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Abstract— We develop a predictor-based adaptive cruise
control design for compensation of arbitrarily large actuator
and sensor delays in vehicular systems utilizing measurements
of the relative spacing as well as of the speed and acceleration of
each individual vehicular system. Employing an input-output
approach we prove that the predictor-based adaptive cruise
control law guarantees string stability of platoons of vehicular
systems (under a constant time-headway policy) for any delay
value. The effectiveness of the developed control design is
illustrated in simulation.

I. INTRODUCTION

A. Motivation

Actuator and sensor delays are ubiquitous in vehicles
equipped with Adaptive Cruise Control (ACC) systems.
Among other reasons, actuator delays may be due to engine
response, throttle or brake actuators, and computational time,
whereas sensor delays may be due to radar or lidar systems,
wheel speed sensors, and sampling of measurements [4], [6],
[7], [20], [24], [25], [36], [38], [40], [41].

The presence of such delays deteriorates the performance
of ACC algorithms when these algorithms are designed
ignoring the presence of the delay. Among the most severe
consequences for the emerging traffic flow are the decrease in
traffic capacity, the loss of string stability, and even the loss
of individual vehicle stability. As a matter of fact, a decrease
in capacity implies reduced traffic throughput and increased
congestion, whereas the degradation of the stability or string
stability properties imply reduced comfort and safety, and
increased fuel consumption [4], [5], [6], [20], [23], [24], [30],
[36], [38], [39], [40], [41].

B. Literature

Despite the significant need for delay compensation in
ACC-equipped vehicles the vast majority of existing ACC
strategies does not take into account the effect of such delays
[7], [8], [9], [16], [19], [25], [26], [27], [28], [29], [31], [33],
[34], [35], [43]. However, robustness analysis tools of various
ACC strategies to delays are developed [4], [6], [30], [38],
[41], which reveal the need of restricting the delay value in
order to guarantee string or vehicle stability.

Exception are the papers [39], [40], and [36]. In the
first two papers a discrete-time version of a predictor-based
strategy is presented, whereas in the third paper a Model
Predictive Control-based (MPC-based) delay-compensating
strategy is developed. Yet, none of these papers proves string
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stability or stability of each individual vehicular system
(based on the original, continuous-time system). In addition,
no formal connection is made with the classical predictor-
based control design methodology developed in the late
1970s [1], [2], [10], [11], [12], [14], [17], [18], [21], [22],
[42], which is made in the present paper and which offers
an opportunity of exploiting this control design methodology
for ACC design. Finally, none of the mentioned papers is
addressing the problem of the simultaneous compensation
of both actuator and sensor delays.

C. Contributions

In this paper the predictor-based feedback design method-
ology is employed for compensation of arbitrarily long
actuator and sensor delays in vehicular systems modeled or
approximated by a second-order linear system (Section II).
Measurements of the relative spacing as well as the speed of
each individual vehicular system are utilized by each indi-
vidual vehicle’s actuator, which is a delayed version of the
desired acceleration of each individual vehicle. Employing
an input-output approach we prove that the predictor-based
ACC law guarantees string stability of homogenous platoons
of vehicular systems for any delay value (Section III). The
performance of the developed ACC algorithm is verified
in simulation and compared with an existing ACC strategy
(Section IV). Finally, we provide further issues of our current
research and discuss possible future directions (Section V).

D. Notation

For a complex number s we denote by |s| its absolute
value. The Laplace transform of a function f(t), t ≥ 0,
is denoted by F (s) = L (f(t)). The temporal norm Lp,
p ∈ [1,∞], of a signal f(t), t ≥ 0, is defined as

‖f‖p =

{ (∫∞
0
|f(t)|pdt

) 1
p , p ∈ [1,∞)

supt≥0 |f(t)|, p =∞
. (1)

We denote by Lp the space of signals with bounded Lp

norm.

E. Definitions

We adopt the classical definition of stability, see, e.g.,
[15]. Furthermore, we adopt the definition of string stability
from [3], which is an adaptation of the original definition of
string stability for general interconnected nonlinear systems
from [31] to the case of interconnected systems of vehicles
following each other in a single lane. We say that an
interconnected system of vehicles, indexed by i = 1, . . . , N ,
where i = 1 denotes the first vehicle, following each other



. . .. . .

