y: 115.22 % - d x by: 1. - WL: 1.5406 - Rhombo.H.ax

KAP2

 Quevaluation
 Provide and the standard of the st

KK1 - File: d8160713.raw - Type: 2Th/Th locked - Start: 4.000 ° - End: 69.998 ° - Step: 0.019 ° - Step time: 31.8 s - Temp.: 25 °C (Room) - Time Started: 21 s - 2-Theta: 4.000 ° - Theta: 2.000 ° - Chi:

Deparations: Import

Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparations: Import
Deparation: Import
Deparations: Import
Deparations: Import
Depa

KK1

🔣 KK2 - File: d8160712.raw - Type: 2Th/Th locked - Start: 4.000 ° - End: 69.998 ° - Step: 0.019 ° - Step time: 31.8 s - Temp.: 25 °C (Room) - Time Started: 22 s - 2-Theta: 4.000 ° - Theta: 2.000 ° - Chi:

 Construction
 <t

Cuprofor The Constraint "type: International Cuproformation Constraint" type: International Cuproformation Cup

NOP3

NOP4

🖾 NOP4 - File: d8160708.raw - Type: 2Th/Th locked - Start: 4.000 ° - End: 69.998 ° - Step: 0.019 ° - Step time: 31.8 s - Temp.: 25 °C (Room) - Time Started: 21 s - 2-Theta: 4.000 ° - Theta: 2.000 ° - Chi

 EMOUP4 - File: 00 100/100 faw - 1ype: 2110 111 00xe0 - Statt + 0x00 - Elnt, 05:800 - Statt + 0x00 - Statt + 0x000 - Stat

😡 PLA11 - File: d8160752.raw - Type: 2Th/Th locked - Start: 4.000 ° - End: 69.998 ° - Step: 0.019 ° - Step time: 31.8 s - Temp.: 25 °C (Room) - Time Started: 21 s - 2-Theta: 4.000 ° - Theta: 2.000 ° - Ch

 Wg/P-A11 - File: 08160/752/taw - 1ype: 2110 / In locked - 5tart: 4.000 - Ente: 95.996 - Step: UU19 - St

PLA16

Longer
 Longe

Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Control
 Contrel
 Control
 Control
 Control
 Control
 Control

SIR5

M_SK1 - Fle: d8160709.raw - Type: 2Th/Th locked - Start: 4.000 ° - End: 69.998 ° - Step: 0.019 ° - Step: time: 31.8 s - Temp: 25 °C (Room) - Time Started: 22 s - 2-Theta: 4.000 ° - Theta: 2.000 ° - Ch: Operations: Import
 D0-033-1161 (D) - Quartz, syn - SiO2 - Y: 181.81 % - d x by: 1. - WL: 1.5406 - Hexagonal - a 4.91340 - b 4.91340 - c 5.40530 - alpha 90.000 - beta 90.000 - gamma 120.000 - Primitive - P3221 (154) -
 D0-033-1161 (D) - Quartz, syn - SiO2 - Y: 181.81 % - d x by: 1. - WL: 1.5406 - Hexagonal - a 4.91340 - c 5.40530 - alpha 90.000 - beta 90.000 - gamma 120.000 - Primitive - P3221 (154) -
 D0-033-1161 (D) - Quartz, syn - SiO2 - Y: 181.81 % - d x by: 1. - WL: 1.5406 - Othorhombic - a 4.60800 - b 9.95600 - c 3.02150 - alpha 90.000 - beta 90.000 - gamma 90.000 - Primitive - P50m (6 a) 01072-1503 (C) - Muscovin E 4/32(SiAU) (Ol(PH) - Y: 34.52 % - d x by: 1. - WL: 1.5406 - Monoclinic - a 5.10980 - b 9.25600 - c 20.1560 - alpha 90.000 - beta 90.000 - gamma 90.000 - Base-cent
 00-033-0664 (*) - Hematite, syn - Fe2O3 - Y: 25.23 % - d x by: 1. - WL: 1.5406 - Rhombo.H.axes - a 5.03560 - b 5.03560 - c 13.74890 - alpha 90.000 - beta 90.000 - gamma 120.000 - Primitive - R-3C

 MSIR5
 - File: 08/160/704.raw - Type: 21h/1h locked - Start: 4.000 ° - Ind: 69.998 ° - Step: 0.019 ° - Step time: 31.8 s - Temp:: 25 °C (Room) - Time Started: 25 s - 2-Theta: 4.000 ° - Theta: 2.000 ° - Ch:

 Operations: Import
 • 00-033-1161 (D) - Quartz, syn - SiO2 - Y: 97.83 % - d x by: 1. - WL: 1.5406 - Hexagonal - a 4.91340 - b 4.91340 - c 5.40530 - alpha 90.000 - beta 90.000 - gamma 120.000 - Primitive - P3221 (154)

 • 00-025-0713 (I) - Goethite - Fe+3O(OH) - Y: 9.26 % - d x by: 1. - WL: 1.5406 - Othorhormbic - a 4.60600 - b 9.95600 - c 3.02150 - alpha 90.000 - beta 90.000 - gamma 90.000 - Primitive - P3221 (154)

 • 00-00566 (1) - Calcitie, syn - CaCC3 - Y: 1.117 % - d x by: 1. - WL: 1.5406 - RhomboH.axes - a 4.99800 - b 1.06200 - alpha 90.000 - beta 90.000 - gamma 90.000 - Primitive - R3c (14) - 100-000 - 000 -

🖾 SK2 - File: d8160710.raw - Type: 2Th/Th locked - Start: 4.000 * - End: 69.998 * - Step: 0.019 * - Step time: 31.8 s - Temp.: 25 *C (Room) - Time Started: 22 s - 2-Theta: 4.000 * - Theta: 2.000 * - Chi:

 MSR2 - File: d8160710.raw - Type: 2ThTh locked - Start: 4.000 ° - End: 69.998 ° - Step: 0.019 ° - Step time: 31.8 s - Temp.: 25 °C (Room) - Time Started: 22 s - 2-Theta: 4.000 ° - Theta: 2.000 ° - Chi:

 Operations: Import
 Import - Started: 22 s - 2Thth locked - Start: 4.000 ° - Chi:
 - 0.019 ° - Step: 1.019 ° - Step: 1.019 ° - Step: 1.019 ° - Step: 1.019 ° - Step time: 31.8 s - Temp.: 25 °C (Room) - Time Started: 22 s - 2-Theta: 4.000 ° - Theta: 2.000 ° - Chi:

 Operations: Import
 Import - Started: 22 s - 2ThtTh locked - Start: 4.000 ° - Intel: 1.5406 - Hexagonal - a 4.91340 - b 4.91340 - c 5.40530 - alpha 90.000 - beta 90.000 - gamma 120.000 - Primitive - P3221 (154) - 30028-0713 (I) - Goehilte - Fe+3O(CH) - Y: 81.22 % - d x by: 1. - WL: 1.5406 - Ofteorhombic - a 4.60800 - b 9.95600 - c 3.02150 - alpha 90.000 - beta 90.000 - gamma 90.000 - Primitive - P3221 (154) - 300-033-0664 (°) - C 30.0560 (°) - 20.0560 - c 20.0560

🔣 SKF1 - File: d8160892.raw - Type: 2Th/Th locked - Start: 4.000 ° - End: 69.998 ° - Step: 0.019 ° - Step time: 31.8 s - Temp.: 25 °C (Room) - Time Started: 24 s - 2-Theta: 4.000 ° - Theta: 2.000 ° - Chi:

 Big
 Control
 Co

Concernent and a set of the set of the

ΣΚΦ3

🔣 SKF3 - File: d8160894.raw - Type: 2Th/Th locked - Start: 4.000 ° - End: 69.998 ° - Step: 0.019 ° - Step time: 31.8 s - Temp.: 25 °C (Room) - Time Started: 22 s - 2-Theta: 4.000 ° - Theta: 2.000 ° - Chi:

 WISNR 3- File: Uo 100/994.18/W = Type: 2 (11) File: Cell Control Contere Contreconte Control Contrel Control Control Contrel Contrel Co

ΣΚΦ5

🔜 SKF5 - File: d8160896.raw - Type: 2Th/Th locked - Start: 4.000 ° - End: 69.998 ° - Step: 0.019 ° - Step time: 31.8 s - Temp.: 25 °C (Room) - Time Started: 23 s - 2-Theta: 4.000 ° - Theta: 2.000 ° - Chi:

Operations: Import
 Operation: Import
 O

KF7 - File: d8160898.raw - Type: 2Th/Th locked - Start: 4.000 ° - End: 69.998 ° - Step: 0.019 ° - Step time: 31.8 s - Temp.: 25 °C (Room) - Time Started: 21 s - 2-Theta: 4.000 ° - Theta: 2.000 ° - Chi:

 Wight /* File to notoset aw
 Figure 3 - State + 4000 * Ello 45.800
 State + 400000 * Ello 45.800
 State + 40000 * Ello 45.800</

🖾 SKF8 - File: d8160899.raw - Type: 2Th/Th locked - Start: 4.000 ° - End: 69.998 ° - Step: 0.019 ° - Step time: 31.8 s - Temp.: 25 °C (Room) - Time Started: 22 s - 2-Theta: 4.000 ° - Theta: 2.000 ° - Chi:

 MSRF8 - File: d8160898 raw - 1ype:: 21h/1h locked - Start: 4.000 - Lefd: 99.986 - step:: 0.119 - step: Imme: 31.8 5 - Ten; 0.2 0 (room) - Time: Starte 4.000 - Imme: 4.000 - Imme: 20.00 - Imme: 2

ΣΚΦ9

Deparations: import

Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: import
Deparations: impo

ΣΚΦ11

🐼 SKF11 - File: d8160995.rav - Type: 2Th/Th locked - Start: 4.000 * - End: 69.998 * - Step: 0.019 * - Step time: 31.8 s - Temp.: 25 *C (Room) - Time Started: 22 s - 2-Theta: 4.000 * - Theta: 2.000 * - Ch

 WISAT1 - File: 0610095018w - 1996. 2 htt 111 October - State + 500 - etable 500 - dept. state - State + 500 - dept. state - Sta

🖾 SKF12 - File: d8160996.raw - Type: 2Th/Th locked - Start: 4.000 * - End: 69.998 * - Step: 0.019 * - Step time: 31.8 s - Temp.: 25 *C (Room) - Time Started: 22 s - 2-Theta: 4.000 * - Theta: 2.000 * - Ch
 WSKF12 - File: (8160996 raw - Type: 21h/1h locked - Statt: 4.000 - End: 99.990 - Step. 0.019 - Step. 0.01

🔣 SKF13 - File: d8160997.raw - Type: 2Th/Th locked - Start: 4.000 * - End: 69.998 * - Step: 0.019 * - Step time: 31.8 s - Temp.: 25 *C (Room) - Time Started: 22 s - 2-Theta: 4.000 * - Theta: 2.000 * - Ch Deparations: Import
 Deparation: Import

bLlSKF14 - File: d8160998.raw - Type: 2Th/Th locked - Start: 4.000 * - End: 69.998 * - Step: 0.019 * . Step time: 31.8 s - Temp:: 25 °C (Room) - Time Started: 25 s - 2-Theta: 4.000 * . Theta: 2.000 * . Ch Operations: Import ● 00-033-1161 (D) - Quartz, syn - SiO2 - Y: 89.19 % - d x by: 1. - WL: 1.5406 - Hexagonal - a 4.91340 - c 5.40530 - alpha 90.000 - beta 90.000 - gamma 120.000 - Primitive - P3221 (154) -● 1.0966-1385 (C) - Muscovite 2 ITM1 RG - K0.86A11.94(AU.9655i2.895010)((OH)).744F0.256) - Y: 24.02 % - d x by: 1. - WL: 1.5406 - Monoclinic - a 5.17650 - b 8.98720 - c 20.07200 - alpha 90.000 = 40.0029.0713 (I) - Goethie - Fer-30(CH) - Y: 30.05 % - d x by: 1. - VL: 1.5406 - Orthorhombic - a 4.69200 - b 9.95600 - c: 3.02750 - b 8.98720 - c 20.07200 - Pimmi (62) = 40.0929.0713 (I) - Goethie - Fer-30(CH) - Y: 30.05 % - d x by: 1. - VL: 1.5406 - Orthorhombic - a 4.69200 - b 9.95600 - c: 3.02750 - b 8.98720 - c 20.07200 - Pimmi (62) = 0.0929.0713 (I) - Goethie - Fer-30(CH) - Y: 30.05 % - d x by: 1. - VL: 1.5406 - Orthorhombic - a 4.69200 - b 9.95600 - c: 3.02750 - b 8.98720 - c 20.07200 - Pimmi (62) = 0.0929.0712 (I) - Goethie - Fer-30(CH) - Y: 30.05 % - d x by: 1. - VL: 1.5406 - Othorhombic - a 4.6920 - b 9.95600 - c: 3.02700 - b Eta 9.0000 - Pimmi (62) = 0.0929.0712 (I) - Goethie - Fer-30(CH) - Y: 1.753 % - d x by: 1. - VL: 1.5406 - Hexagonal - a 5.13200 - b 5.13200 - c 28.72000 - alpha 90.000 - pamma 120.000 - Pimi (62) = 0.0929.0712 (I) - Goethie - 0.000 - Pimi (62) - P

ΣΚΦ15

🐼 SKF15 - File: d8160999.raw - Type: 2Th/Th locked - Start: 4.000 ° - End: 69.998 ° - Step: 0.019 ° - Step time: 31.8 s - Temp.: 25 °C (Room) - Time Started: 23 s - 2-Theta: 4.000 ° - Theta: 2.000 ° - Ch

Operations: Import

Opera

🐼 SKF17 - File: d8161001.raw - Type: 2Th/Th locked - Start: 4.000 * - End: 69.998 * - Step: 0.019 * - Step time: 31.8 s - Temp.: 25 *C (Room) - Time Started: 22 s - 2-Theta: 4.000 * - Theta: 2.000 * - Ch

Operations: import

Opera

🔣 SKF18 - File: d8161002.raw - Type: 2Th/Th locked - Start: 4.000 * - End: 89.988 * - Step: 0.019 * - Step time: 31.8 s - Temp.: 25 *C (Room) - Time Started: 22 s - 2-Theta: 4.000 * - Theta: 2.000 * - Ch

 Construction
 Construction<

Constraints import
 Constraints import
 Constraints in the constraint in the constraints in the constraints in the constraints in the c

Construction
 Construction

Παράρτημα IV - Φωτογραφίες δειγμάτων

127

Παράρτημα V δεδομένα αναλύσεων EDXRF

Sample Name	SKF8	Dilution Material		
Description		Sample Mass (g)	4.0000	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	10/19/2016	
Sample Status	AXXAXXA	Date of Evaluation	10/20/2016	
-Results				

The error is the statistical error with 1 sigma confidence interval

Ζ	Symbol	Element	Norm. Int.	Concentration	Abs. Error	
11	No	Sodium	12 4544	0.076 0/	0.026 %	
10	Ma	Magnosium	2 0697		$(0.020 \ \%)$	
12		Aluminum	2.9007	< 0.0020 % 3.043 %		
10	Si	Silicon	10712 1000	10.36 %	0.007 %	
14		Dhoenhorue	81 3705	40.30 %	0.00 %	
16	r S	Sulfur	127 0872	0.04990 %	0.00003 %	
10	C	Chlorine	127.9072	0.02034 %		
10	ĸ	Potassium	115 3761	0.4828 %	0.00000 %	
20		Calcium	11 0001	0.4020 %	0.0000 %	
20	Ti	Titanium	130 0230	0.00000 %	0.00033 %	
23	V	Vanadium	0 0000	< 0.0011 %	(0.0021 %	
24	Çr.	Chromium	12 0086	0.00350 %	0.00027 %	
25	Mn	Manganese	24 6356	0.00000 %	0.00027 %	
26	Fe	Iron	39515 6267	9.668 %	0.006 %	
27	Co	Cobalt	2 8119	0.00114 %	0.00019 %	
28	Ni	Nickel	26 4606	0.00396 %	0.00019 %	
29	Cu	Conner	43 7127	0.00528 %	0.00009 %	
30	Zn	Zinc	58 6046	0.00531 %	0.00007 %	
31	Ga	Gallium	7 2052	0.00057 %	0.00007 %	
32	Ge	Germanium	0.0000	< 0.00002 %	(0,0) %	
33	Δς		83 6681	0.00000 %		
34	Se	Selenium	2 4077	0.00040 %	0.00000 %	
35	Br	Bromine	15 6112	0.00053 %	0.00002 %	
37	Rh	Rubidium	65 5601	0.00033 %	0.00002 %	
38	Sr	Strontium	98 6373	0.00179 %	0.00002 %	
39	Y	Yttrium	70,9699	0.00125 %	0.00002 %	
40	Zr	Zirconium	51 2847	0.01384 %	0.00015 %	
41	Nh	Niobium	3 1690	0.00066 %	0.00005 %	
42	Mo	Molybdenum	0,0000	< 0.00010 %	(0,0) %	
47	Aa	Silver	0 7810	< 0.00025 %	(0.0025) %	
48	Cd	Cadmium	1 7722	< 0.00020 %	$(0.000 \pm 0) \%$	
50	Sn	Tin	8 0952	0.00126 %	0.00007 %	
51	Sb	Antimony	1 2816	< 0.00030 %	(0,0) %	
52	Te	Tellurium	1.6921	< 0.00030 %	(0.0) %	
53		lodine	3.3893	0.00054 %	0.00013 %	
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %	
56	Ba	Barium	12.9764	0.00906 %	0.00064 %	
57	La	Lanthanum	2.6483	< 0.00020 %	(0.0) %	
58	Ce	Cerium	0.0000	< 0.00020 %	(0.0) %	
72	Hf	Hafnium	4.1376	0.00027 %	0.00004 %	
73	Та	Tantalum	4.7381	0.00052 %	0.00009 %	
74	W	Tungsten	1.8072	< 0.00010 %	(0.0) %	
80	Ha	Mercurv	2.9070	< 0.00007 %	(0.0) %	
81	ТĬ	Thallium	1.3317	< 0.00004 %	(0.00002) %	

Sampl Descri	e Name ption	SKF8		Date of Receipt Method	10/19/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
82 83 90 92	Pb Bi Th U	Lead Bismuth Thorium Uranium	50.0261 0.0000 1.7300 2.5325	0.00388 % < 0.00010 % < 0.00009 % < 0.00010 %	0.00010 % (0.0) % (0.00009) % (0.0) %

Sample Name Description		SKF8		Date of Receipt Method	10/19/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	13,4544	0.372 %	0.035 %
12	MaQ	Magnesium	2,9687	< 0.0034 %	(0.0) %
13	AI2O3	Aluminum	2081.0066	7.450 %	0.014 %
14	SiO2	Silicon	49742,4994	86.34 %	0.05 %
15	P205	Phosphorus	81 3795	0 1145 %	0.0015 %
16	SO3	Sulfur	127 9872	0.07076 %	0.00052 %
17	CL	Chlorine	129 9127	0.01179 %	0.00008 %
10	K20	Potassium	115 3761	0.5817 %	0.0063 %
20	CaO	Calcium	11 0901	0.00931 %	0.00054 %
22	TiO2	Titanium	130 9239	0.3781 %	0.0035 %
23	V205	Vanadium	0.0000	< 0.0020 %	(0.0020) %
20	Cr2O3	Chromium	12 0086	0.0020 %	0.00039 %
25	MnO	Manganasa	24 6356	0.00011 %	0.00056 %
20	Ee2O3	Iron	24.0000	13.82 %	0.01 %
20	1 e203	Cobalt	2 8110		0.00024 %
28	NiO	Nickel	2.0119		0.00024 /8
20		Copper	20.4000 13 7127	0.00504 %	0.00012 %
29	ZnO	Zinc	58 6046	0.00001 %	0.00011 /8
30	Ga	Callium	7 2052		0.00008 %
20	Ga	Cormonium	0.0000		(0,0) $(0,0)$ $(0,0)$
32		Arconic	0.0000		
24	A5203	Solonium	2 4077	0.00400 %	0.00007 %
25	Dr	Bromino	2.4077		0.00002 %
30		Diomine	65 5601	0.00055 %	0.00002 %
38	SrO	Strontium	03.001		0.00003 %
30	310 V	Vttrium	70 0600		0.00003 %
<u>40</u>	ı 7r∩2	Zirconium	70.9099 51 2847	0.00123 /0	0.0002 %
40		Niobium	3 1600		0.00021 /0
41	Mo	Molybdonum	0.000		(0,0) 9/
42 17		Silvor	0.0000		(0.0) %
47 18	-∆y Cd	Cadmium	1 7722	< 0.00020 %	(0.00023) %
4 0 50	SpO2	Tin	8 0052		
50	Sh205	Antimony	0.0902		(0.0) %
52	30203 To	Tollurium	1.2010		(0.0) 70
52		lodine	3 3803	0.00050 %	0.00013 %
55		Cesium	0.0000	< 0.00034 %	(0.0) %
56	Ba	Barium	12 9764		0.00064 %
57		Lanthanum	2 6/83		(0,0) %
58		Cerium	2.0400	< 0.00020 %	(0.0) %
72	Цf	Həfnium	4 1376		
72	Ta205	Tantalum	4.1370	0.00027 %	0.00004 /8
73	WO3	Tungston	1 8072		(0.0) %
20		Moroury	2 0072		(0.0) 70
00 Q1	TIY TI	Thallium	2.9070	< 0.00007 %	(0.0) /0
01 82			50 0261	> 0.00004 % ∩ ∩∩/10 %	
02 82	FUU Bi	Riemuth	0.0201		(0 0) ⁰ /-
00	DI Th	Thorium	0.0000		
90	111		1.1000		
92	U	Uranium	2.0020	< 0.00010 %	(0.0) %
		Sum of concent	ration	109.24 %	

Sum of concentration

Sample Name	SKF7	Dilution Material		
Description		Sample Mass (g)	4.0000	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	10/19/2016	
Sample Status	AXXAXXA	Date of Evaluation	10/20/2016	
-Results				

The error is the statistical error with 1 sigma confidence interval

Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error	
11	Na	Sodium	19.7731	0.677 %	0.037 %	
12	Mg	Magnesium	13.6769	0.0207 %	0.0017 %	
13	Al	Aluminum	2753.3639	6.058 %	0.009 %	
14	Si	Silicon	38533.1679	36.69 %	0.02 %	
15	Р	Phosphorus	171.0816	0.1108 %	0.0007 %	
16	S	Sulfur	146.1422	0.03598 %	0.00022 %	
17	CI	Chlorine	215.4355	0.02561 %	0.00012 %	
19	K	Potassium	174.8678	0.7792 %	0.0055 %	
20	Ca	Calcium	69.1724	0.1928 %	0.0022 %	
22	Ti	Titanium	319.2696	0.5970 %	0.0034 %	
23	V	Vanadium	0.0000	< 0.0012 %	(0.0012) %	
24	Cr	Chromium	39.3764	0.01765 %	0.00053 %	
25	Mn	Manganese	178.2404	0.07354 %	0.00074 %	
26	Fe	Iron	54941.9727	14.93 %	0.01 %	
27	Со	Cobalt	5.0326	0.00237 %	0.00032 %	
28	Ni	Nickel	94.9948	0.01899 %	0.00019 %	
29	Cu	Copper	560.2092	0.08648 %	0.00034 %	
30	Zn	Zinc	254.3923	0.02955 %	0.00017 %	
31	Ga	Gallium	8.2706	0.00077 %	0.00005 %	
32	Ge	Germanium	1.0273	0.00007 %	0.00003 %	
33	As	Arsenic	32.2956	0.00172 %	0.00004 %	
34	Se	Selenium	0.9818	< 0.00005 %	(0.00005) %	
35	Br	Bromine	8.3876	0.00037 %	0.00003 %	
37	Rb	Rubidium	84.9296	0.00223 %	0.00004 %	
38	Sr	Strontium	166.5367	0.00394 %	0.00003 %	
39	Y	Yttrium	115.8078	0.00265 %	0.00003 %	
40	Zr	Zirconium	91.9243	0.03229 %	0.00026 %	
41	Nb	Niobium	6.7097	0.00181 %	0.00008 %	
42	Мо	Molybdenum	0.0000	< 0.00010 %	(0.0) %	
47	Ag	Silver	1.5944	0.00066 %	0.00019 %	
48	Cď	Cadmium	2.2684	0.00015 %	0.00003 %	
50	Sn	Tin	6.6846	0.00108 %	0.00007 %	
51	Sb	Antimony	1.3128	< 0.00030 %	(0.0) %	
52	Те	Tellurium	0.0000	< 0.00030 %	(0.0) %	
53	1	lodine	0.0000	< 0.00030 %	(0.0) %	
55	Cs	Cesium	2.3137	0.00184 %	0.00063 %	
56	Ва	Barium	13.2736	0.01068 %	0.00068 %	
57	La	Lanthanum	0.0000	< 0.00020 %	(0.0) %	
58	Ce	Cerium	0.0000	< 0.00020 %	(0.0) %	
72	Hf	Hafnium	7.6789	< 0.00010 %	(0.0) %	
73	Та	Tantalum	6.0404	< 0.00010 %	(0.0) %	
74	W	Tunasten	3.8297	0.00029 %	0.00005 %	
80	На	Mercury	0.1105	< 0.00010 %	(0.0) %	
81	TI	Thallium	1.3654	0.00007 %	0.00003 %	

Sampl Descri	e Name ption	SKF7		Date of Receipt Method	10/19/2016 TurboQuant-Powders
Ζ	Symbol	Element	Norm. Int.	Concentration	Abs. Error
82 83 90 92	Pb Bi Th U	Lead Bismuth Thorium Uranium	10.5983 0.0000 3.0950 2.6918	0.00107 % < 0.00010 % 0.00021 % < 0.00010 %	0.00009 % (0.0) % 0.00010 % (0.0) %

Descrip	e Name otion	SKF7		Date of Receipt Method	10/19/2016 TurboQuant-Powders
Ζ	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	19,7731	0.913 %	0.050 %
12	MaQ	Magnesium	13 6769	0.0344 %	0.0028 %
13	Al2O3	Aluminum	2753.3639	11.45 %	0.02 %
14	SiO2	Silicon	38533.1679	78.50 %	0.05 %
15	P2O5	Phosphorus	171.0816	0.2539 %	0.0016 %
16	SO3	Sulfur	146.1422	0.08983 %	0.00055 %
17	CI	Chlorine	215.4355	0.02561 %	0.00012 %
19	K2O	Potassium	174.8678	0.9387 %	0.0066 %
20	CaO	Calcium	69.1724	0.2697 %	0.0031 %
22	TiO2	Titanium	319.2696	0.9960 %	0.0056 %
23	V2O5	Vanadium	0.0000	< 0.0022 %	(0.0021) %
24	Cr2O3	Chromium	39.3764	0.02580 %	0.00077 %
25	MnO	Manganese	178.2404	0.09495 %	0.00096 %
26	Fe2O3	Iron	54941.9727	21.34 %	0.01 %
27	CoO	Cobalt	5.0326	0.00301 %	0.00040 %
28	NiO	Nickel	94.9948	0.02417 %	0.00024 %
29	CuO	Copper	560.2092	0.1083 %	0.0004 %
30	ZnO	Zinc	254.3923	0.03678 %	0.00021 %
31	Ga	Gallium	8.2706	0.00077 %	0.00005 %
32	Ge	Germanium	1.0273	0.00007 %	0.00003 %
33	As2O3	Arsenic	32.2956	0.00227 %	0.00006 %
34	Se	Selenium	0.9818	< 0.00005 %	(0.00005) %
35	Br	Bromine	8.3876	0.00037 %	0.00003 %
37	Rb2O	Rubidium	84.9296	0.00244 %	0.00004 %
38	SrO	Strontium	166.5367	0.00466 %	0.00004 %
39	Υ	Yttrium	115.8078	0.00265 %	0.00003 %
40	ZrO2	Zirconium	91.9243	0.04361 %	0.00035 %
41	Nb2O5	Niobium	6.7097	0.00259 %	0.00011 %
42	Мо	Molybdenum	0.0000	< 0.00010 %	(0.0) %
47	Ag	Silver	1.5944	0.00066 %	0.00019 %
48	Cd	Cadmium	2.2684	0.00015 %	0.00003 %
50	SnO2	Tin	6.6846	0.00137 %	0.00009 %
51	Sb2O5	Antimony	1.3128	< 0.00040 %	(0.0) %
52	Те	Tellurium	0.0000	< 0.00030 %	(0.0) %
53	I	lodine	0.0000	< 0.00030 %	(0.0) %
55	Cs	Cesium	2.3137	0.00184 %	0.00063 %
56	Ba	Barium	13.2736	0.01068 %	0.00068 %
57	La	Lanthanum	0.0000	< 0.00020 %	(0.0) %
58	Ce	Cerium	0.0000	< 0.00020 %	(0.0) %
72	Hf	Hafnium	7.6789	< 0.00010 %	(0.0) %
73	Ta2O5	Tantalum	6.0404	< 0.00012 %	(0.0) %
74	WO3	Tungsten	3.8297	0.00036 %	0.00006 %
80	Hg	Mercury	0.1105	< 0.00010 %	(0.0) %
81	TI	Thallium	1.3654	0.00007 %	0.00003 %
82	PbO	Lead	10.5983	0.00115 %	0.00010 %
83	Bi	Bismuth	0.0000	< 0.00010 %	(0.0) %
90	Th	Thorium	3.0950	0.00021 %	0.00010 %
92	U	Uranium	2.6918	< 0.00010 %	(0.0) %

Sum of concentration

115.18 %

Sample Name	SKF6	Dilution Material		
Description		Sample Mass (g)	4.0000	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	10/19/2016	
Sample Status	AXXAXXA	Date of Evaluation	10/20/2016	
-Results				

The error is the statistical error with 1 sigma confidence interval

Z	Symbol	Element	Norm. Int.	Concentratio	on	Abs. Err	or
	N1-	O a alla saa	44 4074	0.470	0/	0.000	0/
11	Na	Soaium	11.4374	0.172	% 0/	0.020	% 0/
12	ivig	Magnesium		< 0.0020	% 0/	(0.0)	% 0/
13	AI	Aluminum	1150.8967	2.132	% 0/	0.006	% 0/
14	SI	Silicon	57440.8230	44.50	%	0.03	%
15	P	Phosphorus	132.2456	0.08296	%	0.00076	%
16	S	Sultur	//./130	0.01278	%	0.00014	%
17	CI	Chiorine	107.7660	0.00875	%	0.00007	%
19	ĸ	Potassium	34.3631	0.1462	%	0.0048	%
20	Ca		7.8915	< 0.0010	%	(0.0)	%
22		litanium	/6.53/6	0.1332	%	0.0016	%
23	V	Vanadium	0.0000	< 0.0014	%	(0.0014)	%
24	Cr	Chromium	9.6831	0.00242	%	0.00018	%
25	Mn	Manganese	17.6326	0.00654	%	0.00034	%
26	Fe	Iron	25339.0189	6.133	%	0.004	%
27	Co	Cobalt	1.7940	< 0.00058	%	(0.00015)) %
28	Ni	Nickel	18.1702	0.00226	%	0.00006	%
29	Cu	Copper	40.3508	0.00417	%	0.00007	%
30	Zn	Zinc	57.3415	0.00443	%	0.00006	%
31	Ga	Gallium	3.4124	0.00021	%	0.00003	%
32	Ge	Germanium	2.0354	0.00009	%	0.00002	%
33	As	Arsenic	32.4507	0.00113	%	0.00002	%
34	Se	Selenium	0.0000	< 0.00005	%	(0.0)	%
35	Br	Bromine	5.4862	0.00016	%	0.00002	%
37	Rb	Rubidium	30.4866	0.00052	%	0.00002	%
38	Sr	Strontium	76.9600	0.00117	%	0.00002	%
39	Υ	Yttrium	51.8772	0.00076	%	0.00002	%
40	Zr	Zirconium	44.4990	0.01010	%	0.00012	%
41	Nb	Niobium	2.4124	0.00042	%	0.00004	%
42	Мо	Molybdenum	0.9009	0.00007	%	0.00002	%
47	Ag	Silver	0.0000	< 0.00020	%	(0.0)	%
48	Cď	Cadmium	1.7617	< 0.00020	%	(0.0)	%
50	Sn	Tin	8.8237	0.00129	%	0.00007	%
51	Sb	Antimony	0.7758	< 0.00030	%	(0.0)	%
52	Те	Tellurium	0.0000	< 0.00030	%	(0.0)	%
53	I	lodine	0.0000	< 0.00030	%	(0.0)	%
55	Cs	Cesium	0.0000	< 0.00040	%	(0.0)	%
56	Ва	Barium	7.8428	0.00421	%	0.00051	%
57	La	Lanthanum	2.2472	< 0.00020	%	(0.0)	%
58	Ce	Cerium	0.0000	< 0.00020	%	(0.0)	%
72	Hf	Hafnium	3.8348	0.00027	%	0.00004	%
73	Та	Tantalum	2.5840	< 0.00010	%	(0.0)	%
74	W	Tunasten	1.2070	< 0.00010	%	(0.0)	%
80	На	Mercury	1,1576	< 0.00010	%	(0.0)	%
81	TI	Thallium	0.0000	< 0.00010	%	(0.0)	%
-						···/	

Samp Descr	le Name iption	SKF6		Date of Receipt Method	10/19/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
82 83 90 92	Pb Bi Th U	Lead Bismuth Thorium Uranium	5.4533 0.0000 1.1905 2.8693	0.00035 % < 0.00010 % < 0.00005 % < 0.00010 %	0.00005 % (0.0) % (0.00005) % (0.0) %

Samp Descr	le Name iption	SKF6		Date of Receipt Method	10/19/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	11.4374	0.232 %	0.027 %
12	MqO	Magnesium	0.0000	< 0.0034 %	(0.0) %
13	AIŽO3	Aluminum	1156.8967	4.028 %	0.011 %
14	SiO2	Silicon	57440.8230	95.21 %	0.06 %
15	P2O5	Phosphorus	132.2456	0.1901 %	0.0017 %
16	SO3	Sulfur	77.7130	0.03190 %	0.00035 %
17	CI	Chlorine	107.7660	0.00875 %	0.00007 %
19	K2O	Potassium	34.3631	0.1761 %	0.0058 %
20	CaO	Calcium	7.8915	< 0.0014 %	(0.0) %
22	TiO2	Titanium	76.5376	0.2222 %	0.0027 %
23	V2O5	Vanadium	0.0000	< 0.0026 %	(0.0025) %
24	Cr2O3	Chromium	9.6831	0.00354 %	0.00027 %
25	MnO	Manganese	17.6326	0.00845 %	0.00044 %
26	Fe2O3	Iron	25339.0189	8.768 %	0.006 %
27	CoO	Cobalt	1.7940	< 0.00073 %	(0.00019) %
28	NiO	Nickel	18.1702	0.00288 %	0.00008 %
29	CuO	Copper	40.3508	0.00522 %	0.00009 %
30	ZnO	Zinc	57.3415	0.00551 %	0.00007 %
31	Ga	Gallium	3.4124	0.00021 %	0.00003 %
32	Ge	Germanium	2.0354	0.00009 %	0.00002 %
33	As2O3	Arsenic	32.4507	0.00149 %	0.00003 %
34	Se	Selenium	0.0000	< 0.00005 %	(0.0) %
35	Br	Bromine	5.4862	0.00016 %	0.00002 %
37	Rb2O	Rubidium	30.4866	0.00056 %	0.00002 %
38	SrO	Strontium	76.9600	0.00139 %	0.00002 %
39	Y	Yttrium	51.8772	0.00076 %	0.00002 %
40	ZrO2	Zirconium	44.4990	0.01365 %	0.00016 %
41	Nb2O5	Niobium	2.4124	0.00060 %	0.00006 %
42	Мо	Molybdenum	0.9009	0.00007 %	0.00002 %
47	Ag	Silver	0.0000	< 0.00020 %	(0.0) %
48	Cd	Cadmium	1.7617	< 0.00020 %	(0.0) %
50	SnO2	lin	8.8237	0.00164 %	0.00009 %
51	Sb205	Antimony	0.7758	< 0.00040 %	(0.0) %
52	le	I ellurium	0.0000	< 0.00030 %	(0.0) %
53		Iodine	0.0000	< 0.00030 %	(0.0) %
55 56	CS	Derium	0.0000		
50 57	Ба	Danun	7.0420	0.00421 %	0.00051 %
5/	La	Carium	2.2472	< 0.00020 %	(0.0) %
00 70	Ce	Lofnium	0.0000		
72	Ta2O5	Tantalum	2 5940		(0,0) %
73	WO3	Tungeton	2.3040	< 0.00012 %	(0.0) %
80	Ha	Mercury	1.2070		(0.0) %
81	TI	Thallium	0 0000		(0.0) %
82		l ead	5 1522	0.00010 %	
83	Ri	Rismuth	0.4000	< 0.00000 %	(0 0) %
gn	Th	Thorium	1 1005		(0.0005) %
92	U	Uranium	2 8693		(0.00000) %
	Ŭ	oranian	2.0000		(0.0) /0

Sum of concentration

108.92 %

Sample Name	SKF5	Dilution Material		
Description		Sample Mass (g)	4.0000	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	10/19/2016	
Sample Status	AXXAXXA	Date of Evaluation	10/20/2016	
-Results				

The error is the statistical error with 1 sigma confidence interval

Ζ	Symbol	Element	Norm. Int.	Concentration	Abs. Error
		a			
11	Na	Sodium	12.4051	0.225 %	0.024 %
12	Mg	Magnesium	3.9757	< 0.0020 %	(0.0) %
13	Al	Aluminum	850.0871	1.597 %	0.005 %
14	Si	Silicon	54171.4966	42.24 %	0.03 %
15	Р	Phosphorus	52.4284	0.03216 %	0.00063 %
16	S	Sultur	40.4310	0.00074 %	0.00001 %
17	CI	Chlorine	133.7835	0.01234 %	0.00009 %
19	K	Potassium	21.7303	0.0907 %	0.0043 %
20	Са	Calcium	96.5935	0.2583 %	0.0025 %
22	Ti	Titanium	95.4793	0.1646 %	0.0019 %
23	V	Vanadium	0.0000	< 0.0019 %	(0.0019) %
24	Cr	Chromium	17.7770	0.00610 %	0.00032 %
25	Mn	Manganese	706.8074	0.2624 %	0.0009 %
26	Fe	Iron	39388.3831	9.576 %	0.006 %
27	Co	Cobalt	2.1187	0.00055 %	0.00012 %
28	Ni	Nickel	17.9675	0.00261 %	0.00008 %
29	Cu	Copper	3.3804	0.00041 %	0.00006 %
30	Zn	Zinc	13.0277	0.00118 %	0.00004 %
31	Ga	Gallium	2.3627	0.00017 %	0.00003 %
32	Ge	Germanium	1.7735	0.00010 %	0.00002 %
33	As	Arsenic	0.0000	< 0.00005 %	(0.0) %
34	Se	Selenium	2.2080	0.00008 %	0.00002 %
35	Br	Bromine	3.4399	0.00012 %	0.00002 %
37	Rb	Rubidium	20.5147	0.00041 %	0.00002 %
38	Sr	Strontium	95.6638	0.00174 %	0.00002 %
39	Y	Yttrium	67.1027	0.00118 %	0.00002 %
40	Zr	Zirconium	74.4112	0.02011 %	0.00018 %
41	Nb	Niobium	2.0168	0.00042 %	0.00005 %
42	Мо	Molybdenum	0.3361	< 0.00010 %	(0.0) %
47	Ag	Silver	0.0000	< 0.00020 %	(0.0) %
48	Cď	Cadmium	1.5151	< 0.00020 %	(0.0) %
50	Sn	Tin	8.0622	0.00127 %	0.00007 %
51	Sb	Antimony	0.0000	< 0.00030 %	(0.0) %
52	Те	Tellurium	0.0000	< 0.00030 %	(0.0) %
53	1	lodine	0.0000	< 0.00030 %	(0.0) %
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %
56	Ba	Barium	0.0000	< 0.00020 %	(0.0) %
57	La	Lanthanum	0.0000	< 0.00020 %	(0.0) %
58	Ce	Cerium	1.5251	< 0.00020 %	(0.0) %
72	Hf	Hafnium	3.8804	0.00030 %	0.00003 %
73	Та	Tantalum	1.9997	< 0.00010 %	(0.0) %
74	W	Tunasten	1.7378	< 0.00010 %	(0.0) %
80	На	Mercury	0.4523	< 0.00010 %	(0.0) %
81	TI	Thallium	0.0000	< 0.00010 %	(0.0) %
					• •

Samp Descr	le Name iption	SKF5		Date of Receipt Method	10/19/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
82 83 90 92	Pb Bi Th U	Lead Bismuth Thorium Uranium	13.1408 0.4702 0.0000 3.1067	0.00102 % < 0.00002 % < 0.00010 % < 0.00010 %	0.00004 % (0.00002)% (0.0) % (0.0) %

