
Technical University of Crete, Greece

School of Electrical and Computer Engineering

AN OUTDOORS AUGMENTED REALITY APPLICATION FOR ANDROID, FEATURING

A CULTURAL ROUTE TROUGH OLD TOWN OF CHANIA

Christos I. Panou

Dissertation Thesis

Committee:

K. Mania, Associate Professor-Supervisor

D. Dimelli, Assistant Professor

E. Petrakis, Professor

December 2017

Acknowledgments

This thesis is a result of a collective effort. As a token of my appreciation I would like to mention some of

the contributors.

First and foremost I would like to thank my Supervisor, Associate Professor Katerina Mania for her

advice, guidance and supervision throughout this whole process but also for trusting me and giving me

the opportunity to undertake a project that involving imagination and creativity. Next I would like to thank,

Assistant Professor Dimelli Despina and Dr.Lemonia Ragia for their invaluable knowledge in the historical

context of this project, their advice and the time they invested to see this project to fruition.

I would also like to thank the staff and authors of the Wikitude SDK for their quick responses in the forum

threads and of course for the provision of a free educational license to work with their framework.

Finally, I would like to thank my friends and family for their infinite support and patience.

ABSTRACT

In this thesis we present a mobile augmented reality application for cultural heritage sites in the Old town

of Chania. The main focus of this work is to provide a means for the 3D on-site visualization and

reconstruction of historical buildings in their past state for consumer grade mobile phones. In this

application we feature three monuments, the ‘Giali Tzamisi’, an Ottoman mosque in the old harbor of

Chania, the demolished Towers at the south side of the ‘Byzantine Walls’ and the ‘Saint Rocco’ Venetian

chapel. Advances in mobile technology have brought Augmented Reality to the wider public by utilizing

the camera, GPS and inertial sensors present in modern smartphones. Upon visiting these monuments a

virtual reconstruction is matched to the user's positions and viewing angle displaying the monument in its

past state while moving and exploring the area. Position tracking is performed either by utilizing the

phone’s GPS or with a combination of the computer vision capabilities of the chosen AR framework and

our sensor implementation. A location aware experience was designed and integrated to ensure that the

information is delivered not only on functional but on usability criteria as well. Apart from the 3D

reconstructions the users have access to information about various monuments throughout the city. The

monuments are categorized in key Historical periods of Crete and the users are urged to explore and

classify them to unlock the historical information while earning more points for themselves. The

application provides a map which can be used to navigate between the spatially distributed content as

well as interact with them to get directions and visit their page. The application connects to a remote

database that will allow the users to document their visits as well as store data about the city concerning

visit frequency, most liked monuments etc. By combining AR technologies with location aware and social

aspects we aim to enhance user experience and interaction with cultural heritage sites and showcase the

cultural depth of the city of Chania.

Publications

Ragia L, Dimelli D, Mania K, Panou C, (2017) Outdoors Mobile Augmented Reality Application Visualizing
3D Reconstructed Historical Monuments. The International Conference on Geographical Information
Systems Theory, GISTAM 2018

Table of Contents

TECHNICAL UNIVERSITY OF CRETE, GREECE ... 1

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING... 1

AN OUTDOORS AUGMENTED REALITY APPLICATION FOR ANDROID, FEATURING A CULTURAL ROUTE

AND THE 3D RECONSTRUCTION OF MONUMENTS IN THE OLD TOWN OF CHANIA .. 1

1 INTRODUCTION ... 11

1.1 BRIEF DESCRIPTION .. 12

1.2 HISTORICAL CONTEXT ... 12

1.3 STRUCTURE OF THE THESIS .. 16

2 AUGMENTED REALITY ... 17

2.1 INTRODUCTION ... 17

2.2 HISTORY OF AUGMENTED REALITY SYSTEMS ... 18

2.3 THE REGISTRATION PROBLEM .. 20

2.4 VISION BASED IMPLEMENTATIONS .. 21

2.4.1 Fiducial Tracking .. 22

2.4.2 Natural Feature Tracking .. 22

2.4.3 Model based tracking .. 23

2.5 SENSOR BASED IMPLEMENTATIONS ... 24

2.6 HYBRID IMPLEMENTATIONS ... 25

2.7 AUGMENTED REALITY SOFTWARE DEVELOPMENT TOOLS ... 25

2.7.1 ARToolkit ... 26

2.7.2 Vuforia ... 26

2.7.3 Wikitude SDK ... 26

2.7.4 Mobile AR framework HitlabNZ .. 26

2.7.5 DroidAR ... 27

2.7.6 ARCore ... 27

2.7.7 Tango .. 27

2.8 CHOOSING AN AR SOLUTION .. 27

2.8.1 Image Recognition... 28

2.8.2 Geo-Location and Sensors ... 30

2.8.3 Hybrid Implementations .. 31

2.8.4 Conclusion and Our Choice .. 32

3 REQUIREMENTS ANALYSIS .. 34

3.1 INTRODUCTION ... 34

3.1.1 General Requirements ... 34

3.1.2 Augmented Reality Requirements ... 35

3.1.3 Map and Navigation Requirements .. 36

3.2 USE CASE SCENARIOS ... 37

3.2.1 The User enters the application .. 37

3.2.2 The User enters the Map ... 38

3.2.3 The User interacts with a monument .. 39

3.2.4 The User navigates the app ... 40

3.2.5 The User enters the AR Camera View .. 41

3.2.6 The User wants to change the Settings ... 42

4 PROTOTYPING AND STORYBOARDING .. 44

4.1.1 Map Screen .. 44

4.1.2 AR Navigation Screen .. 45

4.1.3 3D Reconstructions .. 45

4.1.4 Classification in AR .. 46

4.1.5 Overview Pages ... 46

4.1.6 App Navigation .. 47

4.2 FINAL SCREENS AND USER EXPERIENCE ... 49

4.2.1 Login/Splash Screen .. 49

4.2.2 Map Screen .. 49

4.2.3 AR Navigation Screen .. 51

4.2.4 3D Reconstruction Screen .. 51

4.2.5 Collections Page .. 52

4.2.6 Profile Screen ... 53

4.3 MODELING THE PAST.. 55

4.3.1 Data Acquisition .. 55

4.3.2 3D modeling .. 56

4.3.3 Texture and Lighting.. 57

4.3.4 Geo-Positioning ... 58

5 SYSTEM ARCHITECTURE .. 60

5.1 CLIENT-SERVER ARCHITECTURE .. 60

5.2 MOBILE APPLICATION ... 61

5.2.1 Handling Layer .. 62

5.2.2 Views Layer ... 62

5.2.3 Model Layer ... 63

5.2.4 Background Services .. 63

5.3 SERVER .. 63

6 IMPLEMENTATION .. 66

6.1 INTRODUCTION ... 66

6.2 SERVER IMPLEMENTATION ... 66

6.2.1 Project Structure .. 67

6.2.2 Web-Service Resources .. 68

6.3 ANDROID APPLICATION ... 73

6.3.1 Basics ... 73

6.3.2 Location Service ... 75

6.3.3 Data Handling and Local Storage .. 76

6.3.4 Activities .. 78

6.3.5 MapsActivity .. 78

6.3.6 ARActivity .. 80

6.4 EVALUATION ... 87

7 CONCLUSION ... 90

7.1 SUMMARY .. 90

7.2 FUTURE WORK .. 90

8 REFERENCES .. 92

List of Figures

FIGURE 1. OVERVIEW OF THE SELECTED MONUMENTS IN THE OLD TOWN, CHANIA, CRETE. 13

FIGURE 2. THE GLASS MOSQUE AT ITS CURRENT STATE (LEFT). THE MOSQUE WITH THE NOW DEMOLISHED

MINARET (MIDDLE, RIGHT) ... 14

FIGURE 3. FRONT SIDE OF THE TEMPLE DEPICTING THE NORTHERN AND SOUTHERN PARTS (LEFT). SOUTHERN SIDE

(RIGHT) .. 14

FIGURE 4. THE WHOLE BYZANTINE WALL AND THE PART CHOSEN TO BE RECONSTRUCTED IN GREEN (LEFT). THE

DEMOLISHED AND BUILD OVER TOWERS OF THE WALL (RIGHT) ... 15

FIGURE 5. MILGRAM’S REALITY-VIRTUALITY CONTINUUM .. 17

FIGURE 6. MOBILE UNIT IN ACTION (LEFT). DIGITAL RECONSTRUCTION OF TEMPLE AS SEEN THROUGH THE HMD

(RIGHT) .. 18

FIGURE 7. AUGMENTED REALITY VIEW OF THE MEMORIAL SITE WITH AN IPAD ... 19

FIGURE 8. RECONSTRUCTION OF A DEMOLISHED BUILDING IN CHRISTCHURCH NEW ZEALAND. 20

FIGURE 9. EXAMPLE OF AN AR MARKER (LEFT). TRACKING MULTIPLE MARKERS (RIGHT)... 22

FIGURE 10. SAMPLE OF AN IMAGE BEFORE (LEFT) AND AFTER FEATURE EXTRACTION (RIGHT) 23

FIGURE 11. MOBILE COORDINATE SYSTEM AND ORIENTATION RELATIVE TO THE EARTH'S FRAME OF REFERENCE. 24

FIGURE 12. FACADES OF THE BUILDINGS PROCESSED THROUGH THE VUFORIA TARGET MANAGER 28

FIGURE 13. UNITY EDITOR WITH THE IMAGE TARGET AND THE 3D MODEL ALIGNED. .. 29

FIGURE 14. IMAGE RECOGNITION REGISTRATION FOLLOWING A SIMPLE LEFT-TO-RIGHT MOTION. 30

FIGURE 15. WIKITUDE INSTANT TRACKING EXAMPLE .. 31

FIGURE 16. LOGIN USE CASE ... 37

FIGURE 17. MAP USE CASE .. 38

FIGURE 18. INTERACT WITH MONUMENT USE CASE .. 39

FIGURE 19. SCREEN NAVIGATION USE CASE ... 40

FIGURE 20. AR NAVIGATION USE CASE ... 41

FIGURE 21. SETTINGS USE CASE .. 42

FIGURE 22. MAP ACTIVITY PROTOTYPES. FROM LEFT TO RIGHT: INITIAL STATE, MONUMENT INTERACTION,

UNKNOWN AREAS REVEALED, UNLOCKED AREAS. ... 44

FIGURE 23. AR NAVIGATION SHOWING 2D LABELS ON TOP OF THE REAL MONUMENTS ... 45

FIGURE 24. 3D REPRESENTATION IN AR.. 45

FIGURE 25. CLASSIFICATION IN AR. SELECTING THE MIDDLE CHOICE .. 46

FIGURE 26. PROFILE PAGE (LEFT), MONUMENT DETAILS (MIDDLE), MONUMENT LIST (RIGHT) 47

FIGURE 27. NAVIGATION BETWEEN THE AVAILABLE SCREENS ... 48

FIGURE 28. SPLASH SCREEN (LEFT), LOGIN/REGISTER FORM (RIGHT) .. 49

FIGURE 29. MAP SCREEN SHOWING EXPLORED AND UNEXPLORED AREAS (LEFT), MONUMENT INTERACTION

(RIGHT) .. 50

FIGURE 30. AR NAVIGATION SCREEN. SELECTING A MARKER (LEFT). CLASSIFYING THE MONUMENT (RIGHT) 51

FIGURE 31. 3D RECONSTRUCTION OF THE GLASS MOSQUE FEATURING THE NOW DEMOLISHED MINARET, AS SEEN

BY THE MOBILE’S CAMERA .. 52

file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501306977
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501306977
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501306978
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501306978
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501306979
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501306979
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501306980
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501306981
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501306981
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501306982
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501306983
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501306984
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501306985
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501306986
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501306987
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501306988
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501306989
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501306990
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501306997
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501306997
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501306999
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501307001
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501307002
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501307003
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501307004
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501307004
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501307005
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501307006
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501307006

FIGURE 32. RECONSTRUCTIONS OF THE DEMOLISHED TOWERS OF THE BYZANTINE WALL AND THE FACIAL

RESTORATION OF THE ROCCO TEMPLE ... 52

FIGURE 33. COLLECTIONS SCREEN SHOWING THE HISTORICAL INFORMATION OF EACH PERIOD AND THE LIST OF

ITS MONUMENTS (LEFT). DETAILS SCREEN OF THE GLASS MOSQUE (RIGHT) .. 53

FIGURE 34. PROFILE VIEW SHOWING LOCAL PROGRESS (LEFT) AND VISITED MONUMENTS (RIGHT). 54

FIGURE 35. 3D SCENE OF THE OSM DATA AS PRODUCED BY THE OSM2WORLD. ST.ROCCO IN THE MIDDLE (LEFT),

GLASS MOSQUE (MIDDLE), THE BYZANTINE WALL (RIGHT) .. 55

FIGURE 36. THE 3D MESH OF THE RECONSTRUCTIONS IN SCALE WITH THE EXISTING BUILDINGS 56

FIGURE 37. THE FINAL 3D MESHES (A)GLASS MOSQUE, (B)BYZANTINE WALL, (C)ST. ROCCO TEMPLE 57

FIGURE 38. FINAL TEXTURED MODELS .. 58

FIGURE 39. POSITIONING THE MODEL AT ITS GEO-LOCATION WITH GOOGLE SKETCH-UP 58

FIGURE 40. SYSTEM OVERVIEW .. 60

FIGURE 41. SYSTEM ARCHITECTURE ... 61

FIGURE 42. DATABASE SCHEMA ... 65

FIGURE 43. WEB-SERVICE STRUCTURE ... 67

FIGURE 44. MANIFEST FILE ... 74

FIGURE 45. LOCATION SERVICE DIAGRAM .. 76

FIGURE 46. DOWNLOADING PROCESS SEQUENCE DIAGRAM .. 77

FIGURE 47. MAPS ACTIVITY USER INTERFACE ... 80

FIGURE 48. AR NAVIGATION WORLD UI ... 82

FIGURE 49. CHANGING 3D MODELS ... 84

FIGURE 50. INSTANT TRACKING .. 85

FIGURE 51. GRAVITY VECTOR ON THE AXES OF THE PHONE .. 86

FIGURE 52. INSTANT TRACKING CROSSHAIR (LEFT), VALIDATION (MIDDLE), TRACKING (RIGHT) 87

file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501307007
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501307007
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501307008
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501307008
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501307009
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501307010
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501307010
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501307011
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501307012
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501307013
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501307014
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501307017
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501307019
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501307020
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501307023
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501307024
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501307026
file:///C:/Users/George/Desktop/Thesis-%20Christos%20Panou.docx%23_Toc501307027

Outdoors Augmented Reality Application

Chris Panou 11

1 INTRODUCTION

Competition in the tourism industry has brought a rapid development of applications
that serve and entertain the visitor. In conjunction with the promotion of monuments,
cultural heritage and archaeological sites, these applications act as modern digital
guides. Augmented Reality seems more than capable of being integrated in such
systems by enriching the communication of information. The increased power,
portability and the built-in sensors present in modern mobile phones has led to them
becoming an ideal medium for Augmented Reality tourist guides.

In this work, we present the design and implementation of an MAR (Mobile
Augmented Reality) application, for Android devices, that provides on-site 3D
visualizations and reconstructions of historical buildings in the Old Town of Chania,
Greece, superimposed over their real-world equivalent, as part of a smart AR tourist
guide. Instead of the traditional static images or text presented by mobile tourist guides,
we aim to enrich the sightseeing experience by providing a means to visualize the past
glory of these sites in the context of their real surroundings. Taking into consideration
the importance and historical value of the monuments, our approach offers the
opportunity to interact with them in non-intrusive ways, thus, eliminating the need to
interfere with the remains and on-going archaeological research.

Based on a mobile, personalized, location-aware experience taking place in various
areas of Chania, Crete, we aim to enhance user experience and interaction with cultural
heritage sites and showcase the city’s cultural wealth. The mobile AR application
features a database that holds records of various monuments. The database also stores
the users’ documentation of their visits and interactions in the areas of interest. User
requirements gathering and AR development while located in the challenging outdoors
environment of a city, pose significant technical as well as user interaction challenges
when compared to generic software development, testing and evaluating process.
Reliable position and pose tracking is paramount so that the 3D content is accurately
superimposed on real-settings, at the exact position required and is one of the major
technical problems of AR technologies. Our system features a geo-location and sensor
approach which compared to optical tracking techniques allows for free user movement
throughout the site, independent of changes in the building’s structure. Moreover we
combined this implementation with a hybrid technique to showcase the capabilities of
future and on-development technologies.

The AR mobile application developed aims to provide an easily extendable platform
for future additions of digital content requiring a moderate amount of development and
technical expertise. The goal is to provide a complete and operational AR experience to
the end-user by tacking AR technical challenges efficiently, as well as an insight for
future development in similar scenarios.

