
1

REMOTE HEALTHCARE SYSTEM EXPLOITING
MOBILE AND WEARABLE DEVICES

BY

Voltsis Evaggelos

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR

THE DIPLOMA

OF

ELECTRICAL & COMPUTER ENGINEERING

SCHOOL OF ELECTRICAL & COMPUTER ENGINEERING

TECHNICAL UNIVERSITY OF CRETE

2018

2

3

Abstract

In this thesis we discuss the design and implementation of a platform that would
be able to simplify and improve the life of people with special needs (caretakers).
This platform will also help their families as well as professionals that have many
patients under their supervision. More specifically, we present a web application
supporting the creation and management of some specific events. With these
events, the person that takes care of the caretaker, (caregiver) will be able to
monitor him and get informed in case of an emergency. The web application is
compatible with most state-of-the-art mobile devices and computers and is able
to monitor more than one caretaker. We also have created an android
application for smart watches. This android application will run on the smart
watch that the caretaker will wear, so that the caregiver can monitor him
through the web application. Finally, it is worth mentioning that the applications
have been evaluated for their usability by professionals and nonprofessionals
users.

4

Περίληψη

Σε αυτό την διπλωματικό εργαςύα αναλύουμε τον ςχεδιαςμό και την υλοπούηςη
μιασ πλατφόρμασ η οπούα θα διευκολύνει την ζωό ατόμων με ειδικϋσ ανϊγκεσ.
(φροντιζόμενοι) Η ςυγκεκριμϋνη πλατφόρμα θα βοηθόςει επύςησ και τισ
οικογϋνειεσ των ατόμων αυτών καθώσ και την δουλειϊ ανθρώπων οι οπούοι
ϋχουν υπό την επύβλεψό τουσ ϊτομα με ειδικϋσ ανϊγκεσ. Πιο ςυγκεκριμϋνα,
παρουςιϊζουμε μύα διαδικτυακό εφαρμογό η οπούα υποςτηρύζει την δημιουργύα
ςυγκεκριμϋνων γεγονότων. Με τον οριςμό αυτών των γεγονότων, το ϊτομο το
οπούο επιβλϋπει τον φροντιζόμενο (φροντιςτόσ) θα ϋχει την δυνατότητα να τον
«παρακολουθεύ» και να ενημερώνεται ςε περύπτωςη ανϊγκησ. Η διαδικτυακό
εφαρμογό εύναι ςυμβατό με τισ περιςςότερεσ τελευταύασ τεχνολογύασ ςυςκευϋσ
και ο φροντιςτόσ ϋχει την δυνατότητα να «παρακολουθεύ» ϋναν η
περιςςότερουσ φροντιζόμενουσ. Επιπλϋον δημιουργόςαμε μια εφαρμογό για
ϋξυπνα ρολόγια. Η εφαρμογό αυτό θα τρϋχει πϊνω ςτο ρολόι το οπούο θα φορϊει
ο φροντιζόμενοσ ώςτε ο φροντιςτόσ να μπορεύ να τον επιβλϋπει μϋςω τησ
διαδικτυακόσ εφαρμογόσ. Τϋλοσ, ςημαντικό θα όταν να αναφερθεύ ότι οι
εφαρμογϋσ ϋχουν αξιολογηθεύ για την ευχρηςτύα τουσ από επαγγελματύεσ και μη
επαγγελματύεσ χρόςτεσ.

5

Acknowledgements

I would like to express my gratitude to my supervisor, Prof. Antonios
Deligiannakis, for his help and his support throughout my thesis.

My thanks also go to Nektarios Gioldasis for his continuous support, his
valuable advices, our useful discussions, as well as for coming up with the idea of
this application. I would also like to thank Prof. Katerina Mania and Prof. Michail
G. Lagoudakis for serving on my thesis committee. My sincerest gratitude also
goes to all my friends for the priceless moments we lived together during our
studies.

Finally, this thesis would not have been possible without the support and
encouragement of my family: my father Tasos, my mother Katerina and my
brother Marios. Thank you from the bottom of my heart for everything you have
done for me.