Samp Descr	le Name iption	SKF5		Date of Receipt Method	10/19/2016 TurboQuant-Powders
Ζ	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	12.4051	0.303 %	0.032 %
12	MaO	Magnesium	3.9757	< 0.0034 %	(0.0) %
13	AI2O3	Aluminum	850.0871	3.017 %	0.010 %
14	SiO2	Silicon	54171,4966	90.38 %	0.06 %
15	P205	Phosphorus	52 4284	0.0737 %	0.0015 %
16	SO3	Sulfur	40 4310	0.00185 %	0.00003 %
17	CI	Chlorine	133 7835	0.01234 %	0.00009 %
19	K2O	Potassium	21 7303	0.1092 %	0.0052 %
20	CaO	Calcium	96 5935	0.3615 %	0.0035 %
22	TiO2	Titanium	95 4793	0.2746 %	0.0032 %
23	V205	Vanadium	0 000	< 0.0034 %	(0.0033) %
24	Cr2O3	Chromium	17 7770	0.0004 %	0.00047 %
25	MnO	Manganese	706 8074	0.3387 %	0.0012 %
26	Ee2O3	Iron	20288 2821	13.60 %	0.01 %
27	CoO	Cohalt	2 1187	0.00071 %	0.00015 %
28	NiO	Nickel	17 0675	0.00071 %	0.00010 %
20		Conner	3 3804	0.00002 %	0.00010 %
20	ZnO	Zinc	13 0277	0.00031 %	0.00007 %
31	Ga	Callium	2 3627		0.00003 %
22	Ga	Gamun	2.3027		0.00003 %
32		Arconic	0.0000		(0,0) %
34	A5205 Sa	Selenium	2 2080		
25	Br	Bromino	2.2000		0.00002 %
37		Diomine	20 5147	0.00012 %	0.00002 %
38	SrO	Strontium	20.0147		0.00002 %
30	310 V	Vttrium	67 1027	0.00200 %	0.00003 %
40	ı 7r⊖2	Zirconium	74 4112	0.00110 %	0.0002 /6
40	2102 Nb205	Nichium	2 0169	0.02710 %	0.00024 /8
41	Mo	Molybdonum	2.0100		(0,0) %
4Z 47		Silver	0.3301		(0.0) 70
47 70	Ay	Codmium	0.0000		(0.0) 70
40 50	Cu ShO2	Tin	1.0101		
50	SHUZ	1 II I Antimony	0.0022		
51	50205	Anumony	0.0000		(0.0) %
52	le		0.0000		(0.0) %
53 55		Cooium	0.0000	< 0.00030 %	(0.0) %
55 56	CS Do	Derium	0.0000		(0.0) %
50	ва	Barium	0.0000	< 0.00020 %	(0.0) %
57	La	Lantnanum	0.0000	< 0.00020 %	(0.0) %
58 70	Ce	Cerium	1.5251	< 0.00020 %	
12	HI T-205	Hathlum	3.8804		0.00003 %
73	Ta205	Tantalum	1.9997	< 0.00012 %	(0.0) %
74	WO3	Tungsten	1.7378	< 0.00013 %	(0.0) %
80	Hg	Mercury	0.4523	< 0.00010 %	(0.0) %
81		Inallium	0.0000	< 0.00010 %	(U.U) %
82	PDU Di	Lead	13.1408		
83	BI	Bismuth	0.4702	< 0.00002 %	(0.00002) %
90	IN	Inorium	0.0000	< 0.00010 %	(U.U) %
92	U	Uranium	3.1067	< 0.00010 %	(0.0) %
Sun		Sum of concent	ration	108.61 %	

Sum of concentration

108.61

Sample Name	SKF4	Dilution Material		
Description		Sample Mass (g)	4.0000	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	10/19/2016	
Sample Status	AXXAXXA	Date of Evaluation	10/20/2016	
-Results				

The error is the statistical error with 1 sigma confidence interval

Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error	
	NI-	O a all'anna	0.0050	. 0. 0.1 0 0/		
11	Na	Sodium	6.6256	< 0.010 %	(0.0) %	
12	Ng	Magnesium	9.0344	< 0.0020 %	(0.0) %	
13	AI	Aluminum	1913.4699	3.347 %	0.007 %	
14	SI	Silicon	62675.6703	47.46 %	0.03 %	
15	Р	Phosphorus	72.8498	0.04667 %	0.00073 %	
16	S	Sulfur	81.3669	0.01425 %	0.00016 %	
1/	CI	Chlorine	161.3386	0.01/09 %	0.00011 %	
19	K	Potassium	15.7958	0.0685 %	0.0053 %	
20	Ca		19.9342	0.0338 %	0.0013 %	
22	Ti	Titanium	32.1391	0.0566 %	0.0011 %	
23	V	Vanadium	2.1583	0.00324 %	0.00076 %	
24	Cr	Chromium	4.8186	< 0.00035 %	(0.00020) %	
25	Mn	Manganese	29.9808	0.01113 %	0.00024 %	
26	Fe	Iron	6239.0376	1.496 %	0.002 %	
27	Co	Cobalt	4.1109	0.00235 %	0.00024 %	
28	Ni	Nickel	20.5544	0.00205 %	0.00005 %	
29	Cu	Copper	46.8309	0.00380 %	0.00005 %	
30	Zn	Zinc	38.6794	0.00233 %	0.00004 %	
31	Ga	Gallium	4.9792	0.00024 %	0.00002 %	
32	Ge	Germanium	0.0000	< 0.00005 %	(0.0) %	
33	As	Arsenic	2.7105	0.00007 %	0.00002 %	
34	Se	Selenium	0.6124	< 0.00002 %	(0.00001) %	
35	Br	Bromine	8.1465	0.00018 %	0.00001 %	
37	Rb	Rubidium	51.8703	0.00067 %	0.00001 %	
38	Sr	Strontium	82.8450	0.00096 %	0.00001 %	
39	Y	Yttrium	30.7086	0.00034 %	0.00002 %	
40	Zr	Zirconium	20.0150	0.00348 %	0.00007 %	
41	Nb	Niobium	1.5546	0.00021 %	0.00003 %	
42	Мо	Molybdenum	0.0000	< 0.00010 %	(0.0) %	
47	Aa	Silver	0.9367	< 0.00019 %	(0.00019) %	
48	Cď	Cadmium	1.8137	< 0.00020 %	(0.0) %	
50	Sn	Tin	10.5780	0.00144 %	0.00007 %	
51	Sb	Antimony	0.0000	< 0.00030 %	(0.0) %	
52	Те	Tellurium	0.0000	< 0.00030 %	(0.0) %	
53	l	lodine	0.0000	< 0.00030 %	(0.0) %	
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %	
56	Ba	Barium	16 1535	0.00989 %	0.00062 %	
57	la	Lanthanum	0.0000	< 0.00020 %	(0.0) %	
58	Ce	Cerium	0.0000	< 0.00020 %	(0.0) %	
72	Hf	Hafnium	3 0518	0.00017 %	0.00003 %	
73	Та	Tantalum	2 8109	0.00006 %	0.00002 %	
74	W	Tunasten	1 2297	< 0.00010 %	(0,0) %	
80	На	Mercury	2 0830			
81	TI	Thallium	1 0020	0.00007 %		
01		manum	1.0000	0.00000 /0	0.00002 /0	

Sampl Descri	e Name ption	SKF4		Date of Receipt Method	10/19/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
82 83 90 92	Pb Bi Th U	Lead Bismuth Thorium Uranium	9.7075 0.0000 3.8298 5.9580	0.00047 % < 0.00010 % 0.00013 % < 0.00010 %	0.00003 % (0.0) % 0.00002 % (0.0) %
Samp Descr	le Name iption	SKF4		Date of Receipt Method	10/19/2016 TurboQuant-Powders
---------------	-------------------	------------	------------------	---------------------------	----------------------------------
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	6.6256	< 0.014 %	(0.0) %
12	MgO	Magnesium	9.0344	< 0.0034 %	(0.0) %
13	AlŽO3	Aluminum	1913.4699	6.323 %	0.013 %
14	SiO2	Silicon	62675.6703	101.5 %	0.1 %
15	P2O5	Phosphorus	72.8498	0.1069 %	0.0017 %
16	SO3	Sulfur	81.3669	0.03557 %	0.00039 %
17	CI	Chlorine	161.3386	0.01709 %	0.00011 %
19	K2O	Potassium	15.7958	0.0825 %	0.0064 %
20	CaO	Calcium	19.9342	0.0473 %	0.0018 %
22	TiO2	Titanium	32.1391	0.0944 %	0.0019 %
23	V2O5	Vanadium	2.1583	0.0058 %	0.0014 %
24	Cr2O3	Chromium	4.8186	< 0.00051 %	(0.00030) %
25	MnO	Manganese	29.9808	0.01437 %	0.00032 %
26	Fe2O3	Iron	6239.0376	2.139 %	0.002 %
27	CoO	Cobalt	4.1109	0.00298 %	0.00031 %
28	NiO	Nickel	20.5544	0.00261 %	0.00006 %
29	CuO	Copper	46.8309	0.00476 %	0.00007 %
30	ZnO	Zinc	38.6794	0.00290 %	0.00005 %
31	Ga	Gallium	4.9792	0.00024 %	0.00002 %
32	Ge	Germanium	0.0000	< 0.00005 %	(0.0) %
33	As2O3	Arsenic	2.7105	0.00010 %	0.00002 %
34	Se	Selenium	0.6124	< 0.00002 %	(0.00001) %
35	Br	Bromine	8.1465	0.00018 %	0.00001 %
37	Rb2O	Rubidium	51.8703	0.00073 %	0.00001 %
38	SrO	Strontium	82.8450	0.00113 %	0.00002 %
39	Y	Yttrium	30.7086	0.00034 %	0.00002 %
40	ZrO2	Zirconium	20.0150	0.00470 %	0.00009 %
41	Nb2O5	Niobium	1.5546	0.00030 %	0.00005 %
42	Mo	Molybdenum	0.0000	< 0.00010 %	(0.0) %
47	Ag	Silver	0.9367	< 0.00019 %	(0.00019) %
48	Cd		1.8137	< 0.00020 %	(0.0) %
50	ShO2	l in	10.5780	0.00183 %	0.00009 %
51	SD205	Antimony	0.0000	< 0.00040 %	(0.0) %
52	le	l ellurium	0.0000	< 0.00030 %	(0.0) %
53 55		Conium	0.0000	< 0.00030 %	(0.0) %
55 56	CS Do	Derium	0.0000		
50 57	Ба	Danun	10.1555		0.00062 %
57 50	La	Corium	0.0000	< 0.00020 %	(0.0) %
00 72	Се	Lofnium	0.0000		
72	Ta2O5	Tantalum	2,0010		0.00003 %
73	1a205 WO3	Tungeten	2.0109		(0,0) %
20 80	Ha	Mercury	1.2291 2 N830		
81	TI	Thallium	2.0030	0.00007 %	0.00007 %
82		l ead	0 7075	0.00003 /0	0.00002 /0
82 83	Ri	Rismuth	0 000		(0 0) %
90 90	Th	Thorium	3 8208		0 00002 %
92	U	Uranium	5.9580	< 0.00010 %	(0.0) %
	-				· · · / /·

110.44 %

Sample Name	SKF3	Dilution Material		
Description		Sample Mass (g)	4.0000	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	10/19/2016	
Sample Status	AXXAXXA	Date of Evaluation	10/20/2016	
-Results				

Ζ	Symbol	Element	Norm. Int.	Concentration	Abs. Error	
	NI-	O s all'anna	00.4400	4 000 %	0.040	
11	Na	Sodium	30.1428	1.090 %	0.043 %	
12	Ng	Magnesium	58.7166	0.3770 %	0.0082 %	
13	AI	Aluminum	3493.2483	6.773 %	0.009 %	
14	SI	Silicon	43125.0233	37.22 %	0.02 %	
15	P	Phosphorus	231.3878	0.1421 %	0.0007 %	
16	S	Sulfur	/8.4/56	0.01275 %	0.00012 %	
1/	CI	Chlorine	102.0837	0.00774 %	0.00006 %	
19	ĸ	Potassium	187.5379	0.7913 %	0.0058 %	
20	Ca		150.2441	0.4280 %	0.0029 %	
22		litanium	365.7223	0.6483 %	0.0031 %	
23	V	Vanadium	5.8417	0.0075 %	0.0015 %	
24	Cr	Chromium	26.2090	0.01041 %	0.00037 %	
25	Mn	Manganese	392.8554	0.1528 %	0.0008 %	
26	Fe	Iron	35395.5075	9.020 %	0.006 %	
27	Co	Cobalt	4.0223	0.00238 %	0.00027 %	
28	Ni	Nickel	28.6328	0.00434 %	0.00009 %	
29	Cu	Copper	65.8973	0.00802 %	0.00010 %	
30	Zn	Zinc	59.6778	0.00544 %	0.00007 %	
31	Ga	Gallium	15.6417	0.00113 %	0.00004 %	
32	Ge	Germanium	0.0000	< 0.00005 %	(0.0) %	
33	As	Arsenic	129.8067	0.00538 %	0.00005 %	
34	Se	Selenium	1.5520	0.00006 %	0.00002 %	
35	Br	Bromine	5.8882	0.00020 %	0.00002 %	
37	Rb	Rubidium	155.3124	0.00315 %	0.00003 %	
38	Sr	Strontium	273.4707	0.00500 %	0.00003 %	
39	Y	Yttrium	129.2080	0.00228 %	0.00003 %	
40	Zr	Zirconium	92.9953	0.02523 %	0.00020 %	
41	Nb	Niobium	11.2160	0.00234 %	0.00007 %	
42	Мо	Molybdenum	2.1851	0.00038 %	0.00006 %	
47	Aa	Silver	0.0000	< 0.00020 %	(0.0) %	
48	Cď	Cadmium	1.1176	< 0.00020 %	(0.0) %	
50	Sn	Tin	7.6076	0.00113 %	0.00007 %	
51	Sb	Antimony	0.0000	< 0.00030 %	(0.0) %	
52	Те	Tellurium	3.9090	< 0.00030 %	(0.0) %	
53	l	lodine	0.0000	< 0.00030 %	(0.0) %	
55	Cs	Cesium	1,5035	< 0.0010 %	(0.0010) %	
56	Ba	Barium	11 3713	0.00767 %	0.00059 %	
57	la	Lanthanum	5 1269	0.00226 %	0.00039 %	
58	Ce	Cerium	0.0000	< 0.00020 %	(0.0) %	
72	Hf	Hafnium	5 0918	0.00052 %		
73	Ta	Tantalum	4 9930	0.00051 %	0.00009 %	
74	W	Tunasten	2 8307	0.000017 %	0.00000 %	
80	Ha	Mercury	0,0000		(0 0) %	
81	TI	Thallium	0.0000		(0.0) %	
51		manann	0.0000	0.00010 /0	(0.0) /0	

Sampl Descri	e Name ption	SKF3		Date of Receipt Method	10/19/2016 TurboQuant-Powders
Ζ	Symbol	Element	Norm. Int.	Concentration	Abs. Error
82 83 90 92	Pb Bi Th U	Lead Bismuth Thorium Uranium	10.9916 0.0000 10.4859 6.4345	0.00083 % < 0.00010 % 0.00055 % < 0.00010 %	0.00011 % (0.0) % 0.00006 % (0.0) %

Sampl Descri	le Name iption	SKF3		Date of Receipt Method	10/19/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	30.1428	1.470 %	0.058 %
12	MgO	Magnesium	58.7166	0.625 %	0.014 %
13	Al2O3	Aluminum	3493.2483	12.80 %	0.02 %
14	SiO2	Silicon	43125.0233	79.64 %	0.05 %
15	P2O5	Phosphorus	231.3878	0.3256 %	0.0017 %
16	SO3	Sulfur	78.4756	0.03184 %	0.00031 %
17	CI	Chlorine	102.0837	0.00774 %	0.00006 %
19	K2O	Potassium	187.5379	0.9532 %	0.0070 %
20	CaO	Calcium	150.2441	0.5989 %	0.0041 %
22	TiO2	Titanium	365.7223	1.082 %	0.005 %
23	V2O5	Vanadium	5.8417	0.0134 %	0.0027 %
24	Cr2O3	Chromium	26.2090	0.01522 %	0.00054 %
25	MnO	Manganese	392.8554	0.1973 %	0.0010 %
26	Fe2O3	Iron	35395.5075	12.90 %	0.01 %
27	CoO	Cobalt	4.0223	0.00302 %	0.00035 %
28	NiO	Nickel	28.6328	0.00553 %	0.00012 %
29	CuO	Copper	65.8973	0.01004 %	0.00013 %
30	ZnO	Zinc	59.6778	0.00678 %	0.00008 %
31	Ga	Gallium	15.6417	0.00113 %	0.00004 %
32	Ge	Germanium	0.0000	< 0.00005 %	(0.0) %
33	As2O3	Arsenic	129.8067	0.00710 %	0.00006 %
34	Se	Selenium	1.5520	0.00006 %	0.00002 %
35	Br	Bromine	5.8882	0.00020 %	0.00002 %
37	Rb2O	Rubidium	155.3124	0.00345 %	0.00003 %
38	SrO	Strontium	273.4707	0.00591 %	0.00003 %
39	Y	Yttrium	129.2080	0.00228 %	0.00003 %
40	ZrO2	Zirconium	92.9953	0.03408 %	0.00027 %
41	Nb2O5	Niobium	11.2160	0.00335 %	0.00010 %
42	Мо	Molybdenum	2.1851	0.00038 %	0.00006 %
47	Ag	Silver	0.0000	< 0.00020 %	(0.0) %
48	Cd	Cadmium	1.1176	< 0.00020 %	(0.0) %
50	SnO2	Tin	7.6076	0.00144 %	0.00009 %
51	Sb2O5	Antimony	0.0000	< 0.00040 %	(0.0) %
52	Те	Tellurium	3.9090	< 0.00030 %	(0.0) %
53	I	lodine	0.0000	< 0.00030 %	(0.0) %
55	Cs	Cesium	1.5035	< 0.0010 %	(0.0010) %
56	Ва	Barium	11.3713	0.00767 %	0.00059 %
57	La	Lanthanum	5.1269	0.00226 %	0.00039 %
58	Ce	Cerium	0.0000	< 0.00020 %	(0.0) %
72	Ht	Hatnium	5.0918	0.00052 %	0.00006 %
73	Ta2O5	Iantalum	4.9930	0.00062 %	0.00011 %
74	WO3	lungsten	2.8307	0.00015 %	0.00002 %
80	Hg	Mercury	0.0000	< 0.00010 %	(0.0) %
81		I hallium	0.8893	< 0.00010 %	(U.U) %
82	PbO	Lead	10.9916	0.00090 %	0.00012 %
83	BI	Bismuth	0.0000		(U.U) %
90	IN	I norium	10.4859	0.00055 %	
92	U	Uranium	0.4345	< 0.00010 %	(U.U) %

110.75 %

Sample Name	SKF2	Dilution Material		
Description		Sample Mass (g)	4.0000	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	10/19/2016	
Sample Status	AXXAXXA	Date of Evaluation	10/20/2016	
-Results				

Na Sodium 12.8340 0.230 % 0.025 % 12 Mg Magnesium 13.8799 0.0191 % 0.0020 % 13 Al Aluminum 1567.6202 2.847 % 0.007 % 14 Si Silicon 62609.911 48.75 % 0.003 % 15 P Phosphorus 57.0445 0.03766 % 0.0001 % 16 S Suftur 20.3083 < 0.00020 % 0.0054 % 20 Ca Calcium 12.7246 0.01216 % 0.00017 % 21 T Titanium 50.9977 0.0924 % 0.0011 % 22 Ti Titanium 1.4242 0.0028 % 0.00011 % 23 V Vanadium 1.4242 0.0028 % 0.00027 % 24 Cr Chromium 6.4016	Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error	
11 Na Sodium 12.8440 0.230 % 0.025 % 13 Al Aluminum 1567.6202 2.847 % 0.007 % 14 Si Silicon 62609.9116 48.75 % 0.0073 % 15 P Phosphorus 57.0445 0.03756 % 0.00073 % 16 S Sulfur 20.3083 <0.00020							
12 Mg Magnesium 13.9799 0.0191 % 0.0020 % 14 Si Silicon 62609.9116 48.75 % 0.0073 % 15 P Phosphorus 57.0445 0.03756 % 0.00073 % 16 S Sulfur 20.3083 <0.0020	11	Na	Sodium	12.8340	0.230 %	0.025 %	
13 Al Aluminum 1567.6202 2.847 % 0.007 % 14 Si Silicon 6209.9116 48.75 % 0.033 % 15 P Phosphorus 57.0445 0.03756 % 0.00073 % 16 S Sulfur 20.3083 < 0.00020	12	Mg	Magnesium	13.9799	0.0191 %	0.0020 %	
14 Si Silicon 62609.9116 48.75 % 0.00073 15 P Phosphorus 57.0445 0.03756 % 0.00073 16 S Sulfur 20.3083 <0.00020	13	Al	Aluminum	1567.6202	2.847 %	0.007 %	
15 P Phosphorus 57.0445 0.03756 % 0.00073 % 16 S Sulfur 20.3083 < 0.0020	14	Si	Silicon	62609.9116	48.75 %	0.03 %	
16 S Sulfur 20.3083 < 0.0020 % 0.00 % 17 CI Chlorine 142.7624 0.01466 % 0.00070 % 19 K Potassium 23.4491 0.1046 % 0.00074 % 20 Ca Calcium 12.7246 0.01216 % 0.00074 % 21 Ti Titanium 50.9977 0.0924 % 0.0011 % 23 V Vanadium 1.4242 0.0028 % 0.00017 % 24 Cr Chromium 6.4016 0.00026 % 0.00021 % 25 Mn Maganese 6.8313 0.00267 % 0.00026 % 26 Fe Iron 6688.8847 1.653 % 0.00005 % 29 Cu Copper 41.2929 0.00347 % 0.00002 % 30 Zn Zinc 21.7583 0.00148 % 0.00002 % 31 Ga	15	Р	Phosphorus	57.0445	0.03756 %	0.00073 %	
17 Cl Chlorine 142.7624 0.01466 % 0.00010 % 19 K Potassium 23.4491 0.1046 % 0.0054 % 20 Ca Calcium 12.7246 0.01216 % 0.00070 % 21 Ti Titanium 50.9977 0.0924 % 0.0011 % 24 Cr Chromium 6.4016 0.00096 % 0.00007 % 25 Mn Marganese 6.8313 0.00261 % 0.00021 % 26 Fe Iron 6668.8847 1.653 % 0.002 % 27 Co Cobalt 1.9040 < 0.00057 %	16	S	Sulfur	20.3083	< 0.00020 %	(0.0) %	
19 K Potassium 23.4491 0.1046 % 0.0054 % 20 Ca Calcium 12.7246 0.01216 % 0.00070 % 23 V Vanadium 1.4242 0.0028 % 0.00017 % 24 Cr Chromium 6.4016 0.0096 % 0.00021 % 25 Mn Marganese 6.8313 0.00261 % 0.00026 % 26 Fe Iron 6688.8847 1.653 % 0.00026 % 27 Co Cobalt 1.9940 <0.00057	17	CI	Chlorine	142.7624	0.01466 %	0.00010 %	
20 Ca Calcium 12.7246 0.01216 % 0.00070 % 22 Ti Titanium 50.9977 0.0924 % 0.0013 % 23 V Vanadium 1.4242 0.0028 % 0.00017 % 24 Cr Chromium 6.4016 0.00096 % 0.00027 % 25 Mn Maganese 6.8313 0.00261 % 0.0002 % 26 Fe Iron 6688.8847 1.653 % 0.0002 % 27 Co Cobalt 1.9040 < 0.00057	19	K	Potassium	23.4491	0.1046 %	0.0054 %	
22 Ti Titanium 50.9977 0.0924 % 0.0013 % 23 V Vanadium 1.4242 0.0028 % 0.0011 % 24 Cr Chromium 6.4016 0.00096 % 0.00007 % 25 Mn Manganese 6.8313 0.0021 % 0.00026 % 26 Fe Iron 6688.8847 1.653 % 0.00026 % 27 Co Cobalt 1.9040 < 0.00057	20	Ca	Calcium	12.7246	0.01216 %	0.00070 %	
23 V Vanadium 1.4242 0.0028 % 0.0011 % 24 Cr Chromium 6.4016 0.00086 % 0.0007 % 25 Mn Manganese 6.8313 0.00261 % 0.00021 % 26 Fe Iron 6688.8847 1.653 % 0.00265 % 27 Co Cobalt 1.9040 < 0.00057	22	Ti	Titanium	50.9977	0.0924 %	0.0013 %	
24 Cr Chromium 6.4016 0.00096 % 0.00007 % 25 Mn Manganese 6.8313 0.00261 % 0.00021 % 26 Fe Iron 6688.8847 1.653 % 0.0022 % 27 Co Cobalt 1.9040 <0.00057	23	V	Vanadium	1.4242	0.0028 %	0.0011 %	
25 Mn Manganese 6.8313 0.00261 % 0.00021 % 26 Fe Iron 6688.8847 1.653 % 0.0002 % 27 Co Cobalt 1.9040 < 0.00057 %	24	Cr	Chromium	6.4016	0.00096 %	0.00007 %	
26 Fe Iron 6688.8847 1.653 % 0.002 % 27 Co Cobalt 1.9040 < 0.00057	25	Mn	Manganese	6.8313	0.00261 %	0.00021 %	
27 Co Cobalt 1.9040 <0.00057	26	Fe	Iron	6688.8847	1.653 %	0.002 %	
28 Ni Nickel 14.9170 0.00149 % 0.00005 % 29 Cu Copper 41.2929 0.00347 % 0.00005 % 30 Zn Zinc 21.7583 0.00136 % 0.00002 % 31 Ga Gallium 8.2406 0.00040 % 0.00002 % 32 Ge Germanium 0.0000 < 0.00005	27	Co	Cobalt	1.9040	< 0.00057 %	(0.00026) %	
29CuCopper41.2929 0.00347 % 0.00005 %30ZnZinc21.7583 0.00136 % 0.00003 %31GaGallium 8.2406 0.00040 % 0.00002 %32GeGermanium 0.0000 < 0.00005 % (0.0) %33AsArsenic 4.8574 0.00014 % 0.00002 %34SeSelenium 1.6591 0.00004 % 0.00001 %35BrBromine 6.4316 0.00015 % 0.00001 %38SrStrontium 133.8133 0.00161 % 0.00002 %40ZrZirconium 28.5107 0.00512 % 0.00002 %41NbNiobium 3.6846 0.00051 % 0.00002 %42MoMolybdenum 0.9610 0.00026 % 0.00002 %43CdCadmium 1.6481 <0.00026 % 0.00002 %44CdCadmium 1.6481 <0.00026 % 0.00002 %55SnTin 8.5791 0.00030 % (0.0) %56BaBarium 1.0488 0.00026 % 0.00055 %57LaLanthanum 0.0000 <0.00000 % (0.0) %58CeCerium 0.0000 <0.00020 % (0.0) % </td <td>28</td> <td>Ni</td> <td>Nickel</td> <td>14.9170</td> <td>0.00149 %</td> <td>0.00005 %</td> <td></td>	28	Ni	Nickel	14.9170	0.00149 %	0.00005 %	
30 Zn Zinc 21.7583 0.00136 % 0.00003 % 31 Ga Gallium 8.2406 0.00040 % 0.00002 % 32 Ge Germanium 0.0000 < 0.00005	29	Cu	Copper	41.2929	0.00347 %	0.00005 %	
31 Ga Gallium 8.2406 0.00040 % 0.00002 % 32 Ge Germanium 0.0000 < 0.00005	30	Zn	Zinc	21.7583	0.00136 %	0.00003 %	
32 Ge Germanium 0.0000 < 0.00005 % (0.0) % 33 As Arsenic 4.8574 0.00014 % 0.00002 % 34 Se Selenium 1.6591 0.00014 % 0.00001 % 35 Br Bromine 6.4316 0.00015 % 0.00001 % 37 Rb Rubidium 59.8379 0.00080 % 0.00001 % 38 Sr Strontium 133.8133 0.00161 % 0.00002 % 40 Zr Zirconium 28.5107 0.00512 % 0.00002 % 41 Nb Niobium 3.6846 0.00020 % 0.00002 % 42 Mo Molybdenum 0.9610 0.00002 % 0.00012 % 48 Cd Cadmium 1.6481 <0.00020	31	Ga	Gallium	8.2406	0.00040 %	0.00002 %	
33 As Arsenic 4.8574 0.00014 % 0.0002 % 34 Se Selenium 1.6591 0.0004 % 0.00001 % 35 Br Bromine 6.4316 0.00015 % 0.00001 % 37 Rb Rubidium 59.8379 0.00080 % 0.00001 % 38 Sr Strontium 133.8133 0.00161 % 0.00002 % 40 Zr Zirconium 28.5107 0.00512 % 0.00008 % 41 Nb Niobium 3.6846 0.00051 % 0.00002 % 42 Mo Molybdenum 0.9610 0.00066 % 0.00012 % 48 Cd Cadmium 1.6481 < 0.00020	32	Ge	Germanium	0.0000	< 0.00005 %	(0.0) %	
34 Se Selenium 1.6591 0.00004 % 0.00001 % 35 Br Bromine 6.4316 0.00015 % 0.00001 % 37 Rb Rubidium 59.8379 0.00080 % 0.00001 % 38 Sr Strontium 133.8133 0.00161 % 0.00002 % 40 Zr Zirconium 28.5107 0.00512 % 0.00002 % 41 Nb Niobium 3.6846 0.00012 % 0.00002 % 42 Mo Molybdenum 0.9610 0.0002 % 0.00012 % 42 Mo Molybdenum 0.9610 0.0002 % 0.00012 % 48 Cd Cadmium 1.6481 <0.00020	33	As	Arsenic	4.8574	0.00014 %	0.00002 %	
35 Br Bromine 6.4316 0.00015 % 0.00001 % 37 Rb Rubidium 59.8379 0.00080 % 0.00001 % 38 Sr Strontium 133.8133 0.00161 % 0.00002 % 40 Zr Zirconium 28.5107 0.00512 % 0.00004 % 41 Nb Niobium 3.6846 0.00051 % 0.00002 % 41 Nb Molybdenum 0.9610 0.00066 % 0.00002 % 42 Mo Molybdenum 0.9610 0.00022 % 0.00012 % 48 Cd Cadmium 1.6481 < 0.0020	34	Se	Selenium	1.6591	0.00004 %	0.00001 %	
37 Rb Rubidium 59.8379 0.00080 % 0.00001 % 38 Sr Strontium 133.8133 0.00161 % 0.00002 % 40 Zr Zirconium 28.5107 0.00512 % 0.00008 % 41 Nb Niobium 3.6846 0.00051 % 0.00002 % 42 Mo Molybdenum 0.9610 0.00066 % 0.00002 % 43 Cd Cadmium 1.6481 < 0.00020 %	35	Br	Bromine	6.4316	0.00015 %	0.00001 %	
38SrStrontium133.8133 0.00161 % 0.00001 %39YYttrium29.6541 0.00034 % 0.00002 %40ZrZirconium28.5107 0.00512 % 0.00008 %41NbNiobium3.6846 0.00051 % 0.00004 %42MoMolybdenum 0.9610 0.00066 % 0.00002 %47AgSilver 1.9867 0.00042 % 0.00012 %48CdCadmium 1.6481 < 0.00020 %(0.0)%50SnTin 8.5791 0.00166 0.00007 %51SbAntimony 0.9759 < 0.00030 %(0.0)%52TeTellurium 0.0000 < 0.00030 %(0.0)%53IIodine 0.0000 < 0.00030 %(0.0)%55CsCesium 2.0215 0.00115 % 0.00055 %57LaLanthanum 0.0000 < 0.00020 %(0.0)%58CeCerium 0.0000 < 0.00010 %(0.0)%74WTungsten 1.5642 < 0.00010 %(0.0)%80HgMercury 2.9084 0.00012 % 0.00002 %	37	Rb	Rubidium	59.8379	0.00080 %	0.00001 %	
39 Y Yttrium 29.6541 0.00034 % 0.00002 % 40 Zr Zirconium 28.5107 0.00512 % 0.00008 % 41 Nb Niobium 3.6846 0.00051 % 0.00004 % 42 Mo Molybdenum 0.9610 0.00006 % 0.00002 % 47 Ag Silver 1.9867 0.0042 % 0.00012 % 48 Cd Cadmium 1.6481 <0.00020 %	38	Sr	Strontium	133.8133	0.00161 %	0.00001 %	
40 Zr Zirconium 28.5107 0.00512 % 0.00008 % 41 Nb Niobium 3.6846 0.00051 % 0.00002 % 42 Mo Molybdenum 0.9610 0.00006 % 0.00002 % 47 Ag Silver 1.9867 0.00020 % (0.0) % 48 Cd Cadmium 1.6481 < 0.00020	39	Y	Yttrium	29.6541	0.00034 %	0.00002 %	
41 Nb Niobium 3.6846 0.00051 % 0.00004 % 42 Mo Molybdenum 0.9610 0.00006 % 0.00002 % 47 Ag Silver 1.9867 0.00020 % (0.0) % 48 Cd Cadmium 1.6481 < 0.00020 %	40	Zr	Zirconium	28.5107	0.00512 %	0.00008 %	
42MoMolybdenum 0.9610 0.00006 % 0.00002 %47AgSilver 1.9867 0.00042 % 0.00012 %48CdCadmium 1.6481 < 0.00020 % (0.0) %50SnTin 8.5791 0.00106 % 0.00007 %51SbAntimony 0.9759 < 0.00030 % (0.0) %52TeTellurium 0.0000 < 0.00030 % (0.0) %53IIodine 0.0000 < 0.00030 % (0.0) %55CsCesium 2.0215 0.00115 % 0.00055 %56BaBarium 11.0488 0.00621 % 0.00055 %57LaLanthanum 0.0000 < 0.00020 % (0.0) %58CeCerium 0.0000 < 0.00020 % (0.0) %73TaTantalum 1.9140 < 0.00010 % (0.0) %74WTungsten 1.5642 < 0.00010 % $(0.00022$ %80HgMercury 2.9084 0.00012 % $(0.00002$ %81TLThallium 0.8645 < 0.00003 % (0.00003) %	41	Nb	Niobium	3.6846	0.00051 %	0.00004 %	
47AgSilver 1.9867 0.00042 $\%$ 0.00012 $\%$ 48CdCadmium 1.6481 < 0.00020 $\%$ (0.0) $\%$ 50SnTin 8.5791 0.00106 $\%$ 0.00007 $\%$ 51SbAntimony 0.9759 < 0.00030 $\%$ (0.0) $\%$ 52TeTellurium 0.0000 < 0.00030 $\%$ (0.0) $\%$ 53IIodine 0.0000 < 0.00030 $\%$ (0.0) $\%$ 55CsCesium 2.0215 0.00115 $\%$ 0.00053 $\%$ 56BaBarium 11.0488 0.00621 $\%$ 0.00055 $\%$ 57LaLanthanum 0.0000 < 0.00020 $\%$ (0.0) $\%$ 58CeCerium 0.0000 < 0.00020 $\%$ (0.0) $\%$ 72HfHafnium 1.4742 < 0.00010 $\%$ (0.0) $\%$ 73TaTantalum 1.9140 < 0.00010 $\%$ (0.0) $\%$ 74WTungsten 1.5642 < 0.00010 $\%$ (0.00023) $\%$ 80HgMercury 2.9084 0.00012 $\%$ (0.00003) $\%$	42	Мо	Molybdenum	0.9610	0.00006 %	0.00002 %	
48CdCadmium1.6481< 0.00020 % (0.0) %50SnTin8.57910.00106 %0.00007 %51SbAntimony0.9759< 0.0030 %	47	Ag	Silver	1.9867	0.00042 %	0.00012 %	
50SnTin 8.5791 0.00106 % 0.00007 %51SbAntimony 0.9759 < 0.00030 % (0.0) %52TeTellurium 0.0000 < 0.00030 % (0.0) %53IIodine 0.0000 < 0.00030 % (0.0) %55CsCesium 2.0215 0.00115 % 0.00053 %56BaBarium 11.0488 0.00621 % 0.00055 %57LaLanthanum 0.0000 < 0.00020 % (0.0) %58CeCerium 0.0000 < 0.00020 % (0.0) %72HfHafnium 1.4742 < 0.00010 % (0.0) %73TaTantalum 1.9140 < 0.00010 % (0.0) %80HgMercury 2.9084 0.00012 % (0.00023) %81ThThallium 0.8645 < 0.00003 % (0.00003) %	48	Cd	Cadmium	1.6481	< 0.00020 %	(0.0) %	
51SbAntimony 0.9759 < 0.00030 % (0.0) %52TeTellurium 0.0000 < 0.00030 % (0.0) %53IIodine 0.0000 < 0.00030 % (0.0) %55CsCesium 2.0215 0.00115 % 0.00053 %56BaBarium 11.0488 0.00621 % 0.00055 %57LaLanthanum 0.0000 < 0.00020 % (0.0) %58CeCerium 0.0000 < 0.00020 % (0.0) %72HfHafnium 1.4742 < 0.00010 % (0.0) %73TaTantalum 1.9140 < 0.00010 % (0.0) %74WTungsten 1.5642 < 0.00010 % $(0.0002$ %80HgMercury 2.9084 0.00012 % (0.00003) %	50	Sn	Tin	8.5791	0.00106 %	0.00007 %	
52TeTellurium 0.0000 < 0.00030 $\%$ (0.0) $\%$ 53IIodine 0.0000 < 0.00030 $\%$ (0.0) $\%$ 55CsCesium 2.0215 0.00115 $\%$ 0.00053 $\%$ 56BaBarium 11.0488 0.00621 $\%$ 0.00055 $\%$ 57LaLanthanum 0.0000 < 0.00020 $\%$ (0.0) $\%$ 58CeCerium 0.0000 < 0.00020 $\%$ (0.0) $\%$ 72HfHafnium 1.4742 < 0.00010 $\%$ (0.0) $\%$ 73TaTantalum 1.9140 < 0.00010 $\%$ (0.0) $\%$ 74WTungsten 1.5642 < 0.00010 $\%$ (0.0) $\%$ 80HgMercury 2.9084 0.00012 $\%$ (0.00003) $\%$ 81TIThallium 0.8645 < 0.00003 $\%$ (0.00003) $\%$	51	Sb	Antimony	0.9759	< 0.00030 %	(0.0) %	
53 I Iodine 0.0000 < 0.00030 %	52	Те	Tellurium	0.0000	< 0.00030 %	(0.0) %	
55 Cs Cesium 2.0215 0.00115 % 0.00053 % 56 Ba Barium 11.0488 0.00621 % 0.00055 % 57 La Lanthanum 0.0000 < 0.00020 %	53	I	lodine	0.0000	< 0.00030 %	(0.0) %	
56 Ba Barium 11.0488 0.00621 % 0.00055 % 57 La Lanthanum 0.0000 < 0.00020 %	55	Cs	Cesium	2.0215	0.00115 %	0.00053 %	
57 La Lanthanum 0.0000 < 0.00020 %	56	Ва	Barium	11.0488	0.00621 %	0.00055 %	
58 Ce Cerium 0.0000 < 0.00020 %	57	La	Lanthanum	0.0000	< 0.00020 %	(0.0) %	
72 Hf Hafnium 1.4742 < 0.00010 % (0.0) % 73 Ta Tantalum 1.9140 < 0.00010	58	Ce	Cerium	0.0000	< 0.00020 %	(0.0) %	
73 Ta Tantalum 1.9140 < 0.00010 % (0.0) % 74 W Tungsten 1.5642 < 0.00010 %	72	Hf	Hafnium	1.4742	< 0.00010 %	(0.0) %	
74 W Tungsten 1.5642 < 0.00010 % (0.0) % 80 Hg Mercury 2.9084 0.00012 % 0.00002 % 81 TL Thallium 0.8645 < 0.00003 %	73	Та	Tantalum	1.9140	< 0.00010 %	(0.0) %	
80 Hg Mercury 2.9084 0.00012 % 0.00002 % 81 TL Thallium 0.8645 < 0.00003	74	W	Tungsten	1.5642	< 0.00010 %	(0.0) %	
81 TI Thallium 0.8645 < 0.00003.% (0.00003)%	80	Ha	Mercury	2.9084	0.00012 %	0.00002 %	
	81	ΤĬ	Thallium	0.8645	< 0.00003 %	(0.00003) %	

Sample Name		ne SKF2 Date of Rece		Date of Receipt	10/19/2016
Description		Method		Method	TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
82	Pb	Lead	3.9829	0.00020 %	0.00003 %
83	Bi	Bismuth	0.0150	< 0.00010 %	(0.0) %
90	Th	Thorium	11.5288	0.00041 %	0.00002 %
92	U	Uranium	5.1672	< 0.00010 %	(0.0) %

Samp Descr	le Name iption	SKF2		Date of Receipt Method	10/19/2016 TurboQuant-Powders
Ζ	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	12.8340	0.310 %	0.034 %
12	MqO	Magnesium	13.9799	0.0317 %	0.0032 %
13	AIŽO3	Aluminum	1567.6202	5.379 %	0.013 %
14	SiO2	Silicon	62609.9116	104.3 %	0.1 %
15	P2O5	Phosphorus	57.0445	0.0861 %	0.0017 %
16	SO3	Sulfur	20.3083	< 0.00050 %	(0.0) %
17	CI	Chlorine	142.7624	0.01466 %	0.00010 %
19	K2O	Potassium	23.4491	0.1260 %	0.0066 %
20	CaO	Calcium	12.7246	0.01701 %	0.00098 %
22	TiO2	Titanium	50.9977	0.1541 %	0.0021 %
23	V2O5	Vanadium	1.4242	0.0051 %	0.0019 %
24	Cr2O3	Chromium	6.4016	0.00140 %	0.00010 %
25	MnO	Manganese	6.8313	0.00337 %	0.00027 %
26	Fe2O3	Iron	6688.8847	2.364 %	0.003 %
27	CoO	Cobalt	1.9040	< 0.00072 %	(0.00033) %
28	NiO	Nickel	14.9170	0.00189 %	0.00006 %
29	CuO	Copper	41.2929	0.00435 %	0.00006 %
30	ZnO	Zinc	21.7583	0.00169 %	0.00004 %
31	Ga	Gallium	8.2406	0.00040 %	0.00002 %
32	Ge	Germanium	0.0000	< 0.00005 %	(0.0) %
33	As2O3	Arsenic	4.8574	0.00018 %	0.00002 %
34	Se	Selenium	1.6591	0.00004 %	0.00001 %
35	Br	Bromine	6.4316	0.00015 %	0.00001 %
37	Rb2O	Rubidium	59.8379	0.00087 %	0.00001 %
38	SrO	Strontium	133.8133	0.00190 %	0.00002 %
39	Y	Yttrium	29.6541	0.00034 %	0.00002 %
40	ZrO2	Zirconium	28.5107	0.00692 %	0.00011 %
41	Nb2O5	Niobium	3.6846	0.00073 %	0.00005 %
42	Мо	Molybdenum	0.9610	0.00006 %	0.00002 %
47	Ag	Silver	1.9867	0.00042 %	0.00012 %
48	Cd	Cadmium	1.6481	< 0.00020 %	(0.0) %
50	SnO2	lin	8.5791	0.00135 %	0.00008 %
51	Sb205	Antimony	0.9759	< 0.00040 %	(0.0) %
52	le	I ellurium	0.0000	< 0.00030 %	(0.0) %
53		Iodine	0.0000		
00 56		Derium	2.0213		0.00055 %
50 57	Ба	Danun	11.0400		0.00055 %
5/	La	Carium	0.0000	< 0.00020 %	(0.0) %
00 70	Ce	Lofnium	0.0000	< 0.00020 %	(0.0) %
72	Ta2O5	Tantalum	1.4742		(0.0) %
73	WO3	Tungeton	1.5140	< 0.00012 %	(0.0) %
80	Ha	Mercury	2 0084		
81	ті	Thallium	2.9004		(0,00002 %
82		l ead	2 0820	0.00003 /00.00003 /0	0.00003 %
83	Ri	Rismuth	0.0029		(0,0) %
gn	Th	Thorium	11 5288		
92	U	Uranium	5 1672		(0.0) %
	Ŭ	oranian	0.1072		(0.0) /0

