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Abstract
This work studies joint channel estimation and data detection in uplink,

multi-cell (interference-limited), large-scale antenna (i.e., massive multiple

input multiple output - MIMO) networks. With massive MIMO, future 5G

networks will be able to communicate more data within a given spectrum.

Realistic assumptions are considered, accounting for path-loss and pilot con-

tamination from adjacent cells.

First, a baseline prior art algorithm is presented, that initially utilizes

minimum mean-squared error (MMSE) channel estimator and then linear

MMSE detector (given estimated channel) for data detection (abbreviated

as SCED). Second, a novel iterative algorithm for joint channel estimation

and linear data detection (JCED-Iterative) is proposed, where estimation

and detection are done iteratively, until convergence. Third, based on joint

data/channel estimation bilinear generalized approximate message passing

(JCD-GAMP) proposed recently, which is an approximation of the sum-

product belief propagation algorithm and offers scalar computation opera-

tions, two inference-based algorithms for joint MMSE channel and data esti-

mation are developed; the first algorithm is an extension of JCD-GAMP to

the multi-cell setting, exploiting bilinear approximate message passing and

pilot symbols used both in the initialization, as well as the message passing

phase (MC-JCD-GAMP); the second inference algorithm uses pilot symbols

only for initialization (MC-JCD-GAMP-D).

Simulation results underline the critical importance of damping and ini-

tialization fine-tuning in the convergence of the inference-based algorithms.

It is found that joint channel estimation and detection algorithms, in few

iterations, can achieve better performance compared to SCED. Moreover, it

is shown that pilot symbols are helpful in the initialization phase and not in

the subsequent message passing procedure, i.e. MC-JCD-GAMP and MC-
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JCD-GAMP-D offer similar results. The two latter have better performance

compared to JCED-Iterative at high SNR, but JCED-Iterative algorithm con-

verges faster in all cases. Hence, there exist interesting convergence-accuracy

and tuning-complexity trade-offs between the above practical algorithms for

massive MIMO uplink networks.
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Notations

x variable

x a vector

A a matrix

AT transpose of matrix A

AH the conjugate transpose (hermitian) of matrix A

x∗ the conjugate of variable x

||x||p the p norm of vector x

||x||F the Frobenius norm of vector x

In the n× n identity matrix

C the set of complex numbers

NC(x;µ,Σ) the complex random variable x drawn from the proper

Gaussian distribution of mean µ and variance Σ

NC(x; µ,Σ) the complex random vector x drawn from the proper

Gaussian distribution of mean µ and variance Σ

fy|x(y|x) a conditional pdf of random variable y given the variable x

fy|x(y|x) a conditional pdf of random vector y given the vector x



Chapter 1

Introduction

1.1 5G and Massive MIMO

Fifth-generation (5G) cellular networks target to offer larger capacity (1000

times increase) than current 4G, allowing a higher density of mobile broad-

band users [1, 2]. Therefore, in order to accomplish the above task, one

possible solution is the use of large-scale multiple-input multiple-output an-

tenna systems. In massive MIMO systems, base stations (BSs) are equipped

with hundred or thousands of antennas, hence they can serve hundred of user

terminals (UTs) that share the same frequency resources [3–6]. Furthermore,

due to the fact that the number of antennas at the BS is much larger com-

pared to single antenna UTs, the use of the simplest linear detectors and

precoders is optimal. Therefore, interference caused by adjacent cells due to

reuse of pilot sequences is the only performance limitation, while interference,

channel estimation errors and thermal noise are almost vanished [7].

1.2 Channel Estimation and Data Detection

The current work focuses on the channel estimation and data detection prob-

lem for multi-cell uplink massive MIMO cellular networks. The two classic

ways of channel estimation and data detection are with the joint and with

the separate procedure. In [8, 9] estimation schemes based on suboptimal

criteria for joint channel estimation and data detection are proposed. It is

described that with joint channel estimation and data detection, only a few

pilot symbols are needed in order to achieve estimation and detection in

a satisfying level. In [10], an iterative genetic algorithm that provide soft

ouputs is proposed for joint channel estimation and detection in MIMO net-
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work. Unlike conventional methods where pilots and data symbols seperate

into two transmit phases, a pilot embedding method where low-level pilots

and data are transmitted together in order to obtain an initial estimate of

the channel is proposed in [11]. Authors in [7] describe an algorithm that

follows the separate procedure for channel estimation from data detection

under realistic assumption for the system model, where path-loss and pilot

contamination from adjacent cells are taken into account. That algorithm is

further analyzed in Sec. 3.1.

In [12], a Bayes-optimal inference algorithm for joint channel estimation

and data detection in single cell uplink massive MIMO networks with low-

precision ADCs is proposed. The above algorithm is based on Bilinear Gen-

eralized Approximate Message Passing (Bilinear-GAMP) algorithm, which

uses scalar operations with simple computational methods in order to com-

pute the estimated values [13]. Bilinear-GAMP algorithm is defined as an

approximation of the sum-product belief propagation algorithm that operates

in a factor graph [14] in the high-dimensional limit, where Taylor-series ap-

proximations and central-limit theorem arguments are used. It is shown that

Bayes-optimal inference algorithm can generally describe the performance

of the theoretical Bayes-optimal estimator. Hence, Bayes-optimal inference

algorithm exhibits the best possible performance.

In this work, schemes for joint channel estimation and data detection

in multi-cell uplink massive MIMO are provided. Heuristic iterative joint

channel estimation and data detection algorithm based on [3] is proposed,

while complexity analysis is supplied. The above algorithm uses the pilot

symbols along with the detected data symbols in order to estimate, through

an iterative procedure, the instantaneous values of the channels between the

BS and the intra-cell user terminals (UT), as well as to detect again the data

symbols. Furthermore, the Bayes-optimal inference algorithm [12], which

uses the pilot symbols during the message passing procedure, is adjusted to

multi-cell massive MIMO network. In addition, based on the above algo-

rithm, a new Bayes-optimal inference algorithm for joint channel estimation

and data detection is proposed, where the pilot symbols are used only during

the initialization phase and the message passing procedure, applied only in
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data phase, i.e., the time period during user terminals send their data sym-

bols. Analysis for the damping factor in Bayes-optimal inference algorithms

(or BiGAMP-based algorithms) is provided, while computation complexity

is also examined.

1.3 Thesis Contribution

The contribution of this thesis is summarized in the following bullets:

• Algorithm that first uses MMSE estimator for channel estimation and

then linear MMSE detector for data detection (SCED) is studied [7].

• An heuristic iterative algorithm, based on SCED algorithm, for joint

channel estimation and linear data detection (JCED-Iterative) is pro-

posed. Detected data symbols both with pilot symbols are used for the

channel estimation.

• Two inference BiGAMP-based [13] algorithms are proposed:

– JCD-GAMP algorithm [12] is modified (MC-JCD-GAMP) for multi-

cell interference limited massive MIMO network and new initial-

ization is proposed. The above algorithm uses pilot symbols both

in initialization and message passing phase.

– MC-JCD-GAMP-D algorithm that uses pilot symbols only in ini-

tialization phase and message passing is proceed using the data

symbols is proposed. Hence, algorithm has smaller computa-

tion complexity in message passing phase compared to MC-JCD-

GAMP algorithm.

• Computation complexity analysis is provided for all algorithms (SCED,

JCED-Iterative, MC-JCD-GAMP, MC-JCD-GAMP-D).

• Computer simulations that illustrate the impact of damping factor

parameter on the convergence in BiGAMP-based algorithms are pre-

sented.
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• Computer simulations under different scenarios with realistic assump-

tions and system dimensions are performed to verify the efficiency of

the above algorithms.

• Several insightful observations are obtained and numerous of interest-

ing convergence-accuracy and tuning-complexity trade-offs between the

studied algorithms are determined.

1.4 Thesis Outline

The thesis is organized as follows: Chapter 2 describes the system model

and the problem formulation for multi-cell massive MIMO network. Chap-

ter 3 presents both the separate and the heuristic iterative channel esti-

mation and linear data detection (SCED and JCED-Iterative) algorithms.

Chapter 4 presents the bilinear generalized approximate message passing for

joint MMSE channel and data estimation (MC-JCD-GAMP and MC-JCD-

GAMP-D) algorithms. Chapter 5 offers simulation results and observations

that have emerged. Thesis is concluded at Chapter 6.1, in which ideas for

future work are also provided.



Chapter 2

Problem Statement and System

Model

2.1 System Model

A hexagonal multicellular massive MIMO uplink system with L > 1 cells is

assumed, i.e. Fig. 2.1, Fig. 2.2 1. The BSs are equipped with N antennas

and K UTs single-antenna users. We assume flat block fading channels,

which remain constant over T consecutive symbols intervals. All K users are

assumed perfectly synchronised. The received signal at the BS j Yj ∈ CN×T

based on [7] can be expressed as

Yj = HjjXj +
∑
l 6=j

HjlXl + Wj (2.1)

where Hjl = [hjl,1 hjl,2 . . . hjl,K ] ∈ CN×K , hjl,k ∈ CN is the channel from

UT k in cell l to BS j, Xl = [xl,1 xl,2 . . . xl,K ]T ∈ CK×T with xl,k ∈ CT

the transmit symbols of k UT in cell l and Wj ∈ CN×T is the additive

white Gaussian noise at receiver at BS j, where for each element of Wj is

considered that NC(Wj; 0, σ2
w). In addition, Zj = HjjXj ∈ CN×T .

2.1.1 Path-Loss Model and Rayleigh Fading

It is difficult to obtain a simple model to characterize the pass-loss across

different environments due to complexity of signal propagation. However,

for various systems designs, a simple model that represents the nature of

1Frequency reuse factor is the rate at which the same frequency can be used by the
cells in the network. Hence interference is emanated only from cells that use the same
frequency.
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Figure 2.1: Mutlicell network of L = 7 cells, frequency reuse factor = 1,
K = 2 UTs per cell, with representation of useful and interference links at
central cell.

signal propagation without including complicated path-loss models is used.

Therefore, the following simplified path-loss model as a function of distance

according to [15] is defined as

PL = GBSGUT

(
λ

4πd0

)2(
d0

d

)α
(2.2)

where PL, GBS and GUT are the inverse free space path-loss, the antenna gains

at BS and UTs, respectively. Parameter λ is the free space propagation

wavelength that depends on carrier frequency, d0 is a reference distance,

d > d0 is the transmission distance and α is the path-loss exponent.