Fig. 1. Platoon of N + 1 vehicles following each other in a single lane
without passing. The dynamics of each vehicle i = 1, . . . , N are governed
by system (8), (9). Each vehicle can measure its own speed and the spacing
with respect to the preceding vehicle. The dynamics of the leading vehicle
satisfy ẍl = al, where xl and al are the position and acceleration of the
leading vehicle, respectively.

in a single lane without passing, is string stable when the
following hold

‖δi‖p ≤ ‖δi−1‖p (2)
‖vri‖p ≤ ‖vri−1‖p, ∀ p ∈ [1,∞] and i = 2, . . . , N(3)
‖ari‖p ≤ ‖ari−1‖p, (4)

where

δi = si − hvi, (5)

with the spacing si = xi−1 − xi − li, i = 1, . . . , N , while
xj being the position of vehicle j and li being its length; vi
denotes the speed of vehicle i, h > 0 is the desired constant
time-headway, and

vri = vi−1 − vi (6)
ari = ai−1 − ai, (7)

where ai denotes the acceleration of vehicle i. Note that we
adopt the convention that v0 = vl and a0 = al, where vl

and al are the speed and acceleration of the string leader,
respectively (see Fig. 1).

II. PREDICTOR-BASED CONTROL OF ACC-EQUIPPED
VEHICLES WITH ACTUATOR DELAY

A. Vehicle Dynamics

We consider a homogenous string of autonomous vehicles
(see Fig. 1) each one modeled by the following second-order
linear system, see, e.g., [6], [9], [24], [30], [36], [41]

ṡi(t) = vi−1(t)− vi(t) (8)
v̇i(t) = Ui (t−D) , (9)

i = 1, . . . , N , where si and vi are defined in Section I-E, Ui
is the individual vehicle’s control variable, D > 0 is actuator
delay, and t ≥ 0 is time. Note that a uniform equilibrium
point of system (8), (9) for all vehicles is obtained when all
vehicles have zero acceleration and their speed is dictated
by the speed of the leader. System (8), (9) may come from
linearization of a nonlinear model around a uniform (for all
vehicles) operating point, and thus, the states si and vi may
represent the error between the actual spacing and speed from
some nominal constant spacing and speed, respectively.

B. Delay-Free Control Design

In the absence of the actuator delay D, the following
constant time-headway control strategy is widely used, either
as it is or as a special case of more general control designs,
see, e.g., [4], [6], [9]:

Ui(t) = α

(
si(t)

h
− vi(t)

)
, (10)

where α and h are positive design parameters that represent
control gain and desired time-headway, respectively. Using
the nominal transfer function

Gnom(s) =
Vi(s)

Vi−1(s)
, i = 1, . . . , N

=
α
h

s2 + αs+ α
h

, (11)

it can be shown that a homogenous platoon of vehicles with
dynamics (8), (9) under the control law (10) with α ≥ 4

h ,
is stable and string stable in the Lp, p ∈ [1,∞], sense, see,
e.g., [3], [6].

Remark 1: Note that for the case of a homogenous pla-
toon it holds that, see, e.g., [3], [19]

Gnom(s) =
∆i(s)

∆i−1(s)
, i = 2, . . . , N, (12)

Gnom(s) =
Ai(s)

Ai−1(s)
, i = 1, . . . , N. (13)

Moreover, it holds that, see, e.g., [3]

Gnom(s) =
Vri(s)

Vri−1(s)
(14)

Gnom(s) =
Ari(s)

Ari−1(s)
. (15)

Thus, stability and string stability may be studied via the
transfer function Vi(s)

Vi−1(s) .

C. Predictor-Based Control Design

The predictor-based control laws for system (8), (9) are
given by

Ui(t) = K

(
eΓDXi(t) +

∫ t

t−D
eΓ(t−θ)BUi(θ)dθ

)
, (16)

where

Γ =

[
0 −1
0 0

]
(17)

K =
[
α
h −α

]
(18)

Xi =

[
si
vi

]
(19)

B =

[
0
1

]
. (20)

One should notice that the control law (16) is suitable for
autonomous operation since it employs only measurements
of the current spacing si and speed vi, as well as of the
past D-second history of the control variable Ui, which are
available to vehicle i using on-board sensors, see, e.g., [7],



[8], [19], [24], [25], [32], [36], [38], [40], [43]. Note also that
in the absence of the delay, i.e., when D = 0, the control law
(16) reduces to the nominal, delay-free control design (10).
The control law (16) was developed in [1], [21]; not only
its stability and robustness properties are extensively studied
in the literature [2], [10], [14], [18], but, in addition, several
implementation methodologies were developed [22], [14].

We analyze next, adopting a transfer function approach,
the stability and string stability properties of a homogenous
platoon of vehicles modeled by system (8), (9) under the
ACC law (16).

III. STABILITY AND STRING STABILITY ANALYSIS
UNDER PREDICTOR-BASED FEEDBACK FOR

HOMOGENOUS PLATOONS

Theorem 1: Consider a homogenous platoon of vehicles
with dynamics modeled by system (8), (9) under the control
laws (16). Then, each individual vehicular system is stable.
If, in addition, α ≥ 4

h , then the platoon is string stable in
the Lp, p ∈ [1,∞], sense, for any D ≥ 0.