Outdoors Augmented Reality Application

Chris Panou 12

1.1 Brief Description

We present a Location-Based Augmented Reality application for Android devices that
provides a gamified sightseeing experience that aims to challenge and motivate the
visitors to further explore and uncover the City’s underlying history. The main Goal of
our work is the promotion of cultural heritage in the City of Chania, Crete. Our App
consists of various screens that aim to facilitate different kinds of interactions and
content presentation. As a location-based application the main functionality is
incorporated in a digital map and through an Augmented Reality camera View.

The main screen of our application is the map showing the location of the user, the
available Points of Interest as well as the buttons to navigate through the remaining
screens of the app. The aim of the map is to help the user navigate in the city and
through our spatially distributed content. This navigation can also be accomplished via
the Camera view where the Points of Interests are displayed in 3D space on the
camera’s surface. In its initial state, the user is shown all the available monuments that
contain 3D reconstructions as markers on the map. The path between them is shaded
with polylines to visually integrate these points. Upon visiting the monuments the user
has access to the 3D reconstructions through the AR camera. The initial monuments act
as an introduction to the overall game. After the user visits a monument he is awarded a
number of points and when he has visited all the available reconstructions the game
enters its main state.

In this state we present all the interest areas of our system as question marks on the
map. The goal is to visit all interest areas and unlock them to earn more points. To
unlock a Point of Interest the user has to correctly classify it to the given key historical
periods of the City of Chania. All information about the periods and the monuments can
be acquired form the additional screens of the application. When a user correctly
unlocks a monument he also gains access to its historical information. The aim of this
approach is to urge the user to closely observe these monuments, consult the
information he has already unlocked or even interact with the locals to get as much
information as he can. We aim to make the user an active participant of the sightseeing
experience instead of a passive spectator.

All the historical and user-specific information are stored in a remote database
exposed to the mobile application via a REST Web-Service. The app requests the
additional interest areas based on a location request and updates the user’s progress
and monuments statistics depending on the actions that take place. We can then display
rankings and leaderboards of the users so we create a more challenging and competitive
experience that aims to further motivate the users to explore the City and subsequently
promote its cultural heritage.

1.2 Historical Context

Since the Neolithic era, the city of Chania has faced many conquerors and the
influences of many civilizations through time. Byzantine, Arabic, Venetian and Ottoman

Outdoors Augmented Reality Application

Chris Panou 13

characteristics are especially evident on the cultural center of the town clustered
towards the old Venetian Harbor. Adverse climate conditions, modern city planning and
rapid expansion have slowly compromised the state of these sites thus diminishing their
historical value and original beauty. To promote and help preserve such sites, we
designed a route throughout the city consisting of a selection of historical buildings, to
be digitally reconstructed and presented in their past state through an AR paradigm. The
final selection includes three monuments that represent key historical periods of the
Town of Chania (Figure 1).

Figure 1. Overview of the selected monuments in the Old Town, Chania, Crete.

The Glass Mosque (Figure 2) is located in the Venetian Harbor of Chania and it is the
first mosque built in Crete and the only surviving in the City dating from the second half
of the 17th Century. Erected in honor of the first garrison commander of Chania Küçük
Hasan, it is a jewel of Islamic art in the Renaissance. The mosque is a cubic building
covered by a large hemispherical cupola supported by four ornate stone arches. In the
western and northern part is surrounded by a covered arcade of six small cupolas, which
was open to the top, as is customary in mosques, but around 1880 the arcade was
covered with arched openings and neoclassic style. The mosque was used as Muslim
Temple until 1923, when the last Muslims left the island in the population exchange.
The small but picturesque minaret was demolished in 1920 or in 1939. During the
Second World War it was quite badly damaged by bombing. After suffering many
damages because of the war, it was finally restored and moved in the Archaeological
Museum of Chania. Later it was used as a warehouse, folk art museum, Information

Outdoors Augmented Reality Application

Chris Panou 14

Office of Hellenic Organization of Tourism and recently became home to events and
exhibitions.

The Saint Rocco temple is a Venetian chapel on the northwest corner of Splantzia

square that consists of two different forms of vaulted roof aisles. Although the
southernmost part is preserved in good condition, the northern and oldest one has had
its exterior painted over covering its stony façade, while a residential structure is built
on top. (Figure 3).

The Byzantine wall was built over the old fortifications of the Chydonia settlement

around 6th and 7th century AD. Its outline is irregular with longitudinal axle from the
East to the West, where its two central gates were located (Figure 4). The Wall consists
of rectilinear parts, interrupted by small oblong or polygonal towers many of which are
now partly or completely demolished (Figure 4).

Figure 2. The Glass Mosque at its current state (LEFT). The Mosque with the now demolished

Minaret (MIDDLE, RIGHT)

Figure 3. Front side of the temple depicting the northern and southern

parts (LEFT). Southern side (RIGHT)

Outdoors Augmented Reality Application

Chris Panou 15

Typical reconstruction presentation formats range from posters and maps to actual

physical or digital models. The scope of this work is to virtually restore partially or fully
damaged buildings and structures on historic sites and enable visitors to see them
integrated with their real environment. Our aim is to design and implement a mobile AR
application for Android devices that will help visitors interact with the city’s
monuments. We aim to deliver geo-located information to the users, in various forms,
and help them document their visits. By integrating digital maps and a location based
experience we aim to urge the users to further investigate interest areas in the City and
uncover their underlining history.

Figure 4. The whole Byzantine Wall and the part chosen to be reconstructed in Green (LEFT). The

demolished and build over towers of the Wall (RIGHT)

Outdoors Augmented Reality Application

Chris Panou 16

1.3 Structure of the Thesis

In this Chapter we introduced the technologies related to our work as well as the
motivation for our application. We provided a brief description of our app’s
functionality and outlined the historical aspects that further motivated us.

In Chapter 2 we provide an introduction to Augmented Reality, its definition and the
enabling technology. Following, we present an overview of past well known Augmented
Reality Systems that relate to the cultural context of our work. Next we outline the
technical challenges of Augmented Reality and describe the most common Vision Based
and Sensor Based approaches that aim to tackle them, followed by a review of the
available software library tools and frameworks for developing mobile AR applications.
Finally we describe the testing and evaluation process of the above libraries and present
our selection.

Chapter 3 presents the requirements gathering and analyzing process. We outline the
requirements we set to satisfy in the beginning and present the use-cases that illustrate
all the possible interactions between the users and our app.

In Chapter 4 we present the Prototyping and Storyboarding process. We present the
initial design of the application’s User Interface, how we aim to incorporate the required
functionality, as well as how the screens connect to each other to form a cohesive user
experience. Next we present the final User Interface, explain the deviations from the
initial design and finally we describe the process of creating our 3D assets to be
integrated with the application.

In Chapter 5 we analyze the system architecture in detail as well as the
implementation technologies. We present the implementation of the Client- Server
architecture followed for this system and describe in detail their communication and
structure.

Chapter 6 describes in detail the implementation of the mobile application and the
REST Web-Service. We first describe the Web API that serves all the historical and user
specific information to the Clients and then proceed to the mobile application where we
present how the communication of the two is accomplished, how we handle, present
and alter the acquired information and how we used the provided tools to create our
application. Finally we provide an evaluation of our final application.

Chapter 7 is a summary of the whole experience and a suggestion for future
improvements and opportunities.

Outdoors Augmented Reality Application

Chris Panou 17

2 Augmented Reality

2.1 Introduction

Augmented Reality (AR) is the act of superimposing digital artifacts on real
environments. In the reality-virtuality continuum (Milgram 1994) (Figure 5), AR is a part
of the broader Mixed Reality spectrum. In contrast to Virtual Reality where the user is
immersed in a completely synthetic environment, AR aims to supplement reality. While
early research limited the definition of AR in a way that required the use of head-
mounted-displays (HMDs), a taxonomy introduced in (Azuma 1997) tried to differentiate
it from the required technologies and defined that any system that; (1) combines virtual
and real, (2) registers (aligns) real and virtual objects with each other and (3) runs
interactively in three dimensions and in real time, is considered an AR System.

With this definition in mind, the basic requirements of AR were laid out as: scene

generation, display devices and position and pose tracking. Scene Generation refers to
the rendering capabilities of the system. AR intends to blend digital information in the
real world so it only needs to supplement reality. Therefore, fewer objects need to be
drawn and they do not have to be realistically rendered in order to serve the purposes
of an application. The display device is the way to deliver the real world combined with
the digital information to the user. These devices range from the older see-through
HMDs to modern HUDs, eyeglasses, contact lenses and the handheld displays of
smartphone’s portraying a camera view. In order for an AR system to accurately align
the digital information to the real it needs an accurate computation of the user’s
position and viewpoint relative to the environment. While In the previous two cases AR
has low requirements and high tolerance, this is not the case with pose and position
tracking. Tracking approaches vary depending on intended use, indoor or outdoor
environments and are the main components for accurate registration.

 In comparison to older systems that used a combination of cumbersome hardware
and software modules, recent advent in mobile technology has led to an integrated
platform, ideal for the development of Augmented Reality experiences, often referred
to as Mobile AR (MAR). MAR is a concept first conceived in the late 1990s with many
systems being integrated to cultural and archaeological sites, but the use of today’s

Figure 5. Milgram’s Reality-Virtuality Continuum

Outdoors Augmented Reality Application

Chris Panou 18

modern smartphones has brought AR to an even wider audience. The presence of high
processing power, cameras, inertial and GPS sensors in modern devices is capable of
providing all the necessary components of an AR system in an ergonomic hand-held
device.

In this thesis we focus on Mobile Augmented Reality (MAR) for Android smartphones.
Although there is much research in AR and how to tackle its problems the rest of this
work will be limited to technologies available to smartphones and tablets and the
restrictions they apply.

2.2 History of Augmented Reality Systems

In the past years AR has been utilized for a number of applications in cultural
heritage. One of the first Mobile Augmented Reality (MAR) Systems was built in 2002 for
the site of Ancient Olympia (Vlahakis 2001). The system provided on-site help and
Augmented Reality reconstructions of ancient ruins. The system made use of a compass,
a DGPS receiver and together with the comparison of live view images from a webcam it
obtained the user’s location and orientation. Visitors had to carry a backpack computer
which performed the calculations and wear a See-through Head Mounted Display
(HMD) to display the digital Content. The mentioned components were hooked on the
backpack computer making it a cumbersome MAR unit not acceptable by today’s
standards. In addition, the optical tracking approach requires a large number of images
to be compared in real time which leads to fixed viewpoints, thus disallowing movement
while viewing the reconstructions, and adds additional system delays as the
communication with a central database that holds the original images is required.
Despite the ergonomic restrictions, the system was very well received by the visitors as
it provided a unique site-seeing experience.

MARCH (Choudary et. al. 2009) was a mobile Augmented Reality application

developed for digitally enhancing the visits of prehistoric caves. It was developed in
Symbian C++, running on a Nokia N95. It was the first attempt of a real time MAR
application without the use of grey-scale markers. Instead, it was using coloured

Figure 6. Mobile Unit in action (LEFT). Digital Reconstruction of temple as seen through the HMD

(RIGHT)

Outdoors Augmented Reality Application

Chris Panou 19

patches added to the corners of images containing prehistoric cave engravings. The
system made use of the phone’s camera to detect these images and overlay them with
complete drawings made from experts. The augmentations would either be available in
museums or by acquiring the prepared images, uprooting the experience from its
original context and presenting it in a context-less object.

With the advent of mobile devices more sophisticated AR experiences are made
possible like the one for the Bergen-Belsen memorial site, (Pacheco et. al. 2014), a
former WWII concentration camp in northern Germany which was burned down after
its liberation. The application integrated database interaction, reconstruction modelling,
and content presentation in a hand held device. The system was developed for an I-
Phone. Real time tracking was performed with the device’s GPS and orientation sensors
and navigation was conducted either via map or the camera. The system was
superimposing the reconstructed building models on the phones camera effectively
comparing past and present states. AR paradigms and location awareness in historical
settings could be further employed to promote interactions with the sites and elevate
the user from a passive spectator to an active participant and improve the
communication of information.

Focusing more on the promotion of cultural heritage in outdoor settings, VisAge
(Julier et. al. 2016) was an application aiming to turn users into authors of stories and
cultural histories in urban environments. The system featured an online portal where
users could create their stories using routes through physical space. A story is a set of
spatially distributed Points of Interest (POIs). Each POI has its own digital content
consisting of images, text or audio. A viewing tool was developed for mobile tablets in
Unity using Vuforia’s tracking library to overlay the digital content in the real space. The
users could then follow these routes in the city and view the digital stories. Tracking was
performed using natural feature detection algorithms from the camera’s feed. As per
any optical approach the experiences are susceptible to environmental changes and
content delivery is not guaranteed due to the lighting variations of the outdoor setting.

Further work in 3D reconstructions was shown in CityViewAR (Leeet al. 2012), a
mobile outdoor AR application that was developed to allow people to explore destroyed
buildings after the major earthquakes in Christchurch, New Zealand. Besides providing

Figure 7. Augmented Reality View of the memorial site with an IPad

Outdoors Augmented Reality Application

Chris Panou 20

stories and pictures of the buildings, the main feature of the application is the ability to
visualize three-dimensional models of the buildings in AR, based on a geo-location and
sensor approach. The available content was displayed on a map and the reconstructions
were available when at the designated location. While 2D maps offer all the required
information AR navigation has shown that it can further assist users’ navigation by
promoting the 2D projection of the content in 3D and in the real world.

2.3 The Registration Problem

Registration in an AR system is the degree in which the virtual information is
accurately presented with the real environment. The objects in the real and virtual
worlds need to be properly aligned with respect to each other, or the illusion that the
two co-exist will be compromised (Azuma 1997). In contrast to Virtual Reality (VR)
where such errors result in visual-kinesthetic conflicts, in AR such conflicts are visual-
visual and easier to detect. Take for example a user wearing a VR headset that raises
his/her arm to see a virtual one. If the virtual arm is off by a few centimeters, it may not
be detected because the conflict is between the “sensed” position of the real arm, and
the “seen” position of the virtual one. In the corresponding AR application the virtual
arm should completely overlap the real one, so such an error would be easily
detectable.

Registration errors are divided to dynamic and static. Static errors are the ones that
affect the AR scene even when both user and environment are in stasis. Sources of such
errors can be bad calibration of mechanical parts, incorrect tracker-to-eye ratio, field-of-
view parameters, optical lens distortions, etc. Static errors depend mostly on
mechanical parts and the correct initial calibration of the system and can be accounted
for to a very satisfying degree. Dynamic errors on the other hand are the ones that take

Figure 8. Reconstruction of a demolished building in Christchurch New Zealand.

Outdoors Augmented Reality Application

Chris Panou 21

effect if either the viewpoint (user) or the annotated object, begin moving. For MAR this
kind of errors are by far the largest contributors to the Registration problem and vary
depending on the implementation.

In early AR systems the single most important factor for dynamic errors was end-to-
end system delays. A tracker reported user movements to the system and the system
should then update the digital artifacts on the screen. This computation and its delivery
should precede changes in the user’s pose which proved at the time to be a very difficult
task. With today’s hardware, system delays have been minimized and the main source
for errors in registration is Pose estimation (Position and Orientation tracking). Tracking
in an AR scene has proven a complicated task with no single best solution.

In order to register virtual content in the real world, the pose (position and
orientation) of the viewer with respect to some "anchor" in the real world must be
determined. Depending on the application and technologies used, the real world anchor
may be a physical object such as a magnetic tracker source or paper image marker, or
may be a defined location in space, determined using GPS or dead-reckoning from
inertial tracking.

In order for an AR system to overlay the world with digital information it needs to
track its position with 6 DoF (Degrees of Freedom). That means three variables for
position and three for orientation. There are many factors that have enabled modern
smartphone’s to track their position. Inertial sensors, GPS positioning and optical
sensors can provide all the necessary data for such computations. Although there are
many approaches to pose estimation for AR systems, we will focus on implementations
for consumer grade smartphones. Each tracking approach has its advantages depending
on the use case. The main approaches are: vision based tracking, which relies on the
device’s camera and ways to process the live feed and sensor based that combines GPS
positioning and the inertial sensors of the device.

2.4 Vision Based Implementations

Vision based tracking approaches determine camera pose using data captured from
optical sensors. In the wider AR area these optical sensors can be: infrared sensors,
visible light sensors and 3D structure sensors. Consumer grade devices are currently
limited to visible light sensors. These cameras are particularly useful as they can both
act as the real world background shown to the user as well as the screen for registering
the digital content in the real world.

Vision based tracking with visible light has become increasingly popular in recent
times due the minimal hardware requirements and increased computational power of
modern devices. The main techniques that utilize the phone’s camera can be divided
into three categories: (1) Fiducial tracking, (2) Natural Feature tracking and (3) Model
based tracking. In the next subsections we will discuss each approach as well as their
advantages and limitations.

