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Abstract— We propose an optimal feedback control strategy
for lane-changing control at bottleneck locations, assuming that
a percentage of vehicles, equipped with vehicle automation
and communication systems, are capable of receiving and
executing specific lane-changing orders or recommendations.
Based on a simplified multi-lane motorway traffic flow model,
we formulate an optimal feedback control problem, cast as a
linear quadratic regulator problem, aiming at maximising the
throughput at bottleneck locations, via optimal lane assignment
of vehicles upstream of the bottleneck. The feedback control
decisions are based on appropriate choice of set-points for
traffic densities and real-time measurements of the state of the
system. We also present an extremum seeking algorithm to seek
the optimal set-points using only the measurement of a cost that
is representative of the achieved traffic conditions. The proposed
strategy is tested on a nonlinear first-order macroscopic multi-
lane traffic flow model, which accounts also for the capacity
drop phenomenon.

I. INTRODUCTION

In the near future, Vehicle Automation and Communi-
cation Systems (VACS) are expected to revolutionise the
features and capabilities of individual vehicles. Among the
wide range of introduced VACS, some may be exploited
to interfere with the driving behaviour via recommending,
supporting, or even executing appropriately designed traffic
control tasks, providing unprecedented opportunities to im-
prove traffic control performance [1]. On the other hand, the
uncertainty in the future development of VACS calls for the
design of control strategies that are robust with respect to
the different types of these new systems, as well as to their
penetration rate.

A promising feature that can be exploited for traffic
management is lane-changing control. In fact, particularly at
bottleneck locations (e.g., lane-drops, on-ramp merges), hu-
man drivers usually perform suboptimal lane-changes based
on erroneous perceptions, which may trigger congestion,
and, thus, deteriorate the overall travel time [2], [3]. In
case a sufficient percentage of vehicles are equipped with
VACS having vehicle-to-infrastructure (V2I) capabilities and
appropriate lane-changing automatic controllers or advisory
systems, the overall throughput at the bottleneck location
may be improved by execution of specific lane-changing
commands dictated by a central decision maker.
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The problem of assigning traffic flow among lanes for
motorways under fully automated or semi-automated driving
has been tackled in numerous works during the last decades.
In the seminal work [4], a hierarchical framework for a fully
automated motorway is defined, where the decisions on the
lane-changing behaviour of vehicles are addressed within the
link layer, which consists of a set of parallel decentralised
link controllers, each of them addressing a corresponding
motorway link (of about 2 km in length). Following this
framework, several strategies have been proposed to solve the
problem of lane assignment within the link layer, designing
control methodologies suitable for real-time applications,
including [5], [6], [7], [8], [9], [10].

Recently, a combined lane-changing and variable speed
limits control strategy was developed [3], with the purpose
of avoiding lane changes in the immediate proximity of a bot-
tleneck, which, especially in the case of heavy vehicles, may
lead to premature triggering of congestion. In particular, lane-
changing commands delivered as recommendation to the
drivers, are defined according to a set of case-specific rules.
Furthermore, in [11], a multi-agent decentralised framework
is proposed, with the aim of performing cooperative lane-
changing tasks based on information exchange between
vehicles and a road side unit located at a bottleneck.

In this paper we propose an optimal feedback control
strategy, formulated as a linear quadratic regulator, where
the solution is applied in the form of a linear state-feedback
control law, which is highly efficient in real-time, even
for large-scale networks. We show that, with appropriate
modelling treatments, our control strategy can be applied
to any network configuration. The control strategy aims
at regulating the lane assignment of vehicles upstream of
a bottleneck location so as to maximise the bottleneck
throughput. Since the methodology requires the knowledge
of the optimal set-points, namely, the critical densities at
bottleneck locations, which may not be available a priori,
we also employ a non-model-based real-time optimisation
technique, namely, extremum seeking [12], to identify them,
with the aim of minimising a performance index, namely the
total travel time over a finite time horizon.

The remaining paper is structured as follows. Section II
describes the design of the proposed control framework
for multi-lane motorways; Section III presents simulation
experiments, based on a first-order macroscopic traffic flow
model featuring the capacity drop phenomenon, in order
to evaluate the effectiveness of the methodology; while the
paper concludes with Section IV, where the main results are
highlighted and further research challenges are proposed.



