
Technical University of Crete

School of Electrical and Computer Engineering

Implementation of ARM processor by using
Bluespec language

Pekridis Georgios

Thesis Committee
Professor Dionisios Pnevmatikatos (Supervisor)(ECE)

Professor Apostolos Dollas (ECE)
Associate Professor Ioannis Papaefstathiou (ECE)

Chania, January 2018

Abstract

The goal of this thesis was to construct an ARM processor using the Bluspec System Verilog

language(BSV). BSV has a fundamentally different approach to hardware design, comparing

to other Hardware Description Languages. It is based on circuit generation rather than merely

circuit description and is also based on atomic transactional rules instead of a globally syn-

chronous view of the world. The processor belongs to the ARM7 family, it has a 3-stage pipeline,

it uses a 32-bit architecture and is based on ARMv4 instruction set. In addition the proces-

sor supports all the operating modes. The modes of operation are User, Fast Interrupt(FIQ),

Interrupt(IRQ), Supervisor, Abort, System and Undefined. The amount of different types of

instructions that were implemented is 26. Each and every one of these types has additional

functions depending on the condition codes and the addressing modes of the instruction. For

the verification of the design, assembly code was used. This assembly code was produced by

C++ code, through the ARM GCC.

i

ii

Acknowledgements

First of all I would like to thank my supervisor Prof. Dionisios Pnevmatikatos for his guidance

and support throughout this work and for giving me the opportunity to work on this very

interesting topic.

I would also like to express my gratitude to Prof. Apostolos Dollas and Prof. Yannis Papaef-

tathiou of being members of the committee and for evaluating my thesis.

Furthermore I would also to thank my friends that supported me all these years during my

studies in Chania.

Last but most important I would like to thank my family and my girlfriend for supporting

me in each step of the way, all these past years.

iii

iv

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

2 Bluespec System Verilog 3

2.1 Bluespec Syntax . 4

2.2 Data types in Bluespec . 5

2.3 The Bluespec compiler . 7

2.3.1 Scheduling . 8

2.3.2 The Bluesim simulator . 10

3 ARM 11

3.1 About the ARM Architecture . 11

3.1.1 Processor modes . 12

3.1.2 ARM registers . 13

3.1.3 Program status registers (PSR) . 15

3.2 ARMv4 instruction set . 17

3.2.1 The condition field . 17

3.2.2 The barrel shifter . 18

3.2.3 Branch instructions . 19

3.2.4 Data processing instructions . 19

3.2.5 Multiply instructions . 20

v

vi CONTENTS

3.2.6 Status register access instructions . 21

3.2.7 Load and store instructions . 21

4 Implementation 24

4.1 Register file . 25

4.2 Decode Instruction . 26

4.3 Barrel shifter . 27

4.4 Execution module . 28

4.4.1 ALU function . 28

4.4.2 checkFlags function . 28

4.4.3 Multiply signed and unsigned . 28

4.4.4 brAddrCalc function . 29

4.4.5 Execute function . 29

4.5 Instruction and Data memory . 30

4.6 Coprocessor . 30

4.7 Processor module . 30

4.7.1 preFetch rule . 31

4.7.2 doFetch rule . 31

4.7.3 doDecode rule . 32

4.7.4 doExecute rule . 32

4.7.5 doWriteBack rule . 36

4.7.6 doLongMul rule . 36

5 Debugging and Testing 37

5.1 Debug of the design . 37

5.1.1 Trace module . 37

5.2 Testing of the register file . 38

5.3 Testing the barrel shifter . 40

5.4 Testing the processor . 41

5.4.1 Linear search . 43

5.4.2 Largest number among 3 . 45

5.4.3 Factorial . 46

5.4.4 Fibonacci . 48

5.4.5 Bubble Sort . 50

5.5 Compare with LEON and Piccolo . 52

6 Conclusion 54

6.1 Conclusion of Thesis . 54

6.2 Future Work . 55

Bibliography 55

vii

viii

List of Tables

3.1 Processor modes . 12

3.2 Condition codes . 18

3.3 Data-processing instructions . 20

5.1 LEON-Piccolo-Our design overview . 53

5.2 Detailed allocation of resources . 53

ix

x

List of Figures

2.1 A Bluespec module . 3

2.2 Diagram of Bluespec’s compiler flow . 8

3.1 The ARM Register Set . 14

3.2 The PSR . 15

3.3 Instruction set encoding . 17

3.4 ARM Datapath . 23

4.1 ARM 3-stage pipeline . 24

4.2 Block diagram of the design . 25

5.1 TestBench the register file . 39

5.2 TestBench VCD . 40

5.3 Barrel Shifter TestBench . 40

5.4 Barrel Shifter console output . 40

5.5 Linear Search console output . 44

5.6 Linear Search VCD . 44

5.7 Largest number among 3 C++ and assembly code 45

5.8 Largest number among 3 VCD . 45

5.9 Factorial C++ and assembly code . 46

5.10 Factorial console output . 47

5.11 Factorial VCD output . 47

5.12 Fibonacci sequence C++ and assembly code . 48

5.13 Fibonacci sequence console output . 49

xi

5.14 Fibonacci sequence VCD output . 49

5.15 Bubble sort C++ code . 50

5.16 Bubble short assembly code part 1 Image . 51

5.17 Bubble short assembly code part 2 . 51

5.18 Bubble short assembly code part 3 . 51

5.19 Bubble sort VCD . 51

xii

Chapter 1

Introduction

The need to speed up the hardware design cycle has caused industry to look at more powerful

tools for hardware synthesis from high-level descriptions. One of these tools is Bluespec. Blue-

spec is a strongly-typed hardware synthesis language which makes use of the Term Rewriting

System(TRS) to describe computation as a series of atomic state changes.

Bluespec has been used at many Universities around the world for academic and research

purposes. Also there is a commercial RISC-V processor core made in bluespec language named

Piccolo. Projects and courses[5] in other Universities, such as MIT, shown that a simple

processor model like MIPS can be done quite efficiently. In addition the study[7] has shown

that the RTL Verilog generated by Bluespec compiler is often better or equivalent to hand-

coded RTL Verilog. So if there is a tool powerful enough to help developers to make advanced

and complex designs more easily, then why not to take advantage of it.

In this work we explore the benefits of Bluespec System Verilog in hardware design imple-

menting a 3-stage pipeline ARM processor core using ARMv4 instruction set architecture(ISA).

Our work will be compared with other processors as far as it concern the clock-speed and the

consumption of resources on a FPGA. The processor supports the seven operating modes that

ARMv4 suggests. An equally important factor of our work was the verification of the design.

So in order to do that, we used programs written in C++ which were translated to assembly

via the ARM GCC. As a last step of transforming the code to binary instructions, we took

1

2 Chapter 1. Introduction

advantage of the GNU Embedded Toolchain for ARM. With the use of this tool, binary files

was taken as outputs and these files was loaded to the Instruction memory to check the function

of our processor.

Chapter 2

Bluespec System Verilog

Bluespec is a hardware description language (HDL) that compiles into TRS. This interme-

diate TRS description can then be translated through a compiler into either in Verilog RTL or

a cycle-accurate C-simulation.

A general circuit is represented as a module in Bluespec. The produced object is that which

is compiled to RTL. There is a correspodence in Bluespec and Verilog modules. Three elements

compose each module. These are the state, the rules and the interface. The state can be

described from registers, flip-flops and memories. The rules are actions that modify that state.

Last, interfaces which provide a mechanism for interaction of the external environment with

the internal structure of the module.

