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Abstract

We consider the problems of nonnegative tensor factorization and completion. Our aim

is to derive efficient algorithms that are also suitable for parallel implementation. We

adopt the alternating optimization framework and solve each matrix nonnegative least-

squares problem via a Nesterov-type algorithm for convex and strongly convex problems.

We describe parallel implementations of the algorithms and measure the attained speedup

in a multi-core computing environment. It turns out that the derived algorithms are

competitive candidates for the solution of very large-scale nonnegative tensor factorization

and completion.
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Chapter 1

Introduction

Tensors are mathematical objects that have recently gained great popularity due to their

ability to model multiway data dependencies [1], [2], [3], [4]. Tensor factorization (or

decomposition) into latent factors is very important for numerous tasks, such as feature

selection, dimensionality reduction, compression, data visualization, interpretation and

completion. Tensor factorizations are usually computed as solutions of optimization prob-

lems [1], [2]. The Canonical Decomposition or Canonical Polyadic Decomposition (CAN-

DECOMP or CPD), also known as Parallel Factor Analysis (PARAFAC), and the Tucker

Decomposition are the two most widely used tensor factorization models. In this work,

we focus on nonnegative PARAFAC, which, for simplicity, we call Nonnegative Tensor

Factorization (NTF).

Alternating Optimization (AO), All-at-Once Optimization (AOO), and Multiplicative

Updates (MUs) are among the most commonly used techniques for NTF [2], [5]. Recent

work for constrained tensor factorization/completion includes, among others, [6], [7], [8],

and [9].

In [6], several NTF algorithms and a detailed convergence analysis have been devel-

oped. A general framework for joint matrix/tensor factorization/completion has been de-

veloped in [7]. In [8], an Alternating Direction Method of Multipliers (ADMM) algorithm

for NTF has been derived, and an architecture for its parallel implementation has been

outlined. However, the convergence properties of the algorithm in ill-conditioned cases are

not favorable, necessitating additional research towards their improvement. In [9], the au-

thors consider constrained matrix/tensor factorization/completion problems. They adopt

the AO framework as outer loop and use the ADMM for solving the inner constrained

optimization problem for one matrix factor conditioned on the rest. The ADMM offers

significant flexibility, due to its ability to efficiently handle a wide range of constraints.

In [10], two parallel algorithms for unconstrained tensor factorization/completion have

been developed and results concerning the speedup attained by their Message Passing

Interface (MPI) implementations on a multi-core system have been reported. Related

work on parallel algorithms for sparse tensor decomposition includes [11] and [12].

1.1 Contribution

In this work, we focus on very large dense NTF problems and sparse NTC problems. Our

aim is to derive efficient NTF and NTC algorithms, suitable for parallel implementation.

We adopt the AO framework and solve each matrix nonnegative least-squares (MNLS)

problem via a first-order optimal (Nesterov-type) algorithm for L-smooth µ-strongly con-
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vex problems.1 Then, we describe in detail MPI implementations of the AO NTF and

AO NTC algorithms and measure the speedup attained in a multi-core environment. We

conclude that the proposed algorithms are strong candidates for the solution of very large

dense NTF and sparse NTC problems. The results concerning the NTF problems have

appeared in [15] and [16].

1.2 Notation

Vectors, matrices, and tensors are denoted by small, capital, and calligraphic capital bold

letters, respectively; for example, x, X, and X . R
I×J×K
+ denotes the set of (I × J ×K)

real nonnegative tensors, while RI×J
+ denotes the set of (I × J) real nonnegative matrices.

‖ ·‖F denotes the Frobenius norm of the tensor or matrix argument, I denotes the identity

matrix of appropriate dimensions, and (A)+ denotes the projection of matrix A onto

the set of element-wise nonnegative matrices. The outer product of vectors a ∈ R
I×1,

b ∈ R
J×1, and c ∈ R

K×1 is the rank-one tensor a ◦ b ◦ c ∈ R
I×J×K with elements

(a ◦ b ◦ c)(i, j, k) = a(i)b(j)c(k). The Kronecker product of A and B is denoted as

A ⊗B. The Khatri-Rao (columnwise Kronecker) product of compatible matrices A and

B is denoted as A ⊙ B and the Hadamard (elementwise) product is denoted as A ⊛ B.

Finally, inequality A � B means that matrix A−B is positive semidefinite.

1.3 Structure

In Chapter 2, we present the Nesterov algorithm for set-constrained L-smooth µ-strongly

convex optimization problems and derive a Nesterov-type algorithm for the MNLS problem

with proximal term. In Chapter 3, we briefly describe the NTF problem, present the

associated AO NTF algorithm and describe in detail a parallel implementation. In Chapter

4, we present the AO NTC algorithm and describe a parallel implementation. Finally,

Chapter 5 concludes this thesis with some ideas for future work.

1We note that a closely related algorithm for the solution of MNLS problems has been used in [13] and
[14]; we explain in detail later the performance improvement offered by our approach.
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Chapter 2

The Matrix Nonnegative Least

Squares problem

In this chapter, we present an optimal first-order algorithm for the solution of L-smooth

µ-strongly convex MNLS problems. Optimal first-order methods have recently attracted

great research interest because they are strong candidates and, in many cases, the only

viable way for the solution of very large optimization problems.

2.1 Optimal first-order methods for L-smooth µ-strongly

convex optimization problems

We consider optimization problems of smooth and strongly convex functions and briefly

present results concerning their information complexity and the associated first-order op-

timal algorithms (for a detailed exposition see [17, Chapter 2]).

We assume that f : Rn → R is a smooth (that is, differentiable up to a sufficiently high

order) convex function, with gradient ∇f(x) and Hessian ∇2f(x). Our aim is to solve the

problem

min
x

f(x), (2.1)

within accuracy ǫ > 0. The solution accuracy is defined as follows. If f∗ := min
x

f(x),

then point x̄ ∈ R
n solves problem (2.1) within accuracy ǫ if f(x̄)− f∗ ≤ ǫ.

Let 0 < µ ≤ L < ∞. A smooth convex function f is called L-smooth or, using the

notation of [17, p. 66], f ∈ S∞,1
0,L , if

0 � ∇2f(x) � LI, ∀x ∈ R
n, (2.2)

and L-smooth µ-strongly convex, or f ∈ S∞,1
µ,L , if

µI � ∇2f(x) � LI, ∀x ∈ R
n. (2.3)

The number of iterations that first-order methods need for the solution of problem (2.1),

within accuracy ǫ, is O
(

1√
ǫ

)
if f ∈ S∞,1

0,L , and O
(√

L
µ
log 1

ǫ

)
if f ∈ S∞,1

µ,L [17, Theorem

2.2.2]. The convergence rate in the first case is sublinear while, in the second case, it is

linear and determined by the condition number of the problem, K := L
µ
. Thus, strong

convexity is a very important property that should be exploited whenever possible.

