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Abstract: This work is devoted to the construction of explicit feedback control laws for the
robust global exponential stabilization of general uncertain discrete-time acyclic traffic networks.
We consider discrete-time uncertain network models which satisfy very weak assumptions. The
construction of the controllers is based on recently proposed vector-Lyapunov function criteria,
as well as the fact that the network is acyclic. The latter requirement is necessary for the
existence of a robust, global, exponential stabilizer of the desired uncongested equilibrium point
of the network. An illustrative example demonstrates the applicability of the obtained results
to realistic traffic flow networks.
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1. INTRODUCTION

Networks are large-scale entities representing different
types of physical or cyber-physical systems such as fluid
flow networks, communication networks, smart grids and
other. Particular emphasis is given in this study to traffic
networks for which a plethora of diverse infrastructures
can be addressed on the basis of a unifying modeling ap-
proach (see, for example, Coogan and Arcak (2014); Fermo
and Tosin (2013)). More specifically, traffic networks can
be modeled as urban road networks consisting of inter-
connected links which are modeled as store-and-forward
components (Aboudolas et al. (2009)) or cell-transmission
links (Buisson et al. (1996)); large urban networks consist-
ing of smaller homogeneous sub-networks (Aboudolas and
Geroliminis (2013)); freeway networks consisting of series
of links, which are modeled, e.g., via general discretized
LWR models (Lebacque (1996); Karafyllis et al. (2016))
or its simplified CTM (Cell Transmission Model) version
(Daganzo (1995)); large mixed (corridor) networks consist-
ing of urban and freeway links (Papageorgiou (1995)).

Recently, many researchers have addressed the stabiliza-
tion of equilibrium points of large-scale discrete-time sys-
tems. However, the verification of stability for large-scale
systems still remains a challenging problem on its own.
To this purpose, many tools have been proposed in the
literature such as vector-Lyapunov functions that are very
useful for large-scale discrete-time systems. Sufficient sta-
bility conditions by means of vector-Lyapunov functions
have been proposed by Haddad and Chellaboina (2008)
(pages 792-798). In addition, small-gain conditions have
been proposed by Liu et al. (2012), which can be ex-
pressed by means of a vector-Lyapunov function formu-
lation (as shown by Karafyllis and Jiang (2011), Chapter

5). Recently, sufficient conditions have been provided by
Karafyllis and Papageorgiou (2015) for the robust, global,
exponential stability of nonlinear, large-scale, uncertain
networks by means of vector-Lyapunov functions; results
that can be easily applied to traffic networks.

Following the work by Kontorinaki et al. (2016), in this
work, a general model for acyclic networks consisting of
an arbitrary number of elementary components with con-
stant turning and exit rates is presented. The components
of the network can be interconnected to form any two-
dimensional structure with no cycles for the overall net-
work. Specific instances of the proposed general model re-
sult in traffic network structures and problems that can be
considered as special cases of the proposed network model
and include all the traffic network structures mentioned
above. Based on this modeling framework, the results pro-
vided by Karafyllis and Papageorgiou (2015) are utilized
for the developed uncertain models of acyclic networks.
More specifically, this study provides a parameterized fam-
ily of explicit feedback control laws which can robustly,
globally, exponentially stabilize the desired Uncongested
Equilibrium Point (UEP) of a given acyclic traffic network.
The achieved stabilization is robust with respect to: i) any
uncertainty related to the fundamental diagram of traffic
flow; as well as ii) the overall uncertain nature of the
developed model when congestion phenomena are present.
In fact, in the latter case, the model which describes the
time evolution of the network variables is almost com-
pletely uncertain (besides the requirement of known and
constant turning and exit rates). The assumptions that
surround the proposed methodology are weak enough to
render the methodology applicable to other kinds of acyclic
networks instead of traffic networks. We emphasize here
that, as it is proved by Kontorinaki et al. (2016), the



requirement regarding the absence of cycles inside the
network is utterly necessary for the existence of a robust
global exponential stabilizer of the UEP of the network.
Note that, all the proofs of the obtained results described
above are omitted (due to space limitations) and can be
found in the paper by Kontorinaki et al. (2016). However,
in this paper an additional result which provides sufficient
conditions for the robust global exponential stability of
the UEP for the open-loop system is also presented (see,
Section 3, Corollary 1).

The structure of the present work is as follows. Section
2 includes the model derivation as well as the discussion
on the properties and the consequences of the considered
modeling framework, while the main results of this work
are presented in Section 3. Section 4 presents an illustra-
tive example for a traffic control problem in a freeway-to-
freeway network, where the performance of the proposed
methodology for the closed-loop system is also evaluated in
case modeling and measurement errors are present. Finally
the concluding remarks are given in Section 5.

Definitions and Notation: In this paper, we adopt the
following notation and terminology:

• <+ := [0,+∞). <n
+ :=

(
<+)n. For every set S ,

Sn = S × ...× S︸ ︷︷ ︸
n times

for every positive integer n. For a

set S ⊆ <n, int(S) denotes the interior of S (which
may be empty).

• By C0(A; Ω), we denote the class of continuous func-
tions on A ⊆ <n, which take values in Ω ⊆ <m.
By Ck(A; Ω), where k ≥ 1 is an integer, we denote
the class of functions on A ⊆ <n with continuous
derivatives of order k, which take values in Ω ⊆ <m.

• Let x, y ∈ <n. We say that x ≤ y if (y − x) ∈ <n
+

and we say that x < y if (y − x) ∈ int(<n
+). The

transpose of x ∈ <n is denoted by x′. By |x| we denote
the Euclidean norm of x ∈ <n. For every x ∈ <, [x]
denotes the integer part of x ∈ <.