The entries hjl,nk of channel vectors hjl,k ∈ CN , for n = 1, . . . , N , j, l =

1, . . . , L and k = 1, . . . , K, are assumedNC(hjl,nk; 0, σ2
hjl,k

) so their magnitude



2.1. System Model 17

Figure 2.2: Mutlicell network of L = 19 cells, frequency reuse factor = 3,
K = 2 UTs per cell, with representation of useful and interference links at
central cell.

follows Rayleigh distribution [15]

f|hjl,nk|(x) =
2x

σ2
hjl,k

exp

[
− x2

σ2
hjl,k

]
, x ≥ 0 (2.3)

where σ2
hjl,k

= E [|hjl,nk|2] is the average received signal power from UT k of

l-th cell to the BS of j-th cell, which takes into account the transmit power
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of k UT, the shadowing and the path-loss model that is derived in Eq. (2.2).

In more detail, for simplicity in exposition, the channel variance incorpo-

rates path-loss shadowing and transmit power. Hence, σ2
hjl,k

= P transmit
l,k PLjl,k ,

where P transmit
l,k is the transmit power of k UT in l cell.

Furthermore, the entries of hjl,k are independent and identically dis-

tributed (i.i.d.), thus the prior distribution of Hjl is

fHjl
(Hjl) =

N∏
n=1

( K∏
k=1

(
fhjl,nk(hjl,nk)

))
. (2.4)

2.1.2 Pilot and Data Symbols

Symbol transmitting is consisted of two phases: the training phase or t-phase

which refers to the first Tt symbols of the T block, serving as pilot sequences,

and the data phase or d-phase which refers to Td = T−Tt remaining symbols.

Thus, for l = 1, . . . , L, Xl can be decomposed

Xl =

[
Xt
l Xd

l

]
,with Xt

l ∈ CK×Tt ,Xd
l ∈ CK×Td . (2.5)

Xt
l is composed of orthogonal pilot sequences. For their production,

Zadoff-Chu (ZC) sequence [16] is used. The analysis of the above proce-

dure is described in [17]. Note that Zadoff-Chu (ZC) sequences are used in

3GPP and LTE standard [18]. Pilot contamination from adjacent cells is

assumed, since the same set of orthogonal pilot sequences is reused in ev-

ery cell. Pilot sequences are deterministic, therefore Xt
l can be described by

probability distribution below

fXt
l
(Xt

l) =
K∏
k=1

( Tt∏
t=1

(
fXt

l,kt
(Xt

l,kt)
))

(2.6)

where fXt
l,kt

(Xt
l,kt) = δ(Xt

l,kt), δ is the Dirac delta function.
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Xd
l is composed of i.i.d. random variables with probability distribution 2

fXd
l
(Xd

l ) =
K∏
k=1

( Td∏
t=1

(
fXd

l,kt
(Xd

l,kt)
))

. (2.7)

Variables Xd
l are selected from QPSK modulation. So the average of Xd

l,kt

are assumed to be zero. However, Xt
l and Xd

l are independent and prior

distribution for Xl is given by

fXl
(Xl) =

K∏
k=1

( Tt∏
t=1

(
fXt

l,kt
(Xt

l,kt

))
×

K∏
k=1

( Td∏
t=1

(
fXd

l,kt
(Xd

l,kt)
))

. (2.8)

2.2 Problem Formulation - Joint Data and

Channel Estimation

Our goal is to detect Xd
l ∈ CK×Td , which are the data symbols of each UT

in cell j and to estimate Hjj ∈ CN×K , which are the instantaneous values of

each channel between UT k and BS in cell j. Moreover, the minimum value

for the training duration is considered, in order to calculate an acceptable

channel state information (CSI). The same band of frequencies is shared to

all cells. Each cell serves the same (maximum) number of UT, so the pilot

signals received by BS j are contaminated by pilots transmitted by UT in

the other cells. If we treat Xd
l and Hjj as independent random variables

with known separable prior distribution as defined in Eq. (2.7), Eq. (2.4),

and given that Zj = HjjXj ∈ CN×T , the distribution of received signal in

Eq. (2.1) under unknown parameters is

fYj |Zj(Yj | Zj) =
N∏
n=1

( K∏
k=1

(
fYj,nk|Zj,nk(Yj,nk | Zj,nk)

)
. (2.9)

2For ease of notation we present probability mass function as fx(x).
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From Eq. (2.7), Eq. (2.4) and Eq. (2.9) the posterior distribution is

fHjj ,Xj |Yj
(Hjj,Xj|Yj) =

fYj|Zj
(Yj | Zj)fHjj

(Hjj)fXj
(Xj)

fYj
(Yj)

(2.10)

hence,

fHjj ,Xj |Yj
(Hjj,Xj|Yj) ∝ fYj |Zj(Yj | Zj)fHjj

(Hjj)fXj
(Xj)

=

(
N∏
n=1

K∏
k=1

fYj,nk|Zj,nk(Yj,nk | Zj,nk)

×
N∏
n=1

K∏
k=1

fhjj,nk(hjj,nk)×
K∏
k=1

T∏
t=1

fXj,kt(Xj,kt)

)
.

(2.11)

Given priors distributions, posterior distribution and observed data Yj,

as defined in Eq. (2.7), Eq. (2.4) and Eq. (2.10), minimum mean-squared

error (MMSE) estimates of Hjj and Xj can be computed by loopy belief

propagation algorithm as we will analyze in Chap. 4.

Note that massive MIMO systems consist of a large number of received

antennas, the complexity of joint detection and estimation algorithms is ex-

tremely notable, and needs to be evaluated.
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Chapter 3

Closed-form Channel

Estimation and Linear Data

Detection

In this chapter closed-form estimators and detectors are provided in order

to compute a minimum mean-squared error (MMSE) based estimate of Hjj

and Xd
j in cell j of multi-cell massive MIMO system, given that pilot symbols

Xt
j are known. In the first algorithm presented in [7], BS j first uses Xt

j to

estimate Hjj and then utilizes the estimated channel to evaluate data Xd
j .

In the second algorithm, a closed-form heuristic iterative procedure for joint

estimation and data detection is proposed in order to minimize the estimation

error.

3.1 Separate MMSE Estimation and Linear

MMSE Detection

3.1.1 Channel Estimation

During uplink training phase, all UTs in each cell transmit the same set of

orthogonal sequences. BSs use these training observations to compute the

estimation matrix Ĥjj of their local channels, i.e. channels between BS j

and all UTs in cell j. For each UT k in cell j, BS correlates the observation

in training phase

Aj = [yj,1 yj,2 . . . yj,Tt ] ∈ CN×Tt , where yj,t ∈ CN , (3.1)
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with the pilot sequence of UT k xt
j,k ∈ C1×Tt divided by Tt in order to

calculate ytr
j,k ∈ CN which is the correlated received signal from UT k to BS

j, i.e.,

ytr
j,k = Aj

(xt
j,k)

H

Tt

= hjj,k +
∑
l 6=j

hjl,k + w̃j,k, (3.2)

where w̃j,k ∼ NC(w̃j,k; 0,
σ2
w

Tt
IN). Note that xt

j,k(x
t
j,k)

H = Tt.

In [19] it is analyzed that in massive MIMO systems, measured wireless

channels can be approached by theoretical channels with independent and

identically distributed (i.i.d.) zero mean complex Gaussian coefficients, i.e.,

i.i.d. Rayleigh channels. Hence, the covariance matrix Rjj,k of hjj,k is given

by

Rjj,k = σ2
hjj,k

IN . (3.3)

Moreover, the covariance matrix Rjl,k of hjl,k is given by

Rjl,k = σ2
hjl,k

IN . (3.4)

Therefore, based on ytr
j,k, the MMSE estimate ĥjj,k of hjj,k is given as

ĥjj,k = Rjj,kQjj,ky
tr
j,k (3.5)

where

Qjj,k =

(
σ2
w

Tt

IN +
L∑
l=1

Rjl,k

)−1

. (3.6)

3.1.2 Linear Detection

Linear single-user detection is considered. In more detail, BS j compute the

inner product between the observation vector yd
j,t (observation in d-phase)

and the linear filter rMMSE
j,k ∈ CN , with

rMMSE
j,k =

(
ĤjjĤ

H
jj + σ2

wIN

)−1

ĥjj,k (3.7)
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for all T in order to estimate the data symbols xd
j,k of UT k in its cell. Note

that in MMSE linear filter proposed in [7] there exist the Zul
j term, which is

referred as the design parameter. The above term measures channel statistics

of inter-cell UTs (inter-cell interference) and also the channel estimation er-

rors (intra-cell channels). Practically, in multi-cell systems it is difficult for a

BS to determine exactly the channel statistics of inter-cell UTs from remote

cells. Hence, the above term is assumed to be zero. Moreover, for ease of

notation the term which accounts for the intra-cell channel estimation errors

is assumed to be zero. Therefore, the estimator in Eq. 3.7 may not minimize

the mean squared errors; however, it is based on the MMSE equations and

will be referred as MMSE thereafter.

3.1.3 Computation Complexity

Table 3.1: Matrices or Vectors Dimensions (SCED Algorithm)

Matrix / Vector Dimensions

Aj N × Tt

(xt
j,k)

H Tt × 1

ytr
j,k N × 1

Rjj,k N ×N

Qjj,k N ×N

ĥjj,k N × 1

Ĥjj N ×K

rMMSE
j,k N × 1

Yd
j N × Td

Computation complexity of separate MMSE channel estimation and lin-

ear MMSE data detection (SCED) algorithm based on Table. 3.1, is described

by the following matrix multiplications

• Eq. 3.2: N×Tt×K multiplications (N×Tt multiplications for K UTs)

• Eq. 3.6: N3 ×K multiplications (N3 multiplications for K UTs)
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• Eq. 3.5: K ×N2 × (N + 2× Tt) multiplications1

– N3 ×K multiplications for Qjj,k (N3 multiplications for K UTs)

– N2×Tt×K multiplications for Qjj,ky
tr
j,k (N2×Tt multiplications

for K UTs)

– N2 × Tt ×K multiplications for Rjj,k

(
Qjj,ky

tr
j,k

)
(N2 × Tt multi-

plications for K UTs)

• Eq. 3.7: N2 × (N + 2×K) multiplications

– N2 ×K multiplications for ĤjjĤ
H
jj

– N3 multiplications for

(
ĤjjĤ

H
jj + σ2

wIN

)−1

– N2 ×K multiplications for

(
ĤjjĤ

H
jj + σ2

wIN

)−1

ĥjj,k (N2 multi-

plications for K UTs)

• For inner product between yd
j,t and rMMSE

j,k : N ×Td×K multiplications

(N multiplications for K UTs and Td symbols per UT).

In summary, complexity order is dominated by K × N2 × (N + 2 × Tt)

multiplications,2 so O(K ×N2 × (N + 2× Tt)).