II. LANE-CHANGING-BASED OPTIMAL
CONTROL OF MULTI-LANE MOTORWAYS AT

BOTTLENECKS

A. Linear multi-lane traffic flow model

We consider a multi-lane motorway that is subdivided into
i = 0, . . . , N segments of length Li, while each segment is
composed of j = mi, . . . ,Mi lanes, where mi and Mi are
the minimum and maximum indexes of lanes for segment i.
We denote each element of the resulting grid (see Fig. 1) as
“cell”, which is indexed by (i, j). The model is formulated in
discrete time, considering the discrete time step T , indexed
by k = 0, 1, . . ., where the time is t = kT . In order
to account for any possible network topology, including
lane-drops and lane-additions, both on the right and on
the left sides of the motorway, we assume that j = 0
corresponds to the segment(s) including the most right lane;
consequently, mi and Mi are defined as the minimum and
maximum indexes j, respectively, for which a lane exists
within segment i. For example, looking at the hypothetical
motorway stretch depicted in Fig. 1, m0 = 0 and M0 = 4,
while m3 = 1 and M3 = 3. According to this definition,
the total number of cells from the origin to segment i is
Hi =

∑i
r=0 (Mr −mr + 1), and the total number of cells

for the whole stretch is H̄ = HN .
Each motorway cell (i, j) is characterised by the traffic

density ρi,j(k), defined as the number of vehicles present
within the cell at time instant k divided by Li. Density
dynamically evolves according to the following conservation
law equation, see e.g. [13],

ρi,j(k + 1) =ρi,j(k) +
T

Li

[
qi−1,j(k)− qi,j(k)

]
+
T

Li

[
fi,j−1(k)− fi,j(k)

]
+
T

Li
di,j(k), (1)

where qi,j(k) is the longitudinal flow leaving cell (i, j)
and entering cell (i + 1, j) during time interval (k, k + 1];
fi,j(k) is the net lateral flow moving from cell (i, j) to cell
(i, j + 1) during time interval (k, k + 1]; and di,j(k) is the
external flow entering the network in cell (i, j), either from
the mainstream or from an on-ramp, during time interval
(k, k + 1]. Depending on the network topology, some terms
of (1) may not be present. In particular, the inflow qi−1,j(k)
does not exist for the first segment of the network, the
outflow qi,j(k) does not exist for the last segment before
a lane-drop, while lateral flow terms fi,j(k) exist only for
mi ≤ j < Mi. Following previous considerations, the total
number of lateral flow terms is F̄ = H̄ −N .

Similar modelling approaches of multi-lane motorway
traffic are considered also in [13], [14], [15]. One aspect
that is interesting to be pointed out is that the net lateral flow
fi,j(k) is considered only in one direction, i.e., from right to
left lanes, therefore, fi,j(k) is actually the difference between
the flow leaving and entering lane j at its left side. This
simplification is useful for the subsequent control problem
formulation, since lateral flows are treated as control inputs.

Fig. 1. A hypothetical motorway stretch.

Let us consider the well-known relation

qi,j(k) = ρi,j(k) vi,j(k); (2)

replacing (2) into (1) we obtain

ρi,j(k + 1) =
T

Li
vi−1,j(k)ρi−1,j(k) +

[
1− T

Li
vi,j(k)

]
ρi,j(k)

+
T

Li
[fi,j−1(k)− fi,j(k)] +

T

Li
di,j(k), (3)

which, treating speeds vi,j(k) as known parameters, can be
seen as a Linear Parameter Varying (LPV) system in the form

x(k + 1) = A(k)x(k) +Bu(k) + d(k) (4)

where (time index k is omitted to simplify notation)

x = [ρ0,m0 . . . ρ0,M0 ρ1,m1 . . . ρN,MN ]T ∈ RH̄ , (5)

u = [f0,m0 . . . f0,M0 f1,m0(k) . . . fN,MN−1]
T ∈ RF̄ , (6)

d =

[
T

L0
d0,m0 . . .

T

L0
d0,M0

T

L1
d1,m1 . . .