112.81 %

Sample Name	SKF1	Dilution Material		
Description		Sample Mass (g)	4.0000	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	10/19/2016	
Sample Status	AXXAXXA	Date of Evaluation	10/20/2016	
-Results				

Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error	
11	Na	Sodium	12.6839	0.231 %	0.016 %	
12	Mg	Magnesium	340.1099	2.423 %	0.010 %	
13	Al	Aluminum	1911.7565	3.419 %	0.005 %	
14	Si	Silicon	24825.7282	18.10 %	0.01 %	
15	Р	Phosphorus	120.5549	0.05071 %	0.00041 %	
16	S	Sulfur	341.1589	0.06514 %	0.00022 %	
17	CI	Chlorine	137.2681	0.00874 %	0.00005 %	
19	K	Potassium	98.7503	0.3108 %	0.0030 %	
20	Ca	Calcium	5023.5314	11.49 %	0.01 %	
22	Ti	Titanium	221.6571	0.4104 %	0.0028 %	
23	V	Vanadium	0.0000	< 0.0019 %	(0.0018) %	
24	Cr	Chromium	14.3013	0.00500 %	0.00035 %	
25	Mn	Manganese	1054.9085	0.4372 %	0.0013 %	
26	Fe	Iron	45663.1512	12.51 %	0.01 %	
27	Co	Cobalt	5.7767	0.00474 %	0.00038 %	
28	Ni	Nickel	22.8071	0.00407 %	0.00011 %	
29	Cu	Copper	9.0242	0.00132 %	0.00007 %	
30	Zn	Zinc	23.5690	0.00260 %	0.00006 %	
31	Ga	Gallium	9.6861	0.00085 %	0.00004 %	
32	Ge	Germanium	3.3786	0.00022 %	0.00003 %	
33	As	Arsenic	15.5877	0.00079 %	0.00003 %	
34	Se	Selenium	1.2178	0.00005 %	0.00002 %	
35	Br	Bromine	2.7666	0.00012 %	0.00002 %	
37	Rb	Rubidium	59.1223	0.00148 %	0.00003 %	
38	Sr	Strontium	488.2850	0.01101 %	0.00005 %	
39	Y	Yttrium	197.6509	0.00431 %	0.00003 %	
40	Zr	Zirconium	54.4445	0.01827 %	0.00020 %	
41	Nb	Niobium	4,7546	0.00123 %	0.00007 %	
42	Мо	Molvbdenum	1,1924	0.00019 %	0.00004 %	
47	Aa	Silver	0.0000	< 0.00020 %	(0.0) %	
48	Cď	Cadmium	0.0000	< 0.00020 %	(0.0) %	
50	Sn	Tin	8,7898	0.00173 %	0.00009 %	
51	Sb	Antimony	0.5535	< 0.00030 %	(0.0) %	
52	Те	Tellurium	1.3987	< 0.00030 %	(0.0) %	
53	I	lodine	0.0000	< 0.00030 %	(0.0) %	
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %	
56	Ba	Barium	2.8427	0.00018 %	0.00006 %	
57	la	Lanthanum	2 4201	< 0.00020 %	(0,0) %	
58	Ce	Cerium	2 8226	0.00046 %	0.00015 %	
68	Fr	Frbium	2 1046	< 0.00070 %	(0,00069) %	
70	 Yh	Ytterbium	3 4036	< 0.00020 %	(0.00000) %	
72	Hf	Hafnium	2 4543	< 0.00010 %	(0.0) %	
73	Ta	Tantalum	1 3364		(0.0) %	
74	W	Tunasten	0 0000	< 0.00010 %	(0.0) %	
	· •		0.0000	0.00010 /0	()	

Sample Name Description		SKF1	Date of Re Method	Date of Receipt Method	10/19/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
80 81 82 83 90 92	Hg TI Pb Bi Th U	Mercury Thallium Lead Bismuth Thorium Uranium	0.0000 0.0000 4.9274 0.0000 0.0000 2.7791	< 0.00010 % < 0.00010 % 0.00047 % < 0.00010 % < 0.00010 % < 0.00010 %	(0.0) % (0.0) % 0.00007 % (0.0) % (0.0) %

Samp Descr	le Name iption	SKF1		Date of Receipt Method	10/19/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	12 6839	0.311 %	0.021 %
12	MaQ	Magnesium	340 1099	4 0 1 9 %	0.016 %
13	AI2O3	Aluminum	1911 7565	6 4 5 9 %	0.010 %
14	SiO2	Silicon	24825 7282	38.73 %	0.03 %
15	P205	Phosphorus	120 5549	0 1162 %	0.0009 %
16	SO3	Sulfur	341,1589	0.1626 %	0.0005 %
17	CI	Chlorine	137.2681	0.00874 %	0.00005 %
19	K20	Potassium	98 7503	0.3744 %	0.0037 %
20	CaO	Calcium	5023.5314	16.08 %	0.02 %
22	TiO2	Titanium	221 6571	0.6846 %	0.0046 %
23	V205	Vanadium	0 0000	< 0.0034 %	(0.0033) %
24	Cr2O3	Chromium	14.3013	0.00730 %	0.00052 %
25	MnO	Manganese	1054,9085	0.5646 %	0.0017 %
26	Fe2O3	Iron	45663,1512	17.88 %	0.01 %
27	CoO	Cobalt	5.7767	0.00603 %	0.00048 %
28	NiO	Nickel	22.8071	0.00519 %	0.00015 %
29	CuO	Copper	9.0242	0.00166 %	0.00009 %
30	ZnO	Zinc	23,5690	0.00324 %	0.00008 %
31	Ga	Gallium	9 6861	0.00085 %	0.00004 %
32	Ge	Germanium	3.3786	0.00022 %	0.00003 %
33	As2O3	Arsenic	15.5877	0.00104 %	0.00004 %
34	Se	Selenium	1.2178	0.00005 %	0.00002 %
35	Br	Bromine	2.7666	0.00012 %	0.00002 %
37	Rb2O	Rubidium	59.1223	0.00162 %	0.00003 %
38	SrO	Strontium	488.2850	0.01302 %	0.00005 %
39	Y	Yttrium	197.6509	0.00431 %	0.00003 %
40	ZrO2	Zirconium	54.4445	0.02468 %	0.00028 %
41	Nb2O5	Niobium	4.7546	0.00175 %	0.00010 %
42	Мо	Molybdenum	1.1924	0.00019 %	0.00004 %
47	Ag	Silver	0.0000	< 0.00020 %	(0.0) %
48	Cď	Cadmium	0.0000	< 0.00020 %	(0.0) %
50	SnO2	Tin	8.7898	0.00220 %	0.00011 %
51	Sb2O5	Antimony	0.5535	< 0.00040 %	(0.0) %
52	Те	Tellurium	1.3987	< 0.00030 %	(0.0) %
53	I	lodine	0.0000	< 0.00030 %	(0.0) %
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %
56	Ва	Barium	2.8427	0.00018 %	0.00006 %
57	La	Lanthanum	2.4201	< 0.00020 %	(0.0) %
58	Ce	Cerium	2.8226	0.00046 %	0.00015 %
68	Er	Erbium	2.1046	< 0.00070 %	(0.00069) %
70	Yb	Ytterbium	3.4036	< 0.00020 %	(0.0) %
72	Hf	Hafnium	2.4543	< 0.00010 %	(0.0) %
73	Ta2O5	Tantalum	1.3364	< 0.00012 %	(0.0) %
74	WO3	Tungsten	0.0000	< 0.00013 %	(0.0) %
80	Hg	Mercury	0.0000	< 0.00010 %	(0.0) %
81	TI	Thallium	0.0000	< 0.00010 %	(0.0) %
82	PbO	Lead	4.9274	0.00050 %	0.00007 %
83	Bi	Bismuth	0.0000	< 0.00010 %	(0.0) %
90	Th	Thorium	0.0000	< 0.00010 %	(0.0) %
92	U	Uranium	2.7791	< 0.00010 %	(0.0) %
		Sum of concent	ration	85.47 %	

85.47

Sample Name	SK2	Dilution Material		
Description		Sample Mass (g)	4.0060	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	07/11/2016	
Sample Status	AXXAXXA	Date of Evaluation	07/12/2016	
-Results				

Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
	NL-	O a alla saa	45 4000	0.004	0.010
11	Na	Sodium	15.1289	0.324 %	0.019 %
12	ivig	Magnesium	16.1027	0.0485 %	0.0028 %
13	AI	Aluminum	2119.6120	5.229 %	0.008 %
14	SI	Silicon	27941.1366	28.72 %	0.02 %
15	P	Phosphorus	210.7503	0.1273 %	0.0006 %
16	S	Sultur	283.8307	0.07645 %	0.00029 %
1/	CI	Chlorine	175.8094	0.01821 %	0.00009 %
19	ĸ	Potassium	251.9280	1.056 %	0.005 %
20	Ca		39.8574	0.0938 %	0.0015 %
22		Litanium	262.0177	0.4663 %	0.0039 %
23	V	Vanadium	0.0000	< 0.0013 %	(0.0013) %
24	Cr	Chromium	17.4424	0.00630 %	0.00062 %
25	Mn	Manganese	898.2761	0.3564 %	0.0015 %
26	Fe	Iron	98723.2693	25.96 %	0.02 %
27	Co	Cobalt	2.9102	0.00127 %	0.00026 %
28	Ni	Nickel	29.6596	0.00705 %	0.00019 %
29	Cu	Copper	77.9889	0.01495 %	0.00021 %
30	Zn	Zinc	67.4081	0.00975 %	0.00014 %
31	Ga	Gallium	5.2718	0.00061 %	0.00007 %
32	Ge	Germanium	0.0000	< 0.00005 %	(0.0) %
33	As	Arsenic	23.1884	0.00154 %	0.00005 %
34	Se	Selenium	0.0000	< 0.00005 %	(0.0) %
35	Br	Bromine	0.8740	< 0.00005 %	(0.00005) %
37	Rb	Rubidium	89.1926	0.00294 %	0.00007 %
38	Sr	Strontium	72.1871	0.00215 %	0.00004 %
39	Y	Yttrium	56.2974	0.00162 %	0.00004 %
40	Zr	Zirconium	55.1374	0.02437 %	0.00025 %
41	Nb	Niobium	4.0613	0.00138 %	0.00009 %
42	Мо	Molybdenum	1.1756	0.00024 %	0.00006 %
47	Ag	Silver	0.0000	< 0.00020 %	(0.0) %
48	Cď	Cadmium	1.0688	< 0.00020 %	(0.0) %
50	Sn	Tin	5.7051	0.00093 %	0.00006 %
51	Sb	Antimony	0.0000	< 0.00030 %	(0.0) %
52	Те	Tellurium	2.0713	< 0.00030 %	(0.0) %
53	I	lodine	1.0179	< 0.00030 %	(0.0) %
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %
56	Ва	Barium	10.2498	0.00878 %	0.00061 %
57	La	Lanthanum	1.6846	< 0.00020 %	(0.0) %
58	Ce	Cerium	2,9009	0.00070 %	0.00018 %
72	Hf	Hafnium	4.3048	< 0.00010 %	(0.0) %
73	Та	Tantalum	1.3203	< 0.00010 %	(0.0) %
74	W	Tunasten	1.5713	< 0.00010 %	(0.0) %
80	На	Mercury	0.0000	< 0.00010 %	(0,0) %
81	TI	Thallium	0.0000	< 0.00010 %	(0.0) %
-					

Sampl Descri	e Name ption	SK2		Date of Receipt Method	07/1 Turb	1/2016 ooQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. E	rror
82 83 90 92	Pb Bi Th U	Lead Bismuth Thorium Uranium	0.0000 0.0000 0.0000 0.0000	< 0.00010 % < 0.00010 % < 0.00010 % < 0.00010 %	(0.0) (0.0) (0.0) (0.0)	% % %

Samp Descr	le Name iption	SK2		Date of Receipt Method	07/11/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	15.1289	0.436 %	0.026 %
12	MaO	Magnesium	16.1027	0.0804 %	0.0046 %
13	AIŽO3	Aluminum	2119.6120	9.879 %	0.015 %
14	SiO2	Silicon	27941.1366	61.46 %	0.04 %
15	P2O5	Phosphorus	210,7503	0.2917 %	0.0014 %
16	SO3	Sulfur	283.8307	0.1909 %	0.0007 %
17	CI	Chlorine	175.8094	0.01821 %	0.00009 %
19	K20	Potassium	251,9280	1.272 %	0.006 %
20	CaO	Calcium	39.8574	0.1313 %	0.0021 %
22	TiO2	Titanium	262 0177	0 7779 %	0.0065 %
23	V205	Vanadium	0,0000	< 0.0024 %	(0.0024) %
24	Cr2O3	Chromium	17 4424	0.00920 %	0.00090 %
25	MnO	Manganese	898 2761	0.4602 %	0.0020 %
26	Fe2O3	Iron	08723 2603	37 12 %	0.02 %
20	CoO	Cobalt	2 0102	0.00162 %	0.0034 %
28	NiO	Nickel	20 6506	0.00102 %	0.00034 %
20		Conner	77 0880	0.01871 %	0.00025 %
29	ZnO	Zinc	67 /081	0.01071 %	0.00020 %
21	Ga	Callium	5 2719	0.01214 /0	0.00017 %
31 22	Ga	Gailluitt	0.0000		(0,0) $(0,0)$ $(0,0)$
3Z 22		Araonio	0.0000	< 0.00005 %	
20	A\$203	Alsenium	23.1004		(0,0) $(0,0)$ $(0,0)$
34	Se Dr	Dramina	0.0000		(0.0) %
30 27		Bromine	0.0740		
31 20	RDZU SrO	Streptium	09.1920	0.00322 %	
30 20	510	Strontium	12.1011	0.00254 %	0.00005 %
39	ĭ Z∗OQ		50.2974		0.00004 %
40	ZrO2		55.1374	0.03292 %	0.00034 %
41	ND2O5	NIODIUM	4.0613	0.00197 %	0.00012 %
42	IVIO	Molybdenum	1.1756	0.00024 %	0.00006 %
47	Ag	Silver	0.0000	< 0.00020 %	(0.0) %
48	Ca		1.0688	< 0.00020 %	(0.0) %
50	SnO2	lin	5.7051	0.00118 %	0.00007 %
51	Sb2O5	Antimony	0.0000	< 0.00040 %	(0.0) %
52	le	lellurium	2.0713	< 0.00030 %	(0.0) %
53	I	lodine	1.0179	< 0.00030 %	(0.0) %
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %
56	Ba	Barium	10.2498	0.00878 %	0.00061 %
57	La	Lanthanum	1.6846	< 0.00020 %	(0.0) %
58	Ce	Cerium	2.9009	0.00070 %	0.00018 %
72	Hf	Hafnium	4.3048	< 0.00010 %	(0.0) %
73	Ta2O5	Tantalum	1.3203	< 0.00012 %	(0.0) %
74	WO3	Tungsten	1.5713	< 0.00013 %	(0.0) %
80	Hg	Mercury	0.0000	< 0.00010 %	(0.0) %
81	TI	Thallium	0.0000	< 0.00010 %	(0.0) %
82	PbO	Lead	0.0000	< 0.00011 %	(0.0) %
83	Bi	Bismuth	0.0000	< 0.00010 %	(0.0) %
90	Th	Thorium	0.0000	< 0.00010 %	(0.0) %
92	U	Uranium	0.0000	< 0.00010 %	(0.0) %
				440.00	

112.22 %

Sample Name	SK1	Dilution Material		
Description		Sample Mass (g)	3.0000	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	07/11/2016	
Sample Status	AXXAXXA	Date of Evaluation	07/11/2016	
-Results				

11 Na Sodium 12.1713 0.268 % 0.017 % 12 Mg Magnesium 22.6863 0.1084 % 0.0038 % 13 Al Aluminum 1133.9796 2.529 % 0.005 % 14 Si Silicon 20775.628 18.60 % 0.001 % 15 P Phosphorus 273.8913 0.1379 % 0.0003 % 16 S Sulfuri 497.6556 0.1186 % 0.0013 % 12 Ca Calcium 62.6083 0.1336 % 0.0017 % 22 Ti Titanium 142.3543 0.2138 % 0.00077 % 23 V Vanadium 0.0000 0.0012 % 0.0017 % 24 Cr Chromium 18.2530 0.00572 % 0.00077 % 25 Mn Magagees <td< th=""><th>Z</th><th>Symbol</th><th>Element</th><th>Norm. Int.</th><th>Concentration</th><th>Abs. Error</th></td<>	Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11 Na Sodurn 12.1713 0.268 % 0.0038 % 13 Al Aluminum 113.3796 2.529 % 0.005 % 14 Si Silicon 20775.6285 18.60 % 0.011 % 15 P Phosphorus 273.8913 0.1379 % 0.0005 % 16 S Sulfur 497.6558 0.1186 % 0.0009 % 17 Cl Chlorine 232.666 0.02182 % 0.0017 % 20 Ca Calcium 62.6083 0.1336 % 0.0039 % 22 Ti Titanium 142.3543 0.2138 % 0.00077 % 23 V Vanadium 0.0000 < 0.0012						
12 Mg Magnesium 22.6863 0.1084 % 0.0038 % 14 Si Silicon 20776.6285 18.60 % 0.011 % 15 P Phosphorus 273.8913 0.1379 % 0.0005 % 16 S Suffur 497.6558 0.1186 % 0.0003 % 17 Cl Chiorine 232.6661 0.02192 % 0.0009 % 20 Ca Calcium 62.6083 0.1336 % 0.0013 % 21 Ti Titanium 142.3543 0.2138 % 0.0017 % 23 V Variadium 0.0000 <0.012	11	Na	Sodium	12.1713	0.268 %	0.017 %
13 Al Aluminum 11339796 2.529 % 0.005 % 14 Si Silicon 207756282 18.60 % 0.0005 % 15 P Phosphorus 273.8913 0.1379 % 0.0003 % 16 S Sulfur 497.6558 0.1186 % 0.0003 % 17 CI Chlorine 232.6661 0.02192 % 0.0007 % 20 Ca Calcium 62.6083 0.1336 % 0.0013 % 22 Ti Titanium 142.3543 0.2138 % 0.0017 % 23 V Vanadium 0.0000 0.00572 % 0.0017 % 24 Cr Chromium 18.2530 0.0564 % 0.0027 % 25 Mn Manganese 93.1002 0.3223 % 0.0017 % 26 Fe Iron 147948.5096 34.11 % 0.0028 % 27 C	12	Mg	Magnesium	22.6863	0.1084 %	0.0038 %
14 Si Silicon 2077.6285 18.60 % 0.0005 15 P Phosphorus 273.8913 0.1379 % 0.0003 % 16 S Sulfur 497.6558 0.1186 % 0.0003 % 17 Cl Chlorine 232.6661 0.02192 % 0.0007 % 20 Ca Calcium 62.6083 0.1336 % 0.0013 % 21 Ti Titanium 142.3543 0.2138 % 0.00077 % 23 V Vanadium 0.0000 <0.01572	13	Al	Aluminum	1133.9796	2.529 %	0.005 %
15 P Phosphorus 273.8913 0.1379 % 0.0005 % 16 S Sulfur 497.6558 0.1186 % 0.0003 % 17 Cl Chlorine 232.6661 0.02192 % 0.0003 % 19 K Potassium 96.9379 0.3372 % 0.0013 % 20 Ca Calcium 62.6083 0.1336 % 0.0012 % 21 Ti Titanium 142.3543 0.2138 % 0.00077 % 23 V Vanadium 0.0000 <0.0122	14	Si	Silicon	20775.6285	18.60 %	0.01 %
16 S Sulfur 497.6558 0.1186 % 0.0003 % 17 CI Chlorine 232.6661 0.02192 % 0.00009 % 19 K Potassium 96.9379 0.3372 % 0.0027 % 20 Ca Calcium 62.6083 0.1336 % 0.0039 % 23 V Vanadium 142.3543 0.2138 % 0.00077 % 24 Cr Chromium 18.2530 0.00172 % 0.0017 % 25 Mn Maganese 939.1002 0.3223 % 0.0017 % 26 Fe Iron 147948.5096 34.11 % 0.0024 % 27 Co Cobalt 0.1882 <0.00030	15	Р	Phosphorus	273.8913	0.1379 %	0.0005 %
17 Cl Chlorine 232,6661 0.02192 % 0.0000 % 19 K Polassium 66,9379 0.3372 % 0.0027 % 20 Ca Calcium 62,6083 0.1336 % 0.0013 % 21 V Vanadium 0.0000 <0.012	16	S	Sulfur	497.6558	0.1186 %	0.0003 %
19 K Potassium 96.9379 0.3372 % 0.0027 % 20 Ca Calcium 62.6083 0.1336 % 0.0039 % 22 Ti Titanium 142.3543 0.2138 % 0.0039 % 23 V Vanadium 0.0000 <0.0012	17	CI	Chlorine	232.6661	0.02192 %	0.00009 %
20 Ca Calcium 62.6083 0.1336 % 0.0013 % 21 Ti Titanium 142.3543 0.2138 % 0.0039 % 23 V Vanadium 0.0000 <0.0012	19	K	Potassium	96.9379	0.3372 %	0.0027 %
22 Ti Titanium 142.3543 0.2138 % 0.0039 % 23 V Vanadium 0.0000 < 0.0012	20	Са	Calcium	62.6083	0.1336 %	0.0013 %
23 V Vanadium 0.0000 < 0.0012	22	Ti	Titanium	142.3543	0.2138 %	0.0039 %
24 Cr Chromium 18.2530 0.00572 % 0.00077 % 25 Mn Manganese 939.1002 0.3223 % 0.0017 % 26 Fe Iron 147948.5096 34.11 % 0.022 % 27 Co Cobalt 0.1882 < 0.00030	23	V	Vanadium	0.0000	< 0.0012 %	(0.0012) %
25 Mn Manganese 939.1002 0.3223 % 0.0017 % 26 Fe Iron 147948.5096 34.11 % 0.022 % 27 Co Cobalt 0.1882 < 0.00030	24	Cr	Chromium	18.2530	0.00572 %	0.00077 %
26 Fe Iron 147948.5096 34.11 % 0.02 % 27 Co Cobalt 0.1882 < 0.00030	25	Mn	Manganese	939.1002	0.3223 %	0.0017 %
27 Co Cobalt 0.1882 < 0.00030	26	Fe	Iron	147948.5096	34.11 %	0.02 %
28 Ni Nickel 19.9062 0.00564 % 0.0028 % 29 Cu Copper 97.2999 0.0229 % 0.00034 % 30 Zn Zinc 76.5603 0.01370 % 0.00022 % 31 Ga Gallium 0.5914 <0.0009	27	Co	Cobalt	0.1882	< 0.00030 %	(0.0) %
29 Cu Copper 97.2999 0.0229 % 0.00034 % 30 Zn Zinc 76.5603 0.01370 % 0.00022 % 31 Ga Gallium 0.5914 <0.00009 %	28	Ni	Nickel	19.9062	0.00564 %	0.00028 %
30 Zn Zinc 76.5603 0.01370 % 0.00022 % 31 Ga Gallium 0.5914 <0.00009	29	Cu	Copper	97.2999	0.02299 %	0.00034 %
31 Ga Gallium 0.5914 < 0.00009	30	Zn	Zinc	76.5603	0.01370 %	0.00022 %
32 Ge Germanium 0.0000 < 0.00005	31	Ga	Gallium	0.5914	< 0.00009 %	(0.00009) %
33 As Arsenic 8.5754 0.00071 % 0.0006 % 34 Se Selenium 0.0000 < 0.00005	32	Ge	Germanium	0.0000	< 0.00005 %	(0.0) %
34 Se Selenium 0.0000 < 0.00005 % (0.0) % 35 Br Bromine 0.0000 < 0.00005	33	As	Arsenic	8.5754	0.00071 %	0.00006 %
35 Br Bromine 0.0000 < 0.00005 % (0.0) % 37 Rb Rubidium 24.9869 0.00104 % 0.00006 % 38 Sr Strontium 13.6158 0.00051 % 0.00006 % 39 Y Yttrium 24.5568 0.00089 % 0.00024 % 40 Zr Zirconium 25.9890 0.01453 % 0.00008 % 41 Nb Niobium 1.2525 0.00045 % 0.00008 % 42 Mo Molybdenum 1.4845 0.00020 % (0.0) % 43 Cd Cadmium 0.0000 < 0.00020	34	Se	Selenium	0.0000	< 0.00005 %	(0.0) %
37 Rb Rubidium 24.9869 0.00104 % 0.00011 % 38 Sr Strontium 13.6158 0.00051 % 0.00006 % 39 Y Yttrium 24.5568 0.00089 % 0.00024 % 40 Zr Zirconium 25.9890 0.01453 % 0.00024 % 41 Nb Niobium 1.2525 0.00054 % 0.00008 % 42 Mo Molybdenum 1.4845 0.00020 % (0.0) % 47 Ag Silver 0.0000 <0.00020	35	Br	Bromine	0.0000	< 0.00005 %	(0.0) %
38 Sr Strontium 13.6158 0.00051 % 0.00006 % 39 Y Yttrium 24.5568 0.00089 % 0.00024 % 40 Zr Zirconium 25.9890 0.01453 % 0.00024 % 41 Nb Niobium 1.2525 0.00054 % 0.00010 % 42 Mo Molybdenum 1.4845 0.00020 % (0.0) % 48 Cd Cadmium 0.0000 < 0.00020 %	37	Rb	Rubidium	24.9869	0.00104 %	0.00011 %
39 Y Yttrium 24.5568 0.00089 % 0.00005 % 40 Zr Zirconium 25.9890 0.01453 % 0.00024 % 41 Nb Niobium 1.2525 0.00054 % 0.00008 % 42 Mo Molybdenum 1.4845 0.00020 % (0.0) % 43 Cd Cadmium 0.0000 < 0.00020	38	Sr	Strontium	13.6158	0.00051 %	0.00006 %
40 Zr Zirconium 25.9890 0.01453 % 0.00024 % 41 Nb Niobium 1.2525 0.00054 % 0.00008 % 42 Mo Molybdenum 1.4845 0.00020 % (0.0) % 47 Ag Silver 0.0000 < 0.00020	39	Y	Yttrium	24.5568	0.00089 %	0.00005 %
41 Nb Niobium 1.2525 0.00054 % 0.00010 % 42 Mo Molybdenum 1.4845 0.00045 % 0.00008 % 47 Ag Silver 0.0000 < 0.0020 %	40	Zr	Zirconium	25.9890	0.01453 %	0.00024 %
42 Mo Molybdenum 1.4845 0.00045 % 0.00008 % 47 Ag Silver 0.0000 < 0.00020 %	41	Nb	Niobium	1.2525	0.00054 %	0.00010 %
47 Ag Silver 0.0000 < 0.00020	42	Мо	Molybdenum	1.4845	0.00045 %	0.00008 %
48 Cd Cadmium 0.0000 < 0.00020 %	47	Ag	Silver	0.0000	< 0.00020 %	(0.0) %
50 Sn Tin 5.1700 0.00091 % 0.00006 % 51 Sb Antimony 1.7216 < 0.00030 %	48	Cd	Cadmium	0.0000	< 0.00020 %	(0.0) %
51 Sb Antimony 1.7216 < 0.00030 %	50	Sn	Tin	5.1700	0.00091 %	0.00006 %
52 Te Tellurium 3.8659 < 0.00030 %	51	Sb	Antimony	1.7216	< 0.00030 %	(0.0) %
53 I Iodine 2.4072 0.00068 % 0.00016 % 55 Cs Cesium 0.0000 < 0.00040 %	52	Те	Tellurium	3.8659	< 0.00030 %	(0.0) %
55 Cs Cesium 0.0000 < 0.00040 %	53	1	lodine	2.4072	0.00068 %	0.00016 %
56 Ba Barium 9.4018 0.01001 % 0.00072 % 57 La Lanthanum 0.0000 < 0.00020 %	55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %
57 La Lanthanum 0.0000 < 0.00020 %	56	Ва	Barium	9.4018	0.01001 %	0.00072 %
58 Ce Cerium 2.4587 < 0.00020 % (0.0) % 72 Hf Hafnium 0.0000 < 0.00010 %	57	La	Lanthanum	0.0000	< 0.00020 %	(0.0) %
72 Hf Hafnium 0.0000 < 0.00010 %	58	Ce	Cerium	2.4587	< 0.00020 %	(0.0) %
73TaTantalum1.6264< 0.00010 %(0.0)%74WTungsten2.0430< 0.00010 %	72	Hf	Hafnium	0.0000	< 0.00010 %	(0.0) %
74WTungsten2.0430< 0.00010 %(0.0)%80HgMercury0.0000< 0.00010 %	73	Та	Tantalum	1.6264	< 0.00010 %	(0.0) %
80 Hg Mercury 0.0000 < 0.00010 % % 81 TI Thallium 0.0000 < 0.00010	74	W	Tungsten	2.0430	< 0.00010 %	(0.0) %
81 TI Thallium 0.0000 < 0.00010 % (0.0) %	80	Hq	Mercury	0.0000	< 0.00010 %	(0.0) %
	81	ТЇ	Thallium	0.0000	< 0.00010 %	(0.0) %

Sampl Descri	e Name ption	SK1		Date of Receipt Method	07/1 Turb	1/2016 poQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. E	rror
82 83 90 92	Pb Bi Th U	Lead Bismuth Thorium Uranium	0.0000 0.0000 0.0000 0.0000	< 0.00010 % < 0.00010 % < 0.00010 % < 0.00010 %	(0.0) (0.0) (0.0) (0.0)	% % %

Samp Descr	le Name iption	SK1		Date of Receipt Method	07/11/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	12 1713	0.361 %	0.023 %
12	MaO	Magnesium	22 6863	0.1798 %	0.0063 %
13	AI2O3	Aluminum	1133 9796	4 778 %	0.010 %
14	SiO2	Silicon	20775 6285	39.80 %	0.03 %
15	P205	Phosphorus	20173.0203	0.3160 %	0.0012 %
16	SO3	Sulfur	497 6558	0.2961 %	0.0012 %
17		Chlorine	232 6661	0.02192 %	0.0000 %
10	K20	Dotassium	06 0370	0.02132 %	0.0033 %
20	C2O	Calcium	90.9379 62.6083	0.4002 %	0.0033 /8
20		Titonium	142 2542	0.3566 %	0.0065 %
22	102	Vanadium	0 0000	<pre>0.000 /8</pre>	(0.0003) %
23	V205 Cr203	Chromium	18 2520	< 0.0021 /6 0.0084 %	(0.0021) /8
24	MpO	Manganaga	020 1002	0.0084 /8	
20	Eo2O2	Ividilydilese	939.1002	0.4102 %	0.0022 %
20	FezO3	Coholt	14/940.0090	40.77 70	(0.0) (0.0) (0.0)
21		Niekol	10,0062		
20		Coppor	19.9002		
29	ZnO	Zino	97.2999		0.00042 %
30		Collium	70.0003		
১ । ১০	Ga	Gaillum	0.0914		(0.00009)%
ు∠ ఎఎ	Ge	Aroonio	0.0000	< 0.00005 %	
24	AS203	Solonium	0.0704		(0,0) $(0,0)$ $(0,0)$
25	Dr	Bromino	0.0000		(0.0) 78
30 27		Bromine	0.0000		
30	RD20 SrO	Strontium	24.9009		0.00012 %
30	310 V	Vttrium	24 5569		0.00007 /8
<u>40</u>	ı Zr⊖2	Zirconium	24.000	0.00009 %	0.00003 %
40		Niobium	20.9090	0.0077 %	0.00032 /0
41 12	Mo Mo	Molybdenum	1.2525	0.00077 %	0.00014 %
42		Silver	0.000		(0,0) %
47 18	Cd	Cadmium	0.0000	< 0.00020 %	(0.0) %
4 0 50	SnO2	Tin	5 1700	0.00020 %	
50	Sh205	Antimony	1 7216		(0,0) %
52	30203 To	Tellurium	3 8650	< 0.00040 %	(0.0) %
52		Indine	2 4072	0.00050 %	0.00016 %
55		Cesium	0.000	< 0.00000 %	(0,0) %
56	Ba	Barium	0.0000	0.00040 %	0.0072 %
57	La	Lanthanum	9.4010		(0,0) 0/2 /0
59	La	Corium	0.0000	< 0.00020 %	(0.0) 70
50 72	Uf	Hofpium	2.4007	< 0.00020 %	(0.0) 78
72	Ta2O5	Tantalum	0.0000		(0.0) 78
73	1a205	Tungston	2 0420	< 0.00012 %	(0.0) 78
20	Ha	Mercury	2.0 4 30 0.0000		(0.0) %
00 Q1	TIQ TI	Thallium	0.0000	< 0.00010 %	(0.0) 78
01 82					(0.0) /0 (0.0) %
02 82	FUU Bi	Riemuth			(0.0) %
00 00	Th	Thorium			(0.0) $\frac{1}{2}$
90 02		Ilranium	0.0000		(0.0) %
52	U	Uranium	0.0000	< 0.00010 %	(0.0) /0
		Sum of concent	tration	96.00 %	

96.00

Sample Name	SIR5	Dilution Material		
Description		Sample Mass (g)	4.1180	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	07/11/2016	
Sample Status	AXXAXXA	Date of Evaluation	07/12/2016	
-Results				

Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error	
11	Na	Sodium	21.1321	0.699 %	0.038 %	
12	Mg	Magnesium	18.1580	0.0571 %	0.0037 %	
13	AI	Aluminum	2395.1812	4.876 %	0.008 %	
14	Si	Silicon	42176.8685	36.84 %	0.02 %	
15	Р	Phosphorus	215.1924	0.1324 %	0.0007 %	
16	S	Sulfur	269.8930	0.07335 %	0.00031 %	
17	CI	Chlorine	85.4473	0.00534 %	0.00005 %	
19	K	Potassium	231.1645	0.9810 %	0.0059 %	
20	Са	Calcium	41.4587	0.0998 %	0.0018 %	
22	Ti	Titanium	334.4507	0.5984 %	0.0033 %	
23	V	Vanadium	0.0000	< 0.0013 %	(0.0013) %	
24	Cr	Chromium	14.3043	0.00480 %	0.00038 %	
25	Mn	Manganese	205.9825	0.08150 %	0.00074 %	
26	Fe	Iron	57223.5185	14.91 %	0.01 %	
27	Co	Cobalt	3.4026	0.00191 %	0.00029 %	
28	Ni	Nickel	31.3837	0.00591 %	0.00013 %	
29	Cu	Copper	14.3242	0.00216 %	0.00009 %	
30	Zn	Zinc	26.4944	0.00300 %	0.00007 %	
31	Ga	Gallium	12.4213	0.00112 %	0.00005 %	
32	Ge	Germanium	0.0000	< 0.00005 %	(0.0) %	
33	As	Arsenic	0.0000	< 0.00005 %	(0.0) %	
34	Se	Selenium	0.6739	< 0.00003 %	(0.00003) %	
35	Br	Bromine	0.0000	< 0.00005 %	(0.0) %	
37	Rb	Rubidium	137.4010	0.00351 %	0.00004 %	
38	Sr	Strontium	274.3923	0.00632 %	0.00004 %	
39	Y	Yttrium	102.7468	0.00229 %	0.00003 %	
40	Zr	Zirconium	113.6259	0.03893 %	0.00028 %	
41	Nb	Niobium	6.4566	0.00170 %	0.00008 %	
42	Мо	Molybdenum	3.7874	0.00095 %	0.00009 %	
47	Ag	Silver	0.0000	< 0.00020 %	(0.0) %	
48	Cd	Cadmium	0.6497	< 0.00020 %	(0.0) %	
50	Sn	Tin	7.8769	0.00144 %	0.00008 %	
51	Sb	Antimony	1.2138	< 0.00030 %	(0.0) %	
52	Те	Tellurium	1.5714	< 0.00030 %	(0.0) %	
53	I	lodine	0.0000	< 0.00030 %	(0.0) %	
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %	
56	Ва	Barium	10.7174	0.00792 %	0.00063 %	
57	La	Lanthanum	1.9491	< 0.00020 %	(0.0) %	
58	Ce	Cerium	0.0000	< 0.00020 %	(0.0) %	
72	Hf	Hafnium	5.0016	0.00053 %	0.00005 %	
73	Та	Tantalum	2.4314	< 0.00010 %	(0.0) %	
74	W	Tungsten	2.0086	< 0.00010 %	(0.0) %	
80	Hg	Mercury	2.4644	< 0.00010 %	(0.0) %	
81	ΤI	Thallium	1.2421	0.00007 %	0.00003 %	

Samp Descr	le Name iption	SIR5		Date of Receipt Method	07/11/2016 TurboQuant-Powders	
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error	
82 83 90 92	Pb Bi Th U	Lead Bismuth Thorium Uranium	77.3756 0.0000 0.0000 0.3039	0.00766 % < 0.00010 % < 0.00010 % < 0.00010 %	0.00009 % (0.0) % (0.0) % (0.0) %	

Sampl Descri	e Name ption	SIR5		Date of Receipt Method	07/11/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	21.1321	0.942 %	0.051 %
12	MqO	Magnesium	18.1580	0.0948 %	0.0061 %
13	AIZO3	Aluminum	2395,1812	9.212 %	0.015 %
14	SiO2	Silicon	42176.8685	78.81 %	0.05 %
15	P205	Phosphorus	215,1924	0.3034 %	0.0017 %
16	SO3	Sulfur	269.8930	0.1831 %	0.0008 %
17	CI	Chlorine	85.4473	0.00534 %	0.00005 %
19	K20	Potassium	231 1645	1 182 %	0.007 %
20	CaO	Calcium	41 4587	0 1396 %	0.0025 %
22	TiO2	Titanium	334 4507	0.9984 %	0.0055 %
23	V205	Vanadium	0,000	< 0.0023 %	(0.0023) %
24	Cr2O3	Chromium	14 3043	0.00702 %	0.00056 %
25	MnO	Manganese	205 9825	0.1052 %	0.0010 %
26	Fe2O3	Iron	57223 5185	21.31 %	0.01 %
20	CoO	Cohalt	3 /026	0.00243 %	0.00037 %
28		Nickel	31 3837	0.00243 %	0.00016 %
20		Copper	1/ 32/2		0.00010 %
29	ZnO	Zinc	26 /0//	0.00270 %	
21	Ga	Callium	10 4012	0.00374 /8	0.00005 %
20	Ga	Cormonium	0.0000		(0,0) $(0,0)$ $(0,0)$
32 33		Arconic	0.0000		(0.0) 76 (0.0) 94
34	A5203	Solonium	0.0000		(0.0) /8
25	Dr	Bromino	0.0739		(0.00003) / 8
33		Dubidium	137 4010		
20	SrO	Strontium	27/ 2022	0.00304 %	0.00004 /8
30	310 V	Vttrium	102 7469	0.00740 %	0.00003 %
40	ı Zr⊖2	Zirconium	113 6250	0.00229 %	0.00037 %
40		Nichium	6 4566	0.00200 %	0.00037 /8
41	Mo Mo	Molybdopum	2 7 9 7 4	0.00243 %	
42		Silver	0.0000		
47	Ay Cd	Codmium	0.0000	< 0.00020 %	(0.0) /8
40 50	SnO2	Tin	7 9760		
50	SH02 Sh205	Antimony	1.0709		
52	30205 To	Tollurium	1.2130	< 0.00040 %	(0.0) 78
52		lodino	0.0000	< 0.00030 %	(0.0) 78
55		Cosium	0.0000	< 0.00030 %	(0.0) 76 (0.0) 94
55	CS Po	Borium	10 7174		
50	Da	Danun	10.7174		(0,0) $(0,0)$ $(0,0)$
57 50	La	Corium	1.9491	< 0.00020 %	(0.0) %
00 70	Ce	Lefnium	0.0000		
12			0.0010 0.4214		
73	18205	Tantalum	2.4314	< 0.00012 %	(0.0) %
/4 90	VV U 3	Tungsten			
80	Hg	Mercury	2.4644	< 0.00010 %	(0.0) %
81		i nailium	1.2421		
82 02		Lead	11.3756	0.00825 %	
83	Ы Ть	BISMUTH	0.0000	< 0.00010 %	(U.U) %
90	IN	Inorium	0.0000	< 0.00010 %	(U.U) %
92	U	Uranium	0.3039	< 0.00010 %	(U.U) %

113.40 %

Sample Name	SIR4	Dilution Material		
Description	UIX4	Sample Mass (g)	3.0000	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	07/11/2016	
Sample Status	AXXAXXA	Date of Evaluation	07/11/2016	
Desults				