Outdoors Augmented Reality Application

Chris Panou 22

2.4.1 Fiducial Tracking

Fiducials are defined as artificial landmarks that are added to the environment to aid
in registration and tracking. In the earlier days of AR these fiducials could be colored
LEDs or pieces of paper. By placing them in known positions pose could be determined if
enough fiducials were identified from the camera in the scene. In order to calculate the
pose the detection of a minimum of 4 fiducials is required. This lead to their final form
that uses a single planar fiducial (often a piece of paper) featuring a quadrilateral shape
whose corners act as the 4 known points and additional information can be encoded
inside the shape to allow for unique fiducials to be used in the same application.

These are known as Augmented Reality Markers (Figure 9) and served for many years
as the main technique for AR applications due to their simplicity to use and high
accuracy in registration. However Marker based augmented reality still requires the
placement of these fiducials in the real environment which in many cases is not
desirable or ever possible. Additionally as per any vision based implementation anything
that compromises the visibility between the camera and the marker can make the
virtual scene collapse, which further limits their use to strictly controlled environments.

2.4.2 Natural Feature Tracking

In contrast to marker based tracking Natural Feature tracking uses features already
present in the environment. Complicated image processing algorithms are used to
detect features such as corners, points or intersecting lines in captured images of the
objects to be tracked, and a unique descriptor is calculated to allow for the
identification of each feature. By matching features in the scene with the known ones,
pose calculation is possible using similar algorithms as in marker tracking.

Figure 9. Example of an AR marker (LEFT). Tracking multiple markers (RIGHT)

Outdoors Augmented Reality Application

Chris Panou 23

The most common natural feature detection algorithms are SIFT, SURF, BRIEF, ORB,
BRISK and FREAK. While SIFT and SURF proved too complicated for real time tracking in
mobile devices, they acted as the base for BRIEF, a much less complex and viable
solution. The success of BRIEF and its integration with AR systems lead to more feature
detectors which aimed to improve performance. The most notable are BRISK and FREAK
with the later proven to outperform its predecessors.

Natural feature tracking is currently the most commonly used tracking approach as it

removes the intrusiveness of the AR markers and it allows for robust tracking and
registration. However this approach relies heavily on the features present in the real
world scene and the ability to identify them. This means that a little number of features
as well as occlusions and diverse lighting conditions in a scene, can greatly diminish the
system’s tracking capability.

2.4.3 Model based tracking

Although not as popular as the Fiducial and Natural feature tracking these tracking
techniques use known 3D structures, like a CAD model, to track real world objects. Edge
filters are used to extract structure information about the scene which is then matched
to primitive structure types, like lines, cubes, cylinders and circles, to provide pose
estimations. Combining these tracking techniques with natural feature detection
allowed for the inclusion of textures in the models which provided greater robustness in
complex and variable environments.

Extracting structure information about the real world has lead AR to adopt the well-
known in robotics SLAM concept (Simultaneous Localization and Mapping) which allows
for simultaneously create and update a map of the real environment while localizing the
system’s position within it. These approaches elevated the AR system’s capabilities from
tracking planar surfaces to more complex geometries and 3D structure. The motivation
for SLAM together with further optimizations for AR has led to a process named PTAM
(Parallel Tracking and Mapping) where the tracking of the camera and mapping of the
environment components where separated which improved the overall performance.

Figure 10. Sample of an Image before (left) and after feature extraction (right)

Outdoors Augmented Reality Application

Chris Panou 24

Line of sight requirements and the inability to close large loops currently limits these
implementations to small environments and tracking of small objects. However these
techniques and their adaptation with modern smartphones is still in its infancy and
more implementations are being developed involving additional sensors and trackers
that will enable smartphones to reliably track 3D space.

2.5 Sensor Based Implementations

Inertial tracking uses long range sensors like accelerometers, magnetometers and
gyroscopes to calculate orientation, and combined with positions acquired from the GPS
the system can calculate its pose relative to the Earth’s frame. Inertial sensors allows for
orientation tracking with 3-degrees of freedom by using a 6-axis accelerometer for
orientation relative to the center of the Earth, and a magnetometer for measurements
relative to the North. Gyroscopes can then be employed to detect changes between
relative movements. By combining this information Easting can be calculated and 3 DOF
orientation estimate is available (figure 11).

Although position tracking is available solely with the use of the same sensors, they

are very susceptible to drift over time, especially for such estimates which can only be
derived from velocity. Due to this issue positioning with inertial sensors should only be
conducted with additional trackers capable of providing measurements for drift
correction. For this reason sensor based systems employ other methods for position
tracking. The GPS sensor provides position tracking in outdoor environments with an
average accuracy of 3 meters. Locations acquired by the GPS include latitude, longitude
and altitude (where available) information in the world coordinate system. Combined
with the orientation estimate from the inertial sensors, 6 DOF tracking is possible
relative to the Earth’s Frame.

Sensor based implementations have no range restrictions or line-of-sight
requirements and carry no risk of interference from external sources. In contrast to
vision based approaches, these implementations may not know where the real objects
are placed in the environment and rely on a “sensed” view of the scene, with no

Figure 11. Mobile coordinate system and orientation relative to the Earth's frame of reference.

Outdoors Augmented Reality Application

Chris Panou 25

feedback on how close the digital and the real align and thus provide less accurate
registration. The combination with the GPS also limits the use to outdoor scenes where
GPS reception is available.

2.6 Hybrid implementations

Hybrid tracking systems fuse data from multiple sensors to add additional degrees of
freedom, enhance the accuracy of the individual sensors, or overcome weaknesses of
certain tracking techniques. As mentioned above, sensor based implementations are
susceptible to drift and latency due to filtering, while optical implementations have line
of sight requirements and short range. This has led to many applications utilizing both
vision based tracking and inertial sensors. This allowed the systems to take advantage of
the low jitter and drift of the optical approaches while extending the range of the AR
system through the inertial sensors that have no line of sight requirements and high
update rates that ensure responsive graphical updates.

Most commonly model based tracking is combined with inertial sensor tracking.
Motion estimates of the system are calculated from the inertial sensor, fusing data from
accelerometers and gyroscopes, while the optical approaches provide measurements
for drift correction and map the real world scene. Combining such techniques with
additional depth information has opened up new possibilities for AR. The most well-
known approach for such techniques is the KinectFusion system by Microsoft which
uses data obtained from the Kinect’s structured light depth sensor to create high quality
three dimensional models of real objects and environments, and these models are also
used for tracking the pose of the Kinect in the environment.

Such implementations have shown to provide pixel perfect registration and have
extended the capabilities of AR systems to more complex use cases often including both
indoor and outdoor environments. However the complexity of these implementations
often leads to the inclusion of additional sensors and trackers like depth sensors, IR
cameras, LEDs, laser pointers etc. which are not available to consumer grade mobile
phones. Currently implementations that only use a camera and the inertial sensors
available to the majority of mobile devices, are limited to small unknown environments
and the detection of horizontal surfaces like the ground, tables etc. and do not allow for
matching of predefined models, thus the digital content is manually placed by the users.
Also developing with such techniques is supported by a very small number of AR SDKs
and requires specialized equipment.

2.7 Augmented Reality Software Development Tools

In this section we review software library tools for developing AR applications. There
are a number of available tools and each may target different application platforms like
Desktop AR, Mobile AR or both. In this work we provide an overview of tools targeting
Mobile AR for Android smartphones and tablets. The available tools range from low-

Outdoors Augmented Reality Application

Chris Panou 26

level libraries that provide access to core functionalities like tracking and rendering, to
higher-level implementations that allow the developer to focus on the AR content.

2.7.1 ARToolkit

ARToolKit is one of the most widely adopted software development tools for
Augmented Reality. It is an open source and low-level tool that not only provides
marker and markerless tracking of its own, it also allows developers to deploy and test
custom tracking implementations. It is developed in C language and supports Windows,
Linux and Mac OS X desktop operating systems. It provides full Unity3D and
OpenSceneGraph support for advanced rendering capabilities. It uses computer vision
techniques and supports classical square markers, 2D barcode, multimarkers, and
natural feature tracking. Furthermore, ARToolKit supports any combination of the above
together.

2.7.2 Vuforia

The Vuforia library developed by Qualcomm is also one of the most popular low level
libraries. It is widely known for its Computer Vision capabilities as it supports the natural
feature tracking of planar images, detection of cylindrical surfaces, small 3D objects, text
and small boxes with flat surfaces. It has ample documentation and provides great
support through its online forum. Development with the Vuforia library can either be
done on the Native level with the Android NDK in C or in Unity3D with the Vuforia
plugin. In this case the programmer can use the normal Unity3D visual programming
and scripting interface to create rich interactive experiences.

2.7.3 Wikitude SDK

The Wikitude SDK is one of the most popular high-level AR SDKs that combines Geo-
Location and Computer Vision capabilities. It provides implementations for
development in Java, JavaScript and a Unity plugin similar to the Vuforia library. Due to
it being a high level tool feedback from the tracking implementations is limited. The
SDK’s features include natural feature tracking for planar images as well as cloud
recognition for big datasets. It also supports sensor and geo-location tracking and most
recently the Instant tracking feature which combines sensors and image processing
techniques for environmental tracking and placing of AR content. It has great
documentation and it provides great support through its forum.

2.7.4 Mobile AR framework HitlabNZ

It is a framework that allows the development of Android AR apps in java. It is based
on a Geo-Location approach either with relative locations (mock locations) or real
Locations from the GPS. It provides its own OpenGL implementation which allows for

Outdoors Augmented Reality Application

Chris Panou 27

simple touch interactions and has its own digital map implementation to display the
geo-located content. The framework has ample documentation but it was developed for
older versions of the Android API.

2.7.5 DroidAR

Droid AR also provides vision-based marker tracking, which is based on the OpenCV
computer vision library and uses square markers similar to that of ARToolkit. It also
allows for Geo-Location based AR as well as footstep recognition for indoor positioning.
Unfortunately the SDK does not provide enough documentation and it is also based on
older versions of Android.

2.7.6 ARCore

ARCore is a platform for building augmented reality apps on Android developed by
Goggle. ARCore relies on hybrid tracking using motion detection, light estimation and
environmental understanding to provide AR experiences in unknown environments. It
has great documentation and currently supports devices running Android N or later. It
supports a wide variety of platforms including Android, Unity3D, the Unreal Engine and
the Web using the three.ar.js JavaScript library and prototype browsers for Android and
iOS.

2.7.7 Tango

Tango is a tool developed by Google that targets specific AR enabled devices
equipped with the KinectFusion sensors. It provides SLAM capabilities with Motion
tracking, Area learning, Depth perception and Visual Positioning and development can
be done either with the C/C++ API, Java API or in Unity3D. Currently it is only available
for Android and specifically for devices that include the Kinect sensors.

2.8 Choosing an AR solution

The most important aspect of our AR experience is the representation of the chosen
monuments in their former state. That includes replacing existing parts of those
buildings, adding parts that were demolished or their complete overlap with a 3D
reconstructed model, where necessary. Since our ultimate goal is to provide a complete
experience to the end user, we relied on tested and working solutions for the AR
experiences. Our case targets large scale buildings in wide areas and highly visited and
unsupervised touristic sites. Taking this into consideration we concluded on the main
restrictions our application needs to fulfill:

 We cannot interfere with the structures in any way

 The tracking technique used should ensure the delivery of the AR experience
without assistance

Outdoors Augmented Reality Application

Chris Panou 28

 The AR experiences should be available to consumer-grade mobile phones
with no additional external hardware components

 The AR experiences should be available from many or all, if possible,
viewpoints

While Geo-Location approaches are predominantly used in outdoor environments,

the accuracy of the GPS led us to also take into consideration optical approaches based
on Natural Feature detection algorithms and hybrid implementations.

2.8.1 Image Recognition

 AR frameworks support both sensor and optical implementations. Image recognition
that relies on natural feature detection algorithms was tested using a variety of images
captured from the annotated monuments on-site. For the purposes of testing these
optical implementations we developed a sample application using the high-level Vuforia
Unity3D plugin. The Vuforia SDK was chosen because it is highly regarded amongst
computer-vision based tools, and due to the Unity plugin testing the ready to use
implementations on the site requires less time.

The first step to implement the sample app was to acquire the images from the sites
and upload them to the online Target Manager Tool, provided by Vuforia, to be
processed through the natural feature detection algorithm and provide us with the final
database of features. This database holds the collection of images we provided and their
sets of features which are called “targets”. The target manager is a web-based tool that
enables the developers to create, store and manage these target collections as well as
export them to the developing environment of their choice. After creating the target
collections we export them as a unity assets package. An example set of the image
targets can be seen in figure 12. These images do not represent the whole set of
features but a portion of them provided by the tool to assist the developer in evaluating
the targets. Each image is a target to be detected by the device in the camera’s feed and
tracking can be done with multiple targets simultaneously up to a maximum of 5.

Figure 12. Facades of the buildings processed through the Vuforia target manager

Outdoors Augmented Reality Application

Chris Panou 29

The Unity game engine provides a fast and easy way to create 3D environments.
Unity is notable for its ability to target games for multiple platforms including Android,
Windows, macOS, iOS and Linux. Through its smart and adjustable Graphic environment
it allows for the manipulation of 3D objects and scenes with minimal coding
requirements. To integrate Unity with the Vuforia SDK we need to import the Vuforia
unity package to the project. This package contains the components that incorporate all
the Computer Vision capabilities provided by the SDK. In Figure 13 we can see an
overview of the developing environment.

The components available from the Vuforia plugin can be seen in the bottom panel.

The most important component for the AR scene is the ARCamera. This is a special
camera type that supports augmented reality apps for both handheld devices and digital
eyewear. The image target component is where the acquired data-sets are loaded. In
the 3D scene it is a simple plane depicting the target image. By making the 3D model a
child of this component it specifies that it will only be rendered after detection and at
the location relative to the target as specified in the scene. At this part of the process it
is important to note that representation was not important, the ultimate goal is to test
the tracking so the 3D model is a very basic 3D mesh and it is manually aligned with the
target. Additional targets can either be added individually or with the multi-target
component in the same way. After repeating the process for all the targets and buildings
we can install the sample application directly from Unity to the desired device.

The main screen of the sample app is a camera surface depicting the real word. When
a target of the provided set is detected in the camera’s feed, the 3D model is rendered

Figure 13. Unity editor with the Image target and the 3D model aligned.

Outdoors Augmented Reality Application

Chris Panou 30

on the corresponding location on the screen. The final part is to visit each site and test
the optical implementation.

While image recognition has presented great results, due to fast hardware and
improved algorithms, we could not rely on it. Outdoors environments present very
challenging conditions to such implementations. Building façades provided very little
features and together with variations in lighting conditions, the sets of features
provided to the AR system differ greatly from the real scene and thus the targets where
not recognized. In the rare cases where tracking was possible, as seen in Figure 14,
simple movements of the device resulted in miscalculations of the orientation. Taking
also into account the cramped environment of a touristic site where many factors can
compromise the visibility of the targets, image recognition did not present a realistic
choice.

2.8.2 Geo-Location and Sensors

Sensor approaches rely on the inertial sensors of the device for orientation tracking
and on the GPS for positioning. Specifically for Android devices these sensors can be
either be hardware components like magnetometers, accelerometers and gyroscopes or
software components that rely on multiple physical components and sensor fusion to
produce specific results, like the linear-acceleration sensor, orientation sensor, the
gravity sensor and more. These sensors can be categorized as motion sensors that
measure acceleration forces and rotational forces along three axes of the device, like
the accelerometer and gyroscope, and positioning sensors that provide absolute
measurements about the physical position of a device like the magnetometer and the
orientation sensors. The geo-location approach requires measurements relative to
earth’s frame of reference. This requires the combination of motion and positioning
sensors to determine the orientation and their combination with the GPS which
provides latitude, longitude measurements for position.

If the virtual objects are accurately positioned and oriented in the world coordinate
system, the AR system is aware of the distance between them because that model is
built into it. All the digital content is associated with a geo-location which is then
matched to the user’s position and viewing angle. For these implementations we used
the HitlabNZ mobile AR framework and the Wikitude JavaScript API. These tracking

Figure 14. Image Recognition registration following a simple left-to-right motion.

Outdoors Augmented Reality Application

Chris Panou 31

techniques do not require any preparations in the environment and their
implementation relies on cheap sensors present in every modern smartphone.

The biggest problem with these implementations is the registration errors introduced
by the GPS accuracy and the latency from filtering the sensor data. The AGPS present in
mobile phones has an average accuracy of 3 meters. This error margin proves very
impactful, especially in the case where we overlay the reconstructed parts of a
monument, as the illusion completely breaks if the 3D model is registered even a meter
away from the real building. The orientation calculation is based on the accelerometer
and the magnetic-field sensors and a combination of these two with a gyroscope, if
present. While the magnetic-filed sensor provides absolute measurements and needs
no filtering, the accelerometer measures all forces that act on the device, which means
that unwanted motions and mechanical noise need to be filtered out in order to isolate
the force of Gravity. This Filtering process unavoidably introduces latency to the system
following relative motions of the camera. For example, when a user moves the device to
look higher at an overlaid building, the 3D model will be dragged along with the motion
until it is significant enough to pass through the filter.