An algorithm that achieves this complexity, and, thus, is first-order optimal, appears

in Algorithm 1 (see, also [17, p. 80]). This algorithm can handle both the L-smooth case,
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Algorithm 1: Nesterov algorithm for L-smooth µ-strongly convex optimization
problems

Input: x0 ∈ R
n, µ, L. Set y0 = x0, α0 ∈ (0, 1), q = µ

L
.

1 k-th iteration
2 xk+1 = yk − 1

L
∇f(yk)

3 αk+1 ∈ (0, 1) from α2
k+1 = (1− αk+1)α

2
k + qαk+1

4 βk+1 =
αk(1−αk)
α2
k
+αk+1

5 yk+1 = xk+1 + βk+1(xk+1 − xk)

by setting q = 0, and the L-smooth µ-strongly convex case, by setting q = µ
L
> 0.

If the problem of interest is the constrained problem

min
x∈X

f(x), (2.4)

where X is a closed convex set, then the corresponding optimal algorithm is very much

alike Algorithm 1, with the only difference being in the computation of xk+1. We now

have that [17, p. 90]

xk+1 = ΠX

(
yk −

1

L
∇f(yk)

)
, (2.5)

where ΠX(·) denotes the Euclidean projection onto set X. The convergence properties of

this algorithm are the same as those of Algorithm 1. If the projection onto set X is easy to

compute, then the algorithm is both theoretically optimal and very efficient in practice.

2.2 Nesterov-type algorithm for MNLS with proximal

term

In the sequel, we present a Nesterov-type algorithm for the MNLS problem with proximal

term. Let X ∈ R
m×n, A ∈ R

m×r, B ∈ R
n×r, and consider the problem

min
A≥0

f(A) :=
1

2
‖X−ABT ‖2F . (2.6)

The gradient and Hessian of f , at point A, are, respectively,

∇f(A) = −
(
X−ABT

)
B (2.7)

and

∇2f(A) :=
∂2f(A)

∂vec(A)∂vec(A)T
= BTB⊗ I � 0. (2.8)

Let L := max(eig(BTB)) and µ := min(eig(BTB)). If µ = 0 (for example, if r > n),

then problem (2.6) is L-smooth. If µ > 0, then problem (2.6) is L-smooth µ-strongly

convex. A first-order optimal algorithm for the solution of (2.6) can be derived using the

approach of Section 2.1. We note that [13] and [14] solved problem (2.6) using a variation

of Algorithm 1, which is equivalent to Algorithm 1 with µ = 0. However, if µ > 0, then

this algorithm is not first-order optimal and, as we shall see later, it performs much worse
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Algorithm 2: Nesterov-type algorithm for MNLS with proximal term

Input: X ∈ R
m×n, B ∈ R

n×r, A∗ ∈ R
m×r

1 L = max(eig(BTB)), µ = min(eig(BTB))
2 λ = g(L, µ)
3 W = −XB− λA∗, Z = BTB+ λI

4 q = µ+λ
L+λ

5 A0 = Y0 = A∗
6 α0 = 1, k = 0
7 while (1) do
8 ∇fP(Yk) = W +YkZ

9 if (terminating condition is TRUE) then
10 break
11 else

12 Ak+1 =
(
Yk − 1

L+λ
∇fP(Yk)

)
+

13 α2
k+1 = (1− αk+1)α

2
k + qαk+1

14 βk+1 =
αk(1−αk)
α2
k
+αk+1

15 Yk+1 = Ak+1 + βk+1 (Ak+1 −Ak)
16 k = k + 1

17 return Ak.

than the optimal.

We note that the values of L and µ are necessary for the development of the Nesterov-

type algorithm, thus, their computation is imperative.1

In order to avoid very ill-conditioned problems (and guarantee strong convexity), we

introduce a proximal term (as we will see in Section 3.1, under the AO framework) and

solve problem

min
A≥0

fP(A) :=
1

2
‖X−ABT ‖2F +

λ

2
‖A−A∗‖2F , (2.9)

for given A∗ and appropriately chosen λ. We choose λ based on L and µ, and denote

this functional dependence as λ = g(L, µ). If µ
L

≪ 1, then we may set λ ≈ 10µ, signifi-

cantly improving the conditioning of the problem by putting large weight on the proximal

term; however, in this case, we expect that the optimal point will be biased towards A∗.

Otherwise, we may set λ / µ, putting small weight on the proximal term and permit-

ting significant progress towards the computation of A that satisfies approximate equality

X ≈ ABT as accurately as possible.

The gradient of fP, at point A, is

∇fP(A) = −
(
X−ABT

)
B+ λ(A−A∗). (2.10)

The Karush-Kuhn-Tucker (KKT) conditions for problem (2.9) are [13]

∇fP(A) ≥ 0, A ≥ 0, ∇fP(A)⊛A = 0. (2.11)

1An alternative to their direct computation is to estimate L using line-search techniques and overcome
the computation of µ using heuristic adaptive restart techniques [18]. However, in our case, this alternative
is computationally demanding, especially for large-scale problems, and shall not be considered.
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These expressions can be used in a terminating condition. For example, we may terminate

the algorithm if

min
i,j

(
[∇fP(A)]i,j

)
> −δ1, max

i,j

(∣∣∣[∇fP(A)⊛A]i,j

∣∣∣
)
< δ2, (2.12)

for small positive real numbers δ1 and δ2. Of course, other criteria, based, for example,

on the (relative) change of the cost function can be used in terminating conditions.

A Nesterov-type algorithm for the solution of the MNLS problem with proximal term

(2.9) is given in Algorithm 2. For notational convenience, we denote Algorithm 2 as

Aopt = Nesterov MNLS(X,B,A∗).

Computational complexity of Algorithm 2

Quantities W and Z are computed once per algorithm call and cost, respectively, O(mnr)

and O(rn2) arithmetic operations. Quantities L and µ are also computed once and cost

at most O(r3) operations. ∇fP(Yk), Ak, and Yk are updated in every iteration with cost

O(mr2), O(mr), and O(mr) arithmetic operations, respectively.
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Chapter 3

Nonnegative Tensor Factorization

3.1 Problem Formulation

Let tensor X o ∈ R
I×J×K
+ admit a factorization of the form

X o = 〚Ao,Bo,Co〛 =

R∑

r=1

aor ◦ bo
r ◦ cor, (3.1)

where Ao = [ao1 · · · aoR] ∈ R
I×R
+ , Bo = [bo

1 · · · bo
R] ∈ R

J×R
+ , and Co = [co1 · · · coR] ∈

R
K×R
+ . We observe the noisy tensor X = X o+E , where E is the additive noise. Estimates

of Ao, Bo, and Co can be obtained by computing matrices A ∈ R
I×R
+ , B ∈ R

J×R
+ , and

C ∈ R
K×R
+ that solve the optimization problem

min
A≥0,B≥0,C≥0

fX (A,B,C), (3.2)

where fX is a function measuring the quality of the factorization and the inequalities are

element-wise. A common choice for fX is

fX (A,B,C) =
1

2
‖X − 〚A,B,C〛‖2F . (3.3)

If Y = 〚A,B,C〛, then its matrix unfoldings, with respect to the first, second, and third

mode, are given by [3]

YA = A (C⊙B)T , YB = B (C⊙A)T , YC = C (B⊙A)T .