- Results ------

Z	Symbol	Element	Norm. Int.	Concentration	n A	bs. Erro	or
	N	O a allana	47.0470	0.450	<i>′</i>	040	0/
11	ina Ma	Soaium	17.9479	0.458 %	0 U	.019	% 0/
12	ivig	Magnesium	1182.4902	8.141 %	。 U	.014	% 0/
13	AI	Aluminum	351.0413	0.6324 %	• 0 (.0023	%
14	51	Silicon	11698.5202	8.214 %	• 0 (.006	%
15	P	Phosphorus	25.7357	0.00883 %	• 0 (.00029	%
10	S	Sulfur	161.5593	0.02152 %	• 0 (.00011	%
17		Chiorine	528.2351	0.03819 %	• 0 (.00010	%
19	ĸ	Potassium	31.7296	0.0919 %	• 0 (.0022	%
20	Ca T:		11442.1484	24.50 %	• 0 (.02	%
22		l Itanium	8.1653	0.0193 %		.0013	% 0/
23	V	Chromium	0.0000	< 0.0012 %	。 (U	.0012)	% 0/
24	Cr	Chromium	2.7147	< 0.00010 %	₀ (U	.0)	%
25	ivin Fa	Manganese	339.8751	0.1778 %	• U	.0008	% 0/
20	Fe	Iron	14115.2559	4.859 %	• 0 (.004	%
27		Cobalt	0.5051	< 0.00030 %	o (U	.0)	%
28	NI Ou		4.9876	0.00058 %	• 0 (.00006	%
29	Cu	Copper	2.9357	0.00039 %	• 0 / 0	.00005	%
30	Zn		12.1638	0.00121 %	• 0 / 0	.00004	%
31	Ga	Gallium	0.8891	0.00007 %	• 0 (.00003	% 2/
32	Ge	Germanium	0.0000	< 0.00005 %	₀ (U	.0)	%
33	As	Arsenic	0.0000	< 0.00005 %	₀ (U	.0)	% 2/
34	Se	Selenium	0.2736	< 0.00001 %	₀ (U	.00001)	% 2/
35	Br	Bromine	2.2833	0.00009 %	6 U	.00002	%
37	RD	Rubidium	24.2749	0.00054 %	6 U	.00002	%
38	Sr	Strontium	386.6151	0.00776 %	6 U	.00003	%
39	Y 7		21.1603	0.00041 %	6 U	.00002	%
40	Zr	Zirconium	1.0707	0.00032 %	6 U	.00009	%
41	Nb	Niobium	0.1793	< 0.00004 %	6 (O	.00004)	%
42	Mo	Molybdenum	0.8466	0.00008 %	6 U	.00002	%
4/	Ag	Silver	0.1843	< 0.00007 %	6 (0	.00007)	%
48	Cd		0.0000	< 0.00020 %	6 (U	.0)	%
50	Sn	lin	7.5295	0.00127 %	6 U	.00007	%
51	Sb	Antimony	0.0000	< 0.00030 %	6 (0	.0)	%
52	le	lellurium	1.1553	< 0.00030 %	6 (0	.0)	%
53		lodine	0.0000	< 0.00030 %	6 (0	.0)	%
55	Cs	Cesium	0.0000	< 0.00040 %	6 (O	.0)	%
56	Ва	Barium	17.6684	0.01597 %	6 O	.00079	%
57	La	Lanthanum	0.0000	< 0.00020 %	6 (0	.0)	%
58	Се	Cerium	0.0000	< 0.00020 %	6 (0	.0)	%
72	Hf	Hafnium	1.4363	< 0.00010 %	6 (0	.0)	%
73	la	I antalum	1.0154	< 0.00010 %	6 (O	.0)	%
74	VV	lungsten	1.7835	< 0.00010 %	6 (O	.0)	%
80	Hg	Mercury	0.0000	< 0.00010 %	6 (0	.0)	%
81	11	Ihallium	0.0000	< 0.00010 %	ó (0	.0)	%

Samp Descr	le Name iption	SIR4		Date of Receipt Method	07/11/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
82 83 90 92	Pb Bi Th U	Lead Bismuth Thorium Uranium	1.3784 0.0000 4.5456 1.3732	0.00012 % < 0.00010 % 0.00027 % < 0.00010 %	0.00004 % (0.0) % 0.00004 % (0.0) %

Sampl Descri	le Name iption	SIR4		Date of Receipt Method	07/11/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	17.9479	0.617 %	0.026 %
12	MaO	Magnesium	1182.4902	13.50 %	0.02 %
13	AI2O3	Aluminum	351.0413	1.195 %	0.004 %
14	SiO2	Silicon	11698.5202	17.57 %	0.01 %
15	P2O5	Phosphorus	25.7357	0.02024 %	0.00066 %
16	SO3	Sulfur	161.5593	0.05372 %	0.00028 %
17	CI	Chlorine	528.2351	0.03819 %	0.00010 %
19	K2O	Potassium	31.7296	0.1107 %	0.0027 %
20	CaO	Calcium	11442.1484	34.28 %	0.02 %
22	TiO2	Titanium	8.1653	0.0322 %	0.0022 %
23	V2O5	Vanadium	0.0000	< 0.0021 %	(0.0021) %
24	Cr2O3	Chromium	2.7147	< 0.00015 %	(0.0) %
25	MnO	Manganese	339.8751	0.2295 %	0.0011 %
26	Fe2O3	Iron	14115.2559	6.948 %	0.006 %
27	CoO	Cobalt	0.5051	< 0.00039 %	(0.0) %
28	NiO	Nickel	4.9876	0.00074 %	0.00007 %
29	CuO	Copper	2.9357	0.00049 %	0.00006 %
30	ZnO	Zinc	12.1638	0.00151 %	0.00005 %
31	Ga	Gallium	0.8891	0.00007 %	0.00003 %
32	Ge	Germanium	0.0000	< 0.00005 %	(0.0) %
33	As2O3	Arsenic	0.0000	< 0.00007 %	(0.0) %
34	Se	Selenium	0.2736	< 0.00001 %	(0.00001) %
35	Br	Bromine	2.2833	0.00009 %	0.00002 %
37	Rb2O	Rubidium	24.2749	0.00059 %	0.00002 %
38	SrO	Strontium	386.6151	0.00918 %	0.00004 %
39	Y	Yttrium	21.1603	0.00041 %	0.00002 %
40	ZrO2	Zirconium	1.0707	0.00043 %	0.00012 %
41	Nb2O5	Niobium	0.1793	< 0.00006 %	(0.00006) %
42	Мо	Molybdenum	0.8466	0.00008 %	0.00002 %
47	Ag	Silver	0.1843	< 0.00007 %	(0.00007) %
48	Cd	Cadmium	0.0000	< 0.00020 %	(0.0) %
50	SnO2	Tin	7.5295	0.00161 %	0.00010 %
51	Sb2O5	Antimony	0.0000	< 0.00040 %	(0.0) %
52	le	lellurium	1.1553	< 0.00030 %	(0.0) %
53	I	lodine	0.0000	< 0.00030 %	(0.0) %
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %
56	ва	Barium	17.6684	0.01597 %	0.00079 %
57	La	Lanthanum	0.0000	< 0.00020 %	(0.0) %
58	Ce	Cerium	0.0000	< 0.00020 %	(0.0) %
72	HI T-205	Hathlum	1.4303	< 0.00010 %	(0.0) %
73	Ta205	Tantalum	1.0154	< 0.00012 %	(0.0) %
/4 00	WU3	Tungsten	1.7835	< 0.00013 %	(U.U) % (0.0) %
80	Hg	Mercury	0.0000	< 0.00010 %	(0.0) %
Ö I 00		i nailium	0.0000		
0∠ 02		Leau Biomuth	1.3/84		0.00004 %
00	DI Th	Thorium	0.0000		
90 90		liranium	4.0400		(0 0) 0/
92	0	Uranium	1.3/32	< 0.000 IU 70	(0.0) /0

74.63 %

Sample Name	PLA16	Dilution Material		
Description		Sample Mass (g)	4.0780	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	07/13/2016	
Sample Status	AXXAXXA	Date of Evaluation	07/13/2016	
-Results				

Z	Symbol	Element	Norm. Int.	Concentration	Abs. Erro	r
	Nie	O a diu na	40 4400	0.445 0/	0.007	0/
10	Na	Socium	10.1180	0.445 %	0.027	% 0/
12	ivig	Nagnesium	47.1123		0.0068	% 0/
13	AI	Aluminum	1005.0251	3.203 %	0.006	% 0/
14	51	Silicon	38241.7932	32.25 %	0.02	% 0/
15	P	Phosphorus	50.7349	0.02893 %	0.00045	% 0/
10	5	Sulfur	167.6981	0.03790 %	0.00020	% 0/
17		Chiorine	157.8884	0.01464 %	0.00008	% 0/
19	ĸ	Potassium	118.9546	0.4592 %	0.0040	% 0/
20	Ca		335.3264	0.8969 %	0.0033	%
22		l itanium	106.8200	0.1732 %	0.0017	%
23	V	vanadium	0.0000	< 0.0014 %	(0.0014)	%
24	Cr	Chromium	54.6661	0.02144 %	0.00036	%
25	Mn	Manganese	223.9896	0.07758 %	0.00053	%
26	Fe	Iron	25403.4977	5.746 %	0.004	%
27	Со	Cobalt	3.3477	0.00159 %	0.00026	%
28	Ni	Nickel	74.5128	0.00937 %	0.00010	%
29	Cu	Copper	17.0170	0.00165 %	0.00005	%
30	Zn	Zinc	22.5761	0.00164 %	0.00004	%
31	Ga	Gallium	3.0636	0.00018 %	0.00003	%
32	Ge	Germanium	0.0000	< 0.00005 %	(0.0)	%
33	As	Arsenic	39.9942	0.00131 %	0.00003	%
34	Se	Selenium	3.9771	0.00012 %	0.00002	%
35	Br	Bromine	1.3090	0.00004 %	0.00002	%
37	Rb	Rubidium	61.9408	0.00099 %	0.00002	%
38	Sr	Strontium	161.2633	0.00231 %	0.00002	%
39	Y	Yttrium	99.1332	0.00137 %	0.00002	%
40	Zr	Zirconium	108.9845	0.02330 %	0.00017	%
41	Nb	Niobium	3.6113	0.00059 %	0.00005	%
42	Мо	Molybdenum	4.7967	0.00078 %	0.00006	%
47	Ag	Silver	0.0000	< 0.00020 %	(0.0)	%
48	Cď	Cadmium	0.0000	< 0.00020 %	(0.0)	%
50	Sn	Tin	9.2433	0.00134 %	0.00007	%
51	Sb	Antimony	1.0454	< 0.00030 %	(0.0)	%
52	Те	Tellurium	2.8960	< 0.00030 %	(0.0)	%
53	1	lodine	0.0000	< 0.00030 %	(0.0)	%
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0)	%
56	Ba	Barium	5.8471	0.00251 %	0.00041	%
57	La	Lanthanum	2.0908	< 0.00020 %	(0.0)	%
58	Ce	Cerium	0.0000	< 0.00020 %	(0.0)	%
72	Hf	Hafnium	4.6456	0.00048 %	0.00005	%
73	Та	Tantalum	2,1445	< 0.00010 %	(0.0)	%
74	W	Tunasten	1.6432	< 0.00010 %	(0.0)	%
80	На	Mercury	1 5652		(0.0)	%
81	TI	Thallium	1.0973	0.00003 %	0 00001	%
. .	••			0.00000 /0	5.00001	

Sampl Descri	le Name iption	PLA16		Date of Receipt Method	07/13/2016 TurboQuant-Powders
Ζ	Symbol	Element	Norm. Int.	Concentration	Abs. Error
82 83 90 92	Pb Bi Th U	Lead Bismuth Thorium Uranium	6.2219 0.0000 4.8294 2.9522	0.00037 % < 0.00010 % 0.00020 % < 0.00010 %	0.00005 % (0.0) % 0.00004 % (0.0) %

Sampl Descri	e Name ption	PLA16		Date of Receipt Method	07/13/2016 TurboQuant-Powders
Ζ	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	16.1180	0.600 %	0.036 %
12	MaO	Magnesium	47.1123	0.506 %	0.011 %
13	AI2O3	Aluminum	1605.0251	6.165 %	0.011 %
14	SiO2	Silicon	38241.7932	69.00 %	0.04 %
15	P205	Phosphorus	50,7349	0.06630 %	0.00100 %
16	SO3	Sulfur	167.6981	0.09464 %	0.00049 %
17	CI	Chlorine	157.8884	0.01464 %	0.00008 %
19	K2O	Potassium	118,9546	0.5532 %	0.0048 %
20	CaO	Calcium	335.3264	1.255 %	0.005 %
22	TiO2	Titanium	106.8200	0.2889 %	0.0028 %
23	V2O5	Vanadium	0.0000	< 0.0026 %	(0.0025) %
24	Cr2O3	Chromium	54.6661	0.03134 %	0.00053 %
25	MnO	Manganese	223,9896	0.1002 %	0.0007 %
26	Fe2O3	Iron	25403.4977	8.215 %	0.006 %
27	CoO	Cobalt	3.3477	0.00202 %	0.00034 %
28	NiO	Nickel	74.5128	0.01192 %	0.00013 %
29	CuO	Copper	17.0170	0.00207 %	0.00007 %
30	ZnO	Zinc	22.5761	0.00204 %	0.00005 %
31	Ga	Gallium	3.0636	0.00018 %	0.00003 %
32	Ge	Germanium	0.0000	< 0.00005 %	(0.0) %
33	As2O3	Arsenic	39.9942	0.00173 %	0.00003 %
34	Se	Selenium	3.9771	0.00012 %	0.00002 %
35	Br	Bromine	1.3090	0.00004 %	0.00002 %
37	Rb2O	Rubidium	61.9408	0.00108 %	0.00002 %
38	SrO	Strontium	161.2633	0.00274 %	0.00002 %
39	Y	Yttrium	99.1332	0.00137 %	0.00002 %
40	ZrO2	Zirconium	108.9845	0.03147 %	0.00023 %
41	Nb2O5	Niobium	3.6113	0.00085 %	0.00006 %
42	Мо	Molybdenum	4.7967	0.00078 %	0.00006 %
47	Ag	Silver	0.0000	< 0.00020 %	(0.0) %
48	Cď	Cadmium	0.0000	< 0.00020 %	(0.0) %
50	SnO2	Tin	9.2433	0.00170 %	0.0009 %
51	Sb2O5	Antimony	1.0454	< 0.00040 %	(0.0) %
52	Те	Tellurium	2.8960	< 0.00030 %	(0.0) %
53	I	lodine	0.0000	< 0.00030 %	(0.0) %
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %
56	Ва	Barium	5.8471	0.00251 %	0.00041 %
57	La	Lanthanum	2.0908	< 0.00020 %	(0.0) %
58	Ce	Cerium	0.0000	< 0.00020 %	(0.0) %
72	Hf	Hafnium	4.6456	0.00048 %	0.00005 %
73	Ta2O5	Tantalum	2.1445	< 0.00012 %	(0.0) %
74	WO3	Tungsten	1.6432	< 0.00013 %	(0.0) %
80	Hg	Mercury	1.5652	< 0.00010 %	(0.0) %
81	TI	Thallium	1.0973	0.00003 %	0.00001 %
82	PbO	Lead	6.2219	0.00040 %	0.00006 %
83	Bi	Bismuth	0.0000	< 0.00010 %	(0.0) %
90	Th	Thorium	4.8294	0.00020 %	0.00004 %
92	U	Uranium	2.9522	< 0.00010 %	(0.0) %
		Sum of concent	ration	86.95 %	

86.95

Sample Name	PLA11	Dilution Material		
Description		Sample Mass (g)	4.0900	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	07/13/2016	
Sample Status	AXXAXXA	Date of Evaluation	07/13/2016	
-Results				

Z	Symbol	Element	Norm. Int.	Concentrati	ion	Abs. Erro	or
	NI-		00 4005	0.075	0/	0.000	0/
11	Na	Sodium	26.4385	0.875	%	0.030	%
12	ivig	Magnesium	261.8677	1.869	%	0.009	%
13	AI	Aluminum	4590.0066	8.356	%	0.009	%
14	SI	Silicon	25281.7925	20.61	%	0.01	%
15	P	Phosphorus	108.4452	0.05182	%	0.00042	%
16	S	Sultur	70.4255	0.00791	%	0.00007	%
1/	CI	Chlorine	430.8034	0.04294	%	0.00012	%
19	ĸ	Potassium	//0.8//4	2.747	%	0.007	%
20	Ca		3988.4187	10.94	%	0.01	%
22		litanium	257.6051	0.5370	%	0.0029	%
23	V	Vanadium	9.9332	0.0142	%	0.0013	%
24	Cr	Chromium	19.5769	0.00856	%	0.00030	%
25	Mn	Manganese	140.8071	0.06491	%	0.00055	%
26	Fe	Iron	16651.1716	5.035	%	0.004	%
27	Co	Cobalt	2.8215	0.00144	%	0.00022	%
28	Ni	Nickel	30.0365	0.00447	%	0.00009	%
29	Cu	Copper	39.4748	0.00470	%	0.00008	%
30	Zn	Zinc	72.6434	0.00647	%	0.00007	%
31	Ga	Gallium	19.6769	0.00139	%	0.00004	%
32	Ge	Germanium	1.8371	0.00010	%	0.00002	%
33	As	Arsenic	8.4435	0.00034	%	0.00003	%
34	Se	Selenium	0.9212	0.00003	%	0.00002	%
35	Br	Bromine	15.8289	0.00053	%	0.00002	%
37	Rb	Rubidium	421.0790	0.00830	%	0.00003	%
38	Sr	Strontium	535.2713	0.00949	%	0.00003	%
39	Y	Yttrium	99.0056	0.00170	%	0.00003	%
40	Zr	Zirconium	37.7288	0.00994	%	0.00014	%
41	Nb	Niobium	3.1146	0.00063	%	0.00005	%
42	Мо	Molvbdenum	0.0000	< 0.00010	%	(0.0)	%
47	Aa	Silver	0.0000	< 0.00020	%	(0.0)	%
48	Cd	Cadmium	0.6678	< 0.00020	%	(0.0)	%
50	Sn	Tin	8.6162	0.00137	%	0.00008	%
51	Sb	Antimony	1 0565	< 0.00030	%	(0, 0)	%
52	Te	Tellurium	0 0000	< 0.00030	%	(0,0)	%
53	1	Iodine	0.0000	< 0.00030	%	(0.0)	%
55	L.S.	Cesium	0.0000	< 0.00040	%	(0.0)	%
56	Ba	Barium	9 7773	0.00610	%	0.00058	%
57	la	Lanthanum	0.0000	< 0.00010	%	(0,0)	%
58		Corium	0.0000	< 0.00020	/0 0/2	(0.0)	%
72	Hf	Hafnium	3 8260	0.00020	%		0/2
73	Ta	Tantalum	2 0/78	0.00039	%	0.00003	/u 0/
7/	\M/	Tungsten	2.3470	< 0.00012	70 0/2	(0 0)	0/2
20	vv Ha	Morouny	0.0150	< 0.00010	70 0/2	(0.0)	/u 0/_
0U Q1	ту ті	Thallium	0.2100		/0 0/_	0.00	/0 0/_
01	11	Indilium	1.4423	0.00007	/0	0.00002	/0

Sampl Descri	e Name ption	PLA11		Date of Receipt Method	07/13/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
82 83 90 92	Pb Bi Th U	Lead Bismuth Thorium Uranium	16.6185 0.0000 15.3604 6.5537	0.00124 % < 0.00010 % 0.00077 % < 0.00010 %	0.00005 % (0.0) % 0.00004 % (0.0) %

Samp Descr	le Name iption	PLA11		Date of Receipt Method	07/13/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	26.4385	1.179 %	0.040 %
12	MaO	Magnesium	261.8677	3.099 %	0.015 %
13	AIŽO3	Aluminum	4590.0066	15.79 %	0.02 %
14	SiO2	Silicon	25281.7925	44.10 %	0.03 %
15	P2O5	Phosphorus	108.4452	0.1187 %	0.0010 %
16	SO3	Sulfur	70.4255	0.01974 %	0.00019 %
17	CI	Chlorine	430.8034	0.04294 %	0.00012 %
19	K2O	Potassium	770.8774	3.309 %	0.008 %
20	CaO	Calcium	3988.4187	15.30 %	0.02 %
22	TiO2	Titanium	257.6051	0.8960 %	0.0048 %
23	V2O5	Vanadium	9.9332	0.0253 %	0.0024 %
24	Cr2O3	Chromium	19.5769	0.01251 %	0.00044 %
25	MnO	Manganese	140.8071	0.08381 %	0.00071 %
26	Fe2O3	Iron	16651.1716	7.199 %	0.006 %
27	CoO	Cobalt	2.8215	0.00182 %	0.00028 %
28	NiO	Nickel	30.0365	0.00568 %	0.00011 %
29	CuO	Copper	39.4748	0.00588 %	0.00010 %
30	ZnO	Zinc	72.6434	0.00805 %	0.00008 %
31	Ga	Gallium	19.6769	0.00139 %	0.00004 %
32	Ge	Germanium	1.8371	0.00010 %	0.00002 %
33	As2O3	Arsenic	8.4435	0.00045 %	0.00004 %
34	Se	Selenium	0.9212	0.00003 %	0.00002 %
35	Br	Bromine	15.8289	0.00053 %	0.00002 %
37	Rb2O	Rubidium	421.0790	0.00907 %	0.00004 %
38	SrO	Strontium	535.2713	0.01123 %	0.00004 %
39	Y	Yttrium	99.0056	0.00170 %	0.00003 %
40	ZrO2	Zirconium	37.7288	0.01343 %	0.00019 %
41	Nb2O5	Niobium	3.1146	0.00090 %	0.00008 %
42	Мо	Molybdenum	0.0000	< 0.00010 %	(0.0) %
47	Ag	Silver	0.0000	< 0.00020 %	(0.0) %
48	Cd	Cadmium	0.6678	< 0.00020 %	(0.0) %
50	SnO2	Tin	8.6162	0.00174 %	0.00010 %
51	Sb2O5	Antimony	1.0565	< 0.00040 %	(0.0) %
52	Те	Tellurium	0.0000	< 0.00030 %	(0.0) %
53	I	lodine	0.0000	< 0.00030 %	(0.0) %
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %
56	Ва	Barium	9.7773	0.00610 %	0.00058 %
57	La	Lanthanum	0.0000	< 0.00020 %	(0.0) %
58	Ce	Cerium	0.0000	< 0.00020 %	(0.0) %
72	HI	Hatnium	3.8269	0.00039 %	0.00005 %
73	Ta205		2.9478	0.00014 %	0.00003 %
74	WO3	lungsten	1.5792	< 0.00013 %	(0.0) %
80	Hg	Mercury	0.2158	< 0.00010 %	(0.0) %
81 00		i nailium	1.4423	0.00007 %	
82	PDU	Lead	16.6185	0.00133 %	0.00005 %
83	BI	BISMUT	0.0000	< 0.00010 %	(U.U) %
90	IN		15.3604		0.00004 %
92	U	Uranium	0.5537	< 0.00010 %	(U.U) %

91.24 %

Sample Name	PLA7	Dilution Material		
Description		Sample Mass (g)	4.2300	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	07/11/2016	
Sample Status	AXXAXXA	Date of Evaluation	07/12/2016	
-Results				

Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error	
11	Na	Sodium	11.9519	0.212 %	0.023 %	
12	Mg	Magnesium	36.7543	0.2100 %	0.0077 %	
13	AI	Aluminum	1216.3775	2.444 %	0.007 %	
14	Si	Silicon	55028.1160	46.50 %	0.03 %	
15	Р	Phosphorus	93.0089	0.06237 %	0.00074 %	
16	S	Sulfur	34.3402	< 0.00020 %	(0.0) %	
17	CI	Chlorine	428.1568	0.06035 %	0.00021 %	
19	K	Potassium	38.4871	0.1753 %	0.0049 %	
20	Ca	Calcium	23.1091	0.0458 %	0.0014 %	
22	Ti	Titanium	89.7220	0.1668 %	0.0017 %	
23	V	Vanadium	0.0000	< 0.0016 %	(0.0016) %	
24	Cr	Chromium	9.2818	0.00239 %	0.00016 %	
25	Mn	Manganese	403.7122	0.1598 %	0.0007 %	
26	Fe	Iron	18359.1580	4.729 %	0.004 %	
27	Co	Cobalt	2.0253	< 0.00059 %	(0.00047) %	
28	Ni	Nickel	17.6663	0.00217 %	0.00006 %	
29	Cu	Copper	9.0509	0.00092 %	0.00005 %	
30	Zn	Zinc	74.1492	0.00565 %	0.00006 %	
31	Ga	Gallium	4.9898	0.00030 %	0.00003 %	
32	Ge	Germanium	0.0000	< 0.00005 %	(0.0) %	
33	As	Arsenic	16.2864	0.00056 %	0.00003 %	
34	Se	Selenium	3.6361	0.00011 %	0.00002 %	
35	Br	Bromine	1.0336	< 0.00003 %	(0.00003) %	
37	Rb	Rubidium	35.2434	0.00059 %	0.00001´%	
38	Sr	Strontium	68.5770	0.00102 %	0.00002 %	
39	Y	Yttrium	104.4553	0.00151 %	0.00002 %	
40	Zr	Zirconium	82.1375	0.01822 %	0.00015 %	
41	Nb	Niobium	4.3220	0.00074 %	0.00005 %	
42	Мо	Molybdenum	0.9882	0.00008 %	0.00003 %	
47	Aa	Silver	0.0000	< 0.00020 %	(0.0) %	
48	Cď	Cadmium	1.2127	< 0.00020 %	(0.0) %	
50	Sn	Tin	8.6190	0.00121 %	0.00007 %	
51	Sb	Antimony	0.0000	< 0.00030 %	(0.0) %	
52	Те	Tellurium	2,9046	< 0.00030 %	(0.0) %	
53	I	lodine	1.3974	< 0.00010 %	(0.00010) %	
55	Ċs	Cesium	0.0000	< 0.00040 %	(0.0) %	
56	Ba	Barium	6.5478	0.00303 %	0.00042 %	
57	La	Lanthanum	0.0000	< 0.00020 %	(0.0) %	
58	Ce	Cerium	0.0000	< 0.00020 %	(0.0) %	
72	Hf	Hafnium	4,3812	0.00052 %	0.00005 %	
73	Та	Tantalum	2.5238	0.00010 %	0.00002 %	
74	W	Tunasten	2,4975	0.00011 %	0.00002 %	
80	Ha	Mercury	1 3799	< 0.00010 %	(0,0) %	
81	TI	Thallium	1,4062	0.00005 %	0.00002 %	
				0.00000 /0	0.0000 /0	

Sample Name Description		PLA7	PLA7 Date of Received Method		07/11/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
82 83 90 92	Pb Bi Th U	Lead Bismuth Thorium Uranium	26.7330 0.7818 5.9237 5.9342	0.00169 % < 0.00002 % 0.00026 % < 0.00010 %	0.00005 % (0.00002)% 0.00003 % (0.0) %

Samp Descr	le Name iption	PLA7		Date of Receipt Method	07/11/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	11.9519	0.286 %	0.031 %
12	MaO	Magnesium	36,7543	0.348 %	0.013 %
13	AI2O3	Aluminum	1216.3775	4.617 %	0.012 %
14	SiO2	Silicon	55028 1160	99.48 %	0.06 %
15	P205	Phosphorus	93 0089	0 1429 %	0.0017 %
16	SO3	Sulfur	34 3402	< 0.00050 %	(0,0) %
17	CL	Chlorine	428 1568	0.06035 %	0.00021 %
19	K2O	Potassium	38 4871	0.2112 %	0.0059 %
20	CaO	Calcium	23 1091	0.0641 %	0.0019 %
22	TiO2	Titanium	89 7220	0.2782 %	0.0028 %
23	V205	Vanadium	0.0000	< 0.0029 %	(0.0028) %
24	Cr2O3	Chromium	9 2818	0.00350 %	0.00024 %
25	MnO	Manganese	403 7122	0.2063 %	0.00024 %
20	Fe2O3	Iron	18350 1580	6 761 %	0.005 %
20	1 e203	Cobalt	2 0253		
20		Nickol	2.0255		
20		Coppor	0.0500	0.00277 /8	
29		Zino	9.0309		0.00000 %
30		Collium	14.1492		0.00007 %
31	Ga	Gallium	4.9898		0.00003 %
32	Ge	Germanium	0.0000	< 0.00005 %	
33	AS2U3	Arsenic	10.2804	0.00074 %	0.00004 %
34	Se	Selenium	3.0301	0.00011 %	0.00002 %
35	Br	Bromine	1.0336	< 0.00003 %	(0.00003) %
37	RD2U	Rubidium	35.2434	0.00064 %	0.00002 %
38	SrO	Strontium	68.5770	0.00121 %	0.00002 %
39	Y TuQQ		104.4553	0.00151 %	0.00002 %
40	ZrO2	Zirconium	82.1375	0.02461 %	0.00020 %
41	ND205	NIODIUM	4.3220	0.00105 %	0.00007 %
42	Mo	Molybdenum	0.9882	0.00008 %	0.00003 %
47	Ag	Silver	0.0000	< 0.00020 %	(0.0) %
48	Cd	Cadmium	1.2127	< 0.00020 %	(0.0) %
50	SnO2	lin	8.6190	0.00153 %	0.00009 %
51	Sb2O5	Antimony	0.0000	< 0.00040 %	(0.0) %
52	Те	Tellurium	2.9046	< 0.00030 %	(0.0) %
53	I	lodine	1.3974	< 0.00010 %	(0.00010) %
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %
56	Ba	Barium	6.5478	0.00303 %	0.00042 %
57	La	Lanthanum	0.0000	< 0.00020 %	(0.0) %
58	Ce	Cerium	0.0000	< 0.00020 %	(0.0) %
72	Hf	Hafnium	4.3812	0.00052 %	0.00005 %
73	Ta2O5	Tantalum	2.5238	0.00013 %	0.00003 %
74	WO3	Tungsten	2.4975	0.00014 %	0.00002 %
80	Hg	Mercury	1.3799	< 0.00010 %	(0.0) %
81	TI	Thallium	1.4062	0.00005 %	0.00002 %
82	PbO	Lead	26.7330	0.00183 %	0.00005 %
83	Bi	Bismuth	0.7818	< 0.00002 %	(0.00002) %
90	Th	Thorium	5.9237	0.00026 %	0.00003 %
92	U	Uranium	5.9342	< 0.00010 %	(0.0) %
					. ,

Sample Name	NOP4	Dilution Material		
Description		Sample Mass (g)	4.0000	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	07/11/2016	
Sample Status	AXXAXXA	Date of Evaluation	07/12/2016	
-Results				

Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error	
11	Na	Sodium	27.9374	0.982 %	0.028 %	
12	Mg	Magnesium	954.5038	7.190 %	0.015 %	
13	Al	Aluminum	256.3794	0.4849 %	0.0025 %	
14	Si	Silicon	10118.6358	7.553 %	0.006 %	
15	Р	Phosphorus	19.4081	0.00696 %	0.00043 %	
16	S	Sulfur	5694.5998	1.033 %	0.001 %	
17	CI	Chlorine	267.7758	0.01868 %	0.00008 %	
19	K	Potassium	22.6092	0.0716 %	0.0025 %	
20	Са	Calcium	12087.9076	28.40 %	0.02 %	
22	Ti	Titanium	10.6089	0.0283 %	0.0016 %	
23	V	Vanadium	0.0000	< 0.0020 %	(0.0020) %	
24	Cr	Chromium	3.2264	< 0.00010 %	(0.0) %	
25	Mn	Manganese	318.1157	0.1883 %	0.0010 %	
26	Fe	Iron	15933.0348	6.219 %	0.005 %	
27	Co	Cobalt	0.8066	< 0.00030 %	(0.0) %	
28	Ni	Nickel	11.3987	0.00198 %	0.00010 %	
29	Cu	Copper	32.4876	0.00502 %	0.00010 %	
30	Zn	Zinc	2614.4827	0.3039 %	0.0005 %	
31	Ga	Gallium	1.6132	0.00015 %	0.00006 %	
32	Ge	Germanium	3.3440	0.00023 %	0.00003 %	
33	As	Arsenic	7.2481	0.00039 %	0.00008 %	
34	Se	Selenium	2.7390	0.00013 %	0.00002 %	
35	Br	Bromine	11.5219	0.00051 %	0.00003 %	
37	Rb	Rubidium	12.6030	0.00033 %	0.00002 %	
38	Sr	Strontium	5739.4191	0.1364 %	0.0002 %	
39	Y	Yttrium	52.8877	0.00121 %	0.00003 %	
40	Zr	Zirconium	0.0000	< 0.00010 %	(0.0) %	
41	Nb	Niobium	0.0000	< 0.00010 %	(0.0) %	
42	Мо	Molybdenum	0.5886	0.00001 %	0.00001 %	
47	Aq	Silver	0.0000	< 0.00020 %	(0.0) %	
48	Cď	Cadmium	5.2024	0.00120 %	0.00011 %	
50	Sn	Tin	5.8209	0.00080 %	0.00006 %	
51	Sb	Antimony	2.1448	< 0.00030 %	(0.0) %	
52	Те	Tellurium	2.3693	< 0.00030 %	(0.0) %	
53	1	lodine	0.0000	< 0.00030 %	(0.0) %	
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %	
56	Ba	Barium	10.4048	0.00781 %	0.00061 %	
57	La	Lanthanum	2.4341	< 0.00020 %	(0.0) %	
58	Ce	Cerium	0.0000	< 0.00020 %	(0.0) %	
72	Hf	Hafnium	1.7644	< 0.00010 %	(0.0) %	
73	Та	Tantalum	4.2570	0.00067 %	0.00010 %	
74	W	Tunasten	0.0000	< 0.00010 %	(0.0) %	
80	На	Mercury	0.0000	< 0.00010 %	(0.0) %	
81	TI	Thallium	2.5934	0.00014 %	0.00003 %	
	-					

Sample Name		NOP4	Date of Rece		07/11/2016
Description			Method		TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
82	Pb	Lead	153.8738	0.01522 %	0.00011 %
83	Bi	Bismuth	0.0000	< 0.00010 %	(0.0) %
90	Th	Thorium	1.4956	< 0.00011 %	(0.00010) %
92	U	Uranium	7.7634	< 0.00009 %	(0.00003) %

Sample Descrip	e Name otion	NOP4		Date of Receipt Method	07/11/2016 TurboQuant-Powders
Ζ	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	27.9374	1.324 %	0.038 %
12	MqO	Magnesium	954.5038	11.92 %	0.02 %
13	AI2O3	Aluminum	256.3794	0.9162 %	0.0047 %
14	SiO2	Silicon	10118.6358	16.16 %	0.01 %
15	P2O5	Phosphorus	19.4081	0.01594 %	0.00099 %
16	SO3	Sulfur	5694.5998	2.579 %	0.002 %
17	CI	Chlorine	267.7758	0.01868 %	0.00008 %
19	K2O	Potassium	22.6092	0.0862 %	0.0030 %
20	CaO	Calcium	12087.9076	39.73 %	0.03 %
22	TiO2	Titanium	10.6089	0.0472 %	0.0027 %
23	V2O5	Vanadium	0.0000	< 0.0036 %	(0.0036) %
24	Cr2O3	Chromium	3.2264	< 0.00015 %	(0.0) %
25	MnO	Manganese	318.1157	0.2432 %	0.0013 %
26	Fe2O3	Iron	15933.0348	8.892 %	0.007 %
27	CoO	Cobalt	0.8066	< 0.00039 %	(0.0) %
28	NiO	Nickel	11.3987	0.00253 %	0.00013 %
29	CuO	Copper	32.4876	0.00629 %	0.00012 %
30	ZnO	Zinc	2614.4827	0.3783 %	0.0006 %
31	Ga	Gallium	1.6132	0.00015 %	0.00006 %
32	Ge	Germanium	3.3440	0.00023 %	0.00003 %
33	As2O3	Arsenic	7.2481	0.00051 %	0.00011 %
34	Se	Selenium	2.7390	0.00013 %	0.00002 %
35	Br	Bromine	11.5219	0.00051 %	0.00003 %
37	Rb2O	Rubidium	12.6030	0.00036 %	0.00003 %
38	SrO	Strontium	5739.4191	0.1613 %	0.0002 %
39	Y	Yttrium	52.8877	0.00121 %	0.00003 %
40	ZrO2	Zirconium	0.0000	< 0.00014 %	(0.0) %
41	Nb2O5	Niobium	0.0000	< 0.00014 %	(0.0) %
42	Mo	Molybdenum	0.5886	0.00001 %	0.00001 %
47	Ag	Silver	0.0000	< 0.00020 %	(0.0) %
48	Ca		5.2024	0.00120 %	0.00011 %
50	ShO2	l in	5.8209	0.00102 %	0.00007 %
51	SD2U5	Antimony	2.1448	< 0.00040 %	(0.0) %
52	le		2.3093	< 0.00030 %	(0.0) %
53 EE		Coolum	0.0000	< 0.00030 %	(0.0) %
00 56		Derium	0.0000		
50	Da	Dariuri	10.4040		
52	La	Corium	2.4341	< 0.00020 %	(0.0) %
50 72	Ce Llf	Lofnium	1 7644	< 0.00020 %	(0.0) 78
72	Ta205	Tantalum	1.7044		
74	WO3	Tunasten	9.2370		(0.0) %
80	Ha	Mercury	0.0000		(0.0) %
81	TI	Thallium	2 5031		0.00003 %
82	PhO	l ead	2.000 4 153 8738	0.00014 /0	0.00012 %
83	Ri	Rismuth	0 000		(0.0) %
90	Th	Thorium	1 4956		(0.0010) %
92	U	Uranium	7 7634	< 0.00009 %	(0.00003) %

82.52 %

Sample Name	NOP3	Dilution Material		
Description		Sample Mass (g)	4.0990	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	07/13/2016	
Sample Status	AXXAXXA	Date of Evaluation	07/13/2016	
-Results				

Ζ	Symbol	Element	Norm. Int.	Concentration	Abs. Error	
	NIa	O a divura	47.004.4	0.440 0/	0.004	
10	ina Ma	Socium	17.3014	0.442 %	0.021 %	
12	ivig	Magnesium	08.0000			
13	AI	Aluminum	1039.9670	1.704 %	0.004 %	
14	51	Silicon	20538.9406	13.29 %		
15	P	Phosphorus	45.8303	0.01641 %	0.00033 %	
10	5	Sultur	145.7504	0.01964 %	0.00012 %	
17		Chiorine	715.1157		0.00013 %	
19	ĸ	Potassium	124.1621	0.3610 %	0.0029 %	
20	Ca		8924.5215	19.13 %	0.02 %	
22		litanium	34.1504	0.0730 %	0.0018 %	
23	V	Vanadium	0.0000	< 0.0020 %	(0.0019) %	
24	Cr	Chromium	8.7880	0.00255 %	0.00023 %	
25	Mn	Manganese	601.6267	0.2859 %	0.0011 %	
26	Fe	Iron	30412.6237	9.548 %	0.007 %	
27	Co	Cobalt	5.4615	0.00461 %	0.00038 %	
28	Ni	Nickel	11.6137	0.00191 %	0.00011 %	
29	Cu	Copper	3.4127	0.00050 %	0.00006 %	
30	Zn	Zinc	27.1696	0.00282 %	0.00007 %	
31	Ga	Gallium	2.3596	0.00021 %	0.00004 %	
32	Ge	Germanium	0.0000	< 0.00005 %	(0.0) %	
33	As	Arsenic	0.0000	< 0.00005 %	(0.0) %	
34	Se	Selenium	3.3667	0.00015 %	0.00003 %	
35	Br	Bromine	0.0000	< 0.00005 %	(0.0) %	
37	Rb	Rubidium	57.6195	0.00143 %	0.00002 %	
38	Sr	Strontium	297.5934	0.00664 %	0.00003 %	
39	Y	Yttrium	200.3159	0.00433 %	0.00003 %	
40	Zr	Zirconium	4.8508	0.00161 %	0.00010 %	
41	Nb	Niobium	0.0000	< 0.00010 %	(0.0) %	
42	Мо	Molybdenum	1.4852	0.00027 %	0.00004 %	
47	Aa	Silver	0.1850	< 0.00007 %	(0.00007)%	
48	Cď	Cadmium	0.4301	< 0.00020 %	(0.0) %	
50	Sn	Tin	7.1712	0.00119 %	0.00007 %	
51	Sb	Antimony	0.0000	< 0.00030 %	(0.0) %	
52	Те	Tellurium	0.0000	< 0.00030 %	(0.0) %	
53	l	lodine	0.0000	< 0.00030 %	(0.0) %	
55	Cs	Cesium	1 8653	0.00143 %	0.00061 %	
56	Ba	Barium	5 5359	0.00278 %	0.00042 %	
57	la	Lanthanum	0.0000	< 0.00270 %	(0.0) %	
58	Ce	Cerium	2 8655	0.00051 %	0.00016 %	
68	Fr	Erbium	2.0000		(0,00070) %	
70	Yh	Ytterhium	6 4572		(0.00070) %	
72	нf	Hafnium	1 2272		(0.0) %	
73	Тэ	Tantalum	2 85/5		(0.0) %	
73	1a W/	Tungston	128 6368			
/ +	V V	Tunystell	120.0000	0.03104 70	0.00020 /0	

Sample Name Description		NOP3		Date of Receipt Method	07/13/2016 TurboQuant-Powders	
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error	
80 81 82 83 90 92	Hg Tl Pb Bi Th U	Mercury Thallium Lead Bismuth Thorium Uranium	0.0000 0.2532 11.5274 0.0000 3.7062 3.4300	< 0.00010 % < 0.00001 % 0.00108 % < 0.00010 % 0.00024 % < 0.00010 %	(0.0) % (0.00001)% 0.00005% (0.0) % 0.00006% (0.0) %	
Sample Name Description		NOP3		Date of Receipt Method	07/13/2016 TurboQuant-Powders	
----------------------------	--------	----------------	------------	---------------------------	----------------------------------	
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error	
11	Na2O	Sodium	17 3614	0 595 %	0.028 %	
12	MaO	Magnesium	68 5005	0.6763 %	0.0087 %	
13	AI2O3	Aluminum	1039 9670	3 220 %	0.007 %	
14	SiO2	Silicon	20538 9406	28.43 %	0.02 %	
15	P205	Phosphorus	45 8303	0.03760 %	0.00075 %	
16	SO3	Sulfur	145.7564	0.04903 %	0.00029 %	
17	CI	Chlorine	715.1157	0.05575 %	0.00013 %	
19	K2O	Potassium	124.1621	0.4349 %	0.0035 %	
20	CaO	Calcium	8924.5215	26.76 %	0.02 %	
22	TiO2	Titanium	34.1504	0.1218 %	0.0030 %	
23	V2O5	Vanadium	0.0000	< 0.0035 %	(0.0035) %	
24	Cr2O3	Chromium	8.7880	0.00372 %	0.00034 %	
25	MnO	Manganese	601.6267	0.3691 %	0.0014 %	
26	Fe2O3	Iron	30412.6237	13.65 %	0.01 %	
27	CoO	Cobalt	5.4615	0.00586 %	0.00048 %	
28	NiO	Nickel	11.6137	0.00243 %	0.00013 %	
29	CuO	Copper	3.4127	0.00062 %	0.00008 %	
30	ZnO	Zinc	27.1696	0.00351 %	0.00008 %	
31	Ga	Gallium	2.3596	0.00021 %	0.00004 %	
32	Ge	Germanium	0.0000	< 0.00005 %	(0.0) %	
33	As2O3	Arsenic	0.0000	< 0.00007 %	(0.0) %	
34	Se	Selenium	3.3667	0.00015 %	0.00003 %	
35	Br	Bromine	0.0000	< 0.00005 %	(0.0) %	
37	Rb2O	Rubidium	57.6195	0.00156 %	0.00003 %	
38	SrO	Strontium	297.5934	0.00786 %	0.00004 %	
39	Y	Yttrium	200.3159	0.00433 %	0.00003 %	
40	ZrO2	Zirconium	4.8508	0.00218 %	0.00014 %	
41	Nb2O5	Niobium	0.0000	< 0.00014 %	(0.0) %	
42	Мо	Molybdenum	1.4852	0.00027 %	0.00004 %	
47	Ag	Silver	0.1850	< 0.00007 %	(0.00007)%	
48	Ca	Cadmium	0.4301	< 0.00020 %	(0.0) %	
50	ShO2		7.1712		0.00009 %	
51	SD2U5	Antimony	0.0000	< 0.00040 %	(0.0) %	
52 52	le	ledine	0.0000		(0.0) %	
55 55		Cocium	0.0000			
56	Ba	Barium	5 5350	0.00143 %	0.00001 /8	
57	La	Lanthanum	0.0000		$(0,0)$ $\frac{9}{4}$	
58	La	Cerium	2.8655	0.00020 %		
68	Fr	Frhium	2.0055	< 0.00031 %	(0,00070) %	
70	Yh	Ytterbium	6 4572	< 0.00071 %	(0,0) %	
72	Hf	Hafnium	1 2373	< 0.00010 %	(0,0) %	
73	Ta2O5	Tantalum	2 8545	< 0.00012 %	(0,0) %	
74	WO3	Tunasten	128.6368	0.03991 %	0.00033 %	
80	Ha	Mercurv	0.0000	< 0.00010 %	(0.0) %	
81	ТĬ	Thallium	0.2532	< 0.00001 %	(0.00001) %	
82	PbO	Lead	11.5274	0.00117 %	0.00006 %	
83	Bi	Bismuth	0.0000	< 0.00010 %	(0.0) %	
90	Th	Thorium	3.7062	0.00024 %	0.00006 %	
92	U	Uranium	3.4300	< 0.00010 %	(0.0) %	
		Sum of concent	ration	74.49 %		