3.2 Iterative Estimation and Linear

Detection

In this subsection, the heuristic iterative channel estimation and detection

(JCED-Iterative) algorithm is presented. JCED-Iterative algorithm is in-

spired from separate MMSE channel estimation and linear MMSE data de-

tection (SCED) algorithm presented in the above chapter. JCED-Iterative

algorithm receives the detected symbols from SCED algorithm for all UTs

1Note that N � Tt.
2From Eq. 3.5.
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at d-phase duration as an input. Then, algorithm considers Xest,j ∈ CK×T

as the new training phase, where

Xest,j = [Xt
j X̂d

j ]. (3.8)

Moore-Penrose inverse (pseudoinverse) matrix X+
est,j ∈ CT×K , which de-

scribed in [20], can be calculated as 3

X+
est,j = XH

est,j

(
Xest,jX

H
est,j

)−1

(3.9)

and

X+
est,j = [xMP,t1 xMP,t2 . . . xMP,tK ] ∈ CT×K , where xMP,tk ∈ CT . (3.10)

Therefore,

Xest,jX
+
est,j = IK . (3.11)

3.2.1 Channel Estimation

For each UT k in BS j, JCED-Iterative algorithm follows the same procedure

as SCED algorithm in order to estimate Hjj and Xd
j . In more detail,

ytr
est,j,k = YjxMP,j,k = hjj,k + einter + w̄j,k, (3.12)

where w̄j,k ∼ NC(w̄j,k; 0, ||xMP,j,k||22σ2
wIN)4, einter accounts for the interfer-

ence from all inter-cell UTs (not only the k UTs from other cells) and

ytr
est,j,k ∈ CN .

Hence, based on ytr
est,j,k, the heuristic estimate ĥjj,k of hjj,k is given as

ĥjj,k = Rjj,kQjj,ky
tr
est,j,k (3.13)

3Pseudoinverse matrix can be defined only when K ≤ T .
4Proof: See Appendix A.
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where Rjj,k remains as in Eq. 3.3 and

Qjj,k =

(
||xMP,j,k||22σ2

wIN +
L∑
l=1

K∑
k′=1

Rjl,k′

)−1

. (3.14)

Note that Eq. 3.14 is a heuristic equation which also accounts for the inter-

ference from all inter-cell UTs (based on einter term in Eq. 3.12).

3.2.2 Linear Detection

Similarly to the SCED algorithm, BS j computes the inner product between

the observation vector yd
j,t and the linear filter rj,k ∈ CN Eq. 3.7 for all T in

order to estimate the symbols xd
j,k of UT k in its cell.

3.2.3 Iterative Procedure

The new detected symbols for all UTs (as explained in Subsec. 3.2.2) are re-

inputted to JCED-Iterative algorithm and then new values for channels and

data symbols are calculated. This procedure is repeated until the algorithm

converges or the maximum number of iterations is achieved. Fig. 3.1 shows

a flow diagram of JCED-Iterative algorithm.

Convergence

JCED-Iterative algorithm converges when∑N
n=1

∑T
t=Tt+1 |Ẑj,nt(µ)− Ẑj,nt(µ− 1)|2∑N
n=1

∑T
t=Tt+1 |Ẑj,nt(µ)|2

≤ ε (3.15)

where Ẑj = ĤjjX̂j, µ is the current iteration and ε is a defined convergence

parameter.

3.2.4 Computation Complexity

Computation complexity of heuristic Iterative based Channel Estimation and

Detection (JCED-Iterative) algorithm based on Table. 3.2 is described by the
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Table 3.2: Matrix Dimensions (SCED Algorithm)

Matrix Dimensions

Yj N × T

X+
est,j T ×K

xMP,j,k T × 1

ytr
est,j,k N × 1

Rjj,k N ×N

Qjj,k N ×N

ĥjj,k N × 1

Ĥjj N ×K

rj,k N × 1

Yd
j N × Td

following matrix multiplications 5

• Eq. 3.9: K2 × (K + 2× T ) multiplications

– K2 × T multiplications for Xest,jX
H
est,j

– K3 multiplications for
(
Xest,jX

H
est,j

)−1

– T ×K2 multiplications for X+
est,j = XH

est,j

(
Xest,jX

H
est,j

)−1

.

• Eq. 3.12: N × T × K) multiplications (N × T multiplications for K

UTs)

• Eq. 3.14: N3 ×K multiplications (N3 multiplications for K UTs)

• Eq. 3.13: K ×N2 × (N + 2× T ) multiplications

– N3 ×K multiplications for Qjj,k (N3 multiplications for K UTs)

– N2×T×K multiplications for Qjj,ky
tr
est,j,k (N2×Tt multiplications

for K UTs)

5For more details check Subsec. 3.1.3.
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– N2 × T ×K multiplications for Rjj,k

(
Qjj,ky

tr
est,j,k

)
(N2 × T mul-

tiplications for K UTs)

• Eq. 3.7:N2 × (N + 2×K) multiplications

– N2 ×K multiplications for ĤjjĤ
H
jj

– N3 multiplications for

(
ĤjjĤ

H
jj + σ2

wIN

)−1

– N2 ×K multiplications for

(
ĤjjĤ

H
jj + σ2

wIN

)−1

ĥjj,k (N2 multi-

plications for K UTs)

• For inner product between yd
j,t and rj,k: N ×Td×K multiplications (N

multiplications for K UTs and Td symbols per UT).

In summary, complexity order is dominated by K×N2×(N+2×T ) mul-

tiplications6 per iteration, so O(µcon×K×N2×(N+2×T ) where µcon is the

number of iteration that JCED-Iterative algorithm converges. However, as

described above in this section, JCED-Iterative algorithm uses as initializa-

tion the detected symbols for all UTs at d-phase duration, that emerged from

SCED algorithm. Computation complexity of these multiplications in SCED

algorithm is O(K×N2×(N+2×Tt)). Hence, the complexity order of JCED-

Iterative algorithm isO(K×N2×(N+2×Tt))+µcon×K×N2×(N+2×T )) =

O
(
K ×N2 ×

(
(µcon + 1)×N + 2× (Tt + T )

))
, where µcon is the number of

iteration that the JCED-Iterative algorithm converges.

6From Eq. 3.13.
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Figure 3.1: Flow diagram of JCED-Iterative algorithm.
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Chapter 4

Bilinear Generalized

Approximate Message Passing

for MMSE Joint Data and

Channel Estimation

In this chapter a graphical model approach is proposed, in order to compute

an approximation of the minimum mean-squared error (MMSE) estimate

of Hjj, Xd
j in cell j of multi-cell massive MIMO system. In more detail,

we aim to compute means of the marginal posteriors fHjj |Yj
(Hjj|Yj) and

fXj |Yj
(Xj|Yj) given the distributions of Hjj, Xj, Yj|Zj and pilot symbols

Xt
j. In joint channel and data estimation scheme, BS j estimates both Hjj

and Xd
j , in contrast to pilot-only scheme which the BS j first uses Xt

j to

estimate Hjj and then uses the estimated channel to estimate data Xd
j . For

ease of notation, since we aim to estimate the data and the channel in cell j

only, in this chapter we refer to Hjj as H, Xj as X, Xt
j as Xt and Xd

j as Xd.

In a graphical model, random variables are represented by nodes and

relationships between these random variables represented by edges. Factor

graph is a bipartite graph that contains two differenent classes of nodes, the

factor nodes and the variable nodes. Factor graphs represent graphically

the factorization of a global function into a product of local sub-functions.

Using loopy belief propagation we can approximate the above means of the

marginals [13]. More specifically, with sum-product algorithm (SPA) [14] the

beliefs of the random variables, that propagate among the nodes of the factor

graph until they converge, can be computed. The SPA algorithm operates

by passing real valued functions, which are called messages, along the edges



4.1. Factor Graph 31

between the factor and variable nodes. The belief that is transferred by a

variable node to a factor node is computed as the product of all the incoming

beliefs expect the belief that variable node receives from the factor node

that wants to transmit the message. On the other side, the belief that is

transferred by a factor node to a variable node is computed as the integral

of the product of the factor of all the incoming beliefs except the belief that

factor node receives from the variable node that will transmit the outcoming

message. The product of all the incoming beliefs in a variable node, gives

the posterior distribution function (pdf) for that variable.

However, the computational complexity of the SPA in high-dimensional

inference problems is infeasible. Generalized approximate message passing

algorithm (GAMP) developed in [21], solves the generalized problem using

a tractable method to approximate the marginal posterior of X. In [13],

authors derived an algorithm called bilinear approximate message passing

algorithm, that uses GAMP-like approximations which are based on Taylor-

series approximations and on central limit theorem arguments to compute

means of the marginal posteriors of fH|Y(H|Y) and fX|Y(X|Y).

4.1 Factor Graph

As we show in Sec. 2.2 at Eq. 2.11 posterior distribution fH,X|Y(H,X|Y)

can be written as a product of distributions fY|Z(Y|Z), fH(H) and fX(X).

Therefore, the posterior distribution fH,X|Y(H,X|Y) can be represented with

a factor graph as it is shown in Fig. 4.1 where factor graphs for different pa-

rameters are represented. fY|Z(Y|Z), fH(H) and fX(X) are represented by

the factor nodes which are designed with squares, while channel H and trans-

mitted signals X are represented by the variable nodes, which are designed

with cycles. SPA algorithm, can be used to compute the marginal posterior

distributions fH|Y(H|Y) and fX|Y(X|Y).

As considered in Sec. 2.2, Z = HX, with H and X unknown. In Sec. 4.2.2

an estimator for Z is described. The same concept can by easily applied to

estimate H and X. But, H and X are both unknown, so the complexity of

estimator is still high. Problem can be divided into two separately problems,
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the estimation of H given X and the estimation of H given X.

Figure 4.1: Graphical illustrator of factor graph for MC-JCD-GAMP algo-
rithm, where N = 2, K = 2, Tt = 1 and Td = 1.

4.2 MC-JCD-GAMP Algorithm

An algorithm for joint channel and data estimation based on GAMP (JCD-

GAMP) algorithm is proposed in [12]. We modify the above algorithm (to

MC-JCD-GAMP) in order to use it in a multi-cell massive MIMO network,

where interferences are caused by adjacent cells. Note that initialization

phase, which is extremely important factor for the convergence of the al-

gorithm, is changed compared to the algorithm that is proposed in [12].

Furhermore, changes were done at the estimator of Z. MC-JCD-GAMP

follows the same structure as Bi-GAMP [13] except the steps with pilot sym-
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bols Xt (orthogonal pilot symbols). In Algorithm 1 below, changes between

JCD-GAMP and MC-JCD-GAMP are highlighted with blue color.

