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Abstract—We present a macroscopic model-based approach
for estimation of the total density and flow of vehicles, for the
case of “mixed” traffic, i.e., traffic comprising both ordinary
and connected vehicles, utilizing only average speed measure-
ments reported by connected vehicles and a minimum number
(sufficient to guarantee observability) of spot sensor-based total
flow measurements. The approach is based on the realistic and
validated assumption that the average speed of conventional
vehicles is roughly equal to the average speed of connected
vehicles, and consequently, it can be obtained at the (local
or central) traffic monitoring and control unit from connected
vehicles’ reports. Thus, complete traffic state estimation (for
arbitrarily selected segments in the network) may be achieved by
estimating the total density of vehicles. Recasting the dynamics
of the total density of vehicles, which are described by the well-
known conservation law equation, as a linear parameter-varying
system, we employ a Kalman filter for the estimation of the total
density. We demonstrate the fact that the developed approach
allows for a variety of different measurement configurations.
We also present an alternative estimation methodology in which
traffic state estimation is achieved by estimating the percentage
of connected vehicles with respect to the total number of vehicles.
The alternative development relies on the alternative requirement
that the density and flow of connected vehicles are known to
the traffic monitoring and control unit on the basis of their
regularly reported positions. We validate the performance of the
developed estimation schemes through simulations using a well-
known second-order traffic flow model as ground truth for the
traffic state.

I. INTRODUCTION

A number of novel Vehicle Automation and Communication
Systems (VACS) have already been introduced, and many
more are expected to be introduced in the next years. These
systems are mainly aimed to improve driving safety and
convenience, but are also believed to have great potential
in mitigating traffic congestion, if appropriately exploited for
innovative traffic management and control [11]. To attain
related traffic flow efficiency improvements on highways, it
is of paramount importance to develop novel methodologies
for modeling, estimation and control of traffic in presence of
VACS. Several papers are providing useful results related to
modeling and control of traffic flow in presence of VACS,
employing either microscopic or macroscopic approaches, see,
for example, [6], [7], [8], [12], [16], [17], [26], [32], [33], [34],
[35], [36], [38], [41], [43], [44], [48], [51].

The availability of reliable real-time measurements or es-
timates of the traffic state is a prerequisite for successful
highway traffic control. In conventional traffic, the necessary
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measurements are provided by spot sensors (based on a variety
of possible technologies), which are placed at specific highway
locations. If the sensor density is sufficiently high (e.g., every
500 m), then the collected measurements are usually sufficient
for traffic surveillance and control; else, appropriate estimation
schemes need to be employed in order to produce traffic state
estimates at the required space resolution (typically 500 m);
see, for instance, [1], [15], [19], [22], [24], [25], [46], among
many other works addressing highway traffic estimation by use
of conventional detector data. However, the implementation
and maintenance of road-side detectors entail considerable
cost; hence various research works attempt to exploit different,
less costly data sources, such as mobile phone, or GPS (Global
Positioning System), or even vehicle speed data for travel
time or highway state estimation; employing various kinds of
traffic [2], [4], [13], [14], [29], [47], [49], [50] or statistic [10],
[37] models, or by developing data-fusion techniques [9], [27],
[31], [39], [42].

In fact, with the introduction of VACS of various kinds,
an increasing number of vehicles become “connected”, i.e.,
enabled to send (and receive) real-time information to a local
or central monitoring and control unit (MCU). Thus, connected
vehicles may communicate their position, speed and other
relevant information, i.e., they can act as mobile sensors. This
may allow for a sensible reduction (and, potentially, elimina-
tion) of the necessary number of spot sensors, which would
lead to according reduction of the purchase, installation, and
maintenance cost for traffic monitoring. This paper concerns
the development of reliable and robust traffic state estimation
methods, which exploit information provided by connected
vehicles and reduces the need for spot sensor measurements
under all penetration rates of connected vehicles, i.e., for
a mixed traffic flow that includes both conventional and
connected vehicles.

Specifically, we address the problem of estimating the
(total) density and flow of vehicles in highway segments
of arbitrary length (typically around 500 m) in presence of
connected vehicles. The developments rely on the realistic
assumption that the average speed of conventional vehicles
is roughly equal to the average speed of connected vehicles,
and consequently, the average speed of all vehicles on an
arbitrary segment of the highway can be readily obtained at the
local or central MCU from connected vehicles reports. This
assumption, which is indeed validated by use of real data,
relies on the fact that, even at very low densities, there is
no reason for connected vehicles to feature a systematically
different mean speed than conventional vehicles; while at
higher densities, the assumption is further reinforced due
to increasing difficulty of overtaking. As a consequence of
this assumption, complete traffic state estimation (of the total



SUBMITTED TO IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS ON MAY 26, 2015 2

density and flow in arbitrary segments in the highway) may
be achieved via estimating the traffic density by utilizing
average speed measurements from connected vehicles together
with a minimum (necessary to guarantee observability) amount
of conventional measurements of traffic volumes, e.g., at all
entries and exits of the considered highway stretches. The
developed estimation methodology allows a variety of different
conventional measurement configurations.

An alternative estimation approach is also developed, in
which traffic state estimation is achieved by estimating the
percentage of connected vehicles with respect to the total
number of vehicles. This alternative estimation approach relies
on the additional, yet natural, requirement that the density and
flow of connected vehicles may be readily obtained at the
local or central MCU on the basis of their regularly reported
positions.

The performance of the developed estimation schemes
is validated through simulations using the well-known
METANET traffic flow model as ground truth for the traffic
state, including the case in which the speed of connected
vehicles is reported to the MCU with a communication delay.

In more technical terms, the dynamics of the total traffic
density, as described by the well-known (discrete-time) con-
servation law equation, are recast as a linear parameter-varying
system with known parameters that depend on the real-time
average speed measurements (Section II-A), thus removing
the requirement of (empirical, hence uncertain) traffic speed
modeling, such as the fundamental diagram. The observability
properties of this system are studied (Section II-B) and a
Kalman filter is employed for the estimation of the total
density of vehicles (Section II-C). The effectiveness of the
proposed estimation design is illustrated in simulation with
a second-order macroscopic model as ground truth (Section
III). The estimation approach is then extended to the case of
unmeasured total flows at on-ramps or off-ramps (by incor-
porating additional mainstream total flow measurements that
replace a corresponding number of total flow measurements at
on-ramps or off-ramps) and its performance in this case is also
illustrated in simulation (Section IV). In the alternative esti-
mation approach a linear parameter-varying model is derived
for the dynamics of the percentage of connected vehicles and
a Kalman filter is employed for its estimation (Section V).