Figure 2.1: A Bluespec module

3

4 Chapter 2. Bluespec System Verilog

2.1 Bluespec Syntax

Initially Bluespec System Verilog design consists of a module hierarchy (just like in Ver-

ilog, SystemVerilog and SystemC). The leaves of the hierarchy are primitive state elements,

including registers, FIFOs, etc. Even registers are (semantically) modules (unlike in Verilog,

SystemVerilog). The behavior of a module is represented by its rules each of which consists of

a state change on the hardware state of the module(an action) and the conditions required for

the rule to be valid(a predicate). It is valid to execute (fire) a rule whenever its predicate is

true. The syntax for a rule is:

rule ruleName[(condition)];

actions

endrule [:ruleName]

As it said before every module has an interface. The interface of a module is a set of meth-

ods through which the outside world interacts with the module. Each interface method has a

predicate (a guard) which restricts when the method may be called. A method may either be a

read method(a combinational lookup returning a value), an action method, or a combination of

the two, an actionvalue method. An actionvalue is used when we do not want a combinational

lookups result to be made available unless an appropriate action in the module also occurs.

The syntax of the interface is:

interface IfcName[#(ifc type params)];

method type methodName (type arg, ..., type arg);

...

method type methodName (type arg, ..., type arg);

2.2. Data types in Bluespec 5

endinterface [: IfcName]

There are three things to take into consideration for a rule to fire. First of all is the rule’s

condition. If this condition is false, the rule does not fire. If there is no condition then the rule

can fire in every clock cycle. Secondly, the methods have ”ready” signals. Ready signals are

specified for each method in defining module. Rule does not fire unless all ready conditions are

true. Finally a rule may not fire because it conflicts with other rules. Conflict of rules means

that the compiler needs to decide which rule have to fire first. A conflict of rules is created in

the case where two or more different rules affect the state of a module in the same clock cycle.

2.2 Data types in Bluespec

Bluespec provides a strong, static type-checking environment. Every variable and every

expression has a type. Variables must be assigned values which have compatible types. Type

checking, which occurs before program elaboration or execution, ensures that object types are

compatible and that needed conversion functions are valid for the context.

Common types One way to classify types in Bluespec are whether they are in the Bits class.

Bits defines the class of types that can be converted to bit vectors and back. Only types in the

Bits class are synthesizable and can be stored in a state element, such as a Register or a FIFO.

• Bit Types

– Bool : True of False values.

– Bit#(n): n Bits

– UInt#(n): Unsigned fixed width (n) representation of an integer value

– Int#(n) : Signed fixed width (n) representation of an integer value

• Non Bit Types

6 Chapter 2. Bluespec System Verilog

– Integer : Integers are unbounded in size and are commonly used as loop indices for

compile-time evaluation.

– String : Strings are mostly used in system functions (such as $display). They can

be tested for equality and inequality.

– Interface : Since interfaces are considered a type they can be passed to and returned

from functions.

– Also types are :

∗ Action

∗ ActionValue

∗ Rules

∗ Modules

∗ Functions

• User Defined Types

– Enum: Similar to most languages, you can define names to be used in your code.

Enum labels must all start with an uppercase letter.

– Struct : Structures contain members. A struct value contains the first member and

the second member and the third member, and so on. Structure member names

begin with a lowercase letter.

– Tagged Union: Tagged unions also contain members. A tagged union value contains

the first member or the second member or the third member, and so on. Tagged

union member names begin with a lowercase letter.

• Types from the Bluespec Library

– Maybe: The Maybe type encapsulates any data type a with a valid bit and further

provides some functions to test the valid bit and extract the data.

– Vector :A Vector is a container of a specific length holding elements of one type. To

use this type the Vector package must be imported.

2.3. The Bluespec compiler 7

– Tuple: A Tuple provides an unnamed data structure typically used to hold a small

number of related fields. Like other SystemVerilog constructs, tuples are polymor-

phic, that is, they are parameterized on the types of data they hold. Tuples are

typically found as return values from functions when more than one value must be

returned.

2.3 The Bluespec compiler

The Bluespec compiler can translate Bluespec descriptions into either Verilog RTL or a cycle-

accurate SystemC simulation (Figure 2-2). It does so by initially evaluating the high-level

description of the design into a TRS description of rules and state. From this TRS description

the compiler schedules the actions and transforms the design into a timing-aware hardware

description. This task involves determining when rules can fire safely and concurrently, adding

MUXes logic to handle the sharing of state elements by rules, and finally applying boolean

optimizations to simplify the design. From this timing-aware model, the compiler can produce

a synthesizable Verilog RTL or SystemC executable output .

8 Chapter 2. Bluespec System Verilog

Figure 2.2: Diagram of Bluespec’s compiler flow

2.3.1 Scheduling

Scheduling is the task of determining what subset of rules should fire on a cycle, given its

state and in what order should rules be fired in a that very cycle. It is essential for someone

who desires to use Bluespec proficiently, to firstly comprehend the mechanisms of Bluespec and

how its compiler schedules multiple rules for cycle-by-cycle execution.

Determining rule contents

Due to the complexity of determining when a rule will use an interface of a module, the

Bluespec compiler assumes conservatively that an action will use any method possible from the

aforementioned interface. Henceforth, if an action uses a method only when some condition is

met, the scheduler will treat it as if were always using it. This leads the compiler to make to

conservative estimations of method usage which in turn causes conservative firing conditions to

be scheduled.

2.3. The Bluespec compiler 9

Determining Pair-wise Scheduling Conflicts

Once the components (methods and other actions) of all the actions have been determined,

all possible conflicts, between each atomic action pair, have to be discovered. In the case that

two rules’ predicates are provably disjoint, then it can be assumed that there are no conflicts

as they can never happen in the same cycle. Otherwise, the scheduling conflicts between them

is exactly the set of scheduling conflicts between any pair of action components of each atomic

action.

For example, consider rules rule1 and rule2 where rule1 reads some register r1 and rule2

writes it. Registers have the scheduling constraint read<write,which means that calls to the

read method calls must happen before the write method call in a single cycle. Thus this

constraint is reflected in the constraints between rule1 and rule2 (rule1 < rule2). If rule1 were

to also write some register r2 and rule2 were to read it we would have the additional constraint

(rule2 < rule1). In this there is no consistent way of ordering the two rules, so we consider

the rules conflicting with sequential ordering restrictions (as they will never happen together,

it doesnt matter how they are ordered to happen concurrently).

Generating a Final Global Schedule

Once all the pair-wise conflicts between actions have been determined, a temporal ordering

of the actions takes place. For this to happen, the compiler orders the atomic transactions by

some metric of importance, which is called urgency. Scheduler sorts each action, in descending

urgency order. The goal is to place the action in a position that prevents the most conflicts,

with already ordered rules, in this process. Only when its ordering has been determined, the

rule is allowed to be fired in a cycle, when respectively its predicate is met and there are no more

urgent rules, which conflict with it in that total ordering. Once the compiler has considered all

atomic transactions in sequence, we have a complete schedule.

10 Chapter 2. Bluespec System Verilog

2.3.2 The Bluesim simulator

Bluesim delivers high-speed simulation of BSV designs at a source-level or with SystemC

executables. Bluesim can be at least 10x faster than the standard Verilog simulator. The main

features of the simulator are that it has high-speed and the output of a BSV high-level-design

is a source-level or SystemC executable simulation. Also Bluesim is 100% cycle accurate with

Verilog RTL and it generates standard VCD files. Therefore the benefits of these are that the

simulation can be accelerated as well as the verification of the design.

Chapter 3

ARM

Our implementation of ARM is based on the ARM7 family of processors. Our processor has

a 32-bit architecture, 3-stage pipeline and is based on ARMv4 instruction set. In the section

below will be analyzed the ARMv4 instructions that were implemented in our design

3.1 About the ARM Architecture

The ARM is a Reduced Instruction Set Computer (RISC), as it incorporates these typical RISC

architecture features:

• a large uniform register file

• a load/store architecture, where data-processing operations only operate on register con-

tents, not directly on memory contents

• simple addressing modes, with all load/store addresses being determined from register

contents and instruction fields only

• uniform and fixed-length instruction fields, to simplify instruction decode.