The steps in Algorithm 1 can be analyzed as follows. Lines 3-4, compute

the estimate P̂t of the matrix product Zt = HXt and a corresponding set

of elements-wise variances vpnt, t ∈ {1, . . . , Tt}. Lines 7-8, compute a “plug-

in”1 estimate P̄d of the matrix product Zd = HXd and a corresponding

set of elements-wise variances v̄pnt, t ∈ {Tt + 1, . . . , T}. Then in lines 9-10,

“Onsager”2 correction is applied to obtain the corresponding quantities P̂d

and variances vpnt, t ∈ {Tt + 1, . . . , T}. Note that in lines 3-4 and 7-10 the

algorithm follows the same procedure, but given that the pilot matrix Xt

is known, vxkt = 0, t ∈ {1, . . . , Tt}. Using the above quantities, in lines 12-

13 the approximate marginal posterior means Ẑ and variances vznt of Z are

computed. Lines 14-15 then use Ẑnt and variances vznt to compute the scaled

residual Ŝ and the inverse residual variances vsnt.
3 Lines 16-17, then use the

residual quantities to compute r̂kt and vrkt, where r̂kt can be defined as the

observation Xd,kt under an AWGN channel with zero mean and vrkt variance.

Similarly, lines 18-19, compute the quantities q̂nk and vqnk, where q̂nk can be

defined as the observation hnk under an AWGN channel with zero mean and

vqnk variance. Finally, lines 20-21 combine the terms r̂kt and vrkt with the

prior fXd
(Xd) to compute the posterior mean X̂d,kt and variance vxkt. Same

procedure is followed in lines 22-23, for the calculation of the posterior mean

Ĥnk and variance vhnk.

For better understanding, Fig. 4.2 shows a representation of MC-JCD-

GAMP algorithm. First, algorithm estimates at factor nodes means and

variances of Z from the observation Y and incoming messages from variable

nodes, if they exist. Then factor nodes send messages to variable nodes.

After that, at variable/factor nodes X, X be observed under an AWGN

channel, and the posterior means and variances of X are computed. Par-

allel, at variable/factor nodes H, H be observed under an AWGN channel

and the posterior means and variances of H are computed. Both messages,

1“Plug-in principle” is a simple method of estimating parameters from samples.
2For more details about “Onsager correction” in GAMP see [21].
3For more details about residual quantities in GAMP see [13].
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Algorithm 1 MC-JCD-GAMP Algorithm

inputs: Observation Y, pilot matrix Xt, posterior distribution fY|Z(Y|Z)
and prior distributions fH(H), fX(X)
outputs: Means of marginal posteriors fH|Y(H|Y) and fX|Y(X|Y)
initialization: µ = 1, for n = 1, . . . , N , k = 1, . . . , K and t = 1, . . . , T :
ŝnt(0) = 0, Ĥnk(1) = Hout,nk, v

h
nk(1) ≈ 0 and for t = Tt + 1, . . . , T :

X̂kt(1) = Xout,kt, v
x
kt(1) = 1

1: for µ = 1, . . . , µmax do
2: for t = 1, . . . , Tt do
3: ∀n : vpnt(µ) =

∑K
k=1 v

h
nk(µ)|Xkt|2

4: ∀n : p̂nt(µ) =
∑K

k=1 Ĥnk(µ)Xkt − ŝnt(µ− 1)vpnt(µ)
5: end for
6: for t = Tt + 1, . . . , T do
7: ∀n : v̄pnt(µ) =

∑K
k=1

(
|Ĥnk(µ)|2vxkt(µ) + vhnk(µ)|X̂kt(µ)|2

)
8: ∀n : p̄nt(µ) =

∑K
k=1 Ĥnk(µ)X̂kt(µ)

9: ∀n : vpnt(µ) = v̄pnt(µ) +
∑K

k=1 v
h
nk(µ)vxkt(µ)

10: ∀n : p̂nt(µ) = v̄pnt(µ)− ŝnt(µ− 1)v̄pnt(µ)
11: end for

12: ∀n, t : vznt(µ) = Var
{
Znt|p̂nt(µ), vpnt(µ)

}
13: ∀n, t : Ẑnt(µ) = E

{
Znt|p̂nt(µ), vpnt(µ)

}
14: ∀n, t : vsnt(µ) =

(
1− vznt(µ)/vpnt(µ)

)
/vpnt(µ)

15: ∀n, t : ŝnt(µ) =
(
Ẑnt(µ)− p̂nt(µ)

)
/vpnt(µ)

16: ∀k, t : vrkt(µ) =
[∑N

n=1 |Ĥnk(µ)|2vsnt(µ)
]−1

17: ∀k, t : r̂kt(µ) = X̂kt(µ)
(
1− vrkt(µ)

∑N
n=1 v

h
nk(µ)vsnt(µ)

)
+vrkt(µ)

∑N
n=1 Ĥ

∗
nk(µ)ŝnt(µ)

18: ∀n, k : vqnk(µ) =
[∑Tt

t=1 |Xkt|2vsnt(µ) +
∑T

t=Tt+1 |X̂kt(µ)|2vsnt(µ)
]−1

19: ∀n, k : q̂nk(µ) = Ĥnk(µ)
(
1− vqnk(µ)

∑T
t=1+Tt

vxkt(µ)vsnt(µ)
)

+vqnk(µ)
(∑Tt

t=1X
∗
ktŝnt(µ) +

∑T
t=Tt+1 X̂

∗
kt(µ)ŝnt(µ)

)
20: ∀k, t ∈ {Tt + 1, . . . , T} : vxkt(µ+ 1) = Var

{
Xkt|r̂kt(µ), vrkt(µ)

}
21: ∀k, t ∈ {Tt + 1, . . . , T} : X̂kt(µ+ 1) = E

{
Xkt|r̂kt(µ), vrkt(µ)

}
22: ∀n, k : vhnk(µ+ 1) = Var

{
Hnk|q̂nk(µ), vhnk(µ)

}
23: ∀n, k : Ĥnk(µ+ 1) = E

{
Hnk|q̂nk(µ), vhnk(µ)

}
24: if

∑N
n=1

∑T
t=Tt+1 |p̄nt(µ)−p̄nt(µ−1)|2∑N
n=1

∑T
t=Tt+1 |p̄nt(µ)|2 ≤ ε or µ = µmax then

25: Stop
26: end if
27: end for
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from variable nodes X and H are sent to factor nodes. This procedure is

repeated until the algorithm converges or the maximum number of iterations

is achieved.

Factor Node X Factor Node Y|Z

Lines: 1-15
Lines: 16-17

and 20-21

Observation Y

Figure 4.2: Representation of MC-JCD-GAMP algorithm.

4.2.1 Initialization

Initializations in MC-JCD-GAMP algorithm are extremely important for the

convergence of the algorithm. As we describe in Ch. 3 during training phase,

pilot contamination from adjacent cells is assumed, since the same set of or-

thogonal pilot sequences is reused in every cell. Given that the pilot symbols

are known we can initialize the quantities X̂kt(1) and Ĥnk(1) with the out-

puts Xout,kt and Hout,nk respectively, where Xout,kt and Hout,nk are computed

from SCED algorithm that is presented in Sec. 3.1. Remaining terms ŝnt, v
x
kt

and vhnk maintain their initial values as in [12].

4.2.2 Estimators

In this subsection, estimators that are used in lines 12-13, 20-21 and 22-23

are analyzed, based on [12]. As it is showed in MC-JCD-GAMP algorithm,

in lines 12-13, 20-21 and 22-23 mean and variance of random variables Znt,

Xkt and Hnk respectively, must be calculated. Hence, in this subsection

closed-form estimators for the above variables are presented.
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Estimator for Z

Consider a SISO version of system Eq. 2.1 (N = 1, T = 1), Yj = Zj+Ej+Wj,

where Wj ∼ NC(Wj; 0, σ2
w), Ej ∼ NC(Ej; 0,

∑
l 6=j
∑K

k=1 σ
2
hjl,k

)4 and Zj =

HjjXj. Hence, if we treat Uj = Ej + Wj as additive Gaussian noise in Zj,

with Uj ∼ NC(Uj; 0, σ2
uj

) where σ2
uj

=
∑

l 6=j
∑K

k=1 σ
2
hjl,k

+ σ2
w, the following

SISO system can be considered

Yj = Zj + Uj. (4.1)

For ease of notation, if j indicator removed

Y = Z + U (4.2)

where,

fY |Z(Y |Z) =
1

πσ2
u

e
−|Y−Z|2

σ2u . (4.3)

According to Bayes rule the posterior distribution of Z|Y is given by

fH,X|Y (H,X|Y ) = fZ|Y (Z|Y ) =
fY |Z(Y |Z)fZ(Z)

fY (Y )

∝ fY |Z(Y |Z)fZ(Z). (4.4)

Then, MMSE estimator for Z can be obtained by the posterior mean

Ẑ = E[Z|Y ] =

∫
zf(z|Y )dz. (4.5)

Furthermore, to determine the above estimator assume that Z ∼ NC(Z; p̂, vp).

Hence, using the above distributions, can be calculated that

fY |Z(Y |Z)fZ(Z) = NC(Z;Y, σ2
u)NC(Z; p̂, vp)

= D · NC

(
Z;

vpY + σ2
up̂

σ2
u + vp

,
σ2
uv

p

σ2
u + vp

)
. (4.6)

4If QPSK modulation is assumed, (E[|Xj |2] = 1). For proof see Appendix B.
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where D = NC(0;Y − p̂, σ2
u + vp).5 Using Eq. 4.4 and Eq. 4.6 is computed

that

fZ|Y (Z|Y ) = NC

(
Z;

vpY + σ2
up̂

σ2
u + vp

,
σ2
uv

p

σ2
u + vp

)
. (4.7)

Finally, the estimator of Eq. 4.5, which is the mean of fZ|Y(Z|Y ) is

Ẑ =
vpY + σ2

up̂

σ2
u + vp

= p̂+
vp

σ2
u + vp

(Y − p̂) (4.8)

and the MSE of the above estimator, which is the variance of fY |Z(Y |Z) is

vz =
σ2
uv

p

σ2
u + vp

= vp − (vp)2

σ2
u + vp

. (4.9)

Estimator for H

As defined in Subsec. 2.1.1, fhn,k(hn,k) ≡ NC(hn,k; 0, σ2
hk

). Furthermore, it

is analyzed that q̂nk term can be defined as the observation of hnk under an

AWGN channel with variance vqnk. For ease of notation, terms n and k are

omitted in next equations. Therefore, the posterior distribution of h given

observation q̂nk according to Bayes rule is

fh|q̂(h|q̂) =
fq̂|h(q̂|h)fh(h)

fq̂(q̂)

∝ fq̂|h(q̂|h)fh(h). (4.10)