Proof: We start by deriving the transfer function

G(s) =
Vi(s)

Vi−1(s)
, i = 1, . . . , N, (21)

viewing the preceding vehicle’s speed as input and the
current vehicle’s speed as output, see, e.g., [3], [6], [19]. In
view of Remark 1, for studying stability and string stability
under the predictor-based control law, it is sufficient to study
the properties of G.

Taking the Laplace transform of (16) we get

Ui(s) = KeΓDXi(s) +M(s)Ui(s) (22)
M(s) = K (sI2×2 − Γ)

−1 (
I2×2 − eΓDe−sD

)
B,(23)

where we used the fact that
L
(
K
∫ t
t−D e

Γ(t−θ)BUi(θ)dθ
)

=

L
(
K
∫D

0
eΓ(D−y)BUi(t+ y −D)dy

)
=

K (sI2×2 − Γ)
−1 (

I2×2 − e(Γ−sI2×2)D
)
BUi(s). Using

the i-th vehicle’s model (8), (9) we have

Xi(s) = (sI2×2 − Γ)
−1 (

Be−sDUi(s) +BvVi−1(s)
)
, (24)

where Bv =

[
1
0

]
. Substituting (24) into (22) we get that

Ui(s) =
K (sI2×2 − Γ)

−1
eΓDBv

1−K (sI2×2 − Γ)
−1
B
Vi−1(s), (25)

and thus, from (24) we arrive at

Xi(s) = R(s)Vi−1(s), (26)

where

R(s) =
(sI2×2 − Γ)

−1

1−K (sI2×2 − Γ)
−1
B

(
Bv +Be−sD

×K (sI2×2 − Γ)
−1
eΓDBv −K (sI2×2 − Γ)

−1

×BBv) . (27)

Note that it is clear from (27) that the spectrum of the
closed-loop system is finite [10], [21]. Using the facts that

eΓD =

[
1 −D
0 1

]
and (sI2×2 − Γ)

−1
= 1

s2

[
s −1
0 s

]
,

and multiplying (26) from the left with
[

0 1
]

we obtain

G(s) =
α
h e
−Ds

s2 + αs+ α
h

. (28)

Stability: From the denominator of G in (28) it follows
that for any positive α, h the transfer function G is asymp-
totically stable (see also [2], [14], [18] for detailed studies
on the stability properties of predictor-based feedbacks).

String stability in the L2 sense: String stability in the
L2 sense is guaranteed when supω∈R |G(jω)| ≤ 1, see, e.g.,
[3]. Using (28) we obtain the condition

α2

h2(
α
h − ω2

)2
+ α2ω2

≤ 1, for all ω ∈ R, (29)

which is satisfied when the following holds

ω4 + ω2α

(
α− 2

h

)
≥ 0, for all ω ∈ R. (30)

Relation (30) holds when α ≥ 2
h .

String stability in the Lp, p ∈ [1,∞], sense: The
impulse response of the transfer function G defined in (28)
is given by

g(t) =

{
0, 0 ≤ t ≤ D
f(t−D), t ≥ D , (31)

where f is the impulse response of the delay-free system
under the nominal control design, i.e.,

f(t) = L−1

( α
h

s2 + αs+ α
h

)
.

Choosing α > 4
h the characteristic polynomial s2 + αs+ α

h
has two distinct real roots, say, p1 and p2, and hence,

g(t)=

{
0, 0 ≤ t ≤ D

α
h(p1−p2)

(
ep1(t−D) − ep2(t−D)

)
,t ≥ D (32)

≥0, for all t ≥ 0. (33)

Since |G(0)| = 1, we get from (33) that the system is string
stable in the Lp, p ∈ [1,∞], sense, see, e.g., [3]. For α = 4

h
the impulse response (32) becomes

g(t) =

{
0, 0 ≤ t ≤ D
α
h (t−D) e−

2
h (t−D), t ≥ D (34)

≥ 0, for all t ≥ 0. (35)

Employing the same arguments with the case α > 4
h , one

can conclude that the system is string stable for α = 4
h .

Remark 2: One best appreciates the stability and string
stability results of Theorem 1 by considering the fact that no
restriction on the magnitude of the delay is imposed (which
is inherit to the nature of such predictor-based control laws
since the delay is completely compensated, see, e.g., [2],
[18]), in contrast to the case of the uncompensated control
law, which requires h ≥ 2D for a choice of α and h to exist



such that the system is both stable and string stable, see,
e.g., [6], [41]. In fact, the condition h ≥ 2D is necessary
also in the case where one employs an extra term of the
form b (vi−1 − vi) in the nominal feedback law (10), see,
e.g., [6], [41].