In addition, the ARM architecture provides:

• control over both the Arithmetic Logic Unit (ALU) and shifter in most data-processing

instructions to maximize the use of an ALU and a shifter

• auto-increment and auto-decrement addressing modes to optimize program loops

11

12 Chapter 3. ARM

• Load and Store Multiple instructions to maximize data throughput instruction fields only

• conditional execution of almost all instructions to maximize execution throughput.

These enhancements to a basic RISC architecture allow ARM processors to achieve a good

balance of high performance, small code size, low power consumption, and small silicon area.

3.1.1 Processor modes

The ARM architecture supports the seven processor modes shown in Table 3.1.

Table 3.1: Processor modes

Processor mode Mode number Description
User usr 5b10000 Normal program execution mode
FIQ fiq 5b10001 Supports a high-speed data transfer or channel process
IRQ irq 5b10010 Used for general-purpose interrupt handling
Supervisor svc 5b10011 A protected mode for the operating system
Abort abt 5b10111 Implement virtual memory and/or memory protection
Undefined und 5b11011 Supports software emulation of hardware coprocessors
System sys 5b11111 Runs privileged operating system tasks(ARMv4 and above)

Most application programs execute in User mode. When the processor is in User mode, the

program being executed is unable to access some protected system resources or to change mode,

other than by causing an exception to occur. This allows a suitably-written operating system

to control the use of system resources.

The modes other than User mode are known as privileged modes. They have full access to

system resources and can change mode freely. Five of them are known as exception modes:

• FIQ

• IRQ

• Supervisor

• Abort

• Undefined

3.1. About the ARM Architecture 13

The remaining mode is System mode, which is not entered by any exception and has exactly

the same registers available as User mode. However, it is a privileged mode and is therefore

not subject to the User mode restrictions. It is intended for use by operating system tasks that

need access to system resources, but wish to avoid using the additional registers associated

with the exception modes. Avoiding such use ensures that the task state is not corrupted by

the occurrence of any exception.

3.1.2 ARM registers

ARM has 37 , 32-bit registers in total.

• 1 dedicated program counter

• 1 dedicated current program status register

• 5 dedicated saved program status registers

• 30 general purpose registers

At any one time, 16 of these registers are visible. The other registers are used to speed up

exception processing. All the register specifiers in ARM instructions can address any of the 16

visible registers. The main bank of 16 registers is used by all unprivileged code. These are the

User mode registers. User mode is different from all other modes as it is unprivileged, which

means:

• User mode can only switch to another processor mode by generating an exception. The

SWI instruction provides this facility from program control.

• Memory systems and co-processors might allow User mode less access to memory and

co-processor functionality than a privileged mode.

Three of 16 visible register have special roles:

Stack pointer Software normally uses R13 as a Stack Pointer (SP).

14 Chapter 3. ARM

Link register Register 14 is the Link Register (LR). This register holds the address of the

next instruction after a Branch and Link (BL) instruction, which is the instruction used to

make a subroutine call. It is also used for return address information on entry to exception

modes. At all other times, R14 can be used as a general-purpose register.

Program counter Register 15 is the Program Counter (PC). It can be used in most in-

structions as a pointer to the instruction which is two instructions after the instruction being

executed. In ARM state, all ARM instructions are four bytes long (one 32-bit word) and are

always aligned on a word boundary. This means that the bottom two bits of the PC are always

zero, and therefore the PC contains only 30 non-constant bits.

The remaining 13 registers have no special hardware purpose. Their uses are defined purely

by software. The visible registers of each operating mode are shown in the Figure 3.1

Figure 3.1: The ARM Register Set

3.1. About the ARM Architecture 15

3.1.3 Program status registers (PSR)

The Current Program Register (CPSR) is accessible in all processor modes. It contains

condition code flags, interrupt disable bits, the current processor mode, and other status and

control information. Each exception mode also has a Saved Program Status Register (SPSR),

that is used to preserve the value of the CPSR when the associated exception occurs.The format

of the CPSR and the SPSRs is shown below.

Figure 3.2: The PSR

The condition code flags

The N, Z, C, and V (Negative, Zero, Carry and oVerflow) bits are collectively known as

the condition code flags, often referred to as flags. The condition code flags in the CPSR can

be tested by most instructions to determine whether the instruction is to be executed.The

condition code flags are usually modified by:

• Execution of comparison instruction(CMN,CMP,TEQ or TST)

• Execution of some other arithmetic, logical or move instruction, where the destination reg-

ister of the instruction is not R15. Most of these instructions have both a flag-preserving

and a flag-setting variant, with the latter being selected by adding an S qualifier to the

instruction mnemonic. Some of these instructions only have a flag-preserving version.

This is noted in the individual instruction descriptions.

In either case, the new condition code flags (after the instruction has been executed) usually

mean:

N Is set to bit 31 of the result of the instruction. If this result is regarded as a two’s com-

plement signed integer, then N = 1 if the result is negative and N = 0 if it is positive or

zero.

16 Chapter 3. ARM

Z Is set to 1 if the result of the instruction is zero (this often indicates an equal result from

a comparison), and to 0 otherwise.

C Is set in one of four ways:

• For an addition, including the comparison instruction CMN , C is set to 1 if the addition

produced a carry (that is, an unsigned overflow), and to 0 otherwise.

• For a subtraction, including the comparison instruction CMP , C is set to 0 if the sub-

traction produced a borrow (that is, an unsigned underflow), and to 1 otherwise.

• For non-addition/subtractions that incorporate a shift operation, C is set to the last bit

shifted out of the value by the shifter.

• For other non-addition/subtractions, C is normally left unchanged (but see the individual

instruction descriptions for any special cases).

V Is set in one of two ways:

• For an addition or subtraction, V is set to 1 if signed overflow occurred, regarding the

operands and result as two’s complement signed integers.

• For non-addition/subtractions, V is normally left unchanged (but see the individual in-

struction descriptions for any special cases).

The flags can be modified in these additional ways:

• Execution of an MSR instruction, as part of its function of writing a new value to the

CPSR or SPSR

• Execution of MRC instructions with destination register R15. The purpose of such in-

structions is to transfer coprocessor-generated condition code flag values to the ARM

processor.

• Execution of some variants of the LDM instruction. These variants copy the SPSR to the

CPSR, and their main intended use is for returning from exceptions.

3.2. ARMv4 instruction set 17

• Execution of an RFE instruction in a privileged mode that loads a new value into the

CPSR from memory.

• Execution of flag-setting variants of arithmetic and logical instructions whose destination

register is R15. These also copy the SPSR to the CPSR, and are intended for returning

from exceptions.

The mode bits

The M[4:0] are the mode bits. These determine the mode in which the processor operates.

Their interpretation is shown in Table 3.1 .

3.2 ARMv4 instruction set

The figure below presents the instruction set encoding In the sections below are described only

the instructions that our processor can execute.

Figure 3.3: Instruction set encoding

3.2.1 The condition field

Most ARM instructions can be conditionally executed, which means that they only have

their normal effect on the programmers model state, memory and coprocessors if the N, Z, C

18 Chapter 3. ARM

and V flags in the CPSR satisfy a condition specified in the instruction. If the flags do not

satisfy this condition, the instruction acts as a NOP: that is, execution advances to the next

instruction as normal, including any relevant checks for interrupts and Prefetch Aborts, but

has no other effect. Every instruction contains a 4-bit condition code field in bits 31 to 28.