Thus, fX can be expressed as

fX (A,B,C) =
1

2

∥∥XA −A (C ⊙B)T
∥∥2
F

=
1

2

∥∥XB −B (C⊙A)T
∥∥2
F

=
1

2

∥∥XC −C (B⊙A)T
∥∥2
F
.

(3.4)

These expressions form the basis for the AO NTF in the sense that, if we fix two matrix

factors, we can update the third by solving an MNLS problem. For reasons related with the

conditioning of the MNLS problems, we propose to add a proximal term. More specifically,

if Ak, Bk, and Ck are the estimates of A, B, and C, respectively, after the k-th AO
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iteration, then Ak+1 is computed as

Ak+1:= argmin
A≥0

1

2

∥∥∥XA−A(Ck ⊙Bk)
T
∥∥∥
2

F
+

λA

k

2
‖A−Ak‖2F , (3.5)

where λA

k ≥ 0 determines the weight assigned to the proximal term. If (Ck ⊙ Bk) is a

well-conditioned matrix, then it is reasonable to put small weight on the proximal term

and compute Ak+1 that leads to a large decrease of the cost function fX (A,Bk,Ck).

If, on the other hand, (Ck ⊙ Bk) is an ill-conditioned matrix, then it is reasonable to

put large weight on the proximal term, leading to a better conditioned problem and easy

computation of Ak+1 that improves the fit in fX (A,Bk,Ck) but is not very far from Ak.

This is the strategy we shall follow for the solution of problem (3.2) (see also [6], [19]).

The computational efficiency of the AO NTF heavily depends on the algorithm we use

for the solution of problem (3.5). In this work, we adopt the approach of Nesterov for

the solution of L-smooth µ-strongly convex problems. The derived algorithm is optimal

under the (worst-case) black-box first-order oracle framework [17, Chapter 2] and is very

efficient in practice. Furthermore, it leads to an AO NTF algorithm that is suitable for

parallel implementation.

3.2 Nesterov Based AO NTF

In Algorithm 3, we present the Nesterov-based AO NTF. We start from point (A0, B0,C0)

and solve, in a circular manner, MNLS problems with proximal terms, based on the

previous estimates.

Algorithm 3: Nesterov-based AO NTF

Input: X , A0 > 0, B0 > 0, C0 > 0.
1 Set k = 0
2 while (1) do
3 Ak+1 = Nesterov MNLS(XA, (Ck ⊙Bk),Ak)
4 Bk+1 = Nesterov MNLS(XB, (Ck ⊙Ak+1),Bk)
5 Ck+1 = Nesterov MNLS(XC, (Ak+1 ⊙Bk+1),Ck)
6 (AN

k+1,B
N
k+1,C

N
k+1) = Normalize(Ak+1,Bk+1,Ck+1)

7 if (terminating condition is TRUE) then break; endif
8 (Ak+1,Bk+1,Ck+1) = Accelerate(AN

k+1,A
N
k ,BN

k+1,B
N
k ,CN

k+1,C
N
k )

9 k = k + 1

10 return Ak, Bk, Ck.

For later use, we note that the most demanding computations during the update of

factor matrix Ak via the Nesterov-type MNLS algorithm are (see line 3 of Algorithm 2)

W̃A := −XA (Ck ⊙Bk) ,

Z̃A := (Ck ⊙Bk)
T (Ck ⊙Bk)

=
(
CT

kCk

)
⊛

(
BT

kBk

)
.

(3.6)
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Analogous quantities are computed for the updates of Bk and Ck.

After the updates of the factor matrices, we use two functions which have been proven

very useful in our experiments, in the sense that they significantly reduce the number of

outer iterations necessary to reach convergence.

Function “Normalize” normalizes each column of Bk+1 and Ck+1 to unit Euclidean

norm, putting all the power on the respective columns of Ak+1. We denote its output as

AN
k+1, B

N
k+1 and CN

k+1.

Function “Accelerate” implements an acceleration mechanism. The development of

efficient acceleration mechanisms is a very important research topic, see, for example, [20],

[21], but is beyond the scope of this thesis. In our experiments, we adopted the simple

acceleration technique used in the function parafac of the n-way toolbox [22], which is

briefly described as follows.

At iteration k + 1 > k0, after the computation and normalization of Ak+1, Bk+1, and

Ck+1, we compute

Anew = AN
k + sk+1(A

N
k+1 −AN

k ), (3.7)

where sk+1 is a small positive number; a simple choice for sk+1 is sk+1 = (k+1)
1

n , where n is

initialized as n = 3 and its value may change as the algorithm progresses. In an analogous

manner, we compute Bnew and Cnew. If fX (Anew,Bnew,Cnew) ≤ fX (Ak+1,Bk+1,Ck+1),

then the acceleration step is successful, and we set Ak+1 = Anew, Bk+1 = Bnew, and

Ck+1 = Cnew. If the acceleration step fails, then it is ignored and we set Ak+1 = AN
k+1,

Bk+1 = BN
k+1, and Ck+1 = CN

k+1 as input to the next AO update. If the acceleration

step fails for n0 iterations, then we set n = n + 1, thus, decreasing the exponent of the

acceleration step. Typical values of k0 and n0 are k0 = 5 and n0 = 5.

It has been shown in [19] that the AO NTF algorithm with proximal term falls un-

der the block successive upper bound minimization (BSUM) framework, which ensures

convergence to a stationary point of problem (3.2).

We can use various termination criteria for the AO NTF algorithm based, for example,

on the (relative) change of the cost function and/or the latent factors.

3.3 Parallel Implementation

In this section, we assume that we have at our disposal p = pA × pB × pC processing

elements and describe a parallel implementation of the Nesterov-based AO NTF algorithm,

which has been motivated by the medium-grained approach of [11].1 The p processors

form a three-dimensional Cartesian grid and are denoted as piA,iB,iC, for iA = 1, . . . , pA,

iB = 1, . . . , pB, and iC = 1, . . . , pC.