6

Contents

Chapter 1 .. 12

Introduction .. 12

Chapter 2 .. 13

Related Work .. 13

2.1 Medical Guardian.. 13

2.2 Bay Alarm Medical ... 15

2.3 Medical Alert .. 16

Chapter 3 .. 17

Background .. 17

3.1 AngularJS ... 17

3.2 Javascript .. 20

3.3 Java ... 22

3.4 MySQL .. 23

Chapter 4 .. 26

Functional Specification .. 26

4.1 Stakeholders .. 26

4.2 Technical Requirements .. 26

4.2.1 Web application ... 27

4.2.2 Android application ... 27

4.3 Use Cases ... 28

Chapter 5 .. 46

Model.. 46

5.1 Specification ... 46

7

Chapter 6 .. 53

Architecture ... 53

6.1 Server Side .. 53

6.1.1 Service Layer .. 54

6.1.2 Business Logic Layer .. 55

6.1.3 Data Layer .. 55

6.2 Client Side .. 55

6.2.1 Model (Web application) .. 56

6.2.2 View ... 56

6.2.3 Controller (Web application) ... 56

6.2.4 Router ... 56

6.2.5 Model (Android application) .. 56

6.2.6 View (Android application) ... 56

6.2.7 Presenter (Android application) ... 57

Chapter 7 .. 58

Implementation.. 58

7.1 Server Side .. 58

7.1.1 RESTful Web Services .. 58

7.1.2 Security ... 58

7.1.3 Websocket ... 59

7.2 Client Side .. 59

7.2.1 MVC Pattern .. 60

7.2.2 User Interface ... 61

7.2.3 Router ... 65

7.2.4 Controller ... 65

7.2.5 Services ... 65

7.2.6 Maps ... 66

Chapter 8 .. 67

Graphical User Interface ... 67

8

8.1 Prototypes ... 67

8.1.1 Desktop Application ... 67

8.1.2 Desktop Application on mobile .. 74

8.1.3 Android Application ... 76

8.2 Usability Evaluation ... 77

8.2.1 Heuristic Evaluation .. 77

8.2.2 Think Aloud... 78

8.3 User Interfaces .. 81

8.2.1 Web application on desktop ... 81

8.2.2 Web application on mobile device .. 93

8.2.3 Android Application ... 100

Chapter 9 .. 102

Conclusion & Future Work ... 102

Bibliography .. 103

9

List of Tables

Table 4.1: Use case 1: “Create Account”... 31

Table 4.2: Use case 2: “Log In”. .. 32

Table 4.3: Use case 3: “Log out”. ... 33

Table 4.4: Use case 4: “Add CareTaker”. .. 33

Table 4.5: Use case 5: “Edit CareTaker”. .. 34

Table 4.6: Use case 6: “Delete CareTaker”. ... 34

Table 4.7: Use case 7: “Add Region”. ... 35

Table 4.8: Use case 8: “Edit Region”. ... 36

Table 4.9: Use case 9: “Delete Region”. .. 36

Table 4.10: Use case 10: “Add Reminder”. ... 37

Table 4.11: Use case 11: “Edit Reminder”. ... 38

Table 4.12: Use case 12: “Delete Reminder”. ... 38

Table 4.13: Use case 13: “Add Blood Pressure event”. .. 39

Table 4.14: Use case 14: “Edit Blood Pressure event”. .. 40

Table 4.15: Use case 15: “Delete Blood Pressure event”... 40

Table 4.16: Use case 16: “Add Heart Beat event”. .. 41

Table 4.17: Use case 17: “Edit Heart Beat event”. ... 42

Table 4.18: Use case 18: “Delete Heart Beat event”. ... 42

Table 4.19: Use case 19: “Add Immobility event”. ... 43

Table 4.20: Use case 20: “Edit Immobility event”. ... 44

Table 4.21: Use case 21: “Delete Immobility event”. .. 44

Table 4.22: Use case 22: “CareTaker Location”. ... 45

10

List of Figures

Figure 2.1: Medical guardian base station and sensors... 14

Figure 2.2: Bay Alarm Medical Mobile GPS Device. ... 15

Figure 2.3: Medical Alert base station and wearables. .. 16

Figure 3.1: Most important parts of AngularJS. .. 18

Figure 3.2: MySQL aggregation functions. .. 25

Figure 4.1: Web application – User Management. ... 28

Figure 4.2: Web application – CareTakers Management .. 29

Figure 4.3: Web application – Event Management. ... 29

Figure 4.4: Android application – Application Management. 30

Figure 5.1: Model .. 46

Figure 6.1: System reference architecture ... 54

Figure 7.1: Model View Controller Pattern in the application 60

Figure 7.2: Two way binding. .. 61

Figure 7.3: The main areas of desktop user interfaces. ... 62

Figure 7.4: Viewport – Hidden Menu. ... 63

Figure 7.5: Viewport – Visible Menu. ... 63

Figure 7.6: Android application main areas ... 64

Figure 8.1: Show all careTakers Notifications. ... 68

Figure 8.2: Show selected careTaker Reminders. .. 68

Figure 8.3: Show selected careTaker Events. .. 69

Figure 8.4: Show all careTakers. ... 69

Figure 8.5: Show selected careTaker Location. .. 70

Figure 8.6: Insert/Edit Region Event. ... 70

Figure 8.7: Insert/Edit Immobility Rule. ... 71

Figure 8.8: Insert/Edit Heart Beats Event. ... 71

Figure 8.9: Insert/Edit CareTaker. .. 72

Figure 8.10: Insert/Edit Reminder. ... 72

Figure 8.11: Insert/Edit Blood Pressure Event. ... 73

Figure 8.12: List of notifications. . .. 74

Figure 8.13: List of caretakers. .. 74

Figure 8.14: List of Events .. 75

Figure 8.15: Caretaker map location .. 75

Figure 8.16: List of reminders. .. 75

Figure 8.17: Android application prototypes. ... 76

Figure 8.18: Log in page... 81

Figure 8.19: Sign up page. ... 82

Figure 8.20: Desktop - Home page 1. .. 83

Figure 8.21: Desktop - Home page 2. .. 83

Figure 8.22: Desktop - Region Events page. .. 85

Figure 8.23: Desktop - Blood Pressure Events page. .. 85

file:///C:\Users\volts\Desktop\THESIS.docx%23_Toc504833119

11

Figure 8.24: Desktop - Heart Beats Event page. ... 86

Figure 8.25: Desktop - Immobility Events page. .. 86

Figure 8.26: Desktop - Reminders page. ... 87

Figure 8.27: Desktop - Caretaker’s location page. ... 87

Figure 8.28: Desktop - Caretaker page. ... 88

Figure 8.29: Desktop – Insert/Edit Region Event page. .. 89

Figure 8.30: Desktop – Insert/Edit Blood Pressure Event page. 89

Figure 8.31: Desktop – Insert/Edit Heart Beats Event page. 90

Figure 8.32: Desktop – Insert/Edit Immobility Event page. 91

Figure 8.33: Desktop – Insert/Edit Reminder page. ... 91

Figure 8.34: Desktop – Insert/Edit Caretaker page. ... 92

Figure 8.35: Mobile device – Home page 1. .. 93

Figure 8.36: Mobile device – Home page 2. .. 94

Figure 8.37: Mobile device – Region Events page. .. 95

Figure 8.38: Mobile device – Reminders page. ... 96

Figure 8.39: Mobile device – Caretaker page. ... 96

Figure 8.40: Mobile device – Insert/Edit Region page. ... 97

Figure 8.41: Mobile device – Insert/Edit Reminder page. ... 98

Figure 8.42: Mobile device – Insert/Edit Caretaker page. ... 99

Figure 8.43: Android application – First run screen. .. 100

Figure 8.44: Android application – Main screen. .. 100

Figure 8.45: Android application – Reminder screen. .. 101

Figure 8.46: Android application – Emergency screen .. 101

12

Chapter 1

Introduction

In today’s society people do not have a lot of free time. They spend too much
time on their work or in other activities. For that reason they are not always able
to know if all the members of their family are safe and well. As a result they are
worried and they never feel relaxed in their daily life. Furthermore there are
people with special needs that forget to do important tasks in their day or they
do not feel safe. Many of them are concerned that they will not get help in case of
an emergency and they get depressed.
 In this thesis, we present the design and implementation of a platform that
will be able to simplify and improve the life of families that have people with
special needs (from now on caretakers) .More specifically; we present a web
application that we have designed via which the family members will be able to
monitor one or more caretakers. Moreover, we present an android application
that will run on the device which the caretaker will wear in order to be
connected with the web application. The applications are compatible with most
state – of – the art mobile devices, while both have been designed with flexibility
and extensibility in mind. This application will bring peace of mind to all family
members and will also help people with diseases like dementia or Alzheimer.
 The aim of this thesis is to: (a) define the model needed to present all the
features of the application; (b) design and implement an infrastructure
supporting the model; (c) design and implement a web application supporting
the connection with the device that the caretaker will wear; (d) design and
implement an android application supporting the connection with the web
application.

This thesis is structured as follows:

• Chapter 2 presents the systems and research that are relevant to the topics
addressed in this thesis.
• Chapter 3 provides a brief overview of the technologies used for the
implementation of the systems.
• Chapter 4 describes the functional specification of the system that has been
developed.
• Chapter 5 specifies the model for describing our application.
• Chapter 6 presents the architecture that has been designed and implemented.
• Chapter 7 describes the implementation details of some of the components in
more detail, providing some more insight on how specific parts of the system
have been used.
• Chapter 8 presents the user interfaces that have been developed for the
interaction with the user.
• Chapter 9 summarizes and reviews the presented work and describes some
perspectives for future extensions.

13

Chapter 2

Related Work

In this chapter, we present tools and applications that are considered relevant to
our work. For each of the systems described below, we present their capabilities
and discuss their functionality. Additionally, we compare them to the services
that we developed, focusing on their strengths and weaknesses. To the extent of
our knowledge, there is no platform or tool that combines all these features that
our web application provides like the option to monitor the caretaker’s heart
beats, as well as his blood pressure with just one device. In addition to these
features, our platform also supports scheduled reminders that can be repetitive
or non repetitive.

2.1 Medical Guardian

Medical Guardian is a personal emergency response system. Medical Guardian
provides you with a lightweight and water-resistant medical alert button that
can be worn around the neck, wrist, or on a belt clip. When pressed, the device
immediately sends a wireless signal to the base station (Figure 2.1) and then the
base station sends a signal to the Medical Guardians motoring center, alerting
them of an emergency. Within moments of pressing your medical alert button,
you will be connected to a highly-certified operator. After that the operators call
your family when you use your medical alert system. Medical Guardian also
provides you with three in-home safety sensors and a Family Guardian
application that sends instant notifications right to your email or smart phone.
With this web application you will receive a number of Medical Guardian alerts
regarding activity and inactivity in the home, including:

 Panic Alert: the caretaker has pressed their medical alert help button to
contact our monitoring center.

 Wake and Well: the caretaker is active in the morning.
 Non-Activity: the safety sensors do not detect any activity in the home.
 Door Left Open: the front door is left open for an excessive amount of time.
 Power Loss: the base station has been disconnected from its power supply.
 Power Restore: the base station has been reconnected to its power supply.

https://www.medicalguardian.com/

14

Figure 2.1: Medical guardian base station and sensors.

Compared to our work, Medical Guardian application supports mainly indoor

activities. On the contrary, we provide a wearable that supports indoor just as

outdoor caretakers’ activities. With our application you are able to monitor

caretakers’ heart beats, blood pressure and also get informed when a caretaker

enters a danger area, leaves a safety area or he is inactive for some minutes.

Also, we give the option to send reminders to a caretaker and get informed when

he sees them. Furthermore, through our web application we provide the

capability to organize all caretakers with their information and manage their

events separately.

15

2.2 Bay Alarm Medical

Bay Alarm Medical provides you with Mobile GPS Device (Figure 2.2) with Help
Button which is able to detect a fall and can call for help on its own, but with the added
advantage of not needing a medical alert system nearby to work. When the button is
pressed, the device immediately sends a wireless signal to Bay Alarm motoring
center, alerting them of an emergency. Within moments of pressing your medical
alert button, you will be connected to an operator. After that the operators call
your family and inform them about the current situation. Bay Alarm Medical also
gives you the option to track a caretaker’s location with a web application and
get notifications via SMS or email if a caretaker leaves the area.

Figure 2.2: Bay Alarm Medical Mobile GPS Device.

Compared to Bay Alarm Medical, our application gives you the option to send

reminders to a caretaker. Also, a caregiver is notified when a caretaker’s heart

beats or blood pressure are not normal or if a caretaker is standing still for a

significant period of time. Finally, in contrast to the Bay Alarm Medical, our

application also gives you the option to define not only safety areas but also

areas on the map that are dangerous and a caregiver will be informed if a

caretaker enters them.

https://www.bayalarmmedical.com/

16

2.3 Medical Alert

Medical Alert is an emergency response system. It provides you with a base
station and with an alert bracelet or pendant (Figure 2.3), so in case of
emergency a caretaker can push the button on the bracelet to get help directly
through the system’s base station. Medical Alert devices also have fall detection
technology and call an emergency center in case they detect a fall. Furthermore,
it includes a mobile application with which a caregiver can contact the caretaker
and check the caretaker’s location on the map.

Figure 2.3: Medical Alert base station and wearables.

On the contrary, our device is fully independent and the caretaker does not need

to carry with him a base station in addition to the wearable. Furthermore, our

application is not a mobile application but a web application. This means that the

caregiver can use the application not only on his phone but also on his personal

computer and laptop.

https://medicalalert.com/

17

Chapter 3

Background

This chapter presents a quick overview of the standards and technologies used
in this thesis. Section 3.1 presents AngularJS, the JavaScript framework that we
use to build our client side applications. Section 3.2 presents JavaScript, the
scripting language used mainly for the implementation of the client side logic
and the interaction with the users, as well as the JavaScript libraries used.
Section 3.3 describes Java, the programming language that was used in our
server to insert and extract data from our database and also to program our
Android application. Section 3.4 presents MySQL, the database system used to
save all the data.

3.1 AngularJS

AngularJS is an open source web application framework for creating RICH
Internet Applications (RIAs). It gives you the option to write client side code in a
MVC (Model-View-Controller) way, while its data binding and dependency
features reduces the code that a developer needs to write. Furthermore, it allows
the use of HTML as a template language and lets the developers extend HTML’s
syntax. Applications using AngularJS are cross-browser compliant and AngularJS
automatically handles the javascript code that is suitable for each browser [2].

RICH Internet Applications (RIAs)

A RICH Internet Application is a Web application which has same features and
appearances as a desktop application. A RICH Internet Application requires a
browser and a browser plug-in or a virtual machine in order to deliver the user
application. The data is handled by the server and the user interface is handled
by the client machine.

18

AngularJS Core Features

The core features of the AngularJS framework are presented in Figure 3.1 and
most of them are described below in detail.

Figure 3.1: Most important parts of AngularJS.

Data-binding

Data-binding in Angular applications is the automatic synchronization of data
between the model and view components. The view is every time a projection of
the model. Every time the model changes, the view shows the change to the user,
and vice versa.

19

Scope

Scope is an object that refers to the application model. It is an execution context
for expressions. Scopes can create events and watch expressions.

Controller

A Controller is a JavaScript constructor function that is used to enlarge the
Angular Scope. When a Controller is attached to the DOM by the ng-controller
directive, Angular will create a new Controller object, using the specified
Controller’s constructor function. A new child scope will be available in a form of
a parameter to the Controller’s constructor function as $scope.

Services

Angular services are substitutable objects that are linked together using
Dependency Injection (DI). You can use services to share and organize code at
your application. The Angular services are:

• Lazily instantiated - Angular instantiates a service only when a component of
the application depends on it.

• Singletons - Each component of the application with is depending on a service
gets a reference to the instance which is generated by the service factory.

Filters

A filter formats the value of an expression for display to the user. Filters can be
used in view templates, services or controllers. AngularJS comes with a variety
of built-in filters and it is also very easy to define your own as well if you like.

Directives

At a high level, directives are markers on a DOM element that tell AngularJS’s
HTML compiler to give a specified behavior to that DOM element. It can also
transform the DOM element or even its children.
 Angular includes a set of these built-in directives, like ngBind, ngClass, and
ngModel. As you can create controllers and services, you can also create some of
your own directives for Angular to be used.

Templates

In Angular, templates are written with HTML that contains Angular-specific
attributes and elements. Angular combines the template with information from

https://docs.angularjs.org/api/ng/filter

20

the model and controller to render the dynamic view that is presented to the
user by the browser.

Model View Controller

Model View Controller (MVC) is a design pattern used to divide an application
into three different parts called Model, View and Controller, each one with
different and distinct responsibilities.

Deep Linking

Deep linking allows the developer to encode the state of the application in the
URL so that it can be bookmarked. After that the application is able to be
restored from the URL to the same state.

Dependency Injection

Dependency Injection (DI) is a software design pattern that deals with how
components get hold of their dependencies. The Angular injector subsystem is
responsible of creating components, providing them to other components and
resolving their dependencies.

3.2 Javascript

JavaScript is a dynamic computer programming language released by Netscape
and Sun Microsystems in 1995. Today it is used on almost all web pages by
adding functionality and it is suppoted by all modern browsers (Internet
Explorer, Firefox, Chrome, Opera, Safari). Its code can be embedded in an HTML
file or called from one or more external files. Also its use is free which means that
no licensed is needed to be used as well as all the technologies used to develop
our application. It is used to make webpages interactive and provide online
programs, including video games. It has an API for working with text, arrays,
dates, regular expressions, and basic manipulation of the DOM, but the language
itself does not include any I/O, such as networking, storage, or graphics facilities,
relying for these upon the host environment in which it is embedded. Initially
only implemented client-side in web browsers, JavaScript engines are now
embedded in many other types of host software, including server-side in web
servers and databases, and in non-web programs such as word processors and
PDF software, and in runtime environments that make JavaScript available for
writing mobile and desktop applications, including desktop widgets. We used
JavaScript within our application to develop the functionality needed for the
client-side of our system. The following sections highlight the most important
features of JavaScript:

21

Dynamic typing

As in most scripting languages, types are associated with values and not with
variables. For example, a variable could be bound to a string and then later
rebound to a number.

Run-time evaluation

JavaScript includes an evaluation function that can execute statements provided
as strings at run-time.

