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Abstract: A macroscopic model-based approach for estimation of the traffic state, specifically of the
(total) density and flow of vehicles, is developed for the case of “mixed” traffic, i.e., traffic comprising
both ordinary and connected vehicles. The development relies on the following realistic assumptions:
(i) The density and flow of connected vehicles are known at the (local or central) traffic monitoring
and control unit on the basis of their regularly reported positions; and (ii) the average speed of
conventional vehicles is roughly equal to the average speed of connected vehicles. Thus, complete
traffic state estimation (for arbitrarily selected segments in the network) may be achieved by merely
estimating the percentage of connected vehicles with respect to the total number of vehicles. A model
is derived, which describes the dynamics of the percentage of connected vehicles, utilizing only well-
known conservation law equations that describe the dynamics of the density of connected vehicles and
of the total density of all vehicles. Based on this model, which is a linear parameter-varying system, an
estimation algorithm for the percentage of connected vehicles is developed employing a Kalman filter.
The estimation methodology is validated through simulations, using a second-order macroscopic traffic
flow model as ground truth for the traffic state, as well as using real microscopic traffic data collected
within the Next Generation SIMulation (NGSIM) program.

1. INTRODUCTION

A number of novel Vehicle Automation and Communication
Systems (VACS) have already been introduced, and many more
are expected to appear in the next years. These systems are
mainly aimed to improve driving safety and convenience, but
are also believed to have great potential in mitigating traf-
fic congestion, if appropriately exploited for innovative traf-
fic management and control, see, for example, Diakaki et al.
(2015). To attain related traffic flow efficiency improvements
on highways, it is of paramount importance to develop novel
methodologies for modeling, estimation and control of traffic
in presence of VACS. Several papers are providing useful re-
sults related to modeling and control of traffic flow in pres-
ence of VACS, employing either microscopic or macroscopic
approaches, see, for example, Bose & Ioannou (2003), Davis
(2007), Ge & Orosz (2014), Kesting et al. (2008), Ngoduy et al.
(2009), Roncoli et al. (2015), Shladover et al. (2012), Varaiya
(1993), Wang et al. (2014).

The availability of reliable real-time measurements or estimates
of the traffic state is a prerequisite for successful highway traffic
control. In conventional traffic, the necessary measurements are
provided by spot sensors, which are placed at specific highway
locations. If the sensor density is sufficiently high (e.g., every
500 m), then the collected measurements are usually sufficient
for traffic surveillance and control; else, appropriate estimation
schemes need to be employed in order to produce traffic state
estimates at the required space resolution (typically 500 m); see,
for instance, Alvarez-lcaza et al. (2004), Hegyi et al. (2006),
Mihaylova et al. (2007), Wang & Papageorgiou (2005), among
many other works addressing highway traffic estimation by
use of conventional detector data. However, the implementation

and maintenance of road-side detectors entail considerable cost;
hence various research works attempt to exploit different, less
costly data sources, such as mobile phone, or GPS (Global
Positioning System), or even vehicle speed data for travel time
or highway state estimation; see, e.g., Astarita et al. (2006),
Fabritiis et al. (2007), Deng et al. (2013), Herrera & Bayen
(2010), Seo et al. (2015), Work et al. (2008), Yuan et al. (2014);
employing various kinds of traffic or statistic models.

In fact, with the introduction of VACS of various kinds, an
increasing number of vehicles become “connected”, i.e., en-
abled to send (and receive) real-time information to a local or
central monitoring and control unit (MCU). Thus, connected
vehicles may communicate their position, speed and other rel-
evant information, i.e., they can act as mobile sensors. This
will potentially allow for a sensible reduction (and, potentially,
elimination) of the necessary number of spot sensors, which
would lead to sensible reduction of the purchase, installation,
and maintenance cost for traffic monitoring. This paper con-
cerns the development of reliable and robust traffic state esti-
mation methods and tools, which exploit information provided
by connected vehicles and reduces the need for spot sensor
measurements under all penetration rates of connected vehicles,
i.e., for a mixed traffic flow that includes both conventional and
connected vehicles.

Specifically, we address the problem of estimating the (total)
density and flow of vehicles in highway segments of arbitrary
length (typically 500 m) in presence of connected vehicles. The
developments rely on the following realistic assumptions:

• The density and flow of connected vehicles may be readily
obtained at the local or central MCU on the basis of their
regularly reported positions.



• The average speed of conventional vehicles is roughly
equal to the average speed of connected vehicles. This
assumption relies on the fact that, even at very low den-
sities, there is no reason for connected vehicles to feature
a systematically different mean speed than conventional
vehicles; while at higher densities, the assumption is fur-
ther reinforced due to increasing difficulty of overtaking.