2.8.3 Hybrid Implementations

During the development process the only available tool for such implementations
was the Instant tracking from the Wikitude JavaScript API. This technique uses the
sensors of the device together with computer vision techniques to allow for tracking in
an unknown small area, designated by the user on runtime.

The system assumes a ground surface based on the user’s height and the digital

content can be manually placed on it, by clicking on the screen. The user actively starts
tracking with a button and the ground surface is “anchored” on features identified from
the camera. This technique supports minimal movements around the scene but when
the initial tracking position is off the field of view, tracking fails.

Figure 15. Wikitude Instant tracking example

Outdoors Augmented Reality Application

Chris Panou 32

This technique enables tracking in unknown environments and not the recognition of
predefined areas, so in our use case the users can place the 3D models of the buildings
everywhere around them and not on top of the actual buildings. In order to limit the
placement to the predefined locations we employed our own sensor implementation,
based on the GPS and the orientation sensors, that aims to replicate the SDKs estimates
and transfer the frame of reference from the one relative to the device to the world
coordinate system. In order to do so we combined the instant tracking option with the
Geo-Locations API. We used the Geo-location API to note the location of a monument
on the screen with a blue circle that has a radius of the accuracy of the receiver. So if
the accuracy of the GPS is at 3 meters while the user is visiting a monument, we overlay
a circle with a 3 meter radius at the base of the monument. The sensor implementation
is then employed to check if the user is pointing the device inside the area annotated by
the circle.

When these requirements are met, the annotated circle turns green to signify the
event and the tracking option is enabled to the user. To correctly draw the model on the
screen we need to transfer its axes to the world coordinate system as well. Since our
model is originally geo-positioned, we apply an initial rotation equal to the bearing
between the user and the building.

This approach relies on the cooperation of the user. By using the GPS we have
effectively transferred its error to this implementation, so to compensate for that the
user has to place the center of the assumed tracking plane at the “perceived” center of
the building or the model will be registered at wrong locations. Nevertheless since the
receiver’s accuracy designates the available area the worst case scenario is the same as
with the Geo-Location approach and the user can take action to improve the
registration despite the GPS error. Moreover this approach takes advantage of the
optical implementation’s tracking following relative camera movements, and the 3D
model appears “anchored” on the actual building.

2.8.4 Conclusion and Our Choice

As stated in the introduction there is no single best solution to tracking and
registration. Each case presents its own limitations and different approaches are better
suited for each one. Vision based approaches are best suited for controlled and small
environments but their performance diminishes in wide and outdoors areas where the
sensor based approaches provide the best results. Tracking in AR systems is an open
problem that is still being researched. Although the future seems to lie within hybrid
implementations, they are currently in their infancy and most often require additional
hardware components.

The most important criterion when selecting an AR solution is reliability. Graphics
have little meaning when tracking is not possible. Therefore we concluded on a Geo-
Location approach and the instant tracking option of the Wikitude SDK. While a case can
be made for the low registration of the Geo-Location approaches, due to sensor filtering
and low GPS accuracy, these implementations require fewer actions by the users and
ensure that the AR experience will be delivered independent of external conditions. In

Outdoors Augmented Reality Application

Chris Panou 33

contrast the Instant tracking option provides greater registration and eliminates the
latency, but is susceptible to occlusions and requires more actions by the users. The
decision to include both implementations was taken to provide users unaccustomed to
AR applications an intuitive way of visualizing the 3D models with the Geo-Location
approach, while also being able to provide a more sophisticated AR experience with the
Instant Tracking. The Wikitude JavaScript API was selected due to its robust results,
educational licensing-option, documentation, big community and customer service.

Outdoors Augmented Reality Application

Chris Panou 34

3 Requirements Analysis

3.1 Introduction

Before we begin to think what technologies we might need to build our app, we need
to have an idea of what we wish to build. What our application is going to be about,
what current needs it fulfills and what new abilities it might give to the users. After
having the initial, general idea for our AR application and what we aim to do by creating
it within the context of this thesis, it's time to begin mapping it out. In doing so, it will
help eliminate any problems and ensure that functionality that we chose to be in the
application doesn’t get missed.

Our goal was to create an application capable of providing visitors of Chania city an
immersive sightseeing experience with easily accessible historical information. We aim
to promote the standard ways of communicating such information by providing on-site
3D reconstructions of monuments and a location-aware experience featuring the
exploration of our city’s cultural wealth.

In the next sections we provide the requirements gathering process, the use case
scenarios whose aim is to identify, clarify and organize the system requirements.
Because of the nature of this application the requirements gathering process was our
own and did not include stakeholders and potential users of the application.

3.1.1 General Requirements

The application needs to be fully functional and provide a complete experience to the

end-user. As a location based experience the physical presence in the City of Chania is
required, as well as access to the City’s monuments.

The application will be available to everyone with an Android smartphone that meets
the requirements of AR. The device needs to be equipped with specific sensors to
support the 3D visualization in the real world and the availability of these sensors needs
to be checked in order to ensure the optimal flow of the experience.

 The application needs to provide a means of navigation throughout the spatially
distributed content. Since all the information is delivered on a location basis, an
interface that helps the user locate the available information relative to his location
needs to be included.

The application is targeting any visitor or inhabitant of the City of Chania, with no age
or educational requirements. The goal is to inform the user about the city in the best
way possible. Bellow we outline additional functional requirements about the overall
system:

Outdoors Augmented Reality Application

Chris Panou 35

The system needs to provide historical information about the city.

The system needs to showcase monument statistics.

The system needs to store and update monument data.

The system needs to store, update and delete user data.

The user needs to register to partake in the experience.

The system must provide the 3D reconstructions to unregistered users.

The user needs to be able to modify his profile.

The user needs to be able to view his progress and score.

The user needs to be able to mark places.

The user needs to be able to adjust battery settings.

The system needs to showcase player rankings.

The user must be notified about nearby monuments when the application is in the

background.

The user must have control to the background processes.

The system needs access to the GPS sensor.

The application needs to have access to the phone’s camera.

The application needs internet access.

There needs to be a tutorial to help the user get acquainted with the basic functionality

3.1.2 Augmented Reality Requirements

The system must run on all android devices that meet the requirements of AR.

The system needs to provide 3D representations of the monuments in an AR paradigm.

The users must be able to change through the available representations.

The chosen monuments must be physically accessible.

The user needs to be able to select tracking methods.

The user needs to be able to Navigate through the AR camera.

Outdoors Augmented Reality Application

Chris Panou 36

The representations should be accessible from all the available viewpoints.

3.1.3 Map and Navigation Requirements

The system needs to include a map to assist in navigation.

The map needs to include annotations over the interest areas.

The annotations need to be interactive.

The map needs to annotate the user’s location.

The user must be able to customize the theme of the map.

The user must be able to filter the information shown on the map.

The minimal area to interact with a monument needs to be annotated on the map.

The map needs to notify the user when he can interact with a monument.

Outdoors Augmented Reality Application

Chris Panou 37

3.2 Use Case Scenarios

In this section we provide the use case diagrams depicting a user's interaction with
the system and the relationships between the user and the different use cases in which
he is involved.

3.2.1 The User enters the application

The figure bellow illustrates the interactions available after the user has launched the
application, and wants to proceed to the core functionalities.

Figure 16. Login Use case

The user wants to login:
The user presses the “Login/Register” Button and enters his username/email and

password to proceed with an existing account.

The user wants to create an account:
The user presses the “Login/Register” Button, changes to the register page and fills

the required fields to create a new account. The fields required are a username, an
email, first and last name and a password.

The user wants to proceed without an account:

The user presses the “Continue as Guest Button” to enter the application without a
registered account. The user is informed by the system that the experience available to
non-registered users is limited.

Outdoors Augmented Reality Application

Chris Panou 38

3.2.2 The User enters the Map

The interactions depicted below are available after the login process of the
application and change depending on the option selected. The screen navigation and
monument interaction cases will be described in more detail in the following
subsections.

Figure 17. Map Use Case

The user wants to move the Map:
The user can use the basic touch events to navigate the map. Panning is done via one

finger while rotating and tilting is done with two fingers.

The user wants to center to his location:
The user can press the “My Location” button to center the camera at his Location.

Outdoors Augmented Reality Application

Chris Panou 39

The user wants to navigate the app screens:
By interacting with the Bottom Bar the user can navigate to the rest of the screens

and activities.

The user wants to interact with the self-dot:
A Registered user can get a quick overview of his stats by pressing on his location

indicator on the map. The overview shows his geo-location, local, his name and score.

The user wants to interact with a marker:
When a registered user presses on a marker shown on the map an info window is

displayed above it showing a thumbnail, a brief description, the monuments name and
the distance between the user and the monument. Further pressing on the info window
the user is transferred to the Details Page of the monument.

The user wants to filter the map:

A registered user can filter the markers shown on the map by period or by his
selection.

3.2.3 The User interacts with a monument

The user’s physical presence at a site is required to access the AR experiences

Figure 18. Interact with Monument Use Case

Outdoors Augmented Reality Application

Chris Panou 40

The user wants to classify a monument:
A registered user can enter the explore mode of a monument and proceed to classify

it into one of the three given periods.

The user wants to view a 3D reconstruction:
All users can enter the 3D reconstruction of a monument if available. The users can

then choose between the two tracking methods available.

3.2.4 The User navigates the app

The user wants to navigate through the available screens of the application.

Figure 19. Screen Navigation Use Case

The user wants to see his profile:
Registered users can access their profile page by pressing the “profile” button. Guest

users are informed that this page is available only to registered ones. In the profile the
users can see their details, edit them, view their progress and the monuments they have
marked and visited.

The user wants to see the leaderboards:

All users can proceed to the leaderboards page by pressing the “Leaderboards”
Button. In the Leader Boards screen the user can swap between the players’ scores and
the monuments stats.

The user wants to enter the AR Camera View:

Outdoors Augmented Reality Application

Chris Panou 41

All users can swap to the AR View from the map and proceed with 3D Navigation.
This case is explained with more detail in the next subsection.

The user wants to see his collection:

Registered Users can access the Collections screen where all the available historical
information is displayed. The user can then swap between periods, navigate to the
monument details, get directions, and visit external links.

The user wants to change the settings:

All users have access to the settings page where they can customize the application.

3.2.5 The User enters the AR Camera View

The user will be able to experience the 3D Localization in the AR View. Contrary to a
2D Map, the content is overlaid on the phone’s camera in their real locations.

Figure 20. AR Navigation Use Case

The user wants to interact with a marker:
The user can select markers by clicking on them. Only one marker can be selected at

a time. Details about the corresponding monument will be displayed at a panel at the

Outdoors Augmented Reality Application

Chris Panou 42

bottom of the screen. The user can mark the monument, proceed to the corresponding
AR activity or see the monuments details from buttons on said panel.

The user wants to see the 3D reconstruction or classify a monument:

The user can transfer to the AR experience by pressing the corresponding button.
This transfer is only available if the user is at the monument.

The user wants to see the details of a monument:

The user can navigate to the details page of the monument by pressing the
corresponding button.

The user wants to save the monument:

The user can save the selected monument by clicking on a toggle button appearing
on the panel.

3.2.6 The User wants to change the Settings

The bellow use-case is available by pressing the settings option from the navigation
bar. The user has access to the options depicted below.

Figure 21. Settings Use Case

Outdoors Augmented Reality Application

Chris Panou 43

The user wants to enable/disable the auto-sign-in option:
The user can enable or disable the auto-sign in option.

The user wants to change the GPS location settings:
The user can choose between the available location settings profiles concerning GPS

frequency and mobile network usage.

The user wants to change the theme of the map:
The user is able to change the map theme.

The user wants to disable/enable the auto-follow camera:
The user can enable or disable the auto-follow camera in the map.

The user wants to disable/enable the Background Location Service:
The user can enable or disable the background location service which is responsible

for notifying the user about nearby monuments when the app is in the background.

The user wants to change location providers:

The user can swap between the GooglePlayServices Location API and the Android
Location API.

Outdoors Augmented Reality Application

Chris Panou 44

4 Prototyping and Storyboarding

The initial step to start developing the application is to create some prototypes and
wireframes of what the app screens and their corresponding UI might look like.
Prototyping gives as a good insight on the problems that might occur and help us
eliminate them before we are too deep into development. Now that we have an
overview of the app’s functionality and how it interacts with the user, we aim to
encapsulate these aspects in our design.

 As in any mobile application a clear definition of its screens and the navigation
between them is required to ensure that the experience is properly delivered. Below we
outline the basic aspects needed for a location based application and the way our
design aims to solve them, how we decided to define our activities and how the
navigation between the apps screen is accomplished.

4.1.1 Map Screen

To navigate Through the City the user can either use the Map or the AR Cam
activities. The map activity is the main screen of our application which facilitates the
core of the functionality. In this screen the user gets an overview of his location and the
City. In its initial state we only show a Route featuring the AR presentations (Figure 22).
When the user reaches a monument in the Route the map zooms to his location and the
minimal area needed to interact with the monument is shown around the marker
(Figure 22). When the user enters the highlighted area, the marker is then active and he
can transfer to the AR screen. The user can navigate in free and guided mode. In the
guided mode the map’s camera follows the user’s location at all times. Panning,
zooming and rotating are still enabled but when a new location is received the camera
returns to the user’s position. In free mode the user can move the camera to any
location.

Figure 22. Map Activity prototypes. From Left to Right: Initial State, monument

interaction, unknown areas revealed, unlocked areas.

Outdoors Augmented Reality Application

Chris Panou 45

4.1.2 AR Navigation Screen

The user will be able to switch from the map to the AR camera displaying the
locations of interest as labels in the camera’s surface (Figure 23). This way the user can
get a representation of the content in the real environment. The same functionality as
the map applies to the AR camera as an alternate means of navigation. Switching
between the map and the AR camera can be done from either screen.

Figure 23. AR Navigation showing 2D labels on top of the real monuments

4.1.3 3D Reconstructions

The AR View is the screen where we overlay the digital content on the camera’s surface
(Figure 24). The main aspect of it is the reconstruction of the monuments in 3D and the display
of historical information in text. The additional information will either be available by clicking
on the model or constantly shown in a frame on the screen. The representation starts from the
furthest point in time while it gradually moves to the present.

 Figure 24. 3D representation in AR

Outdoors Augmented Reality Application

Chris Panou 46

To simulate the passage of time the user can progress through it with the use of 2 buttons

(forward, backward) or a seek bar, that change the period and in response the digital content
(3D model, text). When the user completes the presentation he is returned to the map. The
presentation varies for each site and the information available to us. The user will be able to
access the AR presentation anytime he is visiting a given landmark.

4.1.4 Classification in AR

The user is transferred to this screen when visiting an unknown location. Similar to the AR
navigation, when the user transfers to this screen a 2D label is shown, on top of the given
landmark, prompting the user to sort it to one of the provided historical periods (Figure 25).
When the user chooses correctly the label changes to represent the period and the user
unlocks the historical information while he gains points for himself.

Figure 25. Classification in AR. Selecting the middle choice

4.1.5 Overview Pages

In the details page the user can get an overview of each attraction, historical
information, images and links to external sources (Figure 26). The user can transfer to
this screen by the map, the AR view and the list view. The list view is the view holding all
the monuments. The user can sort them by period, by status or by his selection. Each
plate in the list represents a monument with a thumbnail on the left and the
corresponding text on the right.

Outdoors Augmented Reality Application

Chris Panou 47

Finally in the Profile screen the user gets an overview of his information and he has

access to all the historical information he has unlocked and to what remains hidden. He
can track his progress for each period and he can also visit the details page of each
monument he has unlocked.

4.1.6 App Navigation

In the next figure we layout the basic navigation between the above screens. For the
initial design we use a wide implementation rather than a deep one, making every view
easily accessible from the main screen. The main screen of the application is the Map
View. At any time the user can change between the Map view and the AR view while the
app navigation remains intact. The user has access to the profile page and the list page
through buttons in the main screen.

 If the user is at a specific location he can initiate the corresponding AR experience.
The details page is available through the map, if marker is selected, after the completion
of any AR experience, and through the list view where all the available monuments are
displayed. The screens’ hierarchy is preserved when navigating backwards.

Figure 26. Profile Page (Left), Monument Details (Middle), Monument List (Right)

Outdoors Augmented Reality Application

Chris Panou 48

Figure 27. Navigation between the available screens

Outdoors Augmented Reality Application

Chris Panou 49

4.2 Final screens and User Experience

In this section we present the final screens of the application and explain in detail the

flow of the experience while we justify any deviations from the initial design.