First-class functions

Functions in JavaScript are complete objects themselves. They have methods and
properties, such as call() and bind(). JavaScript also supports nested functions. A
nested function is a function that is defined within another function. It is created
each time the outer function is invoked. In addition, each one of the created
functions forms a closure: the scope of the outer function, becomes part of the
internal state of each inner function object, even after execution of the outer
function ends.

Prototypes

JavaScript uses prototypes where many other languages that are object oriented
use specific classes for inheritance. It is possible to simulate many class-based
features with prototypes in JavaScript [11].

Functions as methods

In JavaScript there is no distinction between a function definition and a method
definition unlike many object-oriented languages. If the distinction occurs during
function calling (when a function is called as a method of an object), the
function’s local this keyword is bound to that object for that invocation.

Run-time environment

JavaScript typically relies on a run-time environment to provide objects and
methods by which scripts are able to interact with the environment. It also relies
on the run-time environment to include or import scripts. This is not a language
feature, but it is common in most JavaScript implementations.

22

Variadic functions

An indistinct number of parameters can be passed to a function. The function can
access them through formal parameters. It can also access them through the local
arguments object. Array and object literals like many scripting languages, arrays
and objects (associative arrays in other languages) can each be created with a
succinct shortcut syntax. In fact, these literals form the basis of the JSON data
format.

Regular expressions

JavaScript also supports regular expressions, which provide a brief and powerful
syntax for text manipulation that is more sophisticated than the built-in string
functions.

3.3 Java

Java is a widespread computer programming language that is concurrent, class-
based, object-oriented, and specifically designed to have as few implementation
dependencies as possible. It is intended to let application developers run Java
code on all platforms that support Java without the need for recompilation. Java
applications are typically compiled to byte code that can run on any Java virtual
machine (JVM) regardless the architecture of the computer. As of 2016, Java is
one of the most popular programming languages in use and particularly for
client-server web applications.

Concurrent computing

Concurrent computing is a form of computing in which several computations are
executed during overlapping time periods, concurrently, instead of sequentially
(one completing before the next starts). This means that a computation can
advance without waiting for all other computations to complete.

Class-based programming

Class-bassed programming, or as it is called more commonly class-orientation, is
a style of object-oriented programming. In class-bassed programming
inheritance is achieved by defining classes of objects, as opposed to the objects
themselves.

https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Java_bytecode
https://en.wikipedia.org/wiki/Java_virtual_machine
https://en.wikipedia.org/wiki/Java_virtual_machine
https://en.wikipedia.org/wiki/Java_virtual_machine
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Measuring_programming_language_popularity

23

Object – oriented programming

Object-oriented programming is a programming language in which developers
define not only the type of data structure, but also the types of operations
(functions) that can be applied to the data structure. In this way, the data
structure becomes an object that includes both functions and data. Moreover,
developers are able to create relationships between objects. For example, objects
can inherit characteristics from other objects.

Use of Java outside Java platform

The Java programming language requires a software platform in order for

compiled programs to be executed. Oracle supplies the Java platform for use with

Java. One very popular software platform is the Android SDK which is used

primarily for developing Android applications.

Android

Android is a mobile operating system developed by Google. It is used by several

smartphones, smartwatches and tablets. The Android operating system is bases

on the Linux kernel and it is open source which means that developers can

modify and customize the operating system for each phone. Developers can

create programs for Android using the free Android software developer kit.

Moreover, Android programs are written in Java and run through a Java virtual

machine JVM that is optimized for mobile devises.

3.4 MySQL

MySQL is a relational database management system (RDBMS) that runs as a
server providing access to many users to a number of databases. In MySQL the
beginning of the name My comes from the daughter of the finnish developer. SQL
was at first developed to work on data in databases that follow the relational
model. It is a programming language for querying, managing and modifying data.
MySQL is one of the most common open source database tools. It is considered
an easy and reliable program compared to other database software and offers
many different programs that are database related.

https://en.wikipedia.org/wiki/Java_platform
https://en.wikipedia.org/wiki/Android_application

24

 What is a database?

Database is a structured set of data that stores organized information. Most of
the databases contain multiple tables. Each one of these tables may include
several different fields. For example a database of a company may contain tables
for employees, products, financial records. Each of these tables would have
different files that are relevant to the information stored in the table.

A database consists of both data and metadata. Metadata is data that
describes the structure of the data in a database. A database can come in all sizes,
from a few records to hundreds or millions of records.

Index Support

Indexes are used to find rows with specific column values quickly. Without the
use of an index, MySQL has to begin with the first row and then read through the
entire table to find specific rows. The larger the table, the more this process
costs. If the table has an index for the columns in the question then MySQL can
quickly find the position needed in the data file without having to look at all the
data in the database. This is obviously much faster and more efficient than
reading every row sequentially.

Querying

In MySQL a query targets a specific collection of data in the database. Queries
specify criteria or conditions that identify the data that is returned to the users. If
you want, you can modify queries to apply limits, skips, and sort orders.

Aggregation

Aggregations are some operations that process data records and return
computed results. MySQL provides the user with a variety of aggregation
operations (Figure 3.2) that process and perform calculations on the data sets.
Group aggregate functions that operate on sets of values in MySQL are described
below:

25

Figure 3.2: MySQL aggregation functions.

https://dev.mysql.com/doc/refman/5.7/en/group-by-functions.html

26

Chapter 4

Functional Specification

This chapter describes the functional specification of the platform and tools that
have been developed for the creation, management and editing of the events in
our application. Section 4.1 specifies the system’s stakeholders and their role in
our system, while Section 4.2 discusses the technical requirements that had to be
provided. Finally, Section 4.3 provides the functionality that has to be provided
by our system in the form of use cases.

4.1 Stakeholders

A stakeholder is someone or something that has an interest in the behavior of the
use case. Our platform is targeted for everyone who wants to monitor people
with special needs and know if they are safe and well. Also, our platform is
targeted for everyone who wants to feel safe in his daily life and get help when it
is needed. It is planned to be used by both non-experts and professionals, either
just for motoring a family member, or for providing a tool in the hands of a
professional making him capable of monitoring his patients. For those scenarios,
the system’s stakeholders are:

 The Caretaker who will wear the smart watch with the installed android
application.

 The Caregiver who can be a family member that will use the web
application to monitor his loved ones.

 Professionals (Caregivers) who will use our system to monitor their
patients (Caretakers) and provide them with the necessary help.

4.2 Technical Requirements

This section discusses the technical requirements that were identified and set for
the development of the model and the systems. Section 4.2.1 describes the
requirements of the Web application, while Section 4.2.2 describes the
requirements of the android application.

27

4.2.1 Web application

The application that the caregiver will use needs to be a desktop application due
to the extended functionality that should offer to the caretaker. More specifically
it should be web based in order to be easily accessible and to have minor setup
requirements. As a web application it should be compatible with the state-of-the-
art standards and its user interface needs to be responsive and operate smoothly
in any screen and browser. Using this tool the users should be able to create and
manage their caretakers and events. In more detail, the authoring tool should:

• Be compatible with state-of-the-art web standards.
• Have responsive user interface.
• Be able to be used not only by professionals but also by non experts.
• Support personalization for making the user feel comfortable with the user

interface.
• Allow the creation and management of events for monitoring the caretakers.
• Have easy access and switching between the caretakers.

4.2.2 Android application

The caretaker application needs to be a mobile application due to the fact that
the caretaker should have it always on him. A problem with this requirement is
the fact that different devices have different software. Some of these are using
completely different programming languages. To this end, we decided to base
our application on android which will support the majority of smart watches.
The features of the android application should include:

• Compatibility with most state-of-the-art mobile devices.
• Beautiful and usable interface.
• Support of reminders.
• Ability to save data when device is offline and send it when it is back online.
• Ability to run in the background.
• Compatibility with our web application, in the sense that it should process

data that has been added by the web application.
• Ability to use the hardware tools (GPS, Accelerometer etc.) of the mobile

device.

28

4.3 Use Cases

A use case describes the system’s behavior under various conditions as the
system responds to a request from the stakeholders, called primary actor. The
stakeholder interacts with the system to accomplish a goal. The system responds
always protecting the interests of the stakeholders.

This section describes the system’s behavior under its interaction with
the stakeholders. For further understanding we present some of the use cases in
form of use case diagrams. Figures 4.1, 4.2 and 4.4 present the use cases of the
Caregiver, also Figure 4.5 presents the use cases of the Caretaker.

Figure 4.1: Web application – User Management.

29

Figure 4.2: Web application – CareTakers’ Management

Figure 4.3: Web application – Event Management.

30

Figure 4.4: Android application – Application Management.

31

Table 4.1: Use case 1: “Create Account”.

Use Case 1: “Create Account”
Goal in Context The user wants to use the services that the system provides to

registered users.
Preconditions The user is not logged in the system.
Success End Condition The user has created an account successfully and is able to

use the services that the system provides to registered users.
Failed End Condition The user could not create a new account.
Primary, Secondary Actors Caregiver, System.
Trigger 1. The user wants to create an account.

Description Step Action

1 The system displays the Sign Up form.

2 The user fills in the required information about his
new account.

3 The system validates the user’s input.

4 The system will create a new account for the user.

5 The user is able to use the services of the system
and system displays the first screen to the user.

32

Table 4.2: Use case 2: “Log In”.

Use Case 2: ”Log in”
Goal in Context The user wants to use the services that the

system provides to registered users.
Preconditions The user is registered in the system.

Success End Condition The user has been identified and is able to use
the services that the system provides to
registered users.

Failed End Condition The user cannot use the services that the system
provides to registered users.

Primary, Secondary Actors Caregiver, System
Trigger The user selects to enter in his account.

Description Step Action

1 The user inputs his name.
2 The user inputs his password.
3 The user presses the log in button.
4 The system checks if the fields are filled.
5 The system will search if the username

and password are correct.
6 The system will log in the user to his

account.
7 The user is able to use the services of

the system.

Extensions Step Branching Action

4a

The fields are not filled.
4a1 The system indicates that the fields
are not filled, asks for corrections and
returns to step 1

5a

The user is not registered.

5a1. The system informs the user and
indicates him to register.

33

Table 4.3: Use case 3: “Log out”.

Use Case 3: “Log out”
Goal in Context The user wants to be logged out from the system.
Preconditions The user is already logged in the system.
Success End Condition The user is logged out successfully from the system.
Failed End Condition The system could not log the user out of the system.
Primary, Secondary Actors Caregiver, System
Trigger The user selects to log out from the system.
Description Step Action

1 The system logs out the user.
2 The system displays the log in screen.

Table 4.4: Use case 4: “Add a CareTaker”.

Use Case 4: “Add a CareTaker”
Goal in Context The user indicates that he wants to monitor a new smart

watch and add a new CareTaker to the system.
Preconditions The user has the id code of the device–smart watch.
Success End Condition The new device has been added and the user is able to monitor

the caretaker.
Failed End Condition The user is not able to monitor the new caretaker.
Primary, Secondary Actors Caregiver, Caretaker, System
Trigger The user selects to add a new caretaker.

Description Step Action
1 The user indicates that he wants to add a new

caretaker.
2 The system asks him for an id code and for the

caretaker’s information.
3 User inputs the id code of the device and the

caretaker’s information to the system.
4 The system checks if the id code is correct.
5 The system connects with the smart watch.
6 The user is able to monitor the new device.