Table 3.2: Condition codes

Opcode
[31:28]

Mnemonic
extension

Meaning Condition flag state

0000 EQ Equal Z set
0001 NE Not equal Z clear
0010 CS/HS Carry set/unsigned higher or same C set
0011 CC/LO Carry clear/unsigned lower C clear
0100 MI Minus/negative N set
0101 PL Plus/positive or zero N clear
0110 VS Overflow V set
0111 VC No overflow V clear
1000 HI Unsigned higher C set and Z clear
1001 LS Unsigned lower or same C clear or Z set

1010 GE Signed greater than or equal
N set and V set, or N clear
and V clear(N==V)

1011 LT Signed less than
N set and V clear, or N clear
and V set(N!=V)

1100 GT Signed greater than
Z clear and either N set and V set,or
N clear and V clear(Z==0,N==V)

1101 LE Signed less than or equal
Z set, or N set and V clear,or
N clear and V set(Z ==1 or N!=V)

1110 AL Always(uncoditional) -
1111 - - -

3.2.2 The barrel shifter

The ARM does not have actual shift instruction. Instead it has a barrel shifter which provides

a mechanism to carry out shifts as a part of other instructions. The operations that barrel shifter

supports are:

• LSL:Logical shift left

• LSR: Logical shift right

• ASR: Arithmetic Shift Right

3.2. ARMv4 instruction set 19

– Shifts right and preserves the sign bit for 2’s complement operations

• ROR: Rotate Right

• RRX: Rotate with extend

– This operation uses the CPSR C flag as a 33rd bit.Rotates right by 1 bit.

3.2.3 Branch instructions

All ARM processors support a branch instruction that allows a conditional branch forwards

or backwards up to 32MB. As the PC is one of the general-purpose registers (R15), a branch or

jump can also be generated by writing a value to R15. A subroutine call can be performed by

a variant of the standard branch instruction. As well as allowing a branch forward or backward

up to 32MB, the Branch with Link (BL) instruction preserves the address of the instruction

after the branch (the return address) in the LR (R14). When executing the instruction, the

processor shifts the offset left two bits, sign extends it to 32 bits and adds it to PC.Execution

then continues from the new PC,once the pipeline has been refilled. The processor wants 3

cycles to refill the pipeline.

3.2.4 Data processing instructions

ARM has 16 data-processing instructions shown in Table below

20 Chapter 3. ARM

Table 3.3: Data-processing instructions

Opcode Mnemonic Operation Action
0000 AND Logical AND Rd:=Rn AND shifter operand
0001 EOR Logiacal Exclusive OR Rd:=Rn OR shifter operand
0010 SUB Subtract Rd:=Rn - shifter operand
0011 RSB Reverse Subtract Rd:=shifter operand-Rn
0100 ADD Add Rd:=Rn + shifter operand
0101 ADC Add with Carry Rd:=Rn + shifter operand + Carry Flag
0110 SBC Subtract with Carry Rd:=Rn - shifter operand - NOT(Carry Flag)
0111 RSC Reverse Subtract with Carry Rd:=shifter operand - Rn - NOT(Carry Flag)
1000 TST Test Update flags after Rn AND shifter operand
1001 TEQ Test equivalence Update flags after Rn EOR shifter operand
1010 CMP Compare Update flags after Rn - shifter operand
1011 CMN Compare Negated Update flags after Rn + shifter operand
1100 ORR Logical (inclusive)OR Rd:=Rn OR shifter operand
1101 MOV Move Rd:=shifter operand(no first operand)
1110 BIC Bit Clear Rd:=Rn AND NOT (shifter operand)
1111 MVN Move Not Rd:=NOT shifter operand(no first operand)

3.2.5 Multiply instructions

ARMv4 has 2 classes of Multiply instruction:

Normal 32-bit x 32-bit,bottom 32-bit result

Long 32-bit x 32-bit,bottom 64-bit result

Normal multiply

There are two 32-bit x 32-bit Multiply instructions that produce bottom 32-bit results:

MUL Multiplies the values of two registers together, truncates the result to 32 bits, and

stores the result in a third register.

MLA Multiplies the values of two registers together, adds the value of a third register, trun-

cates the result to 32 bits, and stores the result in a fourth register. This can be used to perform

multiply-accumulate operations.

Both Normal Multiply instructions can optionally set the N (Negative) and Z (Zero) condition

code flags. No distinction is made between signed and unsigned variants. Only the least

3.2. ARMv4 instruction set 21

significant 32 bits of the result are stored in the destination register, and the sign of the

operands does not affect this value.

Long multiply

There are five 32-bit x 32-bit Multiply instructions that produce 64-bit results. Two of the

variants multiply the values of two registers together and store the 64-bit result in third and

fourth registers. There are signed (SMULL) and unsigned (UMULL) variants. The signed

variants produce a different result in the most significant 32 bits if either or both of the source

operands is negative. Two variants multiply the values of two registers together, add the 64-bit

value from the third and fourth registers, and store the 64-bit result back into those registers

(third and fourth). There are signed (SMLAL) and unsigned (UMLAL) variants. These

instructions perform a long multiply and accumulate.All the Long Multiply instructions can

optionally set the N (Negative) and Z (Zero) condition code flags.

3.2.6 Status register access instructions

There are two instructions for moving the contents of a program status register to or from a

general-purpose register. Both the CPSR and SPSR can be accessed.

MRS Move PSR to General-purpose Register.

MSR Move General-purpose Register to PSR

3.2.7 Load and store instructions

The ARM architecture supports two broad types of instruction which load or store the value

of a single register, or a pair of registers, from or to memory:

• The first type can load or store a 32-bit word or an 8-bit unsigned byte.

• The second type can load or store a 16-bit unsigned halfword, and can load and sign

extend a 16-bit halfword or an 8-bit byte.

22 Chapter 3. ARM

Addressing modes

In both types of instruction,the addressing mode is formed from two parts, the base register

and the offset.The base register can be any one of the general-purpose registers (including the

PC, which allows PC-relative addressing for position-independent code).The offset takes one of

three formats:

Immediate The offset is an unsigned number that can be added to or subtracted from the

base register. Immediate offset addressing is useful for accessing data elements that are a

fixed distance from the start of the data object, such as structure fields, stack offsets and

input/output registers. For the word and unsigned byte instructions, the immediate offset is a

12-bit number. For the halfword and signed byte instructions, it is an 8-bit number.

Register The offset is a general-purpose register (not the PC), that can be added to or

subtracted from the base register. Register offsets are useful for accessing arrays or blocks of

data.

Scaled register The offset is a general-purpose register (not the PC) shifted by an immediate

value, then added to or subtracted from the base register. The same shift operations used for

data-processing instructions can be used (Logical Shift Left, Logical Shift Right, Arithmetic

Shift Right and Rotate Right), but Logical Shift Left is the most useful as it allows an array

indexed to be scaled by the size of each array element. Scaled register offsets are only available

for the word and unsigned byte instructions.

As well as the three types of offset, the offset and base register are used in three different

ways to form the memory address. The addressing modes are described as follows:

Offset The base register and offset are added or subtracted to form the memory address.

Pre-indexed The base register and offset are added or subtracted to form the memory ad-

dress. The base register is then updated with this new address, to allow automatic indexing

through an array or memory block.

3.2. ARMv4 instruction set 23

Post-indexed The value of the base register alone is used as the memory address. The base

register and offset are added or subtracted and this value is stored back in the base register,

to allow automatic indexing through an array or memory block. The datapath of ARM7 is as

follows.

Figure 3.4: ARM Datapath

Chapter 4

Implementation

In this module we will analyze the structural components of the processor. Due to the fact

that there is not much literature or examples on creating processors with bluespec, we decided

to implement our design on the basis of the book[5]. Our design is a 3 stage pipeline processor.

The three stages are Fetch, Decode and Execute.

Figure 4.1: ARM 3-stage pipeline

Except the basic stages, there are 2 more that deals with the instructions that demand one

more clock cycle to complete. Our design implements all Data processing instructions as they

are described in Table 3.3, Branch and Branch and Link instructions, Load and Store instruc-

tions with offset indexed addressing, post and pre indexed addressing and six instructions of

multiplication. These instruction are signed and unsigned multiplication with or without accu-

mulation and the product that is stored may be 32 or 64 bit(long multiplication). Additionally

the processor supports all the operating modes of the ARMv4 ISA. A general block diagram of

our architecture is shown below.

24

4.1. Register file 25

Figure 4.2: Block diagram of the design

4.1 Register file

The register file of the processor is composed from vectors of registers. Registers in Bluespec

can store any type of data like integers, bits, strings even whole structures of data. In our

case the registers of the register file stores 32-bit. There are six vectors of registers in total,

one for each operating mode of the processor that uses different registers than the user mode.