• We denote by I the identity matrix and we denote
by 1n×n ∈ <n×n the matrix for which every entry is
equal to one. Moreover, 1n = (1, ..., 1)′ ∈ <n.

• The spectral radius of ∆ ∈ <n×n is denoted by ρ(∆).
When all the entries of ∆ are non-negative, then we
say that ∆ is non-negative and we write ∆ ∈ <n×n

+ .

• We say that the matrix ∆ ∈ <n×n
+ is upper (lower)

triangular if all the entries below (above) the main
diagonal are zero. We say that the upper (lower)
triangular matrix ∆ ∈ <n×n

+ is strictly upper (lower)
triangular if all the entries of the main diagonal
are zero. The diagonal entries of an upper (lower)
triangular matrix ∆ ∈ <n×n

+ are the eigenvalues of

∆ ∈ <n×n
+ .

Let X ⊆ <n, D ⊆ <l be non-empty sets and consider the
uncertain, discrete-time, dynamical system

z+ = Z(d, z), z ∈ X, d ∈ D, (1)

where Z : D × X → X is a mapping. The variable
z ∈ X denotes the state of (1) while here (and throughout
the paper) z+ denotes the value of the state at the next
time instant, i.e., (1) expresses the recursive relation z(t+
1) = Z(d(t), z(t)). Let z∗ ∈ X be an equilibrium point
of (1), i.e., z∗ ∈ X satisfies z∗ = Z(d, z∗) for all d ∈ D.

Notice that the requirement z∗ = Z(d, z∗) for all d ∈ D
implies that d ∈ D is a vanishing perturbation, i.e.,
a disturbance that does not change the position of the
equilibrium point of the system. Next, we use the following
definitions throughout the paper.

Definition 1: A Trapping Region (TR) for system (1) is
a set Ω ⊆ X for which there exists an integer m ≥ 0 such
that for every z0 ∈ X, {d(t) ∈ D}∞t=0, the solution z(t) of
(1) with initial condition z(0) = z0 corresponding to input
{d(t) ∈ D}∞t=0 satisfies z(t) ∈ Ω for all t ≥ m.

A nonlinear system with a TR is a system for which
all solutions enter a specific set after an initial transient
period. A direct consequence of Definition 1 is that every
TR for (1) must contain all equilibrium points. We next
define the robust, global exponential stability notions for
(1).

Definition 2: We say that z∗ ∈ X is Robustly Globally
Exponentially Stable (RGES) for system (1) if there exist
constants M,σ > 0 such that for every z0 ∈ X and for
every sequence {d(t) ∈ D}∞t=0 the solution z(t) of (1)
with initial condition z(0) = z0 corresponding to input
{d(t) ∈ D}∞t=0 (i.e., the solution that satisfies z(t + 1) =
Z(d(t), z(t)) for all t ≥ 0 and z(0) = z0) satisfies the
inequality |z(t)− z∗| ≤Mexp(−σt)|z0 − z∗| for all t ≥ 0.

2. ACYCLIC NETWORKS WITH CONSTANT
TURNING AND EXIT RATES

We consider a generic network which consists of n com-
ponents (cells). This network may represent a traffic flow
network, a fluid flow network or another kind of network.
The density of the quantity characterizing each component
of the network (e.g. density of vehicles, fluid mass etc.) at
time t ≥ 0 in component i ∈ {1, ..., n} is denoted by xi(t).
The outflow and the inflow of the component i ∈ {1, ..., n}
at time t ≥ 0 are denoted by Fout,i ≥ 0 and Fin,i ≥ 0,
respectively. Consequently, the conservation equation for
each component i ∈ {1, ..., n} is given by

x+i = xi − Fout,i + Fin,i, i ∈ {1, ..., n}, t ≥ 0. (2)

Each component of the network has storage capacity ai >
0 (i = 1, ..., n ). Let S = [0, a1] × · · · × [0, an] be the
state space, i.e., x ∈ S. Let vi ≥ 0 (i = 1, ..., n) denote
the attempted inflow to component i ∈ {1, ..., n} from the
region out of the network and set v = (v1, ..., vn)′ ∈ <n

+.
Our first assumption is dealing with the outflows. We
assume that there exist functions fi : D × [0, ai] → <+,
si : D × S × <n

+ → [0, 1] with fi(d, xi) ≤ xi for all

(d, xi) ∈ D×[0, ai], where D ⊆ <l is a non-empty, compact
set, so that:

Fout,i = si(d, x, v)fi(d, xi), for i = 1, ..., n. (3)

In fact, the functions fi : D × [0, ai] → <n (i = 1, ..., n)
denote the attempted outflow from the i-th cell, i.e., the
outflow that will exit the cell if there is sufficient space in
the downstream cells. Particularly, the functions fi : D ×
[0, ai] → <n (i = 1, ..., n) remind what in the specialized
literature of Traffic Engineering is called the demand-part
of the fundamental diagram of the i-th cell. The functions
si : D × S × <n

+ → [0, 1] (i = 1, ..., n) are introduced in
order to accommodate congestion phenomena. Next, we



make the following assumption for the functions fi : D ×
[0, ai]→ <n (i = 1, ..., n):

(H1) For each d ∈ D, the function fi(d, ·) : [0, ai] → <+

satisfies 0 < fi(d, z) < z for all z ∈ (0, ai]. There exists
δi ∈ (0, ai] such that for each d ∈ D, the function fi(d, ·)
is continuous and increasing on [0, δi]. Moreover, there

exist constants Li ∈ (0, 1), Gi ∈ (0, 1], δ̃i ∈ (0, δi] such
that |fi(d, z) − fi(d, y)| ≥ Li|z − y| for each d ∈ D

and y, z ∈ [0, δ̃i] and |fi(d, z) − fi(d, y)| ≤ Gi|z − y| for
each d ∈ D and y, z ∈ [0, δi]. Finally, there exists a
constant fmin

i > 0 such that for each d ∈ D it holds that
fi(d, z) ≥ fmin

i for all z ∈ [δi, ai].