Extensions Step Branching Action

4a

The field are not filled correctly
4a1. The system indicates that the fields are not
correct, asks for corrections and returns to step 2

34

Table 4.5: Use case 5: “Edit a CareTaker”.

Use Case 5: “Edit a CareTaker”
Goal in Context The user indicates that he wants to edit a caretaker.
Preconditions There is a saved caretaker to be edited.
Success End Condition The caretaker has been edited successfully.
Failed End Condition The caretaker has not been edited successfully.
Primary, Secondary Actors Caregiver, Caretaker, System
Trigger The user selects to edit a caretaker.

Description Step Action
1 The user indicates that he wants to edit a caretaker.
2 The user changes the caretaker’s information.
3 The user presses the save button.
4 The system saves the new information.

Extensions Step Branching Action

3a

Some information fields are not filled.
3a1. The system indicates that all the fields are not
filled correctly and returns to step 2.

Table 4.6: Use case 6: “Delete a CareTaker”.

Use Case 6: “Delete a CareTaker”
Goal in Context The user indicates that he wants to delete a saved

caretaker.
Preconditions There is a saved caretaker to be deleted.
Success End Condition Caretaker has been deleted.
Failed End Condition Caretaker has not been deleted.
Primary, Secondary Actors Caregiver, Caretaker , System.
Trigger The user selects to delete a caretaker.
Description

Step Action
1 The user indicates that he wants to delete

a caretaker.
2 The user presses the delete button.
3 The system asks user for confirmation.

4 The user confirms.

5 The system deletes the caretaker.

35

Table 4.7: Use case 7: “Add Region”.

Use Case 7: “Add Region”
Goal in Context The user indicates that he wants to add a new

region to the account.
Preconditions The area has been selected and the information

fields are filled.
Success End Condition The area has been saved and the user will be

informed if the caretaker leaves or enters the area.
Failed End Condition The user will not be informed if the caretaker

leaves or enters the area.
Primary, Secondary Actors Caregiver, Caretaker, System
Trigger The user selects to add a new region.

Description Step Action
1 The user indicates that he wants to add a

new region.
2 The user enters the coordinates of the

region on the displayed map, region name
and other information.

3 The caregiver presses the save button.
4 The system saves the new region.
5 The system sends the new region’s data

to the device - smart watch.

Extensions Step Branching Action

3a

The area is not selected or some info
fields are not filled.
3a1. The system indicates that all the
fields are not filled correctly or that the
region has not been selected asks the
user to select it and returns to step 2.

36

Table 4.8: Use case 8: “Edit Region”.

Use Case 8: “Edit Region”
Goal in Context The user indicates that he wants to edit a region.
Preconditions There is a saved region to be edited.
Success End Condition The region has been edited successfully.
Failed End Condition The region has not been edited successfully.
Primary, Secondary Actors Caregiver, Caretaker, System
Trigger The user selects to edit a region.

Description Step Action
1 The user indicates that he wants to edit a region.
2 The user changes the coordinates of the region or

other information.
3 The user presses the save button.
4 The system saves the new information.
5 The system sends the region’s new data to the device -

smart watch.

Extensions Step Branching Action

3a

The area is not selected or some info fields are not filled
3a1. The system indicates that all the fields are not filled
correctly or that the region has not been selected , asks
the user to select it and returns to step 2.

Table 4.9: Use case 9: “Delete Region”.

Use Case 9 : “Delete Region”
Goal in Context The user indicates that he wants to delete a saved region.
Preconditions There are saved regions to be deleted.
Success End Condition The region has been deleted.
Failed End Condition The region has not been deleted.
Primary, Secondary Actors Caregiver, Caretaker, System.
Trigger The user selects to delete a region.
Description

Step Action
1 The user indicates that he wants to delete a region.
2 The system asks user for confirmation.
3 The user confirms.
4 The system deletes the region.

5 The system informs the device about the deleted
region.

37

Table 4.10: Use case 10: “Add Reminder”.

Use Case 10: “Add Reminder”
Goal in Context The user indicates that he wants to add a new reminder to the

account.
Preconditions The time, title , description and all the required fields of the

reminder have been filled.
Success End Condition The reminder has been saved and the caretaker will be informed

at the given date and time.
Failed End Condition The Caretaker will not be informed.
Primary, Secondary Actors Caregiver, Caretaker, System
Trigger The user selects to add a new reminder.

Description Step Action

1 The user indicates that he wants to add a new reminder.
2 The user enters the date, title, description and all the

required fields of the reminder.
3 The system checks if the fields are filled.
4 The system saves the new reminder.
5 The system sends the new reminder to the device.

Extensions Step Branching Action

3a

All the fields of the reminder are not filled.
3a1. The system indicates that all the fields of the
reminder are not filled, asks the user to fill them and it
and returns to step 2.

38

Table 4.11: Use case 11: “Edit Reminder”.

Use Case 11: “Edit Reminder”
Goal in Context The user indicates that he wants to edit a reminder.
Preconditions There is a saved reminder to be edited.
Success End Condition The reminder has been edited successfully.
Failed End Condition The reminder has not been edited successfully.
Primary, Secondary
Actors

Caregiver, Caretaker, System

Trigger The user selects to edit a reminder.

Description Step Action
1 The caregiver indicates that he wants to edit a reminder.
2 The caregiver changes reminder’s information.
3 The caregiver presses the save button.
4 The system saves the new information.
5 The system sends reminder’s new data to the smart watch.

Extensions Step Branching Action

3a

Some information fields are not filled.
3a1. The system indicates that all the fields are not filled
correctly and returns to step 2.

Table 4.12: Use case 12: “Delete Reminder”.

Use Case 12: “Delete Reminder”
Goal in Context The user indicates that he wants to delete a saved reminder.
Preconditions There is a reminder to be deleted.
Success End Condition The reminder has been deleted.
Failed End Condition The reminder has not been deleted.
Primary, Secondary Actors Caregiver, Caretaker, System.

Trigger The user selects to delete a reminder.
Description Step Action

1 The user indicates that he wants to delete a reminder.
2 The system asks user for confirmation.
3 The user confirms.
4 The system deletes the reminder.
5 The system informs the device about the deleted reminder.

39

Table 4.13: Use case 13: “Add Blood Pressure event”.

Use Case 13: “Add Blood Pressure event”
Goal in Context The user indicates that he wants to add a new Blood

pressure event to the account.
Preconditions The time, title and all the required fields of the Blood

pressure event have been filled.
Success End Condition The Blood pressure event has been saved.
Failed End Condition The Blood pressure event has not been saved.
Primary, Secondary Actors Caregiver, Caretaker, System
Trigger The user selects to add a new Blood pressure event.
Description Step Action

1 The user indicates that he wants to add a
new Blood pressure event.

2 The user selects the Blood pressure event
from the events tab.

3 The user enters the time, title and all the
required fields of the Blood pressure event.

4 The system checks if the fields are filled.
5 The system saves the new Blood pressure

event.
6 The system sends the new Blood pressure

event to the device.

Extensions Step Branching Action

3a

All the fields of the Blood pressure event are
not filled.
3a1. The system indicates that all the fields
of the Blood pressure event are not filled,
asks the user to fill them and it and returns
to step 2.

40

Table 4.14: Use case 14: “Edit Blood Pressure event”.

Use Case 14: “Edit Blood Pressure event”
Goal in Context User indicates that he wants to edit a Blood pressure event
Preconditions There is a saved Blood pressure event to be edited.
Success End Condition The Blood pressure event has been edited successfully.
Failed End Condition The Blood pressure event has not been edited successfully.
Primary, Secondary Actors Caregiver, Caretaker, System.
Trigger The user selects to edit a Blood pressure event.
Description Step Action

1 The caregiver indicates that he wants to edit a event
2 The user selects the Blood pressure event that he wants to

edit.
3 The caregiver changes the event’s information.
4 The caregiver presses the save button.
5 The system saves the new information.
6 The system sends the event’s new data to the smart watch.

Extensions Step Branching Action

3a

Some of the information fields are not filled.
3a1. The system indicates that all the fields are not filled
correctly and returns to step 2.

Table 4.15: Use case 15: “Delete Blood Pressure event”.

Use Case 15: “Delete Blood Pressure event”
Goal in Context The user indicates that he wants to delete a saved Blood pressure

event.
Preconditions There is a Blood pressure event to be deleted.
Success End Condition The Blood pressure event has been deleted.
Failed End Condition The Blood pressure event has not been deleted.
Primary, Secondary Actors Caregiver, Caretaker, System.
Trigger The user selects to delete a Blood pressure event.

Description Step Action
1 The user indicates that he wants to delete a Blood pressure

event.
2 The user presses the delete button.
3 The system asks user for confirmation.
4 The user confirms.
5 The system deletes the Blood pressure event.

6 The system informs device about the deleted event.

41

Table 4.16: Use case 16: “Add Heart Beat event”.

Use Case 16: “Add Heart Beat rule”
Goal in Context The user indicates that he wants to add a new Heart

Beat rule to the account.
Preconditions The time, title and all the required fields of the Heart

Beat rule have been filled.
Success End Condition The Heart Beat rule has been saved.
Failed End Condition The Heart Beat rule has not been saved.
Primary, Secondary Actors Caregiver, Caretaker, System
Trigger The user selects to add a new rule.
Description Step Action

1 The user indicates that he wants to add a
new Heart Beat event.

2 The user selects the Heart Beat event from
the events tab.

3 The user enters the time, title and all the
required fields of the Heart Beat event.

4 The system checks if the fields are filled.
5 The system saves the new Heart Beat

event.
6 The system sends the new Heart Beat

event to the device.

Extensions Step Branching Action

3a

All the fields of the Heart Beat event are
not filled.
3a1. The system indicates that all the
fields of the Heart Beat event are not filled,
asks the user to fill them and it and
returns to step 2.

42

Table 4.17: Use case 17: “Edit Heart Beat event”.

Use Case 17: “Edit Heart Beat event”
Goal in Context The user indicates that he wants to edit a Heart Beat event.
Preconditions There is a saved Heart Beat event to be edited.
Success End Condition The Heart Beat event has been edited successfully.
Failed End Condition The Heart Beat event has not been edited successfully.
Primary, Secondary Actors Caregiver, Caretaker, System.
Trigger The user selects to edit a Heart Beat event.
Description Step Action

1 The caregiver indicates that he wants to edit a Heart Beat
event

2 The user selects the Heart Beat of event that he wants to
edit.

3 The caregiver changes the event’s information.
4 The caregiver presses the save button.
5 The system saves the new information.
6 The system sends the Heart Beat event’s new data to the

smart watch.

Extensions Step Branching Action

3a

Some of the information fields are not filled.
3a1. The system indicates that all the fields are not filled
correctly and returns to step 2.

Table 4.18: Use case 18: “Delete Heart Beat event”.

Use Case 18: “Delete Heart Beat event”
Goal in Context User indicates that he wants to delete a saved Heart Beat event
Preconditions There is a Heart Beat event to be deleted.
Success End Condition The Heart Beat event has been deleted.
Failed End Condition The Heart Beat event has not been deleted.
Primary, Secondary Actors Caregiver, Caretaker, System.
Trigger The user selects to delete a Heart Beat event.