4.2.1 Login/Splash Screen

Upon the activation of the application the user is welcomed in a splash screen. In this

screen the user can choose whether to create an account or login to an existing one, or
continue as a guest and have access only to the 3D reconstructions (Figure 28).

If the user chooses the login/register option, the form changes so the user can enter

the required credentials. The user can swap between the login and register form from
the corresponding highlighted text at the bottom of the screen. After the login process
the user transfers to the main screen.

4.2.2 Map Screen

 In this screen all POIs are displayed on the map in their corresponding geo-locations.
By clicking on a marker the user can see the info window of the POI containing its name,
a thumbnail and the distance between them (Figure 29). By clicking the Info window

Figure 28. Splash screen (Left), Login/Register form (Right)

Outdoors Augmented Reality Application

Chris Panou 50

itself the user is transferred to the Details Page of that monument. From the bar at the
bottom of the screen, the user can navigate to the remaining screens of the application.
These include his profile, the leader-boards, the Collection and the preferences, and the
AR navigation available from the middle round button.

In the initial state the user is only shown the available 3D reconstructions, AR markers
in Figure 29. In order to interact with a monument the user needs to be inside the
highlighted area as shown in the above figures. When the user enters the area the color
changes to note the activation of that monument. If that monument has available 3D
reconstructions a sidebar is revealed with two buttons used to transfer AR activities
with the two different tracking options.

After visiting these monuments and viewing them in AR, the rest of the POIs locations
are unlocked and displayed on the map, question marks in Figure 29. The goal is to visit
them and classify them to the provided historical periods based on their architectural
characteristics and on clues obtained in the Collection page and from the already visited
monuments.

Figure 29. Map Screen showing explored and unexplored areas (left), monument

interaction (Right)

Outdoors Augmented Reality Application

Chris Panou 51

4.2.3 AR Navigation Screen

In this screen the content is displayed in the real world as 2D labels, which contain
basic information about the POI. By clicking on a label a bottom drawer appears which
holds a brief description if the monument has been explored, and allows for more
interactions (Figure 30). Users can save the POI for later reference, access the
reconstruction if available, or return to the map with the camera centered on the
selected monument. If the label represents an unexplored area the user can transfer to
the AR classification page, shown in Figure 30. Radar with all the available locations is
shown on the top right corner of the screen.

4.2.4 3D Reconstruction Screen

The 3D reconstructions are the main feature we aimed to provide (Figures 31, 32). In
this screen a reconstructed 3D model of the monument is overlaid on the camera and
the GPS and inertial sensors are exploited to display the monument on its real location.
The users can freely move around the real site to view the monuments from all available
angles. They can access the slider, available from the bottom right button, to change the

Figure 30. AR navigation screen. Selecting a marker (left). Classifying the monument

(right)

Outdoors Augmented Reality Application

Chris Panou 52

representation. In the current state of the application the user can change between the
whole models and the reconstructed parts.

4.2.5 Collections Page

The Collections page is where a collection of all the historical information is
displayed. It consists of a view pager containing all periods in chronological order; the
user can swap right and left to change through the available periods. Each page has a
historical briefing, an image showing the active area for that period and a list with all the
monuments that have been correctly classified. The locked monuments are contained in

Figure 31. 3D reconstruction of the Glass mosque featuring the now demolished minaret, as seen by the

mobile’s camera

Figure 32. Reconstructions of the demolished towers of the Byzantine Wall and the facial restoration of

the Rocco temple

Outdoors Augmented Reality Application

Chris Panou 53

a separate list at the end of the pager. The users can see the monument specific
information by selecting the items on the list (Figure 33).

By clicking an item plate the user transfers to the Details activity where all the

monument specific information is displayed. In the gallery region of the screen the user
can swipe right and left swipe through the stored photos or bring them at full screen by
clicking on them. He can mark and save a monument, from the button at the name plate
and get directions to the monument’s location from the bottom map image.

4.2.6 Profile Screen

The profile and leader-board page follow the same structure as the Collections
(Figure 34). In the profile page the user can swipe through pages containing his
information, his local progress and the lists of saved and visited places. By clicking on
the progress plates visible from the local progress tab, he can transfer to the Collections
for the selected period and by selecting a monument he can transfer to its details page.
In his information tab he can swap to the edit profile form where he can edit all the
demographic information provided when registering, including his password.

Figure 33. Collections Screen showing the historical information of each period and the list of its

monuments (Left). Details screen of the Glass Mosque (Right)

Outdoors Augmented Reality Application

Chris Panou 54

The leaderboard page can be used to get information about the City. The user’s
position is highlighted in a list showing the current standings. He can then compare his
progress and results with that of the other visitors (Figure 34).

Figure 34. Profile View showing local progress (left) and visited monuments (right).

Outdoors Augmented Reality Application

Chris Panou 55

4.3 Modeling the Past

In order to record the past state of the selected monuments, old photographs,
historical information and estimates from experts were utilized. The 3D models
visualizing their past state will be presented in real size superimposed over the real-
world monument and must be in proportion with their surroundings. Therefore,
accurate measurements of their structure are necessary. Due to the lack of schematics
and plots, we relied on data derived from online mapping repositories which provide
outlines and height. In order to ensure historical accuracy and avoid the communication
of false information, the final models and their reconstructed parts are in abstract form,
depicting only the main structural elements of each monument.

4.3.1 Data Acquisition

The outlines of the three monuments were acquired from OpenStreetMap (OSM). By
selecting specific areas of the monuments on the map, we can then export a .osm file
that contains the available information concerning that area, including building outlines
and height, where available. This file is essentially an xml file including all OSM raw data
including roads, nodes, tags etc. The file is then imported into OSM2World, a Java
application whose aim is to produce a 3D scene of the underline data, (Figure 35).

These representations are basic triangulated meshes of the outlines raised to reach

the height value for each building. As evident from the Byzantine Wall (Figure 35) height
data are not always available and in the other two cases it is not clear if the domes and
roofs have been taken into consideration. The decision was made to continue with
these models as a basis and any disproportions would be corrected after the on-site
testing. The models were then exported to .obj format and imported to the Blender 3D
modelling software.

Figure 35. 3D Scene of the OSM Data as produced by the OSM2World. St.Rocco in the middle

(Left), Glass Mosque (Middle), The Byzantine Wall (Right)

Outdoors Augmented Reality Application

Chris Panou 56

4.3.2 3D modeling

With the basic structures of the buildings and information about the reconstructions
we proceed to create the final 3D mesh that will be used in the application. The
modelling process was focused on preserving a low vertex count as complex geometry
compromises interactive framerate in systems with low processing power such as
mobile phones. In the initial stage we only created the demolished parts, fig11, to be
overlaid on the real buildings.

On site testing showed that the three meters average accuracy of the GPS receiver

and the constraint viewpoint in some sites (St.Rocco for example) completely breaks the
illusion as the parts were not registered accurately with the environment. Instead we
created the whole buildings with their reconstructed parts, to completely overlap the
real ones. The most important aspect is to keep the reconstructions in proportion. The
final scale and size will be accounted for in Google sketch-up while we position the final
model in the world coordinate system. The final models can be seen at Figure 37. These
models constitute the whole buildings as they used to be. Reference images were used
for modelling the existing parts while more details were added to keep them consistent
with the real ones. This detail work, especially in the domes and railings of the Glass
Mosque(a) and the columns in Saint Rocco(c), unavoidably heightens the poly count but
the final results were deemed satisfactory. The Byzantine wall(b) being the most
abstracted, resulted in 422 vertexes. The Glass Mosque counts 7,614 and the Saint
Rocco temple 4,919 vertexes.

Figure 36. The 3D mesh of the reconstructions in scale with the existing buildings

Outdoors Augmented Reality Application

Chris Panou 57

4.3.3 Texture and Lighting

Texture mapping is a method of adding photorealism and detail to a flat surface
without adding extra geometry. A texture map is a bitmap image that is applied to the
surface of a polygon creating a high fidelity visual result. Images from the monuments
were used as references to locate the surface materials. The texture mapping procedure
followed a multi-material approach were different materials are assigned to different
parts of the buildings. Each material is then assigned images to apply to the surfaces.
Due to the lack of information the actual texture of the reconstructed parts is unknown
so the aim is to more accurately represent the compositing material rather than the
actual surface. At this point of the procedure, an account of the rendering capabilities of
the AR framework needs to be made. The framework supports only a power of 2 png or
jpeg single material texture map. That means that we cannot include bumps, normal
maps and multi-textures to more accurately represent the surfaces.

The materials that compose the entire texture set are baked into one image that will
serve as the final texture. UV mapping is the process of unwrapping the 3D shape of the
model into a 2D map. This map contains the coordinates of each vertex of the model
placed on an image. The materials that were assigned to the surfaces are then baked
onto the image that forms the final texture. Taking into account that the monuments
will be displayed on a mobile phone screen in real size, we needed high resolution
textures. This unfortunately raises the final size of the texture files, however, the
process results in a high quality visual result. The final texture resolution is 2048x2048
pixels (Figure 38). In order to light the scene, we used a simple hemi light provided by
3D the modelling software. The hemi light is a 180-wide uniform and shadow-less light.
Although the AR framework supports other light sources that produce shadows and
make the scene more realistic, we cannot adjust its position during run-time. This would
lead to misaligning shadows and wrongly lit surfaces between the real environment and

(a)

(b)

(c)

Figure 37. The final 3D meshes (a)Glass Mosque, (b)Byzantine Wall, (c)St. Rocco temple

Outdoors Augmented Reality Application

Chris Panou 58

the 3D models. The hemi lamp provides lighting from all angles and does not produce
shadows that would impair the experience.

4.3.4 Geo-Positioning

In order for the reconstructions to be accurately displayed combined with real-time
viewing of the real world, an initial transformation and rotation needs to be applied. The
models were exported in .dae format and imported into Google Sketch-up. The area of
the monuments provided by Google Maps is projected on a ground plane. We then
position the monument on its counterpart on the map. Given that the proportions of
the monuments are in line, the final model is scaled to fit on the outlines. The location
of the monument is then added to the file and provided to the framework.

Figure 38. Final Textured Models

Figure 39. Positioning the model at its geo-location with

google Sketch-up

Outdoors Augmented Reality Application

Chris Panou 59

In order to include the model in the AR framework, it needs to be in the Wikitude 3D
file format (.wt3). This is a compressed binary format used and introduced by Wikitude,
for fast loading on mobile devices. To convert the file to this format we use the Wikitude
3D Encoder, a desktop application provided by the SDK. Currently it can only convert
models from the .fbx format, which is used to provide interoperability between
different digital content creation applications. After the conversion the final wt3 file,
which includes the models and their textures in a single file, is deployed with the assets
of the application.

Outdoors Augmented Reality Application

Chris Panou 60

5 System Architecture

5.1 Client-Server Architecture

 In the previous chapter we analyzed the requirements that our application needs to
meet. Now that the basic functionality is laid out it is time to start mapping out the
implementation of our overall system. From early on in the process it was clear that our
system could not only consist of a stand-alone mobile application.

Our overall implementation is based on client-server architecture. This decision was
made to provide an easily expendable platform that will allow the seamless inclusion of
additional sites and Cities, as well as providing useful statistics about the users and the
monuments, without interfering with the application. Moreover it ensures that the data
can reach additional platforms, other than the Mobile Application, that will allow for the
future development of tools that e.g. create and handle additional content.

Figure 40. System Overview

In our design the server features a database with all the historical and user specific

information and is responsible for serving them as requested by the mobile client. A
web based API facilitates the communication of the two and a registration to the system
is necessary to provide personalized information. A concept that needs to be addressed
at this point is that the application facilitates a location based experience. This means
that for the information to be of any use to the client, the latter’s physical presence at
any interest area needs to be established. So the mobile client request all the
information based on its location. The server concludes if the location corresponds to

Outdoors Augmented Reality Application

Chris Panou 61

any content and responds accordingly. In the next sections we will explain in detail the
System’s design shown in Figure 41 and then proceed to its implementation.

Figure 41. System Architecture

5.2 Mobile Application

One of the main challenges we faced in designing our MAR application was the lack of
established guidelines in the application and integration of AR technologies in outdoor
heritage sites. Since our experience takes place in outdoors areas, where internet
connectivity is limited and predominately based on data usage, we developed a local
database that will cache the information acquired by the server. Our aim was to create a
stable platform that will be able to provide all the necessary information and
interactions to its users while keeping it consistent with the server.

 Our design is based on three main layers (Figure 41) and the background services
that provide the GPS and sensor data. The views layer is where the interactions with the
users take place. Together with the background location service they act as the main
input points to the system. The events that take place are forwarded to the handling
layer which consists of two modules. The Data Manager which is responsible for

Outdoors Augmented Reality Application

Chris Panou 62

interacting with the local content and communicating with the views and the Rest Client
which is responsible for handling requests, to and from, the server. The model layer
consists of a local database and basic helper modules to interact with it as well as parse
the obtained JSON files. The actions flow from the Views layer and the Background
Service to the lower levels. Responding to a user event or a location update, a call is
made to the handling layer which will access the model to return the requested data.

5.2.1 Handling Layer

The Handling layer is the most important of the three, all interactions, exchange of
information and synchronization passes through this layer. The Rest Client provides an
interface for receiving and sending information to the remote database, as requested by
the other layers, while the Data Manager is managing the local content. All information
received from the server are parsed and stored in a local Data Base to minimize internet
usage. These two components are responsible for keeping the two data structures
consistent. So if any component needs to request any data form the server it will make a
call to the Rest Client, after the data is received the client will employ the Data Manager
to update the local database and then the initiating call will resolve. The handling layer
acts as the intermediate between the Views and the Model and provides all the possible
ways to interact with the underlying data.

5.2.2 Views Layer

The views layer consists of basic user-interface components facilitating all the
possible interactions with the users. It is responsible for updating the user-interface
after changes. This layer handles all the input events from the users and does what is
appropriate to serve them. The components of this layer are the Android activities
which consist of the layout files that structure the UI and bound it to event patterns,
and the Java classes that handle these events. This layer requests all the needed
information from the handling layer.

Each activity is a standalone screen in our application and is responsible for creating
its own UI and handling the corresponding events. The Map View is a fragment
containing a 2D map developed with the Google Maps API. It displays the user’s
location, as obtained by the background service, and the points of Interest (POIs) as
markers on the map. The AR views are where the AR experiences take place. It is a Web
view with a transparent background overlaid on top of a camera surface. It displays the
3D models while it receives location updates from the background service and
orientation updates from the underlying sensor implementation. All interactivity is
handled in JavaScript. The View pagers are framework specific UI elements that display
lists of the POIs, details for each POI, user leader-boards and user profiles. Finally the
Notification View is used when the application is in the background and aims to provide

Outdoors Augmented Reality Application

Chris Panou 63

control over the location service. It is a permanent notification on the system tray
where the user can change all preferences of the location strategy and start, stop, or
pause the service at will.

5.2.3 Model Layer

The Model layer consists of standard storing units and handlers to enable parsing
JSON files obtained from the server and interact with the local DB. The local DB acts as a
cache for the monument information acquired by the server user specific information,
and additional variables needed to ensure the optimal flow of the application. The local
assets, including the 3D models and the html, JavaScript files required by the Wikitude
API, are stored in this layer and provided to the AR experiences as requested. The SQLite
Helper is the component responsible for directly interacting with the local storage and
offers an interface to the Handling layer, containing all available operations (INSERT,
SELECT, UPDATE, DELETE).

5.2.4 Background Services

The Background Services are responsible for obtaining the information from the
hardware components of the device, and serve them to the requesting views. There are
two services in our application; the location service and the sensor service. The location
service is responsible for supplying the locations obtained by the GPS to the Map View
and AR Views to update their UI. The location Provider is the component responsible for
obtaining the locations and offers the option to swap between the Google Play Services
API and the Android Location API, two different location strategies. In order to offer
control over battery life and data-usage the users can customize its frequency settings
from the preferences. The Event Handler is the component responsible for serving the
location events to the registered views. The user’s location is continuously compared to
that of the available POIs and if the corresponding distance is in an acceptable range the
corresponding event is fired to the listening Views. The aim of the standalone
background service is to allow users to roam freely in the city while receiving
notifications about nearby POIs. If the application is in the background a notification is
issued leading to the Views.

5.3 Server

The aim of the application server is to provide an online storage unit of historical and
user specific information. To facilitate client-server communication we used the
Representational state transfer (REST) architectural style for providing a web-based API
for the client applications. The data can be queried to provide more personalized
information to the users and useful statistics about the city.