II. TRAFFIC ESTIMATION USING AVERAGE SPEED
MEASUREMENTS FROM CONNECTED VEHICLES

A. The Dynamics of Traffic Density as a Linear Parameter-
Varying System

We consider the following discrete-time equations that de-
scribe the dynamics of the total densities ρi of vehicles on
highway segments (see, e.g., [28]; see also the upper part of
Fig. 1)

ρi(k + 1) = ρi(k) +
T

∆i
(qi−1(k)− qi(k)

+ri(k)− si(k)) , (1)

where i = 1, . . . , N is the index of the specific segment at the
highway, N being the number of segments on the highway;

for all traffic variables, we denote by index sub-i its value at
the segment i of the highway; qi is the total flow at segment i;
T is the time-discretization step, ∆i is the length of segment
i, and k = 0, 1, . . . is the discrete time index. The variables ri
and si denote the inflow and outflow of vehicles at on-ramps
and off-ramps, respectively, at segment i. Using the known
relation

qi = ρivi, (2)

where vi is the average speed in segment i, we write (1) as

ρi(k + 1) =
T

∆i
vi−1(k)ρi−1(k) +

(
1− T

∆i
vi(k)

)
ρi(k)

+
T

∆i
(ri(k)− si(k)) . (3)

Assuming that the average speed of conventional vehicles is
roughly equal to the average speed of connected vehicles,
and hence, it can be reported to the traffic authority from the
connected vehicles, one can conclude that vi, i = 1, . . . , N ,
are measured. Therefore, defining the state

x = (ρ1, . . . , ρN )
T
, (4)

system (3) can be written in the form of a known linear
parameter-varying system of the form

x(k + 1) = A (v(k))x(k) +Bu(k) (5)
y(k) = Cx(k), (6)

where

A (v(k)) =


aij = T

∆i
vi−1(k), if i− j = 1

and i ≥ 2
aij = 1− T

∆i
vi(k), if i = j

aij = 0, otherwise

 (7)

B =


bij = T

∆i
, if i = 1 and j = 1, 2

or j − i = 1 and i ≥ 2
bij = 0, otherwise

 , (8)

u(k) =
[
q0(k) r1(k)− s1(k) . . . rN (k)− sN (k)

]T
(9)

C =
[

0 . . . 0 1
]
, (10)

with v =
[
v1 . . . vN

]T ∈ RN , A ∈ RN×N , B ∈
RN×(N+1), where q0 denotes the total flow of vehicles at the
entry of the considered highway stretch and acts as an input to
system (5), along with ri and si; while vi, i = 1, . . . , N , are
viewed as time-varying parameters of system (5). The variable
ρN at the exit of the considered highway stretch is viewed as
the output of the system and may be obtained via ρN = qN

vN
,

using total flow measurements qN at the exit of the considered
stretch.

Before studying the observability of (5)–(10), we summarize
the assumptions that guarantee that the matrix A is known as
well as that the input u and output y are measured.

• The average speed of all vehicles at a segment of the
highway equals the average speed of connected vehicles
at the same segment, and hence, it can be obtained from
regularly received messages by the connected vehicles.
This assumption is indeed validated by use of real mi-
croscopic data in Section III-A.
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• The total flow of vehicles at the entry and exit of the
considered highway stretch, q0 and qN , respectively, are
measured via conventional detectors.

• The total flow of vehicles at ramps, i.e., ri and si, i =
1, . . . , N , are measured via conventional detectors.

The above formulation may be modified to incorporate dif-
ferent total flow measurement configurations. In Section IV
we consider the case in which additional mainstream flow
measurements (using conventional detectors) are employed to
replace a corresponding number of flows at ramps.

B. Observability of the System

System (5) can be viewed as a known linear time-varying
system. As it is stated in Section II-A, it is assumed that the
quantities q0, vi, ri, and si, for all i, are available, which
implies that the matrix A and the input u in (5) may be
calculated in real time. We show next that system (5)–(10)
is observable at k = k0 +N − 1, for any initial time k0 ≥ 0.
We construct the observability matrix

O(k0, k0 +N)=


C

CA (v(k0))
CA (v(k0 + 1))A (v(k0))

...
CA (v(k0 +N − 2)) · · ·A (v(k0))

,(11)

From (7), A is lower triangular with non-zero entries only in
the main diagonal and the first diagonal below it. Thus, from
(10) it follows that O ∈ RN×N is an anti-lower triangular
matrix, namely, a matrix with zero elements above the anti-
diagonal, that is

O(k0, k0 +N) =


0 . . . 0 1
0 . . . o2,N−1 ?
... . .

.
? ?

oN,1 ? ? ?

 , (12)

where for all 2 ≤ i ≤ N

oi,N−i+1 =
T i−1

∆N · · ·∆N−i+2

×
j=N−1∏
j=N−i+1

vj(k0 + i+ j − 1−N). (13)

Therefore,

|det(O)| =

∣∣∣∣∣∣
j=N∏
j=2

oj,N−j+1

∣∣∣∣∣∣ , (14)

and thus, relation det(O) 6= 0 holds if the anti-diagonal
elements of O are non-zero. Since vi, i = 1, . . . , N , are lower
and upper-bounded (and positive) for all times1, it follows
using (13) that the matrix O is invertible, and thus, (5)–(10) is
completely observable. Note that the measurement of ρN (or,
equivalently, the measurement of qN ), rather than any other

1Note that the assumptions of lower and upper boundness of the average
segment speeds trivially hold in a real traffic system (assuming that at each
time instant and in every segment there is at least one vehicle with non-zero
speed).
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Fig. 1. The traffic system under consideration and the Kalman filter
implemented at the MCU. The data used to operate the Kalman filter are
either speed measurements coming from connected vehicles (solid lines) and
flow measurements coming from fixed sensors (dashed lines). The variable
mwi denotes the measurement of quantity w at segment i, which might be
different than the actual quantity w, due to, for example, the presence of
measurement noise. A variable wa

i represents the value of quantity w of
connected vehicles at segment i.

intermediate density, is necessary for system (5)–(10) to be
observable. To see this, note that if

C =

{
cij = 1, if i = 1 and j = J
cij = 0, otherwise

}
, (15)

with J < N , then the J+1, . . . , N columns of O(k0, k0 +N̄)
are zero for all k0 ≥ 0 and N̄ ≥N . Thus, the system cannot
be observable. In other words, a fixed flow sensor should
necessarily be placed at the last segment of the highway in
order to guarantee density observability based on model (5)–
(10).