Description Step Action
1 The user indicates that he wants to delete a Heart Beat

event.
2 The user presses the delete button.
3 The system asks user for confirmation.
4 The user confirms.
5 The system deletes the Heart Beat event.

6 The system informs device about the deleted event.

43

Table 4.19: Use case 19: “Add Immobility event”.

Use Case 19: “Add Immobility event”
Goal in Context The user indicates that he wants to add a new

Immobility event to the account.
Preconditions The time, title and all the required fields of the

Immobility event have been filled.
Success End Condition The Immobility event has been saved.
Failed End Condition The Immobility event has not been saved.
Primary, Secondary Actors Caregiver, Caretaker, System
Trigger The user selects to add a new Immobility event.
Description Step Action

1 The user indicates that he wants to add a
new Immobility event.

2 The user selects the Immobility event from
the events tab.

3 The user enters the time, title and all the
required fields of the event.

4 The system checks if the fields are filled.
5 The system saves the new Immobility event.
6 The system sends the new Immobility event

to the device.

Extensions Step Branching Action

3a

All the fields of the Immobility event are not
filled.
3a1. The system indicates that all the fields
of the Immobility event are not filled, asks
the user to fill them and it and returns to
step 2.

44

Table 4.20: Use case 20: “Edit Immobility event”.

Use Case 20: “Edit Immobility event”
Goal in Context The user indicates that he wants to edit an Immobility event.
Preconditions There is a saved Immobility event to be edited.
Success End Condition The Immobility event has been edited successfully.
Failed End Condition The Immobility event has not been edited successfully.
Primary, Secondary Actors Caregiver, Caretaker, System.
Trigger The user selects to edit an Immobility event.
Description Step Action

1 The caregiver indicates that he wants to edit an
Immobility event

2 The user selects the Immobility event that he wants to
edit.

3 The caregiver changes the event’s information.
4 The caregiver presses the save button.
5 The system saves the new information.
6 The system sends the Immobility event’s new data to

the smart watch.

Extensions Step Branching Action

3a

Some of the information fields are not filled.
3a1. The system indicates that all the fields are not
filled correctly and returns to step 2.

Table 4.21: Use case 21: “Delete Immobility event”.

Use Case 21: “Delete Immobility event”
Goal in Context The user indicates that he wants to delete a saved Immobility event.
Preconditions There is an Immobility event to be deleted.
Success End Condition The Immobility event has been deleted.
Failed End Condition The Immobility event has not been deleted.
Primary, Secondary Actors Caregiver, Caretaker, System.
Trigger The user selects to delete an Immobility event.

Description Step Action
1 The user indicates that he wants to delete an Immobility

 event.
2 The user presses the delete button.
3 The system asks user for confirmation.
4 The user confirms.
5 The system deletes the Immobility event.

6 The system informs the device about the deleted event.

45

Table 4.22: Use case 22: “CareTaker Location”.

Use Case 22: “Caretaker Location”
Goal in Context The user indicates that he wants to see a

caretaker’s current location.
Preconditions The caretaker is online.
Success End Condition The user is able to see the caretaker’s location in

the map.
Failed End Condition The user is not able to see the caretaker’s current

location in the map.
Primary, Secondary Actors Caregiver, Caretaker, System.
Trigger The user selects to see a caretaker’s location.
Description Step Action

1 The user indicates that he wants to see
a caretaker’s location.

2 The system will search for the
caretaker’s coordinates.

3 The system will display a map and the
caretaker’s location in it.

Extensions Step Branching Action

2a

The Caretaker is not online.
2a1. The system will display to the user
the last coordinates of the caretaker
that have been saved.

46

Chapter 5

Model

This chapter presents the model that has been developed to support our system.
Section 5.1 describes the model’s basic idea and structure.

5.1 Specification

The model developed and supported by our system has been designed with
extreme detail, so as to be able to describe it as correctly as possible. To do this,
we identified that an event should be divided to scheduled events that are
defined from the caregiver and triggered events that are triggered from the
caretaker. Also a triggered event can be blood pressure, immobility, heartbeat or
region cross event. Figure 5.1 presents the identified model entities in the form
of a class diagram.

47

48

CareGiver

The CareGiver class represents the users of the web application. Each CareGiver

has his own account and is able to monitor many CareTakers. The attributes that

each CareGiver has are those presented below:

 id: careGiver’s unique identifier.

 firstName: careGiver’s first name.

 lastName: careGiver’s last name.

 email: careGiver’s email address.

 password: careGiver’s password used for logging in the system.

CareTaker

The CareTaker class represents the users of the android application which is

running on the smart watch. The attributes that each CareTaker has are:

 id: careTaker’s unique identifier.

 firstName: careTaker’s first name.

 lastName: careTaker’s last name.

 deviceID: unique identifier of smart watch device.

 dateOfBirth: careTaker’s date of birth.

 phoneNumbers: careTaker’s or family phone numbers.

 emergencyNumber: phone number that the smart watch will call in case

of emergency.

 address: careTaker’s address.

 disease: careTaker’s disease in case he has one.

 notes: notes for caretaker.

Event

The Event class represents all the events that have been saved in our system.

There are two categories of events, events that the caregiver sets on the smart

watch to get fired at a specific time and events that are defined by the caregiver

and are triggered from a caretaker’s actions. The attributes composing an event

are the following:

 id: the event’s unique identifier.

 isEnabled: specifies if the event is enabled or not.

 sendMail: specifies if the caregiver will be sent an email in case the event

is triggered.

49

Scheduled Event

The Scheduled Event class represents the events that the caregiver sets to be

shown and ring on the smart watch at a specific date and time. A Scheduled

Event may be described using the following attributes:

 startDate: date that the event will ring on the smart watch for the first

time.

 startTime: time that the event will ring on the smart watch for the first

time.

Recurring Event

The Recurring Event class represents scheduled events that are repetitive and

set to ring more than one time. The attributes composing a recurring event are

the following:

 endDate: date that the event will stop showing.

 endTime: time that the event will stop showing.

 periodicity: specifies every how many hours the event will be displayed.

Reminder

The Reminder class represents the events that the caregiver defines to ring on

the smart watch at a specific date and time. Reminders can be repetitive or non

repetitive. A Reminder may be described using the following attributes:

 description: description of the reminder.

Triggered Event

The Triggered Event class represents the events that the caregiver defines and

are triggered by a caretaker’s actions. Moreover it can be of four basic types:

Blood Pressure, Immobility, Heart Beat and Region Cross. A Triggered Event may

be described using the following attributes:

 activeFromTime: time that event start to be enabled.

 activeToTime: time that event stops to be enabled.

50

Blood Pressure Event

The Blood Pressure Event class is a type of Triggered Event that gets triggered

when a caretaker’s blood pressure, systolic or diastolic, is not normal. A Blood

Pressure Event may be described using the following attributes:

 minSystolicBloodPressure: min systolic pressure limit.

 maxSystolicBloodPressure: : max systolic pressure limit.

 minDiastolicBloodPressure: : min diastolic pressure limit.

 maxDiastolicBloodPressure: : max diastolic pressure limit.

Immobility Event

The Immobility Event class is a type of Triggered Event that gets triggered when

a caretaker is standing still for a long period of time. An Immobility Event may be

described using the following attributes:

 minutesMotionless: minutes that the caregiver will get notified if a

caretaker is motionless.

Heart Beat Event

The Heart Beat Event class is a type of Triggered Event that gets triggered when

a caretaker’s heart beats are not normal. A Heart Beat Event may be described

using the following attributes:

 maxBeatsPerMinute: max heart beats per minute limit.

 minBeatsPerMinute: min heart beats per minute limit.

Region Cross Event

The Region Cross Event class is a type of Triggered Event that gets triggered

when a caretaker gets in or out of a defined area on the map. A Region Cross

Event may be described using the following attributes:

 triggerAction: specifies if the region is an enter or leave area.

Region

The Region class represents all the regions that the caregiver has defined.

51

Map Location

The Map Location class represents a geographical point on the map. More than

three points define a geographical area. A Map Location may be described using

the following attributes:

 lon: longitude value of the point.

 lat: latitude value of the point.

Notification

The Notification class represents the notifications that are send to the caregiver

after the occurrence of an event. A notification can be described by the following

attributes:

 sendTimeStamp: the time that the notification was sent.

 resolved: shows if the notification has been seen by the caregiver.

 description: the description of the notification

Event Log

The Event Log class represents the occurrence of a triggered event and is

described using the attribute:

 timestamp: the time that the event was triggered.

Region Cross Log

The Region Cross Log class is a type of Event Log and presents the occurrence of

a region event. The Region Cross Log may be described by the following

attributes:

 enter: shows that a caretaker entered a danger area.

 leave: shows that a caretaker left from a safety area.

Immobility Log

The Immobility Log class is a type of Event Log and presents the occurrence of an

Immobility event. The Immobility Log may be described by the following

attributes:

 minutesMotionless: minutes that a caretaker was standing still.

52

Heart Beat Log

The Heart Beat Log class is a type of Event Log and presents the occurrence of a

Heart Beat event. The Heart Beat Log may be described by the following

attributes:

 minBpm: min allowed beats per minute.

 maxBpm: max allowed beats per minute.

Blood Pressure Log

The Blood Pressure Log class is a type of Event Log and presents the occurrence

of a Blood Pressure event. The Blood Pressure Log may be described by the

following attributes:

 minDiastolic: min allowed diastolic pressure.

 maxDiastolic: max allowed diastolic pressure.

 minSystolic: min allowed systolic pressure.

 maxSystolic: max allowed systolic pressure.

53

Chapter 6

Architecture

This chapter describes the system architecture, presents its basic components
and provides a detailed analysis of the internal functionality. Furthermore, it
advocates the architectural decisions that were made for the most important
application components.

Built as a web application, the system adopts the Rich Internet
Application (RIA) principles, which promote the development of web
applications as desktop applications performing business logic operations on the
server side, as well as on the client side. The client side logic operates within the
web browser running on a user’s local computer, while the server side logic
operates on the web server hosting the application. Figure 6.1 displays our
system’s architecture.

For the development of the application we used many design patterns.
The use of well-established and documented design patterns, speeds up the
development process, since they provide reusable solutions to the most common
software design problems. All the design patterns that were used in designing
the system’s architecture are presented in the following sections. The Model
View Controller (MVC) design pattern and the Observer pattern were used on
the client side, and a multi-tier architecture was implemented on the server side.

The analysis of the architecture is composed out of two parts; Section 6.1
presents the server side architecture and Section 6.2 presents the client side
architecture.

6.1 Server Side

The Server Side part of our framework has a multi-layered architectural pattern
and is consisted out of three basic layers: Service Layer, Business Logic Layer
and Data Layer. This architecture increases the system’s maintainability,
reusability of the components, robustness, scalability, and security. As shown in
Figure 6.1, the server side is comprised of a number of distinct modules which
are described below.

54

Figure 6.1: System reference architecture

6.1.1 Service Layer

The Service Layer is responsible for the communication between the client-side
logic and the server-side logic, by exposing a set of services (operations) to the
client-side components [16]. The basic services of our system are:

• CareGiver Services: facilitating the creation, retrieval, update and deletion of a

caregiver.