T

LN
dN,MN

]T
∈ RH̄ ;

(7)

while A ∈ RH̄×H̄ represents the connection between pairs
of subsequent cells connected by a longitudinal flow and
B ∈ RH̄×F̄ reflects the connection of adjacent cells con-
nected by lateral flows.

B. Optimal control problem formulation

The linear system described in Section II-A is used for
formulating an optimal control problem with the purpose of
manipulating the lateral flows in order to avoid the creation
of congestion due to the activation of a bottleneck.

Under the assumption that the overall traffic flow entering
the controlled area does not exceed the bottleneck capac-
ity and that the controller succeeds to avoid the creation
of congestion, we can assume that the speed in all cells
remains at a constant value (e.g., the free flow speed)
vi,j(k) ≡ v̄,∀i, j, k, which implies that (4) can be written
as a LTI system

x(k + 1) = Ax(k) +Bu(k) + d. (8)

An effective target for our control strategy is to avoid
exceeding the nominal capacity of the bottleneck, which is
equivalent to maintaining the density at the bottleneck area
below its critical value. We define the following quadratic
cost function, over an infinite time horizon, that accounts
for the penalisation of the difference between some densities
and pre-specified (constant) set-point values, as well as a



penalty term aiming at maintaining small control inputs, i.e.,
small lateral flows (weighted by ϕ):

J =

∞∑
k=0

∑
î

∑
ĵ

αî,ĵ
[
ρî,ĵ(k)− ρ̂î,ĵ

]2
+ ϕ

N∑
i=0

Mi−1∑
j=mi

[fi,j(k)]
2

 ,

(9)
where (̂i, ĵ) denote a targeted cell, ρ̂î,ĵ is the desired set-
point, and αî,ĵ is the corresponding weighting parameter.
We rewrite (9) in matrix form as

J =

∞∑
k=0

{[
Cx(k)− ŷ

]T
Q
[
Cx(k)− ŷ

]
+ uT (k) R u(k)

}
,

(10)
where Q = QT ≥ 0 and R = ϕIF̄ > 0 are weighting
matrices associated to the magnitude of the state tracking
error and control actions, respectively, while C reflects the
cells that are tracked. At first, we may suppose to target only
the cells at the bottleneck locations (i.e., in Fig. 1, ρ3,1, ρ3,2,
ρ3,3).

The problem (10), (8) can be solved through a Linear
Quadratic Regulator (LQR), which provides a stabilising
feedback control law under the assumptions that the original
system is, at least, stabilisable and detectable (see Chapter 2
of [16]).

C. Stabilisability and detectability

To address stabilisability, we can see that the matrix
A is, by construction, lower triangular, implying that its
eigenvalues λ are equal to the elements in the main diagonal.
Since v̄ is always positive, the modes related to segments for
which another downstream segment exists are always stable
(|λ| < 1), while the modes related to segments without
any other segment downstream (i.e., at a lane-drop) are
marginally stable (λ = 1). According to the Hautus-test [17],
the system is stabilisable if, for each unstable (or marginally
stable) mode, relation

rank [(λI −A) B] = H̄ (11)

is satisfied. This implies that, to guarantee that the pair
(A,B) is stabilisable, B must have more linearly indepen-
dent columns than the number of non-stable (λ ≥ 1) modes,
that is, for each lane dropping, there must be at least one
controlled lane-changing, which is trivially satisfied for the
defined network structure.

We turn now our attention to the detectability of the
pair (A,CTQC), which, since Q > 0, is equivalent to the
detectability of the pair (A,C) [18]. We proceed thus with
the Hautus-test [17] for the pair (A,C), that is, if, for each
unstable (or marginally stable) mode, relation

rank

[
(λI −A)

C

]
= H̄ (12)

is satisfied, then the pair (A,C) is detectable. In our case, this
is verified in case C has at least a non-zero element in each
column corresponding to λ = 1, which implies controlling
the density of each cell that does not have any other cell
downstream. This requires the definition of an arbitrary set-
point for the density in this cell, which is, for practical

reasons, undesirable. To account for this issue, we propose to
place an additional dummy cell immediately downstream of
each lane-drop, imposing it, with an appropriate high penalty
weight αî,ĵ , to have a density equal to zero. Note that, in
the described case, the system is also observable.