PC, CPSR and SPSR registers for each mode are not inside of the register file, but there are

implemented on the top module of the processor for convenience. The interface of the module

has one method for writing and three methods for reading. The location of reading or writing

the data depends on the index and the mode, that are given to the methods as arguments.

Below are shown the interface and the vectors of the register file.

interface RFile;

method Action wr(Ridx ridx, Bit#(32) data,CpuMode mode);

method Bit#(32) rd1(Ridx ridx,CpuMode mode);

method Bit#(32) rd2(Ridx ridx,CpuMode mode);

method Bit#(32) rd3(Ridx ridx,CpuMode mode);

endinterface

Vector#(15, Reg#(Data)) rfile <- replicateM(mkReg(0));

26 Chapter 4. Implementation

Vector#(2, Reg#(Data)) rBankSvc <- replicateM(mkReg(0));

Vector#(2, Reg#(Data)) rBankIrq <- replicateM(mkReg(0));

Vector#(2, Reg#(Data)) rBankAbt <- replicateM(mkReg(0));

Vector#(2, Reg#(Data)) rBankUnd <- replicateM(mkReg(0));

Vector#(7, Reg#(Data)) rBankFiq <- replicateM(mkReg(0));

4.2 Decode Instruction

The decoding of the instruction is achieved through a function. The function,based on the

ARMv4 ISA, takes as input the 32-bit instruction and returns a structure. The format of the

structure is:

typedef struct {

IType iType;

AluFunc aluFunc;

Cond flags cond;

Maybe#(bit) set flags;

Maybe#(Ridx) rd;

Maybe#(Ridx) rn;

Maybe#(Ridx) rm;

Maybe#(Rotate imm) rot imm;

Maybe#(Data) imm;

Maybe#(Ridx) rs;

Maybe#(Bit#(2)) shift type;

Maybe#(Shift imm) shift length;

Maybe#(bit) rorx;

Maybe#(Bit#(24)) imm24;

Maybe#(bit) pBit;

4.3. Barrel shifter 27

Maybe#(bit) wBit;

Maybe#(bit) bBit;

LdStType ldStType;

} DecodedInst deriving(Bits, Eq);

The IType field holds the type of the instruction,the AluFunc field holds the opcode for the

ALU and the Cond flags field is for the condition flags that exist in every instruction. The

set flags field implies if the instruction will change the CPSR flags. The fields rd,rn,rm,rs show

which registers will be written or read.In addition the fields rot imm,shift type,shift length,rorx

affects the operation of the barrel shifter. The imm field represents the 11-bit immediate that

the instruction might has. In the other hand the imm 24 field shows the 24-bit immediate that

the Branch instructions have. Finally the pBit,wBit,bBit and ldStType defines the type of the

load and store instructions

4.3 Barrel shifter

On the design barrel shifter was implemented as separate module. The syntax of the barrel

shifter function is:

functionBrlResult brlShifter(Bit#(2) control , Bit#(32) opperand,Bit#(5) rot imm, Bit#(1)

carry, Bit#(1) rorx , Bit#(1) ibit);

The carry that the shifter takes as input is the C flag from the CPSR. For each value of the

control argument the function performs a different action. The action of the shifter depends

also on the ibit. If the ibit is ’1’ the function performs a left rotation on the operand by the

amount that rot imm indicates. Otherwise, the shifter operates as follows:

28 Chapter 4. Implementation

• control==2’b00 : Logical Shift Left

• control==2’b01 : Logical Shift Right

• control==2’b10 : Arithmetic Shift Right

• control==2’b11 : Rotate Bits Right

In the case of the latter if rot imm and rorx bits are ’0’, then the shifter perform a rotate with

extend. The output of the function is a 32-bit result and a 1-bit carry.

4.4 Execution module

The execution module of the processor is composed from some functions that are necessary

for the execution of an instruction.

4.4.1 ALU function

First of all, there is the alu function that does all the logical and arithmetical operations, as

mentioned in the Table 3.3. The input arguments of the function are the control of the ALU,

the two operands and the carry flag fro CPSR. The output of alu function is a 32-bit result

and the 4-bit flags (Negative,Zero,Carry,oVerflow). These flags are written in the CPSR if the

set flags bit is set.

4.4.2 checkFlags function

In continue, there is the checkFlags function that decides if an instruction has to execute or

not. The decision shall be taken accordingly the condition flags of the instruction and the flags

of the CPSR as described in the table 3.2.

4.4.3 Multiply signed and unsigned

There are two functions that do the multiply of two operands, one for signed and one for

unsigned multiplication. The multiplication is made using the built-in function of Bluespec.

4.4. Execution module 29

4.4.4 brAddrCalc function

This functions computes the new value of the PC, in case of a Branch or Branch and Link

instruction. This function takes as input the address of the instruction, the type of the in-

struction, the 24-bit immediate of the instruction and a boolean value that comes from the

checkFlags function. The new address for the PC is computed by the following expression :

PC + (signExtend(imm24) LSL by 2)

4.4.5 Execute function

This function calls all the other functions that were mentioned before. Execute function

takes as input arguments the value of the CPSR, the value of the SPSR of the current mode,

the decoded instruction, the values that were read from the register file, the address of the

instruction and the predicted address for the next instruction. The return value of the function

is a structure. The fields of the structure is as it seems below:

typedef struct {

IType iType;

Maybe#(Ridx) rd;

Data data;

Addr addr;

Bool mispredict;

Bool brTaken;

Cond flags flags;

} ExecInst deriving(Bits, Eq);

Execute function distinguishes the instruction according on its type.Considering this sepa-

ration,the fields of the structure are different from type to type. The iType field indicates the

type of the Instruction(Data processing, Branch, Load, Store, Mul etc.). In addition The rd

30 Chapter 4. Implementation

shows if there is a destination register for the data to be stored. Furthermore the addr field

indicates the address for reading or writing to the memory and the brTaken field is the result

of the call of the function checkFlags. Also the flags field is the flags that the alu function has

as an output. Finally mispredict field indicates that there is an unpredictable change in the

contents of the PC, i.e. a different value than the expected PC+4. Mispredict field become

true if the rd register is R15 or there is a B or BL instruction.

4.5 Instruction and Data memory

Instruction and Data memory are implemented as BRAMs. BRAMs are existing module

inside the Bluespec’s library. They have one port for reading and one for writing.In addition

they have one cycle delay when writing or reading data and they can be initialize from a file.

4.6 Coprocessor

Coprocessor’s module has limited functionality. It counts the clock cycles, receives the data

that will be stored in Rd from the processor and displays certain messages purely for debugging.

4.7 Processor module

The main module of the design is the Processor module. Its interface consists of three methods.

The first method is to receive the initial value of the PC from the coprossessor, another method

changes the initial mode from which the processor will start the execution of the instructions

and finally the third method is just an output for the data of the ALU. Every stage of the

pipeline of the processor is written as a separate rule. There are six rules in total. In Bluespec

the appropriate way to create pipeline for processors is to use FIFOs and in particular a

PipelineFIFO. The reason of this is to take advantage the methods that FIFOs have in Bluespec

and especially their ready signals. For example let’s assume that there is a rule A that enqueues

some data to a PipelineFIFO,that can store one element, and the rule B that wants to read

this data and then dequeues it. If rule A does not enqueue the data to the FIFO then the

4.7. Processor module 31

rule B can not fire because there is not something to dequeue. Respectively if rule B does

not dequeue the data that was previously enqueued, then the rule A can not fire because the

FIFO is full. So with this way we can synchronize the pipeline perfectly. Thus as we can easily

understand if there are more rules that ”communicate” with each other via PipelineFIFOs and

one rule does not fire then the pipeline of the processor will be stalled. The main module also

contains, besides the subcomponents that were mentioned in the other sections of this chapter,

six FIFOs of different type, one register named START that has a boolean value to start and

stop the processor and two more registers that hold a boolean value as well which indicates if the

pipeline should stop because of a load or long multiplication or multiplication with accumulate

instruction.These registers are named pendingLoad and pendingLoadMul. Furthermore there

are two registers that control if an instruction should execute or not after a redirect of the PC.