Outdoors Augmented Reality Application

Chris Panou 64

The Web API exposes its resources via unique custom defined URLs hold by the
mobile client. Each key entity in the database schema (Figure 42) is mapped to a relative
path from the base URL of the server, and for each entity identified with the URL the
client uses different types of HTTP request methods (GET, PUT, POST, and DELETE). By
accessing these URLs and defining the http method, the clients can perform all CRUD
(Create, Read, Update and Delete) operations on the underlying data. All information is
transferred in JSON (JavaScript Object Notation). Below we outline the key entities of
our database schema and an explanation of their relationships:

Player Table

The system supports the registration of new users. Minimal requirements for this action
are the email, username and password as well as some demographic information. The
visits and places tables are used to record all the interactions of the user with the
scenes. Each user has a collection of monuments that he has visited or saved. The
player_plays_in_levels table holds the score of each player for each level and is used to
provide level specific leaderboards.

Scene Table
The scene table holds all the records about the monuments. Each monument is uniquely
identified with an auto-incremented id. For each monument the system records its
name, description, latitude and longitude values as well as relative paths to its images.
Similar to the players table, the visits and places entities enable as to keep track of
additional statistics about each the monument. Each monument can be a member of
only one level (explained below) and relates to only one historical period.

Period Table
The period table holds all the information about the historical periods used to classify
the monuments. Each period has a name, description, paths to its images and ended
and started dates. The period table is used to classify the monuments and provide
additional historical information about the levels.

Levels Table
The levels table is used to identify the playable areas that our system supports. Each
level has a Location described in latitude and longitude values, as well as a radius
(‘bound’) that sets its boundaries. Each monument in our database corresponds to a
playable area and each area can relate to a number of periods defined by the
level_has_periods table. In the current state the database only holds information about
The City of Chania, Greece, but it can be easily expanded to additional areas.

Outdoors Augmented Reality Application

Chris Panou 65

Figure 42. Database Schema

Outdoors Augmented Reality Application

Chris Panou 66

6 Implementation

6.1 Introduction

In this chapter we will describe in detail the implementation of the overall system.
We will start with the server implementation that features the Rest Web Service and
proceed to the mobile application.

6.2 Server implementation

For the purposes of this Thesis we used an Apache Tomcat server running on a local
machine. The tomcat server hosts our Rest API which is developed with Jersey, a
reference implementation of the JAX-RS annotation language API. The system’s
database was developed with MySQL.

Apache Tomcat
The Tomcat Server is an open source web server and servlet container developed by

the Apache Software Foundation. It implements the Java Servlet and the JavaServer
Pages (JSP) specifications from Sun Microsystem, and provides a "pure Java" HTTP web
server environment for Java code to run in. In the simplest configuration Tomcat runs in
a single operating system process. The process runs a Java virtual machine (JVM) and
every single HTTP request from a browser to Tomcat, is processed in the Tomcat
process. Apache Tomcat includes tools for configuration and management, but can also
be configured by editing XML configuration files.

Jersey
The Jersey RESTful Web Services framework is an open source, production quality

framework for developing RESTful Web Services in Java that provides support for JAX-RS
APIs and serves as a JAX-RS Reference Implementation. It provides its own API that
extends the JAX-RS toolkit with additional features and utilities to further simplify
RESTful service and client development.

MySQL
MySQL is a relational database management system (RDBMS) that uses Structured

Query Language (SQL), the most widely used language for adding, accessing, and
processing data in a database.

 Our web API maps its location based on a relative path from the Server’s web

address. So if the server’s address is ‘http://citywalk.duckdns.org’ and the API’s path is
‘citywalk/arapp’ then the Base URL will be ‘http://citywalk.duckdns.or/citywalk/arapp’.
Every resource available will increment the Base URL to specify its location. From this
point on, every HTTP request made to the server will be mapped to a specific resource
of our API which in turn will query the database to perform the requested operations.

Outdoors Augmented Reality Application

Chris Panou 67

6.2.1 Project Structure

The web Service was developed in Java with the Eclipse IDE and the Jersey
framework. The project structure can be seen bellow:

Figure 43. Web-Service structure

In this section we provide an explanation for the packages and classes in the above
figure. The resources and service packages are the main components of the project as
they handle the requests from the client and execute the interactions with the

Outdoors Augmented Reality Application

Chris Panou 68

database. The database package contains the classes that hold the required
information needed by the JDBC driver to establish a connection with the database. The
resources will be explained in detail in the following section. Each service class
implements the database interactions for the corresponding resource. It employs the
database to execute specific queries and acquires the result sets. It parses the results to
the known POJOS and returns them to the Resources.

The exceptions package contains all the exceptions that we throw during runtime.
The exception mappers map these exceptions to Response objects that contain a JSON
object with the HTTP status code and a message explaining what went wrong. Each
exception mapper is annotated with the @Provider annotation to be discoverable by
the JAX-RS runtime during the provider scanning phase. When an exception is thrown it
will search all registered providers for anyone that handles the specified type of
exception. The aim of exception handling is to override the default functionality that
responds in HTML. We want the Response objects to have a meaning for the client and
to be easily parsed. For example if a client tries to register with an already taken
username/email, we throw a DuplicateEntryException. The Mapper will then respond to
the client with a JSON object that contains a 409 status code and a message that the
provided credentials are already registered. The client can easily handle this message
and inform the user.

 The BasicAuthFitler facilitates the authentication of our system. This class
implements the ContainerRequestFilter interface and is applied globally to all incoming
requests that have been matched to a particular resource by JAX-RS runtime. It
intercepts requests whose URI include a prefix specified by us and checks for
authentication. Any path containing the ‘secure’ prefix will be intercepted by the
BasicAuthFilter and depending on the authentication result it will either block or allow
the request. When blocking a request we respond with a JSON object similar to the
exception mappers. When the authentication is ok execution will proceed to the
specified resource.

6.2.2 Web-Service Resources

The main functionality in our system is provided by the resources package. Each class

in this package represents a resource mapped to a specific URL. For each resource there
is a method for all HTTP requests (GET, PUT, POST, DELETE). An example of a resource
file is given below for the Users Resource:

@Path("/users")
@Produces(MediaType.APPLICATION_JSON)
@Consumes(MediaType.APPLICATION_JSON)
public class UsersResource {

 //Retrieves a collection of all the users
 @GET
 public Response getUsers(@Context UriInfo uriInfo){
 //Queries the database and returns a List of users

Outdoors Augmented Reality Application

Chris Panou 69

 List<Profile> users = UserService.getAllProfiles();
 //for each user create a link for self, places and visits

 for(Profile profile: users){
 profile.getLinks().clear();
 profile.addLink(new Link(uriForSelf(uriInfo,profile),"self"));
 profile.addLink(new Link(uriForPlaces(uriInfo,profile),"places"));
 profile.addLink(new Link(uriForVisits(uriInfo,profile),"visits"));
 }

GenericEntity<List<Profile>> gProfiles = new
GenericEntity<List<Profile>>(users){};

return Response.ok(gProfiles).build();

 }

The getUsers() method is mapped to a GET request at the relative path of the
containing class. We first retrieve a collection of User profiles from the database and
then iterate through the list and add links to the related resources of a user. Finally
we create a Response object that contains the List of the retrieved users and respond
to the client.

//Creates a new user in the database

 @POST
 public Response postUser(@Context UriInfo uriInfo, Profile profile){
 //Queries the database create a new user
 Profile prof = UserService.addProfile(profile);

 if(profile == null)
 return Response.status(Status.INTERNAL_SERVER_ERROR)
 .build();

 prof.getLinks().clear();
 prof.addLink(new Link(uriForSelf(uriInfo,profile),"self"));
 prof.addLink(new Link(uriForPlaces(uriInfo,profile),"places"));
 prof.addLink(new Link(uriForVisits(uriInfo,profile),"visits"));

 URI uri = uriInfo.getAbsolutePathBuilder()
 .path("secure")
 .path(prof.getUsername())
 .build();

 return Response.created(uri)
 .entity(prof)
 .build();

 }

The postUser() method is mapped to the POST requests at the relative path of the
class and is used for registering a new user to the system. We first insert the provided
profile to the database and then retrieve it, add the related links and respond to the
client. The provided credentials are checked in the UserService method to ensure
uniqueness.

//Authenticates user and retrieves his data

 @GET
 @Path("/secure/{username}")

Outdoors Augmented Reality Application

Chris Panou 70

 public Response getUser(@Context UriInfo uriInfo,@PathParam("username") String
username){
 //Queries the database and returns the user
 Profile profile = UserService.getProfile(username);

 profile.getLinks().clear();
 profile.addLink(new Link(uriForSelf(uriInfo,profile),"self"));
 profile.addLink(new Link(uriForPlaces(uriInfo,profile),"places"));
 profile.addLink(new Link(uriForVisits(uriInfo,profile),"visits"));

 URI uri = uriInfo.getAbsolutePathBuilder()
 .path(String.valueOf(profile.getUsername()))
 .build();

 return Response.ok(uri)
 .entity(profile)
 .build();
 }

The getUser() method is mapped to GET requests at the class’s path plus a

provided username or email. This method is used to retrieve a specific user profile
and requires authentication, evident from the ‘secure’ prefix. Similar to the previous
methods this one retrieves a profile from the database, adds the links and responds
to the client.

//Authenticates user and updates info
 @PUT
 @Path("/secure/{username}")
 public Response updateUser(@Context UriInfo uriInfo,
@PathParam("username")String username, Profile profile){
 //Queries the database to update the specified user
 Profile uProfile = UserService.updateProfile(profile, username);

 uProfile.getLinks().clear();
 uProfile.addLink(new Link(uriForSelf(uriInfo, uProfile),"self"));
 uProfile.addLink(new Link(uriForPlaces(uriInfo, uProfile),"places"));
 uProfile.addLink(new Link(uriForVisits(uriInfo, uProfile),"visits"));

 URI uri = uriInfo.getAbsolutePathBuilder()
 .path(String.valueOf(uProfile.getUsername()))
 .build();

 return Response.ok(uri)
 .entity(uProfile)
 .build();
 }

The updateUser() method is mapped to GET requests at the class’s path plus a
provided username or email. This method is used to update a user profile and
requires authentication. Similar to the previous methods this one retrieves a profile
from the database, adds the links and responds to the client.

//Deletes the user from the database

Outdoors Augmented Reality Application

Chris Panou 71

 @DELETE
 @Path("/secure/{username}")
 public Response deleteUser(@Context UriInfo uriInfo,
@PathParam("username")String username){

//Queries the database to delete the specified user
 UserService.deleteProfile(username);

 return Response.status(Status.NO_CONTENT)
 .build();
 }

The deleteUser() method is mapped similar to the previous ones and is used to

delete a specific profile from the system. A request to this method requires
authentication as well.

 @Path("/secure/{username}/visits")
 public VisitsResource getVisits(){
 return new VisitsResource();
 }

 @Path("/secure/{username}/places")
 public PlacesResource getPlaces(){
 return new PlacesResource();
 }

}

To clear the above code a little bit we need to get into the JAX-RS annotations. The

@Path annotation identifies the URI path that a resource class or class method will
serve requests for. For an annotated class the base URI is the application path, and
for an annotated method the base URI is the effective URI of the containing class. The
path specified with the annotation is appended to the Base URI. The @GET, @PUT,
@POST, @DELETE annotations map a method to the specific HTTP request type. So in
our case a GET request for ‘http://citywalk.duckdns.or/citywalk/arapp/users’ will be
handled by the getUsers() method etc.

The @Produces, @Consumes annotations specify the media type that the methods
can produce and accept. Our implementation only communicates with JSON. JAX-RS
automatically maps top level Java classes with the @XmlRootElement annotation to
JSON using JAXB. Java Architecture for XML Binding (JAXB) is an XML-to-Java binding
technology that simplifies the development of web services. For example when a
POST method is received and mapped to the postUser() method, JAXB automatically
parses the provided JSON file that contains the user information, to the Profile Java
Bean specified in the model package (Figure 43). The profile object is then provided
to the UsersService to create the entry in the database. We then add the links to the
profile and create a Response object that contains the newly created account.

The Visits and Places resources are specified as Sub-Resources of the
UsersResource. This means that the root resource partially processes a request and
provides another resource to process the remainder. The getVisits(), getPlaces()
methods are resource locators that provide the object capable of processing the
request. The HTTP request types are mapped to specific methods in the sub-

Outdoors Augmented Reality Application

Chris Panou 72

resource’s class. So a GET request for ‘http://(Base URI)/users/secure/Chris/visits’
will be handled by a method of the VisitsResource mapped to the GET request type.

The same process follows for the remaining resources:

LevelsResource:
The Levels Resource serves all the required information to describe a playable

area. The implemented functionality includes checking a client’s location for content
and serving that content if present. The resource receives a GET request that contains
latitude longitude values and queries the database for all available areas to derive if
the client is inside a level’s boundaries. Get requests can either be used to retrieve
collections of levels or specify a level by its unique id or by providing latitude and
longitude values. A level’s data cannot be modified by the users.

ScenesResource:
The Scenes Resource serves all the scene information from the database. The

scenes can be acquired by specifying their unique id or retrieve collections of them
for period and/or level. Same as the levels Resource the scene information cannot be
modified by the users so the API only supports GET requests. The images for each
scene are exposed as their own resource through the Scene’s URIs. The database
holds a path relative to the server’s deployed resources folder. When a Get request is
made for an image the SceneImageResource will query the database to acquire the
relative path and check if there are any images present. If there are we respond with
a JSON array that holds all the URIs for the images. If a specific image is requested we
create a Response object with the requested image in jpeg format.

PeriodsResource:
The Periods Resource serves all the scene information from the database. The

periods can be acquired by specifying their unique id or retrieve collections of them
for a given level. Same as the levels Resource a period’s information cannot be
modified by the users so the API only supports GET requests. The images for each
Period are exposed as their own resource through the Period’s URIs and the
implementations follows that of the Scene Images.

Outdoors Augmented Reality Application

Chris Panou 73

6.3 Android Application

In this section we provide the full implementation of the Android Application. We will

start by laying out the basics of Android development to clear out some terms that will
be used frequently in this section. Then we will describe the most vital parts of the
application. The application was developed in the Android Studio with Java and targets
any phone or tablet that runs Android 4.4 (API level 19) and higher.

6.3.1 Basics

The essential components for building an Android App are Activities, Services,
Broadcast receivers and Content providers. Each type serves a distinct purpose and has
a distinct lifecycle that defines how the component is created and destroyed. Each
component is an entry point through which the system or a user can enter the
application.

To better describe our implementation we will focus on the Activities and Services.
An activity is the entry point for interacting with the user. It represents a single screen
with a user interface. Each activity is independent and can be initiated by other apps if
allowed. A collection of activities forms the cohesive user experience of our application.
Unlike programming paradigms in which apps are launched with a main() method, the
Android system initiates code in an Activity instance by invoking specific callback
methods that correspond to specific stages of its lifecycle. In order for an Activity to
start another, it issues Intent to the system specifying the target activity’s class and
passing some arguments if needed. The activities are arranged in a stack in the order in
which each one was opened. This back stack allows for backwards navigation amongst
the screens. The user interface for an Android app is built using a hierarchy of layouts
(ViewGroup objects) and widgets (View objects). Layouts are invisible containers that
control how its child views are positioned on the screen. Widgets are UI components
such as buttons and text boxes. Android provides an XML vocabulary for ViewGroup and
View classes, so most of our UI is defined in XML files. Each activity defines its layout in
its own file.

A Service is a component that runs in the background to perform long running
operations or to perform work for remote process. Another component, such as an
activity, can start the service and let it run or Bind to it in order to interact with it. The
main purpose of the Service is to perform these operations without blocking the user
interaction with an activity.

The Activities of our application are the:

 LoginActivity

 MapsActivity

 ARActivity

 ProfileActivity

 CollectionsActivity

 SceneDetailsActivity

Outdoors Augmented Reality Application

Chris Panou 74

 LeaderboardsActivity

 NotificationActivity

 SettingsActivity

And the implemented services are the SensorService and the LocationService.

Before the Android system can start an app component, the system must know that

the component exists by reading the app's manifest file. In this file we declare all the
components of our application, we declare the hardware features and permissions
needed by the Augmented Reality Activities and we declare other APIs that our app
needs to be linked with. A part of our app’s manifest file can be seen below. The intent
Filter identifies the activity we wish to be launched when the user launches the
application.

Now that we have laid out the fundamental components of our application we will

proceed to the implementation of each one. The following sections will quite often

Figure 44. Manifest File

Outdoors Augmented Reality Application

Chris Panou 75

reference the architecture of the application shown at Figure 41, and described in the
previous chapter.

6.3.2 Location Service

The location Service is a bound Service that runs throughout the use of the
application. It is created at the start and persists even if no activity is in the foreground,
depending on the user settings. Upon creation, or when another component needs to
interact with the service, it returns a Binder object to provide access to its public
methods. The service creates the Location Provider and Location Event handler that
provide the location updates and location events accordingly.