1We note that both the single-core and the multi-core implementations solve the same problem, thus
problems that are identifiable in single-core environments remain identifiable in multi-core environments
and the solutions, in both cases, are practically the same.
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Figure 3.1: Tensor X , factors Ak, Bk, and Ck, and their partitioning for pA = pB = 3
and pC = 2.

3.3.1 Variable partitioning and data allocation

In order to describe the parallel implementation, we introduce certain partitionings of the

factor matrices and the tensor matricizations. We partition the factor matrix Ak into pA

block rows as

Ak =
[ (

A1
k

)T · · ·
(
A

pA
k

)T ]T
, (3.8)

with A
iA
k ∈ R

I
pA

×R
, for iA = 1, . . . , pA. We partition accordingly the matricization XA

and get

XA =
[ (

X1
A

)T · · ·
(
X

pA
A

)T ]T
, (3.9)

with X
iA
A

∈ R

I
pA

×JK
. In a similar manner, we partition Bk and XB into pB block rows,

each of size J
pB

×R and J
pB

× IK, respectively, and Ck and XC into pC block rows, each

of size K
pC

×R and K
pC

× IJ , respectively.

We partition tensor X into p subtensors, according to the partitioning of the factor

matrices (see Figure 3.1), and allocate its parts to the various processors, so that processor

piA,iB,iC receives subtensor X iA,iB,iC , defined as

X iA,iB,iC := X

(
(iA − 1)

I

pA
+ 1 : iA

I

pA
, (iB − 1)

J

pB
+ 1 : iB

J

pB
, (iC − 1)

K

pC
+ 1 : iC

K

pC

)
. (3.10)

We assume that, at the end of the k-th outer AO iteration,

(a) processor piA,iB,iC knows AiA
k , BiB

k , and C
iC
k ;

(b) all processors know AT
kAk, B

T
kBk, and CT

kCk.

3.3.2 Communication groups

We define certain communication groups, also known as communicators [23], over subsets

of the p processors, which are used for the efficient collaborative implementation of specific

computational tasks, as explained in detail later.

First, we define pA two-dimensional processor groups, each involving the pB × pC

processors piA,:,:, for iA = 1, . . . , pA (horizontal layers), with the iA-th processor group

used for the collaborative update of A
iA
k . Similarly, we define groups p:,iB,:, for iB =
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1, . . . , pB, and p:,:,iC, for iC = 1, . . . , pC, which are used for the collaborative update of

B
iB
k and C

iC
k , respectively.

We define pB×pC one-dimensional processor groups, each involving the pA processors

p:,iB,iC. Each of these groups is used for the collaborative computation of AT
k+1Ak+1.

Similarly, we define groups piA,:,iC and piA,iB,:, which are used for the collaborative com-

putation of BT
k+1Bk+1 and CT

k+1Ck+1, respectively.

3.3.3 Factor update implementation

We describe in detail the update of Ak, which is achieved via the parallel updates of AiA
k ,

for iA = 1, . . . , pA, and consists of the following stages:

1. Processors piA,:,:, for iA = 1, . . . , pA, collaboratively compute the I
pA

×R matrix

W̃
iA
A

= −X
iA
A
(Ck ⊙Bk), (3.11)

and the result is scattered among the processors in the group; thus, each processor

in the group receives I
pApBpC

successive rows of W̃iA
A
. Term W̃

iA
A

can be computed

collaboratively because

X
iA
A
(Ck ⊙Bk) =

pB∑

iB=1

pC∑

iC=1

X
iA,iB,iC
A

(CiC
k ⊙B

iB
k ), (3.12)

where X
iA,iB,iC
A

is the matricization of X iA,iB,iC, with respect to the first mode.

Processor piA,iB,iC knows XiA,iB,iC
A

, BiB
k , and C

iC
k , and computes the corresponding

term of (3.12). The sum is computed and scattered among processors piA,:,: via a

reduce-scatter operation.

2. Each processor in the group piA,:,: uses the scattered part of W̃iA
A
, Z̃A = CT

kCk ⊛

BT
kBk, and A

iA
k , and computes the updated part of AiA

k+1, via the while loop of the

Nesterov MNLS algorithm.

3. The updated parts of AiA
k+1 are all-gathered at the processors of the group piA,:,:, so

that all processors in the group learn the updated A
iA
k+1.

4. By applying an all-reduce operation to
(
A

iA
k+1

)T

A
iA
k+1, for iA = 1, . . . , pA, on each

of the single-dimensional processor groups p:,iB,iC , for iB = 1, . . . , pB and iC =

1, . . . , pC, all p processors learn AT
k+1Ak+1.

2

The updates of Bk and Ck are implemented by following analogous steps.

The Euclidean norms of the columns of Ak+1, Bk+1, and Ck+1 appear on the diagonals

of AT
k+1Ak+1, B

T
k+1Bk+1, and CT

k+1Ck+1, which are known to all processors. Thus, no

communication is necessary for the normalization of the updated matrix factors.

2In the cases where R ' I

pA
it seems preferable to compute A

T
k+1Ak+1 via an all-gather operation on

terms A
iA
k+1

, for iA = 1, . . . , pA, on each of the single-dimensional processor groups p:,iB,iC . However,
in this work, we mainly focus on small-rank factorizations, thus, in our communication cost analysis and
experiments we do not present results for this alternative.



22 Chapter 3. Nonnegative Tensor Factorization

After the normalization step of the (k+1)-st AO iteration, processor piA,iB,iC knows the

parts of the normalized factors, that is, AiAN
k+1 , B

iBN
k+1 , C

iCN
k+1 , as well as A

iAN
k , BiBN

k , and

C
iCN
k , and can compute AiA

new, B
iB
new, and CiC

new (see (3.7)). The computation of the cost

function fX at points (Ak+1,Bk+1,Ck+1) and (Anew,Bnew,Cnew) is implemented collab-

oratively. Each processing element computes its local contribution and, via an all-reduce

operation over the whole processor grid, the values of the cost function are computed and

become known to all processors, thus, all processors make the same decision regarding the

success or failure of the acceleration step.

3.3.4 Communication cost

We focus on the parallel updates of AiA
k , for iA = 1, . . . , pA, and present results concerning

the associated communication cost. Analogous results hold for the updates of BiB
k and

C
iC
k .

We assume that an m-word message is transferred from one process to another with

communication cost ts+twm, where ts is the latency, or startup time for the data transfer,

and tw is the word transfer time [23].

Communication occurs at three algorithm execution points.

1. The I
pA

×R matrix W̃
iA
A

is computed and scattered among the pB × pC processors

of group piA,:,:, using a reduce-scatter operation, with communication cost [23, §4.2]

CA

1 = ts (pB + pC − 2) + tw
IR

pApBpC
(pBpC − 1) .