4.7.1 preFetch rule

The preFetch rule fires if the START register is false and the coprocessor has started. This

rule when fired, sends an request to the Instruction memory to read from the address that the

PC indicates, increases the PC’s value and changes the value of the START register to true.

This rule fires once at the boot of the processor.

4.7.2 doFetch rule

This rule fires if the coprocessor has started the START register is true and there is no

pending load due to a load or multiplication instruction. As the rule fires a check is being

made whether there is a redirection of the PC. This redirection may have come either from the

doExecute rule, either from the doWriteBack rule. In continue, the response of the Instruction

memory is being read and if there is not a redirection for the PC then a new request is being

made to the instruction memory. In case of a redirection, the request to the Instruction memory

asks to read from the new value of the PC. As mentioned earlier there are two registers, named

fEpoch an dEpoch, that control whether an instruction should executed or not. These registers

change their value, from False to True and vice versa, only in case of a misprediction of the PC’s

next value. We have cases of misprediction if the type of the instruction is Branch or Branch

32 Chapter 4. Implementation

and Link and if the instruction changes the PC’s value. Finally the instruction, the PC’s value,

the value of next instruction’s address(PC+4) and the value of the fEpoch are enqueued to a

PipelineFIFO, named fetchTodec value of the PC is increased by four. Basically the data are

enqueued in the FIFO as a structure with three fields.

4.7.3 doDecode rule

This rule has the same enable conditions as the doFetch rule. In this stage the data of the

fetchTodec PipelineFIFO is being read and the instruction is being decoded.

fromFetch = fetchToDec.first;

let pc = fromFetch.pc;

let ppc = fromFetch.ppc;

let dEpochLocal = fromFetch.epoch;

let instr = fromFetch.inst;

let dInst = decode(instr);

Then the decoded instruction is along with the data from the previous FIFO are being en-

qued to the decToExec. The last operation of this rule is to dequeue the data of from the

fetchToDec FIFO

decToExec.enq(Decode2Execpc:pc,ppc:ppc,dInst:dInst,epoch:dEpochLocal);

fetchToDec.deq;

4.7.4 doExecute rule

The firing conditions of this rule are the same as the previous two rules. At first the rule

reads the data of the decToExec FIFO and then checks if the epoch of the instruction is the

4.7. Processor module 33

same as the epoch of the decode stage. After that and depending on the instruction read the

proper registers from the register file. Then the execute function is being called.

let eInst = execute(startCPSR, dInst, rnVal, rsVal, rmVal, expc,ppc,startSPSR);

The next step, after the function finishes its operation, is to check if the condition flags are

true. Only then, the results of the instruction is permanent. According to the type of the

instruction some actions might take place.

rf.wr(validValue(eInst.rd),eInst.data,startMode);

if the instruction wants to store a value to a register, then a write in the register file is per-

formed. In the case the type of the instructions is Store(for all the kinds of Store instructions

), then a request is sent to the data memory,to save some data to a specific address that came

from the Exec module.

dMem.portA.request.put(dMemRequest(True, eInst.addr, storeVal));

On the other hand if the type of the instruction suggests a load from the data memory, then

the memory receives a request to read data from an address.

dMem.portA.request.put(dMemRequest(False, eInst.addr, 0));

The flags of the CPSR are changed if the set flags bit is set.

if (isValid(dInst.set flags)&& validValue(dInst.set flags) == 1)

begin

curCPSR[31:28] = eInst.flags;

There are some tricky situations for the processor, regarding of some instructions in specific,

34 Chapter 4. Implementation

that will be discussed below.

Misprediction for the next PC’s value When the processor has to execute a branch

instruction or another instruction causes the value of the PC to change,then in order to alter

the register’s value properly,the following are done.At first the mispredict variable is raised

during the execution of the instruction.Afterwards the PC’s new value is enqueued in a FIFO,

named execRedirect and the dEpoch register reverses its value. So, in the next cycle the fetch

state will understand that a new value has come for the PC, it will instruct the pipeline to kill

the instructions that are already in the pipeline and it will fill the pipeline with new instructions

after 3-cycles.

Load Instruction Load instructions has some other challenges for the processor. In the

case that the type of the instruction is such that the base register (Rn) is required also to be

stored, besides the destination register,then we have to perform two stores in the register file.

Further ado, due to the latency of the data memory, the data will not be ready for reading

and processing until after one cycle. So the processor will have to wait to store the data to the

Rd. For this reason the rule doWriteBack was created. If a load instruction suggests a write

to the base register ,then this write is performed at the execution stage. Simultaneously when

the processor realizes that there is a load instruction for execution, it stalls the pipeline for one

cycle, until the data from the memory are ready to stored in the register file. In order for the

pipeline to stall and the doWriteBack rule to fire properly, the pendingLoad register changes its

value to True and the data of the decToExec PipelineFIFO are not being dequeued.Furthermore

the doWriteBack module have to know the rd, rn, the data that would be stored in rn and

if there is a misprediction on PC’s next value.These data is passed through a FIFO, named

exToMem .

pendingLoad <= True;

exToMem.enq(Exec2Mem{ data:eInst.data,rd:validValue(eInst.rd),rn:validValue(dInst.rn),

mispredict:eInst.mispredict,lsType:dInst.ldStType });

4.7. Processor module 35

Long multiplication with or without accumulate Similarly, in the case of multiplication,

two writes should be made in the register file, one for the lower 32-bits and one for the upper

32-bit of the product.Also four reads of the appropriate registers should be made, thus the three

of them will be made at the doExecute rule(due to lack of read ports in the register file) and

the last one will be made at the doLongMulRule. Furthermore, in this case when the processor

sees a UMULL,SMULL,SMLAL or UMLAL instruction ,stalls the pipeline for one cycle. At

the execution stage the lower 32-bit(with or without accumulation) are stored in the RdLo and

during the doLongMull the upper 32-bit of the product are stored in RdHi. In order for the

doLongMull stage to operate correctly some data are pass through a FIFO from the execute

stage. These data are the type of the instruction,the RdHi, the upper 32-bit of the product

and the flags that ALU raised during the first part of the execution of the instruction.

Changing mode of operation Currently the processor can change its mode of operation,

during program execution, with one way. This way is to use the MSR and MRS instructions. At

first with the use of MRS instruction, the contents of CPSR can be move to a general purpose

register. Then with a series of instructions the last five bits of the register can be alternate.

Finally the new value will be moved back to the CPSR with the use of MSR. An example of

instructions to change the operating mode is as it seems below:

MRS R0, CPSR ; Copy the PSR

BIC R0, R0, #&1F ; Clear the mode bits

ORR R0, R0, #new mode ; Set bits for new mode

MSR CPSR, R0 ; write CPSR back

36 Chapter 4. Implementation

4.7.5 doWriteBack rule

The doWriteBack rule fires if the pendingLoad’s value is True. This rules reads the data from the

exToMem FIFO, receives the response from the data Memory and write the data to the proper

register. But there is a case that one of the rn or the rd registers is the PC. In this case we have

a misprediction of the PC’s next value. To deal with this situation, the processor follows the

same method as before. The new value for the PC is enqueued to a FIFO (memRedirect) the

dEpoch reverses its value, so the fetch state can handle properly the misprediction.Finally the

rule dequeues the data from the exToMem FIFO and makes the value of pendingLoad register

to False, in order for the pipeline to restart.

4.7.6 doLongMul rule

The doLongMul fires if the pendingLoadMul’s value is True. This rules read the data from the

exToMul FIFO and according to the instruction(with or without accumulation) performs one

more addition. In continue calculates the final flags for the CPSR, taking into account the

temperate flags that exec module had calculate in the previous cycle. Finally writes the result

to the register file, sets the flags if the set flags bit is set,changes the pendingLoadMul register

to False and deques the data from the exForMul FIFO.