• CareTaker Services: facilitating the creation, retrieval, update and deletion of a

caretaker.

• Device Data Services: providing the means for the web application client side to

use the data of the smart watch.

• Event Services: facilitating the creation, retrieval, update and deletion of an

event.

• Notification Services: facilitating the saving and retrieval of Notifications.

55

6.1.2 Business Logic Layer

The Business Logic Layer, which is also called Domain Layer, contains the
business logic of the application and separates it from the Data Layer and the
Service Layer. In more detail the basic management modules are:

• The CareGiver Management Module: is responsible for the caregiver

management.

• The CareTaker Management Module: is responsible for the caretaker

management.

• The Event Management Module: is responsible for the event management.

• The Notification Management Module: is responsible for the notification

management.

• The Device Date Management Module: is responsible for the persistence and

accessing of smart watch data that that have been collected from the smart

watch.

6.1.3 Data Layer

The Data Layer accommodates the external system which is used to index and
persist data. This system is the Data Repository which is storing all the data of
the system. Section 7.1 presents all the implementation aspects of the
components in detail.

6.2 Client Side

The Client Side of the application is responsible for the interaction with the user.
All the actions performed by an individual using the system, are handled by the
client side logic, which is responsible for the presentation of the information as
well as the communication with the server. In order to achieve a high level of
decoupling between the components forming the client logic we adopted the
Model View Controller (MVC) design pattern in our web application, as well as
Model View Presenter (MVP) design pattern in our android application.

The usage of the MVC pattern introduces the separation of the
responsibilities for the visual display and the event handling behavior into
different entities, named respectively, View and Controller. Some of the
advantages on this approach are: (a) maximization of the code that can be tested
with automation (Web pages containing HTML elements are hard to test), (b)
code sharing between pages that require the same behavior, and (c) separation
of the business logic from the user interface logic from User Interface logic to
make the code easier to understand and maintain.
 On the other hand MVP design pattern is a set of guidelines that if
followed, decouples the code for reusability and testability. It divides the
application components based on its role, called separation of concern.

56

6.2.1 Model (Web application)

The Model refers to the business objects which are being used by our system.
When the system needs to present information about a business object, the client
side requests the respective information from the server side using the services
that the later exposes. Similarly, when an update on the Model needs to be
persisted, the client side sends the updated Model to the server side, triggering
the indexing and storage of the business objects by the appropriate modules and
external systems.

6.2.2 View

The views are responsible for the presentation of information to the user. Each
one of the views controls a number of widgets on the application’s graphical user
interface. It consists of several handlers that are responsible for listening user
actions, as well as HTML templates that define the presentation of the widgets.

6.2.3 Controller (Web application)

The Controllers are the modules that respond to the user input and interact with
the Views in order to perform any change on the user interface. Furthermore,
they maintain the Model and change it appropriately. Every View has a dedicated
Controller which is responsible for managing, handling and propagating any
changes that are to be performed or have already been performed to the user
interface. Moreover there are several cases where a "composite" Controller
manages a number of other Controllers in order to create complex widgets.

6.2.4 Router

The Router is used for deep-linking URLs to controllers and views. It manages
the URL of the client browsers, providing a different path to each distinct
interface, without raising a browser event that will force a reload on the whole
page. When the URL changes, the Router analyzes the new path and handles the
transition to the new View. This is performed using mappings between the
different URLs supported in the system, the Controllers and the Views.

6.2.5 Model (Android application)

The model is responsible for handling the data part of the application.

6.2.6 View (Android application)

The view is responsible for laying out the views with specific data on the screen.

57

6.2.7 Presenter (Android application)

The presenter is a bridge that connects a Model and a View. It also acts as an
instructor to the View.

58

Chapter 7

Implementation

This chapter provides the implementation details of some of the most important
components in more detail. We have split the chapter into two Sections. Section
7.1 describes the Server Side and Section 7.2 describes the Client Side.

7.1 Server Side

The server side of our system is based on the Java programming language.
Moreover, it is worth to mention that we have used Websocket communication
protocol in order to send notifications directly to the user.

7.1.1 RESTful Web Services

In order to expose our data to our client applications and other external systems
we developed an API that enables data access through the use of RESTful
services. The advantages of REST are: (1) less overhead compared to SOAP, (2)
less duplication since HTTP already represents DELETE, PUT, GET and POST
operations, (3) more standardized, providing HTTP operations that operate
consistently, (4) more human readable and testable, and (5) there is no
requirement to use complex data interchange formats like XML. We built a
package of RESTful services exposing all the functionality of our system and we
created CRUD (create, retrieve, update, delete) operations for every possible
feature. These services are used by both our client side applications, web
application and the smart watch application, to fetch, create, update and delete
data on our system.

7.1.2 Security

Security is a very important aspect in every system, especially the web-based
applications.

For securing our application, we require the users to be logged in, in
order to use the services, check for the existence of the user data in the database,
and deny access otherwise.

59

7.1.3 Websocket

WebSocket is a computer communications protocol, providing full-
duplex communication channels over a single TCP connection. WebSocket is a
different TCP (transmission control protocol) protocol from HTTP.

The WebSocket protocol enables the communication between a browser
and a web server with lower overheads, facilitating real-time data transfer from
and to the server. Websocket protocol is providing a way for the server to send
content to the browser without being requested by the client, and allowing for
messages to be passed back and forth while keeping the connection open. In this
way, a two-way ongoing conversation can take place between a browser and the
server.

7.2 Client Side

The client side refers to both the web application and the android application.
These two applications are based on the latest web-application standards, rely
on the JavaScript and java programming languages and the web application also
makes extensive use of the AngularJS framework.

Moreover, they have been created in order to match different user
requirements, and thus their user interfaces are implemented differently in
order to match the goals of their users. It is worth to note that apart from
JavaScript, the user interface layout has been built using HTML5 and CSS3.

Regarding our android application it is worth to mention that when the
smart watch is offline, the application is storing the data locally and sends all the
data when the device is again back online. The data is stored using the Shared
Preferences interface implementations with which we can store persistent sets
of data in the file system. The data is available across application restarts or even
device stop/start. Moreover the android application is able to run in the
background which means if the user is using other applications, our application
will still send and receive all the needed data from the database.

For the code organization of the client side we have used various open
source libraries and frameworks. Section 7.2.1 presents the use of MVC pattern
which is used in our system. Section 7.2.2 provides some details about the way
that the user interfaces have been implemented for our applications. Section
7.2.3 describes the parts that map the html templates with controllers and urls,
while Sections 7.2.4 and 7.2.5 describe the AngularJS controller and service
implementation on the client side. Finally, Section 7.2.6 describes the use of
maps in our application.

https://en.wikipedia.org/wiki/Communications_protocol
https://en.wikipedia.org/wiki/Full-duplex
https://en.wikipedia.org/wiki/Full-duplex
https://en.wikipedia.org/wiki/Transmission_Control_Protocol

60

7.2.1 MVC Pattern

The client side of our applications has been based on the Model View Controller
design pattern. Numerous JavaScript frameworks implementing the MVC pattern
have emerged during the last years. Most of them force strict definition format
rules to the various components due to the special handling that complex
JavaScript libraries need. After having evaluated the most popular open-source
frameworks, we decided to use AngularJS.

AngularJS [1] has been developed as an MVC framework for JavaScript
applications. It’s main purpose it to provide the basic structure to the
application. It is very lightweight and very extensible, allowing developers to
customize it with minimum effort according to their needs. Apart from the MVC
features, it provides other useful functionality, including: models with key-value
binding and custom events, collections with a rich API of enumerable functions,
views with declarative event handling, and connects it all to your existing API
over a RESTful JSON interface.

Figure 7.1: Model View Controller Pattern in the application

Figure 7.1 presents the MVC components and the interaction between them in
our applications. The Controller instantiates the View and manipulates the
Model. After that, the View listens for updates of the Model, and when the
updates happen it is re-rendered with the changes. This functionality is called

61

two way binding and is presented in Figure 7.2. The View is also responsible for
the updating of the Document Object Model (DOM) [15] when needed, as well as
the handling of interaction events which are triggered by the user. In some cases
the View also manipulates the Model.

Figure 7.2: Two way binding.

7.2.2 User Interface

This section presents some user interface implementation details for our
applications.

 Web application desktop

When building an application optimized for desktop browsers, the developer
must take into account the size of the screen which affects the usability of the
applications. Figure 7.3 presents the breakdown of main elements (top bar, left
menu and main content) of our desktop user interfaces.

Additionally, we tried to build our desktop application as much
responsive as possible. To this end, we made use of the @media rule which is
used to define style rules for different media types and devices.

62

Figure 7.3: The main areas of desktop user interfaces.

Web Application on Mobile Phones

When building an application optimized for mobile devices, the developer must
take into account the small size of the screen which affects the usability of the
applications. The menus that are provided with the mobile applications are at
most times hidden and become visible only when the user needs them. This
happens with the use of a button that reveals the menu.

However, when building web applications that can be used from mobile
devices, the developer needs to implement the functionality for the sliding menu
by himself. There are a number of free implementations available, but they all
have their disadvantages when it comes to performance, since they try to apply
themselves to the general cases, providing more functionality than needed most
of the times. To this end we formed an open-source side bar according to our
needs.

Figures 7.4 and 7.5 present the main elements of our mobile user
interfaces. These are the two menus (right and top) and the main content area in
bellow our top menu. When the left menu is hidden, it is pushed away from the
visible area (Viewport) of the document. When the left menu is becoming visible,
the whole canvas is moved to the right, which causes the left menu to appear.

63

Figure 7.4: Viewport – Hidden Menu.

Figure 7.5: Viewport – Visible Menu.

64

Android Application on Smart Watch

Similarly when building an application optimized for mobile watch devices like
smart watches, the developer must take into consideration the small screen size.
All the buttons of the application must be big enough for the user to interact with
them and the app also needs to function with minimum user interaction.
 Moreover, the user interface should have a simple and minimalist layout
so it will not make the user confused. With a simple glace, the user should be able
to view and understand any information that is deemed as being critical in the
context of the app. Taking everything under consideration, our android
application stayed as simple as possible, showing the caretaker all the needed
information in one layout.

Figure 7.6 present the main elements of our smart watch user interfaces.
These are three main areas: (1) Information needed to be displayed to the
caretaker (Connection, Battery percentage). (2) A button that displays all the
scheduled reminders that have been set to the watch. (3) A hold emergency
button that will make the device call for help when it is pressed.

Figure 7.6: Android application main areas

65

7.2.3 Router

Modern web applications, built with the latest technologies, enable more
powerful interaction with the users. Their features are very close to desktop
applications in terms of complexity and management. These applications are
called RIAs (Rich Internet Applications).

A very important aspect in the development of RIAs, is the use of AJAX for
the communication between the client and server. This enables the generation
and presentation of content without forcing the web browser to reload a new
web page. JavaScript source code running on the user’s browser is responsible
for issuing AJAX calls to the server as well as manipulating the Document Object
Model and presenting the data.