C. Kalman Filter

We employ a Kalman filter for the estimation of the
total density of vehicles on a highway (Fig. 1). Defining
x̂ = (ρ̂1, . . . , ρ̂N )

T , the Kalman filter’s equations are (e.g.,
[3])

x̂(k + 1) = A (v(k)) x̂(k) +Bu(k)

+A (v(k))K(k) (z(k)− Cx̂(k)) (16)

K(k) = P (k)CT
(
CP (k)CT +R

)−1
(17)

P (k + 1) = A (v(k)) (I −K(k)C)P (k)A (v(k))
T

+Q, (18)

where z is a noisy version of the measurement y, R = RT > 0
and Q = QT > 0 are tuning parameters. Note that, in the
ideal case in which there is additive, zero-mean Gaussian white
noise in equations (5) and (6), respectively, R and Q represent
the (ideally known) covariance matrices of the measurement
and process noise, respectively. Since the system equations
here are relatively complex, some tuning of R, Q may be
needed for best estimation results. The initial conditions of
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the filter (16)–(18) are chosen as

x̂(k0) = µ (19)
P (k0) = H, (20)

where µ and H = HT > 0, which, in the ideal case in which
x(k0) is a Gaussian random variable, represent the mean and
auto covariance matrix of x(k0), respectively. The Kalman
filter (16)–(20) delivers estimates of the total densities ρ̂i as
indicated at the output of the Kalman filter in Fig. 1.

In addition to guaranteeing observability of the system,
we impose the conditions that the pair (A,C) is uniformly
completely observable (UCO) and that the pair (A,Q

1
2 ) is

uniformly completely controllable (UCC), which, in combina-
tion with the fact that A is uniformly bounded with bounded
from below positive determinant, assuming that 1 − T

∆i
vi,

∀i, are positive and bounded from below, guarantee that the
homogenous part of the estimator is exponentially stable and
that the covariance of the estimation error is bounded [23]. We
show that (A,C) is UCO by showing that ∃ε1, ε2 > 0 such
that

ε1IN×N ≤ OT (k0, k0 +N)O(k0, k0 +N) ≤ ε2IN×N ,

∀k0 ≥ 0. (21)

Since O has the special form (12), i.e., it is an anti-lower
triangular matrix with uniformly bounded from below and
above, positive elements on the anti-diagonal, it follows that
it has N independent columns, and hence,

OT (k0, k0 +N)O(k0, k0 +N) > 0, ∀k0 ≥ 0. (22)

Thus, relation (21) holds with

ε1 = inf
k0≥0

λmin

(
OT (k0, k0 +N)O(k0, k0 +N)

)
(23)

ε2 = sup
k0≥0

λmax

(
OT (k0, k0 +N)O(k0, k0 +N)

)
.(24)

Note that ε2 <∞ since A is bounded. Thus, since from (13),
(14) it follows that det(O)2 is uniformly bounded from below,
it follows that ε1>0.

The fact that (A,Q1/2) is UCC follows exploiting the
choice Q = σIN×N , for some bounded σ > 0, and the fact
that A is lower triangular with bounded from below positive
elements on the main diagonal.

III. EVALUATION OF THE PERFORMANCE OF THE
ESTIMATOR BASED ON A METANET MODEL AS GROUND

TRUTH

For preliminary assessment of the developed estimation
scheme, we test in this section the performance of the Kalman
filter employing the second-order METANET model [28] as
ground truth. METANET employs equation (1) for the total
density of vehicles together with (2) for the total flow. The
average speed at segment i is given within METANET by

vi(k + 1)=vi(k) +
T

τ
(V (ρi(k))− vi(k)) +

T

∆i
vi(k)

× (vi−1(k)− vi(k))− νT

τ∆i

ρi+1(k)− ρi(k)

ρi(k) + κ

−δT
∆i

ri(k)vi(k)

ρi(k) + κ
, i = 1, . . . , N, (25)

TABLE I
PARAMETERS OF THE MODEL (1), (2), (25).

T 1
360

(h) δ 1.4 ∆i 0.5 (km) N 20

vf 120
(

km
h

)
τ 1

180
(h) ρcr 33.5

(
veh
km

)
ν 35

(
km2

h

)
α 1.4324 κ 13

(
veh
km

)

TABLE II
THE MEASUREMENT NOISE γwi AND THE PROCESS NOISE ξwi ,
i = 0, . . . , N AFFECTING THE w VARIABLE AT SEGMENT i.

γqi γri γsi γvi ξvi ξqi
SD 25 veh

h 10 veh
h 5 veh

h 3 km
h 5 km

h 25 veh
h

with v0 = v1 and ρN = ρN+1, where the nominal average
speed V is given by V (ρ) = vfe

− 1
α ( ρ

ρcr
)
α

, and τ , ν, κ, δ,
vf , ρcr, α are positive model parameters. In particular, vf

denotes the free speed, ρcr the critical density, and α the
exponent of the stationary speed equation. The METANET
model parameters, taken from [45], are shown in Table I.

The measurements of the total flow of vehicles at the entry
and exit of the highway stretch under consideration and the
measurements of the total flow at the on-ramps or off-ramps
are subject to additive measurement noise. Moreover, there is
additive process noise affecting the speed and flow equations,
namely, (25) and (2), respectively. The mean speed (of all
vehicles) measurements, which stem from connected vehicles
only, are also subject to additive noise, which represents the
incurred inaccuracy due to penetration rates of connected
vehicles lower than 100% at the specific highway segment;
clearly, this results in an error of the measurement of the real
all-vehicles average segment speed. In order to evaluate the
effect of varying penetration rates of connected vehicles on
the speed error we use real microscopic traffic data.

A. Specification of the Noise Statistics for the Speed Measure-
ment Error Using Real Microscopic Traffic Data

We utilize here the real microscopic traffic data collected
within the Next Generation SIMulation program [40] for
computing the speed measurement error due to the presence
of both connected and conventional vehicles. Since these data
incorporate non-negligible errors in the position of individual
vehicles (see, e.g., [30]), correction methodologies are pro-
posed in the literature to improve their reliability; in this work,
we utilize the data processed by [20], [21], which include
the trajectories of all vehicles travelling along a stretch in
the northbound direction of I-80 in Emeryville, California,
recorded from 4:00 PM to 4:15 PM on April 13, 2005. The
highway is composed of 6 lanes, where lane 1 is a so-called
HOV (high-occupancy vehicle) lane, characterized by access
restricted to a limited set of vehicles. Therefore, the HOV lane
is excluded in the investigations to follow.