As a consequence of these assumptions, complete traffic state
estimation (of the total density and flow in arbitrarily selected
highway segments) may be achieved by merely estimating the
percentage of connected vehicles with respect to the total num-
ber of vehicles. For the latter, a minimum amount of conven-
tional measurements of traffic volumes, e.g., at all highway
entries and exits, is also required. Thus, the problem of traffic
estimation is recast in the problem of estimating the percentage
of connected vehicles at the selected highway segments.

In more technical terms, we derive a linear parameter-varying
model, which describes the dynamics of the percentage (Sec-
tion 2), utilizing merely the (time-discrete) conservation law
equations for the density of connected vehicles and for the total
density of vehicles (no traffic modelling of speed, such as the
fundamental diagram, is required). We show that the system is
observable (Section 3.1) and employ a Kalman filter (Section
3.2) for the estimation of the percentage of connected vehicles.
We demonstrate our estimation design with a numerical exam-
ple employing a second-order macroscopic traffic flow model as
ground truth for the traffic state dynamics (Section 4.1). We also
present a case study in which the proposed estimation scheme
is tested using NGSIM microscopic data (Section 4.2).

2. MODEL DERIVATION FOR THE PERCENTAGE OF
CONNECTED VEHICLES

We consider the following discrete-time equations that describe
the dynamics of the total density ρ of the vehicles on a highway
and the density ρa of the connected vehicles (see, for example,
Papageorgiou & Messmer (1990); see the upper part of Fig. 1)

ρi(k+1) = ρi(k)+
T
∆i

(qi−1(k)−qi(k)+ ri(k)− si(k)) (1)

ρ
a
i (k+1) = ρ

a
i (k)+

T
∆i

(
qa

i−1(k)−qa
i (k)+ ra

i (k)− sa
i (k)

)
,(2)

where i = 1, . . . ,N is the index of the specific segment at the
highway, N being the number of discrete cells on the highway;
for all traffic variables, we denote by index sub-i its value at
the segment i of the highway; qi and qa

i are the total flow and
the flow of the connected vehicles, respectively, at segment i;
T is the time-discretization step, ∆i is the length of the discrete
segments of the highway, and k = 0,1, . . . is the discrete time
index. The variables ri and si denote the inflow and outflow of
vehicles at on-ramps and off-ramps, respectively, at segment i,
whereas ra

i and sa
i are the corresponding inflow and outflow of

connected vehicles. Define the inverse of the percentage of the
connected vehicles at segment i of the highway as p̄i, i.e.,

p̄i =
ρi

ρa
i
. (3)

Assuming that the average speed of conventional vehicles at a
segment i equals the average speed of connected vehicles in the
same segment, namely vi, we conclude that the following holds

p̄i =
ρi

ρa
i
=

qi

qa
i
, (4)

where we used the known relations

qi = ρivi (5)

qa
i = ρ

a
i vi. (6)

Using (1), (2), and (4) we get from (3) that
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i = 1, . . . ,N. Defining the state

x = (p̄1, . . . , p̄N)
T , (9)

we re-write (7) as

x(k+1) = A(qa(k),ρa(k),ra(k),sa(k))x(k)

+B(qa(k),ρa(k),ra(k),sa(k))u(k) (10)

y(k) =Cx(k), (11)

where
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 (13)

uT = [ q0(k) r1(k)− s1(k) . . . rN(k)− sN(k) ] (14)

C = [ 0 . . . 0 1 ], (15)
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T , ga
i , i = 1, . . . ,N, are defined in (8), A ∈ RN×N ,

B ∈ RN×(N+1), and q0 denotes the total flow of vehicles at the
entry of the highway and acts as an input to system (10), along
with ri and si; while ra

i , sa
i , ρa

i , and qa
i are viewed as time-varying

parameters of system (10). Finally, the variable p̄N is viewed as
the output of the system and may be obtained, using total flow
measurements qN at the highway exit, via

p̄N =
qN

qa
N
. (16)

Before studying the observability of system (10)–(15), we
summarize the assumptions that guarantee that the matrix A is
known, and that the input u and output y are measured.

• The average speed of the connected vehicles at a segment
of the highway equals the average speed of all vehicles at
the same segment, i.e., va

i = vi.



• The segment flows and densities of connected vehicles,
qa

i , i = 0, . . . ,N, and ρa
i , i = 1, . . . ,N, respectively, as well

as the flows of connected vehicles at on-ramps and off-
ramps, ra

i and sa
i , i = 1, . . . ,N, respectively, may be ob-

tained from regularly received messages by the connected
vehicles.
• The total flow of vehicles at the entry and exit of the

highway, q0 and qN , respectively, are measured via con-
ventional detectors.
• The total flow of vehicles at on-ramps and off-ramps,

ri and si, i = 1, . . . ,N, respectively, are measured via
conventional detectors.