Sample Name	KK2	Dilution Material		
Description		Sample Mass (g)	3.0000	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	07/11/2016	
Sample Status	AXXAXXA	Date of Evaluation	07/11/2016	
-Results				

Z	Symbol	Element	Norm. Int.	Concentration	Abs. Erro	r
	Nia	C a divers	17.0004	0.000 0/	0.007	0/
11	Na	Sodium	17.0204	0.620 %	0.027	% 0/
12	ivig	Magnesium	ZZ./ 1/Z	0.1199 %	0.0039	% 0/
13	AI	Aluminum	1152.2303		0.006	% 0/
14	51	Silicon	1/0/3.2381	17.26 %	0.01	% 0/
15	P	Phosphorus	331.7702	0.1718 %	0.0006	% 0/
10	5	Sultur	78.7104	0.01078 %	0.00008	% 0/
17		Chiorine	139.5245		0.00006	% 0/
19	K Or	Potassium	210.3610	0.7550 %	0.0034	% 0/
20	Ca		40.5089	0.0821 %	0.0012	%
22		l itanium	258.1446	0.4042 %	0.0049	%
23	V	vanadium	0.0000	< 0.00010 %	(0.0)	%
24	Cr	Chromium	60.0266	0.0243 %	0.0011	%
25	Mn	Manganese	21161.1672	7.873 %	0.008	%
26	Fe	Iron	137722.0760	34.09 %	0.02	%
27	Со	Cobalt	9.0327	0.0105 %	0.0011	%
28	Ni	Nickel	64.8715	0.02208 %	0.00044	%
29	Cu	Copper	4.9543	0.00132 %	0.00018	%
30	Zn	Zinc	173.9212	0.03524 %	0.00036	%
31	Ga	Gallium	3.5173	0.00057 %	0.00011	%
32	Ge	Germanium	0.0000	< 0.00005 %	(0.0)	%
33	As	Arsenic	19.1877	0.00181 %	0.00009	%
34	Se	Selenium	0.0000	< 0.00005 %	(0.0)	%
35	Br	Bromine	1.7929	< 0.00014 %	(0.00014)	%
37	Rb	Rubidium	54.4701	0.00256 %	0.00011	%
38	Sr	Strontium	425.6745	0.01808 %	0.00012	%
39	Y	Yttrium	27.4951	0.00113 %	0.00006	%
40	Zr	Zirconium	28.5452	0.01807 %	0.00030	%
41	Nb	Niobium	0.0000	< 0.00010 %	(0.0)	%
42	Мо	Molybdenum	1.3090	0.00042 %	0.00008	%
47	Ag	Silver	0.0000	< 0.00020 %	(0.0)	%
48	Cď	Cadmium	0.4760	< 0.00020 %	(0.0)	%
50	Sn	Tin	7.3937	0.00199 %	0.00009	%
51	Sb	Antimony	2.5301	< 0.00030 %	(0.0)	%
52	Те	Tellurium	6.1364	0.00058 %	0.00003	%
53	T	lodine	2.3180	< 0.00030 %	(0.0)	%
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0)	%
56	Ba	Barium	87.8450	0.1379 %	0.0014	%
57	la	Lanthanum	5 4793	0.00424 %	0 00053	%
58	Ce	Cerium	3 8547	0.00327 %	0.00061	%
72	Hf	Hafnium	0,0000	< 0.00010 %	(0,0)	%
73	Та	Tantalum	0.8622	< 0.00010 %	(0.0)	%
74	W	Tunasten	0,0000		(0.0)	%
80	Ha	Mercury	0,0000		(0.0)	%
81	TI	Thallium	0,0000		(0.0)	%
51	••	manum	0.0000		(0.0)	/0

Sample Name Description		KK2		Date of Receipt Method	07/1 Turb	1/2016 oQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. E	rror
82 83 90 92	Pb Bi Th U	Lead Bismuth Thorium Uranium	0.0000 0.0000 0.0000 0.0000	< 0.00010 % < 0.00010 % < 0.00010 % < 0.00010 %	(0.0) (0.0) (0.0) (0.0)	% % %

Samp Descr	le Name iption	KK2		Date of Recei Method	pt 07/11/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentratior	n Abs. Error
11	Na2O	Sodium	17 0204	0.836 %	0.036 %
12	MaO	Magnesium	22 7172	0.1988 %	0.0065 %
13		Aluminum	1152 2363	5 340 %	0.010 %
14	SiO2	Silicon	17673 2381	36.03 %	0.03 %
15	P205	Phosphorus	331 7702	0.3037 %	0.003 %
16	503	Sulfur	78 7104	0.0307 %	0.00021 %
17	CL	Chlorine	139 5245	0.01108 %	0.00006 %
19	K2O	Potassium	210,3610	0.9096 %	0.0041 %
20	CaO	Calcium	40 5089	0.1149 %	0.0016 %
22	TiO2	Titanium	258 1446	0.6744 %	0.0082 %
23	V205	Vanadium	0 0000	< 0.00018 %	(0,0) %
24	Cr2O3	Chromium	60 0266	0.0355 %	0.0017 %
25	MnO	Manganese	21161,1672	10.16 %	0.01 %
26	Fe2O3	Iron	137722.0760	48.75 %	0.03 %
27	CoO	Cobalt	9.0327	0.0134 %	0.0014 %
28	NiO	Nickel	64.8715	0.02810 %	0.00056 %
29	CuO	Copper	4.9543	0.00166 %	0.00022 %
30	ZnO	Zinc	173.9212	0.04386 %	0.00045 %
31	Ga	Gallium	3.5173	0.00057 %	0.00011 %
32	Ge	Germanium	0.0000	< 0.00005 %	(0.0) %
33	As2O3	Arsenic	19.1877	0.00238 %	0.00012 %
34	Se	Selenium	0.0000	< 0.00005 %	(0.0) %
35	Br	Bromine	1.7929	< 0.00014 %	(0.00014) %
37	Rb2O	Rubidium	54.4701	0.00280 %	0.00012 %
38	SrO	Strontium	425.6745	0.02138 %	0.00014 %
39	Y	Yttrium	27.4951	0.00113 %	0.00006 %
40	ZrO2	Zirconium	28.5452	0.02440 %	0.00041 %
41	Nb2O5	Niobium	0.0000	< 0.00014 %	(0.0) %
42	Мо	Molybdenum	1.3090	0.00042 %	0.00008 %
47	Ag	Silver	0.0000	< 0.00020 %	(0.0) %
48	Cd	Cadmium	0.4760	< 0.00020 %	(0.0) %
50	SnO2	Tin	7.3937	0.00253 %	0.00011 %
51	Sb2O5	Antimony	2.5301	< 0.00040 %	(0.0) %
52	Те	Tellurium	6.1364	0.00058 %	0.00003 %
53	I	lodine	2.3180	< 0.00030 %	(0.0) %
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %
56	Ba	Barium	87.8450	0.1379 %	0.0014 %
57	La	Lanthanum	5.4793	0.00424 %	0.00053 %
58	Ce	Cerium	3.8547	0.00327 %	0.00061 %
72	Hf	Hafnium	0.0000	< 0.00010 %	(0.0) %
73	Ta2O5	Tantalum	0.8622	< 0.00012 %	(0.0) %
74	WO3	lungsten	0.0000	< 0.00013 %	(0.0) %
80	Hg	Mercury	0.0000	< 0.00010 %	(0.0) %
81		Ihallium	0.0000	< 0.00010 %	(0.0) %
82	PbO	Lead	0.0000	< 0.00011 %	(0.0) %
83	BI	Bismuth	0.0000	< 0.00010 %	(U.U) %
90	IN	Inorium	0.0000	< 0.00010 %	(0.0) %
92	U	Uranium	0.0000	< 0.00010 %	(0.0) %
		Sum of concent	tration	104.67 %	

Sample Name	KK1	Dilution Material		
Description		Sample Mass (g)	3.0000	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	07/11/2016	
Sample Status	AXXAXXA	Date of Evaluation	07/11/2016	
-Results				

Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na	Sodium	20.7376	0.904 %	0.024 %
12	Mg	Magnesium	30.0914	0.2056 %	0.0038 %
13	Al	Aluminum	834.8097	2.098 %	0.004 %
14	Si	Silicon	3192.5047	3.147 %	0.003 %
15	Р	Phosphorus	1534.5373	0.6622 %	0.0009 %
16	S	Sulfur	41.8818	0.00085 %	0.00001 %
17	CI	Chlorine	63.9636	0.00154 %	0.00001 %
19	K	Potassium	132.2196	0.4044 %	0.0021 %
20	Са	Calcium	85.2765	0.1685 %	0.0012 %
22	Ti	Titanium	254.3444	0.3525 %	0.0053 %
23	V	Vanadium	0.0000	< 0.00076 %	(0.00075) %
24	Cr	Chromium	33.7542	0.0116 %	0.0012 %
25	Mn	Manganese	3314.7549	1.115 %	0.003 %
26	Fe	Iron	223468.9381	51.46 %	0.03 %
27	Co	Cobalt	2.0366	< 0.00051 %	(0.00051) %
28	Ni	Nickel	48.3873	0.02002 %	0.00063 %
29	Cu	Copper	1.6594	0.00055 %	0.00026 %
30	Zn	Zinc	269.8637	0.06737 %	0.00064 %
31	Ga	Gallium	0.9994	< 0.00020 %	(0.00020) %
32	Ge	Germanium	0.0000	< 0.00005 %	(0.0) %
33	As	Arsenic	30.8502	0.00360 %	0.00013 %
34	Se	Selenium	0.0000	< 0.00005 %	(0.0) %
35	Br	Bromine	9.4097	0.00092 %	0.00010 %
37	Rb	Rubidium	59.3998	0.00348 %	0.00023 %
38	Sr	Strontium	20.5354	0.00109 %	0.00011 %
39	Y	Yttrium	19.2908	0.00099 %	0.00008 %
40	Zr	Zirconium	5.4647	0.00431 %	0.00022 %
41	Nb	Niobium	0.0000	< 0.00010 %	(0.0) %
42	Мо	Molybdenum	0.0000	< 0.00010 %	(0.0) %
47	Ag	Silver	0.0000	< 0.00020 %	(0.0) %
48	Cd	Cadmium	0.0000	< 0.00020 %	(0.0) %
50	Sn	Tin	4.8230	0.00097 %	0.00006 %
51	Sb	Antimony	1.7199	< 0.00030 %	(0.0) %
52	Те	Tellurium	4.1130	< 0.00030 %	(0.0) %
53	I	lodine	0.0000	< 0.00030 %	(0.0) %
55	Cs	Cesium	2.1143	0.00322 %	0.00086 %
56	Ва	Barium	16.8411	0.02690 %	0.00100 %
57	La	Lanthanum	0.0000	< 0.00020 %	(0.0) %
58	Ce	Cerium	0.0000	< 0.00020 %	(0.0) %
72	Hf	Hafnium	0.0000	< 0.00010 %	(0.0) %
73	Та	Tantalum	0.9051	< 0.00010 %	(0.0) %
74	W	Tungsten	0.0000	< 0.00010 %	(0.0) %
80	Hg	Mercury	0.0000	< 0.00010 %	(0.0) %
81	ΤĬ	Thallium	0.0000	< 0.00010 %	(0.0) %

Sample Name Description		КК1		Date of Receipt Method	07/11/2016 TurboQuant-Powders	
Z	Symbol	Element	Norm. Int.	Concentration	Abs. E	rror
82 83 90 92	Pb Bi Th U	Lead Bismuth Thorium Uranium	0.0000 0.0000 0.0000 0.0000	< 0.00010 % < 0.00010 % < 0.00010 % < 0.00010 %	(0.0) (0.0) (0.0) (0.0)	% % %

Samp Descr	le Name iption	KK1		Date of Receipt Method	07/11/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	20 7376	1 219 %	0.032 %
12	MaO	Magnesium	30 0914	0.3410 %	0.0064 %
13		Δluminum	834 8097	3 965 %	0.008 %
14	SiO2	Silicon	3192 5047	6733 %	0.007 %
15	P205	Phoenhorue	1534 5373	1 517 %	0.002 %
16	503	Sulfur	41 8818		0.0002 %
17	CL	Chlorine	63 9636	0.00212 %	0.00002 %
10	K20	Dotoccium	122 2106	0.0013 /0	0.0025 %
20	$C_{2}O$	Calcium	85 2765	0.4072 /0	0.0025 %
20		Titanium	254 3444	0.2337 /0	0.0017 /8
22	102	Vanadium	204.0444		(0.0013) %
23	V200	Chromium	0.0000		0.0019 %
24	01203	Manganaga	33.7342		
20		Ivialiyaliese	2214.7049	1.440 70	0.004 %
20	Fe2O3	Coholt	223400.9301	/ J.JO %	
21		Cobait	2.0300		
20		Connor	40.3073	0.02347 %	
29		Zino	1.0094		
30			209.0037		
31 22	Ga	Gallium	0.9994		(0.00020)%
3Z	Ge	Germanium	0.0000		
১১ 24	AS2U3	Arsenic	30.0302	0.004/5 %	
34	Se	Dramina	0.0000		
35	Br	Bromine	9.4097	0.00092 %	
31 20	RDZU SrO	Streptium	09.0990 00.5254		0.00025 %
38	510	Strontium	20.5354		0.00013 %
39		Ziroopium	19.2900		
40			5.4047		0.00029 %
41	ND2O5	Niobium	0.0000	< 0.00014 %	(0.0) %
42		Silver	0.0000		(0.0) %
47	Ag	Silver	0.0000	< 0.00020 %	(0.0) %
40 50			0.0000		
50	51102 Sh205	l III	4.0230		
51	50205	Anumony	1.7 199	< 0.00040 %	(0.0) %
52	le		4.1130		(0.0) %
55 55		Conium	0.0000		
55	CS Po	Borium	2.1140 16 0/11		
50	Da	Dallulli	0.000		
57 50	La	Corium	0.0000	< 0.00020 %	(0.0) %
00 70	Uf	Lofnium	0.0000		(0.0) %
72		Tantalum	0.0000		(0.0) %
73	18205	Tungatan	0.9051		(0.0) %
/4 20		Moroury	0.0000		(0.0) 70 (0.0) 94
00	⊓g ⊤i	Thellium	0.0000		(0.0) %
01 00					(0.0) % (0.0) %
o∠ 02		Leau	0.0000		(0.0) $\frac{7}{0}$
00	DI Th	Thorium	0.0000		(0.0) $\frac{7}{0}$
90 00			0.0000		(U.U) % (O.O) %
92	U	Uranium	0.0000	< 0.00010 %	(U.U) %
		Sum of concent	tration	90.29 %	

Sample Name	KAR2	Dilution Material		
Description		Sample Mass (g)	4.1650	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	07/11/2016	
Sample Status	AXXAXXA	Date of Evaluation	07/12/2016	
-Results				

Z	Symbol	Element	Norm. Int.	Concentratio	on	Abs. Erro	or
11	Na	Sodium	16.6356	0.622	%	0.024	%
12	Mg	Magnesium	315.9722	3.368	%	0.012	%
13	Al	Aluminum	1275.7202	3.393	%	0.006	%
14	Si	Silicon	9996.8207	10.56	%	0.01	%
15	Р	Phosphorus	386.4111	0.1968	%	0.0006	%
16	S	Sulfur	425.0474	0.1009	%	0.0003	%
17	CI	Chlorine	141.4387	0.01113	%	0.00006	%
19	K	Potassium	320.1434	1.138	%	0.004	%
20	Са	Calcium	149.2492	0.3649	%	0.0020	%
22	Ti	Titanium	402.5499	0.6387	%	0.0054	%
23	V	Vanadium	0.0000	< 0.0012	%	(0.0012)	%
24	Cr	Chromium	22.8956	0.00826	%	0.00098	%
25	Mn	Manganese	5907.6722	2.216	%	0.004	%
26	Fe	Iron	162207.1063	40.94	%	0.03	%
27	Co	Cobalt	5.2759	0.00430	%	0.00083	%
28	Ni	Nickel	75.6834	0.02721	%	0.00052	%
29	Cu	Copper	1.6496	0.00046	%	0.00022	%
30	Zn	Zinc	403.3036	0.08606	%	0.00058	%
31	Ga	Gallium	0.0000	< 0.00005	%	(0.0)	%
32	Ge	Germanium	0.0000	< 0.00005	%	(0.0)	%
33	As	Arsenic	0.8675	< 0.00009	%	(0.00009)	%
34	Se	Selenium	0.0000	< 0.00005	%	(0.0)	%
35	Br	Bromine	0.0000	< 0.00005	%	(0.0)	%
37	Rb	Rubidium	88.1124	0.00438	%	0.00015	%
38	Sr	Strontium	168.8869	0.00758	%	0.00010	%
39	Y	Yttrium	67.7340	0.00295	%	0.00007	%
40	Zr	Zirconium	14.0405	0.00939	%	0.00024	%
41	Nb	Niobium	2.5556	0.00131	%	0.00013	%
42	Мо	Molybdenum	4.4984	0.00228	%	0.00013	%
47	Ag	Silver	1.5116	0.00119	%	0.00029	%
48	Cd	Cadmium	0.0000	< 0.00020	%	(0.0)	%
50	Sn	Tin	6.3891	0.00178	%	0.00009	%
51	Sb	Antimony	2.8985	0.00043	%	0.00005	%
52	Те	Tellurium	4.4204	< 0.00030	%	(0.0)	%
53	I	lodine	2.6336	0.00091	%	0.00019	%
55	Cs	Cesium	0.0000	< 0.00040	%	(0.0)	%
56	Ва	Barium	10.5550	0.01243	%	0.00077	%
57	La	Lanthanum	4.8152	0.00321	%	0.00045	%
58	Ce	Cerium	3.2153	0.00199	%	0.00044	%
72	Hf	Hafnium	0.0000	< 0.00010	%	(0.0)	%
73	Та	Tantalum	3.8396	< 0.00070	%	(0.00014)	%
74	W	Tungsten	0.0000	< 0.00010	%	(0.0)	%
80	Hg	Mercury	0.0000	< 0.00010	%	(0.0)	%
81	ΤĪ	Thallium	0.0000	< 0.00010	%	(0.0)	%

Sampl Descri	e Name ption	KAR2		Date of Receipt Method	07/11/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
82 83 90 92	Pb Bi Th U	Lead Bismuth Thorium Uranium	3.8823 0.0000 0.0000 3.9818	0.00075 % < 0.00010 % < 0.00010 % < 0.00010 %	0.00015 % (0.0) % (0.0) % (0.0) %

Samp Descr	le Name iption	KAR2		Date of Receipt Method	07/11/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	16.6356	0.838 %	0.032 %
12	MaQ	Magnesium	315,9722	5.585 %	0.020 %
13	Al2O3	Aluminum	1275.7202	6.410 %	0.011 %
14	SiO2	Silicon	9996.8207	22.60 %	0.02 %
15	P2O5	Phosphorus	386.4111	0.4510 %	0.0013 %
16	SO3	Sulfur	425.0474	0.2520 %	0.0007 %
17	CI	Chlorine	141.4387	0.01113 %	0.00006 %
19	K20	Potassium	320 1434	1 371 %	0.005 %
20	CaO	Calcium	149 2492	0.5105 %	0.0027 %
22	TiO2	Titanium	402 5499	1,066 %	0.009 %
23	V205	Vanadium	0.0000	< 0.0021 %	(0.0021) %
24	Cr2O3	Chromium	22 8956	0.0121 %	0.0014 %
2 4 25	MnO	Manganese	5907 6722	2.862 %	0.005 %
25	Fe2O3	Iron	162207 1063	58 53 %	0.04 %
20	6200	Cobalt	5 2750	0.0055 %	0.0011 %
28	NiO	Nickel	75 6834	0.0000 %	0.00067 %
20		Coppor	1 6406	0.0058 %	0.00007 %
29	ZnO	Zino	1.0490	0.00030 %	0.00027 /8
21		Collium	403.3030		(0,0) $(0,0)$ $(0,0)$
১ । ১০	Ga	Gaillum	0.0000		(0.0) %
ວ∠ ວວ	Ge	Aroonio	0.0000	< 0.00005 %	(0.0) %
აა 24	AS2U3	Alsenic	0.0070	< 0.00012 %	(0.00011)%
34	3e D.	Dramina	0.0000		(0.0) %
35	Br	Bromine	0.0000		
37	RD2U	Rubidium	00.1124	0.00479 %	
38	510	Strontium	108.8809	0.00897 %	0.00012 %
39	Y Z=OO	Y ttrium Zing graining	67.7340	0.00295 %	0.00007 %
40	ZrO2	Zirconium	14.0405	0.01268 %	0.00033 %
41	ND2O5	NIODIUM	2.5556	0.00188 %	
42	IVIO	Nolybaenum	4.4984	0.00228 %	0.00013 %
47	Ag	Silver	1.5116	0.00119 %	0.00029 %
48	Cd		0.0000	< 0.00020 %	(0.0) %
50	SnO2	lin	6.3891	0.00225 %	0.00011 %
51	Sb205	Antimony	2.8985	0.00056 %	0.00006 %
52	le	l ellurium	4.4204	< 0.00030 %	(0.0) %
53	I	lodine	2.6336	0.00091 %	0.00019 %
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %
56	Ва	Barium	10.5550	0.01243 %	0.00077 %
57	La	Lanthanum	4.8152	0.00321 %	0.00045 %
58	Ce	Cerium	3.2153	0.00199 %	0.00044 %
72	Hf	Hafnium	0.0000	< 0.00010 %	(0.0) %
73	Ta2O5	Tantalum	3.8396	< 0.00085 %	(0.00017) %
74	WO3	Tungsten	0.0000	< 0.00013 %	(0.0) %
80	Hg	Mercury	0.0000	< 0.00010 %	(0.0) %
81	TI	Thallium	0.0000	< 0.00010 %	(0.0) %
82	PbO	Lead	3.8823	0.00081 %	0.00016 %
83	Bi	Bismuth	0.0000	< 0.00010 %	(0.0) %
90	Th	Thorium	0.0000	< 0.00010 %	(0.0) %
92	U	Uranium	3.9818	< 0.00010 %	(0.0) %
		0		400.70 %	

100.70 %

Sample Name	KAR1	Dilution Material		
Description		Sample Mass (g)	4.0080	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	07/11/2016	
Sample Status	AXXAXXA	Date of Evaluation	07/12/2016	
-Results				

Z	Symbol	Element	Norm. Int.	Concentratio	on	Abs. Erro	or
	NL-	O a alla ana	40 5044	0.704	D/	0.000	0/
11	Na	Sodium	18.5344	0.734	% \/	0.026	%
12	Mg	Magnesium	197.6140	1.999	%	0.010	%
13	AI	Aluminum	1356.0631	3.439	%	0.006	%
14	SI	Silicon	11096.7383	11.20	%	0.01	%
15	P	Phosphorus	504.1333	0.2485	%	0.0006	%
16	S	Sultur	115.1188	0.01946	%	0.00011	%
1/	CI	Chlorine	70.3194	0.00248	%	0.00002	%
19	ĸ	Potassium	236.4809	0.8109	%	0.0032	%
20	Ca		168.9593	0.3981	%	0.0019	%
22		litanium	301.3565	0.4601	%	0.0049	%
23	V	Vanadium	0.0000	< 0.0013	%	(0.0013)	%
24	Cr	Chromium	18.7692	0.00615	%	0.00092	%
25	Mn	Manganese	7654.6603	2.757	%	0.005	%
26	Fe	Iron	168178.4026	40.75	%	0.03	%
27	Co	Cobalt	22.4852	0.02385	%	0.00097	%
28	Ni	Nickel	84.4906	0.03013	%	0.00057	%
29	Cu	Copper	3.8471	0.00107	%	0.00020	%
30	Zn	Zinc	425.4548	0.08992	%	0.00060	%
31	Ga	Gallium	1.8798	0.00032	%	0.00013	%
32	Ge	Germanium	0.0000	< 0.00005	%	(0.0)	%
33	As	Arsenic	2.5064	0.00025 9	%	0.00008	%
34	Se	Selenium	0.0000	< 0.00005	%	(0.0)	%
35	Br	Bromine	0.0000	< 0.00005	%	(0.0)	%
37	Rb	Rubidium	73.5759	0.00362	%	0.00015	%
38	Sr	Strontium	117.9779	0.00525	%	0.00009	%
39	Y	Yttrium	90.3778	0.00390	%	0.00008	%
40	Zr	Zirconium	13.2483	0.00879	%	0.00023	%
41	Nb	Niobium	1.9400	0.00099	%	0.00012	%
42	Мо	Molybdenum	3.8956	0.00191	%	0.00013	%
47	Ag	Silver	1.7118	0.00134	%	0.00029	%
48	Cď	Cadmium	0.0000	< 0.00020	%	(0.0)	%
50	Sn	Tin	5.3066	0.00113	%	0.00007	%
51	Sb	Antimony	3.1124	0.00057	%	0.00006	%
52	Те	Tellurium	4.1446	< 0.00030	%	(0.0)	%
53	I	lodine	3.0034	0.00120	%	0.00021	%
55	Cs	Cesium	0.0000	< 0.00040	%	(0.0)	%
56	Ва	Barium	7.5423	0.00768	%	0.00064	%
57	La	Lanthanum	0.0000	< 0.00020	%	(0.0)	%
58	Ce	Cerium	0.0000	< 0.00020	%	(0.0)	%
68	Er	Erbium	0.0000	< 0.00051	%	(0.0)	%
70	Yb	Ytterbium	4,1386	< 0.00020	%	(0.0)	%
72	Hf	Hafnium	0.0000	< 0.00010	%	(0.0)	%
73	Та	Tantalum	3,6139	< 0.00010	%	(0.0)	%
74	Ŵ	Tunasten	0.0000	< 0.00010	%	(0.0)	%
		0				· · · /	

Samp Descr	le Name iption	KAR1		Date of Receipt Method	07/11/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
80	Hg	Mercury	0.0000	< 0.00010 %	(0.0) %
81	ΤĪ	Thallium	0.0000	< 0.00010 %	(0.0) %
82	Pb	Lead	4.2114	0.00081 %	0.00015 %
83	Bi	Bismuth	0.0000	< 0.00010 %	(0.0) %
90	Th	Thorium	0.0000	< 0.00010 %	(0.0) %
92	U	Uranium	12.6488	0.00059 %	0.00012 %

Samp Descr	le Name iption	KAR1		Date of Receipt Method	07/11/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	18 5344	0.989 %	0.035 %
12	MaO	Magnesium	197 6140	3 315 %	0.017 %
13	A12O3	Aluminum	1356 0631	6 4 9 7 %	0.011 %
14	SiO2	Silicon	11096 7383	23.96 %	0.02 %
15	P205	Phosphorus	504 1333	0 5695 %	0.0014 %
16	503	Sulfur	115 1188	0.04858 %	0.00027 %
17	CL	Chlorine	70 3194	0.04000 %	0.000027 %
19	K20	Potassium	236 4809	0.9768 %	0.0039 %
20	CaO	Calcium	168 9593	0.5570 %	0.0027 %
22	TiO2	Titanium	301 3565	0.7676 %	0.0081 %
23	V205	Vanadium	0,000	< 0.0023 %	(0.0023) %
24	Cr2O3	Chromium	18 7692	0.0090 %	0.0013 %
25	MnO	Manganese	7654 6603	3 560 %	0.006 %
26	Fe2O3	Iron	168178 4026	58.27 %	0.04 %
27	CoO	Cobalt	22 4852	0.0303 %	0.0012 %
28	NiO	Nickel	84 4906	0.03834 %	0.00073 %
29	CuO	Conner	3 8471	0.00134 %	0.00025 %
30	ZnO	Zinc	425 4548	0.1119 %	0.0007 %
31	Ga	Gallium	1 8798	0.00032 %	0.00013 %
32	Ge	Germanium	0,000	< 0.00005 %	(0,0) %
33	As203	Arsenic	2 5064	0.00033 %	0.00011 %
34	Se	Selenium	0,0000	< 0.00005 %	(0,0) %
35	Br	Bromine	0,0000	< 0.00005 %	(0.0) %
37	Rb2O	Rubidium	73,5759	0.00396 %	0.00016 %
38	SrO	Strontium	117.9779	0.00621 %	0.00011 %
39	Y	Yttrium	90.3778	0.00390 %	0.00008 %
40	ZrO2	Zirconium	13.2483	0.01187 %	0.00031 %
41	Nb2O5	Niobium	1.9400	0.00141 %	0.00018 %
42	Mo	Molvbdenum	3.8956	0.00191 %	0.00013 %
47	Aa	Silver	1,7118	0.00134 %	0.00029 %
48	Cď	Cadmium	0.0000	< 0.00020 %	(0.0) %
50	SnO2	Tin	5.3066	0.00144 %	0.00009 %
51	Sb2O5	Antimony	3.1124	0.00076 %	0.00008 %
52	Те	Tellurium	4.1446	< 0.00030 %	(0.0) %
53	I	lodine	3.0034	0.00120 %	0.00021 %
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %
56	Ва	Barium	7.5423	0.00768 %	0.00064 %
57	La	Lanthanum	0.0000	< 0.00020 %	(0.0) %
58	Ce	Cerium	0.0000	< 0.00020 %	(0.0) %
68	Er	Erbium	0.0000	< 0.00051 %	(0.0) %
70	Yb	Ytterbium	4.1386	< 0.00020 %	(0.0) %
72	Hf	Hafnium	0.0000	< 0.00010 %	(0.0) %
73	Ta2O5	Tantalum	3.6139	< 0.00012 %	(0.0) %
74	WO3	Tungsten	0.0000	< 0.00013 %	(0.0) %
80	Hg	Mercury	0.0000	< 0.00010 %	(0.0) %
81	TI	Thallium	0.0000	< 0.00010 %	(0.0) %
82	PbO	Lead	4.2114	0.00087 %	0.00016 %
83	Bi	Bismuth	0.0000	< 0.00010 %	(0.0) %
90	Th	Thorium	0.0000	< 0.00010 %	(0.0) %
92	U	Uranium	12.6488	0.00059 %	0.00012 %
		Sum of concent	tration	99.75 %	

Sample Name	FLO1	Dilution Material		
Description		Sample Mass (g)	4.0100	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	07/11/2016	
Sample Status	AXXAXXA	Date of Evaluation	07/12/2016	
-Results				

Na Sodium 30.5726 1.302 % 0.040 % 12 Mg Magnesium 73.9856 0.5780 % 0.0082 % 13 Al Aluminum 3428.7587 7.591 % 0.009 % 14 Si Silicon 28457.4643 27.47 % 0.022 % 15 P Phosphorus 424.7707 0.2500 % 0.00017 % 16 S Suffur 88.9100 0.01538 % 0.00008 % 17 Cl Chlorine 154.1625 0.01466 % 0.0008 % 20 Ca Calcium 378.6408 1.111 % 0.0044 % 21 V Vanadium 32.125 0.0042 % 0.0017 % 22 Ti Titanium 32.0490 0.01488 % 0.00049 % 23 V Vanadium 3.2125	Z	Symbol	Element	Norm. Int.	Concentrat	ion	Abs. Erre	or
11 NA Soduum 30.725 1.302 % 0.0082 13 AI Aluminum 3428.7567 7.591 % 0.009 % 14 Si Silicon 28457.4643 27.47 % 0.02 % 15 P Phosphorus 28457.4643 27.47 % 0.0007 % 16 S Sulfur 88.9100 0.01538 % 0.00012 % 17 CI Chlorine 154.1625 0.01466 % 0.0008 % 20 Ca Calcium 378.6408 1.111 % 0.0044 % 22 Ti Titanium 322.6098 0.5795 % 0.0033 % 24 Cr Chromium 35.0490 0.01488 % 0.00017 % 24 Cr Chromium 35.0490 0.01488 % 0.00015 % 27 Co Cobalt 7.3868		NL-	O a all'anna	00 5700	4 000	0/	0.040	0/
12 Mg Magnesium 73.9856 0.5780 % 0.0022 % 14 Si Silicon 28457.4643 27.47 % 0.007 % 15 P Phosphorus 424.7707 0.2500 % 0.0007 % 16 S Sulfur 88.9100 0.01538 % 0.0008 % 17 Cl Chlorine 154.1625 0.01466 % 0.0008 % 20 Ca Calcium 378.6408 1.111 % 0.004 % 22 Ti Titanium 322.6098 0.5795 % 0.0033 % 23 V Varadium 3.2125 0.0042 % 0.0017 % 24 Cr Chromium 35.0490 0.01488 % 0.00017 % 25 Mn Magnese 1162.0159 0.4616 % 0.00017 % 26 Fe Iron 51820.6979 13.55 % 0.0017 % 29 Cu <	11	Na	Sodium	30.5726	1.302	%	0.040	%
13 Al Aluminum 3426.7867 7.591 % 0.009 % 14 Si Silicon 28457.4643 27.47 % 0.002 % 15 P Phosphorus 424.7707 0.2500 % 0.0007 % 16 S Sulfur 88.9100 0.01538 % 0.0008 % 17 Cl Chlorine 154.1625 0.01466 % 0.0008 % 20 Ca Calcicum 378.6408 1.111 % 0.0044 % 22 Ti Titanium 322.6098 0.5795 % 0.0033 % 24 Cr Chromium 35.0490 0.01488 % 0.00017 % 25 Mn Maganese 1162.0159 0.4616 % 0.00013 % 26 Fe Iron 51820.5979 13.55 % 0.011 % 28 Ni Nickel 50.3036 0.00282 % 0.00007 % 29 Cu	12	Mg	Magnesium	73.9856	0.5780	%	0.0082	%
14 SI SIIICON 20437,4043 2/1.47 % 0.0007 15 P Phosphorus 242.7707 0.2500 % 0.00012 16 S Sulfur 88.9100 0.01538 % 0.00008 17 Cl Chlorine 154.1625 0.01466 % 0.0006 20 Ca Calcium 378.6408 1.111 % 0.004 % 22 Ti Titanium 322.608 0.5795 % 0.0017 % 23 V Vanadium 32.125 0.0042 % 0.0017 % 24 Cr Chromium 35.0490 0.01488 % 0.00049 % 25 Mn Magnese 1162.0159 0.4616 % 0.00017 % 26 Fe Iron 5182.05979 13.55 % 0.011 % 28 Ni Nickel 50.3036 0.00282 % 0.00009 % 31 Ga Gallium 14.9340 0.00131	13	AI	Aluminum	3428.7587	7.591	%	0.009	%
15 P Prosphorus 4.44.7/07 0.2500 % 0.0007 % 16 S Sulfur 88.9100 0.01538 0.00012 % 17 CI Chlorine 154.1625 0.01466 % 0.0006 % 19 K Potassium 445.1087 1.816 % 0.0004 % 20 Ca Calcium 378.6408 1.111 % 0.0044 % 21 Ti Titanium 322.6098 0.5795 % 0.0013 % 22 Ti Titanium 32.26098 0.01488 % 0.00019 % 23 V Vanadium 3.51979 13.55 % 0.011 % 24 Cr Chromium 15.820.5979 13.55 % 0.00015 % 29 Cu Copper 19.2750 0.00282 % 0.00009 % 31 Ga Gallium 14.9340 0.00131 % 0.00002 % 32 Ge Germani	14	SI	Silicon	28457.4643	27.47	%	0.02	%
To S Sulful 88.9100 0.01146 % 0.00012 % 17 CI Chlorine 154.1625 0.01466 % 0.0008 % 19 K Potassium 445.1087 1.816 % 0.0004 % 20 Ca Calcium 378.6408 1.111 % 0.0044 % 23 V Vanadium 3.2125 0.0042 % 0.0017 % 24 Cr Chromium 35.0490 0.01488 % 0.00049 % 25 Mn Manganese 1162.0159 0.4616 % 0.0017 % 26 Fe Iron 51820.5979 13.55 % 0.0013 % 27 Co Cobalt 7.3868 0.0022 % 0.00005 % 0.00015 % 29 Cu Copper 19.2750 0.00282 % 0.00005 % 0.0000 \$	15	P	Phosphorus	424.7707	0.2500	%	0.0007	%
17 Cl Chlonne 194,1625 0.01466 % 0.00008 % 19 K Potassium 378,6408 1.111 % 0.006 % 20 Ca Calcium 378,6408 1.111 % 0.0004 % 21 Ti Titanium 322,6098 0.5795 % 0.0017 % 24 Cr Chromium 35,0490 0.01488 % 0.0017 % 24 Cr Chromium 35,0490 0.01488 % 0.0013 % 25 Mn Maganese 1162,0159 0.4616 % 0.0013 % 26 Fe Iron 51820,5979 13,55 % 0.011 % 27 Co Cobalt 7.3868 0.00622 % 0.00007 % 28 Ni Nickel 50,3036 0.00038 % 0.00009 % 30 Zn Zinc 62,1084 0.00084 % 0.00009 % 31 Ga Gallium 14,9340 0.00015 % (0.0) % 32 Ge Germanium 0.0000 <0.00005 %	16	S	Sultur	88.9100	0.01538	%	0.00012	%
19 K Potasslum 445.1087 1.816 % 0.0005 % 20 Ca Calcium 378.6408 1.111 % 0.0044 % 22 Ti Titanium 3.2125 0.0042 % 0.0013 % 23 V Vanadium 3.2125 0.0042 % 0.00049 % 24 Cr Chromium 35.0490 0.01488 0.00013 % 25 Mn Manganese 1182.05979 13.55 % 0.00017 % 26 Fe Iron 51820.5979 13.55 % 0.00017 % 28 Ni Nickel 50.3036 0.00282 % 0.00009 % 30 Zn Zinc 62.1084 0.00828 % 0.00009 % 31 Ga Gallium 14.9340 0.00131 % 0.00002 % 32 Ge Germanium 0.7633	17	CI	Chiorine	154.1625	0.01466	%	0.00008	%
20 Ca Calculum 378.6408 1.111 % 0.0044 % 22 Ti Titanium 322.125 0.0042 % 0.0017 % 23 V Vanadium 3.2125 0.0042 % 0.0017 % 24 Cr Chromium 35.0490 0.01488 % 0.00049 % 25 Mn Maganese 11820.5979 13.55 % 0.01 % 26 Fe Iron 51820.5979 13.55 % 0.00047 % 28 Ni Nickel 50.3036 0.00388 0.00009 % 29 Cu Copper 19.2750 0.00282 % 0.00009 % 30 Zn Zinc 62.1084 0.00058 (0.0) % 31 Ga Gallium 14.9340 0.00005 % (0.0) % 32 Ge Germanium 0.0000 <0.00008	19	ĸ	Potassium	445.1087	1.816	%	0.006	%
22 11 Ittanium 322.6098 0.5795 % 0.0033 % 23 V Vanadium 35.2490 0.01488 % 0.00049 % 24 Cr Chromium 35.0490 0.01488 % 0.00049 % 25 Mn Manganese 1162.0159 0.4616 % 0.0017 % 26 Fe Iron 51820.5579 13.55 % 0.0017 % 27 Co Cobalt 7.3868 0.0022 % 0.00015 % 28 Ni Nickel 50.3036 0.00282 % 0.00009 % 30 Zn Zinc 62.1084 0.00684 % 0.00009 % 31 Ga Gallium 14.9340 0.00015 % (0.0) % 32 Ge Germanium 0.0000 < 0.00005	20	Ca		378.6408	1.111	%	0.004	%
23 V Vanaduum 3.2125 0.0042 % 0.0017 % 24 Cr Chromium 35.0490 0.01488 % 0.00049 % 25 Mn Manganese 1162.0159 0.4616 % 0.0013 % 26 Fe Iron 51820.5979 13.55 % 0.0017 % 28 Ni Nickel 50.3036 0.00938 % 0.00015 % 29 Cu Copper 19.2750 0.0282 % 0.00009 % 30 Zn Zinc 62.1084 0.00684 % 0.00005 % 31 Ga Gallium 14.9340 0.0013 % 0.00005 % 32 Ge Germanium 0.0000 < 0.00008	22		litanium	322.6098	0.5795	%	0.0033	%
24 Cr Chromium 35.0490 0.01488 0.00049 % 25 Mn Maganese 1162.0159 0.4616 % 0.0013 % 26 Fe Iron 51820.5979 13.55 % 0.011 % 27 Co Cobalt 7.3868 0.00222 % 0.00009 % 28 Ni Nickel 50.3036 0.00282 % 0.00009 % 30 Zn Zinc 62.1084 0.00282 % 0.00005 % 31 Ga Gallium 14.9340 0.00131 % 0.00005 % 32 Ge Germanium 0.0000 < 0.00005	23	V	Vanadium	3.2125	0.0042	%	0.0017	%
25 Mn Manganese 1162.0159 0.4616 % 0.0013 % 26 Fe Iron 51820.5979 13.55 % 0.011 % 27 Co Cobalt 7.3868 0.0022 % 0.00047 % 28 Ni Nickel 50.3036 0.00282 % 0.00009 % 29 Cu Copper 19.2750 0.00282 % 0.00009 % 30 Zn Zinc 62.1084 0.00684 % 0.00005 % 31 Ga Gallium 14.9340 0.00131 % 0.00002 % 33 As Arsenic 0.0000 < 0.0005	24	Cr	Chromium	35.0490	0.01488	%	0.00049	%
26 Fe Iron 51820.5979 13.55 % 0.01 % 27 Co Cobalt 7.3868 0.00622 % 0.00047 % 28 Ni Nickel 50.3036 0.00938 % 0.00015 % 29 Cu Copper 19.2750 0.00282 % 0.00009 % 30 Zn Zinc 62.1084 0.00684 % 0.00005 % 31 Ga Gallium 14.9340 0.00131 % 0.00005 % 32 Ge Germanium 0.0000 <0.00005	25	Mn	Manganese	1162.0159	0.4616	%	0.0013	%
27 Co Cobalt 7.3868 0.00622 % 0.00047 % 28 Ni Nickel 50.3036 0.00938 % 0.00015 % 29 Cu Copper 19.2750 0.00282 % 0.00009 % 30 Zn Zinc 62.1084 0.00684 % 0.00009 % 31 Ga Gallium 14.9340 0.00131 % 0.00005 % 32 Ge Germanium 0.0000 <0.00005 %	26	Fe	Iron	51820.5979	13.55	%	0.01	%
28 Ni Nickel 50.3036 0.0038 % 0.00015 % 29 Cu Copper 19.2750 0.00282 % 0.00009 % 30 Zn Zinc 62.1084 0.00684 % 0.00009 % 31 Ga Gallium 14.9340 0.00131 % 0.00005 % 32 Ge Germanium 0.0000 <0.00005 %	27	Со	Cobalt	7.3868	0.00622	%	0.00047	%
29 Cu Copper 19.2750 0.0028 % 0.00009 % 30 Zn Zinc 62.1084 0.00684 % 0.00009 % 31 Ga Gallium 14.9340 0.00131 % 0.00005 % 32 Ge Germanium 0.0000 < 0.00005 %	28	Ni	Nickel	50.3036	0.00938	%	0.00015	%
30ZnZinc62.10840.00684%0.00009%31GaGallium14.93400.00131%0.00005%32GeGermanium0.0000<0.00005	29	Cu	Copper	19.2750	0.00282	%	0.00009	%
31 Ga Gallium 14.9340 0.00131 % 0.00005 % 32 Ge Germanium 0.0000 < 0.00005 %	30	Zn	Zinc	62.1084	0.00684	%	0.00009	%
32 Ge Germanium 0.0000 < 0.00005	31	Ga	Gallium	14.9340	0.00131	%	0.00005	%
33 As Arsenic 0.0000 < 0.00005 %	32	Ge	Germanium	0.0000	< 0.00005	%	(0.0)	%
34 Se Selenium 1.7634 0.00008 % 0.00002 % 35 Br Bromine 0.0000 <0.00005	33	As	Arsenic	0.0000	< 0.00005	%	(0.0)	%
35 Br Bromine 0.0000 < 0.00005 % (0.0) % 37 Rb Rubidium 172.2633 0.00427 % 0.00004 % 38 Sr Strontium 95.7211 0.00214 % 0.00004 % 39 Y Yttrium 207.5303 0.00448 % 0.00003 % 40 Zr Zirconium 82.0573 0.02721 % 0.00023 % 41 Nb Niobium 7.9735 0.00203 % 0.00008 % 42 Mo Molybdenum 3.4352 0.00020 % (0.0) % 43 Cd Cadmium 0.2569 < 0.00020	34	Se	Selenium	1.7634	0.00008	%	0.00002	%
37 Rb Rubidium 172.2633 0.00427 % 0.00004 % 38 Sr Strontium 95.7211 0.00214 % 0.00003 % 39 Y Yttrium 207.5303 0.00448 % 0.00004 % 40 Zr Zirconium 82.0573 0.02721 % 0.00008 % 41 Nb Niobium 7.9735 0.00203 % 0.00008 % 42 Mo Molybdenum 3.4352 0.00020 % (0.0) % 47 Ag Silver 0.0000 <0.00020	35	Br	Bromine	0.0000	< 0.00005	%	(0.0)	%
38 Sr Strontium 95.7211 0.00214 % 0.00003 % 39 Y Yttrium 207.5303 0.00448 % 0.00004 % 40 Zr Zirconium 82.0573 0.02721 % 0.00023 % 41 Nb Niobium 7.9735 0.00203 % 0.00008 % 42 Mo Molybdenum 3.4352 0.00020 % (0.0) % 48 Cd Cadmium 0.2569 <0.00020 %	37	Rb	Rubidium	172.2633	0.00427	%	0.00004	%
39 Y Yttrium 207.5303 0.00448 % 0.00004 % 40 Zr Zirconium 82.0573 0.02721 % 0.00008 % 41 Nb Niobium 7.9735 0.00203 % 0.00008 % 42 Mo Molybdenum 3.4352 0.00020 % 0.00008 % 47 Ag Silver 0.0000 < 0.00020	38	Sr	Strontium	95.7211	0.00214	%	0.00003	%
40 Zr Zirconium 82.0573 0.02721 % 0.00023 % 41 Nb Niobium 7.9735 0.00203 % 0.00008 % 42 Mo Molybdenum 3.4352 0.00020 % 0.00008 % 47 Ag Silver 0.0000 < 0.00020 %	39	Y	Yttrium	207.5303	0.00448	%	0.00004	%
41 Nb Niobium 7.9735 0.00203 % 0.00008 % 42 Mo Molybdenum 3.4352 0.00082 % 0.00008 % 47 Ag Silver 0.0000 <0.00020 %	40	Zr	Zirconium	82.0573	0.02721	%	0.00023	%
42 Mo Molybdenum 3.4352 0.00082 % 0.00008 % 47 Ag Silver 0.0000 < 0.00020 %	41	Nb	Niobium	7.9735	0.00203	%	0.00008	%
47 Ag Silver 0.0000 < 0.00020 %	42	Мо	Molybdenum	3.4352	0.00082	%	0.00008	%
48 Cd Cadmium 0.2569 < 0.00020 %	47	Ag	Silver	0.0000	< 0.00020	%	(0.0)	%
50 Sn Tin 8.4369 0.00157 % 0.00008 % 51 Sb Antimony 0.9318 < 0.00030 %	48	Cd	Cadmium	0.2569	< 0.00020	%	(0.0)	%
51SbAntimony 0.9318 < 0.00030 $%$ (0.0) $%$ 52 TeTellurium 1.2995 < 0.00030 $%$ (0.0) $%$ 53 IIodine 0.0000 < 0.00030 $%$ (0.0) $%$ 55 CsCesium 0.0000 < 0.00040 $%$ (0.0) $%$ 56 BaBarium 20.0824 0.01699 $%$ 0.00076 $%$ 57 LaLanthanum 3.0020 < 0.00020 $%$ (0.0) $%$ 58 CeCerium 0.0000 < 0.00020 $%$ (0.0) $%$ 68 ErErbium 4.1102 < 0.0013 $%$ (0.0013) $%$ 70 YbYtterbium 3.9820 < 0.00020 $%$ (0.0) $%$ 72 HfHafnium 2.2058 < 0.00010 $%$ (0.0) $%$ 73 TaTantalum 1.6351 < 0.00010 $%$ (0.0) $%$ 74 WTungsten 0.0000 < 0.00010 $%$ (0.0) $%$	50	Sn	Tin	8.4369	0.00157	%	0.00008	%
52 Te Tellurium 1.2995 < 0.00030 %	51	Sb	Antimony	0.9318	< 0.00030	%	(0.0)	%
53 I Iodine 0.0000 < 0.00030 %	52	Те	Tellurium	1.2995	< 0.00030	%	(0.0)	%
55 Cs Cesium 0.0000 < 0.00040	53	1	lodine	0.0000	< 0.00030	%	(0.0)	%
56 Ba Barium 20.0824 0.01699 % 0.00076 % 57 La Lanthanum 3.0020 < 0.00020 %	55	Cs	Cesium	0.0000	< 0.00040	%	(0.0)	%
57 La Lanthanum 3.0020 < 0.00020	56	Ва	Barium	20.0824	0.01699	%	0.00076	%
58 Ce Cerium 0.0000 < 0.00020 %	57	La	Lanthanum	3.0020	< 0.00020	%	(0.0)	%
68 Er Erbium 4.1102 < 0.0013	58	Ce	Cerium	0.0000	< 0.00020	%	(0.0)	%
70 Yb Ytterbium 3.9820 < 0.00020 %	68	Er	Erbium	4.1102	< 0.0013	%	(0.0013)	%
72 Hf Hafnium 2.2058 < 0.00010 % % 73 Ta Tantalum 1.6351 < 0.00010	70	Yb	Ytterbium	3.9820	< 0.00020	%	(0.0)	%
73 Ta Tantalum 1.6351 < 0.00010 % (0.0) % 74 W Tungsten 0.0000 < 0.00010	72	Hf	Hafnium	2.2058	< 0.00010	%	(0.0)	%
74 W Tungsten 0.0000 < 0.00010 % (0.0) %	73	Та	Tantalum	1.6351	< 0.00010	%	(0.0)	%
	74	W	Tungsten	0.0000	< 0.00010	%	(0.0)	%