Thereby, the MMSE estimator for h can be obtained by the posterior mean

ĥ = E[h|q̂] =

∫
hfh|q̂(h|q̂)dh. (4.11)

Then following the same procedure as in estimator for Z,

fq̂|h(q̂|h)fh(h) = NC(h; q̂, vq)NC(h; 0, σ2
h). (4.12)

5Proof: See Appendix C.
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Therefore, the mean of fh|q̂(h|q̂), which is the MMSE estimator of h, is

ĥ =
σ2
h

σ2
h + vq

q̂ (4.13)

and the MSE of the above estimator, which is the variance of fh|q̂(h|q̂) be-

comes

vh =
σ2
hv

q

σ2
h + vq

= vq − (vq)2

σ2
h + vq

. (4.14)

Estimator for Xd

It is analyzed that r̂kt term can be defined as the observation of Xd,kt under

an AWGN channel with variance vrkt. For ease of notation, terms k and t

are omitted in next equations. Hence, the posterior distribution of Xd given

observation r̂kt according to Bayes rule is

P(Xd) =
fr̂|Xd

(r̂|Xd)Pr(Xd)∑
X′d
fr̂|X′d(r̂|X ′d)Pr(X ′d)

. (4.15)

where fr̂|Xd
(r̂|Xd) = NC(r̂;Xd, v

r) = NC(Xd; r̂, vr). Thereby, the estimator

for Xd can be obtained by the posterior mean

X̂d = E[Xd|r̂] =
∑
Xd∈B

XdP(Xd) (4.16)

QPSK modulation is considered, where 2× 2 points are

B =
1√
2
×
{

1 + j,−1 + j, 1− j,−1− j
}

(4.17)

and, Pr(Xd) = 1/4 for Xd ∈ B. Then, lines 22-23 can be calculated as 6

X̂d =
1√
2

tanh

(
2Re(r̂)√

2vr

)
+ j

1√
2

tanh

(
2Im(r̂)√

2vr

)
, (4.18)

vx =
1

2
tanh

(
2Re(r̂)√

2vr

)
+

1

2
tanh

(
2Im(r̂)√

2vr

)
− |X̂d|2. (4.19)

6Proof: See Appendix D.
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4.2.3 Damping Factor

In the algorithm that is presented above in this section, for ease of inter-

pretation, did not included the important damping modification. In this

subsection, the damping factor β ∈ (0, 1] that used to slow the evolution of

certain variables is analyzed. Note that damping factor is extremely impor-

tant for the convergence of the MC-JCD-GAMP algorithm.

In more detail, lines 2, 7, 8, 14 and 15 should be replaced with

vpnt(µ) = β
( K∑
k=1

vhnk(µ)|Xkt|2
)

+ (1− β)vpnt(µ− 1) (4.20)

v̄pnt(µ) = β

( K∑
k=1

(
|Ĥnk(µ)|2vxkt(µ) + vhnk(µ)|X̂kt(µ)|2

))
+ (1− β)v̄pnt(µ− 1) (4.21)

vpnt(µ) = β
(
v̄pnt(µ) +

K∑
k=1

vhnk(µ)vxkt(µ)
)

+ (1− β)vpnt(µ− 1) (4.22)

vsnt(µ) = β
((

1− vznt(µ)/vpnt(µ)
)
/vpnt(µ)

)
+ (1− β)vsnt(µ− 1) (4.23)

ŝnt(µ) = β
((
Ẑnt(µ)− p̂nt(µ)

)
/vpnt(µ)

)
+ (1− β)ŝnt(µ− 1) (4.24)

respectively, and between lines 15-16 are inserted the following two lines

X̄kt(µ) = βX̂kt(µ) + (1− β)X̄kt(µ− 1) (4.25)

H̄nk(µ) = βĤnk(µ) + (1− β)H̄nk(µ− 1) (4.26)

then, the X̄kt(µ) and H̄nk(µ) are used in places of X̂kt(µ) and Ĥnk(µ) in lines

16-17 and 18-19 respectively.
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4.2.4 Computation Complexity

Computation complexity of MC-JCD-GAMP algorithm is described by the

following matrix multiplications per line per iteration

• Lines 3-4: N ×K × Tt multiplications

• Line 7: 2×N ×K × Td multiplications

• Lines 8-9: N ×K × Td multiplications

• Lines 10, 12-15: N × T multiplications

• Line 16: N ×K × T multiplications

• Line 17: 2×N ×K × T multiplications

• Line 18: N ×K × Tt +N ×K × Td multiplications

• Line 19: N ×K × Td +N ×K × Tt +N ×K × Td multiplications

• Lines 20-21: N × Td multiplications

• Lines 22-23: N ×K multiplications.

In summary, complexity order is dominated by N×K×T multiplications

per iteration, so O(µcon ×N ×K × T ) where µcon is the number of iteration

that MC-JCD-GAMP algorithm converges.

However, as described in Sec. 4.2.1, in initialization phase, SCED algo-

rithm is used to initialize the terms of X̂nt and Ĥnk. Computation complexity

of these multiplications in SCED algorithm is O
(
K × N2 × (N + 2 × Tt)

)
.

Hence, the complexity order of MC-JCD-GAMP algorithm is O
(
K × N2 ×

(N + 2× Tt) + µcon × (N ×K × T )
)

= O
(
K ×N2 × (N + 2× Tt)

)
.

4.3 MC-JCD-GAMP-D Algorithm

In this section, MC-JCD-GAMP algorithm is modified to MC-JCD-GAMP-

D algorithm, i.e. in the time duration Td = T − Tt. In more detail, pilot
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symbolsXt are used only in initialization phase, similarly to MC-JCD-GAMP

algorithm Subsec. 4.2.1. Then, the approximate message passing algorithm

is applied in d-phase only, hence observation Yd is used, i.e.

Yd = [yTt+1 yTt+2 . . . yT ] ∈ CN×Td , where yt ∈ CN . (4.27)

Fig. 4.3 shows a flow diagram of the above algorithm.

As we show in Sec. 2.2 at Eq. 2.11 posterior distribution fH,X|Y(H,X|Y)

can be written as a product of distributions fY|Z(Y|Z), fH(H) and fX(X).

In this section, terms Y, Z, X and fX(X) are replaced by Yd, Zd, Xd and

fXd
(Xd), respectively. Therefore, the posterior distribution fH,Xd|Yd

(H,Xd|Yd)

is

Figure 4.3: Flow diagram of MC-JCD-GAMP-D algorithm.
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fH,Xd|Yd
(H,Xd|Yd) ∝ fYd|Zd

(Yd | Zd)fH(H)fXd
(Xd)

=
N∏
n=1

( K∏
k=1

(
fYd,nk|Zd,nk

(Yd,nk | Zd,nk)

)

×
N∏
n=1

( K∏
k=1

(
fhnk(hnk)

))

×
K∏
k=1

( T∏
t=Tt+1

(
fXkt(Xkt)

))
. (4.28)

The factor graph that represents the Eq. 4.28 is shown in Fig. 4.4. As

showed, the variable nodes for Xt do not exist anymore. fYd|Zd
(Yd|Zd),

fH(H) and fXd
(Xd) is represented by the factor nodes which are designed

with squares, while H and Xd are represented by the variable nodes, which

are designed with cycles. SPA algorithm, can be used to compute the

marginal posterior distributions fH|Yd
(H|Yd) and fXd|Yd

(Xd|Yd). Algo-

rithm 2 (Alg. 2) describes the steps of the MC-JCD-GAMP-D algorithm.

Steps are exactly the same as in the Bi-GAMP algorithm in [13]. Initializa-

tion, damping steps and estimation functions (lines 6-7, 14-15, 16-17) are the

same as in the algorithm presented in Sec. 4.2.

4.3.1 Computation Complexity

Computation complexity of the MC-JCD-GAMP-D algorithm is described

by the following matrix multiplications per line per iteration

• Line 2: 2×N ×K × Td multiplications

• Lines 3-4: N ×K × Td multiplications

• Lines 5-9: N × Td multiplications

• Line 10: N ×K × Td multiplications

• Line 11: 2×N ×K × Td multiplications
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Figure 4.4: Graphical illustrator of factor graph for the MC-JCD-GAMP-D
algorithm, where N = 2, K = 2 and Td = 1.

• Line 12: N ×K × Td multiplications

• Line 13: 2×N ×K × Td multiplications

• Lines 20-21: N × Td multiplications

• Lines 22-23: N ×K multiplications.

In conclusion, complexity order is dominated by N ×K × Td multiplica-

tions per iteration, therefore O(µcon×N ×K×Td) where µcon is the number

of iteration that MC-JCD-GAMP-D algorithm converges.

However, as described in Subsec. 4.2.4, in initialization phase, the com-

putation complexity is O
(
K×N2× (N +2×Tt)

)
. Therefore, the complexity

order of MC-JCD-GAMP-D algorithm is O(K ×N2× (N + 2× Tt) + µcon×
N ×K × Td) = O

(
K ×N2 × (N + 2× Tt)

)
.
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Algorithm 2 MC-JCD-GAMP-D Algorithm

inputs: Observation Yd, pilot matrix Xt (in initialization phase), posterior
distribution fYd|Zd

(Yd|Zd) and prior distributions fH(H), fXd
(Xd)

outputs: Means of marginal posteriors fH|Yd
(H|Yd) and fXd|Yd

(Xd|Yd)
initialization: µ = 1, for n = 1, . . . , N , k = 1, . . . , K and t = Tt + 1, . . . , T :
ŝnt(0) = 0, X̂kt(1) = Xout,kt, v

x
kt(1) = 1, Ĥnk(1) = Hout,nk, v

h
nk(1) ≈ 0

1: for µ = 1, . . . , µmax do
2: ∀n : v̄pnt(µ) =

∑K
k=1

(
|Ĥnk(µ)|2vxkt(µ) + vhnk(µ)|X̂kt(µ)|2

)
3: ∀n : p̄nt(µ) =

∑K
k=1 Ĥnk(µ)X̂kt(µ)

4: ∀n : vpnt(µ) = v̄pnt(µ) +
∑K

k=1 v
h
nk(µ)vxkt(µ)

5: ∀n : p̂nt(µ) = v̄pnt(µ)− ŝnt(µ− 1)v̄pnt(µ)

6: ∀n, t : vznt(µ) = Var
{
Znt|p̂nt(µ), vpnt(µ)

}
7: ∀n, t : Ẑnt(µ) = E

{
Znt|p̂nt(µ), vpnt(µ)

}
8: ∀n, t : vsnt(µ) =

(
1− vznt(µ)/vpnt(µ)

)
/vpnt(µ)

9: ∀n, t : ŝnt(µ) =
(
Ẑnt(µ)− p̂nt(µ)

)
/vpnt(µ)