Remark 1: Assumption (H1) is a technical assumption
that allows a very general class of functions fi(d, ·) :
[0, ai] → <+ to be taken into account. The implications
of assumption (H1) are illustrated in Fig. 1. Assumption
(H1) includes the basic properties of the so-called demand
function (Lebacque (1996)) in the Godunov discretiza-
tion; δi is the critical density, where fi(d, ·) achieves a
maximum value (capacity flow). Notice that assumption
(H1) includes the possibility to consider arbitrary func-
tions fi(d, ·) for overcritical densities, i.e., when xi > δi
(discontinuous or decreasing or, even, increasing functions,
see grey area in Fig. 1).

Fig. 1. Implications of Assumption (H1).

Our second assumption is dealing with the inflows. We
assume that there exist functions gi ∈ C0(D × S;<+),
wi : D × S × <n

+ → [0, 1] with 0 < gi(d, x) ≤ ai − xi for
all (d, x) ∈ D × S with xi < ai (i = 1, ..., n), constants
pi,j ≥ 0 with pi,i = 0 (i, j = 1, ..., n) and constants Qi ≥ 0
(i = 1, ..., n), so that:

n∑
j=1

pi,j +Qi = 1, (4)

Fin,i = wi(d, x, v)vi +

n∑
j=1

pj,isj(d, x, v)fj(d, xj)

≤ gi(d, x), for all i = 1, ..., n.

(5)

if vi +

n∑
j=1

pj,ifj(d, xj) ≤ gi(d, x), for all i = 1, ..., n

then wi(d, x, v) = si(d, x, v) = 1, for i = 1, ..., n

(6)

For the case of traffic networks, the functions gi : D ×
S → <+ remind what in the specialized literature of Traffic
Engineering is called the supply function of the i-th cell. In
addition, pi,j are turning rates and Qi are exit rates. When
wi(d, x, v) +

∑n
j=1 pj,isj(d, x, v) ≤ 1 +

∑n
j=1 pj,i then we

say that the i-th cell is congested. The functions wi : D ×
S ×<n

+ → [0, 1] and si : D × S ×<n
+ → [0, 1] (i = 1, ..., n)

are introduced so that for each cell: (i) the actual inflow
is always less than the supply (this is inequality (5)),
and (ii) when the maximum value of all inflows can be
accommodated then no congestion phenomena are present
(this is implication (6)). Priority rules for each junction
can be expressed by means of the functions wi : D × S ×
<n

+ → [0, 1] and si : D × S ×<n
+ → [0, 1] (i = 1, ..., n).

For traffic flow networks, the supply function is usually
given by the function gi(d, x) = min(qi, ci(ai−xi)), where
qi > 0 represents the maximum admissible inflow of
the i-th cell and ci ∈ (0, 1] represents the normalized
congestion wave speed. Then, the fundamental diagram of
cell i is composed by the increasing function fi(d, xi) for
xi ∈ [0, δi] and by the non-increasing function gi(d, x) for
xi ∈ [δi, ai]. Notice here that the uncertainty d ∈ D has
been introduced in order to accommodate the uncertain
nature of the fundamental diagram.

Combining equations (2), (3) and (5) we obtain the fol-
lowing nonlinear uncertain discrete-time system:

x+i = xi+wi(d, x, v)vi − si(d, x, v)fi(d, xi)+
n∑

j=1

pj,isj(d, x, v)fj(d, xj),
(7)

for i = 1, ..., n. Fig. 2 illustrates schematically the network
described by the model (7). For physical reasons, we would
expect a network of the form (7) under Assumption (H1)
to satisfy the following three properties:

1) If the attempted external inflows vi ≥ 0 (i = 1, ..., n) are
small for a sufficiently large time period then the network
densities will eventually be small.

2) If xi 6= 0 for some i = 1, ..., n, then there is at least one
non-zero outflow.

3) If the attempted external inflows vi ≥ 0 (i = 1, ..., n)
and the densities xi ≥ 0 (i = 1, ..., n) are small, then no
congestion phenomena are present in the network.

Indeed, consider a network with zero external inflows. If
the network does not satisfy property 1 above then it
is possible that the network retains a certain amount of
density (i.e., the vehicles do not exit). The same situation
would occur in the case where property 2 above does not
hold. Of course, there are special cases (e.g. a gridlock
around a cycle) where vehicles are trapped in the network
and do not exit, but it is clear that in such situations
one cannot deal with congestion phenomena via inflow
control, i.e. by making the external inflows sufficiently
small. Property 3 is another empirical fact that should be
verified to enable inflow control: congestion phenomena are
present only when the attempted external inflows vi ≥ 0
(i = 1, ..., n) and the network densities xi ≥ 0 (i =
1, ..., n) are sufficiently large. In the aim of guaranteeing

Fig. 2. Scheme of the network model.



that the considered network models actually possess the
above properties, we consider only acyclic networks via
the following assumption.

(H2) The matrix P = {pi,j : i, j = 1, ..., n} ∈ [0, 1]n×n

which contains the turning rates of the acyclic network (7)
is strictly upper triangular.