2. Processors piA,:,: learn the updated A
iA
k+1 through an all-gather operation on its

updated parts, each of dimension I
pApBpC

×R, with communication cost [23, §4.2]

CA

2 = ts (pB + pC − 2) + tw
IR

pApBpC
(pBpC − 1) .

3. Finally, AT
k+1Ak+1 is computed by using an all-reduce operation on quantities

(
A

iA
k+1

)T

A
iA
k+1, iA = 1, . . . , pA,

on each single-dimensional processor group p:,iB,iC, with communication cost [23,

§4.3]

CA

3 =
(
ts + twR

2
)
log2 pA. (3.13)

The communication that takes place during the acceleration step involves scalar quantities

and, thus, is ignored.

When we are dealing with large messages, the tw terms dominate the communication
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Table 3.1: Average, over 10 realizations, cputime and maximum relative factor error for
Nesterov-based AO NTF, sdf nls, and parafac, for true latent factors with i.i.d. entries,
uniform in [0, 1]

Size R σ2
N AO-Nesterov sdf nls parafac

cputime MRFE× 104 cputime MRFE× 104 cputime MRFE× 104

1000× 100× 100 15 10−2 29 80 56 79 44 85
10−4 27 10 52 13 53 8

50 10−2 77 89 217 91 191 91
10−4 76 13 221 24 251 9

500× 500× 100 15 10−2 63 35 126 37 72 42
10−4 64 5 132 10 105 4

50 10−2 119 39 347 43 250 42
10−4 124 8 331 20 327 5

300× 300× 300 15 10−2 72 27 84 27 70 38
10−4 71 5 87 7 106 3

50 10−2 114 31 171 32 230 34
10−4 119 8 174 13 279 4

cost. Thus, if we ignore the startup time, the total communication time is

CA = tw

(
2IR

pA pB pC
(pBpC − 1) +R2 log2 pA

)

≈ tw

(
2IR

pA
+R2 log2 pA

)

≈ 2IR tw

pA
,

(3.14)

with the second approximation being accurate for R ≪ I
pA

. The presence of pA in the

denominator of the last expression of (3.14) implies that our implementation is scalable in

the sense that, if we double I, then we can have (approximately) the same communication

cost per processor by doubling pA.

Analogous results hold for the updates of Bk and Ck.

3.4 Numerical Experiments

3.4.1 Matlab environment

In this subsection, we test the effectiveness of the Nesterov-based AO NTF algorithm with

numerical experiments performed in Matlab.

At first, we compare the performance of the algorithm we propose in Algorithm 2 for

the solution of the MNLS problem (2.6) with that of the algorithm proposed in [13] and

[14] (for the moment, we ignore the proximal term, thus, we put λ = 0 in Algorithm 2).

As we mentioned in subsection 2.2, if matrix BTB is rank deficient, that is, if µ = 0,

then both algorithms have practically the same behavior. However, if BTB is full-rank,

then the two algorithms exhibit different behavior. In order to illustrate their difference,

we perform the following experiment. We generate random matrices X ∈ R
m×n and

B ∈ R
n×r with m = 300, n = 200, and r = 100, with independent and identically

distributed (i.i.d) elements, taking values uniformly at random in the interval [0, 1]. Then,
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Figure 3.2: Number of iterations to convergence for (blue line) Algorithm 2, with λ = 0,
and (red line) algorithm of [13].

Table 3.2: Average, over 10 realizations, cputime and maximum relative factor error for
Nesterov-based AO NTF, sdf nls, and parafac, for true latent factors with correlated
entries

Size R σ2
N Bottleneck AO-Nesterov sdf nls parafac

cputime MRFE cputime MRFE cputime MRFE

300× 300 × 300 50 10−4
A 132 0.0074 194 0.0075 356 0.0073

A,B 204 0.0116 254 0.0195 412 0.0122
A,B,C 271 0.0206 370 0.1007 779 0.0168

we solve problem (2.6) with the two algorithms, starting from the same random point.

The terminating conditions are determined by parameters δ1 = δ2 = 10−3. In Figure

3.2, we plot the number of iterations needed by the two algorithms to converge over 100

independent realizations. We observe that the Nesterov-type algorithm which exploits

strong convexity is much more efficient than the algorithm which does not. Thus, in the

sequel, we shall not present performance results involving the algorithm of [13].

Next, we compare the performance of a Matlab implementation of the proposed algo-

rithm with routines parafac of the n-way toolbox [22] and sdf nls of tensorlab [24]. Our

aim is to provide some general observations about the difficulty of the problems and the

behavior of the algorithms and not a strict ranking of the algorithms.3

The parafac routine essentially implements an AO NTF algorithm, where each MNLS

problem is solved via the function fastnnls, which is based on [25, §23.3]. It also incor-

porates the normalization and acceleration schemes briefly described in Section 3.2. The

sdf nls routine for NTF first applies a “squaring” transformation to the problem variables

[26] and then solves an unconstrained problem via an AOO-based Gauss-Newton method.

3For our experiments, we run Matlab 2014a on a MacBook Pro with a 2.5 GHz Intel Core i7 Intel
processor and 16 GB RAM.
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Table 3.3: cputime and relative factorization error for Nesterov-based AO NTF, sdf nls,
and parafac, for real-world data

Size R AO-Nesterov sdf nls parafac

cputime RFE cputime RFE cputime RFE

1021× 1343 × 33 10 127 0.2361 1984 0.2483 156 0.2349
20 409 0.1741 2660 0.2183 421 0.1738
30 518 0.1446 3072 0.2202 547 0.1444

In our experiments with synthetic data, we focus on the cputime and the Maximum,

over the three latent factors, Relative Factor Error (MRFE), which is computed via func-

tion cpd err of tensorlab.

In the numerical experiments we present in this subsection, we choose the parameter

values that determine the terminating conditions so that all algorithms achieve (approx-

imately) the same average MRFEs (of course, this is not always possible with one set of

parameter values). Thus, we set Tol = 10−5 for parafac, TolFun = 10−9 for sdf nls, and

δ1 and δ2, which determine the terminating conditions for the Nesterov-based MNLS, are

set to δ1 = δ2 = 10−2. The outer iterations of the Nesterov-based AO NTF terminate if

the relative changes of the normalized latent factors become sufficiently small, that is,

‖MN
k+1 −MN

k ‖F
‖MN

k ‖F
< tolAO, for M = A,B,C, (3.15)

where tolAO = 10−4.

The proximal parameter λ is computed as

λ := g(L, µ) =





10µ, if L
µ
> 106,

µ, if 106 > L
µ
> 104,

µ
10 , if 104 > L

µ
.