As JavaScript applications are being used to manipulate all of the
interfaces presented to the user, they are becoming more complex. Two major
problems have arise from this complexity. Firstly, the change of user interface
using JavaScript needs special treatment in order to allow the browser’s history
support. This appears because the web browsers tend to push the URLs to
history
and reload a new one whenever a change is performed. In RIAs this is not always
the case. The second problem is the ability of users to create bookmarks for a
specific user interface screen, which is not possible if the application does not
propagate the interface change to the browser’s URL.

In our system, these issues are handled by the Router component, which
takes care of both the history of the browser and the mapping between the
different screens of our application and their URLs. Our Router is based on the
Router object provided by the AngularJS library.

7.2.4 Controller

In AngularJS a Controller is a JavaScript constructor function that is used to
augment the Angular Scope. When the "ng-controller" directive is used in the
DOM, Angular creates a new Controller object, using the specified Controller’s
constructor function. In our application we use controllers to respond to the user
input and interact with the Views in order to perform any change on the user
interface. Furthermore, they are used to maintain the Model and change it
appropriately.

7.2.5 Services

The services in our application are responsible for handling all the data
communication between the client side and the server side. Apart from those in
the server side, there are also services in the client side. These services issue the
AJAX calls to the server and get the responses.

66

7.2.6 Maps

For the maps used in our user interfaces, we used an open-source JavaScript
library from Google Maps for developers.

67

Chapter 8

Graphical User Interface

This chapter presents the methodology followed for designing the user
interfaces of the applications, as well as the final product. Section 8.1 describes
the phase of designing and user interface prototyping, while Section 8.2 presents
the final outcome of the graphical user interfaces as they have been
implemented.

8.1 Prototypes

At the initial stages of the design process of the application, we sketched some
prototypes of the user interfaces to visualize and organize our ideas. Sketches
enable better visualization of the user’s interface, interaction and the navigation
between the application screens before the actual creation of the application.

The following sections present some early user interface prototypes of
the application. More specifically, Section 8.1.1 presents the user interface
prototypes of the application on desktop, while Section 8.1.2 provides the user
interface prototypes of the application on mobile phone and Section 8.1.3
presents the user interface prototypes of the android application.

8.1.1 Desktop Application

The figures of this section present some user interface prototypes of the
application running on a large screen like a desktop computer which have been
sketched in the early stages of the design process. Each prototype has a title
beneath it, indicating the purpose that the user interface serves.

68

Figure 8.1: Show all careTakers’ Notifications.

Figure 8.2: Show the selected careTaker’s Reminders.

69

Figure 8.3: Show the selected careTaker’s Events.

Figure 8.4: Show all careTakers.

70

Figure 8.5: Show the selected Caretaker’s Location.

Figure 8.6: Insert/Edit Region Event.

71

Figure 8.7: Insert/Edit Immobility Rule.

Figure 8.8: Insert/Edit Heart Beats Event.

72

Figure 8.9: Insert/Edit CareTaker.

Figure 8.10: Insert/Edit Reminder.

73

Figure 8.11: Insert/Edit Blood Pressure Event.

74

8.1.2 Desktop Application on mobile

The figures of this section present some user interface prototypes of our

application running on a mobile device which screen size is smaller than

computers.

 Figure 8.12: List of notifications. Figure 8.13: List of caretakers.

75

 Figure 8.14: List of Events. Figure 8.15: The Caretaker’s map location.

Figure 8.16: List of reminders.

76

8.1.3 Android Application

The figures of this section present some user interface prototypes of our android

application which is used by the caretaker.

Figure 8.17: Android application prototypes.

77

8.2 Usability Evaluation

The following sections present the evaluation methods that have been used to
improve usability of our applications. More specifically, Section 8.2.1 describes
the Heuristic Evaluation method, while Section 8.2.2 describes the Think- Aloud
method.

8.2.1 Heuristic Evaluation

A heuristic evaluation [17] is a usability inspection method for computer
software that helps to identify usability problems in the user interface (UI)
design. It involves evaluators examining and interacting with the interface,
judging its compliance with the usability principles. The main goal of heuristic
evaluations is to identify any problems associated with the design of user
interfaces. The heuristics that were used in this thesis were from Nielsen’s book
[18] and are the following:

• Visibility of system status.

• Match between system and the real world.

• User control and freedom.

• Consistency and standards.

• Error prevention.

• Recognition rather than recall.

• Flexibility and efficiency of use.

• Aesthetic and minimalist design.

• Help users recognize, diagnose, and recover from errors.

• Help and documentation.

Heuristic evaluation requires only one expert, so the evaluation was made by us.
It was held at the early stages of design and we examined the system using the
rules of Nielsen. Firstly we tried to find out problems that naive users might
have. Then we examined the system having in mind the users’ primary goals and
their usability targets.

78

8.2.2 Think Aloud

After the corrections of the heuristic evaluation we put users to perform the
same tasks on the real system. The aim was to see how people react with the real
application. So we evaluated the application with the method of think-aloud.
Think-aloud protocols [19] are used to gather data in usability testing of user
interfaces. Think-aloud protocols involve participants thinking aloud as they are
performing a set of specified tasks. Users are asked to say whatever they are
looking at, thinking, doing or feeling during the whole procedure. This enables
observers to see first-hand the process of task completion. Observers of this test
are asked to objectively take notes of everything that the users say, without
answering most questions during the test since we want to see if the system can
be used without help. The purpose of this method is to determine user’s
expectations and identifying what aspects of the system are confusing.

To run a basic thinking aloud usability study, you need to do three things:

1. Recruit representative users.
2. Give them representative tasks to perform.
3. Let the users do the talking and tell what they think and do.

Procedure

We chose seven adults / middle-aged persons of different personal computer
skills. Some of them were naive users while others had an experience with
personal computers and touch devices. According to the method we allowed the
users to follow all the steps needed to reach the completion of some tasks. We
were next to them to see whether they make mistakes or when they are
confused. Also an important requirement was that the user should tell us what
he was thinking. Furthermore, we wanted to measure the efficiency of use so we
defined the estimated time that every task needs to be completed and then we
also calculated the average time that the users needed to complete the tasks. The
tasks that were performed by the users to evaluate the web application were the
following:

Tasks: Estimated Time: Average Time:

1. Create an account. (50 sec) (45 sec)

2. Add a Caretaker. (1 min 40 sec) (2 min 27 sec)

3. Add a Reminder. (1 min) (1min 9 sec)

4. Add a Region Event. (1 min 20 sec) (1 min 34 sec)

5. Add a Heart Beat Event. (40 sec) (37 sec)

6. Add a Blood Pressure Event. (40 sec) (35 sec)

7. Add an Immobility Event. (30 sec) (21 sec)

79

8. Edit a Reminder. (15 sec) (13 sec)

9. Edit an Event. (15 sec) (13 sec)

10. Delete a Reminder. (8 sec) (9 sec)

11. Delete an Event. (8 sec) (8 sec)

12. View all Notifications. (5 sec) (4 sec)

13. Log out. (5 sec) (7 sec)

For the evaluation we also needed some elderly people and young children to
use and interact with the android application at the smart watch. Three
individuals took part for this evaluation. Because the android application is quite
simple to use, there was no need for a greater number of users. The tasks that
were performed by the users to evaluate the android application were the
following:

Tasks: Estimated Time: Average Time:

1. Open the application. (10 sec) (8 sec)
2. View scheduled reminders. (3 sec) (3 sec)
3. Make an emergency call. (3 sec) (4 sec)

As we can see the estimated times were very close to the average time that it was
needed for the completion of the tasks. This was very encouraging because it
means that the system was quite easy to use. The most difficult task that it took
quite long to be completed was adding a new Caretaker. This was because the
message explaining how to connect the smart watch was not very clear which is
something that it was corrected afterwards.

The users were also asked to complete a questionnaire and we calculated the
average score of each question. The scale of results ranged from 1 to 10, as we
approach 1, the more negative the answer, the closer we get to 10, the more
positive. The results of the questionnaires are presented below:

 I am overall satisfied with the system’s usability. 9.3

 I was capable of completing effectively the tasks 9.6

needed using the system.

 I was capable of completing the tasks needed quickly. 9.4

 I feel comfortable using the system. 9.9

 It was quite easy to learn how to use the system. 9.6

80

 I think that I became productive quite quickly using the 9.9
system.

 The system provides messages explaining its functionality. 8.1

 Whenever I made a mistake using the system I returned 10

easily to the previous state.

 I was easy to find the information that I needed. 9.4

 The information provided by the system was easy to 9.3

understand.

 The information provided by the system was sufficient to 7.9

help me complete the tasks.

 The organization of information provided by the system 9.6

was clear.

 The user interface was pleasant. 9.7

 I like using the user interface of the system. 9.7

 This system includes all the capabilities and functionalities 10

that it should.

 I am overall satisfied with the system. 9.4

Conclusions:

 From the results above, we can assume that the users found the system
satisfactory in most of its sectors. As we see none of the users, despite been
asked to answer objectively and without leniency, did not rate a question with a
grade of less than seven. This may be because users generally do not judge a
system easily when asked to, because they do not want to reduce the work of the
creators. Nevertheless, the questions that were given the lowest score were the
ones including the messages and the information provided by the system. The
lower scores on those questions rely on the fact that the system’s messages were
not sufficient and the information provided to the user should be clearer. As a
result we added more tips to the system helping the user understand easily each
of the system’s functionality, as well as more error messages so that the user will
not be confused. By analyzing the results, we also saw that the users of the
android application think that the system is very easy to use. This is very
important considering that the smart watch application will be used mainly by
people with special needs.

81

8.3 User Interfaces

The following sections present some graphical user interfaces of the system as
they have been implemented. In more detail, Section 8.2.1 presents user
interfaces of the web application on desktop, Section 8.2.2 provides the user
interfaces of our web application on mobile devices and Section 8.2.3 presents
user interfaces of the android application on the smart watch.

8.2.1 Web application on desktop

Log in

When the caregiver opens the application and he is not logged in the log in
screen is displayed (Figure 8.18), prompting him to enter his credentials. The
user also has the option to create a new account by clicking the sign up button.

Figure 8.18: Log in page.

82

Sign up

When the user selects the sign up button the screen of Figure 8.19 is displayed,
prompting him to enter some personal information for signing up. The user also
has the option to log in if he already has an account to the system.

Figure 8.19: Sign up page.

83

Home Page

When the caregiver logs in the application for the first time and there are no
caretakers added, the home page is presented (Figure 8.20), describing the main
capabilities of the application. The user also has the option to add a new
caretaker.

Figure 8.20: Desktop - Home page 1.

If the caregiver has at least one caretaker added in the application then Figure

8.21 is displayed, showing the notifications of every caretaker.

Figure 8.21: Desktop - Home page 2.

84

Top bar

 Menu hide/show: Hides or shows the left side menu.
 Home page button: Loads the home page of the application.
 Selected caretaker: Drop down button with which the caregiver selects

the caretaker that is displayed.
 Connection icon: Shows if the caretaker’s device is connected to the

application.
 Battery icon: Shows the battery percentage of the caretaker’s device.
 Notification button: Drop down button that shows all the notifications.

Left side Menu

 Home: Presents the homepage of the application.
 Events: Shows the events of the selected caretaker.
 Reminders: Shows the reminders of the selected caretaker.
 Caretaker location: Shows the location of the caretaker on the map.
 Caretakers: Shows all the added caretakers.
 Log out: Logs out the caregiver.