Remark 2: From a graph-theoretic point of view, the
vertices of a directed acyclic graph can admit a topological
sorting (the starting endpoint of every edge occurs earlier
in the ordering than the ending endpoint of the edge).
Then, assigning the vertices of the graph to the cells of the
network, for any given acyclic network, we are in a position
to reorder the cells of the network into a topological
sorting. The main consequence of this sorting is that the
matrix P = {pi,j : i, j = 1, ..., n} ∈ [0, 1]n×n containing
the turning rates of the network becomes strictly upper
triangular (Godsil and Royle (2013)).

The following technical lemmas are useful for the analysis
of the acyclic networks.

Lemma 1: For every non-negative, strictly upper triangu-
lar matrix P with

∑n
j=1 pi,j ≤ 1 for all i = 1, ..., n, there

exist positive constants ri > 0 (i = 1, ..., n), such that

ri >

n∑
j=1

rjpi,j , for every i = 1, ..., n. (8)

Lemma 2: Let Li ∈ (0, 1) and Gi ∈ (0, 1] with Li ≤ Gi,
for i = 1, ..., n, be constants and let P be a non-negative,
strictly upper triangular matrix with

∑n
j=1 pi,j ≤ 1 for i =

1, ..., n. Then the matrix I+P ′diag(G)−diag(L) is a lower
triangular matrix with ρ(I + P ′diag(G) − diag(L)) < 1,
where G = (G1, ..., Gn) and L = (L1, ..., Ln).

The following assumption is a technical assumption, which
is related to Property 2 above.

(H3) There exist functions s̃i ∈ C0(D×S×<n
+; [0, 1]) with

si(d, x, v) ≥ s̃i(d, x, v) for all (d, x, v) ∈ D × S × <n
+, and

constants vmax
i > 0 (i = 1, ..., n) such that the following

implication holds:

if xis̃i(d, x, v) = 0 and vi < vmax
i , i = 1, ..., n

then x = 0.
(9)

Remark 3: Assumption (H3) guarantees that the functions
si : D × S × <n

+ → [0, 1], which have been introduced in
model (7) in order to accommodate congestion phenom-
ena, should admit a continuous and positive definite lower
bound for some i = 1, ..., n. Implication (9) guarantees
that if the outflow of every cell of the network is zero then
the density of every cell should be zero (Property 2).

We next show that assumption (H3) in conjunction with
assumption (H1) and (H2) guarantees that the network
(7) satisfies Properties 1, 2 above.

Proposition 1: Consider the network (7) under assump-
tions (H1), (H2), (H3). Then for every constants ri > 0
(i = 1, ..., n) satisfying (8) and for every family of con-
stants ε̃i ∈ (0,min(vmax

i ,min(gi(d, 0) : d ∈ D))) (i =
1, ..., n), there exists a constant C > 0 such that(

n∑
i=1

rixi

)+

≤ (1− C)

n∑
i=1

rixi +

n∑
i=1

rivi, (10)

for all (d, x) ∈ D × S and for all vi ≥ 0 with vi ≤
min(vmax

i ,min(gi(d, 0) : d ∈ D))− ε̃i (i = 1, ..., n).

Inequality (10) and induction allows us to show that for
every ω > 0 and for sufficiently small external inflows
(vi(t) ≥ 0 with vi(t) ≤ min(vmax

i ,min(gi(d, 0) : d ∈ D))−
ε̃i for all t ≥ 0) there exists T > 0 sufficiently large such
that the following estimate holds for all t ≥ T for the
solution of (7), for every initial condition x(0) ∈ S and for
every input {d(t) ∈ D}∞t=0:

n∑
i=1

rixi(t) ≤ ω + C−1 max
i=1,...,n

(sup{vi(t) : t ≥ 0})
n∑

i=1

ri.

The above inequality shows that if the attempted external
inflows vi ≥ 0 (i = 1, ..., n) are small for a sufficiently
large time period then the network densities will eventually
be small. This is Property 1 stated above. Property 2
above is a direct consequence of (3), (9) and the fact that
fi(d, xi) = 0 ⇔ xi = 0 (a consequence of Assumption
(H1)). Property 3 is a direct consequence of the following
assumption and (6).

(H4) There exist constants µi ∈ (0, δ̃i), v
max
i > 0 (i =

1, ..., n), such that

vmax
i +

n∑
j=1

pj,ifj(d, xj) ≤ gi(d, x), (11)

for all i = 1, ..., n, (d, x) ∈ D × S with x ≤ µ, where
µ = (µ1, ..., .µn)′.

Remark 4: Assumption (H4) is a reasonable assumption:
if the network densities are small (below a critical value,
here denoted by µi) and the attempted external inflows
are small (below a given vmax

i ), then the total attempted
inflow should be accommodated by the i-th cell.

Assumptions (H1), (H2), (H3) and (H4) have important
consequences; some of them have been already discussed
while the rest are presented in the next section. Those
assumptions may fit to many kinds of networks of the
form (7). In particular, for freeway traffic flow networks
the aforementioned assumptions are relatively mild. It
is shown by Kontorinaki et al. (2016) that the freeway
models considered by Karafyllis et al. (2016) and the
corresponding related assumptions are indeed special cases
of the model (7) and the assumptions (H1), (H2), (H3) and
(H4) respectively.