D. Optimal solution

The solution to the proposed LQR problem is the linear
feedback/feedforward control law

u∗ = −Kx+ uff, (13)

where

K =
(
R+BTPB

)−1
BTPA (14)

P = CTQC +ATPA−ATPB
(
R+BTPB

)−1
BTPA

(15)

uff =
(
R+BTPB

)−1
BTF

(
CTQŷ − Pd

)
(16)

F = (I − (A−BK)T )−1. (17)

The feedback control law (13) is very effective for prac-
tical application since it requires the computation of the
feedback gain matrix K offline. Note that the optimal gain
(14) and the Algebraic Riccati Equation (15) are the same
that can be found in classic Optimal Control books [19].

Note also that, the regulator (13) is a so-called state-
feedback regulator, which requires availability of measure-
ments for all state variables (densities for each cell) in
real time. In the case of incomplete measurements, one
may employ a traffic state estimator to produce the missing
measurements, e.g., in the context of connected vehicles,
[20], [21], [22].

E. Optimal set-point tuning via extremum seeking

The proposed methodology requires the knowledge of the
set-points, namely the critical densities, ŷ for all lanes at
the bottleneck location. This is, in principle, a non-trivial
task that may be done by collecting traffic data (prior to the
control application) and analysing the obtained fundamental
diagrams, in addition to some real-time fine tuning during the
controller application. On the other hand, adaptive algorithms
have been proposed and employed for tuning the design
parameters within urban control strategies [23], [24].

We propose here a methodology based on discrete-time
extremum seeking, which is a nonmodel-based method for
real-time optimisation that can be employed for tuning set-
points to achieve an optimal value of a cost utilising only
real-time measurements of an appropriate cost function.
Extremum seeking has been widely studied and used in
several applications, e.g. [12], [24], [25], [26], [27], [24].
In our case, in order to guarantee that the estimated critical
densities remain within a feasible interval, we incorporate
also an orthogonal projection operator (22) that prohibits the
estimated parameters from leaving the interval

[
ŷmin, ŷmax

]
(see, for more details, [27] and [28]).



Fig. 2. The employed extremum seeking scheme.

The employed control framework for multi-parameter ex-
tremum seeking, illustrated in Fig. 2, is formulated as

χ(n) = −hχ(n− 1) + Ψ(ŷ(n))−Ψ(ŷ(n− 1)) (18)

ξ`(n) = χ`(n) sin(ω`n+ β`) (19)

ȳ`(n+ 1) = ȳ`(n)− Proj
{
γ ξ`(n); ŷmin, ŷmax} (20)

ŷ`(n) = ȳ`(n) + α cos(ω(n+ 1) + β) (21)

where

Proj
{
φ; ŷmin, ŷmax}=


ȳ`−φ−ŷmin

δ φ, if ȳ` ≤ ŷmin+ φ+ δ
ŷmax−ȳ`+φ

δ φ, if ȳ` ≥ ŷmax+ φ− δ
φ, otherwise.

(22)
The cost function Ψ is evaluated while employing different
set-points in the control strategy; ` = 0, . . . is the parameter
index; n is the iteration index of the extremum seeking
algorithm; ŷmin and ŷmax are physically meaningful bounds
for parameters ŷ; while h, ω`, β`, δ, γ, and α are parameters
of the extremum seeking algorithm.

Since the cost function must reflect the performance of
the traffic system for given set-points ŷ, we choose the Total
Travel Time (TTT) [29] over a finite time horizon K, defined
as

TTT = T

K∑
k=0

N∑
i=0

Li

Mi−1∑
j=mi

ρi,j(k). (23)

III. SIMULATION EXPERIMENTS

A. Nonlinear multi-lane traffic flow model

In order to test and evaluate the performance of the
proposed control strategy, we present simulation experiments
using a first-order traffic flow model based on [13]. The
model is used for reproducing the traffic behaviour for a
multi-lane motorway and it features: (i) non-linear functions
for the lateral flows of manually driven vehicles; (ii) a CTM-
like [30] formulation for the longitudinal flows; and (iii)
a non-linear formulation to account for the capacity drop
phenomenon. We provide here a brief explanation of the
employed model for self-completeness.