The above formulation may be modified to include additional
mainstream total flow measurements (using conventional de-
tectors) to replace a corresponding number of total flows at on-
ramps or off-ramps, without affecting the observability of the
system, see Bekiaris-Liberis et al. (2015).

3. PERCENTAGE ESTIMATION USING A KALMAN
FILTER

3.1 Observability of the System

System (10) is viewed as a linear time-varying system. As it is
stated in Section 2, it is assumed that q0, p̄N , qa

i , ρa
i , ra

i , sa
i , ri,

and si, for all i, are available, which implies that the matrices
A, B and the input u in (10) may be calculated in real time. We
show next that system (10)–(15) is observable at k = k0+N−1,
for any initial time k0≥ 0. We construct the observability matrix

O(k0,k0 +N) =


C

CA(k0)
CA(k0 +1)A(k0)

...
CA(k0 +N−2) · · ·A(k0)

 . (17)

Since O is square, the system is observable at k = k0 + N −
1 if det(O) 6= 0. Since from (12) it is evident that A is a
lower triangular matrix, it follows from (15) that O is an anti-
lower triangular matrix, namely, a matrix with zero elements
above the anti-diagonal. Therefore, relation det(O) 6= 0 holds
if the anti-diagonal elements of O are non-zero. The anti-
diagonal elements of O are given by 1,aNN−1(k0),aNN−1(k0 +
1)aN−1N−2(k0), . . . ,aNN−1(k0+N−2) · · ·a21(k0). Since qa

i , ρa
i ,

i = 1, . . . ,N, are positive, as well as lower 1 and upper bounded,
it follows from (12) that ai j(k), for all k = k0, . . . ,k0 +N − 2
and any k0 ≥ 0, and for all i, j such that i− j = 1 and i≥ 2, are
lower and upper bounded (and positive). Therefore, the matrix
O is invertible, and hence, system (10)–(15) is completely ob-
servable. Note that the measurement of p̄N (or, equivalently, of
qN), rather than any other intermediate percentage, is necessary
for system (10)–(15) to be observable. To see this note that

if C =

{
ci j = 1, if i = 1 and j = J
ci j = 0, otherwise

}
with J < N, then the

J + 1, . . . ,N columns of O(k0,k0 + N̄) are zero for all k0 ≥ 0
and N̄ ≥N. Thus, the system cannot be observable. In other
words, a fixed flow sensor should necessarily be placed at the
last segment of the highway in order to guarantee percentage
observability based on model (10)–(15).
1 This is true if at each time instant at least one connected vehicle is present
within each segment and, during an interval (k,k+1], for each segment there is
at least one connected vehicle moving into the next one.
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Fig. 1. The traffic system under consideration and the Kalman
filter implemented at the MCU. The data used to operate
the Kalman filter are either coming from connected vehi-
cles (solid lines) or fixed sensors (dashed lines). The vari-
able mw

i denotes the measurement of quantity w at segment
i, which might be different than the actual quantity w, due
to, for example, the presence of measurement noise.

3.2 Kalman Filter

We implement a Kalman filter for the estimation of the percent-
age of connected vehicles on a highway (see Fig. 1). Defining
x̂ =

(
ˆ̄p1, . . . , ˆ̄pN

)T , the equations for the Kalman filter are given
by (see, for example, Anderson & Moore (1979))

x̂(k+1)=A(k) x̂(k)+B(k)u(k)

+A(k)K(k)(z(k)−Cx̂(k)) (18)

K(k)=P(k)CT (CP(k)CT +R
)−1

(19)

P(k+1)=A(k)(I−K(k)C)P(k)A(k)T +Q, (20)

where z is a noisy version of the measurement y, R > 0 and
Q = QT > 0 are tuning parameters. The initial conditions of the
estimator (18)–(20) are given by

x̂(k0) = µ (21)

P(k0) = H, (22)

H = HT > 0. Exponential stability of (18)–(22), (12)–(15) fol-
lows using similar arguments to Bekiaris-Liberis et al. (2015).

The Kalman filter (18)–(22) delivers estimates of the inverse
percentages ˆ̄pi; using (4) and the available data for qa

i , ρa
i , we

can obtain estimates for all segment (total) flows and densities
q̂i, ρ̂i as indicated at the output of the Kalman filter in Fig. 1.