The considered stretch (sketched in Fig. 2) is 400 m
long, and an on-ramp is entering the mainstream, with the
merge nose located 175 m after the network origin. A strong
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Fig. 2. A graphical representation of the stretch of the highway I-80 in
Emeryville, California, related to the NGSIM data.
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Fig. 3. Mean and standard deviation of the measurement speed error (in
km
h

) as the penetration rate of connected vehicles varies for the NGSIM data.

congestion is present, with congestion waves coming from
downstream and crossing the entire stretch.

Vehicles entering the stretch are randomly tagged as con-
nected according to a uniform distribution, therefore the
percentage effectively varies in time and space. All speed
measurements, needed for the computation of the speed error,
are extracted from the available trajectory data, see, e.g., [20].
In particular, we run 10 simulation replications, each time
considering different sets of vehicles being connected (for a
fixed penetration rate); in each replication, the speed error is
computed every 10s as the difference between the average
speed of all vehicles and the average speed computed only
using information from connected vehicles. The mean and
standard deviation of the error are then computed by taking
the average over the 10 simulation replications.

In Fig. 3, we display the mean and standard deviation of the
error, i.e., of the difference between the actual average speed
computed from the speeds of all vehicles and the “measured”
average speed as reported by connected vehicles only, aver-
aged over all time steps (in order to come up with a single
value); against the penetration rate of connected vehicles. The
error is computed considering only the time instances where
there is at least one connected vehicle reporting its speed.

In fact, due to the low and time-varying penetration rates,
the stretch may not contain any connected vehicle at some
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km
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-1

0

1

2 Mean
Standard deviation

Fig. 4. Mean and standard deviation of the measurement speed error (in
km
h

) as the penetration rate of connected vehicles varies for the NGSIM data.
When there is no available measurement stemming from connected vehicles,
the missing measurement is replaced by the last reported speed value.

time instants. However, in order to run the estimator in real-
time, a speed value for every segment is needed at every time
step. A potential simple solution, in order to overcome these
potential issues, is to feed the filter, whenever there is no speed
information reported from connected vehicles, with the last
reported speed value that corresponds to a specific segment,
see, e.g., [18]. Computing the speed error this way, results in a
different speed error than the speed error computed previously
by ignoring in the calculation any missing measurements. The
error statistics for this case are shown in Fig. 4.

Comparing Fig. 3 with Fig. 4, one can observe that in the
case where a missing speed measurement is replaced by the
last reported speed value, there is a small decrease of the
standard deviation, but also a small appearing bias between
the speed reported from connected vehicles and the real speed.
In both cases, the standard deviation of the error is very
small even at very low penetration rates; and is reduced when
the penetration rate of connected vehicles is increased. These
results validate our initial assumption that the measured speed
stemming from connected vehicles is sufficiently reliable even
at low penetration rates; and provides a guide for the selection
of the error statistics while designing the Kalman Filter.
B. Simulation Results

For the following simulation investigations, we use zero-
mean (at the end of the section we consider also the case
of additive speed measurement bias) Gaussian white noise
with standard deviation (SD) shown in Table II. Comparing
the value of the additive noise in the speed measurements
γvi in Table II with Fig. 3, we conclude that the simulation
scenario presented below corresponds to approximately 1% of
connected vehicles.

The utilized parameters and initial conditions of the Kalman
filter (16)–(20), (7)–(10) are shown in Table III. In Fig. 6 we
show the employed scenario of total input flow at the entry of
the considered highway stretch, which is shown in Fig. 5, for
our simulation investigation of a 20-segment highway stretch.
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TABLE III
PARAMETERS OF THE KALMAN FILTER (16)–(20) AND (7)–(10).

Q R µ H

IN×N 100 (15, . . . , 15)T IN×N

1 2 3 4 5 6 7 8 9 10 11 12 20

Fig. 5. The layout of the highway stretch considered in the simulation
investigations of Section III. A red thick arrow indicates that a fixed flow
sensor is placed at the exit of the corresponding highway segment or on-
ramp, or at the entry of the corresponding off-ramp.

We assume that there are three on-ramps at segments 2, 6, 10
with constant inflows satisfying r2 = r6 = r10 = 150 veh

h .
Three off-ramps are supposedly present on the highway under
study, specifically at segments 4, 8, 12. It is assumed that si =
0.1qi−1, i = 4, 8, 12, i.e., the respective exit rates amount to
10%. The average speed at segment 2 (where the first on-
ramp is located) is shown in Fig. 7. It is evident from Fig.
7 that a congestion is created between the first and second
hour of our test, whereas free-flow conditions are prevailing
at the first and last hour. Congestion starts approximately at
the location of the second on-ramp, i.e., at the sixth segment
of the highway, and propagates backwards all the way to the
input of the highway.

In both traffic conditions, our estimator successfully esti-
mates the total density of vehicles on the highway, as it is
evident from Fig. 8 and Fig. 9, which display the actual density
and its estimate at two different segments of the highway,
namely, at segments 2 (at which congested conditions prevail
for one hour) and 8, respectively. Note the fast convergence
of the produced density estimates, starting from remote initial
values. Fig. 10 shows the relative performance index

PR =

√
1

MN

∑k=M
k=0

∑i=N
i=1 (ρi(k)− ρ̂i(k))

2

1
MN

∑k=M
k=0

∑i=N
i=1 ρi(k)

, (26)
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Fig. 6. The total flow of vehicles q0 at the entry of the highway stretch
under consideration.
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Fig. 7. The average speed v2 of the second segment of the considered
highway stretch as it is produced by the METANET model (1), (2), (25),
with parameters given in Table I and additive process noise given in Table II.
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Fig. 8. The total density of vehicles ρ2

(
in veh

km

)
at the second segment of the

considered highway stretch (black line) as it is produced by the METANET
model (1), (2), (25) with parameters given in Table I and additive process
noise given in Table II, and its estimate ρ̂2 (blue line) as it is produced by
the Kalman filter (16)–(20) and (7)–(10) with parameters given in Table III.

of the estimation scheme, with simulation time horizon M =
3
T = 1080, as a function of the parameter Q = σIN×N of the
Kalman filter while R was kept constant at a value R = 100.
From Fig. 10 it is evident that the Kalman filter is robust to
the choice of the tuning parameter Q. Note that, due to the
effect of the initial error between the real and the estimated
densities, the relative performance index takes larger values
than when it is computed on a time interval after the initial
transient period of the estimator’s response.