Moreover, in the case of the uncompensated control law
the resulting transfer function is given by

G(s) =
e−Ds αh

s2 + αse−Ds + α
h e
−Ds . (36)

Although the analytical study of string stability based on (36)
is performed, for instance, in [6], [41], it is very difficult to
analytically study Lp, p ∈ [1,∞], string stability using (36).
In contrast, due to the fact that the denominator in (28) is a
second-order polynomial in s, Lp, p ∈ [1,∞], string stability
can be established much more easily.

Remark 3: Note that in the case of sensor delay, i.e., when
a measurement of Xi (t−D) is available, and there is no
actuator delay, one could employ the following control law,
see, e.g., [18], [37]

Ui(t) = K

(
eΓDXi (t−D)

+

∫ t

t−D
eΓ(t−θ)BUi(θ)dθ

)
. (37)

Repeating the computations in the proof of Theorem 1 it can
be shown that the resulting transfer function G(s) = Vi(s)

Vi−1(s)
is identical to (28), and thus, the same stability (see also [18],
[37]) and string stability results hold in this case as well. In
the case where there are both input and sensor delays, say,
D and Ds, respectively, the control law can be modified to,
see, e.g., [18]:

Ui(t) = K
(
eΓ(D+Ds)Xi (t−Ds)

+

∫ t

t−D−Ds

eΓ(t−θ)BUi(θ)dθ

)
. (38)

The resulting transfer function G(s)= Vi(s)
Vi−1(s) is given by

G(s) =
e−(D+Ds)s α

h

s2 + αs+ α
h

. (39)

Stability (see also [18], [37]) and string stability follow by
Theorem 1.

Remark 4: Note that the steady-state spacing error of the
first vehicle in the string, which follows the leader, under the
delay-compensating control law (16) is not zero. One can see
this by deriving the transfer function ∆1(s)

Xl(s)
, which satisfies

∆1(s)

Xl(s)
= 1− (1 + sh)G(s)

=
s2 + αs

(
1− e−sD

)
+ α

h

(
1− e−sD

)
s2 + αs+ α

h

,(40)

and is different than (28). Since each vehicular system is
stable, for a constant steady-state speed of the leader, say

equal to vss, which implies that Xl(s) = vss
s2 , the steady-

state spacing error is given by the final value theorem as

δ1ss = lim
s→0

s (1− (1 + sh)G(s))
vss

s2

= vss lim
s→0

s2 + αs
(
1− e−sD

)
+ α

h

(
1− e−sD

)
s
(
s2 + αs+ α

h

)
= Dvss 6= 0, (41)

where we used the fact that
lims→0

s2+αs(1−e−sD)+α
h (1−e−sD)

s = Dα
h

1. This is in
accordance to the result in [13] in which the disturbance
attenuation limitations of systems with input delays, under
any time-invariant feedback controller, are provided.

IV. SIMULATION

We present a simulation study considering a homogenous
platoon of 4 vehicles with dynamics given by (8), (9)
following a leader with dynamics defined as ẋl(t) = vl(t),
v̇l(t) = al(t), where xl and vl are the position and speed
of the leading vehicle, respectively, and al is the leader’s
acceleration, which is regarded as a reference input chosen
as the step input signal shown in Fig. 2. We choose the
desired time headway as h = 2

π s and the delay as D = 0.4
s. We compare the response of the string of the 4 vehicles
to a step acceleration signal al to the cases where the delay-
uncompensated strategy (Fig. 3)

Ui(t) =
α

h
si(t)− αvi(t) + b (vi−1(t)− vi(t)) , (42)

with α = 1, b = 0.8, see, e.g., [6], and the delay-
compensating strategy (16) with α = 2π (Fig. 4) are
employed. Note that there exists no choice of (α, b) in the
uncompensated strategy (42) that guarantees both stability
and string stability for these values of D and h as it is
shown in [41]. However, with the choice α = 1, b = 0.8,
each individual vehicular system is stable [41]. In contrast,
the delay-compensating strategy achieves both stability and
Lp, p ∈ [1,∞], string stability since the condition α ≥ 4

h
is satisfied. Note that, as explained in Remark 4, the delay-
compensating strategy does not guarantee that the steady-
state spacing error is zero as shown in Fig. 4.

V. CONCLUSIONS AND DISCUSSION

Due to the steady-state spacing error of the predictor-
based ACC strategy developed in this paper, we are currently
developing a version of the control design presented here that
incorporates an integral action for elimination of the steady-
state spacing error.
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1Another way to see that the final value theorem can be applied is by
noting that Dα

h
< ∞, which implies that s = 0 is not a pole of the function

s∆1(s), and thus, all poles of s∆1(s) are on the left-hand complex plane.
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