3. MAIN RESULT

Consider a network of the form (7) under assumptions
(H1), (H2), (H3), (H4). We next assume the existence
of a point x∗ = (x∗1, ..., x

∗
n)′ ∈ S and a vector v∗ =

(v∗1 , ..., v
∗
n)′ ∈ <n

+ with x∗i ∈ (0, µi) and v∗i < vmax
i , for

i = 1, ..., n, that satisfy the following equations:

fi(d, x
∗
i ) = v∗i +

n∑
j=1

pj,ifj(d, x
∗
j ), (12)

for all i = 1, ..., n and d ∈ D. Since x∗i (0, µi), v
∗
i < vmax

i it
follows from (11) that the following inequalities hold:

v∗i +

n∑
j=1

pj,ifj(d, x
∗
j ) < gi(d, x

∗), (13)



for all i = 1, ..., n and d ∈ D. The point x∗ = (x∗1, ..., x
∗
n)′ ∈

S is called the UEP of the network corresponding to the
vector of external inflows v∗ = (v∗1 , ..., v

∗
n)′ ∈ <n

+. Notice
that the input d ∈ D is a vanishing perturbation for system
(7) with v(t) ≡ v∗. This is also illustrated in Fig. 1, which
shows that the input d ∈ D does not change the position
of the equilibrium point (denoted by a star).

We next assume that some of the external inflows may
be controlled. Let b ∈ <n

+ be a vector with b ≤ v∗, let

K ∈ <n×n
+ be a non-negative, constant matrix and let

τ > 0 be a constant. We set:

v = v∗−diag(v∗−b)
(

1n−h
(
1n−τ−1Kh(x−x∗)

))
, (14)

where h : <n → <n
+ is the mapping defined by

h(x) =
(

max(0, x1), ...,max(0, xn)
)′ ∈ <n

+, (15)

for all x ∈ <n. Notice that if bi = v∗i for some i ∈ {1, ..., n}
then it follows from (14) that vi = v∗i , i.e., the external
inflow vi is uncontrolled. Therefore, by assuming (14), we
have taken into account all possible cases for the control
of external inflows. The following theorem shows that the
UEP can be robustly, globally, exponentially stabilized by
the continuous feedback law (14), which regulates certain
or all the external inflows.

Theorem 1: Consider the network (7) under assumptions
(H1), (H2), (H3), (H4). Assume the existence of a point
x∗ = (x∗1, ..., x

∗
n)′ ∈ S with x∗i ∈ (0, µi) and a vector

v∗ = (v∗1 , ..., v
∗
n)′ ∈ <n

+ with v∗i ≤ min(vmax
i ,min(gi(d, 0) :

d ∈ D)), for i = 1, ..., n, that satisfy equations (12). Then
there exists an index set R ⊆

{
i ∈ {1, ..., n} : v∗i > 0

}
, a

matrix K ∈ <n×n
+ and a vector b ∈ <n

+ with 0 < bi < v∗i
for i ∈ R, bi = v∗i for i /∈ R such that for every τ ∈ (0, 1),
x∗ = (x∗1, ..., x

∗
n)′ ∈ S is RGES for the closed-loop system

(7) with (14).

Theorem 1 is an existence result. However, its proof is con-
structive and provides formulae (or sufficient conditions)
for all constants and for the index set R (see Kontorinaki
et al. (2016)). Notice that the index set R is the set of
all inflows that must be controlled in order to be able
to guarantee that the UEP is RGES. The importance of
Theorem 1 lies on the following facts:

a) It provides a family of robust, global, exponential
stabilizers (parameterized by τ ∈ (0, 1)) and an explicit
feedback law (formula (14)).

b) The achieved stabilization is robust with respect to:

(i) The uncertain nature (introduced by d ∈ D) of the
fundamental diagram of traffic flow (by considering
uncertain demand and supply functions, fi(d, xi) and
gi(d, x) respectively).

(ii) The overall uncertain nature of the model (7) when
congestion phenomena are present (by considering
uncertain functions si(d, ·, ·) and wi(d, ·, ·), with re-
spect to d ∈ D).

The main idea behind the proof of Theorem 1 is the
construction of a vector Lyapunov function for the closed-
loop system. The construction of the vector Lyapunov
function is based on the existence of a TR, Ω, for the
system (7) in which no congestion phenomena are present.
The appropriate selection of the gain matrix K ∈ <n×n

+

in (14) forces the selected control action to lead the state
in the set Ω. In other words, the control action will first
eliminate all congestion phenomena and then will drive the
state to the desired equilibrium.

The following proposition shows the existence of a posi-
tively invariant region for the network (7).

Proposition 2: Consider the network (7) under assump-
tions (H1), (H2), (H3), (H4). Assume the existence of
a point x∗ = (x∗1, ..., x

∗
n)′ ∈ S with x∗i ∈ (0, µi), and

a vector v∗ = (v∗1 , ..., v
∗
n)′ ∈ <n

+ with v∗i < vmax
i , for

i = 1, ..., n, that satisfy equations (12). Then there exist
constants βi ∈ (x∗i , µi] (i = 1, ..., n) such that for every
b ∈ <n

+ with b ≤ v∗, K ∈ <n×n
+ and τ > 0, it holds that

x ∈ Ω, d ∈ D ⇒ x+ ∈ Ω (16)

where Ω = [0, β1, ] × · · · × [0, βn] and x+ is given by (7)
with (14).

Implication (16) shows that Ω ⊂ S is a positively invariant
region for inputs that satisfy d(t) ∈ D and 0 ≤ v(t) ≤ v∗−
diag(v∗−b)

(
1n−h

(
1n−τ−1Kh(x(t)−x∗)

))
for all t ≥ 0.

It should be noticed that x∗ ∈ int(Ω), i.e., the UEP is in
the interior of the positively invariant region. In order to
study the stability properties of the UEP of the network
(7), we need the following technical lemmas.