4. PERFORMANCE EVALUATION

4.1 Performance Evaluation Using METANET Model

For preliminary assessment of the developed estimation scheme,
we test in this section the performance of the Kalman filter
employing the second-order METANET model Papageorgiou
& Messmer (1990) (i.e., a model in which the average speed of
the vehicles at the highway has its own dynamics) as ground
truth. We employ equations (1) and (2) for the total density of
the vehicles and the density of connected vehicles, respectively,



Table 1. Parameters of model (1), (2), (5), (6), (23).

T 1
360 (h) δ 1.4 ∆i 0.5 (km) N 20

vf 120
( km

h

)
τ

1
180 (h) ρcr 33.5

( veh
km

)
ν 35

(
km2

h

)
α 1.4324 κ 13

( veh
km

)
Table 2. The measurement noise γw

i and the pro-
cess noise ξ w

i , i = 0, . . . ,N affecting the w variable
at segment i. The variable w can represent a flow
(i.e., w = q, w = r, or w = s) or speed (i.e., w = v).

γ
q
i γr

i γs
i ξ

qa

i ξ v
i ξ

q
i

SD 25 veh
h 10 veh

h 5 veh
h 15 veh

h 5 km
h 25 veh

h

Table 3. Parameters of the Kalman filter (18)–(22)
and (12)–(15).

Q R µ H
IN×N 100 (10, . . . ,10)T IN×N

together with relations (5) and (6) for the total flow and the
flow of connected vehicles, respectively. The equation for the
average speed at segment i is given by

vi(k+1) = vi(k)+
T
τ
(V (ρi(k))− vi(k))+

T
∆i

vi(k)

×(vi−1(k)− vi(k))−
νT
τ∆i

ρi+1(k)−ρi(k)
ρi(k)+κ

−δT
∆i

ri(k)vi(k)
ρi(k)+κ

, i = 1, . . . ,N, (23)

with v0 = v1, ρN = ρN+1, where the nominal average speed is

V (ρ) = vfe
− 1

α

(
ρ

ρcr

)α

, and τ , ν , κ , δ , vf, ρcr, and α are positive
model parameters. In particular, vf denotes the free speed, ρcr
the critical density, and α the exponent of the stationary speed
equation. The model parameters, which are taken from Wang &
Papageorgiou (2005), are shown in Table 1.

Although the measurements qa
i , ρa

i , ra
i , sa

i , for all i, stemming
from connected vehicle data, which are utilized by the estimator
(18)–(20), (12)–(15), is likely to be associated with error or
noise, we assume, for this preliminary assessment, that they
are accurate. In contrast, the measurements of the total flow of
the vehicles at the entry and exit of the highway are subject to
additive noise γ

q
0 ∼ N(0,D2

q) and γ
q
N ∼ N(0,D2

q), respectively.
Furthermore, the measurements of the total flow at the on-
ramps and off-ramps might be subject to additive measurement
noise say γr

i ∼ N(0,D2
r ) and γs

i ∼ N(0,D2
s ), respectively. In

addition, there is additive process noise ξ v
i ∼ N(0,D2

v), ξ
q
i ∼

N(0,D2
q), and ξ

qa

i ∼ N(0,D2
qa), i = 0, . . . ,N, affecting the speed

and flow equations, namely, (23), and (5), (6), respectively. The
noise statistics are summarized in Table 2.

The parameters of the Kalman filter (18)–(22), (12)–(15) are
shown in Table 3. In Fig. 2 we show the employed scenario of
input flow of connected vehicles and total input flow at the entry
of the highway for our simulation investigation. We assume that
there are three on-ramps at segments 2,6,10. The total flow and
the flow of connected vehicles at the on-ramps are ri = ra

i =

150 veh
h , i = 2,6,10. Four off-ramps are supposedly present on

the highway under study, specifically at segments 4,8,12. It is
assumed that si = 0.1qi−1 and sa

i = 0.1qa
i−1, i = 4,8,12.
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Fig. 2. The total flow of vehicles q0 and the flow of connected
vehicles qa

0 at the entry of the highway.
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Fig. 3. The average speed v2 of segment 2 as it is produced by
the METANET model (1), (5), (23) with parameters as in
Table 1 and process noise as in Table 2.

The average speed at segment 2 (where the first on-ramp is
located) is shown in Fig. 3. It is evident from Fig. 3 that a
congestion is created between the first and second hour of our
test, whereas, free-flow conditions are reported for the first and
last hour. Congestion starts approximately at the location of the
second on-ramp, i.e., at the sixth segment of the highway, and
propagates backwards all the way to the input of the highway.