10: ∀k, t : vrkt(µ) =
[∑N

n=1 |Ĥnk(µ)|2vsnt(µ)
]−1

11: ∀k, t : r̂kt(µ) = X̂kt(µ)
(
1− vrkt(µ)

∑N
n=1 v

h
nk(µ)vsnt(µ)

)
+vrkt(µ)

∑N
n=1 Ĥ

∗
nk(µ)ŝnt(µ)

12: ∀n, k : vqnk(µ) =
[∑T

t=Tt+1 |X̂kt(µ)|2vsnt(µ)
]−1

13: ∀n, k : q̂nk(µ) = Ĥnk(µ)
(
1− vqnk(µ)

∑T
t=1+Tt

vxkt(µ)vsnt(µ)
)

+vqnk(µ)
(∑T

t=Tt+1 X̂
∗
kt(µ)ŝnt(µ)

)
14: ∀k, t : vxkt(µ+ 1) = Var

{
Xkt|r̂kt(µ), vrkt(µ)

}
15: ∀k, t : X̂kt(µ+ 1) = E

{
Xkt|r̂kt(µ), vrkt(µ)

}
16: ∀n, k : vhnk(µ+ 1) = Var

{
Hnk|q̂nk(µ), vhnk(µ)

}
17: ∀n, k : Ĥnk(µ+ 1) = E

{
Hnk|q̂nk(µ), vhnk(µ)

}
18: if

∑N
n=1

∑T
t=Tt+1 |p̄nt(µ)−p̄nt(µ−1)|2∑N
n=1

∑T
t=Tt+1 |p̄nt(µ)|2 ≤ ε or µ = µmax then

19: Stop
20: end if
21: end for



Chapter 5

Simulation Results

In this chapter we compare through simulations the performance of algo-

rithms (SCED, SCED-Iterative, MC-JCD-GAMP and MC-JCD-GAMP-D)

presented in Ch. 3 and Ch. 4. A hexagonal cellular network is considered

based on [15] with L = 7 cells and frequency reuse factor = 1. Each cell

contains uniformly distributed UTs around BS (which is placed in the cen-

ter of each cell). Interference from adjacent cells is considered. Figures in

this chapter depict various measurement results, such as the average Symbol

Error Rate (SER), concerning only the intra-cell UTs located in the central

BS of a topology, while the inter-cell UTs are considered only as interferers.

Moreover, the simulation results are calculated by averaging Monte-Carlo

runs with different channel realizations.

Realistic assumptions for multi-cell massive MIMO are considered based

on Long Term Evolution (LTE). Cell radius is assumed to be 1000m, path-

loss exponent α = 3.7, antenna gain at BS GBS = 16 dBi and antenna gain at

each UT GUT = 2.15 dBi. Furthermore, bandwidth of 10 MHz is considered,

while the uplink carrier frequency is assumed to be at fcarrier = 1950 MHz.

Free space wavelength λ is v
fcarrier

= 3×108

fcarrier
m where v is the speed of light,

while the reference distance d0 = 100 m. In addition, Noise Figure (NF) is

assumed to be 4 dB. QPSK modulation is considered for transmit data, and

the convergence parameter ε = 10−6. Fig. 5.1 shows a random topology with

K = 10 UTs in each cell. Note that received SNR at BS from intra-cell UT

k is defined as

SNRk =
σ2
hk

σ2
w

(5.1)

where σ2
hk

is the received signal power at BS from UT k and σ2
w the power

of noise at BS. Furthermore, normalized root mean square error (NRMSE)
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is considered as the metric for channel estimation of intra-cell links where

NRMSE =
||H− Ĥ||F
||H||F

. (5.2)

At first and second scenario, SER and NRMSE refer to the average SER and

NRMSE across all intra-cell UTs, respectively. At third scenario, SER and

NRMSE refer to SER and NRMSE of intra-cell UT k, respectively.
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Figure 5.1: Topology of 7-cell hexagonal system with K = 10 UTs uniformly
distributed around each BS.

5.1 Impact of Damping Factor

In this section the effect of damping factor in MC-JCD-GAMP, MC-JCD-

GAMP-D algorithms is shown under different transmit power scenarios. The

simulations are conducted for N = 64 antennas at central BS, K = 10 UTs
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Figure 5.2: Divergence outage probability versus damping factor, for N = 64,
K = 10 and Td = 240.

per cell and T = 250 symbols (Tt = 10 pilot symbols, Td = 240 data symbols).

Moreover, the transmit power (Ptx or P transmit) of intra-cell UTs is assumed

to be −3 dBm, −1 dBm and 1 dBm, while the transmit power of inter-cell

UTs is set to 2 dBm. In Fig. 5.2, Fig. 5.3 it is shown that MC-JCD-GAMP-D

algorithm needs smaller damping factor than MC-JCD-GAMP algorithm in

order to converge to an accepted estimation. Moreover, it is observed that

the damping factor in the MC-JCD-GAMP-D algorithm is more critical a

parameter than in MC-JCD-GAMP algorithm. The above observation can

be explained by the fact that multiplications in MC-JCD-GAMP algorithm

use pilot symbols Xt (which are constant and known symbols) in message

passing at all iterations until converge. Hence, more stability is provided

than the MC-JCD-GAMP-D algorithm, in which Xt symbols do not exist

in the multiplications. Furthermore, as damping factor decreases, MC-JCD-

GAMP algorithm converges to an accepted estimation with higher certainty.

However, in most cases more iterations are needed to achieve an accepted es-

timation with such high certainty in comparison with having higher damping

factor. More specifically, if the damping factor increases, MC-JCD-GAMP
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Figure 5.3: Iterations until convergence versus damping factor, for N = 64,
K = 10 and Td = 240.

algorithm may converge in fewer iterations (not in all cases) but also may di-

verge with high probability. Moreover, MC-JCD-GAMP-D algorithm seems

to converge with damping factor smaller than 0.5, with best performance

when damping factor is equal to 0.2 or 0.3. In general case, damping factor

must be smaller than 0.7 so that BiGAMP-based algorithms can converge

with high probability. Therefore, damping factor is an important parameter

and needs further research in order to select the optimized value in each sce-

nario. In the next sections, damping factor is selected between 0.2 and 0.5 for

the MC-JCD-GAMP-D algorithm, while for the MC-JCD-GAMP algorithm

damping factor is selected between 0.5 and 0.7.

5.2 First Scenario (64 or 128 Received

Antennas, 10 UTs per Cell)

The first set of simulations is conducted for N = 64 antennas at central BS,

K = 10 UTs per cell and T = 250 symbols (Tt = 10 pilot symbols, Td = 240
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Figure 5.4: Symbol Error Rate versus average received SNR, for N = 64,
K = 10 and Td = 240.

data symbols). In order to obtain different values for SNR and SINR, the

transmit power of intra-cell UTs is varied from −4 dBm to 2 dBm, while the

transmit power of inter-cell UTs is held constant at 2 dBm.

In Fig. 5.4, Fig. 5.5, Fig. 5.6 and Fig. 5.7 SER performances of SCED, J-

CED-Iterative, MC-JCD-GAMP, MC-JCD-GAMP-D algorithms are shown

versus average, minimum and maximum received SNR at BS from intra-

cell UTs, and versus transmit power of intra-cell UTs, respectively. It is

observed that the MC-JCD-GAMP algorithm and the MC-JCD-GAMP-D

algorithm have almost the same performance (which are the best over all),

while the SCED algorithm has the worst performance in all cases. SCED

algorithm estimates the channel from pilot symbols, while the JCED-Iterative

and BiGAMP-based algorithms use the pilot symbols and also the estimated

data symbols in order to estimate the channel. Moreover, JCED-Iterative

and BiGAMP-based algorithms use the SCED algorithm as initialization,

hence they have an obvious advantage compared to the SCED algorithm. In

summary, joint channel and data estimation algorithms achieve better SER
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Figure 5.5: Symbol Error Rate versus minimum received SNR, for N = 64,
K = 10 and Td = 240.
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Figure 5.6: Symbol Error Rate versus maximum received SNR, for N = 64,
K = 10 and Td = 240.
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Figure 5.7: Symbol Error Rate versus transmit power per intra-cell UT, for
N = 64, K = 10 and Td = 240.
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Figure 5.8: NRMSE versus average received SNR, for N = 64, K = 10 and
Td = 240.
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Figure 5.9: Iterations until convergence versus average received SNR, for
N = 64, K = 10 and Td = 240.

compared to the separate channel and data estimation algorithm.

Furthermore, as the transmit power of intra-cell UTs increases, the per-

formance loss between SCED and JCED-Iterative algorithms and BiGAMP-

based algorithms increases too. In more detail, at low SNRs, JCED-Iterative

algorithm has slightly better SER than BiGAMP-based algorithm, while at

mean and high SNRs the performance loss of JCED-Iterative is approxi-

mately from 0.1 dB to 1 dB compared to BiGAMP-based algorithms. In

addition, it is observed that the performance loss of SCED algorithm is ap-

proximately from 2.4 dB to 3.6 dB.

In Fig. 5.8, NRMSE performances of SCED, JCED-Iterative, MC-JCD-

GAMP and MC-JCD-GAMP-D algorithms are shown versus average re-

ceived SNR at BS from intra-cell UTs. It is observed that the SCED al-

gorithm estimates the intra-cell channel with the highest MSE compared to

JCED-Iterative and BiGAMP-based algorithms. Furthermore, simulations

show that BiGAMP-based algorithms achieve better estimation compared

to JCED-Iterative algorithm. Through simulations, it is proved that joint
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Figure 5.10: Symbol Error Rate versus average received SNR, for N = 64 or
N = 128, K = 10 and Td = 240.
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Figure 5.11: NRMSE versus average received SNR, for N = 64 or N = 128,
K = 10 and Td = 240.
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Figure 5.12: Iterations until convergence versus average received SNR, for
N = 64 or N = 128, K = 10 and Td = 240.

channel and data estimation algorithms achieve better performance (SER or

NRSME) compared to separate channel and data estimation algorithms.

Fig. 5.9 depicts the number of iterations needed for BiGAMP-based al-

gorithm and JCED algorithm to converge. It is shown that JCED algorithm

converges quite faster compared to BiGAMP-based algorithms. Moreover,

it is noted that MC-JCD-GAMP algorithm needs a smaller number of itera-

tions than MC-JCD-GAMP-D algorithm. In addition, the impact of SNR on

the convergence of the algorithms is shown. As SNR increases, the iterations

needed in order for the algorithms to converge decreases.