Lemma 3: Consider the network (7) under assumptions
(H1), (H2), (H3), (H4). Assume the existence of a point
x∗ = (x∗1, ..., x

∗
n)′ ∈ S with x∗i ∈ (0, µi) and a vector

v∗ = (v∗1 , ..., v
∗
n)′ ∈ <n

+ with v∗i < vmax
i , for i = 1, ..., n,

that satisfy equations (12). Then there exist constants
βi ∈ (x∗i , µi] (i = 1, ..., n) such that for every b ∈ <n

+

with b ≤ v∗, K ∈ <n×n
+ and τ > 0, implication (16) holds

and such that
x ∈ Ω,d ∈ D ⇒

h(x+ − x∗) ≤
(
I + P ′diag(G)− diag(L)

)
h(x− x∗)

(17)

x ∈ Ω,d ∈ D ⇒
h(x∗ − x+) ≤

(
I + P ′diag(G)− diag(L)

)
h(x∗ − x)

+diag(v∗ − b)τ−1Kh(x− x∗),
(18)

where Ω = [0, β1, ] × · · · × [0, βn], h : <n → <n
+ is

the mapping defined by (15), L = (L1, ..., Ln)′ ∈ <n,
G = (G1, ..., Gn)′ ∈ <n, P = {pi,j : i, j = 1, ..., n} and
x+ is given by (7) with (14).

Lemma 4: Consider the network (7) under assumptions
(H1), (H2), (H3), (H4). Assume the existence of a point
x∗ = (x∗1, ..., x

∗
n)′ ∈ S with x∗i ∈ (0, µi) and a vector

v∗ = (v∗1 , ..., v
∗
n)′ ∈ <n

+ with v∗i < vmax
i , for i = 1, ..., n,

that satisfy equations (12). Then there exist constants
βi ∈ (x∗i , µi] (i = 1, ..., n) such that for every b ∈ <n

+

with b ≤ v∗, K ∈ <n×n
+ and τ > 0 implications (16), (17),

(18) hold and there exists a constant M > 0 (depending
on b ∈ <n

+, K ∈ <n×n
+ and τ > 0), which satisfies the

following property

x ∈ S, d ∈ D ⇒ |x+ − x∗| ≤M |x− x∗|, (19)

where x+ is given by (7) with (14).

We are now ready to state the following corollary which
provides sufficient conditions for the robust, global expo-
nential stability of the UEP for the open-loop system (7)
with v = v∗. The sufficient conditions are given by means



of the selection of UEP. The proof of the corollary below
is given in the Appendix.

Corollary 1: Consider the network (7) under assumptions
(H1), (H2), (H3), (H4). Assume the existence of a point
x∗ = (x∗1, ..., x

∗
n)′ ∈ S with x∗i ∈ (0, µi) and a vector

v∗ = (v∗1 , ..., v
∗
n)′ ∈ <n

+ with v∗i ≤ min(vmax
i ,min(gi(d, 0) :

d ∈ D)), for i = 1, ..., n, that satisfy equations (12).
Let r = (r1, ..., rn)′ ∈ int(<n

+) be a vector of constants
satisfying (8) and let C > 0 be the corresponding constant
for which inequality (10) holds for all (d, x) ∈ D × S and
for vi = v∗i (i = 1, ..., n). Assume that

r′v∗ ≤ C min
i=1,...,n

(rix
∗
i ). (20)

Then the equilibrium point x∗ = (x∗1, ..., x
∗
n)′ ∈ S is RGES

for the open-loop system (7) with v = v∗.

4. ILLUSTRATIVE EXAMPLE

Consider a 3-lane freeway-to-freeway traffic network of the
form (7) with n = 8 cells. The traffic network consists of
two smaller freeways, 2 km each; the first is composed by
the cells i = 1, 2, 3, 4, and the second is composed by the
cells i = 5, 6, 7, 8 (Fig. 3). The cells are homogeneous, each
cell being 0.5 km in length. The whole network admits
two external inflows; one external inflow at the upstream
boundary of the first cell and one external inflow at the
upstream boundary of the fifth cell, while there are no
intermediate external inflows (vi = 0, i 6= 1, 5 and v1, v5 6=
0). At the end of the first freeway (4th cell) there is an off-
ramp which becomes an on-ramp for the second freeway at
the upstream boundary of the 7th cell (Fig. 3). According
to this configuration, the exit and turning rates of the
freeway are Qi = 0 for i 6= 4, 8, Q4 = 0.5, Q8 = 1, pi,j = 1
for j = i + 1 and i 6= 4, p4,7 = 0.5 and pi,j = 0 for all
other cases (i, j = 1, ..., 8). Consequently, the only control
possibilities are the inflows v1, v5. It should be noted here
that the 7th cell is a bottleneck for the overall network due
to the ramp that joins both freeways. Congestion may be
created in the 7th cell, due to high on-ramp demand from
the 1st and the 5th cells, and spill back to both freeways
depending on the priority rules.

All the following simulation tests have been conducted
using constant priority rules for the junctions. More specif-
ically, the functions si(d, x, v) (i = 1, ..., 8) have been
defined so as to incorporate into the model (7) a full
priority rate for the external inflows and the mainstream
flow coming from the 6th cell against the mainstream flow
coming from the 4th cell. Moreover, the demand and the
supply functions have been defined so as to reflect the
uncertainty, d, derived from the fundamental diagram of
traffic flow. More specifically, we assume that the demand
functions are given as a convex combination of several
functions φi (e.g., linear or quadratic) (for i = 1, ...,m,
where m = 1, 2, ...), satisfying assumption (H1) and guar-
anteeing that the uncertainty d is a vanishing perturbation

Fig. 3. The scheme of the freeway-to-freeway network.

for the system (7). Fig. 4 illustrates the representation of
the above specifications for the demand and the supply
functions. The grey area in Fig. 4 represents any possible
demand and supply functions. For the exact specification
of the functions si(d, x, v), the demand and the supply
functions see Kontorinaki et al. (2016).