In both traffic conditions, our estimator successfully estimates
the percentage of connected vehicles on the highway, as it is
evident from Fig. 4, which displays the actual percentage and
its estimate at segment 8. Note the very fast convergence of
the produced percentage estimates, starting from remote initial
values. Fig. 5 displays the resulting estimation of the total
density of vehicles at segment 2 using relation (4).

4.2 Performance Evaluation Using NGSIM Data

We present here another test using real microscopic traffic
data collected within the Next Generation SIMulation program
US DoT (2005). Since these data incorporate non-negligible
errors in the position of individual vehicles (see, e.g., Punzo
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by the Kalman filter with parameters given in Table 3.
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Fig. 5. Total density ρ2 of segment 2 (black line) and its
estimate (blue line) ρ̂2 = ρa

2
ˆ̄p2 produced by the Kalman

filter (18)–(22), (12)–(15) with parameters as in Table 3.

et al. (2011)), correction methodologies are proposed in the
literature to improve their reliability; in this work we utilize
the data processed by Montanino & Punzo (2013a), Montanino
& Punzo (2013b), which include the trajectories of all vehicles
travelling along a stretch in the northbound direction of I-80 in
Emeryville, California, recorded from 4:00 PM to 4:15 PM on
April 13, 2005. The considered stretch (sketched in Fig. 6) is
400 m long and an on-ramp is entering the mainstream, where
the merge nose is located 175 m after the network origin. The
particular, high-occupancy vehicle (HOV) lane 1 is excluded.

A massive congestion is present within the stretch, where
congestion waves are coming from downstream and crossing
the entire stretch. In order to perform macroscopic evaluations,
the stretch is divided into N = 8 homogeneous segments of 50 m
in length (see Fig. 6); the on-ramp is placed within segment 4;
while a discrete time step T = 5s is used.

The NGSIM data are processed defining a mixed traffic sce-
nario, where the 20% (on average) of vehicles are assumed to
be connected. Vehicles entering the network stretch are ran-
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C
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400 m

175 m

Lane 1 - HOV
Lane 2
Lane 3
Lane 4
Lane 5
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Lane 7 (on
-ramp)

i = 1        2         3         4         5         6          7           8

Fig. 6. A graphical representation of the stretch of the highway
I-80 in Emeryville, California, related to the NGSIM data.

domly tagged as connected according to a uniform distribution,
therefore the percentage effectively varies in time and space.
All necessary information to perform estimation is extracted
from the available trajectory data. In particular, the density of
connected vehicles ρa

i (k) is computed by counting the number
of connected vehicles that are present within segment i at time
instant kT divided by the segment length (0.05 km); all flow
measurements are computed via virtual spot detectors placed
at the network entrance (providing q0 and qa

0), at the network
exit (providing qN and qa

N), as well as at the boundaries be-
tween each pair of adjacent segments (providing qa

i ); also, the
on-ramp flows r4(k) and ra

4(k), are computed similarly to the
computation of flow by a virtual detector, i.e., by counting
the number of vehicles leaving the on-ramp (Lane 7 in Fig.
6) and entering the mainstream during time interval (k,k+ 1].
The ground truth, used for evaluating the estimation results, is
represented by the total density in each segment ρi(k), which is
computed analogously to density of connected vehicles ρa

i (k).

Due to the low and time-varying penetration rates, at some time
instants some segments may not contain any connected vehicle.
This may cause observability (e.g., if qa

i = 0) or numerical (e.g.,
if ga

i = 0) issues. In order to overcome these potential issues,
we feed the filter with an average of all measurements related
to connected vehicles and the ramp inflow r4(k); in particular,
a moving average using a time window of 60 s is employed.

The parameters used for the Kalman filter are the following:
Q = IN×N ; R = 1; µ = (1, . . . ,1); H = IN×N .

In Fig. 7, the total density ρi(k) is compared with the estimated
density computed as ρ̂i(k) = ˆ̄p(k)ρ̃a

i (k), where ρ̃a
i (k) is the

smoothed density of connected vehicles, obtained according to
the previously described moving average. We can see that the
produced estimates largely capture the dynamic variations of
total densities, in particular reproducing the congestion pattern
caused by back-spilling shockwaves.

5. CONCLUSIONS

A topic of ongoing research is the validation, as well as the
performance comparison, of the presented traffic estimation
methodology and the alternative traffic estimation approach
developed in Bekiaris-Liberis et al. (2015), by use of a detailed
microscopic simulation platform; considering various scenarios
for all involved real-time measurements.
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Fig. 7. The trajectories of real and estimated densities for
the experiments based on NGSIM data, assuming a 20%
penetration rate of connected vehicles.
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