We also evaluate the performance of the estimation scheme
under delayed speed measurements coming from the con-
nected vehicles. We assume that at each sampling step the
information that is available to the estimator are speed mea-
surements from the previous minute. We show in Fig. 11 the
estimation of the density in the second segment when the
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Fig. 9. The total density of vehicles ρ8

(
in veh

km

)
at the eighth segment of the

considered highway stretch (black line) as it is produced by the METANET
model (1), (2), (25) with parameters given in Table I and additive process
noise given in Table II, and its estimate ρ̂8 (blue line) as it is produced by
the Kalman filter (16)–(20) and (7)–(10) with parameters given in Table III.
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Fig. 10. The relative performance index PR (in %) defined in (26) as a
function of the tuning parameter Q = σIN×N of the Kalman filter (16)–
(20), (7)–(10) with parameters given in Table III.

estimator uses at each time step a simple moving average of the
past six speed measurements, starting from the measurement of
the previous time step. One can observe that the one-step delay
has little effect on the estimation. In particular, the relative
performance index (26) increases to a value of approximately
10% from a value about 7% in the delay-free case.

We also test the performance of the estimation scheme
in the case in which at some time instances there is no
speed information reported by connected vehicles. A simple
procedure to overcome this difficulty is to replace the missing
speed information with the last reported speed value, see, e.g.,
[18]. Applying this procedure to the computation of the speed
error for the NGSIM data, we get a biased speed error, as
shown in Fig. 4. To emulate this situation, we choose for the
speed measurement error a Gaussian noise with mean −1km

h
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Fig. 11. The total density of vehicles ρ2

(
in veh

km

)
at the second segment of

the considered highway stretch (black line) and its estimate ρ̂2 (blue line) as it
is produced by the Kalman filter (16)–(20), (7)–(10) with parameters given in
Table III, using a simple moving average, of the past six speed measurements
starting from the measurement of the previous time step, instead of the current
speed measurements.

and standard deviation 2.5km
h , which corresponds, according

to Fig. 4, to a penetration rate of approximately 1%. In Fig.
12, we display the real and estimated density at segments 2
and 8 for this case. The performance index has a value about
7% and the estimation is slightly biased.

IV. TRAFFIC ESTIMATION FOR UNMEASURED TOTAL
FLOW AT ON-RAMPS AND OFF-RAMPS

A. Model Derivation and its Observability Properties

In the case that the total flow at some on-ramps or off-ramps
is not directly measured, we treat these flows as additional
unmeasured states to be estimated by a Kalman filter. Hence,
we augment the state (4) as

x̄ = (ρ1, . . . , ρN , θ1, . . . , θlr+ls)
T
, (27)

where lr and ls are the number of unmeasured flows
at on-ramps and off-ramps, respectively, and θi ={ T

∆i
rni , if ni ∈ Lr

T
∆i
sni , if ni ∈ Ls

}
, for all i = 1, . . . , lr + ls, with

Lr = {n1, . . . , nlr} and Ls = {nlr+1, . . . , nlr+ls}, being the
collection of segments, denoted by ni, which have an on-ramp
and an off-ramp, respectively, whose flows are not directly
measured. Assuming that at a segment i there can be either
only one on-ramp or only one off-ramp (which is typically
the case on a highway) and that the unmeasured on-ramp and
off-ramp flows are constant (or, effectively, slowly varying),
the unmeasured ramp flow dynamics may be reflected by a
random walk, i.e., θi(k + 1) = θi(k) + ξθi (k), where ξθi is
zero-mean white Gaussian noise. Thus, the deterministic part
of the dynamics of the total density given in (1) and of θi are

x̄(k + 1) = Ā (v(k)) x̄(k) + B̄ū(k), (28)
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Fig. 12. The total densities of vehicles ρ2 and ρ8

(
in veh

km

)
at the second

and eighth segments of the considered highway stretch (black line) as it is
produced by the METANET model (1), (2), (25) with parameters given in
Table I, additive process noise given in Table II, where the measurement
noise of the speed has bias −1.5 km

h
and standard deviation γvi = 3.5 km

h
,

and their estimates ρ̂2 and ρ̂8 (blue line) as they are produced by the Kalman
filter (16)–(20) and (7)–(10) with parameters given in Table III.

where

Ā (v(k)) =



āij = T
∆i
vi−1(k), if i− j = 1

and i ≥ 2
āij = 1− T

∆i
vi(k), if i = j

ānij = 1, if ni ∈ Lr
and j = N + i

ānij = −1, if ni ∈ Ls
and j = N + i

āij = 1, if N < i ≤ N1

and j = i
āij = 0, otherwise



(29)

B̄=


b̄ij = T

∆i
, if i = 1 and j = 1

b̄mij = T
∆mi

, if mi /∈ L̄, 1 ≤ mi ≤ N ,
1 ≤ i ≤ N2, and j = i+ 1

b̄ij = 0, otherwise

(30)

ū(k) =

[
ūi = q0(k), if i = 1
ūi+1 = rmi − smi , if mi /∈ L̄

]
, (31)

TABLE IV
PARAMETERS OF THE KALMAN FILTER EMPLOYED IN SECTION IV.

Q̄ R̄ µ̄ H̄

I(N+2)×(N+2) 100I2×2 (2, . . . , 2)T I(N+2)×(N+2)

with L̄ = Lr ∪ Ls, N1 = N + lr + ls, N2 = N − lr − ls,
Ā ∈ RN1×N1 , B̄ ∈ RN1×(N2+1).

We now turn our attention to the measured outputs for the
present case, where some on-ramp or off-ramp flows are not
measured. If there is exactly one unmeasured ramp within the
considered highway stretch, then no additional measurements
are necessary. On the other hand, if there are more than one
unmeasured ramps within the stretch, we need one mainstream
flow measurement at any highway segment between every two
consecutive unmeasured ramps.