Fig. 5.10, Fig. 5.11 and Fig. 5.12 depict the performance of channel and

data estimation algorithms versus the number of antennas the BS has. Hence,

the same scenario as above is assumed, both with N = 64 antennas and

with N = 128 antennas. As expected, the performance (SER or NRMSE)

of the algorithms when the BS has 128 antennas is quite better compared

to the case where the BS has 64 antennas. It is noted that for BiGAMP-

based algorithms with 128 received antennas at the BS, the performance loss
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Figure 5.13: Symbol Error Rate versus average received SNR, for N = 64,
K = 15 and Td = 360.

(SER) is approximately between 1 dB and 2.6 dB compared to 64 received

antennas at the BS. Furthermore, in Fig. 5.12 it is shown that algorithms

converge faster in the case where the BS has 128 antennas, since better data

estimation is provided when more received antennas are used.

5.3 Second Scenario (64 Received Antennas,

15 UTs per Cell)

The second set of simulations is conducted for N = 64 antennas at central

BS, K = 15 UTs per cell and T = 375 symbols (Tt = 15 pilot symbols,

Td = 350 data symbols). In order to obtain different values for SNR and

SINR, the transmit power of intra-cell UTs is varied from 5 dBm to 12.5

dBm, while the transmit power of inter-cell UTs is held constant at 12 dBm.

In Fig. 5.13, Fig. 5.14, SER performances of SCED, J-CED-Iterative,

MC-JCD-GAMP, MC-JCD-GAMP-D algorithms are shown versus average

received SNR at BS from intra-cell UTs, and versus transmit power of intra-



5.3. Second Scenario (64 Received Antennas, 15 UTs per Cell) 56

cell UTs, respectively. It is observed that MC-JCD-GAMP-D algorithm has

slightly better performance compared to MC-JCD-GAMP algorithm (∼ 0.15

dB performance loss). Performance loss of the JCED algorithm and the

JCED-Iterative algorithm compared to MC-JCD-GAMP-D algorithms is ap-

proximately from 2.4 dB to 4.4 dB and from 0.01 dB to 1, respectively. Note

that the maximum received SNR at BS from intra-cell UTs is 30.7 dB when

transmit power of intra-cell UTs is 5 dBm, and 37.8 dB when transmit power

of intra-cell UTs is 12.5 dBm. Moreover, the minimum received SNR at BS

from intra-cell UTs is 13.5 dB when transmit power of intra-cell UTs is 5

dBm, and 21 dB when transmit power of intra-cell UTs is 12.5 dBm.

In Fig. 5.15, NRMSE performances of SCED, JCED-Iterative, MC-JCD-

GAMP and MC-JCD-GAMP-D algorithms are shown versus average received

SNR. It is observed again that the SCED algorithm estimates the intra-

cell channels with the highest MSE compared to the JCED-Iterative and

BiGAMP-based algorithms. Furthermore, simulations show that BiGAMP-

based algorithms achieve better estimation compared to the JCED-Iterative
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Figure 5.14: Symbol Error Rate versus transmit power per intra-cell UT, for
N = 64, K = 15 and Td = 360.
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Figure 5.15: NRMSE versus average received SNR, for N = 64, K = 15 and
Td = 360.
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Figure 5.16: Iterations until convergence versus average received SNR, for
N = 64, K = 15 and Td = 360.
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algorithm, while BiGAMP-based algorithms have almost the same perfor-

mance.

Fig. 5.16, depicts the number of iterations needed in order for BiGAMP-

based algorithm and JCED algorithm to converge. It is shown again, as in

the first scenario Sec. 5.2, that the JCED algorithm converges quite faster

compared to BiGAMP-based algorithms.

5.4 Third Scenario (Moving Intra-cell UT)

The third set of simulations is conducted for N = 64 antennas at central

BS, K = 15 UTs per cell and T = 375 symbols (Tt = 15 pilot symbols,

Td = 350 data symbols). In this section, intra-cell UT k is placed at the edge

of the cell and moves 50 m closed to BS at each simulation. Transmit power

of intra-cell UT k is held constant at 3 dBm, while the transmit power of

K − 1 intra-cell UTs and inter-cell UTs is held constant at 5 dBm. Fig. 5.17
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Figure 5.17: Topology of 7-cell hexagonal system with K = 15 UTs uniformly
distributed around each BS, where arrow represents the movement of intra-
cell UT k.
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Figure 5.18: Symbol Error Rate versus received SNR from intra-cell UT k,
for N = 64, K = 15 and Td = 360.

represent the topology of scenario that studied.

In Fig. 5.18 and Fig. 5.19, SER performances of SCED, J-CED-Iterative,

MC-JCD-GAMP, MC-JCD-GAMP-D algorithms are shown versus received

SNR at BS from intra-cell UT k and versus the distance of intra-cell UT

k from BS, respectively. It is observed again, that the MC-JCD-GAMP-

D algorithm has almost the same performance with the MC-JCD-GAMP

algorithm. Performance loss of the JCED algorithm and the JCED-Iterative

algorithm compared to MC-JCD-GAMP-D algorithms is approximately from

1.5 dB to 4.1 dB and from 0.05 dB to 1.1, respectively. Also note that the

maximum received SNR at BS from intra-cell UTs is 30.4 dB in all cases. In

addition, the minimum received SNR at BS from intra-cell UTs is the received

SNR of UT k when the distance of intra-cell UT k from BS is between 650

m and 900 m, and 13.8 dB in the remaining case (in this case the minimum

received SNR emanates from UT m, where m 6= k).

In Fig. 5.20, NRMSE performances of SCED, JCED-Iterative, MC-JCD-

GAMP and MC-JCD-GAMP-D algorithms are shown versus received SNR
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Figure 5.19: Symbol Error Rate versus distance of intra-cell UT k from BS,
for N = 64, K = 15 and Td = 360.
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Figure 5.20: NRMSE versus received SNR from intra-cell UT k, for N = 64,
K = 15 and Td = 360.
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from intra-cell UT k. It is noted again that the SCED algorithm estimates

the intra-cell channels with the highest MSE compared to the JCED-Iterative

and BiGAMP-based algorithms. Furthermore, simulations proved once more

that BiGAMP-based algorithms have almost the same performance.

Fig. 5.21, depicts the number of iterations needed in order for BiGAMP-

based algorithm and JCED algorithm to converge. It is shown, that the

JCED algorithm converges quite faster compared to BiGAMP-based algo-

rithms. Moreover MC-JCD-GAMP-D algorithm converges slower compared

to the MC-JCD-GAMP algorithm at low SNRs, while at high SNRs the

MC-JCD-GAMP-D converges faster compared to the MC-JCD-GAMP algo-

rithm. This observation maybe can be explained by damping factor number

that chosen in the MC-JCD-GAMP algorithm, which may be not the optimal

value at low SNRs. As future work, damping factor and the above obser-

vation need further research in order to reach safer conclusions concerning

these topics.
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Figure 5.21: Iterations until convergence versus received SNR from intra-cell
UT k, for N = 64, K = 15 and Td = 360.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

The main focus of this work was to implement the bilinear generalized ap-

proximate message passing algorithm (BiGAMP-based algorithm) in multi-

cell uplink interference-limited massive MIMO networks. A general model is

considered, which takes into account path-loss and pilot contamination from

adjacent cell. The separate MMSE channel estimation and linear MMSE data

detection (SCED) algorithm is presented. Moreover, based on the above algo-

rithm, the heuristic iterative channel estimation and data detection (JCED-

Iterative) algorithm was presented, which estimates the data and the channel

in a joint way.

JCD-GAMP algorithm [12] is modified (MC-JCD-GAMP) in order to

use it in multi-celll massive MIMO network. New initialization is proposed.

Moreover, the MC-JCD-GAMP-D algorithm is proposed, in which pilot sym-

bols are used only in initialization phase while the message passing procedure

uses the data symbols. It is noted that the performance of BiGAMP-based

algorithms strongly depends on initialization and on the damping factor.

Hence, tuning is extremely important for the convergence of the above algo-

rithms.

Simulation results under realistic assumptions and system dimensions

show that BiGAMP-based algorithms achieve better performance compared

to the SCED algorithm, as well as the JCED-Itearive algorithm. On the other

hand, the second algorithm converges quite faster compared to BiGAMP-

based algorithms in all cases. The idea using the estimated channel and

detected data of SCED algorithm as input to BiGAMP-based algorithms

strongly improves the performance of the above algorithms. Nevertheless,
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the above idea increases the overall computation complexity. Note that

BiGAMP-based algorithms have considerably smaller computation complex-

ity compared to JCED algorithm. Therefore, there exist a numerous of inter-

esting convergence-accuracy trade-offs between the above algorithms. Fur-

thermore, it is observed that the performance of joint channel estimation

and detection algorithms is better than the performance of separate channel

estimation and detection algorithm.

In addition, it is shown that damping factor is an important parameter,

which affects the overall performance of BiGAMP-based algorithms, espe-

cially at low SNRs where BiGAMP-based algorithms may be diverge. Also,

it is shown that MC-JCD-GAMP and MC-JCD-GAMP algorithms have ap-

proximately the same performance ( SER or NRMSE). In addition, it is

noted that the second algorithm needs quite smaller damping factor in or-

der to converge compared to the first algorithm, while it is also needs more

iterations. On the other hand, the computation complexity of the MC-JCD-

GAMP-D algorithm in message passing procedure is smaller compared to

MC-JCD-GAMP algorithm.

Summary, BiGAMP-based algorithms, which have scalar operations with

simple computation methods, and also JCED algorithm offer an efficient so-

lution to joint channel and data estimation problem in multi-cell interference-

limited massive MIMO network.

6.2 Future Work

The main focus of this work is to implement algorithms for joint channel and

data estimation in unquantized multi-cell massive MIMO network. Hence,

BiGAMP-based algorithms and JCED-Iterative can be implemented in quan-

tized multi-cell massive MIMO network. Another concept is the use of differ-

ent modulations and also different estimators in BiGAMP-based algorithms.