Management buttons

 Edit button: Edits the information of the selected event, caretaker or

reminder.
 Delete button: Deletes the selected event, caretaker or reminder.
 Show more button: Shows the information if it can not fit in the page.
 Add new button: Adds a new event, caretaker or reminder.
 Info/Question mark button: Shows some information about the present

view.

85

Events

Figure 8.22 presents the Region Events page, Figure 8.23 shows Blood Pressure
Events page, Figure 8.24 shows Heart Beat Events page and Figure 8.25 presents
Immobility Events page.

Figure 8.22: Desktop - Region Events page.

Figure 8.23: Desktop - Blood Pressure Events page.

86

Figure 8.24: Desktop - Heart Beats Event page.

Figure 8.25: Desktop - Immobility Events page.

87

Reminders

Figure 8.26 presents the Reminder page of the application in which all the added

reminders are displayed to the caregiver.

Figure 8.26: Desktop - Reminders page.

Caretaker Location

Figure 8.27 presents the caretaker location page in which the caretaker’s last

known location is displayed on the map.

Figure 8.27: Desktop – The Caretaker’s location page.

88

Caretakers

Figure 8.28 presents the caretaker’s page in which all the added caretakers are

displayed. In the figure only one caretaker is added to the system.

Figure 8.28: Desktop – The Caretaker page.

Insert/Edit Region Event

Figure 8.29 presents the user interface of the application when inserting a new

Region event. The Caregiver defines the peaks of the area and also if he wants to

get informed when a caretaker enters or leaves the area. The Caregiver has also

the option ,like any other event or reminder, to enable or disable the event, get

informed by e-mail in case that a caretaker leaves or enters the area and define

hours that the event will be enabled. The edit screen is the same as the insert

screen with the difference that the areas are filled with the event information.

89

Figure 8.29: Desktop – Insert/Edit Region Event page.

Insert/Edit Blood Pressure Event

Figure 8.30 presents the user interface of the application when inserting a new

Blood Pressure event. The Caregiver defines the title and also the caretaker’s min

and max blood pressure allowed limits. The edit screen is the same as the insert

screen with the difference that the areas are filled with the event information.

Figure 8.30: Desktop – Insert/Edit Blood Pressure Event page.

90

Insert/Edit Heart Beat Event

Figure 8.31 presents the user interface of the application when inserting a new

Heart Beat event. The Caregiver defines the title and also the caretaker’s min and

max heart beats per minute allowed limits. The Caregiver has also the option,

like any other event or reminder, to enable or disable the event, get informed by

e-mail and define hours that the event will be enabled. The edit screen is the

same as the insert screen with the difference that the areas are filled with the

event information.

Figure 8.31: Desktop – Insert/Edit Heart Beats Event page.

Insert/Edit Immobility Event

Figure 8.32 presents the user interface of the application when inserting a new

Immobility event. The Caregiver defines the title and also the caretaker’s max

allowed minutes of immobility. The edit screen is the same as the insert screen

with the difference that the areas are filled with the event information.

91

Figure 8.32: Desktop – Insert/Edit Immobility Event page.

Insert/Edit Reminder

Figure 8.33 presents the user interface of the application when inserting a new

Reminder. The Caregiver defines the title and the description of the reminder. He

also has the option to enable or disable the reminder and to define a repetitive

reminder that will stop at the date of his choosing.

Figure 8.33: Desktop – Insert/Edit Reminder page.

92

Insert/Edit Caretaker

Figure 8.34 presents the user interface of the application when inserting a new

caretaker. The Caregiver has the option to insert the caretaker’s first name, last

name, date of birth, address, disease, and phone numbers as well as an

emergency phone number that the smart watch will call in case of an emergency.

The Caregiver must also insert a device ID which is displayed on the android

application if the smart watch is not imported in the database. This ID is used for

the connection between the android application and the web application. The

edit screen is the same as the insert screen with the difference that the areas are

filled with the caretaker’s information.

Figure 8.34: Desktop – Insert/Edit Caretaker page.

93

8.2.2 Web application on mobile device

Home Page

When the caregiver logs in the application for the first time and there are no

caretakers added, the home page is presented (Figure 8.35) similar to the

desktop application, describing the main capabilities of the application. The user

also has the option to add a new caretaker. If the caregiver has at least one

caretaker added in the application then Figure 8.36 is displayed, showing the

notifications of every caretaker.

Figure 8.35: Mobile device – Home page 1.

94

Figure 8.36: Mobile device – Home page 2.

95

Region Event

Figure 8.37 presents the user interface of the application showing the region
events of the selected caretaker.

Figure 8.37: Mobile device – Region Events page.

96

Reminder

Figure 8.38 presents the user interface of the application showing the reminders
of the selected caretaker.

Figure 8.38: Mobile device – Reminders page.

Caretakers

Figure 8.39 presents the user interface of the application showing all caretakers.

Figure 8.39: Mobile device – The Caretaker page.

97

Insert/Edit Region Event

Figure 8.40 presents the user interface of the application when inserting a new
region event. The edit screen is the same as the insert screen with the difference
that the areas are filled with the event information.

Figure 8.40: Mobile device – Insert/Edit Region page.

98

Insert/Edit Reminder

Figure 8.41 presents the user interface of the application when inserting a new

reminder. The edit screen is the same as the insert screen with the difference

that the areas are filled with the reminder information.

Figure 8.41: Mobile device – Insert/Edit Reminder page.

99

Insert/Edit Caretaker

Figure 8.42 presents the user interface of the application when inserting a new

caretaker. The edit screen is the same as the insert screen with the difference

that the areas are filled with the caretaker’s information.

Figure 8.42: Mobile device – Insert/Edit Caretaker page.

100

8.2.3 Android Application

Figure 8.43 presents the user interface of the android application when the
device is not submitted in the system by the caregiver, showing the ID of the
device that is used for the connection with the web application and Figure 8.44
presents the user interface when the user is at the main screen. Figure 8.45
shows the scheduled notifications scroll screen and Figure 8.46 shows the
emergency call screen.

Figure 8.43: Android application – First run screen.

Figure 8.44: Android application – Main screen.

101

Figure 8.45: Android application – Reminder screen.

Figure 8.46: Android application – Emergency screen

102

Chapter 9

Conclusion & Future Work

In this thesis we presented the design and implementation of a system for
helping families and persons with disabilities. The main objectives of our
application were to: (1) bring peace of mind to families that have family
members with disabilities or children. (2) help professionals that deal with a lot
of patients and would like to monitor them constantly. (3) make the persons that
will wear the smart watch feel free and more safe.

More thoroughly, we designed a web application supporting the creation
and management of some events with which the caregiver is able to know if
something is wrong with the caretaker. Moreover, we developed an android
application that is running on android devices and especially in smart watches.
The web application is compatible with most mobile devices/platforms and of
course with laptops and desktop computers.

Both the web and android applications have been designed with flexibility
and extensibility in mind. Also, they have been evaluated for their usability from
some users that used the application for this purpose and extensive paper
prototyping. Our future work includes the following: (1) replacing simulation of
heart beats and blood pressure of the caretaker with the actual measurement
from the smart watch device; (2) giving caregiver the option to view the
caretaker’s blood pressure or heart beat graphs (per month or per year); (3)
giving caregiver the option to use smart watch camera in case of emergency; (4)
falling detection of the caretaker; (5) direct connection of smart watch with
other home devices; (6) option to make complex search between the registered
caretakers or events.

103

Bibliography

[1] AngularJS https://docs.angularjs.org/guide

[2] Pro AngularJS Authors: Adam , Freeman

[3] A. Cockburn. Writing Effective Use Cases. Addison-Wesley

Professional, 2001.

 [4] Android https://developer.android.com/index.html

[5] W3schools https://www.w3schools.com/

[6] A. van Kesteren, J. Aubourg, J. Song, and H. R. M. Steen. XMLHttpRequest Level
1. World Wide Web Consortium, Working Draft WD-XMLHttpRequest2-
20080930, January 2014.

[7] MySQL https://www.mysql.com/

[8] Websockets www.websocket.org

[9] Stack Overflow https://stackoverflow.com/

[10] R. T. Fielding and R. N. Taylor. Principled Design of the Modern

Web Architecture. ACM Transactions on Internet Technology 2002.

[11] M. D. Network. Introduction to Object-Oriented JavaScript.

[12] M. W. Newman and J. A. Landay. Sitemaps, Storyboards, and Specifications:
A Sketch of Web Site Design Practice. In Symposium on Designing Interactive
Systems 2000.

[13] T. Reenskaug. The Model-View-Controller (MVC) Its Past and Present, 2003.

[14] Icons http://fontawesome.io/

[15] A. L. Hors, P. L. Hégaret, L.Wood, G. Nicol, J. Robie, M. Champion, and S.
Byrve. Document Object Model (DOM) Level 3 Core Specification. W3C
Recommendation, April 2004.

[16] G. Alonso. Web Services: Concepts, Architectures and Applications. Springer,
2004.

[17] Heuristic Evaluation. https://en.wikipedia.org/wiki/Heuristic_evaluation

[18] Jacob Nielsen, R.L. Mack. Usability Inspection Methods 1994.

https://docs.angularjs.org/guide
https://developer.android.com/index.html
https://www.w3schools.com/
https://www.mysql.com/
http://www.websocket.org/
https://stackoverflow.com/
http://fontawesome.io/
https://en.wikipedia.org/wiki/Heuristic_evaluation

104

[19] Think Aloud protocol. https://en.wikipedia.org/wiki/Think_aloud_protocol

[20] Wikipedia https://www.wikipedia.org/

https://en.wikipedia.org/wiki/Think_aloud_protocol
https://www.wikipedia.org/

	Introduction
	Related Work
	2.1 Medical Guardian
	2.2 Bay Alarm Medical
	2.3 Medical Alert

	Background
	3.1 AngularJS
	3.2 Javascript
	3.3 Java
	3.4 MySQL

	Functional Specification
	4.1 Stakeholders
	4.2 Technical Requirements
	4.2.1 Web application
	4.2.2 Android application

	4.3 Use Cases

	Model
	5.1 Specification

	Architecture
	6.1 Server Side
	6.1.1 Service Layer
	6.1.2 Business Logic Layer
	6.1.3 Data Layer

	6.2 Client Side
	6.2.1 Model (Web application)
	6.2.2 View
	6.2.3 Controller (Web application)
	6.2.4 Router
	6.2.5 Model (Android application)
	6.2.6 View (Android application)
	6.2.7 Presenter (Android application)

	Implementation
	7.1 Server Side
	7.1.1 RESTful Web Services
	7.1.2 Security
	7.1.3 Websocket

	7.2 Client Side
	7.2.1 MVC Pattern
	7.2.2 User Interface
	7.2.3 Router
	7.2.4 Controller
	7.2.5 Services
	7.2.6 Maps

	Graphical User Interface
	8.1 Prototypes
	8.1.1 Desktop Application
	8.1.2 Desktop Application on mobile
	8.1.3 Android Application

	8.2 Usability Evaluation
	8.2.1 Heuristic Evaluation
	8.2.2 Think Aloud

	8.3 User Interfaces
	8.2.1 Web application on desktop
	8.2.2 Web application on mobile device
	8.2.3 Android Application

	Conclusion & Future Work
	Bibliography