Chapter 5

Debugging and Testing

5.1 Debug of the design

The debugging of the project was done by creating the Trace module, using certain functions

to display messages and by studying VCD files.

5.1.1 Trace module

In Trace module the following function was created:

function Action trace(Fmt fmt) = traceEnabled ? $display($format(”[Trace] ”)+fmt)

: noAction;

The $display invokes the system task to display a literal String (like printf() in C, it does

formatted output during simulation). The $format is also a display related system task. $for-

mat is a value function which returns an object of type Fmt. The Fmt primitive type provides

a representation of arguments to the $display family of system tasks that can be manipulated

in BSV code. Fmt representations of data objects can be written hierarchically and applied to

polymorphic types. Trace function is called in every stage of the pipeline and displays in the

console of Bluespec Development Workstation(BDW) the messages.

In order to check if the instruction is decoded appropriately an instance of fshow. The FShow

package defines the typeclass FShow. FShowincludes a single member function,fshow. When

37

38 Chapter 5. Debugging and Testing

applied to an object which is an instance of FShow, the fshow function returns an object of

type Fmt.

instance FShow#(DecodedInst);

function Fmt fshow(DecodedInst dInstr);

This function was created according to the decode functions and displays in the console the

type of the instruction the condition flags, the registers that are involved and the operation

that barrel shifter has to do. This is the way it is called.

trace($format(”[Decode State] PC[%d] ”, pc)+fshow(dInst));

5.2 Testing of the register file

The testing of the register file was done with the creation of a module. The code of the

module is shown in the figure below.

5.2. Testing of the register file 39

Figure 5.1: TestBench the register file

40 Chapter 5. Debugging and Testing

The TestBench writes every clock cycle the number of the cycle in a different register each time.

Data are also written in the registers of the different modes of the processor. The waveform of

the result is:

Figure 5.2: TestBench VCD

5.3 Testing the barrel shifter

Because the barrel shifter is a crucial component of the design, it tested as well to verify that

it operates properly. Its TestBench and the results are shown in the figures below.

Figure 5.3: Barrel Shifter TestBench

Figure 5.4: Barrel Shifter console output

In the first four states barrel shifter performs left and right shift, rotate right and rotate with

extend. On the fifth and the sixth state the shifter does rotate to the right, but it emulates the

5.4. Testing the processor 41

case that the instruction which came has an immediate as second operand and not a register

as in the previous states.

5.4 Testing the processor

To test the design properly a new module was created. In this module the processor’s mod-

ule instantiates along with two registers to control the flow of the program. The code of the

TestBench is as follows:

typedef enum {Start, Run} State deriving (Bits, Eq);

(∗ synthesize ∗)

module mkTestBench();

Proc proc <- mkProcessor;

Addr addr = 0;

Reg#(Bit#(32)) cycle <- mkReg(0);

Reg#(State) state <- mkReg(Start);

rule start(state == Start);

proc.hostToCpu(addr);

state <= Run;

endrule

rule countCycle(state == Run);

cycle <= cycle + 1;

endrule

rule halt(state == Run && cycle==200)

$display(”Processor halted”);

$finish;

42 Chapter 5. Debugging and Testing

endrule

endmodule

This module consists of three rules. The rule start fires if the state is ”Start” then it starts

the copossessor and changes the state to ”Run”. The countCycle rule fires when the state is

”Run” and he increases the value of cycle register by one. The rule halt begins when the state

is ”Run” and the cycle’s value is 200. This value is arbitrary and it depends on how many are

the instructions to be executed by the processor.

In order the processor to execute a series of random instructions or a particular program,

the Instruction memory must be loaded with a binary file. This file contains on every line an

instruction in hexadecimal format. To convert the ARM instructions into hexadecimal format,

an online tool was used. The tool can be found in this link : http://armconverter.com/

At first some of the instructions was written by hand just to verify that the processor ac-

tually works. Then, and since this method is not the most efficient, the ARM gcc-6.3.0 was

used. The use of the compiler can be done either from the terminal of a Linux system ei-

ther from an online tool. The online tool that was used is https://gcc.godbolt.org/. Also

another tool was used to verify the hexadecimal format of the instructions and to check

that the branch instruction will change the PC’s value properly. The tool can be found at

https://onlinedisassembler.com/odaweb/ .

The steps to convert a C++ code to raw bytes that the processor are : At first with the use

of ARM GCC 6.3.0 for Linux, the code is translated to ARM assembly. For the GCC the next

two flags was used:

fomit-frame-pointer

-mcpu=arm7tdmi

5.4. Testing the processor 43

The first one tells the tool not to use the frame pointer while creating the assembly instruction

and the second one specifies the target device. In continue the assembly code is saved on a

.s file. Then using the GNU Arm Embedded Toolchain and the following commands on the

terminal, the output is a .bin file on hexadecimal format

arm-none-eabi-as -EB -o example.o example.s

arm-none-eabi-ld -EB -Ttext=0x0 -o example.elf example.o

arm-none-eabi-objcopy -O binary example.elf example.bin

The first command assembles the file. The second calls the linker of GNU Toolchain. The

-Ttext=0x0, specifies that addresses should be assigned to the labels, such that the instruc-

tions were starting from address 0x0.Lastly using the objcopy the .bin file is created. This

procedure was followed for all the testing codes except Linear search program.

5.4.1 Linear search

The first assembly test code for the processor was written by hand. The program does a lin-

ear search to the data memory to find a specific key. If it finds it stores the integer 33 to

R3 else the value 66 is stored. The data memory was initialized from a file, so it had some

information for the code to search for. The key of the search was on the address 0x07 of the

memory. At the end of the program R5 has the position that the key was found and R2 the

value of the key. The key in this example was the integer 21. The assembly code is the following

mov r0,#0 //base address

mov r1,#9 // size of the array

mov r5,#0 //position counter

mov r3,#21 // key

loop:

44 Chapter 5. Debugging and Testing

ldrb r4,[r0],#1

cmp r4,r3

mov r2,r3

beq end

add r5,r5,#1

cmp r0,r2

bne loop

mov r3,#66

end:

mov r3,#33

Figure 5.5: Linear Search console output

Figure 5.6: Linear Search VCD

5.4. Testing the processor 45

Figure 5.1 presents the output of the console on BDW. In the figure we can see how the debug

messages are helping on the verification of the design. The figure 5.2 presents the waveform

of the linear search code. Register R0 is on the vector rfile 0[31:0], accordingly all the other

registers. As we can see the base register(R0) is increased by four, R1 holds the size of the

”table”(the data memory in this case is considered as a table), R2 holds the value of the key,R3

takes the value of the key if the search is successful, R4 holds the value of every element in the

search and finally R5 keeps the index of the table.

5.4.2 Largest number among 3

For this test the code to find the largest number among three was written in C++. The

C++ and the assembly code are shown in the figure below.

Figure 5.7: Largest number among 3 C++ and assembly code

Figure 5.8: Largest number among 3 VCD

46 Chapter 5. Debugging and Testing

At first the stack pointer is initialized at 100. Then the three values are kept in the stack

and compares are made between them. The largest number is last stored in R3(in this case

99). After that R3’s value becomes zero and the stack pointer is restored.

5.4.3 Factorial

Another program that tested the processor was the calculation of factorial of a certain num-

ber(8 in this example). The C++ and the assembly code are shown below.

Figure 5.9: Factorial C++ and assembly code

The factorial of 8 is:

8! = 1x2x3x4x5x6x7x8 = 40320. So this is the answer that is expected. From the assembly

code we can see that the solution will be stored in R3, then R3’s value will become zero and

finally the stack pointer will be restored to his initial value(100 in this case)

5.4. Testing the processor 47

Figure 5.10: Factorial console output

Figure 5.11: Factorial VCD output

As we see in the figures above, R3 has the solution of 8! before it turns its value to zero and

R13(sp) is restored to 100. The final instructions of the program can be observed also in the

48 Chapter 5. Debugging and Testing

figure 5.6.