Sample Name Description		FLO1		Date of Receipt Method	07/11/2016 TurboQuant-Powders	
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error	
80	Hg	Mercury	2.4879	< 0.00010 %	(0.0) %	
81	TI	Thallium	0.0000	< 0.00010 %	(0.0) %	
82	Pb	Lead	46.3408	0.00443 %	0.00007 %	
83	Bi	Bismuth	0.0000	< 0.00010 %	(0.0) %	
90	Th	Thorium	0.0000	< 0.00010 %	(0.0) %	
92	U	Uranium	6.0723	< 0.00010 %	(0.0) %	

Samp Descr	le Name iption	FLO1		Date of Receipt Method	07/11/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	30 5726	1 755 %	0.053 %
12	MaQ	Magnesium	73 9856	0.959 %	0.014 %
13	AI2O3	Aluminum	3428 7587	14.34 %	0.02 %
14	SiO2	Silicon	28457 4643	58 78 %	0.02 %
15	P205	Phosphorus	424 7707	0.5729 %	0.0017 %
16	SO3	Sulfur	88 9100	0.03841 %	0.00029 %
17	CL	Chlorine	154 1625	0.01466 %	0.00008 %
19	K20	Potassium	445 1087	2 187 %	0.007 %
20	CaO	Calcium	378 6408	1.555 %	0.005 %
22	TiO2	Titanium	322 6098	0.9668 %	0.0054 %
23	V205	Vanadium	3 2125	0.0076 %	0.0030 %
24	Cr2O3	Chromium	35 0490	0.02175 %	0.00072 %
25	MnO	Manganese	1162 0159	0.5961 %	0.0017 %
26	Fe2O3	Iron	51820 5979	19.37 %	0.01 %
27	CoO	Cohalt	7 3868	0.00790 %	0.00059 %
28	NiO	Nickel	50,3036	0.01194 %	0.00019 %
29	CuO	Conner	19 2750	0.00353 %	0.00011 %
30	ZnO	Zinc	62 1084	0.00851 %	0.00011 %
31	Ga	Gallium	14 9340	0.00131 %	0.00005 %
32	Ge	Germanium	0 0000		(0,0) %
33	As203	Arsenic	0.0000	< 0.000007 %	(0,0) %
34	Se	Selenium	1 7634	0.00008 %	0.0002 %
35	Br	Bromine	0,000	< 0.00005 %	(0,0) %
37	Rh2O	Rubidium	172 2633	0.00467 %	0 00004 %
38	SrO	Strontium	95 7211	0.00253 %	0.00003 %
39	Y	Yttrium	207 5303	0.00448 %	0.00004 %
40	7rO2	Zirconium	82 0573	0.03675 %	0.00031 %
41	Nh205	Niobium	7 9735	0.00290 %	0.00011 %
42	Mo	Molybdenum	3 4352	0.00082 %	0.00008 %
47	Αα	Silver	0,0000	< 0.00020 %	(0,0) %
48	Cd	Cadmium	0 2569	< 0.00020 %	(0,0) %
50	SnO2	Tin	8 4369	0.00199 %	0.00011 %
51	Sh2O5	Antimony	0.9318	< 0.00040 %	(0,0) %
52	Te	Tellurium	1 2995	< 0.00030 %	(0,0) %
53	I	lodine	0.0000	< 0.00030 %	(0,0) %
55	Ċs	Cesium	0.0000	< 0.00040 %	(0.0) %
56	Ba	Barium	20.0824	0.01699 %	0.00076 %
57	la	Lanthanum	3 0020	< 0.00020 %	(0,0) %
58	Ce	Cerium	0.0000	< 0.00020 %	(0.0) %
68	Er	Erbium	4,1102	< 0.0013 %	(0.0013) %
70	Yh	Ytterbium	3 9820	< 0.00020 %	(0,0) %
72	Hf	Hafnium	2,2058	< 0.00010 %	(0.0) %
73	Ta2O5	Tantalum	1.6351	< 0.00012 %	(0.0) %
74	WO3	Tunasten	0.0000	< 0.00013 %	(0.0) %
80	Ha	Mercurv	2.4879	< 0.00010 %	(0.0) %
81	TI	Thallium	0.0000	< 0.00010 %	(0.0) %
82	PbO	Lead	46 3408	0.00478 %	0.00008 %
83	Bi	Bismuth	0.0000	< 0.00010 %	(0.0) %
90	 Th	Thorium	0.0000	< 0.00010 %	(0.0) %
92	U	Uranium	6.0723	< 0.00010 %	(0.0) %
		Sum of concent	ration	101.27 %	

Sample Name	DRAK2	Dilution Material		
Description		Sample Mass (g)	4.1240	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	07/11/2016	
Sample Status	AXXAXXA	Date of Evaluation	07/12/2016	
-Results				

Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error	
		o "			0.00 <i>4</i>	
11	Na	Sodium	27.8647	1.449 %	0.034 %	
12	Mg	Magnesium	92.7033	0.9242 %	0.0080 %	
13	AI	Aluminum	963.1556	2.527 %	0.005 %	
14	SI	Silicon	7952.7580	8.191 %	0.007 %	
15	P	Phosphorus	2117.2145	1.017 %	0.001 %	
16	S	Sultur	115.5025	0.01926 %	0.00011 %	
1/	CI	Chlorine	207.9931	0.01825 %	0.00007 %	
19	ĸ	Potassium	119.3629	0.4012 %	0.0024 %	
20	Ca		73.5931	0.1560 %	0.0013 %	
22		litanium	268.0213	0.3994 %	0.0055 %	
23	V	Vanadium	0.0000	< 0.0014 %	(0.0014) %	
24	Cr	Chromium	29.9436	0.0107 %	0.0012 %	
25	Mn	Manganese	409.1814	0.1443 %	0.0018 %	
26	Fe	Iron	205160.4018	49.20 %	0.03 %	
27	Со	Cobalt	0.0000	< 0.00030 %	(0.0) %	
28	Ni	Nickel	68.5348	0.02660 %	0.00063 %	
29	Cu	Copper	10.7467	0.00328 %	0.00027 %	
30	Zn	Zinc	172.0367	0.03980 %	0.00048 %	
31	Ga	Gallium	0.0000	< 0.00005 %	(0.0) %	
32	Ge	Germanium	0.0000	< 0.00005 %	(0.0) %	
33	As	Arsenic	34.1777	0.00369 %	0.00013 %	
34	Se	Selenium	0.0000	< 0.00005 %	(0.0) %	
35	Br	Bromine	0.0000	< 0.00005 %	(0.0) %	
37	Rb	Rubidium	54.1999	0.00293 %	0.00020 %	
38	Sr	Strontium	0.0000	< 0.00005 %	(0.0) %	
39	Υ	Yttrium	41.9641	0.00199 %	0.00008 %	
40	Zr	Zirconium	7.7585	0.00565 %	0.00021 %	
41	Nb	Niobium	0.5992	0.00034 %	0.00012 %	
42	Мо	Molybdenum	0.6676	0.00007 %	0.00003 %	
47	Ag	Silver	0.3574	< 0.00031 %	(0.00031) %	
48	Cd	Cadmium	0.0000	< 0.00020 %	(0.0) %	
50	Sn	Tin	4.3156	0.00061 %	0.00005 %	
51	Sb	Antimony	0.0000	< 0.00030 %	(0.0) %	
52	Те	Tellurium	2.4285	< 0.00030 %	(0.0) %	
53	I	lodine	0.0000	< 0.00030 %	(0.0) %	
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %	
56	Ва	Barium	5.4404	0.00472 %	0.00056 %	
57	La	Lanthanum	1.7925	< 0.00020 %	(0.0) %	
58	Ce	Cerium	2.1499	< 0.00020 %	(0.0) %	
72	Hf	Hafnium	0.0000	< 0.00010 %	(0.0) %	
73	Та	Tantalum	0.4665	< 0.00010 %	(0.0) %	
74	W	Tungsten	5.2208	< 0.00010 %	(0.0) %	
80	Ha	Mercurv	0.0000	< 0.00010 %	(0.0) %	
81	ТІ	Thallium	0.0000	< 0.00010 %	(0.0) %	

Sampl Descri	e Name ption	DRAK2		Date of Receipt Method	07/1 Turb	1/2016 ooQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. E	rror
82 83 90 92	Pb Bi Th U	Lead Bismuth Thorium Uranium	0.0000 0.0000 0.0000 0.0000	< 0.00010 % < 0.00010 % < 0.00010 % < 0.00010 %	(0.0) (0.0) (0.0) (0.0)	% % %

Samp Descr	le Name iption	DRAK2		Date of Receipt Method	07/11/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	27.8647	1.953 %	0.046 %
12	MaO	Magnesium	92,7033	1.533 %	0.013 %
13	AI2O3	Aluminum	963.1556	4.775 %	0.010 %
14	SiO2	Silicon	7952.7580	17.52 %	0.01 %
15	P2O5	Phosphorus	2117.2145	2.331 %	0.003 %
16	SO3	Sulfur	115.5025	0.04808 %	0.00028 %
17	CI	Chlorine	207.9931	0.01825 %	0.00007 %
19	K2O	Potassium	119.3629	0.4833 %	0.0028 %
20	CaO	Calcium	73.5931	0.2183 %	0.0019 %
22	TiO2	Titanium	268.0213	0.6664 %	0.0092 %
23	V2O5	Vanadium	0.0000	< 0.0025 %	(0.0024) %
24	Cr2O3	Chromium	29,9436	0.0157 %	0.0018 %
25	MnO	Manganese	409.1814	0.1863 %	0.0023 %
26	Fe2O3	Iron	205160.4018	70.35 %	0.04 %
27	CoO	Cobalt	0.0000	< 0.00039 %	(0.0) %
28	NiO	Nickel	68,5348	0.03385 %	0.00080 %
29	CuO	Copper	10.7467	0.00410 %	0.00033 %
30	ZnO	Zinc	172.0367	0.04954 %	0.00059 %
31	Ga	Gallium	0.0000	< 0.00005 %	(0.0) %
32	Ge	Germanium	0.0000	< 0.00005 %	(0.0) %
33	As2O3	Arsenic	34.1777	0.00487 %	0.00017 %
34	Se	Selenium	0.0000	< 0.00005 %	(0.0) %
35	Br	Bromine	0.0000	< 0.00005 %	(0.0) %
37	Rb2O	Rubidium	54.1999	0.00320 %	0.00022 %
38	SrO	Strontium	0.0000	< 0.00006 %	(0.0) %
39	Y	Yttrium	41.9641	0.00199 %	0.00008 %
40	ZrO2	Zirconium	7.7585	0.00763 %	0.00029 %
41	Nb2O5	Niobium	0.5992	0.00048 %	0.00018 %
42	Мо	Molybdenum	0.6676	0.00007 %	0.00003 %
47	Ag	Silver	0.3574	< 0.00031 %	(0.00031) %
48	Cď	Cadmium	0.0000	< 0.00020 %	(0.0) %
50	SnO2	Tin	4.3156	0.00078 %	0.00006 %
51	Sb2O5	Antimony	0.0000	< 0.00040 %	(0.0) %
52	Те	Tellurium	2.4285	< 0.00030 %	(0.0) %
53	I	lodine	0.0000	< 0.00030 %	(0.0) %
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %
56	Ва	Barium	5.4404	0.00472 %	0.00056 %
57	La	Lanthanum	1.7925	< 0.00020 %	(0.0) %
58	Ce	Cerium	2.1499	< 0.00020 %	(0.0) %
72	Hf	Hafnium	0.0000	< 0.00010 %	(0.0) %
73	Ta2O5	Tantalum	0.4665	< 0.00012 %	(0.0) %
74	WO3	Tungsten	5.2208	< 0.00013 %	(0.0) %
80	Hg	Mercury	0.0000	< 0.00010 %	(0.0) %
81	ΤĪ	Thallium	0.0000	< 0.00010 %	(0.0) %
82	PbO	Lead	0.0000	< 0.00011 %	(0.0) %
83	Bi	Bismuth	0.0000	< 0.00010 %	(0.0) %
90	Th	Thorium	0.0000	< 0.00010 %	(0.0) %
92	U	Uranium	0.0000	< 0.00010 %	(0.0) %
				400.04	

100.21 %

Sample Name	DRAK1	Dilution Material		
Description		Sample Mass (g)	4.0300	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	07/11/2016	
Sample Status	AXXAXXA	Date of Evaluation	07/12/2016	
-Results				

Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
		o			
11	Na	Sodium	28.6519	1.240 %	0.025 %
12	Mg	Magnesium	62.6017	0.6280 %	0.0066 %
13	Al	Aluminum	499.5179	1.413 %	0.004 %
14	Si	Silicon	3542.3800	3.947 %	0.004 %
15	Р	Phosphorus	2394.9746	1.168 %	0.001 %
16	S	Sultur	40.4846	0.00061 %	0.00001 %
17	CI	Chlorine	68.0735	0.00224 %	0.00002 %
19	K	Potassium	66.4917	0.2309 %	0.0019 %
20	Ca	Calcium	66.5786	0.1433 %	0.0012 %
22	Ti	Titanium	128.7404	0.1974 %	0.0055 %
23	V	Vanadium	0.0000	< 0.00100 %	(0.00099) %
24	Cr	Chromium	27.5272	0.0099 %	0.0013 %
25	Mn	Manganese	1540.2646	0.5570 %	0.0027 %
26	Fe	Iron	229037.9213	56.37 %	0.04 %
27	Co	Cobalt	18.5360	0.01783 %	0.00087 %
28	Ni	Nickel	51.5420	0.02084 %	0.00067 %
29	Cu	Copper	0.0000	< 0.00005 %	(0.0) %
30	Zn	Zinc	482.0128	0.1172 %	0.0008 %
31	Ga	Gallium	0.0000	< 0.00005 %	(0.0) %
32	Ge	Germanium	0.0000	< 0.00005 %	(0.0) %
33	As	Arsenic	28.3099	0.00321 %	0.00013 %
34	Se	Selenium	0.0000	< 0.00005 %	(0.0) %
35	Br	Bromine	3.5125	0.00034 %	0.00009 %
37	Rb	Rubidium	32.9869	0.00187 %	0.00023 %
38	Sr	Strontium	0.0000	< 0.00005 %	(0.0) %
39	Υ	Yttrium	111.0634	0.00553 %	0.00010 %
40	Zr	Zirconium	3.4505	0.00264 %	0.00019 %
41	Nb	Niobium	0.0000	< 0.00010 %	(0.0) %
42	Мо	Molybdenum	1.0727	0.00034 %	0.00007 %
47	Ag	Silver	0.0000	< 0.00020 %	(0.0) %
48	Cď	Cadmium	0.0000	< 0.00020 %	(0.0) %
50	Sn	Tin	4.5654	0.00077 %	0.00005 %
51	Sb	Antimony	1.0674	< 0.00030 %	(0.0) %
52	Те	Tellurium	2.8111	< 0.00030 %	(0.0) %
53	1	lodine	0.0000	< 0.00030 %	(0.0) %
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %
56	Ва	Barium	13.6699	0.01934 %	0.00093 %
57	La	Lanthanum	2.7107	< 0.00020 %	(0.0) %
58	Ce	Cerium	0.7081	< 0.00020 %	(0.0) %
68	Er	Erbium	0.0000	< 0.00051 %	(0.0) %
70	Yb	Ytterbium	4,9633	< 0.00020 %	(0.0) %
72	Hf	Hafnium	0.3054	< 0.00010 %	(0.0) %
73	Та	Tantalum	4.0852	< 0.00010 %	(0.0) %
74	W	Tungsten	0.0000	< 0.00010 %	(0.0) %
		0			· /

Sample Name Description		DRAK1	K1	Date of Receipt Method	07/11/2016 TurboQuant-Powders	
Z	Symbol	Element	Norm. Int.	Concentration	Abs. E	rror
80	Hg	Mercury	0.0000	< 0.00010 %	(0.0)	%
81	ΤĪ	Thallium	0.0000	< 0.00010 %	(0.0)	%
82	Pb	Lead	0.0000	< 0.00010 %	(0.0)	%
83	Bi	Bismuth	0.0000	< 0.00010 %	(0.0)	%
90	Th	Thorium	0.0000	< 0.00010 %	(0.0)	%
92	U	Uranium	0.0000	< 0.00010 %	(0.0)́	%

Sampl Descri	e Name ption	DRAK1		Date of Receipt Method	07/11/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	28 6519	1 671 %	0.034 %
12	MaO	Magnesium	62 6017	1.047 %	0.011 %
13	AI2O3	Aluminum	499 5179	2 669 %	0.007 %
14	SiO2	Silicon	3542 3800	8 4 4 %	0.009 %
15	P205	Phosphorus	2394 9746	2 677 %	0.003 %
16	SO3	Sulfur	40 4846	0.00153 %	0.00002 %
17	CI	Chlorine	68.0735	0.00224 %	0.00002 %
19	K2O	Potassium	66.4917	0.2782 %	0.0022 %
20	CaO	Calcium	66.5786	0.2005 %	0.0016 %
22	TiO2	Titanium	128,7404	0.3294 %	0.0092 %
23	V2O5	Vanadium	0.0000	< 0.0018 %	(0.0018) %
24	Cr2O3	Chromium	27.5272	0.0145 %	0.0019 %
25	MnO	Manganese	1540.2646	0.7192 %	0.0035 %
26	Fe2O3	Iron	229037.9213	80.60 %	0.05 %
27	CoO	Cobalt	18.5360	0.0227 %	0.0011 %
28	NiO	Nickel	51.5420	0.02652 %	0.00085 %
29	CuO	Copper	0.0000	< 0.00006 %	(0.0) %
30	ZnO	Zinc	482.0128	0.1459 %	0.0010 %
31	Ga	Gallium	0.0000	< 0.00005 %	(0.0) %
32	Ge	Germanium	0.0000	< 0.00005 %	(0.0) %
33	As2O3	Arsenic	28.3099	0.00424 %	0.00017 %
34	Se	Selenium	0.0000	< 0.00005 %	(0.0) %
35	Br	Bromine	3.5125	0.00034 %	0.00009 %
37	Rb2O	Rubidium	32.9869	0.00205 %	0.00025 %
38	SrO	Strontium	0.0000	< 0.00006 %	(0.0) %
39	Y	Yttrium	111.0634	0.00553 %	0.00010 %
40	ZrO2	Zirconium	3.4505	0.00356 %	0.00026 %
41	Nb2O5	Niobium	0.0000	< 0.00014 %	(0.0) %
42	Мо	Molybdenum	1.0727	0.00034 %	0.00007 %
47	Ag	Silver	0.0000	< 0.00020 %	(0.0) %
48	Cd	Cadmium	0.0000	< 0.00020 %	(0.0) %
50	SnO2	Tin	4.5654	0.00098 %	0.00007 %
51	Sb2O5	Antimony	1.0674	< 0.00040 %	(0.0) %
52	Те	Tellurium	2.8111	< 0.00030 %	(0.0) %
53	I	lodine	0.0000	< 0.00030 %	(0.0) %
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %
56	ва	Barium	13.6699	0.01934 %	0.00093 %
57	La	Lantnanum	2.7107	< 0.00020 %	(0.0) %
58	Ce	Cerium	0.7081	< 0.00020 %	(0.0) %
68 70	Er	Erbium Vitto rhium	0.0000	< 0.00051 %	(0.0) %
70	Y D		4.9033	< 0.00020 %	(0.0) %
12		Tantalum	0.3034	< 0.00010 %	(0.0) %
73	18205	Tungatan	4.0652	< 0.00012 %	(0.0) %
/4 90	VV US	Moreury	0.0000		
0U Q1	пу ті		0.0000		
01 02			0.0000		(0.0) 70 (0.0) 0/
0∠ 82	FUU Bi	Riemuth	0.0000		(0.0) 70 (0.0) 0/
00	DI Th	Thorium	0.0000		
90		Uranium	0.0000		
52	0			Q8 88 0/	(0.0) /0

Sample Name	SKF21	Dilution Material		
Description		Sample Mass (g)	4.0000	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	11/04/2016	
Sample Status	AXXAXXA	Date of Evaluation	11/04/2016	
-Results				

Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
	NL-	O a alla ana	00.0005	0.000	0.004
11	Na	Sodium	22.6365	0.863 %	0.024 %
12	ivig	Magnesium	402.0036	4.625 %	0.014 %
13	AI	Aluminum	407.6089	1.146 %	0.004 %
14	SI	Silicon	7312.6262	8.094 %	0.007 %
15	P	Phosphorus	1013.1579	0.5136 %	0.0009 %
16	S	Sultur	425.7467	0.1013 %	0.0003 %
1/	CI	Chlorine	371.9653	0.03900 %	0.00011 %
19	ĸ	Potassium	141.6981	0.5039 %	0.0026 %
20	Ca		110.8794	0.2608 %	0.0016 %
22		Litanium	124.4649	0.1960 %	0.0053 %
23	V	Vanadium	0.0000	< 0.0014 %	(0.0014) %
24	Cr	Chromium	29.3949	0.0109 %	0.0013 %
25	Mn	Manganese	902.0995	0.3320 %	0.0023 %
26	Fe	Iron	213992.3594	53.46 %	0.03 %
27	Co	Cobalt	0.7344	< 0.00030 %	(0.0) %
28	Ni	Nickel	10.7041	0.00365 %	0.00039 %
29	Cu	Copper	21.1511	0.00655 %	0.00031 %
30	Zn	Zinc	196.2906	0.04612 %	0.00052 %
31	Ga	Gallium	0.0000	< 0.00005 %	(0.0) %
32	Ge	Germanium	0.0000	< 0.00005 %	(0.0) %
33	As	Arsenic	27.4304	0.00300 %	0.00012 %
34	Se	Selenium	0.0000	< 0.00005 %	(0.0) %
35	Br	Bromine	0.0000	< 0.00005 %	(0.0) %
37	Rb	Rubidium	0.0000	< 0.00005 %	(0.0) %
38	Sr	Strontium	7.0320	0.00035 %	0.00010 %
39	Y	Yttrium	12.0444	0.00058 %	0.00006 %
40	Zr	Zirconium	3.8999	0.00288 %	0.00019 %
41	Nb	Niobium	0.0000	< 0.00010 %	(0.0) %
42	Мо	Molybdenum	5.7339	0.00330 %	0.00016 %
47	Ag	Silver	0.7220	< 0.00064 %	(0.00063) %
48	Cď	Cadmium	0.0000	< 0.00020 %	(0.0) %
50	Sn	Tin	4.2583	0.00058 %	0.00004 %
51	Sb	Antimony	1.2859	< 0.00030 %	(0.0) %
52	Те	Tellurium	3.0040	< 0.00030 %	(0.0) %
53	I	lodine	0.1950	< 0.00030 %	(0.0) %
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %
56	Ва	Barium	6.7089	0.00694 %	0.00066 %
57	La	Lanthanum	0.0000	< 0.00020 %	(0.0) %
58	Ce	Cerium	0.0000	< 0.00020 %	(0.0) %
72	Hf	Hafnium	0.0000	< 0.00010 %	(0.0) %
73	Та	Tantalum	2.5705	< 0.00010 %	(0.0) %
74	W	Tunasten	4.6084	< 0.00010 %	(0.0) %
80	На	Mercury	0,0000	< 0.00010 %	(0,0) %
81	TI	Thallium	0.0000	< 0.00010 %	(0.0) %
	-				\/ ·

Sampl Descri	e Name ption	SKF21		Date of Receipt Method	11/04/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
82 83 90 92	Pb Bi Th U	Lead Bismuth Thorium Uranium	0.0000 0.0000 20.8023 30.8638	< 0.00010 % < 0.00010 % 0.00304 % 0.00318 %	(0.0) % (0.0) % 0.00080 % 0.00035 %

Samp Descr	le Name iption	SKF21		Date of Receipt Method	11/04/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	22.6365	1.164 %	0.033 %
12	MaO	Magnesium	402.0036	7.670 %	0.024 %
13	AI2O3	Aluminum	407.6089	2.165 %	0.007 %
14	SiO2	Silicon	7312.6262	17.32 %	0.01 %
15	P2O5	Phosphorus	1013.1579	1.177 %	0.002 %
16	SO3	Sulfur	425.7467	0.2529 %	0.0007 %
17	CI	Chlorine	371.9653	0.03900 %	0.00011 %
19	K2O	Potassium	141.6981	0.6070 %	0.0031 %
20	CaO	Calcium	110.8794	0.3649 %	0.0023 %
22	TiO2	Titanium	124.4649	0.3270 %	0.0088 %
23	V2O5	Vanadium	0.0000	< 0.0025 %	(0.0025) %
24	Cr2O3	Chromium	29.3949	0.0160 %	0.0019 %
25	MnO	Manganese	902.0995	0.4287 %	0.0029 %
26	Fe2O3	Iron	213992.3594	76.44 %	0.05 %
27	CoO	Cobalt	0.7344	< 0.00039 %	(0.0) %
28	NiO	Nickel	10.7041	0.00465 %	0.00049 %
29	CuO	Copper	21.1511	0.00820 %	0.00039 %
30	ZnO	Zinc	196.2906	0.05740 %	0.00064 %
31	Ga	Gallium	0.0000	< 0.00005 %	(0.0) %
32	Ge	Germanium	0.0000	< 0.00005 %	(0.0) %
33	As2O3	Arsenic	27.4304	0.00396 %	0.00016 %
34	Se	Selenium	0.0000	< 0.00005 %	(0.0) %
35	Br	Bromine	0.0000	< 0.00005 %	(0.0) %
37	Rb2O	Rubidium	0.0000	< 0.00006 %	(0.0) %
38	SrO	Strontium	7.0320	0.00041 %	0.00011 %
39	Y	Yttrium	12.0444	0.00058 %	0.00006 %
40	ZrO2	Zirconium	3.8999	0.00388 %	0.00026 %
41	Nb2O5	Niobium	0.0000	< 0.00014 %	(0.0) %
42	Мо	Molybdenum	5.7339	0.00330 %	0.00016 %
47	Ag	Silver	0.7220	< 0.00064 %	(0.00063) %
48	Cd	Cadmium	0.0000	< 0.00020 %	(0.0) %
50	SnO2	lin	4.2583	0.00073 %	0.00005 %
51	Sb205	Antimony	1.2859	< 0.00040 %	(0.0) %
52	le	l ellurium	3.0040	< 0.00030 %	(0.0) %
53		Iodine	0.1950	< 0.00030 %	(0.0) %
55 56	CS	Cesium	0.0000		
50 57	ва	Barlum	0.7089	0.00694 %	
5/	La	Corium	0.0000	< 0.00020 %	(0.0) %
00 70	Ce Llf	Lofpium	0.0000	< 0.00020 %	(0.0) %
72		Tantalum	0.0000		(0.0) 76 (0.0) 94
73	1a205 W/03	Tungsten	2.5705	< 0.00012 %	(0.0) %
20 80	Ha	Mercury	4.0004 0.0000		(0.0) %
81	TI	Thallium	0.0000		(0.0) %
82			0.0000		(0.0) %
83	Ri	Rismuth	0.0000		(0.0) %
gn	Th	Thorium	20 8023		0.0080 %
92	U	Uranium	30 8638	0.00318 %	0.00035 %
	Ŭ			0.00010 /0	

108.06 %

Sample Name	SKF20	Dilution Material		
Description		Sample Mass (g)	4.0000	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	11/01/2016	
Sample Status	AXXAXXA	Date of Evaluation	11/02/2016	
-Results				

Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
		0 "		0.000	0.040 N/
11	Na	Sodium	28.6753	0.890 %	0.019 %
12	Mg	Magnesium	155.7807	0.9678 %	0.0052 %
13	AI	Aluminum	60.3650	0.07492 %	0.00095 %
14	51	SIIICON	2039.0170	1.192 %	0.002 %
15	P	Phosphorus	1938.0000		
10	5	Sulfur	48.9647	0.00142 %	0.00002 %
17		Chiorine	116.5439	0.00405 %	0.00003 %
19	ĸ	Potassium	42.0382	0.1093 %	0.0021 %
20			14055.6176	27.59 %	0.02 %
22		l itanium	10.7388	0.0278 %	0.0024 %
23	V Cr	Chromium	0.0000	< 0.0018 %	
24		Chromium	5.3400	< 0.0012 %	
25	IVIN Fe	Manganese	12/1.8539	0.7501 %	0.0020 %
20	Fe		46416.3144	18.22 %	0.01 %
27		Copalt	0.6520	< 0.00030 %	
28			32.8684		0.00022 %
29	Cu	Copper	0.0000	< 0.00005 %	(0.0) %
30	Zn		10.4519	0.00167 %	0.00007 %
31	Ga	Gaillum	0.3260	< 0.00004 %	(0.00004) %
32	Ge	Germanium	0.0000	< 0.00005 %	(0.0) %
33	AS	Arsenic	7.2700	0.00053 %	0.00005 %
34	Se	Selenium	0.0000	< 0.00005 %	(0.0) %
35	Br	Bromine	1.8713	0.00012 %	0.00003 %
37	RD	Rubidium	10.4519	0.00038 %	0.00004 %
38	Sr	Strontium	92.1242	0.00303 %	0.00003 %
39	Y 7		0.0000	< 0.00005 %	(0.0) %
40	Zr	Zirconium	0.1960	< 0.00010 %	(0.00010) %
41	ND	Niobium	0.1357	< 0.00005 %	(0.00005) %
42	Mo	Molybdenum	2.7343	0.00092 %	0.00008 %
47	Ag	Silver	0.0000	< 0.00020 %	(0.0) %
48	Ca		0.0000	< 0.00020 %	(0.0) %
50	Sn	lin	5.7852	0.00102 %	0.00006 %
51	Sb	Antimony	1.1058	< 0.00030 %	(0.0) %
52	le	lellurium	1.3420	< 0.00030 %	(0.0) %
53		lodine	0.0000	< 0.00030 %	(0.0) %
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %
56	Ва	Barium	12.8420	0.01227 %	0.00072 %
57	La	Lanthanum	0.0000	< 0.00020 %	(0.0) %
58	Ce	Cerium	0.0000	< 0.00020 %	(0.0) %
72	Hf	Hafnium	0.7759	< 0.00010 %	(0.0) %
73	la	Iantalum	0.0000	< 0.00010 %	(0.0) %
74	W	Iungsten	0.0000	< 0.00010 %	(0.0) %
80	Hg	Mercury	0.0000	< 0.00010 %	(0.0) %
81	TI	Thallium	0.0000	< 0.00010 %	(0.0) %

Sampl Descri	e Name ption	SKF20		Date of Receipt Method	11/01/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
82 83 90 92	Pb Bi Th U	Lead Bismuth Thorium Uranium	0.0000 0.0000 0.0000 7.8960	< 0.00010 % < 0.00010 % < 0.00010 % < 0.00013 %	(0.0) % (0.0) % (0.0) % (0.00005) %

Samp Descr	le Name iption	SKF20		Date of Receipt Method	11/01/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	28 6753	1 200 %	0.026 %
12	MaQ	Magnesium	155,7807	1.605 %	0.009 %
13	Al2O3	Aluminum	60.3650	0.1416 %	0.0018 %
14	SiO2	Silicon	2039.0170	2.550 %	0.003 %
15	P2O5	Phosphorus	1938.0000	1.116 %	0.001 %
16	SO3	Sulfur	48.9647	0.00353 %	0.00005 %
17	CI	Chlorine	116.5439	0.00405 %	0.00003 %
19	K2O	Potassium	42.6382	0.1316 %	0.0025 %
20	CaO	Calcium	14055.6176	38.61 %	0.03 %
22	TiO2	Titanium	10.7388	0.0465 %	0.0040 %
23	V2O5	Vanadium	0.0000	< 0.0031 %	(0.0031) %
24	Cr2O3	Chromium	5.3466	< 0.0018 %	(0.0010) %
25	MnO	Manganese	1271.8539	0.9685 %	0.0026 %
26	Fe2O3	Iron	46416.3144	26.06 %	0.02 %
27	CoO	Cobalt	0.6520	< 0.00039 %	(0.0) %
28	NiO	Nickel	32.8684	0.01102 %	0.00028 %
29	CuO	Copper	0.0000	< 0.00006 %	(0.0) %
30	ZnO	Zinc	10.4519	0.00208 %	0.00009 %
31	Ga	Gallium	0.3260	< 0.00004 %	(0.00004) %
32	Ge	Germanium	0.0000	< 0.00005 %	(0.0) %
33	As2O3	Arsenic	7.2700	0.00071 %	0.00006 %
34	Se	Selenium	0.0000	< 0.00005 %	(0.0) %
35	Br	Bromine	1.8713	0.00012 %	0.00003 %
37	Rb2O	Rubidium	10.4519	0.00042 %	0.00004 %
38	SrO	Strontium	92.1242	0.00358 %	0.00004 %
39	Y	Yttrium	0.0000	< 0.00005 %	(0.0) %
40	ZrO2	Zirconium	0.1960	< 0.00013 %	(0.00013) %
41	Nb2O5	Niobium	0.1357	< 0.00007 %	(0.00007) %
42	Мо	Molybdenum	2.7343	0.00092 %	0.00008 %
47	Ag	Silver	0.0000	< 0.00020 %	(0.0) %
48	Cd	Cadmium	0.0000	< 0.00020 %	(0.0) %
50	SnO2	Tin	5.7852	0.00130 %	0.00008 %
51	Sb2O5	Antimony	1.1058	< 0.00040 %	(0.0) %
52	le	lellurium	1.3420	< 0.00030 %	(0.0) %
53	I	lodine	0.0000	< 0.00030 %	(0.0) %
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %
56	ва	Barium	12.8420	0.01227 %	0.00072 %
57	La	Lanthanum	0.0000	< 0.00020 %	(0.0) %
58	Ce	Cerium	0.0000	< 0.00020 %	(0.0) %
12	HI T-205	Hathlum	0.7759	< 0.00010 %	(0.0) %
73	Ta205	Tantalum	0.0000	< 0.00012 %	(0.0) %
/4 00	VV U 3	Tungsten	0.0000		
0U 01	ny Ti		0.0000		
01			0.0000		
02 02		Leau Biomuth	0.0000		
00 00	DI Th	Thorium	0.0000		(0.0) /0 (0.0) 0/
90 90	11	Ilranium	7 8060		
52	0	Granium	1.0900	~ 0.000 IO /0	(0.0000) /0

72.47 %

Sample Name	SKF19	Dilution Material		
Description		Sample Mass (g)	4.0000	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	11/01/2016	
Sample Status	AXXAXXA	Date of Evaluation	11/02/2016	
-Results				

_.

Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na	Sodium	26.3579	0.929 %	0.021 %
12	Mg	Magnesium	83.6954	0.5527 %	0.0045 %
13	Al	Aluminum	89.6875	0.1331 %	0.0011 %
14	Si	Silicon	1283.9596	0.8112 %	0.0013 %
15	Р	Phosphorus	991.2879	0.2596 %	0.0005 %
16	S	Sulfur	59.7322	0.00288 %	0.00003 %
17	CI	Chlorine	431.3258	0.02308 %	0.00006 %
19	K	Potassium	25.2989	0.0675 %	0.0023 %
20	Ca	Calcium	18241.7994	37.28 %	0.02 %
22	Ti	Titanium	5.9964	0.0173 %	0.0018 %
23	V	Vanadium	0.7309	< 0.0015 %	(0.0015) %
24	Cr	Chromium	2.9733	< 0.00010 %	(0.0) %
25	Mn	Manganese	1113.1620	0.7220 %	0.0019 %
26	Fe	Iron	15271.1742	6.543 %	0.005 %
27	Co	Cobalt	0.6644	< 0.00030 %	(0.0) %
28	Ni	Nickel	19.3237	0.00398 %	0.00017 %
29	Cu	Copper	0.0000	< 0.00005 %	(0.0) %
30	Zn	Zinc	6.0297	0.00078 %	0.00005 %
31	Ga	Gallium	0.0000	< 0.00005 %	(0.0) %
32	Ge	Germanium	0.0000	< 0.00005 %	(0.0) %
33	As	Arsenic	5.1770	0.00030 %	0.00003 %
34	Se	Selenium	0.0000	< 0.00005 %	(0.0) %
35	Br	Bromine	0.8970	< 0.00004 %	(0.00004) %
37	Rb	Rubidium	10.6142	0.00031 %	0.00002 %
38	Sr	Strontium	83.1363	0.00217 %	0.00002 %
39	Y	Yttrium	10.5865	0.00027 %	0.00002 %
40	Zr	Zirconium	0.0000	< 0.00010 %	(0.0) %
41	Nb	Niobium	0.1547	< 0.00005 %	(0.00005) %
42	Мо	Molybdenum	1.4623	0.00030 %	0.00005´%
47	Ag	Silver	0.0000	< 0.00020 %	(0.0) %
48	Cď	Cadmium	0.0000	< 0.00020 %	(0.0) %
50	Sn	Tin	6.8475	0.00118 %	0.00007 %
51	Sb	Antimony	1.2128	< 0.00030 %	(0.0) %
52	Те	Tellurium	0.0000	< 0.00030 %	(0.0) %
53	1	lodine	0.4342	< 0.00030 %	(0.0) %
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %
56	Ва	Barium	30.9584	0.02997 %	0.00081 %
57	La	Lanthanum	1.7967	< 0.00020 %	(0.0) %
58	Ce	Cerium	2,1361	< 0.00020 %	(0.0) %
72	Hf	Hafnium	0.6423	< 0.00010 %	(0,0) %
73	Та	Tantalum	1.7939	< 0.00010 %	(0.0) %
74	W	Tunasten	0.0000	< 0.00010 %	(0.0) %
80	На	Mercury	0.0000	< 0.00010 %	(0.0) %
81	TI	Thallium	0.0000	< 0.00010 %	(0.0) %
					· /

Sample Name Description		SKF19		Date of Receipt Method	11/01/2016 TurboQuant-Powders	
Ζ	Symbol	Element	Norm. Int.	Concentration	Abs. Error	
82 83 90 92	Pb Bi Th U	Lead Bismuth Thorium Uranium	3.5159 0.0000 1.8493 8.8147	0.00038 % < 0.00010 % 0.00014 % 0.00010 %	0.00006 % (0.0) % 0.00005 % 0.00001 %	

Sampl Descri	le Name iption	SKF19		Date of Receipt Method	11/01/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	26.3579	1.252 %	0.029 %
12	MaO	Magnesium	83.6954	0.9165 %	0.0074 %
13	AI2O3	Aluminum	89.6875	0.2515 %	0.0021 %
14	SiO2	Silicon	1283.9596	1.736 %	0.003 %
15	P2O5	Phosphorus	991.2879	0.5949 %	0.0011 %
16	SO3	Sulfur	59.7322	0.00719 %	0.00009 %
17	CI	Chlorine	431.3258	0.02308 %	0.00006 %
19	K2O	Potassium	25.2989	0.0813 %	0.0027 %
20	CaO	Calcium	18241.7994	52.16 %	0.03 %
22	TiO2	Titanium	5.9964	0.0289 %	0.0030 %
23	V2O5	Vanadium	0.7309	< 0.0027 %	(0.0026) %
24	Cr2O3	Chromium	2.9733	< 0.00015 %	(0.0) %
25	MnO	Manganese	1113.1620	0.9323 %	0.0024 %
26	Fe2O3	Iron	15271.1742	9.355 %	0.008 %
27	CoO	Cobalt	0.6644	< 0.00039 %	(0.0) %
28	NiO	Nickel	19.3237	0.00507 %	0.00021 %
29	CuO	Copper	0.0000	< 0.00006 %	(0.0) %
30	ZnO	Zinc	6.0297	0.00097 %	0.00006 %
31	Ga	Gallium	0.0000	< 0.00005 %	(0.0) %
32	Ge	Germanium	0.0000	< 0.00005 %	(0.0) %
33	As2O3	Arsenic	5.1770	0.00040 %	0.00004 %
34	Se	Selenium	0.0000	< 0.00005 %	(0.0) %
35	Br	Bromine	0.8970	< 0.00004 %	(0.00004) %
37	Rb2O	Rubidium	10.6142	0.00034 %	0.00002 %
38	SrO	Strontium	83.1363	0.00256 %	0.00003 %
39	Y	Yttrium	10.5865	0.00027 %	0.00002 %
40	ZrO2	Zirconium	0.0000	< 0.00014 %	(0.0) %
41	Nb2O5	Niobium	0.1547	< 0.00007 %	(0.00007) %
42	Мо	Molybdenum	1.4623	0.00030 %	0.00005 %
47	Ag	Silver	0.0000	< 0.00020 %	(0.0) %
48	Cd	Cadmium	0.0000	< 0.00020 %	(0.0) %
50	SnO2	lin	6.8475	0.00149 %	0.00009 %
51	Sb205	Antimony	1.2128	< 0.00040 %	(0.0) %
52	le	l ellurium	0.0000	< 0.00030 %	(0.0) %
53		lodine	0.4342	< 0.00030 %	(0.0) %
55 56	US Do	Cesium	0.0000		
50 57	ва	Barium	30.9584	0.02997 %	0.00081 %
5/	La	Carium	1.7907	< 0.00020 %	(0.0) %
00 70	Uf	Lefnium	2.1301	< 0.00020 %	(0.0) %
72		Tantalum	0.0423		(0.0) %
73	14205	Tungston	0.0000	< 0.00012 %	(0.0) %
20	Ha	Marcury	0.0000		(0.0) /0 (0.0) %
00 Q1	TIQ TI	Thallium	0.0000		(0.0) 76
01 82			2 5150		
82 82	Ri	Rismuth	0.0109	< 0.00041 %	(0 0) %
an an	Th	Thorium	1 8/02		
92		Uranium	8 8147		0.00001 %
52	0	Graman	0.0177	0.00010 /0	0.00001 /0

67.38 %

Sample Name	SKF18	Dilution Material		
Description		Sample Mass (g)	4.0000	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	11/01/2016	
Sample Status	AXXAXXA	Date of Evaluation	11/02/2016	
-Results				

Ζ	Symbol	Element	Norm. Int.	Concentration	Abs. Error
	Nia	C a divers	04.0045	0.004	0.010 %
11	Na	Sodium	21.0645	0.621 %	0.018 %
12	ivig	Magnesium	147.7891		0.0003 %
13	AI	Aluminum	08.0048	0.09063 %	0.00097 %
14	51	Shicon	2109.0070		0.002 %
10	r S	Phosphorus	131.0249		
10	5	Sullui Chloring	40.2793		0.00002 %
17		Deteccium	120.9299	0.00412 %	0.00003 %
19	K Co	Coloium	10.1290	0.1900 %	
20		Titonium	100/4.0320	37.07 % 0.0125 %	0.0015 %
22		Vonodium	4.0420		
23	v Cr	Chromium	2.0910		(0,0) %
24 25	Ci Mn	Manganaga	2.3100		0.0015 %
20	IVIII Eo	Inaligatiese	12069 2052	0.4730 %	
20	Fe	Coholt	0 5070	5.572 %	(0,0) %
21		Niekol	0.0079		0.00015 %
20		Coppor	0.0000		(0,0) %
29	Cu Zn	Zino	0.0000		
30 21		Collium	0.5690		
১ । ১১	Ga	Gaillum	0.000		(0.00000)%
ა∠ ეე	Ge	Araania	0.0000		
33 24	AS	Alsenic	10.3411		0.00003 %
34 25	Se Dr	Bromino	0.4042	< 0.00002 %	(0.00002) %
30 27		Diomine	0.7092		
31 20	RD Cr	Rubicium	10.0127		0.00002 %
30 20	51 V	Strontium	01.0720		0.00002 %
39	t Zr	Tunum Ziroonium	0.0000		
40			0.4707		0.00008 %
41	ND Mo	Niobium	0.0000	< 0.00010 %	
4Z 47		Silver	3.3000	0.00094 %	0.00007 %
47	Ag	Silver	0.2743	< 0.00012 %	(0.00012)%
40 50	Cu		0.0000	< 0.00020 %	
50 E1	Sh	1 III Antimony	0.000		0.00007 %
51	50	Anumony	0.0000	< 0.00030 %	(0.0) %
52 52		Ieliunum	1.4402	< 0.00030 %	(0.0) %
53 FF		Coolum	1.1019		(0.00002) %
55		Deriver	0.0000		
50	ва	Banum	11.1300	0.00877 %	0.00064 %
57	La	Lanthanum	0.0000	< 0.00020 %	(0.0) %
58	Ce	Cerium	2.5333	< 0.00020 %	(0.0) %
72	HT Ta	Hathlum	0.3059	< 0.00010 %	(0.0) %
13			0.0000		
/4 00	VV	rungsten	2.0864		
80	Hg		0.0000	< 0.00010 %	(U.U) %
81	11	i nallium	0.0000	< 0.00010 %	(U.U) %

Sample Name Description		SKF18		Date of Receipt Method	11/01/2016 TurboQuant-Powders	
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error	
82 83 90 92	Pb Bi Th U	Lead Bismuth Thorium Uranium	3.2879 0.0000 2.3431 12.8787	0.00034 % < 0.00010 % 0.00017 % 0.00037 %	0.00006 % (0.0) % 0.00004 % 0.00002 %	

Samp Descr	le Name iption	SKF18		Date of Receipt Method	11/01/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	21.0645	0.837 %	0.024 %
12	MaO	Magnesium	147.7891	1.609 %	0.009 %
13	Al2O3	Aluminum	68.6048	0.1712 %	0.0018 %
14	SiO2	Silicon	2169.5575	2.749 %	0.004 %
15	P2O5	Phosphorus	737.6249	0.4206 %	0.0009 %
16	SO3	Sulfur	46.2793	0.00258 %	0.00004 %
17	CI	Chlorine	120.9299	0.00412 %	0.00003 %
19	K2O	Potassium	73.7298	0.2295 %	0.0030 %
20	CaO	Calcium	18874.6326	52.70 %	0.03 %
22	TiO2	Titanium	4.3420	0.0209 %	0.0026 %
23	V2O5	Vanadium	2.0918	0.0103 %	0.0024 %
24	Cr2O3	Chromium	2.3158	< 0.00015 %	(0.0) %
25	MnO	Manganese	732.3090	0.6108 %	0.0019 %
26	Fe2O3	Iron	13068.3952	7.968 %	0.007 %
27	CoO	Cobalt	0.5079	< 0.00039 %	(0.0) %
28	NiO	Nickel	14.9432	0.00368 %	0.00019 %
29	CuO	Copper	0.0000	< 0.00006 %	(0.0) %
30	ZnO	Zinc	11.1746	0.00172 %	0.00006 %
31	Ga	Gallium	0.5680	< 0.00006 %	(0.00006) %
32	Ge	Germanium	0.0000	< 0.00005 %	(0.0) %
33	As2O3	Arsenic	10.5411	0.00079 %	0.00004 %
34	Se	Selenium	0.4042	< 0.00002 %	(0.00002) %
35	Br	Bromine	0.7592	< 0.00004 %	(0.00004) %
37	Rb2O	Rubidium	18.0127	0.00055 %	0.00002 %
38	SrO	Strontium	61.0726	0.00181 %	0.00003 %
39	Y	Yttrium	0.0000	< 0.00005 %	(0.0) %
40	ZrO2	Zirconium	0.4787	0.00024 %	0.00011 %
41	Nb2O5	Niobium	0.0000	< 0.00014 %	(0.0) %
42	Мо	Molybdenum	3.5008	0.00094 %	0.00007 %
47	Ag	Silver	0.2743	< 0.00012 %	(0.00012) %
48	Cd	Cadmium	0.0000	< 0.00020 %	(0.0) %
50	SnO2	lin	6.3881	0.00130 %	0.00008 %
51	Sb205	Antimony	0.0000	< 0.00040 %	(0.0) %
52	le	l ellurium	1.4462	< 0.00030 %	(0.0) %
53		Iodine	1.1819	< 0.00002 %	(0.00002) %
55 56	CS	Cesium	0.0000	< 0.00040 %	
50 57	ва	Barium	11.1350	0.00877 %	0.00064 %
5/	La	Lantnanum	0.0000	< 0.00020 %	(0.0) %
00 70	Ce Llf	Lofnium	2.0000	< 0.00020 %	(0.0) %
72		Tantalum	0.3059	< 0.00010 %	(0.0) %
73	14205	Tungston	2.0864		
74 90	W03	Moreury	2.0004		(0,0) %
00 81	TI TI	Thallium			(0.0) /0 (0.0) %
01 82			2 2270		
82 82	Ri	Rismuth	0.2019		(0 0) %
an an	Th	Thorium	0.0000		0 00004 %
92		Uranium	12 8787	0.00017 %	0.0000- %
52	0	Gramum	12.0701	0.00001 /0	0.00002 /0

67.36 %

Sample Name	SKF17	Dilution Material		
Description		Sample Mass (g)	4.0000	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	11/01/2016	
Sample Status	AXXAXXA	Date of Evaluation	11/02/2016	
-Results				

Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na	Sodium	24.3592	0.831 %	0.021 %
12	Mg	Magnesium	172.2303	1.240 %	0.006 %
13	Al	Aluminum	60.5668	0.08510 %	0.00100 %
14	Si	Silicon	2438.4859	1.595 %	0.002 %
15	Р	Phosphorus	1091.0544	0.3025 %	0.0005 %
16	S	Sulfur	42.7861	0.00067 %	0.00001 %
17	CI	Chlorine	234.2360	0.01192 %	0.00005 %
19	K	Potassium	80.4570	0.2211 %	0.0026 %
20	Са	Calcium	17523.9616	36.94 %	0.02 %
22	Ti	Titanium	10.3345	0.0294 %	0.0018 %
23	V	Vanadium	1.7054	0.0037 %	0.0012 %
24	Cr	Chromium	2.7139	< 0.00010 %	(0.0) %
25	Mn	Manganese	1365.2250	0.8719 %	0.0021 %
26	Fe	Iron	20014.2975	8.451 %	0.007 %
27	Co	Cobalt	1.7734	< 0.0014 %	(0.00040) %
28	Ni	Nickel	25.4963	0.00552 %	0.00018 %
29	Cu	Copper	0.3173	< 0.00006 %	(0.00006) %
30	Zn	Zinc	16.6972	0.00221 %	0.00006 %
31	Ga	Gallium	0.1190	< 0.00001 %	(0.00001) %
32	Ge	Germanium	0.0000	< 0.00005 %	(0.0) %
33	As	Arsenic	6.7367	0.00041 %	0.00003 %
34	Se	Selenium	0.7932	< 0.00004 %	(0.00004) %
35	Br	Bromine	1.7394	0.00009 %	0.00002 %
37	Rb	Rubidium	20.6860	0.00062 %	0.00002 %
38	Sr	Strontium	77.7864	0.00209 %	0.00003 %
39	Y	Yttrium	0.0000	< 0.00005 %	(0.0) %
40	Zr	Zirconium	0.0000	< 0.00010 %	(0.0) %
41	Nb	Niobium	0.0000	< 0.00010 %	(0.0) %
42	Мо	Molybdenum	4.9737	0.00151 %	0.00008 %
47	Ag	Silver	0.0000	< 0.00020 %	(0.0) %
48	Cd	Cadmium	0.0000	< 0.00020 %	(0.0) %
50	Sn	Tin	6.4254	0.00106 %	0.00007 %
51	Sb	Antimony	0.0000	< 0.00030 %	(0.0) %
52	Те	Tellurium	1.5914	< 0.00030 %	(0.0) %
53	I	lodine	0.5388	< 0.00030 %	(0.0) %
55	Cs	Cesium	1.2921	< 0.0011 %	(0.0011) %
56	Ва	Barium	25.3872	0.02435 %	0.00080 %
57	La	Lanthanum	0.0000	< 0.00020 %	(0.0) %
58	Ce	Cerium	0.0000	< 0.00020 %	(0.0) %
72	Hf	Hafnium	0.0000	< 0.00010 %	(0.0) %
73	Та	Tantalum	0.0000	< 0.00010 %	(0.0) %
74	W	Tungsten	1.8471	< 0.00010 %	(0.0) %
80	Hg	Mercury	0.0000	< 0.00010 %	(0.0) %
81	ΤĪ	Thallium	0.0000	< 0.00010 %	(0.0) %

Sample Name Description		SKF17		Date of Receipt Method	11/01/2016 TurboQuant-Powders	
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error	
82 83 90 92	Pb Bi Th U	Lead Bismuth Thorium Uranium	1.9434 0.0000 1.8981 19.2582	0.00022 % < 0.00010 % 0.00015 % 0.00087 %	0.00006 % (0.0) % 0.00005 % 0.00003 %	
Samp Descr	le Name iption	SKF17		Date of Receipt Method	11/01/2016 TurboQuant-Powders	
---------------	-------------------	------------	------------	---------------------------	----------------------------------	
Ζ	Symbol	Element	Norm. Int.	Concentration	Abs. Error	
11	Na2O	Sodium	24.3592	1.120 %	0.029 %	
12	MaO	Magnesium	172.2303	2.057 %	0.010 %	
13	AI2O3	Aluminum	60.5668	0.1608 %	0.0020 %	
14	SiO2	Silicon	2438.4859	3.413 %	0.004 %	
15	P2O5	Phosphorus	1091.0544	0.6933 %	0.0012 %	
16	SO3	Sulfur	42.7861	0.00166 %	0.00003 %	
17	CI	Chlorine	234.2360	0.01192 %	0.00005 %	
19	K2O	Potassium	80.4570	0.2664 %	0.0031 %	
20	CaO	Calcium	17523.9616	51.69 %	0.03 %	
22	TiO2	Titanium	10.3345	0.0490 %	0.0031 %	
23	V2O5	Vanadium	1.7054	0.0066 %	0.0022 %	
24	Cr2O3	Chromium	2.7139	< 0.00015 %	(0.0) %	
25	MnO	Manganese	1365.2250	1.126 %	0.003 %	
26	Fe2O3	Iron	20014.2975	12.08 %	0.01 %	
27	CoO	Cobalt	1.7734	< 0.0018 %	(0.00050) %	
28	NiO	Nickel	25.4963	0.00702 %	0.00023 %	
29	CuO	Copper	0.3173	< 0.00007 %	(0.00007) %	
30	ZnO	Zinc	16.6972	0.00275 %	0.00008 %	
31	Ga	Gallium	0.1190	< 0.00001 %	(0.00001) %	
32	Ge	Germanium	0.0000	< 0.00005 %	(0.0) %	
33	As2O3	Arsenic	6.7367	0.00054 %	0.00004 %	
34	Se	Selenium	0.7932	< 0.00004 %	(0.00004) %	
35	Br	Bromine	1.7394	0.00009 %	0.00002 %	
37	Rb2O	Rubidium	20.6860	0.00067 %	0.00002 %	
38	SrO	Strontium	77.7864	0.00247 %	0.00003 %	
39	Y	Yttrium	0.0000	< 0.00005 %	(0.0) %	
40	ZrO2	Zirconium	0.0000	< 0.00014 %	(0.0) %	
41	Nb2O5	Niobium	0.0000	< 0.00014 %	(0.0) %	
42	Mo	Molybdenum	4.9737	0.00151 %	0.00008 %	
47	Ag	Silver	0.0000	< 0.00020 %	(0.0) %	
48	Cd	Cadmium	0.0000	< 0.00020 %	(0.0) %	
50	SnO2	lin	6.4254	0.00135 %	0.00008 %	
51	Sb205	Antimony	0.0000	< 0.00040 %	(0.0) %	
52	le	l ellurium	1.5914	< 0.00030 %	(0.0) %	
53		lodine	0.5388	< 0.00030 %	(0.0) %	
55 56	US Do	Cesium	1.2921	< 0.0011 %		
50 57	Ба	Dariuri	20.0072			
57 59	La	Corium	0.0000	< 0.00020 %	(0.0) %	
72	UE Hf	Hafnium	0.0000	< 0.00020 %	(0.0) %	
72	Ta2O5	Tantalum	0.0000	< 0.00010 %	(0.0) %	
74	WO3	Tungsten	1 8/171		(0.0) %	
80	Ha	Mercury			(0.0) %	
81	TI	Thallium	0.0000	< 0.00010 %	(0.0) %	
82	PhO	Lead	1 9434	0.00013 %	0.0007 %	
83	Bi	Rismuth	0 0000		(0,0) %	
90	Th	Thorium	1 8981		0.00005 %	
92	U	Uranium	19,2582	0.00087 %	0.00003 %	
	-					

72.72 %

Sample Name	SKF16	Dilution Material		
Description		Sample Mass (g)	4.0000	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	11/01/2016	
Sample Status	AXXAXXA	Date of Evaluation	11/02/2016	
-Results				

Ζ	Symbol	Element	Norm. Int.	Concentrat	ion	Abs. Erro	or
11	No	Sodium	10 0020	0 126	0/	0.012	0/
10	Ma	Magnasium	10.0039	0.130	70 0/_	(0.012)	70 0/_
12		Aluminum	1049 9109	< 0.0020 2.557	70 0/_	0.00	70 0/_
13		Silicon	22815 0660	2.557	/0 0/_	0.000	/0 0/
14		Dhosphorus	155 0119	0.00/17	/0 0/_	0.02	/0 0/
10	r e	Sulfur	177 6755	0.09417	/0 0/_	0.00001	/0 0/
10		Chlorino	260.2601	0.04340	/0 0/_	0.00023	/0 0/
10	CI K	Dotoccium	127 0075	0.03032	/0 0/_	0.00013	/0 0/
20		Coloium	6 7396	0.5201	/0 0/_	(0.0041	/0 0/
20		Titonium	107 4275	0.0010	/0 0/_	0.0022	/0 0/
22	V	Vanadium	0.0000	< 0.1001	/0 0/_	(0.0033	/0 0/2
20	v Cr	Chromium	7 9090	0.0015	70 0/2	0.0013	70 0/2
24	Mn	Manganoso	602 8021	0.00100	70 0/_	0.00037	70 0/
20	IVIII Eo	Indiganese	105337 6777	27.00	/0 0/_	0.0013	/0 0/2
20		Cobalt	0.8820	< 0.00030	70 0/2	(0.02	70 0/2
21		Nickol	0.0020	< 0.00030	/0 0/_	0.0014	/0 0/
20		Coppor	9.3001	0.00194	/0 0/_	0.00014	/0 0/
29	Zn	Zino	0.0090	0.00160	/0 0/_	0.00013	/0 0/
30		Callium	0.0401	-0.00104	/0 0/_	(0.00000	/0 \
30	Ga	Gamun	1.0641	0.00011	/0 0/_		0/
32	Ge As	Arsonio	120 9762	0.00009	/0 0/_	0.00005	/0 0/
34	A5 So	Solonium	0.000	< 0.00072	/0 0/_	0.00009	/0 0/
35	Br	Bromino	1 1/08	< 0.00005	/0 0/_	(0.0)	/0 \
33	DI	Dubidium	25 2192	0.00000	/0 0/_		0/
31 20	RU Sr	Strontium	20.0102	< 0.00004	70 0/	0.00007	70 0/
30	SI V	Vttrium	20.0486	< 0.00003	70 0/_	0.00	70 0/
40	l Zr	Ziroonium	29.9400	0.00080	/0 0/	0.00004	/0 0/
40		Nichium	1 1200	0.01510	/0 0/		/0 0/
41 10	Mo	Molybdonum	1.13/9	0.00039	70 0/_	0.00000	70 0/
42 17		Silvor	0.0000	< 0.00047	/0 0/_	(0.00007)	/0 0/
47 70	Ay Cd	Codmium	0.0000	< 0.00020	/0 0/_	(0.0)	/0 0/
40 50	Cu Sn	Tin	5 9000	< 0.00020	/0 0/		/0 0/
50	Sh	Antimony	0.0000	0.00102	70 0/	0.00007	70 0/
50		Tollurium	0.0000	< 0.00030	70 0/	(0.0)	70 0/
52		Ieliunum	2.2090	< 0.00030	70 0/	(0.0)	70 0/
55		Conium	0.0000	< 0.00030	70 0/	(0.0)	70 0/
00 E6	CS Do	Derium	0.0000	< 0.00040	70 0/		70 0/
50 57	ва	Barlum	0.3327	0.00426	% 0/		% 0/
5/	La	Lantnanum	2.0010	< 0.00020	% 0/	(0.0)	% 0/
58 70	Ce	Cenum	0.0000	< 0.00020	% 0/	(0.0)	% 0/
12	HI	Hathlum	1.8598	< 0.00010	% 0/	(0.0)	% 0/
13			2.0000	< 0.00010	70 0/	(0.0)	70 0/
/4 00	VV	Tungsten	1.7448	< 0.00010	70 0/	(0.0)	70 0/
8U	нg	IVIERCURY	0.0000	< 0.00010	% 0/	(0.0)	% 0/
<u>0</u> 1	11	rhailium	0.0000	< 0.00010	70	(0.0)	70

Sampl Descri	e Name ption	SKF16		Date of Receipt Method	11/01/2016 TurboQuant-Powders	
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error	
82 83 90 92	Pb Bi Th U	Lead Bismuth Thorium Uranium	10.2001 0.0000 0.0000 0.0000	0.00127 % < 0.00010 % < 0.00010 % < 0.00010 %	0.00023 % (0.0) % (0.0) % (0.0) %	

Sampl Descri	e Name ption	SKF16		Date of Receipt Method	11/01/2016 TurboQuant-Powders
Ζ	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	10.8839	0.183 %	0.016 %
12	MaQ	Magnesium	11.0298	< 0.0034 %	(0,0) %
13	AI2O3	Aluminum	1048 8198	4 832 %	0.012 %
14	SiO2	Silicon	32815 9660	69.51 %	0.05 %
15	P205	Phosphorus	155 9118	0.2158 %	0.0014 %
16	SO3	Sulfur	177.6755	0.1084 %	0.0006 %
17	CI	Chlorine	260 2691	0.03032 %	0.00013 %
19	K20	Potassium	127 0975	0.6362 %	0.0050 %
20	CaO	Calcium	6 7386	< 0.0014 %	(0,0) %
22	TiO2	Titanium	107 4275	0.3138 %	0.0055 %
23	V205	Vanadium	0.0000	< 0.0028 %	(0.0027) %
24	Cr2O3	Chromium	7 9090	0.00243 %	0.00054 %
25	MnO	Manganese	602 8921	0.3010 %	0.0017 %
26	Fe2O3	Iron	105337 6777	38.61 %	0.03 %
27	CoO	Cobalt	0.8820		(0,0) %
28	NiO	Nickel	9.3661	0.00247 %	0.00018 %
29	CuO	Conner	8 3595	0.00247 %	0.00016 %
30	ZnO	Zinc	11.3601	0.00201 %	0.00010 %
31	Ga	Gallium	0 9491	< 0.00204 %	(0,00011) %
32	Ga	Germanium	1 06/1		0.00005 %
32	Δe2O3		130 8763	0.00009 /0	0.00003 %
34	5200 Sa	Selenium	0.000		(0,0) %
35	Br	Bromine	1 1/08		(0.0) %
37	Bh2O	Rubidium	25 3182	0.00000 %	0.00007 %
38	SrO	Strontium	0 0000	< 0.00006 %	(0,0) %
30	V	Vttrium	29 9486	0.000086 %	0.00004 %
40	' 7r∩2	Zirconium	20.0400	0.00000 %	0.00028 %
40 //1		Niohium	1 1370	0.00055 %	0.00011 %
42	Mo	Molybdenum	1 7962	0.00033 %	0.00007 %
π2 17	Aa	Silvor	0.000		(0,0) %
-1/ /8	∠A Cq	Cadmium	0.0000	< 0.00020 %	(0.0) %
- 0 50	SnO2	Tin	5 8000		0.0008 %
51	Sh205	Antimony	0.0000	< 0.00120 %	(0,0) %
52		Tellurium	2 2096	< 0.00040 %	(0.0) %
53		Iodine	0.000	< 0.00030 %	(0.0) %
55	L Cs	Cesium	0.0000	< 0.00030 %	(0.0) %
56	Ba	Barium	6 3327	0.00040 %	0.00050 %
57	La	Lanthanum	2 0616	< 0.00420 %	(0,0) %
58	Ce	Cerium	0.0000	< 0.00020 %	(0.0) %
72	Hf	Hafnium	1 8598	< 0.00020 %	(0.0) %
73	Ta205	Tantalum	2 5500	< 0.00010 %	(0.0) %
74	WO3	Tungsten	1 7448		(0.0) %
80	Ha	Mercury	0 0000		(0.0) %
81	TI	Thallium	0.0000		(0.0) %
82			10 2001		
02 83	Ri DO	Leau Riemuth	0.2001		(0.00025) /0
00	DI Th	Thorium	0.0000		(0.0) /0 (0.0) 9/2
90 90		Uranium			
52	U		0.0000		(0.0) /0

114.79 %

Sample Name	SKF15	Dilution Material		
Description		Sample Mass (g)	4.0000	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	11/01/2016	
Sample Status	AXXAXXA	Date of Evaluation	11/02/2016	
-Results				

Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error	
11	Na	Sodium	14.4995	0.319 %	0.023 %	
12	Mg	Magnesium	32.0125	0.2096 %	0.0070 %	
13	Al	Aluminum	1261.1960	3.085 %	0.007 %	
14	Si	Silicon	38122.7141	38.72 %	0.02 %	
15	Р	Phosphorus	291.4184	0.2009 %	0.0009 %	
16	S	Sulfur	36.5267	< 0.00020 %	(0.0) %	
17	CI	Chlorine	137.0054	0.01442 %	0.00009 %	
19	K	Potassium	135.5129	0.6421 %	0.0051 %	
20	Ca	Calcium	48.8847	0.1355 %	0.0020 %	
22	Ti	Titanium	184.5890	0.3641 %	0.0028 %	
23	V	Vanadium	0.0000	< 0.0017 %	(0.0017) %	
24	Cr	Chromium	7.9011	0.00185 %	0.00023 %	
25	Mn	Manganese	1020.2146	0.4384 %	0.0013 %	
26	Fe	Iron	48461.5458	13.67 %	0.01 %	
27	Co	Cobalt	2.9012	0.00155 %	0.00023 %	
28	Ni	Nickel	11.3516	0.00196 %	0.00009 %	
29	Cu	Copper	2.3580	0.00036 %	0.00006 %	
30	Zn	Zinc	15.5120	0.00178 %	0.00006 %	
31	Ga	Gallium	3.7407	0.00034 %	0.00004 %	
32	Ge	Germanium	2.1049	0.00014 %	0.00003 %	
33	As	Arsenic	6.0122	0.00031 %	0.00002 %	
34	Se	Selenium	0.0000	< 0.00005 %	(0.0) %	
35	Br	Bromine	3.7777	0.00016 %	0.00002 %	
37	Rb	Rubidium	39.4622	0.00102 %	0.00003 %	
38	Sr	Strontium	56.3754	0.00131 %	0.00002 %	
39	Y	Yttrium	122.2383	0.00274 %	0.00003 %	
40	Zr	Zirconium	13.8877	0.00477 %	0.00012 %	
41	Nb	Niobium	2.5296	0.00067 %	0.00007 %	
42	Мо	Molybdenum	0.6776	0.00004 %	0.00001 %	
47	Ag	Silver	0.0000	< 0.00020 %	(0.0) %	
48	Cd	Cadmium	0.4668	< 0.00020 %	(0.0) %	
50	Sn	Tin	7.0166	0.00118 %	0.00008 %	
51	Sb	Antimony	0.0000	< 0.00030 %	(0.0) %	
52	Те	Tellurium	0.0000	< 0.00030 %	(0.0) %	
53	I	lodine	2.8257	0.00059 %	0.00016 %	
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %	
56	Ва	Barium	6.2537	0.00356 %	0.00049 %	
57	La	Lanthanum	0.0000	< 0.00020 %	(0.0) %	
58	Ce	Cerium	2.8709	0.00052 %	0.00017 %	
72	Hf	Hafnium	1.9012	< 0.00010 %	(0.0) %	
73	Та	Tantalum	2.2037	< 0.00010 %	(0.0) %	
74	W	Tungsten	2.3642	< 0.00010 %	(0.0) %	
80	Hg	Mercury	0.2593	< 0.00010 %	(0.0) %	
81	ΤĪ	Thallium	0.0000	< 0.00010 %	(0.0) %	

Sample Name Description		SKF15		Date of Receipt Method	11/01/2016 TurboQuant-Powders	
Z	Symbol	Element	Norm. Int.	Concentration	Abs. E	rror
82 83 90 92	Pb Bi Th U	Lead Bismuth Thorium Uranium	0.0000 0.0000 0.0000 2.1111	< 0.00010 % < 0.00010 % < 0.00010 % < 0.00010 %	(0.0) (0.0) (0.0) (0.0)	% % %

Samp Descr	le Name iption	SKF15		Date of Receipt Method	11/01/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	14,4995	0.430 %	0.030 %
12	MaQ	Magnesium	32 0125	0.348 %	0.012 %
13	AI2O3	Aluminum	1261 1960	5 829 %	0.013 %
14	SiO2	Silicon	38122.7141	82.84 %	0.05 %
15	P2O5	Phosphorus	291.4184	0.4604 %	0.0019 %
16	SO3	Sulfur	36.5267	< 0.00050 %	(0.0) %
17	CI	Chlorine	137.0054	0.01442 %	0.00009 %
19	K2O	Potassium	135,5129	0.7735 %	0.0061 %
20	CaO	Calcium	48.8847	0.1896 %	0.0027 %
22	TiO2	Titanium	184.5890	0.6074 %	0.0046 %
23	V2O5	Vanadium	0.0000	< 0.0031 %	(0.0031) %
24	Cr2O3	Chromium	7.9011	0.00271 %	0.00034 %
25	MnO	Manganese	1020.2146	0.5660 %	0.0017 %
26	Fe2O3	Iron	48461.5458	19.54 %	0.01 %
27	CoO	Cobalt	2.9012	0.00197 %	0.00029 %
28	NiO	Nickel	11.3516	0.00249 %	0.00011 %
29	CuO	Copper	2.3580	0.00045 %	0.00008 %
30	ZnO	Zinc	15.5120	0.00222 %	0.00007 %
31	Ga	Gallium	3.7407	0.00034 %	0.00004 %
32	Ge	Germanium	2.1049	0.00014 %	0.00003 %
33	As2O3	Arsenic	6.0122	0.00042 %	0.00003 %
34	Se	Selenium	0.0000	< 0.00005 %	(0.0) %
35	Br	Bromine	3.7777	0.00016 %	0.00002 %
37	Rb2O	Rubidium	39.4622	0.00111 %	0.00003 %
38	SrO	Strontium	56.3754	0.00154 %	0.00003 %
39	Y	Yttrium	122.2383	0.00274 %	0.00003 %
40	ZrO2	Zirconium	13.8877	0.00644 %	0.00016 %
41	Nb2O5	Niobium	2.5296	0.00095 %	0.00010 %
42	Мо	Molybdenum	0.6776	0.00004 %	0.00001 %
47	Aq	Silver	0.0000	< 0.00020 %	(0.0) %
48	Cď	Cadmium	0.4668	< 0.00020 %	(0.0) %
50	SnO2	Tin	7.0166	0.00149 %	0.00010 %
51	Sb2O5	Antimony	0.0000	< 0.00040 %	(0.0) %
52	Те	Tellurium	0.0000	< 0.00030 %	(0.0) %
53	I	lodine	2.8257	0.00059 %	0.00016 %
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %
56	Ва	Barium	6.2537	0.00356 %	0.00049 %
57	La	Lanthanum	0.0000	< 0.00020 %	(0.0) %
58	Ce	Cerium	2.8709	0.00052 %	0.00017 %
72	Hf	Hafnium	1.9012	< 0.00010 %	(0.0) %
73	Ta2O5	Tantalum	2.2037	< 0.00012 %	(0.0) %
74	WO3	Tungsten	2.3642	< 0.00013 %	(0.0) %
80	Hg	Mercury	0.2593	< 0.00010 %	(0.0) %
81	ΤĬ	Thallium	0.0000	< 0.00010 %	(0.0) %
82	PbO	Lead	0.0000	< 0.00011 %	(0.0) %
83	Bi	Bismuth	0.0000	< 0.00010 %	(0.0) %
90	Th	Thorium	0.0000	< 0.00010 %	(0.0) %
92	U	Uranium	2.1111	< 0.00010 %	(0.0) %
				444.00	

111.63 %

Sample Name	SKF14	Dilution Material		
Description		Sample Mass (g)	4.0000	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	11/01/2016	
Sample Status	AXXAXXA	Date of Evaluation	11/02/2016	
-Results				

Z	Symbol	Element	Norm. Int.	Concentration	n Abs. Erro	or
	NI-	O a divura	05 0000	0.000 %	0.000	0/
10	Na	Socium	25.9309	0.938 %	0.039	% 0/
12	ivig	Magnesium	13.3749	0.5184 %	0.0080	% 0/
13	AI	Aluminum	4221.9299	8.537 %	0.010	% 0/
14	51	Silicon	33276.0781	30.30 %	0.02	%
15	P	Phosphorus	499.8681	0.2928 %	0.0009	%
10	5	Sultur	43.6298	0.00167 %	0.00002	%
17		Chiorine	187.1488	0.01924 %	0.00010	%
19	K Or	Potassium	677.4210	2.784 %	0.008	%
20			167.6071	0.4914 %	0.0033	%
22		l Itanium	819.7437	1.487 %	0.005	% 0/
23	V Cr	Chromium	3.8419		0.0023	% 0/
24	Cr	Chromium	12.3139	0.00402 %	0.00033	%
25	IVIN	Manganese	920.6321	0.3818 %	0.0012	%
20	Fe		40033.0001		0.01	%
27	Co	Cobalt	2.9481	0.00155 %	0.00024	%
28	NI	NICKEI	16.0565	0.00277 %	0.00010	%
29	Cu	Copper	3.1902	0.00047 %	0.00007	%
30	Zn	ZINC	16.1744	0.00177 %	0.00005	%
31	Ga	Gallium	17.6826	0.00154 %	0.00005	%
32	Ge	Germanium	1.8868	0.00012 %	0.00003	%
33	As	Arsenic	8.2362	0.00041 %	0.00003	%
34	Se	Selenium	0.4407	< 0.00002 %	(0.00002)	%
35	Br	Bromine	0.0000	< 0.00005 %	(0.0)	%
37	Rb	Rubidium	182.2135	0.00449 %	0.00004	%
38	Sr	Strontium	191.7717	0.00426 %	0.00003	%
39	Y	Yttrium	167.5101	0.00360 %	0.00004	%
40	Zr	Zirconium	66.6103	0.02198 %	0.00021	%
41	Nb	Niobium	14.5773	0.00369 %	0.00009	%
42	Mo	Molybdenum	0.0000	< 0.00010 %	(0.0)	%
47	Ag	Silver	1.5828	0.00062 %	0.00019	%
48	Cd	Cadmium	1.9899	0.00005 %	0.00001	%
50	Sn	Tin	8.2459	0.00151 %	0.00008	%
51	Sb	Antimony	0.0000	< 0.00030 %	(0.0)	%
52	Те	Tellurium	1.6783	< 0.00030 %	(0.0)	%
53		lodine	1.3316	< 0.00030 %	(0.0)	%
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0)	%
56	Ва	Barium	15.9943	0.01296 %	0.00071	%
57	La	Lanthanum	5.3013	0.00271 %	0.00045	%
58	Ce	Cerium	7.6881	0.00790 %	0.00093	%
72	Hf	Hafnium	3.8481	0.00028 %	0.00003	%
73	Ta	Tantalum	2.1599	< 0.00010 %	(0.0)	%
74	W	Tungsten	2.4392	< 0.00010 %	(0.0)	%
80	Hg	Mercury	0.0000	< 0.00010 %	(0.0)	%
81	TI	Thallium	0.0000	< 0.00010 %	(0.0)	%