We consider the conservation law equation (1), where all
variables are defined as in Section II-A.

Lateral flows due to manual lane-changing are considered
among adjacent lanes of the same segment, and correspond-
ing rules are defined in order to properly assign and bound

their values. Lateral flows are computed as

fi,j(k) = li,j,j+1(k)− li,j+1,j(k), (24)

where

li,j̄,j(k) = min

{
1,

Si,j(k)

Di,j−1,j(k) +Di,j+1,j(k)

}
Di,j̄,j(k)

(25)

Si,j(k) =
Li
T

[
ρjam
i,j − ρi,j(k)

]
(26)

Di,j(k) =
Li
T
ρi,j(k)Ai,j,j̄(k) (27)

Ai,j,j̄(k) = µ max

{
0,
Gi,j,j̄(k)ρi,j(k)− ρi,j̄(k)
Gi,j,j̄(k)ρi,j(k) + ρi,j̄(k)

}
, (28)

and j̄ = j ± 1. S denotes the available space, in terms of
flow acceptance, while D denotes the lateral demand flow,
which is computed via definition of the attractiveness rate A.

Longitudinal flows are the flows going from a segment to
the next downstream one, while remaining in the same lane.
We employ the Godunov-discretised first-order model pro-
posed in [13], employing however a non-linear exponential
demand function for under-critical densities, as proposed in
[31], to obtain a more realistic behaviour at low densities.
The model accounts also for the capacity drop phenomenon
via a linearly decreasing demand function for over-critical
densities. Also, a linear reduction of the maximum flow as
a function of the entering lane-changing flows is included,
to account for the nuisance caused by lane changing ma-
noeuvres. More details and calibration results related to this
model are presented in [13].

The overall formulation for longitudinal flow is

qi,j(k) = min
{
QDi,j(k), QSi+1,j(k)− di,j(k)

}
, (29)

where

QDi,j(k)=


vmax
i,j exp

[
− 1
α

(
ρi,j(k)

ρcr
i,j

)α]
ρi,j(k), if ρi,j(k) < ρcr

i,j

(1−γ)Q
cap
i,j

ρcr
i,j−ρ

jam
i,j

[
ρi,j(k)−ρjam

i,j

]
+QBi,j(k),otherwise

(30)

QSi+1,j(k)=

{
Qcap
i+1,j , if ρi+1,j(k) < ρcr

i+1,j

wi+1

[
ρjam
i+1,j − ρi+1,j(k)

]
, otherwise.

(31)
QBi,j(k)=γ Q

cap
i,j − η [li,j+1,j(k) + li,j−1,j(k)] (32)

Parameter vmax denotes the maximum speed, Qcap is the
capacity flow, ρcr is the critical density (i.e., the density at

which the capacity flow occurs), while α =
(

ln Qcap

vmaxρcr

)−1

[31]. Parameter γ influences the impact of capacity drop due
to overcritical densities, while η affects the impact of entering
lane-changing flows on the segment capacity.

B. Network description and the no-control case

We consider a hypothetical motorway stretch to test and
evaluate the performance of the proposed strategy. In par-
ticular, we consider the network depicted in Fig. 3, which
is composed of 7 segments; segments 1, . . . , 5 feature three
lanes, while segments 6 and 7 feature only two lanes, with
a lane-drop located downstream of cell (5, 1). All segments



Fig. 3. The motorway stretch used for testing and evaluating the proposed
control strategy.

TABLE I
PARAMETERS USED IN THE NONLINEAR MULTI-LANE TRAFFIC FLOW

MODEL

Scenario 1 Scenario 2
j = 1, 2 j = 3 j = 1, 2 j = 3

vmax [km/h] 100 120 100 120
Qcap [veh/h] 1800 2400 1800 2400
ρcr [veh/km] 32 36 32 36
ρjam [veh/km] 120 160 120 160
γ 0.6 0.6 0.6 0.6
η 0 0 0.06 0.06
G 1 1 1 1
µ 0.6 0.6 0.6 0.6

are characterised by the same length Li = 0.5 km, while we
define a simulation step T = 10 s. Different lanes feature
different parameters, namely a different FD, which may
reflect different traffic composition (e.g., a high number of
heavy vehicles reducing the capacity of a specific lane). Two
scenarios are defined: in Scenario 1, capacity drop is assumed
to be caused only by over-critical densities (i.e., η = 0),
while in Scenario 2, the complete capacity drop formulation
is used. The employed parameters are shown in Table I.