The Location Provider creates a GoogleApiClient object and a Request specifying

location interval and accuracy settings and implements the LocationListener interface to
receive locations acquired by the API. When a new Location is received it will forward
that location to the service and the Event Handler. It provides the following methods so
that the service can control it following its own lifecycle changes: connect(),
disconnect(), Start(), Stop(), StartLocationUpdates(), StopLocationUpdates(),
setLocationMode(), registerListener(), removeListener().

The Location Event Handler receives a List of scenes with their locations and checks if

the user has entered or left the active area of any of them, which we will call a
GeoFence. The GeoFence is defined as a circle with a radius of 20 meters. To fire the
location events we check if the distance between the user and a monument is less than
the radius. It receives Location updates from the LocationProvider and forwards any
location triggers to the Service. The methods it provides are the: updateSceneList(),
requestGeoFences(), setLocationEventListener(), removeLocationEventListener().

The Service implements two interfaces and registers itself to each of these two

components to receive the Location updates and triggers, the LocationEventListener and
LoationCallbacksListener interfaces. The LocationEventListener specifies three methods:
userEnteredArea(), userLeftArea(), drawGeoFences() and the LocationCallbacksListener
specifies the handleNewLocation() method. So when a new Location is received the
LocationProvider will call the handleNewLocation() methods of the service and the
LocationEventHandler. The LocationEventHandler will then check that location for any
triggers while the Service will forward it to the Listening Activities to change their UI. In
order for an activity to receive location updates it needs to bind to the service and
implement the ServiceListener interface. This interface defines all the methods that can
be called by the Location Service.

From the time the service is created it will check its lifecycle based on the bound
activities, meaning that if an activity unbinds from the Service, because another one has
started or the user exits our application, we check with the Activity manager to see if
any activity of our process is still in the Foreground. If not we destroy or keep the
service alive based on the User settings. When the application is in the background the
Service will issue notifications on the System’s Tray when a GeoFence has been

Outdoors Augmented Reality Application

Chris Panou 76

triggered. These notifications contain an Intent Wrapper with a Pending Intent object
that effectively gives permission to the Notification Manager to start our activities when
the notification is pressed.

The Location Service is also responsible for detecting when the user leaves a playable

area. When a Location is outside the current Level’s boundaries or the local db has not
been updated in a while, it will employ the RestClient to request a new Level. More
about the communication with the remote database and the local storage is described
in the next section.

6.3.3 Data Handling and Local Storage

As described in the previous section each activity runs isolated from the rest. So we
needed a persistent storage unit to keep the downloaded content and provide it to all
the activities. This local storage unit is a database developed with SQLite. The most
important aspect of our local database was to keep it consistent with the remote. As
described in the previous chapter the two components responsible for this, are the
DataManager and the RestClient (see figure 41 in the previous chapter). The RestClient
provides an implementation for each GET, POST, PUT and DELETE requests of our Web
API. When a component needs to either get or change information from the remote
database it will employ the RestClient. The downloaded content is stored in the local db
and provided to the activities and services from the DataManager.

Following the initialization process the first activity to access the remote database is
the Login Activity. If the user logs in to an account or registers to the system the activity
will use the RestClient to either authenticate and GET a user profile or POST a new user.
The workflow then goes to the LocationService which requests a playable area given the
device’s location. When downloading content from the server the RestClient will first
employ the DataManager to store that content in the local db, and then respond to the
calling component. If something goes wrong while connecting to the server or saving to
the local db the operation will be aborted. We then notify the user for the error and last

Figure 45. Location Service diagram

Outdoors Augmented Reality Application

Chris Panou 77

request location and timestamp in the local database. The locationService will then
make a new request based on these values. In Figure 46 below we provide a diagram to
illustrate a successful level request.

Figure 46. downloading process sequence diagram

In contrast to downloading content, when uploading something to the remote db we

follow the reverse order. When a user edits his info, makes a new Visit or saves a new
Place the component performing the action will first employ the DataManager. The
DataManager then calls the RestClient to update the remote database and depending
on the response it will either update the local db or notify the user.

The local database holds a copy of the remote one for the specific Level the user is in,
its content (Periods and Scenes), and the logged in user (with Visits and Places). It also
holds some application specific information to ensure the optimal flow of the
application, like the last known location and timestamp that we updated the Level
Content to ensure it remains in sync with any changes in the server’s database. Since

Outdoors Augmented Reality Application

Chris Panou 78

our db is initialized all the components access the information only through the
DataManager. So all components first validate the state of the local content and then
make requests to the client component.

The DataManager and the RestClient each follow the singleton pattern. When an
activity is created it will acquire a reference to their instances and call their methods.
Since all communication is done with Asynchronous Tasks to not block the UI thread, all
communication between the calling activity or component is done with interfaces.

6.3.4 Activities

The most fundamental aspect of an android activity is its lifecycle within Android.
Each activity changes states while a user navigates through, out of, and back to our app.
The Activity class provides a core set of six callbacks: onCreate(), onStart(), onResume(),
onPause(), onStop(), and onDestroy(). Android invokes each of these callbacks as an
activity enters a new state. For example when the user starts our application the system
will call the onCreate() method of the LoginActivity and it will enter the created state.
This is where we initialize our handling components, services, class scope variables and
reference the UI objects. The system will then call the onStart() and onResume()
methods in quick succession. The activity then enters the resumed state which is when
the user can interact with it. The activity will stay in this state until the user navigates to
another activity of our application or another app altogether. So our focus lies on
handling the system callbacks and the user interactions through the UI.

The key activities in our application are the MapsActivity and the ARActivity. These
two activities are the most dependent on the components described above and
incorporate the core functionality of our application.

6.3.5 MapsActivity

The maps activity is where we hold the map that displays all the available scenes of
our application as markers on their geo-location. The map component is implemented
with the GoogleMapsAPI. In the onCreate() callback we get a reference to all the UI
components, get a reference to the Handler objects described above, initiate the
fragment that will hold the map, and start the Background LocationService. The
mapsActivity is registered as a listener to the service so that we can receive the location
updates and change the content on the screen. The map component adds an additional
Callback that specifies when it is ready to receive content. In this callback we initialize all
the listeners that will handle the touch events on the map objects (markers, polylines,
infowindows etc.) and draw the map. To draw the map we get a list of all the scenes
from the DataManager and draw a marker for each based on if it is visited, if it has AR
reconstructions and based on the period it belongs to. The marker holds a HashMap
with every scene id mapped to its marker to identify the touch events. When the user
presses on a marker we display an info window with the monument’s name, the
distance between the user and the monument and a thumbnail.

Outdoors Augmented Reality Application

Chris Panou 79

 After the map is drawn and the activity is in its resumed state the user interacts with
it by clicking on the markers and moving around in the City. The service will report
location updates by invoking the methods of the IServiceListener interface implemented
by this activity. The interface specifies the following methods: drawGeoFences(),
handleNewLocation(), UserEnteredArea(), UserLeftArea(), regionChaned().

The drawGeoFences() method specifies all the scenes for which the locationService
will send triggers. The map receives an array of scene ids, draws a circle for each one
and then maps the two to another HashMap.

The handleNewLocation() method is called to update the user’s Location. The map
receives a Location object which has latitude, longitude, altitude and accuracy values.
We then move the user’s marker to this location and draw a circle around it to
represent the accuracy of the GPS receiver.

The UserEnteredArea() method is called to note that the user has entered a
GeoFence. The map will then animate the color and alpha of the triggered fence to note
the event to the user. If the scene has an AR reconstruction the map will also display a
tray holding the buttons to navigate to the AR activity.

The UserLeftArea() method is called when a user exits a GeoFence. The map will then
change its color to the original and hide the buttons tray if it was visible.

The regionChanged() callback is invoked when the user leaves the Level he was
playing in or enters another. In this method we clear the map of all markers, circles and
lines and draw the new Content if available.

The maps activity acts as the main activity of our application. The user can navigate

through our app from the bar drawn at the Bottom of the screen.

User Interface

The user interface for an android activity is defined in its own XML file. The XML file

defines a view hierarchy that consists of containers and widgets. A container can hold
widgets and additional containers. There are a number of available components
provided by Android with different specifications. To populate the views we define an id
for each object and get a reference at the onCreate() callback. We can then manipulate
that View or Viewgroup through our activity’s code. For this activity we used a
Framelayout as the root container. This ViewGroup object draws its Childs on top of one
another, so the order in which they are declared matters and follows a LIFO fashion (The
last View will be drawn on top of the others).

The first view of the container is a fragment object where the map will be drawn. On
top of the map we put a LinearLayout for the AR buttons tray, which appears depending
on location events, and then a LinearLayout for the Navigation Bar at the bottom of the
screen where the users can navigate through the remaining activities. All clicks and
touch events are handled in the activity’s code.

Outdoors Augmented Reality Application

Chris Panou 80

Figure 47. Maps Activity User Interface

The xml vocabulary provided by android allows the creation of custom defined
shapes and selectors to define how different states of the buttons will be drawn. The
round buttons in the above figure are defined using such shapes to derive form the
standard rectangular buttons and improve the aesthetics of our application. The info
windows and the AR markers were designed using 9 patch drawables which can stretch
depending on the content they show, without changing their initial design. Another
important aspect of the Map component is the camera. The map view is modeled as a
camera looking down on a flat plane. The position of the camera (and hence the
rendering of the map) is specified by the following properties: target (latitude/longitude
location), bearing, tilt, and zoom. By adjusting these properties we animate the camera
at certain points of the activity.

6.3.6 ARActivity

The Augmented Reality activity was implemented based on the Wikitude JavaScript
API. The Wikitude SDK is based on web technologies (HTML, JavaScript, CSS). To
integrate the web view with Android the SDK provides us with a specific view
component called ARchitectView which we add to the activity’s Layout. We can then
load ordinary HTML pages, located in our assets folder, that utilize the API to create
objects in Augmented Reality. The first step is integrating the API with the activity’s

Outdoors Augmented Reality Application

Chris Panou 81

lifecycle. During the onCreate() call we need to initialize the ARchitectView object and
create an interface that communicates with the pages. All information is transferred in
JSON. Meaning that we need to parse any arguments we wish to send or receive from
the AR experiences.

The AR activity is started from the Map activity with an Intent. That intent contains a
key-value pair specifying the AR experience (html page) we wish to load. As described in
chapter 4 we designed three AR experiences the ARNavigation,
3DModelAtGeoLocation and InstantTracking. Each one is a separate html page that we
load at the creation of the ARActivity. After initialization the activity binds to the
LocationService to receive Location updates. The acquired locations are sent to the
architectView to draw the AR objects on the screen. So we have a single native AR
activity that runs each AR page and is responsible for initializing each one in a different
manner depending on the intent passed on by the Maps Activity. Creating each AR
experience follows the standard web development process. The UI includes a 3D scene
for the AR objects and standard 2D elements designed with JQuerry to provide
additional control over the content. We will refer to each experience as a World from
this point on.

AR Navigation

The AR navigation page displays all scenes in the camera screen at their geo-

locations. After the page is loaded we provide a JSON array with all the scene
information from the native code. The array is then parsed and for each scene we create
a marker object to be displayed on the screen. The marker object provides its own logic
to animate its changes between selected and deselected states using
AR.PropertyAnimations. Bellow we provide the method called from the Activity to parse
and create a marker for each Scene (POI-Point Of Interest):

loadPoisFromJsonData: function loadPoisFromJsonDataFn(poiData) {

 PoiRadar.show();

 PoiRadar.setMaxDistance(800);

 $('#radarContainer').unbind('click');

 $("#radarContainer").click(PoiRadar.clickedRadar);

 World.markerList = [];

 World.markerDrawable_idle = new AR.ImageResource("assets/marker_idle_colored.png");

 World.markerDrawable_selected = new

AR.ImageResource("assets/marker_selected_colored.png");

 World.markerDrawable_idle_q = new

AR.ImageResource("assets/marker_idle_stretch.png");

 World.markerDrawable_selected_q = new

AR.ImageResource("assets/marker_selected_stretch.png");

 if(poiData.length == 0){

 World.updateStatusMessage('No Scenes in your Area');

 return;

Outdoors Augmented Reality Application

Chris Panou 82

 }

 // loop through POI-information and create an AR.GeoObject (=Marker) per POI

 for (var currentPlaceNr = 0; currentPlaceNr < poiData.length; currentPlaceNr++)

{

 var singlePoi = {

 "id": poiData[currentPlaceNr].id,

 "latitude": parseFloat(poiData[currentPlaceNr].latitude),

 "longitude": parseFloat(poiData[currentPlaceNr].longitude),

 "title": poiData[currentPlaceNr].name,

 "period_id": poiData[currentPlaceNr].period_id,

 "description": poiData[currentPlaceNr].description,

 "visited":poiData[currentPlaceNr].visited,

 "saved":poiData[currentPlaceNr].saved,

 "hasAR":poiData[currentPlaceNr].hasAR,

 "thumbnail":poiData[currentPlaceNr].thumb_uri

 };

 World.markerList.push(new Marker(singlePoi));

 }

 World.initiallyLoadedData = true;

 World.updateStatusMessage(currentPlaceNr + ' places loaded');

}

First we create the images that represent a marker with the AR.ImageResource and a
path to an image at the local assets folder. Then we loop through the Array and create a
marker for each scene. A marker is an AR.GeoObject with a specific geo-location and a
selection of drawables to be drawn on the screen (TextDrawables, ImageDrawables
etc.). More on the GeoObjects will be explained at the ModelOnGeoLocaiton World. The
AR Navigation screen was designed to be very similar to the Maps Activity. It receives
the same location events and responds accordingly. Moreover here the users can
classify and unlock the unknown areas. When a GeoFence is triggered we hide all the
other markers and the user can proceed to the classifying process. When initiated the
GeoFence marker is replaced with a Question object. This object is very similar to the
marker object with some additional drawables to represent each period and additional
logic to verify the selections (Figure 48). When the user makes a wrong choice the
period’s button turns to red and an animation deducting his points is shown at the
bottom of the screen on top of his icon. If the user makes the correct choice we hide the
question object and animate the AR scene to the original view with all the markers.

Figure 48. AR Navigation World UI

Outdoors Augmented Reality Application

Chris Panou 83

The bottom panel is a JQuery panel that we slide up and down when a user selects or
deselects a marker. Inside the panel are all the Buttons to the other activities and AR
experiences as desribed in chapter 4.

ModelAtGeoLocation

 The ModelAtGeoLocation world is where we present the 3D reconstructions. It can be
loaded from either the Map activity or the AR Navigation world. Upon creation we pass
an ARScene object. At this point we need to make the clarification of the simple scenes
and the AR scenes in our system. The ARScenes are the ones that include 3D
reconstructions. To allow the reconstructions to be available offline through the Guest
Login and due to the size of the models, all their assets and 3D models are stored locally
on the device. In the assets folder we hold a JSON file with the ARScenes which we parse
on execution and load the content. The additional properties of an AR scene are; a list
with the paths to the 3D models, and some Boolean flags. Bellow we present the
instantiation of this World:

getScene: function getSceneFn(args) {

 World.modelList = [];

 for(var i =0; i < args.models.length; i++){

 var ar = {

 "path": args.models[i].path,

 "latitude": args.models[i].latitude,

 "longitude": args.models[i].longitude

 };

 World.modelList.push(ar);

 }

 var singlePoi = {

 "id": args.id,

 "latitude": parseFloat(args.latitude),

 "longitude": parseFloat(args.longitude),

 "title": args.name,

 "description": args.description,

 "num": args.num

 };

 World.scene = singlePoi;

World.createModelAtLocation();

 },

The first function we call from the Native code is the GetScene(), passing the ARScene
object. We then parse the Array to get all the models for the given scene and store it a
list. This list contains the path of each model to the assets folder and the geo-location to
be drawn. Then we call the creatModelAtLocation() function to create the overlays.

createModelAtLocation: function createModelAtLocationFn() {

 World.objList = [];

 for(var i = 0; i < World.modelList.length; i++){

 var model = new AR.Model(World.modelList[i].path, {

 scale: {

 x: 1.0,

 y: 1.0,

 z: 1.0

 },

 onLoaded: this.worldLoaded,

 verticalAnchor: AR.CONST.VERTICAL_ANCHOR.BOTTOM

Outdoors Augmented Reality Application

Chris Panou 84

 });

 var location = new AR.GeoLocation(World.modelList[i].latitude,

World.modelList[i].longitude);

 var indicatorImage = new AR.ImageResource("assets/indi.png");

 var indicatorDrawable = new AR.ImageDrawable(indicatorImage, 0.1, {

 verticalAnchor: AR.CONST.VERTICAL_ANCHOR.TOP

 });

 World.objList.push(new AR.GeoObject(location, {

 drawables: {

 cam: [model],

 indicator: [indicatorDrawable]

 },

 enabled:false

 }));

 }

},

We then loop through the models list to create an AR.GeoObject for each one. To create
a GeoObject we pass in the location (AR.GeoLocation) to be rendered, and the
drawables to draw. These include a 3D model (AR.Model) and an indicator to point to
the model if it is not in the field of view of the camera. To change through the available
representations we provide a slider at the bottom of the screen designed with JQuery.
The user can hide and show the slider from the button at the bottom right, so it doesn’t
block the view of the camera.