(3.16)

All algorithms start from the same triple of random matrices, (A0,B0,C0), which have

i.i.d. elements, uniformly distributed in [0, 1].

True latent factors with i.i.d. elements

We start with synthetic data by assuming that the true latent factors consist of i.i.d.

elements, uniformly distributed in [0, 1]. The additive noise is zero-mean white Gaussian

with variance σ2
N .

In Table 3.1, we present the average, over 10 realizations, cputime and MRFE for

various tensor “shapes,” ranks R = 15, 50, and noise variances σ2
N = 10−2, 10−4. We

observe that the Nesterov-based AO NTF is very competitive in all cases, in the sense

that it converges fast, achieving very good accuracy in most of the cases.

True latent factors with correlated elements

It is well-known that, if some columns of (at least) one latent factor are almost collinear,

convergence of the AO algorithm tends to be slow (these cases are known as “bottlenecks”)



26 Chapter 3. Nonnegative Tensor Factorization

[20]. In the sequel, we test the behavior of the three algorithms in cases with one, two,

and three bottlenecks. More specifically, we generate the true latent factors with i.i.d.

elements as before and we create a single “bottleneck” by modifying the last two columns

of one latent factor so that each becomes highly correlated with another column of the

same latent factor (the correlation coefficient is larger that 0.98). In an analogous way, we

generate double and triple “bottlenecks.”

In Table 3.2, we focus on the case I = J = K = 300, R = 50, σ2
N = 10−4, and present

the average, over 10 realizations, cputime and MRFE. We observe that the problems

become more difficult as the number of bottlenecks increases, in the sense that both the

cputime and the MRFE increase as the number of bottlenecks increases. Again, the

Nesterov-based AO NTF algorithm is very efficient in all cases. Analogous observations

have been made in extensive numerical experiments with other tensor shapes and noise

levels.

Real-world data

In order to test the behavior of the aforementioned algorithms with real-world data,

we use the tensor with size 1021 × 1343 × 33 derived from the hyperspectral image

“Souto Wood Pile” [27]. Since, in this case, the true latent factors are unknown, we

focus on the cputime and the Relative Factorization Error (RFE), defined as

RFE(A,B,C) :=
‖X − 〚A,B,C〛‖F

‖X‖F
.

In Table 3.3, we present the average cputime and RFE for ranks R = 10, 20, 30. The

averages are with respect to the initial points (A0,B0,C0), which are random with i.i.d.

elements uniformly distributed in [0, 1], and are computed over 5 realizations. We observe

that the Nesterov-based AO NTF is very efficient in these cases as well.

3.4.2 Parallel environment - MPI

We now present results obtained from the MPI implementation described in detail in Sec-

tion 3.3. The program is executed on a DELL PowerEdge R820 system with SandyBridge

- Intel(R) Xeon(R) CPU E5 − 4650v2 (in total, 16 nodes with 40 cores each at 2.4 Gz)

and 512 GB RAM per node. The matrix operations are implemented using routines of

the C++ library Eigen [28]. We assume a noiseless tensor X , whose true latent factors

have i.i.d elements, uniformly distributed in [0, 1]. The terminating conditions for MNLS

are determined by values δ1 = δ2 = 10−2.

The AO terminates at iteration k if (recall that tensor X is noiseless)

RFE(Ak,Bk,Ck) < 10−3.

We test the behavior of our implementation for various tensor sizes and rankR = 15, 50, 100.

The performance metric we compute is the speedup attained using p = pA× pB× pC pro-

cessors.
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Figure 3.3: Speedup achieved for a 2000 × 2000 × 2000 tensor with p cores, for p =
1, 8, 27, 64, 125, 216, 343, 512.

In Figures 3.3-3.6, we plot the speedup for the following cases (in all cases with syn-

thetic data, the tensor X has eight billion entries):

1. Cubic tensor: we set I = J = K = 2000 and implement the algorithm on a grid

with pA = pB = pC = 3
√
p, for p = 1, 8, 27, 64, 125, 216, 343, 512.

2. One large dimension: we set I = 400, J = 400, K = 50000 and implement the

algorithm on a grid with pA = pB = 1, pC = p, for p = 1, 8, 27, 64, 125, 216, 343, 512.

3. Two large dimensions: we set I = 5000, J = 320, K = 5000 and implement the al-

gorithm on a grid with pA = pC =
√
p, pB = 1, for p = 1, 9, 36, 64, 121, 225, 361, 529.

4. Finally, we use the hyperspectral image from the previous section, with I = 1021,

J = 1343, K = 33, and implement the algorithm on a grid with pA = pB =
√
p,

pC = 1, for p = 1, 9, 36, 64.

We observe that, in all cases, we attain significant speedup, which is rather insensitive to

the tensor shape and rank.
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Figure 3.4: Speedup achieved for a 400 × 400 × 50000 tensor with p cores, for p =
1, 8, 27, 64, 125, 216, 343, 512.
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Figure 3.5: Speedup achieved for a 5000 × 320 × 5000 tensor with p cores, for p =
1, 9, 36, 64, 121, 225, 361, 529.
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Figure 3.6: Speedup achieved for the hyperspectral image “Souto Wood Pile” [27] with p

cores, for p = 1, 9, 36, 64.
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Chapter 4

Nonnegative Tensor Completion

The problem of tensor completion arises in many modern applications, such as machine

learning, signal processing, and scientific computing, where we want to estimate missing

values in multi-way data, using only the available elements and structural properties of

the data.

Completion problems are closely related to recommendation problems, which can be

viewed as completing a partially observable user-item matrix whose entries are ratings.

Matrix factorization was empirically shown to be a better model than traditional nearest-

neighbour based approaches in the Netflix Prize competition [29].

In our case, we model rating data as tensors and use contextual information, such

as time and location, for enhancing the recommendation quality. Similar to the matrix

case, we employ factorization techniques to provide accurate recommendations. Other

approaches for contextual recommendations use context as a means to pre-filter or post-

filter the recommendations made [30].

4.1 Problem Formulation

Let X ∈ R
I×J×K be an incomplete tensor, and Ω ⊆ {1 . . . I} × {1 . . . J} × {1 . . . K} be

the set of indices of its known entries. That is X (i, j, k) is known if (i, j, k) ∈ Ω. Also,

let M be a tensor with the same size as X , with elements M(i, j, k) equal to one or zero

based on the availability of the corresponding element of X . That is M(i, j, k) = 1 if

(i, j, k) ∈ Ω, and Mi,j,k = 0 otherwise. The nonnegative tensor completion problem can

be expressed as

min
A≥0,B≥0,C≥0

fΩ(A,B,C) + λ
2 ‖A‖2F + λ

2 ‖B‖2F + λ
2 ‖C‖2F , (4.1)

where

fΩ(A,B,C) =
1

2
‖M⊛ (X − 〚A,B,C〛)‖2F .