Traffic demand profiles are defined for a simulation hori-
zon K = 80 min, generated perturbing trapezoidal-like
shapes with additive zero-mean Gaussian white noise and the
overall demand entering the network is, at its peak, roughly
equivalent to the total capacity of segment 5 (where the lane-
drop occurs).

Running the macroscopic model (1), (24)–(32) without the
use of any control actions for Scenario 1 produces a strong
traffic congestion starting at the lane-drop area, due to non-
optimal spontaneous lane-assignment of vehicles. Inspecting
the contour plots shown in Fig. 4, we can see that the
density increases firstly in lane 1 (the one that is dropping)
at around t = 10 min due to the high demand arriving in
the lane-drop area, while vehicles try to merge first into
lane 2, and, due to the fact that density increases also in
this lane, eventually also into lane 3. In particular, most
lane-changes take place within segment 5 (see Fig. 5 (top)),
while their intensity progressively reduces upstream, with
almost no lane-changes in segment 1. Note that, according
to (28) and with Gi,j,j̄ = 1, the lane-changing model acts
towards the homogenisation of the densities between adjacent
lanes. The detrimental effects of the congestion worsen as a
consequence of the occurring capacity drop, which is here
triggered by overcritical densities at all lanes of segment 5,
causing a reduction of the outflow in both lanes, as shown

in Fig. 6 (top).
The created congestion spills back covering several seg-

ments upstream in all lanes, in particular reaching segment
2 (see Fig. 4). As numerical evaluation criterion we employ
the TTT, obtaining, for the no-control case of Scenario 1, a
resulting overall TTT = 306.1 veh · h.

For Scenario 2, the congestion pattern is basically similar,
however with a more extended congestion both in time
and space (reaching segment 1), due to the capacity re-
duction resulting from lane changes, with a corresponding
TTT = 377.4 veh · h.

C. Application of the proposed control strategy

We proceed now to the evaluation of the proposed control
strategy in the scenario described in Section III-B. We define
as “application area”, namely the portion of network where
we apply our designed strategy, the area from segment
3 to segment 6 (see Fig. 3). We use the outflow of the
segments immediately upstream of the application area q2,j

as our demand d. A dummy cell (6, 1) is added immediately
downstream of the lane-drop, as proposed in Section II-C.
The set-point considered in the LQR includes therefore all
cells in segment 6.

According to the network topology and setting a constant
speed v̄ = 100 km/h and cost weights Qi,j = 1, for i = j =
2, 3; Qi,j = 100, for i = j = 1; Qi,j = 0; ∀i 6= j; ϕ = 10−5

(obtained after some manual tuning of the controller aiming
at achieving an efficient and smooth response), we compute
(offline) the gains as described in Section II-D.

We assume to know the critical densities at the controlled
area which are used to build the set-point vector ŷ, namely
ρ̂6,2 = 32 veh/km, ρ̂6,3 = 36 veh/km, while at the additional
dummy segment we define ρ̂6,1 = 0 veh/km.

Lateral flows fi,j are computed as u∗, via the optimal
control law (13), and are then applied directly in the con-
servation law equation (1), while longitudinal flows qi,j are
obtained from (29)–(31) as in the no-control case.

From inspection of the resulting contour plots in Fig. 7, we
can see that the controller is capable of avoiding congestion.
This is due to the fact that, during the period characterised
by a high demand, the density at the bottleneck area is
maintained at its critical value. The optimal lateral flows
are distributed quite homogeneously within the whole ap-
plication area (see Fig. 5 (bottom)), thus avoiding high lane-
changing flows close to the lane-drop location. Moreover,
since all densities remain undercritical, the capacity drop
phenomenon is not appearing and the system is operating
around the bottleneck capacity during the whole peak period
(see Fig. 6 (bottom)). Within this scenario, we obtain a
TTT = 188.3 veh · h, which is a 38.5% improvement
with respect to the no-control case.