InstantTracking

The instantTracking world provides a second tracking method for the 3D
reconstructions. This is the only part of our application that employs the SensorService
(Figure 41). The activity starts the service and binds to when loading the html file. All
communication is done with the SensorServiceListener interface similar to the Location
Service.

 As explained in chapter 2 the instant tracking method is a SLAM implementation that
allows for tracking in unknown small areas. It assumes a ground plane based on a height

Figure 49. Changing 3D models

Outdoors Augmented Reality Application

Chris Panou 85

value. To illustrate this plane it overlays a crosshair on the screen that is positioned at
the 0,0 point of the plane. Tracking is started and stopped on demand by the user and is
dependent on the current area the camera is pointing at. The problem with this method
is that there is no way of knowing where the user is pointing the camera, or his position
relative to the real buildings. So in order for the 3D models to appear on top of the real
buildings we needed a way to estimate where the crosshair is pointing at relative to the
world coordinate system. This is where our implementation comes in. The following
Figure will help communicate the case.

Figure 50. Instant tracking

The inclined dashed line between the device and the ground represents the
crosshair’s position. The user can move the crosshair on the ground by looking around
with the device. The “target” circle in the above figure represents an AR.GeoObject we
draw on the screen on the geo-location of the monument. The point is to place the
crosshair inside that circle and at the center of the real building, to start tracking. Our
sensor implementation is constantly calculating the bearing of the device and the
crosshair’s distance (noted in the above figure), and reports them to the AR World. We
then compare the reported values with the already known values of the Distance and
bearing between the user and the target. Bellow we present the JavaScript code that
makes the comparison:

calcPointingPosition: function (){

 var degrees = World.location.acc/World.modelDistance * 180 / Math.PI;

 if(World.cHInit && World.modelInit){

 if(((World.modelBearing-degrees<= World.cHBearing && World.modelBearing

+degrees >= World.cHBearing) ||

(World.modelBearing - degrees +360 <= World.cHBearing && World.modelBearing +

degrees +360 >= World.cHBearing))

Outdoors Augmented Reality Application

Chris Panou 86

 && Math.abs(World.modelDistance - World.cHDistance) <= World.location.acc

){

 World.inPosition = true;

 document.getElementById("tracking-start-stop-button").disabled = false;

 World.controlObjectModel.enabled = false;

 World.controlObjectTriggeredModel.enabled = true;

 } else if(this.tracker.state === AR.InstantTrackerState.INITIALIZING){

 document.getElementById("tracking-start-stop-button").disabled = true;

 World.controlObjectModel.enabled = true;

 World.controlObjectTriggeredModel.enabled = false;

 }

 }

},

When these criteria are met we change the circle color to note the event and enable

the start-tracking button. When pressed tracking starts and we apply an initial rotation
to the model equal to the bearing and show it on the screen. The user can change the
crosshair’s position to better register the model to its real counterpart. In this way he
can compensate for the GPS inaccuracies.

The sensor implementation is based on the rotation vector and gravity sensors of the
device. Below is the part that computes the crosshair’s distance based on the gravity
sensor:

//compute gravity vector magnitude

double gravityMagnitude = Math.sqrt(gravity[0]*gravity[0] + gravity[1]*gravity[1] +

gravity[2]*gravity[2]);

//angle between the gravity vector and the x-z plane in Radians

double alpha = Math.acos(gravity[2]/gravityMagnitude);

//distancce between the users position and the location the camera is Pointing at

double distance = Math.tan(alpha)*deviceHeight;

Gx = gravity[0], Gy = gravity[1] , Gz = gravity[2]

The orientation of the device is given form the following:

@Override

public void onSensorChanged(SensorEvent event) {

 switch (event.sensor.getType()) {

 case Sensor.TYPE_ROTATION_VECTOR:

 float[] rotationMatrix = new float[9];

 System.arraycopy(event.values, 0, rotationVector, 0, 3);

Figure 51. Gravity vector on the axes of the phone

Outdoors Augmented Reality Application

Chris Panou 87

 SensorManager.getRotationMatrixFromVector(rotationMatrix,rotationVector);

 SensorManager.remapCoordinateSystem(rotationMatrix, SensorManager.AXIS_X,

 SensorManager.AXIS_Z, rotationMatrix);

 SensorManager.getOrientation(rotationMatrix,orientation);

 break;

 case Sensor.TYPE_GRAVITY:

 // copy new data into gravity array and calculate orientation

 System.arraycopy(event.values, 0, gravity, 0, 3);

 break;

 }

 calculatePosition();

}

 The onSensorChanged function is a callback invoked by the SensorManager. When

starting the service we get a reference to the SensorManager system service and
register the sensors we wish to receive updates, together with a value for the sampling
rate. This value is only a hint to the system and the actual delivery of events may vary.
Nonetheless we provided the SENSOR_DELAY_UI predefined rate. Since the sampling
period is not a part of our calculations the actual interval is of no importance, given that
we receive regular updates. In the following Figure we present the instant tracking
process.

6.4 Evaluation

To evaluate the resulting application we conducted field tests with two different
devices. The devices were: a Samsung Galaxy S3 Neo (Android 4.4, RAM 1.4 GB, 1.2 GHz
quad-core, Wi-Fi, GPS, Geo-magnetic sensor, accelerometer, gyroscope) and a Xiaomi

Figure 52. Instant tracking Crosshair (Left), validation (Middle), tracking (Right)

Outdoors Augmented Reality Application

Chris Panou 88

Redmi note 4x(Android 6.0, RAM 4GB, 2GHz octa-core, GPS, Wi-Fi, Geo-magnetic
sensor, accelerometer, gyroscope). While both devices were expected to perform
similarly, there was a big difference concerning the accuracy of their GPS receivers. The
S3 Neo presented an average accuracy of 8 meters while the Redmi Note presented the
expected 3 meters accuracy. In wider more open areas both devices performed better
with the S3 Neo at 3 meters accuracy and the Redmi Note at 1.4. Although the accuracy
provided with a Geo-Location represents the confidence level of the receiver and is not
a precise representation, the results remained consistent with the acquired values. This
indicates that depending on the deployed device the resulting registration of the AR
experiences may vary independent of the underlying implementation. As for the
orientation tracking the two did not present any differences and both implementations
performed as expected and described in Chapter 2.

 As expected since both devices are equipped with the same sensors, during the
instant tracking testing they performed the same with the S3 Neo accuracy issues
carrying over to this implementation as well. A known issue about the instant tracking
method is the inconsistency between our calculation of the device’s orientation and the
one calculated by the API. This measurement has been observed to vary up to 5 degrees
when the Geo-magnetic sensor reports low accuracy values. This error is minimized by
re-calibrating the sensor by moving the device in an “eight” figure motion. The user is
informed with a Toast when the sensor accuracy is low. Another known issue with this
AR experience happens when the users leave the application during tracking, if the
phone rings for example. When they return to the AR camera view and reinitiate
tracking the models either appear corrupted, and the user needs to navigate back to
another activity and reinitiate this one, or the activity will freeze and the user will return
to the map.

In order to accurately evaluate the resulting application and if it achieves the
intended functionality, we were constantly checking with potential users. The more
persistent comment was for the AR camera view during navigation. Most users found
that the use of the camera instead of the map for limited their movements and
perception of their surroundings and refrained from using it but only to locate specific
sites and to classify the monuments. In the classification process the AR camera proved
useful as it helped locate the specified monument. Moreover the AR camera together
with the constant usage of the GPS for extended time periods resulted in high battery
consumption. Following these comments we made the AR camera view a standalone
activity instead of a replacement to the map in the main activity.

Other important features implemented by following user comments are the gallery
and the save option in the monument details page. The implemented functionality
allowed users to save monuments from either the list in the collections screen or from
the info window when pressing on the marker at the map screen. The info window
functionality was mostly missed and the users found it useful to be able to save a
monument to their places when browsing through its details, so it was transferred to
the details page while the list functionality remained as is. For the gallery option the
initial design contained a link which when pressed the users transferred to a full screen
view of the images. The users suggested that a gallery region should be included that

Outdoors Augmented Reality Application

Chris Panou 89

shows all the images in the details page and when an image is pressed it will then
proceed to the full screen view of the images. The implemented region follows a
carousel fashion where the users can swipe right and left to browse through all the
images, and when an image is pressed we bring it at full screen.

As per the reception of the Augmented Reality experiences the results were very
promising. Most users had never been acquainted with a similar application and were
very excited to see the reconstructions. Although the registration problem was
commented from most users, the geo-locations approach proved really easy-to-use and
intuitive and was primarily used. The instant tracking method proved more challenging
for an unaccustomed audience, but after an initial explanation and some guidance the
users got used to it and proceeded to experiment with placing the models in the
annotated area to better overlay it over the building.

Outdoors Augmented Reality Application

Chris Panou 90

7 Conclusion

7.1 Summary

In this thesis we presented the design of a mobile Augmented Reality application
aimed for consumer-grade mobile phones with the ultimate goal of increasing the
synergy between visitors and cultural heritage sites. In addition to exploring well known
application screens and web content we offer a novel approach for visualizing historical
information on-site. By employing 3D reconstructions through AR we aimed to enhance
user-experience in heritage environments and bridge the gap between digital content
and the real environment. Our design was focused on providing an expandable platform
that can easily envelop more sites requiring little preparation and will enable future
experts to display their digitized collections using different forms of data presentation.

 During this process one of the most valuable lessons we benefit from is the
unpredictable problems and obstacles someone can face and how he can manage to
overcome them. Augmented Reality is a field that has just reached the wider public.
Mobile AR especially, where the processing power and sensor availability is limited,
makes the originally envisioned result even harder to reach. The experiences someone
wants to create are tightly correlated to the available technologies. Each use case varies
greatly leading the developer to review and reestablish the initial requirements.
Nonetheless there is much research being done and Augmented Reality has evolved
greatly with the addition of more sophisticated algorithms and specialized hardware.

Although outdoors Mobile Augmented Reality presents several challenges on a
technological aspect (concerning localization and registration), it already seems more
than capable of providing novel experiences to a wide audience. The availability and
technological advances of modern smartphones allows for an ideal integration of the
technology that can enhance the understanding of historical datasets and the
generation of more meaningful experiences.

7.2 Future Work

The field of Augmented Reality is a quickly evolving one where new technologies are
rising with high frequency so our application should follow this progress. The techniques
used in this application should not be taken for granted as tracking and registration in
AR are far from solved. Changing to a low-level Augmented Reality SDK, like the AR-
toolkit, would allow us to experiment with Augmented Reality in a more fundamental
manner by providing access to its core functionalities. New technologies, like the wide-
are tracking system presented in (Ventura and Hollerer 2012), could then be
experimented with, to see if they better fit our case. Content delivery is also a very
important aspect for creating an engaging experience. Plugins that allow the
development of AR applications with game engines like Unity3D and the Unreal engine
would allow the generation of more sophisticated interactions and high fidelity graphics,
and would greatly improve the user experience.

Outdoors Augmented Reality Application

Chris Panou 91

A Web-Based authoring tool where users and experts could create and publish
content would be a great feature for the overall system. Experts could create new AR
scenes by uploading media assets and placing them on a map, while users would be able
to browse through the geo-located information and even create and modify their own
content. By reducing the size of the assets to an acceptable value the AR experiences
could then be available to the Mobile Units over the internet.

In its current state the application does not support many interactions between the
users, apart from the overall rankings. Extending the platform to include comments,
likes, shares etc. and adding an additional communication layer would increase their
interest to the heritage sites and would add an extra motivation for the app’s use.

Gamification of heritage sites has become of increasing value as it engages visitors
and allows for new means of interacting with cultural heritage information. Augmented
and Virtual reality, have received even more attention from the field since they present
the perfect tool to elevate the interaction with historical datasets from the standard
ways of communication. Combined with scavenging and treasure hunts, location-aware
storytelling etc. they would add to an even more immersing experience and increase
visitor involvement and engagement.

Outdoors Augmented Reality Application

Chris Panou 92

8 References

Azuma R T (1997) A survey of augmented reality. Presence, 6(4):355–385

Liarokapis, F, Brujic-Okretic V, Papakonstantinou S (2006) Exploring Urban Environments using Virtual
and Augmented Reality, Journal of Virtual Reality and Broadcasting. GRAPP 2006 Special Issue, Digital
Peer Publishing, 3(5): 1-13

Lee J Y, Lee S H, Park H M, Lee S K, Choi J S, Kwon J S (2010) Design and implementation of a wearable
AR annotation system using gaze interaction. Consumer Electronics (ICCE), 2010 Digest of
Technical Papers, pp.185–186

Arvanitis T N , Petrou A, Knight J F, Savas S, Sotiriou S, Gargalakos M, Gialouri E. (2009) Human
factors and qualitative pedagogical evaluation of a mobile augmented reality system for
science education used by learners with physical disabilities. Personal and Ubiquitous
Computing 13(3):243–250

Zhou F, Been-Lirn H D, Billinghurst M (2008). Trends in augmented reality tracking, interaction and
display: A review of ten years of ISMAR. In Proceedings of the 7th IEEE/ACM International
Symposium on Mixed and Augmented Reality(ISMAR '08). IEEE Computer Society, Washington,
DC, USA, 193-202

Azuma R T, Baillot Y, Behringer R, FeinerS, Julier S MacIntyre B (2001). Recent advances in augmented
reality. Computer Graphics and Applications, IEEE, 21(6):34–47

Piekarski W, Thomas B (2002) Arquake: the outdoor augmented reality gaming system. Communications
of the ACM, 45(1):36–38

Kutter O, Aichert A, Bichlmeier C, Traub J, Heining SM, Ockert B, Euler E, Navab N (2008) Real-time
volume rendering for high quality visualization in augmented reality. In International Workshop on
Augmented environments for Medical Imaging including Augmented Reality in Computer-aided
Surgery (AMI-ARCS 2008), New York,USA

Fielding R T (2000) Architectural styles and the design of network-based software architectures. PhD
thesis, University of California

Milgram P, Kishino F (1994) A taxonomy of mixed reality visual displays. IEICE Transactions on
Information Systems, E77-D(12):1321-1329

Milgram P, Takemura H, Utsumi A, Kishino F (1994) Augmented reality: A class of displays on the reality-
virtuality continuum. Proceedings of Telemanipulator and Telepresence Technologies, 2351(34):282-
292

Nagakura T, Sung W (2014) Ramalytique: Augmented Reality in Architectural Exhibitions. Proceedings
for Conference on Cultural Heritage and New Technologies (CHNT)

Niedmermair S, Ferschin P (2011) An Augmented Reality Framework for On-Site Visualization of
Archaeological Data. In Proceedings of the 16th International Conference on Cultural Heritage and
New Technologies, 636-647

Vlahakis, Karigiannis J, Tsotros M, Gounaris M, Almeida L, Stricker D, Gleue T, Christou I T, Carlucci R,
Ioannidis N (2001) Archeoguide: First results of an augmented reality, mobile computing system in
cultural heritage sites," Proceedings of the 2001 Conference on Virtual Reality, Archeology, and
Cultural Heritage, VAST '01, (New York, NY, USA), pp. 131-140, ACM, 12, 13

Choudary O, Charvillat V, Grigoras R, Gurdjos P (2009) MARCH: mobile augmented reality for cultural
heritage, MM '09: Proceedings of the 17th ACM international conference on Multimedia

Pacheco D, Wierenga S, Omedas P, Wilbricht S, Knoch H, Paul F M J (2014) Spatializing experience: a
framework for the geolocalization, visualization and exploration of historical data using VR/AR

Outdoors Augmented Reality Application

Chris Panou 93

technologies, Verschure April 2014 VRIC '14: Proceedings of the 2014 Virtual Reality International
Conference

Julier S J, Schieck A F, Blume P, Moutinho A, Koutsolampros P, Javornik A, Rovira A, Kostopoulou E
(2016) VisAge: augmented reality for heritage June 2016 PerDis '16: Proceedings of the 5th ACM
International Symposium on Pervasive Displays

Střelák D, Škola F, Liarokapis F (2016) Examining User Experiences in a Mobile Augmented

Reality Tourist Guide, PETRA '16: Proceedings of the 9th ACM International Conference on PErvasive
Technologies Related to Assistive Environments

Amin D, Govilkar S (2015) Comparative Study of Augmented reality SDKs". In: International Journal on
Computational Sciences & Applications (IJCSA) 5

Ventura J, Hollerer T. (2012) Wide-area scene mapping for mobile visual tracking. In Mixed and
Augmented Reality (ISMAR), IEEE International Symposium.