In summary, the measured outputs associated with system
(28)–(31) are the density (or, equivalently, the flow) at the exit
of the considered highway stretch and at a highway segment
between every two consecutive ramps whose flows are not
measured. Therefore,

ȳ(k) = C̄x̄(k), (32)

where C̄ ∈ R(lr+ls)×(N+lr+ls) is defined as

C̄ =


c̄ij = 1, for all i = 1, . . . , lr + ls − 1

and some n∗i ≤ j ≤ n∗i+1 − 1
c̄ij = 1, if i = lr + ls and j = N
c̄ij = 0, otherwise

, (33)

where L̄∗ =
{
n∗1, n

∗
2, . . . , n

∗
lr+ls

}
is the set L̄ ordered by <.

Although it is physically intuitive that (28)–(33) is observ-
able when additional mainstream fixed flow sensors are placed
at some segment between every two consecutive unmeasured
ramps, we prove in Appendix A that the system is observable
when a fixed sensor is placed on the mainstream at every
segment immediately before an unmeasured ramp, i.e., when
ȳ in (32) satisfies ȳlr+ls+1 = ρN and ȳj = ρnj−1, nj ∈ L̄∗.
The reason is that since system (28)–(33) is time-varying with
a large number of states and, potentially, outputs, an analytical
observability study considering every possible sensor config-
uration requires lengthy calculations that would distract the
reader from the main ideas and results of the present section,
namely, traffic state estimation in the case of unmeasured
ramps.

B. Kalman Filter Design and Evaluation of its Performance

We employ the Kalman filter (16)–(20) with parameters
given in Table IV (in particular, the q̄N+iN+i elements of
Q̄ represent the filter’s anticipation for the covariance of ξθi ),
for the estimation of the state x̄, defined in (27), of system
(28)–(33). We assess the filter’s performance, employing the
same scenario with the one considered in Section III, in the
following different fixed detector configurations (see Fig. 13):

A. The total flow at on-ramp 6 and the total flow at off-ramp
8 are not measured. One additional mainstream total flow
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Fig. 13. The layouts of the highway stretches considered in the simulation
investigations of Section IV for the detector configurations A (top plot), B
(middle plot), and C (bottom plot). A red thick arrow indicates that a fixed
flow sensor is placed at the exit of the corresponding highway segment or
on-ramp, or at the entry of the corresponding off-ramp.
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Fig. 14. The total density of vehicles ρ2

(
in veh

km

)
at the second segment of

the considered highway stretch (black line) and its estimate ρ̂2 (blue line) as it
is produced by the Kalman filter with parameters Q̄ = diag(IN×N , 0.025),
R̄ = 100, µ̄ = (2, . . . , 2)T , and H̄ = I(N+1)×(N+1), for the fixed sensor
configuration C.

measurement is available from a fixed detector that is
placed at the exit of the seventh segment.

B. The flow at off-ramp 8 is not measured, while all other
ramp flows are measured by fixed flow detectors.

C. The flow at on-ramp 6 is not measured, while all other
ramp flows are measured by fixed flow detectors.

For case C, we show in Figs. 14, 15, and 16 the estimation of
the density at segments 2, 11, and of the flow at on-ramp 6,
respectively. We omit to show the estimation results for cases
A and B because they are very similar to case C.

Note that, although in Section II-B we prove that (5)–(10) is
observable when all on-ramp and off-ramp flows are measured,
Figs. 14–16 suggest that (28)–(33) may also be observable
when a ramp is not measured and no additional mainstream
flow measurement is available. However, an observability
study in this case, employing the time-varying model (28)–
(33), leads to complicated sufficient observability conditions
that lack a clear physical meaning.

Finally, employing similar arguments to Sections II-C and
IV-A it is shown that the pairs (Ā, C̄) and (Ā, Q̄

1
2 ) are

UCO and UCC, respectively, and hence, the Kalman filter is
exponentially stable.
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Fig. 15. The total density of vehicles ρ11

(
in veh

km

)
at the eleventh segment of

the considered highway stretch (black line) and its estimate ρ̂11 (blue line) as
it is produced by the Kalman filter with parameters Q̄ = diag(IN×N , 0.025),
R̄ = 100, µ̄ = (2, . . . , 2)T , and H̄ = I(N+1)×(N+1), for the fixed sensor
configuration C.
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Fig. 16. The total flow of vehicles r6
(

in veh
h

)
at the on-ramp located at the

sixth segment of the considered highway stretch (black line) and its estimate
r̂6 (blue line) as it is produced by the Kalman filter with parameters Q̄ =
diag(IN×N , 0.025), R̄ = 100, µ̄ = (2, . . . , 2)T , and H̄ = I(N+1)×(N+1),
for the fixed sensor configuration C.

V. AN ALTERNATIVE: TRAFFIC STATE ESTIMATION VIA
ESTIMATION OF THE PERCENTAGE OF CONNECTED

VEHICLES

In the present section we employ a Kalman filter for esti-
mation of the percentage of connected vehicles, with respect
to the total number of vehicles. This estimation approach is
an alternative to the one presented in previous sections. It
does not need segment speed measurements, as in previous
sections, but employs instead densities and flows of connected
vehicles, which may be readily derived from presence reports
of connected vehicles.

In principle, the alternative estimation approach may be
employed if the density and flow measurements for connected
vehicles feature sufficiently lower measurement error com-
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pared to the speed measurements. Furthermore, the additional
information utilized by the alternative estimation scheme (and
which is anyway available to the traffic monitoring and control
unit, since these measurements are coming from connected
vehicles) could potentially result in a more efficient traffic state
estimation. Finally, the two approaches may even be combined
towards a better estimation outcome, exploiting all available
information coming from connected vehicles.