We can derive matrix-based equivalent expressions as before. More specifically,

fΩ(A,B,C) =
1

2
‖MA ⊛

(
XA −A(C⊙B)T

)
‖2F

=
1

2
‖MB ⊛

(
XB −B(C ⊙A)T

)
‖2F

=
1

2
‖MC ⊛

(
XC −C(B⊙A)T

)
‖2F ,

whereMA, MB, andMC are the matrix unfoldings of M with respect to the first, second,

and third mode, respectively.
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4.2 Nonnegative Matrix Completion

First, we consider the Nonnegative Matrix Completion problem, whose solution will be

the building block for the solution of the AO NT Completion problem. Let X ∈ R
m×n,

A ∈ R
m×r, B ∈ R

n×r. Also, let Ω ⊆ {1 . . . m}×{1 . . . n} be the set of indices of the known

entries of X, and M be a matrix with the same size as X, with elements M(i, j) equal to

one or zero based on the availability of the corresponding element of X. We consider the

problem

min
A≥0

fΩ(A) :=
1

2
‖M⊛

(
X−ABT

)
‖2F . (4.2)

The gradient of fΩ, at point A, is

∇fΩ(A) = −
(
M⊛X−M⊛ABT

)
B. (4.3)

A crucial part of the Nesterov MNLS algorithm is the computation of values µ and L.

The optimal values, µopt and Lopt, are computed from the Hessian of the problem.

It can be shown that the Hessian of fΩ, at point A, is

∇2fΩ(A) =
(
BT ⊗ I

)
diag (vec (M)) diag (vec (M)) (B⊗ I) . (4.4)

As the size of the problem grows, the computation of (4.4) becomes very demanding. A

good approximation is to set µ := 0 and L := max(eig(BTB)), where BTB is the Hessian

of the problem with no missing entries. We have observed that, in practice, our choice

for µ is very accurate for very sparse problems, while our choice for L is an efficiently

computed good upper bound of Lopt. Thus, we have

O ≈ µoptI � ∇2f(x) � LoptI � LI, ∀x ∈ R
n.

The modified algorithm for the case of missing elements is given in Algorithm 4.

4.3 Nesterov Based AO NTC

In Algorithm 5, we present the Nesterov-based AO NTC. We start from point (A0,B0,C0)

and solve, in a circular manner, MNLS Completion problems, based on the previous

estimates.

The most demanding computations during the update of matrix Ak via the Nesterov-

type MNLS Completion algorithm are

WA = (MA ⊛XA)(C⊙B) (4.5)

and

ZA = (MA ⊛A(C⊙B)T )(C⊙B), (4.6)

and should be studied separately. Analogous quantities are computed for the updates of

Bk and Ck.
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Algorithm 4: Nesterov-type algorithm for MNLS Completion

Input: X ∈ R
m×n, M ∈ R

m×n, B ∈ R
n×r, A∗ ∈ R

m×r, λ
1 L = max(eig(BTB)), W = −(M⊛X)B

2 q = λ
L+λ

3 A0 = Y0 = A∗
4 α0 = 1, k = 0
5 while (1) do
6 ∇fΩ(Yk) = W+ (M⊛YkB

T )B+ λYk

7 if (terminating condition is TRUE) then
8 break
9 else

10 Ak+1 =
(
Yk − 1

L+λ
∇f(Yk)

)
+

11 α2
k+1 = (1− αk+1)α

2
k + qαk+1

12 βk+1 =
αk(1−αk)
α2
k
+αk+1

13 Yk+1 = Ak+1 + βk+1 (Ak+1 −Ak)
14 k = k + 1

15 return Ak.

Algorithm 5: Nesterov-based AO NTC

Input: X , Ω, A0 > 0, B0 > 0, C0 > 0.
1 while (1) do
2 Ak+1 = Nesterov MNLS Completion(XA, (Ck ⊙Bk),Ak)
3 Bk+1 = Nesterov MNLS Completion(XB, (Ck ⊙Ak+1),Bk)
4 Ck+1 = Nesterov MNLS Completion(XC, (Ak+1 ⊙Bk+1),Ck)
5 if (terminating condition is TRUE) then break; endif

6 return Ak, Bk, Ck.

The computation of the i-th row of WA, for i = 1 . . . I, is given by

WA (i, :) =
(
MA (i, :)⊛XA (i, :)

)
(C⊙B)

=
(
MA (i, :)⊛XA (i, :)

)

︸ ︷︷ ︸
JK




C (1, :)⊙B
...

C (K, :) ⊙B








JK.

The computation involves the multiplication of a (1 × JK) row vector and a (JK × R)

matrix. A direct multiplication would be prohibitive, since, in most applications, I, J , and

K could reach the order of millions or even billions. In order to reduce the computational

complexity, we must exploit the sparsity of X .

Let nnzi be the number of known entries in the i−th horizontal slice of X . Also, let

these known entries have indices (i, jq, kq) ∈ Ω, for q = 1 . . . nnzi. When we matricize with

respect to the first mode, every known element X (i, jq, kq) maps to XA (i, kqJ + jq), for

q = 1 . . . nnzi.

Also, the (kqJ + jq)-th row of the Khatri-Rao product corresponds to C (kq, :) ⊛
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B (jq, :). Thus, the computation of the i-th row of WA reduces to

WA (i, :) =
[
XA (i, k1J + j1) . . .XA (i, knnziJ + jnnzi)

]

︸ ︷︷ ︸
nnzi




C (k1, :)⊛B (j1, :)
...

C (knnzi , :)⊛B (jnnzi , :)








nnzi

=

nnzi∑

q=1

XA (i, kqJ + jq)C (kq, :)⊛B (jq, :)

=

nnzi∑

q=1

X (i, jq, kq)C (kq, :)⊛B (jq, :) .

Similarly, we obtain an efficient computation of ZA as

ZA (i, :) =

nnzi∑

q=1

(
A (i, :)

(
C (kq, :)⊛B (jq, :)

)T)(
C (kq, :) ⊛B (jq, :)

)
.