Moreover, most problems that investigated in literature in multi-cell net-

works consider the interference channels as known at BSs, i.e. downlink

beamforming problem. In practice, these channels are unknown. Hence,

BiGAMP-based algorithms can be used in order to estimate both the chan-



nels between intra-cell UTs and BS and also the channels between inter-cell

(interference) UTs and BS.
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Appendix A

Mean and Variance of Noise in

JCED-Iterative

From Eq. 3.12 is considered that

ytr
est,j,k = YjxMP,j,k = hjj,k +

∑
l 6=j

hjl,k + w̄j,k. (A.1)

Hence,

w̄j,k = WjxMP,j,k (A.2)

with each element Wj,nt of Wj follows NC(Wj,nt; 0, σ2
w). Moreover,

Wj =


wj,1

wj,2

...

wj,N

 , (A.3)

wj,n ∈ C1×T . Therefore,

E[w̄j,kn] = E[wj,nxMP,j,k] = E[
T∑
t=1

wj,ntxMP,j,tk] (A.4)

=
T∑
t=1

E[wj,ntxMP,j,tk] (A.5)

=
T∑
t=1

xMP,j,tkE[wj,nt] = 0 (A.6)
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and

E[w̄j,knw̄
∗
j,kn] = E[wj,nxMP,j,k(xMP,j,k)

HwH
j,n] (A.7)

= E
[
trace

(
wj,nxMP,j,k(xMP,j,k)

HwH
j,n

)]
(A.8)

= E
[
trace

(
wH
j,nwj,nxMP,j,kx

H
MP,j,k

)]
(A.9)

(a)
= trace

(
E
[
wH
j,nwj,nxMP,j,kx

H
MP,j,k

])
(A.10)

= trace
(
E
[
wH
j,nwj,n

]
xMP,j,kx

H
MP,j,k

)
(A.11)

= trace
(
σ2
wITxMP,j,kx

H
MP,j,k

)
(A.12)

= trace
(
xH

MP,j,kσ
2
wITxMP,j,k

)
(A.13)

= ||xMP,j,k||22σ2
w (A.14)

where in (a) we used the linearity of trace and expectation operators.

In summary, w̄j,k ∼ NC(w̄j,k; 0, ||xMP,j,k||22σ2
wIN).
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Appendix B

Mean and Variance of

Interference Signal

Consider a SISO version of system Eq. 2.1, Yj = Zj+Ej+Wj, (for N = 1, T =

1) where Zj = hjjxj, Ej =
∑L

l 6=j hjlxl, with hjj ∈ C1×K , hjl ∈ C1×K , xj ∈
CK and xl ∈ CK . Furthermore, Wj ∼ NC(Wj; 0, σ2

w). QPSK modulations is

assumed, hence all data symbols has the same probability which is equal to

1/4. In more detail,

xl =


xl,1

xl,2
...

xl,k

 (B.1)

and

hjl = [hjl,1 hjl,2 . . . hjl,k] (B.2)

with hjl,k ∼ NC(hjj,k; 0, σ2
hjl,k

). Therefore, for each UT k

E[hjl,kxl,k] = E[hjl,k]E[xl,k] = 0 (B.3)

and

σ2
hjl,kxl,k

= E[hjl,kxl,k
(
hjl,kxl,k

)∗
] = E[hjl,kxl,kx

∗
l,kh
∗
jl,k] (B.4)

= E[hjl,k|xl,k|2h∗jl,k] (B.5)

= E[|xl,k|2]E[hjl,kh
∗
jl,k] (B.6)

= σ2
hjl,k

. (B.7)
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Hence, for all UTs in l-th cell

E[hjlxl] = E
[ K∑
k=1

hjl,kxl,k

]
(B.8)

=
K∑
k=1

E[hjl,kxl,k] (B.9)

= 0. (B.10)

Since the elements of vector xl are i.i.d. and belong to a QPSK constellation

it follows that E
[
xl x

H
l

]
= IK , thus

σ2
hjlxl

= E[hjlxl
(
hjlxl

)∗
] = E

[
hjlxlx

H
l hH

jl

]
(B.11)

= E
[
trace

(
hjlxlx

H
l hH

jl

)]
(B.12)

= E
[
trace

(
hH
jlhjlxlx

H
l

)]
(B.13)

(a)
= trace

(
E
[
hH
jlhjlxlx

H
l

])
(B.14)

(b)
= trace

(
E
[
hH
jlhjl

]
E
[
xlx

H
l

])
(B.15)

= trace
(
E
[
hH
jlhjl

]
IK
) (c)

= E
[
trace

(
hH
jlhjl

)]
(B.16)

= E
[
hjlh

H
jl

]
= E

[ K∑
k=1

hjl,kh
∗
jl,k

]
(B.17)

=
K∑
k=1

E[hjl,kh
∗
jl,k] (B.18)

=
K∑
k=1

σ2
hjl,k

. (B.19)

where in (a) and (c) we used the linearity of trace and expectation operators

and in (b) we used the independence of hjl and xl.
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Finally, for Ej =
∑L

l 6=j hjlxl

E[Ej] = E
[ L∑
l=1

hjlxl

]
(B.20)

=
L∑
l=1

E[hjlxl] (B.21)

= 0 (B.22)

and

σ2
Ej

= E
[∑
l 6=j

hjlxl

(∑
l 6=j

hjlxl

)∗]
= E

[∑
l 6=j

∑
l′ 6=j

hjlxl

(
hjl′xl′

)∗]
(B.23)

= E
[∑
l 6=j

hjlxl

(
hjlxl

)∗]
(B.24)

=
∑
l 6=j

E
[
hjlxl

(
hjlxl

)∗]
(B.25)

=
∑
l 6=j

K∑
k=1

σ2
hjl,k

. (B.26)

In summary, Ej ∼ NC(Ej; 0,
∑

l 6=j
∑K

k=1 σ
2
hjl,k

).
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Appendix C

Product of Two Gaussian

Distributions

In [22, (A.7) ] it is analyzed that the product two Gaussian distributions

gives another Gaussian distribution. If NC(x; a,A) and NC(x; b, B)

NC(x; a,A)NC(x; b, B) = DNC(x; c, C) (C.1)

where c = C(A−1a+B−1b), C = (A−1+B−1)−1, and D = NC(0; a−b, A+B).

Hence, for Eq. 4.6

fY |Z(Y |Z)fZ(Z) = NC(Z;Y, σ2
u)NC(Z; p̂, vp)

= D · NC(Z; c, C). (C.2)

with

C =
( 1

σ2
u

+
1

vp

)−1

=
σ2
uv

p

vp + σ2
u

(C.3)

and

c =
σ2
uv

p

vp + σ2
u

(
Y

σ2
u

+
p̂

vp
) (C.4)

= C
vpY + σ2

up̂

σ2
uv

p
(C.5)

=
σ2
uv

p

vp + σ2
u

vpY + σ2
up̂

σ2
uv

p
(C.6)

=
vpY + σ2

up̂

σ2
u + vp

. (C.7)
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Also,

D = NC(0;Y − p̂, σ2
u + vp). (C.8)

Therefore,

fY |Z(Y |Z) = NC

(
Z;

vpY + σ2
up̂

σ2
u + vp

,
σ2
uv

p

σ2
u + vp

)
. (C.9)
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Appendix D

Estimator for QPSK Data

Symbols

If QPSK modulation is considered, 2× 2 points are selected by

B =
1√
2
×
{

1 + j,−1 + j, 1− j,−1− j
}

(D.1)

and, Pr(Xd) = 1/4 for Xd ∈ B. Conditional mean of Xd is

X̂d =
∑
Xd∈B

XdP(Xd) (D.2)

where the posterior probability mass function (pmf) P(Xd) is defined as

P(Xd) =
NC(Xd; r̂, ur)Pr(Xd)∑
X′d
NC(X ′d; r̂, ur)Pr(X ′d)

. (D.3)

Hence,

P(Xd) =
NC(Xd; r̂, ur)1

4

1
4πur

[
e
−| 1+j√

2
−r̂|2/ur

+ e
−| 1−j√

2
−r̂|2/ur

+ e
−|−1+j√

2
−r̂|2/ur

+ e
−|−1−j√

2
−r̂|2/ur

] .
(D.4)

Therefore,

X̂d =

1+j√
2
e
−| 1+j√

2
−r̂|2/ur

+ 1−j√
2
e
−| 1−j√

2
−r̂|2/ur

+ −1+j√
2
e
−|−1+j√

2
−r̂|2/ur

+ −1−j√
2
e
−|−1−j√

2
−r̂|2/ur

e
−| 1+j√

2
−r̂|2/ur

+ e
−| 1−j√

2
−r̂|2/ur

+ e
−|−1+j√

2
−r̂|2/ur

+ e
−|−1−j√

2
−r̂|2/ur

.

(D.5)
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Set

|1 + j√
2
− Re(r̂)− jIm(r̂)|2 (D.6)

=
( 1√

2
− Re(r̂)

)2
+
( 1√

2
− Im(r̂)

)2
(D.7)

=
1

2
+ Re(r̂)2 − 2√

2
Re(r̂) +

1

2
+ Im(r̂)2 − 2√

2
Im(r̂) (D.8)

Then, it is observed that 1
2

+Re(r̂)2 and 1
2

+Im(r̂)2 terms can be erased from

Eq. D.5. If we define,

A =
1 + j√

2
e
−2√
2

−Re(r̂)−Im(r̂)
ur , (D.9)

B =
1− j√

2
e
−2√
2

−Re(r̂)+Im(r̂)
ur , (D.10)

C =
−1 + j√

2
e
−2√
2

+Re(r̂)−Im(r̂)
ur , (D.11)

D =
−1− j√

2
e
−2√
2

+Re(r̂)+Im(r̂)
ur , (D.12)

can be calculated that,

X̂d =

1+j√
2
A+ 1−j√

2
B + −1+j√

2
C + −1−j√

2
D

A+B + C +D
(D.13)

=
(A+B − C −D) + j(A−B + C −D)√

2(A+B + C +D)
. (D.14)
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Then,

A+B − C −D√
2(A+B + C +D)

(D.15)

=
1√
2

(
e

2Re(r̂)√
2ur − e−

2Re(r̂)√
2ur
)(
e

2Im(r̂)√
2ur + e

− 2Im(r̂)√
2ur
)

A+B + C +D
(D.16)

=
1√
2

4sinh
(

2Re(r̂)√
2ur

)
cosh

(
2Im(r̂)√

2ur

)
4cosh

(2Re(r̂)√
2ur

)
cosh

(2Im(r̂)√
2ur

) (D.17)

=
1√
2

tanh

(
2Re(r̂)√

2ur

)
, (D.18)

and

A−B + C −D√
2(A+B + C +D)

(D.19)

=
1√
2

4sinh
(

2Im(r̂)√
2ur

)
cosh

(
2Re(r̂)√

2ur

)
4cosh

(2Im(r̂)√
2ur

)
cosh

(2Re(r̂)√
2ur

) (D.20)

=
1√
2

tanh

(
2Im(r̂)√

2ur

)
. (D.21)

Therefore,

X̂d =
1√
2

tanh

(
2Re(r̂)√

2ur

)
+ j

1√
2

tanh

(
2Im(r̂)√

2ur

)
. (D.22)

Moreover ux = E[|Xd − X̂d|2] =
∑

Xd∈B
|Xd − X̂d|2P(Xd). Similarly can

be calculated that

vx =
1

2
tanh

(
2Re(r̂)√

2vr

)
+

1

2
tanh

(
2Im(r̂)√

2vr

)
− |X̂d|2. (D.23)
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