A. Model Derivation for the Percentage of Connected Vehicles

In accordance with (1) for the dynamics of the total density,
the dynamics of the density ρa of connected vehicles are

ρa
i (k + 1) = ρa

i (k) +
T

∆i

(
qa
i−1(k)− qa

i (k) + ra
i (k)

−sa
i (k)) , (34)

where qa
i is the flow of the connected vehicles at segment i; ra

i

and sa
i are the corresponding inflow and outflow of connected

vehicles at ramps. Define the inverse of the percentage of the
connected vehicles at segment i of the highway as p̄i, i.e.,

p̄i =
ρi
ρa
i

. (35)

Assuming that the average speed of conventional vehicles at
a segment i equals the average speed of connected vehicles in
the same segment, namely vi, we get that

p̄i =
ρi
ρa
i

=
qi
qa
i

, (36)

where we used (2) and, accordingly, for connected vehicles,

qa
i = ρa

i vi. (37)

Using (1), (34), and (36) we get from (35) that

p̄i(k + 1)=

(
ρa
i (k)− T

∆i
qa
i (k)

)
p̄i(k) + T

∆i
qa
i−1(k)p̄i−1(k)

ga
i (k)

+
T

∆i

(ri(k)− si(k))

ga
i (k)

(38)

ga
i (k)=ρa

i (k) +
T

∆i

(
qa
i−1(k)− qa

i (k) + ra
i (k)

−sa
i (k)) , (39)

i = 1, . . . , N . Defining the state

x∗ = (p̄1, . . . , p̄N )
T
, (40)

we re-write (38) as

x∗(k + 1) =A∗ (qa(k), ρa(k), ra(k), sa(k))x∗(k)

+B∗ (qa(k), ρa(k), ra(k), sa(k))u∗(k) (41)
y∗(k) =C∗x∗(k), (42)

TABLE V
PARAMETERS OF THE KALMAN FILTER EMPLOYED IN SECTION V.

Q∗ R∗ µ∗ H∗

IN×N 100 (10, . . . , 10)T IN×N

where

A∗ =


a∗ij = T

∆i

qa
i−1(k)

ga
i (k) , if i− j = 1

and i ≥ 2

a∗ij =
ρa
i (k)− T

∆i
qa
i (k)

ga
i (k) , if i = j

a∗ij = 0, otherwise

 (43)

B∗ =


b∗ij = T

∆i

1
ga
1(k) , if i = 1

and j = 1, 2
b∗ij = T

∆i

1
ga
i (k) , if j − i = 1

b∗ij = 0, otherwise

 (44)

u∗ =


q0(k)

r1(k)− s1(k)
...

rN (k)− sN (k)

 (45)

C∗ =
[

0 . . . 0 1
]
, (46)

qa =
[
qa
0 . . . qa

N

]T
, ρa =

[
ρa

1 . . . ρa
N

]T
, ra =[

ra
1 . . . ra

N

]T
, sa =

[
sa

1 . . . sa
N

]T
and ga

i , i =
1, . . . , N , are defined in (39). Note that the variables ra

i , sa
i ,

ρa
i , and qa

i are viewed as time-varying parameters of system
(41). Finally, the variable p̄N is viewed as output and may be
obtained via p̄N = qN

qa
N

, using total flow measurements qN at
the exit of the considered highway stretch.

B. Kalman Filter Design and Evaluation of its Performance

Under an extra assumption (that guarantees that the matrices
(43) and (44) are known, and that the input (45) and output
(42) are measured), in comparison to Section II-A, namely,
that the segment flows and densities of connected vehicles,
qa
i , i = 0, . . . , N , and ρa

i , i = 1, . . . , N , respectively, as well
as the flows of connected vehicles at on-ramps and off-ramps,
ra
i and sa

i , i = 1, . . . , N , respectively, may be obtained from
regularly received messages by the connected vehicles, it can
be shown (see also [5]) that system (41)–(46) is observable
utilizing identical arguments to Section II-B since C = C∗ and
since the matrix A∗ defined in (43) has the same structure with
the matrix A defined in (7) and its elements a∗ij , for i−j = 1,
are positive as well as bounded from below and above.

We employ next the Kalman filter (16)–(20) with parameters
given in Table V for the estimation of the state x∗, defined in
(40), of system (41)–(42). Note that since C = C∗ and since
A∗ in (43) has the same structure with the matrix A defined
in (7) with bounded from below and above positive elements,
exponential stability of the Kalman filter follows employing
identical arguments to Section II-C and exploiting the choice
Q∗ = σ∗IN×N , for some bounded σ∗ > 0.

We validate the performance of the Kalman filter employing
as ground truth equations (1) and (34) for the total density of
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TABLE VI
THE MEASUREMENT NOISE γwi AND THE PROCESS NOISE ξwi ,
i = 0, . . . , N AFFECTING THE w VARIABLE AT SEGMENT i.

γqi γri γsi ξq
a

i ξvi ξqi
SD 25 veh

h 10 veh
h 5 veh

h 15 veh
h 5 km

h 25 veh
h
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Fig. 17. The total flow of vehicles q0 and the flow of connected vehicles
qa
0 at the entry of the considered highway stretch.

the vehicles and the density of connected vehicles, respec-
tively, together with relations (2) and (37) for the total flow
and the flow of connected vehicles, respectively. The average
speed at segment i is given by (25). The noise statistics used
in the simulations are shown in Table VI.

In Fig. 17 we show the employed scenario of input flow
of connected vehicles and total input flow at the entry of the
considered highway stretch for our simulation investigation.
We assume that the total flow and the flow of connected
vehicles at on-ramps are ri = 150 veh

h and ra
i = 100 veh

h ,
i = 2, 6, 10, respectively. At off-ramps it is assumed that
si = 0.1qi−1 and sa

i = 0.1qa
i−1, i = 4, 8, 12. The average

speed at segment 2 and the corresponding total density of
vehicles are shown in Fig. 18 and Fig. 19, respectively. It
is clear that congestion as well as free-flow conditions are
reported, similarly to Section III. Our estimator successfully
estimates the percentage of connected vehicles on the highway,
as it is evident from Fig. 20 that displays the actual percentage
and its estimate at segment 2 of the highway stretch. Fig. 21
displays the resulting estimation of the total density at segment
2 using relation (36).

The remarks on the robustness of the filter to delayed
measurements coming from connected vehicles as well as
to variations of the tuning parameters Q and R, for the
case of the density estimator, apply mutatis mutandis to
the case of the percentage estimator. Also, the estimation
scheme presented in this section can be modified to incorporate
additional mainstream total flow measurements, replacing a
corresponding number of unmeasured ramp flows, in analogy
with Section IV.
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Fig. 18. The average speed v2 of the second segment of the considered
highway stretch as it is produced by the METANET model (1), (2), (25) with
parameters given in Table I and additive process noise given in Table VI.
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Fig. 19. The total density of vehicles ρ2 at segment 2 of the considered
highway stretch as it is produced by the METANET model (1), (2), (25) with
parameters given in Table I and additive process noise given in Table VI.