5.4.4 Fibonacci

The next test was the Fibonacci sequence. The Fibonacci Sequence is the series of numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34,...

The next number is found by adding up the two numbers before it. The C++ and the assembly

code for the Fibonacci is given below. This code produces the Fibonacci sequence up to n

number of terms. In this case n=15, so the expected sequence is:

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377.

Figure 5.12: Fibonacci sequence C++ and assembly code

As we see in the code the result(the Fibonacci number) is going to be stored on R3.

5.4. Testing the processor 49

Figure 5.13: Fibonacci sequence console output

Figure 5.14: Fibonacci sequence VCD output

We can see in both figures that the 15th term of the Fibonacci sequence is stored in R3.

50 Chapter 5. Debugging and Testing

5.4.5 Bubble Sort

For this test ,the classic algorithm for the Bubble sort was implemented. The code has been

implemented in such a way that it is easier to read its results from the assembly code and

consequently from the VCD file. The C++ code is as it follows:

Figure 5.15: Bubble sort C++ code

Below we can observe the code that the GCC tool produced.

5.4. Testing the processor 51

Figure 5.16: Bubble short as-
sembly code part 1 Image Figure 5.17: Bubble short as-

sembly code part 2

Figure 5.18: Bubble short as-
sembly code part 3

Figure 5.19: Bubble sort VCD

52 Chapter 5. Debugging and Testing

As we can see in the C++ code the input of the program is and array of 7 integers. The

values of the are 64, 34, 25, 12, 22, 11, 90 . At the end of the program we expect the array

to be sorted on an ascending order i.e 11, 12, 22, 25, 34, 64, 90. We can see this result on R3

register in the figure 5.15

5.5 Compare with LEON and Piccolo

LEON LEON2 is a 32-bit RISC SPARC V8 compliant architecture, and uses big endian byte

ordering as specified in the SPARC V8 reference manual. LEON2 is a synthesizable processor

developed by ESA and maintained by Gaisler Research. The processor was originally developed

as a fault-tolerant processor for space applications. This report covers the non fault-tolerant

version licensed under the GNU LGPL license, which is freely available as a VHDL model from

the Gaisler Research website. LEON2 targets both the ASIC and FPGA markets.

Piccolo Piccolo is a 32-bit processor implemented by Bluespec Inc. The architecture of the

it is based on the RV32IM ISA. The features of the free version are:

• 1.9 DMIPS/MHz

• 100 MHz

• 3-stage pipeline

• AXI4-Lite interface

• < 3000 LUTs

• 4KB Instruction & Data caches

• Hardware multiply-divide

• Hardware-based remote GDB

An overview of the three processor is shown in the table below.

5.5. Compare with LEON and Piccolo 53

Table 5.1: LEON-Piccolo-Our design overview

Pipeline stages Clock (MHz) LUTs
LEON2 5-stage 100 3820-7178
Piccolo 3-stage 100 <3000
Our design 3-stage 100 6330

As we see the LEON2 has a big range for the number of LUTs in the FPGA. This is due

to the different types of optimization configuration(Area Optimized, Performance optimized

etc.)[8] Piccolo has the least LUTs as it is well optimized by Bluespec Inc.Our design has

comparable LUTs with the LEON processor. By studying these results we can conclude that

the optimization of our design is feasible, as with this design became a first approach with

Bluespec. Our design was synthesized with Vivado 2016.4 and the board that was used is from

the Artix-7 family. In the table below we can see how many LUTs each module occupies.

Table 5.2: Detailed allocation of resources

Module name LUTs FF
Coprocessor 3 1
Instruction and Data memory 2 2
Instruction and Data memory server adapter 13 6
Register file 1910 960
Decode 66 0
Execute 353 0
execRedirect and memRedirect FIFOs 5 4
Processor(Top module) 6337 1658

From the upper table it is clear that the module with the most LUTs is the top module of

the processor. This leads to that the effort of optimizing the code, should start from there.

Chapter 6

Conclusion

6.1 Conclusion of Thesis

This thesis was an attempt to implement a processor in Bluespec also to study if the language

is suitable for this kind of work and finally to see what resources occupies in a FPGA the

implemented design. The results are that the implementation of a processor is easier than

in other HDLs. This is because Bluespec is more like other High Level languages which are

used for software(C++,Java) and also provides the ability to design circuits in a more detailed

and targeted way. In addition, the level of abstraction may exist in the design, in such a

way as to suit the programmer. Another part that is important is that the simulation time is

reduced dramatically with Bluesim over a Verilog simulator. The total amount of code lines

for the design is 2946. One more benefit of Bluespec is that its learning curve is about one to

two months for a person with some programming skills. From the experience that was gained

through the process of this thesis. I would also like to mention that the time that I needed

to produce some code which implements a simple version of the processor, was 3 to 4 weeks.

From this point onwards, due to the complexity of the design, the time that it was needed to

produce the rest of modules of the processor, grew exponentially.

54

6.2. Future Work 55

6.2 Future Work

• Optimize the code of the 3-stage pipeline processor and see if this has as a result to get

higher clock frequency and fewer LUTs on the FPGA.

• Design a processor with 5-stage pipeline and data forwarding.

• Expand the instruction set to another version(ARMv4T, ARMv5T etc).

• Include instruction and data caches.

• Implement a branch prediction unit

• Study the tool to find an optimal way to design processors in Bluespec

• Implement some peripherals for the processor(e.g Debug and Support Unit)

• Implement a multicore processor

• Power management of the design

Bibliography

1. ”Bluespec TM SystemVerilog Reference Guide” Revision: 30 July 2014

2. Rishiyur S. Nikhil and Kathy R. Czeck, ”BSV by Example” 2010

3. ARM Architecture Reference Manual

4. ARM7TDMI-S Data Sheet

5. Arvind, Rishiyur S. Nikhil ,Joel S. Emer 3 , Murali Vijayaraghavan:”Computer Ar-

chitecture: A Constructive Approach Using Executable and Synthesizable Specifica-

tions”December 2012 [Online]Available:http://csg.csail.mit.edu/6.375/6 375 2016 www/resources/archbook.pdf

6. Nirav Hemant Dave,”Designing a Processor in Bluespec”,January 2005

7. Bluespec Testing Results: Comparing RTL Tool Output to Hand-Designed RTL, http://bluespec.com/images/pdfs/InterraReport042604.pdf,

2004

8. D.Mattsson M.Christensson ”Evaluation of synthesizable CPU cores” December 2004

[Online]Available:http://www.gaisler.com/doc/Evaluation of synthesizable CPU cores.pdf

9. http://wiki.bluespec.com/

10. http://infocenter.arm.com

56

	Abstract
	Acknowledgements
	Introduction
	Bluespec System Verilog
	Bluespec Syntax
	Data types in Bluespec
	The Bluespec compiler
	Scheduling
	The Bluesim simulator

	ARM
	About the ARM Architecture
	Processor modes
	ARM registers
	Program status registers (PSR)

	ARMv4 instruction set
	The condition field
	The barrel shifter
	Branch instructions
	Data processing instructions
	Multiply instructions
	Status register access instructions
	Load and store instructions

	Implementation
	Register file
	Decode Instruction
	Barrel shifter
	Execution module
	ALU function
	checkFlags function
	 Multiply signed and unsigned
	brAddrCalc function
	Execute function

	Instruction and Data memory
	Coprocessor
	Processor module
	preFetch rule
	doFetch rule
	doDecode rule
	doExecute rule
	doWriteBack rule
	doLongMul rule

	Debugging and Testing
	Debug of the design
	Trace module

	Testing of the register file
	Testing the barrel shifter
	Testing the processor
	Linear search
	Largest number among 3
	Factorial
	Fibonacci
	Bubble Sort

	Compare with LEON and Piccolo

	Conclusion
	Conclusion of Thesis
	Future Work

	Bibliography