Assuming that the simulation time step is T = 15 s,
we can apply appropriate transformations to common
traffic units. All flows and densities are measured in [veh],
however, transformations in common traffic units are given
for the most critical variables wherever it is needed.

Each cell has the same critical density δi = 55 + 2ε [veh]
with ε = 10−5 (corresponding to 36.7 [veh/km/lane])
and the same jam density ai = 170 [veh] (corresponding
to 113.3 [veh/km/lane]), for i = 1, ..., 8. Furthermore,
the considered supply functions yield to a congestion
wave speed within approximately 26 to 36 [km/h] and
a maximum inflow approximately between 2000 to 2750
[veh/h/lane]. For the overall system (7), the uncertainty
d(t) = (d1(t), ..., d4(t)) ∈ D is a time-varying parameter
taking values from a uniform distribution within D =
[0, 1]3 × [0.22, 0.3] (di, for i = 1, 2, 3, involve within
the uncertainty derived by the demand functions and
d4 involves within the uncertainty derived by the supply
functions). It can be verified (see Kontorinaki et al. (2016))
that Assumptions (H1), (H2), (H3) and (H4) are satisfied
for the selected modeling framework.

Thus, in this example, we have that R = {1, 5}. Our
goal is to globally exponentially stabilize the system at
an UEP which is as close as possible to the critical den-
sity (due to the fact that the flow value at the critical
density is the largest). Equation (12) and inequality (13)
are satisfied by selecting v∗ = (25, 0, 0, 0, 12.5, 0, 0, 0) and
x∗ = (55, 55, 55, 55, 27.5, 27.5, 55, 55). The above UEP is
not open-loop globally exponentially stable due to the ex-
istence of additional (congested) equilibria. This is shown
in Fig. 5(a), where the solution of the open-loop system,
with constant inflows v = v∗ = (25, 0, 0, 0, 12.5, 0, 0, 0),
constant d(t) ≡ (1, 0, 0, 0.5) and x0 = (a1, ..., a8), is
attracted by a congested equilibrium leading to outflow,
which is 7.4 [veh] lower than the capacity flow of the
4th cell and 4.9 [veh] lower than the capacity flow of the
8th cell. Therefore, if the objective is the operation of

Fig. 4. Specification of the parameters of the demand and
the supply functions of every cell.



the freeway with largest possible outflow, then a control
strategy will be needed. However, the present simulation
study (by considering Corollary 1) indicated that there
exists v∗, appropriately small, so that the UEP is RGES
for the open-loop system (7) with v = v∗. For this example
there are 2 controllable inflows, thus, the UEP is RGES
for 0 ≤ v ≤ v∗ = (15, 0, 0, 0, 12.5, 0, 0, 0) but also for
0 ≤ v ≤ v∗ = (20, 0, 0, 0, 10, 0, 0, 0).

We constructed the matrix K and the constants τ and b
using the sufficient conditions provided from the proofs of
the technical lemmas and propositions (Kontorinaki et al.
(2016)). Thus, we selected K = 0.004 · 1n×n, τ = 1/4 and
b1 = b5 = 0.5 (bi = 0 for i 6= 1, 5) which satisfy those
conditions and allow for a good control performance with
respect to overshooting effects. We performed a simulation
study with respect to various initial conditions for the
closed-loop system. The indicative Fig. 5(b) shows the
response of the density of every cell for the closed-loop
system (7), (14) with constant d(t) ≡ (1, 0, 0, 0.5) and
x0 = (a1, ..., an). Furthermore, Fig. 5(c) illustrates the
evolution of the Euclidean norm of the deviation of the
state from the UEP for the open-loop system (6) with
v = v∗ (red color) and for the closed-loop system (6) with
(13) (blue color) for x0 = (a1, ..., an). Both Fig. 5(b) and
Fig. 5(c) indicate that the feedback regulator respond very
satisfactorily in this test exhibiting a fast convergence to
the UEP.

We test also the performance of the proposed control
scheme with respect to measurement errors. For this test,
the measurements that feed the feedback law (14) are given

by x̂(t) = P̂
(
(1 − d̂(t)A)x(t)

)
, where P̂ is a projection

operator within the set S, d̂(t) is a uniformly distributed
function within [0, 1] and A = 0.2. The selected criterion,
which reflects the performance of the controller, is the
total amount of Vehicles Exiting the Network during the
simulation horizon (V ENh), i.e.,

Fig. 5. The response of the densities (a) for the open-loop
system (7) with v = v∗, (b) for the closed-loop system
(7) with (14) and (c) the evolution of the Euclidean
norm of the deviation of the solution x(t) from the
UEP, i.e. |x(t)− x∗|.

V ENh =

h∑
k=0

(
Q4s4(d(k), x(k), v(k))f4(d(k), x4(k))

+f8(d(k), x8(k))
)
,

(21)

where h = KT , with K = 1, 2, ..., corresponds to the
simulation time horizon (in [hours]). The goal of any
control strategy is to maximize this criterion which is
also equivalent to the minimization of the total time that
vehicles spent within the traffic network.