4.4 Parallel Implementation

Motivated by the coarse-grained approach of [31], we consider the implementation of the

Nesterov-based AO NTC algorithm on a system with p processing elements. In order

to describe the parallel implementation, we introduce certain partitionings of the factor

matrices and the tensor matricizations. We partition the factor matrices Ak, Bk, and Ck

in block rows as

Ak =
[ (

A1
k

)T · · ·
(
A

p
k

)T ]T
, (4.7)

with Ai
k ∈ R

I
p
×R

, for i = 1, . . . , p, and analogous partitionings for Bk and Ck, each of size
J
p
×R and K

p
×R, respectively. The i-th processing element computes the i-th block row

of Ak, Bk, and Ck, for i = 1, . . . , p. We partition accordingly the matricization XA and

get

XA =
[ (

X1
A

)T · · ·
(
X

p
A

)T ]T
, (4.8)

with Xi
A

∈ R
I
p
×JK . In a similar manner, we partition XB and XC into p block rows, each

of size J
p
× IK and K

p
× IJ , respectively. The i-th block row of XA, XB, XC have been

allocated to the i-th processing element, for i = 1, . . . , p.

A distributed-memory implementation of the NTC is given in Algorithm 6

In the sequel, we describe the computation of Ak+1. The algorithm proceeds as follows.

All processing elements work in parallel. The i-th processing element uses its local data

Xn
A
, as well as the whole matrices Bk and Ck, and computes the i-th block row of matrix

Ak+1, A
i
k+1. Then, each processing element broadcasts its output to all other processing

elements; this operation can be implemented via the MPI statement MPI Allgather. At

the end of this step, all processing elements possess Ak+1. Then, we compute Bk+1 and

Ck+1 with analogous computations, completing one iteration of the AO NTC algorithm.

The algorithm continues until convergence.

The communication requirements of this implementation consist of one Allgather
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operation per MNLS, implying gathering of terms with IF , JF , and KF elements per

outer iteration.

Algorithm 6: Parallel AO NTC

Input: Processing element n, for n = 1, . . . , Np, knows X
n. All processing

elements know B0, C0, tol > 0.
1 Set k = 0
2 while (terminating condition is FALSE) do
3 In parallel, for n = 1, . . . , Np, do
4 Wn

A
(i, :) =

∑nnzi
q=1 Xn (i, jq , kq)C (kq, :)⊛B (jq, :),

5 Zn
A
(i, :) =

∑nnzi
q=1

(
A (i, :)

(
C (kq, :) ⊛B (jq, :)

)T)(
C (kq, :)⊛B (jq, :)

)

6 An
k+1 = Nesterov MNLS Completion(Wn

A
,Zn

A
,An

k , tol)

7 All gather(An
k+1)

8 In parallel, for n = 1, . . . , Np, do

9 Wn
B
(j, :) =

∑nnzj
q=1 Xn (iq, j, kq)C (kq, :) ⊛A (iq, :),

10 Zn
B
(j, :) =

∑nnzj
q=1

(
B (j, :)

(
C (kq, :)⊛A (iq, :)

)T)(
C (kq, :)⊛A (iq, :)

)

11 Bn
k+1 = Nesterov MNLS Completion(Wn

B
,Zn

B
,Bn

k , tol)

12 All gather(Bn
k+1)

13 In parallel, for n = 1, . . . , Np, do
14 Wn

C
(k, :) =

∑nnzk
q=1 Xn (iq, jq, k)B (jq, :)⊛A (iq, :),

15 Zn
C
(k, :) =

∑nnzk
q=1

(
C (k, :)

(
B (jq, :)⊛A (iq, :)

)T)(
B (jq, :)⊛A (iq, :)

)

16 Cn
k+1 = Nesterov MNLS Completion(Wn

C
,Zn

C
,Cn

k , tol)

17 All gather(Cn
k+1)

18 k = k + 1

19 return Ak, Bk, Ck.

4.5 Numerical Experiments

In this section, we present results obtained from the MPI implementation of the AO NTC.

The program is executed on a DELL PowerEdge R820 system with SandyBridge - Intel(R)

Xeon(R) CPU E5− 4650v2 (in total, 16 nodes with 40 cores each at 2.4 Gz) and 512 GB

RAM per node. The matrix operations are implemented using routines of the C++ library

Eigen [28].

We test the behavior of our implementation using both synthetic and real data. The

performance metric we compute is the speedup attained using p processors, and the ac-

curacy of the predictions. For the computation of the speedup, we measure the execution

time for 10 outer iterations; for each matrix completion problem we perform 100 (inner)

iterations.

The dataset we used is the MovieLens 10M dataset [32], which contains time-stamped

ratings of movies. Binning the time into seven-day-wide bins, results in a tensor of size

71567 × 65133 × 171. The number of samples is 8000044 (99.99% sparsity). In order to

distribute the known entries as uniformly as possible across the p processors, and resolve

load imbalance issues, we first perform a random permutation on our data.
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Figure 4.1: Speedup achieved for the MovieLens 10M dataset of size 71567× 65133× 171
with p cores, for p = 1, 5, 20, 171, 300.

In Figure 4.1, we plot the speedup for the MovieLens 10M dataset, for p = 1, 5, 20, 171,

and 300. In Figure 4.2, we plot the speedup for a tensor with synthetic data of the same

size and sparsity level as the MovieLens 10M dataset, whose true latent factors have i.i.d

elements, uniformly distributed in [0, 1], for p = 1, 5, 20, 171, 300. In both cases, we use

rank R = 10.

For the MovieLens 10M dataset, we test the completion accuracy by measuring the

mean squared error of 2000000 known ratings with our predictions. The mean squared

error we achieved is 0.0033, making our predictions quite accurate.

We observe that, in the case of synthetic data, we attain greater speedup. We attribute

this fact to the more uniform distribution of the known entries across the processing

elements. More advanced techniques for load imbalance issues should be considered in the

future.
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Figure 4.2: Speedup achieved for a 71567 × 65133 × 171 tensor with p cores, for p =
1, 5, 20, 171, 300.
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Chapter 5

Conclusion and Future Work

We considered the NTF and NTC problems. We adopted the AO framework and solved

each MNLS problem via a Nesterov-type algorithm for convex and strongly convex prob-

lems. We described in detail parallel implementations of the algorithms. In extensive

numerical experiments, the derived algorithms were proven very efficient, compared with

state-of-the-art competitors. Our parallel implementations attained significant speedup,

rendering our algorithms strong candidates for the solution of very large-scale dense NTF

and sparse NTC problems.

Since tensor factorization is a very useful tool, whose popularity has grown significantly,

we suggest some ideas for future work. Besides the nonnegativity constraint that we

imposed to the factors in our work, it would be interesting to tackle additional constraints,

such as sparsity, symmetry, and orthogonality constraints. Also extension to higher-than-

three dimensional tensors should be considered.

Furthermore, other tensor factorizations, such as Tucker, PARAFAC2, INDSCAL,

should be considered, because they may improve the interpretability of various datasets.

As it was shown in Section 4.5, more advanced load balancing techniques should be ex-

amined for the completion problem. Finally, the benefits of incorporating shared memory

techniques to our distributed memory implementations should be studied.
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