Sampl Descri	e Name ption	SKF14		Date of Receipt Method	11/0 Turb	1/2016 poQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. E	rror
82 83 90 92	Pb Bi Th U	Lead Bismuth Thorium Uranium	0.0000 0.0000 0.0000 5.1825	< 0.00010 % < 0.00010 % < 0.00010 % < 0.00010 %	(0.0) (0.0) (0.0) (0.0)	% % %

Samp Descr	le Name iption	SKF14		Date of Receipt Method	11/01/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	25.9309	1.264 %	0.052 %
12	MqO	Magnesium	73.3749	0.860 %	0.014 %
13	AIŽO3	Aluminum	4221.9299	16.13 %	0.02 %
14	SiO2	Silicon	33276.0781	64.82 %	0.04 %
15	P2O5	Phosphorus	499.8681	0.6710 %	0.0020 %
16	SO3	Sulfur	43.6298	0.00418 %	0.00006 %
17	CI	Chlorine	187.1488	0.01924 %	0.00010 %
19	K2O	Potassium	677.4210	3.354 %	0.010 %
20	CaO	Calcium	167.6071	0.6876 %	0.0046 %
22	TiO2	Titanium	819.7437	2.481 %	0.008 %
23	V2O5	Vanadium	3.8419	0.0093 %	0.0040 %
24	Cr2O3	Chromium	12.3139	0.00587 %	0.00049 %
25	MnO	Manganese	920.6321	0.4930 %	0.0016 %
26	Fe2O3	Iron	46633.0061	18.19 %	0.01 %
27	CoO	Cobalt	2.9481	0.00197 %	0.00030 %
28	NiO	Nickel	16.0565	0.00352 %	0.00012 %
29	CuO	Copper	3.1902	0.00058 %	0.00008 %
30	ZnO	Zinc	16.1744	0.00221 %	0.00007 %
31	Ga	Gallium	17.6826	0.00154 %	0.00005 %
32	Ge	Germanium	1.8868	0.00012 %	0.00003 %
33	As2O3	Arsenic	8.2362	0.00054 %	0.00003 %
34	Se	Selenium	0.4407	< 0.00002 %	(0.00002) %
35	Br	Bromine	0.0000	< 0.00005 %	(0.0) %
37	Rb2O	Rubidium	182.2135	0.00491 %	0.00004 %
38	SrO	Strontium	191.7717	0.00504 %	0.00004 %
39	Y	Yttrium	167.5101	0.00360 %	0.00004 %
40	ZrO2	Zirconium	66.6103	0.02968 %	0.00029 %
41	Nb2O5	Niobium	14.5773	0.00528 %	0.00013 %
42	Мо	Molybdenum	0.0000	< 0.00010 %	(0.0) %
47	Ag	Silver	1.5828	0.00062 %	0.00019 %
48	Cď	Cadmium	1.9899	0.00005 %	0.00001 %
50	SnO2	Tin	8.2459	0.00191 %	0.00010 %
51	Sb2O5	Antimony	0.0000	< 0.00040 %	(0.0) %
52	Те	Tellurium	1.6783	< 0.00030 %	(0.0) %
53	I	lodine	1.3316	< 0.00030 %	(0.0) %
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %
56	Ва	Barium	15.9943	0.01296 %	0.00071 %
57	La	Lanthanum	5.3013	0.00271 %	0.00045 %
58	Ce	Cerium	7.6881	0.00790 %	0.00093 %
72	Hf	Hafnium	3.8481	0.00028 %	0.00003 %
73	Ta2O5	Tantalum	2.1599	< 0.00012 %	(0.0) %
74	WO3	Tungsten	2.4392	< 0.00013 %	(0.0) %
80	Hq	Mercury	0.0000	< 0.00010 %	(0.0) %
81	тĭ	Thallium	0.0000	< 0.00010 %	(0.0) %
82	PbO	Lead	0.0000	< 0.00011 %	(0.0) %
83	Bi	Bismuth	0.0000	< 0.00010 %	(0.0) %
90	Th	Thorium	0.0000	< 0.00010 %	(0.0) %
92	U	Uranium	5.1825	< 0.00010 %	(0.0) %
					. ,

109.07 %

Sample Name	SKF13	Dilution Material		
Description		Sample Mass (g)	4.0000	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	11/01/2016	
Sample Status	AXXAXXA	Date of Evaluation	11/02/2016	
-Results				

Z	Symbol	Element	Norm. Int.	Concentratio	on	Abs. Err	or
					- /		
11	Na	Sodium	11.3059	0.157	%	0.019	%
12	Mg	Magnesium	6.2175	< 0.0020	%	(0.0)	%
13	Al	Aluminum	2233.5675	3.930	%	0.007	%
14	Si	Silicon	56784.3311	43.32	%	0.03	%
15	Р	Phosphorus	109.2719	0.06709	%	0.00071	%
16	S	Sulfur	69.5063	0.00991	%	0.00012	%
17	CI	Chlorine	92.1232	0.00628	%	0.00006	%
19	K	Potassium	168.2621	0.7024	%	0.0062	%
20	Ca	Calcium	4.8960	< 0.0010	%	(0.0)	%
22	Ti	Titanium	94.7420	0.1634	%	0.0016	%
23	V	Vanadium	0.0000	< 0.0012	%	(0.0012)	%
24	Cr	Chromium	10.0461	0.00257	%	0.00016	%
25	Mn	Manganese	35.7679	0.01314	%	0.00032	%
26	Fe	Iron	17735.5268	4.242	%	0.003	%
27	Co	Cobalt	1.8535	< 0.00057	%	(0.00027)) %
28	Ni	Nickel	21.0244	0.00241	%	0.00006	%
29	Cu	Copper	10.5704	0.00099	%	0.00005	%
30	Zn	Zinc	11.7143	0.00082	%	0.00003	%
31	Ga	Gallium	7.8007	0.00043	%	0.00003	%
32	Ge	Germanium	1.4934	0.00006	%	0.00002	%
33	As	Arsenic	11.8361	0.00037	%	0.00002	%
34	Se	Selenium	0.6302	< 0.00002	%	(0.00002)) %
35	Br	Bromine	0.0000	< 0.00005	%	(0.0)	%
37	Rb	Rubidium	96.4843	0.00147	%	0.00002	%
38	Sr	Strontium	75.8201	0.00104	%	0.00002	%
39	Y	Yttrium	50.2360	0.00066	%	0.00002	%
40	Zr	Zirconium	98.4276	0.02012	%	0.00015	%
41	Nb	Niobium	3.9489	0.00062	%	0.00004	%
42	Мо	Molybdenum	0.0000	< 0.00010	%	(0.0)	%
47	Ag	Silver	0.0000	< 0.00020	%	(0.0)	%
48	Cd	Cadmium	1.3279	< 0.00020	%	(0.0)	%
50	Sn	Tin	7.9926	0.00102	%	0.00007	%
51	Sb	Antimony	0.0000	< 0.00030	%	(0.0)	%
52	Те	Tellurium	0.0000	< 0.00030	%	(0.0)	%
53	I	lodine	0.0000	< 0.00030	%	(0.0)	%
55	Cs	Cesium	0.0000	< 0.00040	%	(0.0)	%
56	Ва	Barium	11.7468	0.00708	%	0.00059	%
57	La	Lanthanum	0.0000	< 0.00020	%	(0.0)	%
58	Се	Cerium	0.0000	< 0.00020	%	(0.0)	%
72	Hf	Hafnium	4.5173	0.00050	%	0.00005	%
73	Та	Tantalum	2.8333	0.00016	%	0.00003	%
74	W	Tungsten	1.9065	< 0.00010	%	(0.0)	%
80	Hg	Mercury	2.8597	0.00009	%	0.00001	%
81	ΤĪ	Thallium	0.9797	0.00003	%	0.00002	%

Sampl Descri	e Name ption	SKF13		Date of Receipt Method	11/01/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
82 83 90 92	Pb Bi Th U	Lead Bismuth Thorium Uranium	11.9526 0.1483 9.0770 5.4970	0.00069 % < 0.00010 % 0.00036 % < 0.00010 %	0.00004 % (0.0) % 0.00003 % (0.0) %

Samp Descr	le Name iption	SKF13		Date of Receipt Method	11/01/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	11.3059	0.212 %	0.025 %
12	MaO	Magnesium	6.2175	< 0.0034 %	(0.0) %
13	AIŽO3	Aluminum	2233.5675	7.425 %	0.014 %
14	SiO2	Silicon	56784.3311	92.68 %	0.06 %
15	P2O5	Phosphorus	109.2719	0.1537 %	0.0016 %
16	SO3	Sulfur	69.5063	0.02475 %	0.00029 %
17	CI	Chlorine	92.1232	0.00628 %	0.00006 %
19	K2O	Potassium	168.2621	0.8461 %	0.0074 %
20	CaO	Calcium	4.8960	< 0.0014 %	(0.0) %
22	TiO2	Titanium	94.7420	0.2726 %	0.0027 %
23	V2O5	Vanadium	0.0000	< 0.0021 %	(0.0021) %
24	Cr2O3	Chromium	10.0461	0.00375 %	0.00024 %
25	MnO	Manganese	35.7679	0.01697 %	0.00041 %
26	Fe2O3	Iron	17735.5268	6.065 %	0.005 %
27	CoO	Cobalt	1.8535	< 0.00072 %	(0.00035) %
28	NiO	Nickel	21.0244	0.00307 %	0.00008 %
29	CuO	Copper	10.5704	0.00124 %	0.00006 %
30	ZnO	Zinc	11.7143	0.00102 %	0.00004 %
31	Ga	Gallium	7.8007	0.00043 %	0.00003 %
32	Ge	Germanium	1.4934	0.00006 %	0.00002 %
33	As2O3	Arsenic	11.8361	0.00049 %	0.00003 %
34	Se	Selenium	0.6302	< 0.00002 %	(0.00002) %
35	Br	Bromine	0.0000	< 0.00005 %	(0.0) %
37	Rb2O	Rubidium	96.4843	0.00161 %	0.00002 %
38	SrO	Strontium	75.8201	0.00123 %	0.00002 %
39	Y	Yttrium	50.2360	0.00066 %	0.00002 %
40	ZrO2	Zirconium	98.4276	0.02717 %	0.00021 %
41	Nb2O5	Niobium	3.9489	0.00089 %	0.00006 %
42	Мо	Molybdenum	0.0000	< 0.00010 %	(0.0) %
47	Ag	Silver	0.0000	< 0.00020 %	(0.0) %
48	Cd	Cadmium	1.3279	< 0.00020 %	(0.0) %
50	SnO2	Tin	7.9926	0.00129 %	0.00008 %
51	Sb2O5	Antimony	0.0000	< 0.00040 %	(0.0) %
52	Те	Tellurium	0.0000	< 0.00030 %	(0.0) %
53	I	lodine	0.0000	< 0.00030 %	(0.0) %
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %
56	Ва	Barium	11.7468	0.00708 %	0.00059 %
57	La	Lanthanum	0.0000	< 0.00020 %	(0.0) %
58	Ce	Cerium	0.0000	< 0.00020 %	(0.0) %
72	HI	Hatnium	4.5173	0.00050 %	0.00005 %
73	Ta205		2.8333	0.00020 %	0.00004 %
/4	WO3	lungsten	1.9065	< 0.00012 %	(U.U) %
80	Hg	Mercury	2.8597	0.00009 %	0.00001 %
81 00		i nailium	0.9/9/	0.00003 %	0.00002 %
82	PDU	Lead	11.9526	0.00075 %	0.00004 %
83	BI Th	BISMUT	0.1483	< 0.00010 %	(U.U) %
90	IN	Inorium	9.0770		
92	U	Uranium	5.4970	< 0.00010 %	(U.U) %

107.76 %

Sample Name	SKF12	Dilution Material		
Description		Sample Mass (g)	4.0000	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	11/01/2016	
Sample Status	AXXAXXA	Date of Evaluation	11/02/2016	
-Results				

Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error	
11	Na	Sodium	14.9679	0.487 %	0.023 %	
12	Mg	Magnesium	19.5969	0.0873 %	0.0032 %	
13	Al	Aluminum	1352.8597	3.339 %	0.006 %	
14	Si	Silicon	16391.5765	16.24 %	0.01 %	
15	Р	Phosphorus	298.9295	0.1563 %	0.0005 %	
16	S	Sulfur	293.8337	0.06850 %	0.00023 %	
17	CI	Chlorine	84.9218	0.00445 %	0.00003 %	
19	K	Potassium	222.9929	0.8077 %	0.0035 %	
20	Ca	Calcium	20.2174	0.02981 %	0.00074 %	
22	Ti	Titanium	124.8955	0.1989 %	0.0044 %	
23	V	Vanadium	0.0000	< 0.0014 %	(0.0014) %	
24	Cr	Chromium	14.9182	0.00463 %	0.00083 %	
25	Mn	Manganese	1003.3836	0.3686 %	0.0020 %	
26	Fe	Iron	167491.8523	41.49 %	0.03 %	
27	Co	Cobalt	10.5558	0.00931 %	0.00055 %	
28	Ni	Nickel	9.0682	0.00267 %	0.00032 %	
29	Cu	Copper	27.2762	0.00753 %	0.00027 %	
30	Zn	Zinc	38.5900	0.00807 %	0.00023 %	
31	Ga	Gallium	1.6020	0.00027 %	0.00011 %	
32	Ge	Germanium	0.0000	< 0.00005 %	(0.0) %	
33	As	Arsenic	29.5647	0.00287 %	0.00011 %	
34	Se	Selenium	0.0000	< 0.00005 %	(0.0) %	
35	Br	Bromine	0.0000	< 0.00005 %	(0.0) %	
37	Rb	Rubidium	39.3481	0.00191 %	0.00015 %	
38	Sr	Strontium	0.0000	< 0.00005 %	(0.0) %	
39	Y	Yttrium	102.2536	0.00435 %	0.00007 %	
40	Zr	Zirconium	8.0989	0.00530 %	0.00019 %	
41	Nb	Niobium	0.7268	0.00037 %	0.00011 %	
42	Мо	Molybdenum	0.8410	0.00016 %	0.00005 %	
47	Ag	Silver	1.4017	0.00108 %	0.00028 %	
48	Cd	Cadmium	0.0000	< 0.00020 %	(0.0) %	
50	Sn	Tin	6.4532	0.00179 %	0.00009 %	
51	Sb	Antimony	2.3622	0.00009 %	0.00001 %	
52	Те	Tellurium	4.2052	< 0.00030 %	(0.0) %	
53	1	lodine	3.1825	0.00131 %	0.00022 %	
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %	
56	Ва	Barium	6.5934	0.00612 %	0.00060 %	
57	La	Lanthanum	0.0000	< 0.00020 %	(0.0) %	
58	Ce	Cerium	3.0786	0.00158 %	0.00037 %	
68	Er	Erbium	0.0000	< 0.00051 %	(0.0) %	
70	Yb	Ytterbium	9.5974	< 0.00020 %	(0.0) %	
72	Hf	Hafnium	0.0000	< 0.00010 %	(0.0) %	
73	Та	Tantalum	0.0000	< 0.00010 %	(0.0) %	
74	W	Tungsten	0.0000	< 0.00010 %	(0.0)´%	

Samp Descr	le Name iption	SKF12		Date of Receipt Method	11/01/2016 TurboQuant-Powders	
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error	
80	Hg	Mercury	0.0000	< 0.00010 %	(0.0) %	
81	TI	Thallium	0.0000	< 0.00010 %	(0.0) %	
82	Pb	Lead	6.7654	0.00128 %	0.00024 %	
83	Bi	Bismuth	0.0000	< 0.00010 %	(0.0) %	
90	Th	Thorium	0.0000	< 0.00010 %	(0.0) %	
92	U	Uranium	0.0000	< 0.00010 %	(0.0) %	

Samp Descr	le Name iption	SKF12		Date of Receipt Method	11/01/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	14 9679	0.656 %	0.031 %
12	MaQ	Magnesium	19 5969	0 1447 %	0.0054 %
13	AI2O3	Aluminum	1352,8597	6.309 %	0.011 %
14	SiO2	Silicon	16391.5765	34.75 %	0.02 %
15	P2O5	Phosphorus	298.9295	0.3581 %	0.0012 %
16	SO3	Sulfur	293.8337	0.1710 %	0.0006 %
17	CI	Chlorine	84.9218	0.00445 %	0.00003 %
19	K2O	Potassium	222,9929	0.9730 %	0.0043 %
20	CaO	Calcium	20.2174	0.04170 %	0.00100 %
22	TiO2	Titanium	124.8955	0.3318 %	0.0074 %
23	V2O5	Vanadium	0.0000	< 0.0025 %	(0.0025) %
24	Cr2O3	Chromium	14.9182	0.0068 %	0.0012 [´] %
25	MnO	Manganese	1003.3836	0.4759 %	0.0025 %
26	Fe2O3	Iron	167491.8523	59.32 %	0.04 %
27	CoO	Cobalt	10.5558	0.01183 %	0.00070 %
28	NiO	Nickel	9.0682	0.00339 %	0.00041 %
29	CuO	Copper	27.2762	0.00942 %	0.00033 %
30	ZnO	Zinc	38.5900	0.01005 %	0.00028 %
31	Ga	Gallium	1.6020	0.00027 %	0.00011 %
32	Ge	Germanium	0.0000	< 0.00005 %	(0.0) %
33	As2O3	Arsenic	29.5647	0.00380 %	0.00014 %
34	Se	Selenium	0.0000	< 0.00005 %	(0.0) %
35	Br	Bromine	0.0000	< 0.00005 %	(0.0) %
37	Rb2O	Rubidium	39.3481	0.00209 %	0.00016 %
38	SrO	Strontium	0.0000	< 0.00006 %	(0.0) %
39	Y	Yttrium	102.2536	0.00435 %	0.00007 %
40	ZrO2	Zirconium	8.0989	0.00716 %	0.00026 %
41	ND2O5	NIODIUM	0.7268	0.00052 %	0.00016 %
42	IVIO	Noiybaenum	0.8410		0.00005 %
47	Ag	Silver	1.4017		0.00028 %
40 50		Caumium	0.0000		
50	Sh02 Sh205	Antimony	0.4002		
52	30205 To	Tellurium	2.3022		(0,0) %
52	I	Iodine	4.2002	0.00030 %	0.00022 %
55	L Cs	Cesium	0.0000	< 0.00131 %	(0,0) %
56	Ba	Barium	6 5934	0.00612 %	0.00060 %
57	la	Lanthanum	0,0000	< 0.00020 %	(0,0) %
58	Ce	Cerium	3.0786	0.00158 %	0.00037 %
68	Er	Erbium	0.0000	< 0.00051 %	(0.0) %
70	Yb	Ytterbium	9.5974	< 0.00020 %	(0.0) %
72	Hf	Hafnium	0.0000	< 0.00010 %	(0.0) %
73	Ta2O5	Tantalum	0.0000	< 0.00012 %	(0.0) %
74	WO3	Tungsten	0.0000	< 0.00013 %	(0.0) %
80	Hg	Mercury	0.0000	< 0.00010 %	(0.0) %
81	TI	Thallium	0.0000	< 0.00010 %	(0.0) %
82	PbO	Lead	6.7654	0.00137 %	0.00026 %
83	Bi	Bismuth	0.0000	< 0.00010 %	(0.0) %
90	Th	Thorium	0.0000	< 0.00010 %	(0.0) %
92	U	Uranium	0.0000	< 0.00010 %	(0.0) %
		Sum of concent	tration	103.61 %	

103.61

Sample Name	SKF11	Dilution Material		
Description		Sample Mass (g)	4.0000	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	11/01/2016	
Sample Status	AXXAXXA	Date of Evaluation	11/02/2016	
-Results				

Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error	
11	Na	Sodium	27.2321	1.095 %	0.044 %	
12	Mg	Magnesium	18.7798	0.0674 %	0.0040 %	
13	Al	Aluminum	2984.3696	6.563 %	0.009 %	
14	Si	Silicon	37479.4892	35.87 %	0.02 %	
15	Р	Phosphorus	126.6023	0.08142 %	0.00064 %	
16	S	Sulfur	138.6925	0.03325 %	0.00021 %	
17	CI	Chlorine	210.0947	0.02462 %	0.00012 %	
19	K	Potassium	275.3603	1.219 %	0.006 %	
20	Са	Calcium	8.1821	< 0.0010 %	(0.0) %	
22	Ti	Titanium	239.9632	0.4500 %	0.0031 %	
23	V	Vanadium	0.0000	< 0.0017 %	(0.0017) %	
24	Cr	Chromium	19.5963	0.00767 %	0.00047 %	
25	Mn	Manganese	378.2935	0.1562 %	0.0009 %	
26	Fe	Iron	62042.7479	16.88 %	0.01 %	
27	Co	Cobalt	3.9558	0.00259 %	0.00033 %	
28	Ni	Nickel	23.9375	0.00481 %	0.00013 %	
29	Cu	Copper	23.5115	0.00386 %	0.00011 %	
30	Zn	Zinc	37.9619	0.00468 %	0.00008 %	
31	Ga	Gallium	7.5261	0.00074 %	0.00005 %	
32	Ge	Germanium	0.4531	< 0.00003 %	(0.00003) %	
33	As	Arsenic	22.4363	0.00127 %	0.00004 %	
34	Se	Selenium	0.0000	< 0.00005 %	(0.0) %	
35	Br	Bromine	1.3254	0.00006 %	0.00003 %	
37	Rb	Rubidium	100.3075	0.00279 %	0.00004 %	
38	Sr	Strontium	143.6317	0.00361 %	0.00003 %	
39	Y	Yttrium	156.1414	0.00379 %	0.00004 %	
40	Zr	Zirconium	56.3021	0.02100 %	0.00022 %	
41	Nb	Niobium	3.9420	0.00113 %	0.00008 %	
42	Мо	Molvbdenum	0.2722	< 0.00010 %	(0.0) %	
47	Aa	Silver	0.0000	< 0.00020 %	(0.0) %	
48	Cď	Cadmium	1.0989	< 0.00020 %	(0.0) %	
50	Sn	Tin	6.1046	0.00095 %	0.00007 %	
51	Sb	Antimony	0.0000	< 0.00030 %	(0.0) %	
52	Te	Tellurium	0,0000	< 0.00030 %	(0,0) %	
53	I	lodine	0,0000	< 0.00030 %	(0,0) %	
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %	
56	Ba	Barium	5 9281	0.00341 %	0.00048 %	
57	la	Lanthanum	1 9357	< 0.00020 %	(0,0) %	
58	Ce	Cerium	0.0000	< 0.00020 %	(0.0) %	
72	UС Нf	Həfnium	4 7469			
73	Ta	Tantalum	7.7403	0.00039 /0	0.0000- %	
74	W	Tungsten	2 1020		(0 0) %	
80	На	Marcury	0 6830		(0.0) %	
81	т	Thallium	0.0000		(0.0) $\frac{1}{2}$	
01	11	nanun	0.2090	> 0.00010 /0	(0.0) /0	

Sampl Descri	e Name ption	SKF11		Date of Receipt Method	11/01/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
82 83 90 92	Pb Bi Th U	Lead Bismuth Thorium Uranium	1.1901 0.0000 5.3285 3.9828	< 0.00012 % < 0.00010 % 0.00038 % < 0.00010 %	(0.00012) % (0.0) % 0.00012 % (0.0) %

Samp Descr	le Name iption	SKF11		Date of Receipt Method	11/01/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	27.2321	1.476 %	0.060 %
12	MaO	Magnesium	18,7798	0.1118 %	0.0066 %
13	AI2O3	Aluminum	2984.3696	12.40 %	0.02 %
14	SiO2	Silicon	37479.4892	76.75 %	0.05 %
15	P2O5	Phosphorus	126.6023	0.1866 %	0.0015 %
16	SO3	Sulfur	138.6925	0.08301 %	0.00053 %
17	CI	Chlorine	210.0947	0.02462 %	0.00012 %
19	K2O	Potassium	275.3603	1.468 %	0.007 %
20	CaO	Calcium	8.1821	< 0.0014 %	(0.0) %
22	TiO2	Titanium	239.9632	0.7507 %	0.0052 %
23	V2O5	Vanadium	0.0000	< 0.0030 %	(0.0030) %
24	Cr2O3	Chromium	19.5963	0.01121 %	0.00069 %
25	MnO	Manganese	378.2935	0.2017 %	0.0012 %
26	Fe2O3	Iron	62042.7479	24.14 %	0.02 %
27	CoO	Cobalt	3.9558	0.00329 %	0.00042 %
28	NiO	Nickel	23.9375	0.00612 %	0.00016 %
29	CuO	Copper	23.5115	0.00483 %	0.00013 %
30	ZnO	Zinc	37.9619	0.00583 %	0.00010 %
31	Ga	Gallium	7.5261	0.00074 %	0.00005 %
32	Ge	Germanium	0.4531	< 0.00003 %	(0.00003) %
33	As2O3	Arsenic	22.4363	0.00167 %	0.00005 %
34	Se	Selenium	0.0000	< 0.00005 %	(0.0) %
35	Br	Bromine	1.3254	0.00006 %	0.00003 %
37	Rb2O	Rubidium	100.3075	0.00306 %	0.00005 %
38	SrO	Strontium	143.6317	0.00426 %	0.00004 %
39	Y	Yttrium	156.1414	0.00379 %	0.00004 %
40	ZrO2	Zirconium	56.3021	0.02837 %	0.00030 %
41	Nb2O5	Niobium	3.9420	0.00161 %	0.00011 %
42	Мо	Molybdenum	0.2722	< 0.00010 %	(0.0) %
47	Ag	Silver	0.0000	< 0.00020 %	(0.0) %
48	Cd	Cadmium	1.0989	< 0.00020 %	(0.0) %
50	SnO2	Tin	6.1046	0.00120 %	0.00009 %
51	Sb2O5	Antimony	0.0000	< 0.00040 %	(0.0) %
52	Те	Tellurium	0.0000	< 0.00030 %	(0.0) %
53	I	lodine	0.0000	< 0.00030 %	(0.0) %
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %
56	ва	Barium	5.9281	0.00341 %	0.00048 %
57	La	Lanthanum	1.9357	< 0.00020 %	(0.0) %
58	Ce	Cerium	0.0000	< 0.00020 %	(0.0) %
72	HI T-205	Hathlum	4.7469	0.00039 %	0.00004 %
73	18205	Tantalum	3.0853	0.00040 %	0.00007 %
74	VVO3	Tungsten	2.1030	< 0.00013 %	(0.0) %
0U 01	пу ті		0.0000		
01			0.2090		(U.U) 70 (0.00012) 9/
02 02		Diamuth	1.1901		
00		Thorium	0.0000		
90 90	111	Liranium	0.0200 3.0000		(0.00012) /0
92	0	Uranium	5.3020	< 0.000 TU /0	(0.0) /0

117.67 %

Sample Name	SKF10	Dilution Material		
Description		Sample Mass (g)	4.0000	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	11/01/2016	
Sample Status	AXXAXXA	Date of Evaluation	11/02/2016	
-Results				

Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error	
11	Na	Sodium	19.0698	0.501 %	0.036 %	
12	Mg	Magnesium	1.7756	< 0.0020 %	(0.0) %	
13	AI	Aluminum	2213.4248	3.900 %	0.007 %	
14	Si	Silicon	58113.8893	44.47 %	0.03 %	
15	Р	Phosphorus	48.5294	0.03024 %	0.00065 %	
16	S	Sulfur	59.2134	0.00676 %	0.00009 %	
17	CI	Chlorine	198.8052	0.02215 %	0.00012 %	
19	K	Potassium	106.1092	0.4486 %	0.0058 %	
20	Са	Calcium	21.0686	0.0367 %	0.0013 %	
22	Ti	Titanium	87.3204	0.1515 %	0.0015 %	
23	V	Vanadium	1.8915	0.0033 %	0.0011 %	
24	Cr	Chromium	10.0778	0.00259 %	0.00015 %	
25	Mn	Manganese	35.7943	0.01318 %	0.00029 %	
26	Fe	Iron	12614.2771	3.016 %	0.003 %	
27	Co	Cobalt	2.3877	0.00076 %	0.00013 %	
28	Ni	Nickel	14.4345	0.00150 %	0.00005 %	
29	Cu	Copper	17.1323	0.00151 %	0.00005 %	
30	Zn	Zinc	8.3775	0.00055 %	0.00003 %	
31	Ga	Gallium	7.6695	0.00040 %	0.00002 %	
32	Ge	Germanium	1.6848	0.00006 %	0.00002 %	
33	As	Arsenic	6.6307	0.00019 %	0.00002 %	
34	Se	Selenium	2.0569	0.00005 %	0.00001 %	
35	Br	Bromine	7.8762	0.00019 %	0.00001 %	
37	Rb	Rubidium	73.8936	0.00105 %	0.00001 %	
38	Sr	Strontium	159.1726	0.00202 %	0.00002 %	
39	Y	Yttrium	34.0475	0.00042 %	0.00002 %	
40	Zr	Zirconium	66.6222	0.01268 %	0.00012 %	
41	Nb	Niobium	3.3693	0.00049 %	0.00004 %	
42	Мо	Molvbdenum	0.0000	< 0.00010 %	(0.0) %	
47	Aa	Silver	0.0000	< 0.00020 %	(0.0) %	
48	Cď	Cadmium	1.1231	< 0.00020 %	(0.0) %	
50	Sn	Tin	8.9349	0.00118 %	0.00007 %	
51	Sb	Antimony	0.0000	< 0.00030 %	(0.0) %	
52	Te	Tellurium	2 0066	< 0.00030 %	(0.0) %	
53	I	lodine	0.0000	< 0.00030 %	(0.0) %	
55	Cs	Cesium	0,000	< 0.00040 %	(0.0) %	
56	Ba	Barium	8 6304	0.00453 %	0.00051 %	
57	la	Lanthanum	0.0000	< 0.00020 %	(0,0) %	
58	Ce	Cerium	0.0000	< 0.00020 %	(0.0) %	
72	Hf	Hafnium	2 7184			
73	Та	Tantalum	1 4832	< 0.00010 %	(0.0) %	
74	W	Tunasten	2 8580	0.00017 %	0.0002 %	
80	Ha	Mercury	0.0000		(0 0) %	
81	TI	Thallium	0.0000			
51		manann	0.000-	0.00000 /0	0.00002 /0	

Sampl Descri	e Name ption	SKF10		Date of Receipt Method	11/01/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
82 83 90 92	Pb Bi Th U	Lead Bismuth Thorium Uranium	2.3101 0.9303 5.5350 4.6978	0.00012 % < 0.00005 % 0.00020 % < 0.00010 %	0.00003 % (0.00005) % 0.00003 % (0.0) %

Sampl Descri	e Name ption	SKF10		Date of Receipt Method	11/01/2016 TurboQuant-Powders
Z	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	19.0698	0.676 %	0.049 %
12	MaO	Magnesium	1.7756	< 0.0034 %	(0.0) %
13	AI2O3	Aluminum	2213.4248	7.369 %	0.014 %
14	SiO2	Silicon	58113.8893	95.15 %	0.06 %
15	P2O5	Phosphorus	48.5294	0.0693 %	0.0015 %
16	SO3	Sulfur	59.2134	0.01688 %	0.00023 %
17	CI	Chlorine	198.8052	0.02215 %	0.00012 %
19	K2O	Potassium	106.1092	0.5404 %	0.0070 %
20	CaO	Calcium	21.0686	0.0513 %	0.0018 %
22	TiO2	Titanium	87.3204	0.2527 %	0.0025 %
23	V2O5	Vanadium	1.8915	0.0060 %	0.0020 %
24	Cr2O3	Chromium	10.0778	0.00379 %	0.00022 %
25	MnO	Manganese	35.7943	0.01701 %	0.00038 %
26	Fe2O3	Iron	12614.2771	4.312 %	0.004 %
27	CoO	Cobalt	2.3877	0.00096 %	0.00016 %
28	NiO	Nickel	14.4345	0.00190 %	0.00006 %
29	CuO	Copper	17.1323	0.00189 %	0.00006 %
30	ZnO	Zinc	8.3775	0.00068 %	0.00003 %
31	Ga	Gallium	7.6695	0.00040 %	0.00002 %
32	Ge	Germanium	1.6848	0.00006 %	0.00002 %
33	AS2U3	Arsenic	0.0307		0.00002 %
34	Se	Selenium	2.0509		0.00001 %
30 27	BI	Bromine	7.0702		
38	SrO	Strontium	150 1726	0.00114 //	0.00002 %
30	310 V	Vttrium	34 0475	0.00239 %	0.00002 %
40	' 7r∩2	Zirconium	66 6222	0.00042 %	0.00016 %
40 41	Nh205	Niohium	3 3693	0.0071 %	0.00006 %
42	Mo	Molybdenum	0,0000	< 0.00010 %	(0,0) %
47	Aa	Silver	0.0000	< 0.00020 %	(0.0) %
48	Cd	Cadmium	1.1231	< 0.00020 %	(0.0) %
50	SnO2	Tin	8.9349	0.00150 %	0.00009 %
51	Sb2O5	Antimony	0.0000	< 0.00040 %	(0.0) %
52	Те	Tellurium	2.0066	< 0.00030 %	(0.0) %
53	I	lodine	0.0000	< 0.00030 %	(0.0) %
55	Cs	Cesium	0.0000	< 0.00040 %	(0.0) %
56	Ва	Barium	8.6304	0.00453 %	0.00051 %
57	La	Lanthanum	0.0000	< 0.00020 %	(0.0) %
58	Ce	Cerium	0.0000	< 0.00020 %	(0.0) %
72	Hf	Hafnium	2.7184	0.00013 %	0.00002 %
73	Ta2O5	Tantalum	1.4832	< 0.00012 %	(0.0) %
74	WO3	Tungsten	2.8580	0.00021 %	0.00003 %
80	Hg	Mercury	0.0000	< 0.00010 %	(0.0) %
81		Ihallium	0.9354	0.00003 %	0.00002 %
82	PbO	Lead	2.3101	0.00013 %	0.00003 %
83	BI	Bismuth	0.9303	< 0.00005 %	(0.00005) %
90	IN	Inorium	5.5350	0.00020 %	0.00003 %
92	U	Uranium	4.6978	< 0.00010 %	(U.U) %

108.52 %

Sample Name	SKF9	Dilution Material		
Description		Sample Mass (g)	4.0000	
Method	TurboQuant-Powders	Dilution Mass (g)	0.0000	
Job Number	MANOUTSOGLOU	Dilution Factor	1.0000	
Sample Type	Powder, 32 mm	Sample rotation	Yes	
Sample State	Powder	Date of Receipt	11/01/2016	
Sample Status	AXXAXXA	Date of Evaluation	11/02/2016	
-Results				

Itesuits

Ζ	Symbol	Element	Norm. Int.	Concentrat	ion	Abs. Erro	or
	Nia	C a divura	40 5044	0.057	0/	0.040	0/
10	ina Ma	Soulum	13.5241	0.257	% 0/	0.019	% 0/
12	ivig	Magnesium	10.5292	< 0.0020	% 0/	(0.0)	% 0/
13	AI	Aluminum	1332.1329	3.147	% 0/	0.007	% 0/
14	51	Shicon	34005.5460	32.70	% 0/	0.02	% 0/
10	P	Phosphorus	180.1000	0.1098	% 0/	0.0006	% 0/
10	5	Sullur	37.2087	< 0.00020	% 0/	(0.0)	% 0/
17		Chionne	195.1830	0.02048	% 0/	0.00010	% 0/
19	n Or	Polassium	150.3540	0.0129	% 0/	0.0044	% 0/
20	Ca T:		123.7980	0.3356	% 0/	0.0024	% 0/
22		i itanium	292.9660	0.5058	%	0.0039	%
23	V	vanadium	0.0000	< 0.0016	%	(0.0016)	%
24	Cr	Chromium	12.9359	0.00401	%	0.00053	%
25	Mn	Manganese	646.7402	0.2491	%	0.0013	%
26	Fe	Iron	98494.5595	25.13	%	0.02	%
27	Со	Cobalt	2.1591	< 0.00090	%	(0.00062)	%
28	Ni	Nickel	38.2215	0.00886	%	0.00021	%
29	Cu	Copper	6.9891	0.00129	%	0.00011	%
30	Zn	Zinc	37.1791	0.00518	%	0.00011	%
31	Ga	Gallium	3.0246	0.00034	%	0.00006	%
32	Ge	Germanium	0.0000	< 0.00005	%	(0.0)	%
33	As	Arsenic	3.7598	0.00024	%	0.00004	%
34	Se	Selenium	0.0000	< 0.00005	%	(0.0)	%
35	Br	Bromine	0.0000	< 0.00005	%	(0.0)	%
37	Rb	Rubidium	27.6308	0.00088	%	0.00006	%
38	Sr	Strontium	25.1646	0.00072	%	0.00003	%
39	Y	Yttrium	67.2296	0.00186	%	0.00004	%
40	Zr	Zirconium	101.3793	0.04313	%	0.00033	%
41	Nb	Niobium	3.2320	0.00105	%	0.00008	%
42	Мо	Molybdenum	0.0000	< 0.00010	%	(0.0)	%
47	Ag	Silver	0.0204	< 0.00001	%	(0.00001)	%
48	Cd	Cadmium	0.5659	< 0.00020	%	(0.0)	%
50	Sn	Tin	5.2864	0.00075	%	0.00006	%
51	Sb	Antimony	0.0000	< 0.00030	%	(0.0)	%
52	Те	Tellurium	2.8344	< 0.00030	%	(0.0)	%
53	I	lodine	0.0000	< 0.00030	%	(0.0)	%
55	Cs	Cesium	0.0000	< 0.00040	%	(0.0)	%
56	Ва	Barium	4.3637	0.00193	%	0.00034	%
57	La	Lanthanum	0.0000	< 0.00020	%	(0.0)	%
58	Ce	Cerium	0.0000	< 0.00020	%	(0.0)	%
72	Hf	Hafnium	2.6430	< 0.00010	%	(0.0)	%
73	Та	Tantalum	0.3909	< 0.00010	%	(0.0)	%
74	W	Tunasten	2.1684	< 0.00010	%	(0.0)	%
80	На	Mercury	0.0000	< 0.00010	%	(0,0)	%
81	TI	Thallium	0.0000	< 0.00010	%	(0.0)	%
J .	••		0.0000	0.00010		(0.0)	

Sampl Descri	e Name ption	SKF9		Date of Receipt Method	11/01/2016 TurboQuant-Powders	
Ζ	Symbol	Element	Norm. Int.	Concentration	Abs. Error	
82 83 90 92	Pb Bi Th U	Lead Bismuth Thorium Uranium	0.0000 0.0000 6.1888 3.8063	< 0.00010 % < 0.00010 % 0.00052 % < 0.00010 %	(0.0) % (0.0) % 0.00021 % (0.0) %	

Samp Descr	le Name iption	SKF9		Date of Receipt Method	11/01/2016 TurboQuant-Powders
Ζ	Symbol	Element	Norm. Int.	Concentration	Abs. Error
11	Na2O	Sodium	13.5241	0.346 %	0.026 %
12	MqO	Magnesium	10.5292	< 0.0034 %	(0.0) %
13	AIŽO3	Aluminum	1332.1329	5.946 %	0.013 %
14	SiO2	Silicon	34005.5460	70.09 %	0.05 %
15	P2O5	Phosphorus	186.1006	0.2516 %	0.0014 %
16	SO3	Sulfur	37.2087	< 0.00050 %	(0.0) %
17	CI	Chlorine	195.1836	0.02048 %	0.00010 %
19	K2O	Potassium	150.3546	0.7383 %	0.0053 %
20	CaO	Calcium	123.7980	0.4695 %	0.0034 %
22	TiO2	Titanium	292.9660	0.8439 %	0.0065 %
23	V2O5	Vanadium	0.0000	< 0.0029 %	(0.0029) %
24	Cr2O3	Chromium	12.9359	0.00586 %	0.00077 %
25	MnO	Manganese	646.7402	0.3216 %	0.0017 %
26	Fe2O3	Iron	98494.5595	35.92 %	0.02 %
27	CoO	Cobalt	2.1591	< 0.0011 %	(0.00079) %
28	NiO	Nickel	38.2215	0.01128 %	0.00026 %
29	CuO	Copper	6.9891	0.00161 %	0.00014 %
30	ZnO	Zinc	37.1791	0.00644 %	0.00013 %
31	Ga	Gallium	3.0246	0.00034 %	0.00006 %
32	Ge	Germanium	0.0000	< 0.00005 %	(0.0) %
33	As2O3	Arsenic	3.7598	0.00032 %	0.00005 %
34	Se	Selenium	0.0000	< 0.00005 %	(0.0) %
35	Br	Bromine	0.0000	< 0.00005 %	(0.0) %
37	Rb2O	Rubidium	27.6308	0.00096 %	0.00007 %
38	SrO	Strontium	25.1646	0.00085 %	0.00004 %
39	Y	Yttrium	67.2296	0.00186 %	0.00004 %
40	ZrO2	Zirconium	101.3793	0.05826 %	0.00044 %
41	Nb2O5	Niobium	3.2320	0.00151 %	0.00012 %
42	Мо	Molybdenum	0.0000	< 0.00010 %	(0.0) %
47	Ag	Silver	0.0204	< 0.00001 %	(0.00001)%
48	Cd	Cadmium	0.5659	< 0.00020 %	(0.0) %
50	SnO2	lin	5.2864	0.00095 %	0.00007 %
51	Sb205	Antimony	0.0000	< 0.00040 %	(0.0) %
52	le	I ellurium	2.8344	< 0.00030 %	(0.0) %
53		lodine	0.0000	< 0.00030 %	(0.0) %
55 56		Derium	0.0000		
50 57	Ба	Dariuri	4.3037		0.00034 %
5/	La	Carium	0.0000	< 0.00020 %	(0.0) %
00 70	Ce	Lofnium	0.0000	< 0.00020 %	(0.0) %
72	To205	Tantalum	2.0430		(0.0) 76
73	WO3	Tungston	2 1684	< 0.00012 %	(0.0) %
20 80	Ha	Mercury	2.100 4 0.0000		(0.0) %
81	TI	Thallium	0.0000		(0.0) %
82		l ead	0.0000		(0.0) %
82 83	Ri	Rismuth	0.0000		(0.0) %
gn	Th	Thorium	6 1888		0 00021 %
92	U	Uranium	3 8063	< 0.00002 %	(0,0) %
	Ŭ	oranian	0.0000		(0.0) /0

115.04 %