The proposed control strategy applied to Scenario 2
produces the same traffic behaviour as Scenario 1, where
TTT = 188.3 veh · h, which, in this case, corresponds to
a 50.1% improvement with respect to the no-control case.



Fig. 4. Contour plots of densities in the no-control case for Scenario 1.

Fig. 5. Contour plots of net lateral flows in the no-control case (top) and
in case control is applied to Scenario 1 (bottom).
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Fig. 6. The flow exiting from lanes 2 (left) and 3 (right) of segment 5 (blue
lines) and the corresponding capacity flow (red lines). In the no-control case
(top), the capacity drop mechanism is triggered and the outflow cannot reach
the capacity flow. Whereas, when control is applied to Scenario 1 (bottom),
the capacity drop phenomenon is avoided, even during the peak period, and
the outflow is close to the bottleneck capacity.

TABLE II
PARAMETERS OF THE EXTREMUM SEEKING ALGORITHM

h 0.9 ŷmin [veh/km] 28
ωn [rad] π

1.5
ŷmax [veh/km] 42

β1 [rad] 0 γ 0.05
β2 [rad] π

2
α 0.5

δ [veh/km] 2

D. Optimal set-point seeking

The results presented in Section III-C are based on the
knowledge of the exact value of critical densities at the
bottleneck location. To overcome a situation where these
values may be unknown, we test here the effectiveness of
the algorithm for finding the optimal set-points proposed in
Section II-E. We employ Scenario 1 of Section III-C, com-
puting the TTT for the controlled area (from segment 3 to
segment 6) over a horizon K = 80 min, which corresponds
to one iteration of the extremum seeking algorithm, and using
the cost Ψ = −TTT. This procedure is iteratively performed
for S times, in our case with S = 400. The set of parameters
used in the algorithm is presented in Table II.

The critical densities are initialised as ρ̂6,2 = 38 veh/km,
ρ̂6,3 = 30 veh/km, which represents a non-optimal set-point
configuration for the LQR controller. As shown in Fig. 8,
the proposed algorithm achieves the optimal cost, while also
reaching and maintaining the optimal density set-points.

IV. CONCLUSIONS

We proposed and tested an optimal adaptive control strat-
egy for lane-changing-based traffic control at bottleneck
locations, assuming that vehicles are equipped with VACS,
capable of receiving and executing lane-changing commands.

Future work includes the extension of this methodology
to account for unmeasured demand flows and incomplete
measurements. Moreover, we are looking into the case of
mixed traffic, where manual vehicles may not follow the
prescribed lane-changing commands; as well as into testing
the methodology on a microscopic simulation environment.
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[7] K. Kim, J. V. Medanić, and D. I. Cho, “Lane assignment problem using
a genetic algorithm in the Automated Highway Systems,” International
Journal of Automotive Technology, vol. 9, no. 3, pp. 353–364, 2008.

[8] L. D. Baskar, B. De Schutter, and H. Hellendoorn, “Traffic man-
agement for automated highway systems using model-based predic-
tive control,” IEEE Transactions Intelligent Transportation Systems,
vol. 13, no. 2, pp. 838–847, 2012.

[9] C. Roncoli, I. Papamichail, and M. Papageorgiou, “Hierarchical model
predictive control for multi-lane motorways in presence of Vehicle
Automation and Communication Systems,” Transportation Research
Part C: Emerging Technologies, vol. 62, pp. 117–132, 2016.

[10] C. Roncoli, M. Papageorgiou, and I. Papamichail, “Traffic flow optimi-
sation in presence of Vehicle Automation and Communication Systems
- Part II: Optimal control for multi-lane motorways,” Transportation
Research Part C, vol. 57, pp. 260 – 275, 2015.

[11] M. Guériau, R. Billot, N.-E. E. Faouzi, S. Hassas, and F. Armetta,
“X2V-based information dissemination for highway congestion reduc-
tion,” in 18th Euro Working Group on Transportation (EWGT), Delft,
the Netherlands, 2015.
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