VI. DISCUSSION AND CONCLUSIONS

The conclusions can be summarized as follows: i) We
developed a) a traffic state estimation methodology for mixed
traffic, i.e., traffic comprising both conventional and con-
nected vehicles, utilizing only average speed measurements
reported by connected vehicles and a minimum number of
fixed detectors; and b) an alternative traffic state estimation
methodology for mixed traffic, utilizing only flow and den-
sity measurements reported by connected vehicles together
with a minimum number of fixed detectors (see also next
paragraph). ii) It was demonstrated in simulation (employing
also a suitable performance index) that for various traffic
conditions (in particular, for both free-flow and congested
conditions) and under the effect of noise or delay affecting
the measurements utilized by the estimator, the developed
estimation scheme successfully estimates the total density of
vehicles on highways and that the produced density estimates
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Fig. 20. The percentage of connected vehicles ρa
2
ρ2

on the second segment
of the considered highway stretch (black line) and its estimate 1

ˆ̄p2
(blue line)

as it is produced by the Kalman filter with parameters given in Table V.
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Fig. 21. The total density of vehicles ρ2 on segment 2 of the considered
highway stretch (black line) and its estimate ρ̂2 = ρa

2
ˆ̄p2 (blue line) as it is

produced by the Kalman filter with parameters given in Table V.
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Fig. 22. The percentage of connected vehicles ρa
8
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on the eighth segment of
the considered highway stretch (black line) and its estimate 1

ˆ̄p8
(blue line) as

it is produced by the Kalman filter with parameters given in Table V.
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Fig. 23. The total density of vehicles ρ8 on the eighth segment of the
considered highway stretch (black line) and its estimate ρ̂8 = ρa

8
ˆ̄p8 (blue

line) as it is produced by the Kalman filter with parameters given in Table V.

converge very fast to the actual densities, starting from remote
initial values. iii) It was further demonstrated numerically that
the developed estimation scheme has low sensitivity to certain
tuning parameters. iv) Finally, analytical conditions for the
observability of the system were derived under various mea-
surement configurations, as along with conditions guaranteeing
the exponential stability of the estimator.

One might raise the question of performance comparison
between the two alternative estimation schemes. The two
approaches have similarities since the linear parameter-varying
models utilized in both estimation approaches are derived from
the conservation law equation, in both approaches a Kalman
filter is employed, and the same fixed flow measurements are
used in both estimation schemes. However, the percentage
estimator utilizes measurements of flow and density stemming
from connected vehicles, as well as of inflow and outflow of
connected vehicles at on-ramps and off-ramps, respectively.
Since these measurements are coming from connected vehicles
they are known to the MCU, similarly to the case of speed
measurements used by the density estimator. Therefore, a fair
performance comparison between the two estimation schemes
would take into account the accuracy of the various measure-
ments stemming from connected vehicles. For this reason,
a subject of our ongoing research is the validation of the
developed traffic estimation methodologies with a much more
detailed microscopic simulation platform; considering a more
realistic simulation of all involved real-time measurements.

Another topic of ongoing research is the validation of the
developed schemes for various penetration rates of connected
vehicles, by utilizing either real data or, by performing simula-
tion experiments using a microscopic platform. In particular,
studying the behavior of the estimation error with real data
as the penetration rate of connected vehicles varies and using
a microscopic simulation platform for testing the developed
schemes in cases of mixed traffic for which there are no data
available, such as, for instance, when traffic comprises both
conventional vehicles and vehicles equipped with an Adaptive
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Cruise Control (ACC) system.
Future research will address the problem of optimal fixed

sensor placement on highways via the optimization of certain
observability metrics. Since the models employed in this
paper, for estimation purposes, are time-varying, due to their
dependency on the traffic state of connected vehicles, an
analytical study of the optimization of such metrics would be
non-trivial. It is likely that the problem would be approached
numerically considering various traffic conditions.

APPENDIX A

Observability of the System for the Case of Unmeasured
Ramps

Assume the availability of N + 1 measurements, i.e., for
k = k0, . . . , k0 + N of the output ρN , (which implies that
qN is available), inputs q0, ri, and si, i = 1, . . . , N such that
i /∈ L̄, and parameters vi, i = 1, . . . , N . Since the measured
inputs do not affect the observability properties of the system,
we assume henceforth, without loss of generality, that they are
zero. In addition, whether the lack of a measurement concerns
an on-ramp or an off-ramp at a given segment does not affect
the observability properties of the system either. Hence, we
assume that there are only unmeasured on-ramps, i.e., ls = 0.
For reducing the notational burden, we also impose ∆j = ∆,
∀j. One can then uniquely determine ρj(k), for all k0 ≤ k ≤
k0 + j and nlr ≤ j ≤ N − 1 by recursively applying relation

ρj(k) =
∆

Tvj(k)
ρj+1(k + 1)− ∆

Tvj(k)

×
(

1− T

∆
vj+1(k)

)
ρj+1(k), (A.1)

which follows from (3), starting at j = N − 1 and us-
ing measurements of the output ȳlr+1(k) = ρN (k), k =
k0, . . . , k0 +N . Setting j = nlr in (3) we get that

rnlr (k) = −vnlr−1(k)ρnlr−1(k) +
∆

T
ρnlr (k + 1)

−∆

T

(
1− T

∆
vnlr (k)

)
ρnlr (k), (A.2)

which also holds for nlr = N . Hence, the on-ramp flow
rnlr (k) can be uniquely determined for k = k0, . . . , k0+nlr−
1 assuming mainstream measurements ȳlr (k) = ρnlr−1(k),
k = k0, . . . , k0 + nlr − 1. Employing (A.1) for all nlr−1 ≤
j ≤ nlr − 2 and using the measurements ρnlr−1(k), k =
k0, . . . , k0 + nlr − 1, ρj(k) for all nlr−1 ≤ j ≤ nlr − 2
and k = k0, . . . , k0 + j is uniquely determined (if j =
nlr−1 = nlr − 1 then ρj is directly measured). Assuming that
ȳlr−1(k) = ρnlr−1−1(k), k = k0, . . . , k0 + nlr−1 − 1, is mea-
sured, it follows that rnlr−1

(k), k = k0, . . . , k0 +nlr−1−1, is
uniquely determined from (A.2) with lr → lr − 1. Continuing
this procedure up to j=1 and n1, it is shown that the system is
observable at k = k0 +N , ∀k0 ≥ 0. Similarly, it is shown that
the system is observable in the case of exactly one unmeasured
ramp, when a fixed flow sensor is placed on the mainstream
at the segment immediately before the unmeasured ramp.
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