Table 1 shows the values of V EN0.6 (in [veh]) for the
open-loop system (7) with v = v∗ (OL), for the closed-
loop system (7) with (14) (CL) and for the closed-loop
system (7) with (14) with measurement errors (CL-ME).
The results have been derived using different initial con-
ditions for two cases: i) constant d ∈ D and ii) time-
varying d ∈ D. The utilized initial conditions are x01 =
(a1, ..., a8), x02 = (150, 140, 60, 120, 120, 100, 160, 130), x03
= (50, 50, 50, 50, 27, 27, 80, 60) and x04 = (60, 65, 60, 65,
20, 25, 60, 65). Table 1 indicates that in all cases the se-
lected criterion is significantly higher for the closed-loop
system (6) with and without measurement errors compar-
ing with the no-control case. For the case where d ∈ D is
constant, the average amelioration of the criterion values
(CL and CL-ME) for most of the cases is 25% comparing
with the no-control case; while, for time-varying d ∈ D,
the average amelioration becomes even higher, i.e., 42%.

Table 1. V EN0.6 (in [veh]).

OL CL CL-ME

Constant d

x01 3555 4165 4220

x02 3640 4570 4630

x03 4035 5255 5260

x04 4190 5290 5275

Time Varying d

x01 3075 4095 4200

x02 3140 4540 4560

x03 3475 5220 5180

x04 3710 5265 5215

5. CONCLUDING REMARKS

This work provided a rigorous methodology for the con-
struction of a parameterized family of explicit feedback
laws that guarantee the RGES of the UEP for general non-
linear uncertain discrete-time acyclic traffic networks.The
construction of the global exponential feedback stabilizer
is based on a vector Lyapunov function approach as well
as certain important properties of acyclic traffic networks.
Moreover, this work provided sufficient conditions for the
RGES of the UEP for the corresponding open-loop system.
The applicability and the efficacy of the obtained results
to real control problems is demonstrated by conducting a
simulation study, using a freeway-to-freeway network, with
respect to various initial conditions as well as the presence
of measurement and modeling errors.
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Appendix A. PROOF OF COROLLARY 1

In order to show that the UEP x∗ = (x∗1, ..., x
∗
n)′ ∈ S

is RGES for the open-loop system (7) with v = v∗ so
that inequality (20) holds, we will use Theorem 2.3 in

(Karafyllis and Papageorgiou (2015)). To do so, first we
will show that the set Ω = [0, β1] × · · · × [0, βn] is a TR
for the open-loop system (7) with v = v∗. For the above
implication, it suffices to show that for every x0 ∈ S and
{d(t) ∈ D}∞t=0 the solution x(t) of the open-loop system (7)
with v = v∗ and initial condition x(0) = x0 corresponding
to input {d(t) ∈ D}∞t=0 satisfies x(t) ∈ Ω for all t ≥ m. We
select m ∈ {1, 2, ..., } so that

m :=

[
ln
(
C mini=1,...,n(riβi)− r′v∗

)
− ln(Cr′α)

ln(1− C)

]
+ 1

(A.1)
where α = (α1, ..., αn) ∈ int(<n

+) and we proceed by
contradiction. Suppose that there exists x0 ∈ S, {d(t) ∈
D}∞t=0 such that the solution x(t) of the open-loop system
(7) with v = v∗ and initial condition x(0) = x0 correspond-
ing to input {d(t) ∈ D}∞t=0 satisfies x(t) /∈ Ω for certain
t ≥ m. Since the set Ω = [0, β1]× · · · × [0, βn] is positively
invariant (a direct consequence of (16) and the fact that
b = v∗), it follows that x(q) /∈ Ω for all q = 0, 1, ...,m.
Define

N(q) := r′x(q) (A.2)

and notice that (10) with v = v∗ implies the following
estimate for all q = 0, 1, ...,m:

N(q + 1) ≤ (1− C)N(q) + r′v∗. (A.3)

Inequality (A.3) implies the following estimate for all
q = 0, 1, ...,m+ 1:

N(q) ≤ (1− C)qN(0) + C−1r′v∗
(
1− (1− C)q

)
. (A.4)

Since N(0) = r′x(0) = r′x0 ≤ r′a for all x0 ∈ S, we obtain
from (A.4) for all q = 0, 1, ...,m+ 1:

N(q) ≤ (1− C)qr′a+ C−1r′v∗. (A.5)

Inequality (A.5) in conjunction with definition (A.1) im-
plies that N(m) ≤ mini=1,...,n(riβi), which combined with
definition (A.2) shows that x(m) ∈ Ω, a contradiction.
Thus, Ω is a TR for the open-loop system (7) with v = v∗.

We next define
Vi(x) := max(0, xi − x∗i ), for i = 1, ..., n,

Vi(x) := max(0, x∗i − xi), for i = n+ 1, ..., 2n.
(A.6)

Notice that inequalities
1√
n
|x− x∗| ≤ max

i=1,...,2n
Vi(x) = max

i=1,...,n
|xi − x∗i | ≤ |x− x∗|

(A.7)

hold for all x ∈ S. Applying, Lemma 3 with b = v∗

in conjuction with definition (A.6) we get the vector
inequality

V (x+) ≤ ΓV (x) (A.8)

for all (d, x) ∈ D×Ω, where V (x) =
(
V1(x), ..., V2n

)′ ∈ <2n

and

Γ :=

[
I + P ′diag(G)− diag(L) 0

0 I + P ′diag(G)− diag(L)

]
(A.9)

Lemma 2 guarantees that the spectral radius of the matrix
I+P ′diag(G)−diag(L) is less than one. It follows that the
spectral radius of Γ as defined by (A.9), is less than one
since I + P ′diag(G) − diag(L) and therefore Γ are lower
triangular matrices. Applying Theorem 2.3 in (Karafyllis
and Papageorgiou (2015)) in conjuction with (A.8) and
Lemma 4, we conclude that the UEP is RGES for the
open-loop system (7) with v = v∗. The proof is complete.


